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A B S T R A C T

Activity-based models offer the potential of a far deeper understanding of daily mobility
behaviour than trip-based models. However, activity-based models used both in research and
practice have often relied on applying sequential choice models between subsequent choices,
oversimplifying the scheduling process. In this paper we introduce OASIS, an integrated
framework to simulate activity schedules by considering all choice dimensions simultaneously.
We present a methodology for the estimation of the parameters of an activity-based model from
historic data, allowing for the generation of realistic and consistent daily mobility schedules.
The estimation process has two main elements: (i) choice set generation, using the Metropolis-
Hasting algorithm, and (ii) estimation of the maximum likelihood estimators of the parameters.
We test our approach by estimating parameters of multiple utility specifications for a sample of
individuals from a Swiss nationwide travel survey, and evaluating the output of the OASIS
model against realised schedules from the data. The results demonstrate the ability of the
new framework to simulate realistic distributions of activity schedules, and estimate stable
and significant parameters from historic data that are consistent with behavioural theory. This
work opens the way for future developments of activity-based models, where a great deal of
constraints can be explicitly included in the modelling framework, and all choice dimensions
are handled simultaneously.

1. Introduction

Activity-based models have been the focus of increasing research efforts in a variety of domains, including transport research,
energy demand, and epidemiology. In transportation, they provide a behaviourally realistic alternative to traditional trip-based
models and aggregate analyses.

In previous work (Pougala et al., 2022) we have introduced an activity-based model to simultaneously estimate choices of
activity participation, scheduling, travel mode and location. The model is utility-based and uses mixed-integer optimisation to
simulate realisations of feasible activity schedules. The major benefit of the simultaneous approach over traditional sequential
approaches (that describe the activity-travel process as a sequence of individual choices, with varying degrees of interaction), is that
the simultaneous approach inherently captures trade-offs between activity scheduling decisions. This opens the way for a flexible
integration of behavioural extensions, including complex context-specific constraints and interactions.
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A significant limitation and challenge of the simultaneous approach is the estimation of stable and significant parameters.
n Pougala et al. (2022), the parameters are not estimated, instead a set of accepted values from the literature are used to illustrate
he principles of the framework. Parameter estimation is generally a challenging task in activity-based models, due to the size of the
roblem, the complexity of the structure due to the spatio-temporal constraints, and, often, the lack of appropriate data. In sequential
odels, the set of parameters can be estimated in stages (e.g., Bowman and Ben-Akiva, 2001; Chen et al., 2020) which considerably

implifies the problem, but at the expense of model flexibility and behavioural realism. Choice sets are also usually considered
iven, or constructed with mostly arbitrary decision rules. Considering each choice dimension simultaneously makes the estimation
roblem significantly more complex, as the resulting combinations cannot be fully observed or enumerated, and the correlations
etween choice dimensions and between alternatives are difficult to properly account for within a tractable mathematical process.

In this paper, we introduce a methodology to estimate the behavioural parameters of the simultaneous model, consisting of two
lements: (i) choice set generation, where we generate a sample of competitive alternative schedules by applying the Metropolis-
asting algorithm to historic schedules, and (ii) discrete choice parameter estimation, where the scheduling process is formulated
s a discrete choice problem, in which each individual chooses a full daily schedule from a finite set of possible schedules. We
est different model specifications and evaluate the quality of the parameter estimations and their impact on the simulations for a
ample of individuals of the Swiss Mobility and Transport Microcensus (BfS and ARE, 2017).

The integration of simultaneous activity scheduling simulation and the parameter estimation from OASIS (Optimisation-based
ctivity Scheduling with Integrated Simultaneous choice dimensions): a flexible activity-based framework able to accommodate the
equirements and context-specific constraints of different application domains, and thus provide tailored behavioural insights.

The main contributions of this research are:

1. The formulation of an integrated framework of simultaneous activity-travel simulation, as opposed to sequential. As the
framework is built upon first principles, it provides more flexibility than conventional models, and does not require changes
to the fundamental methodology to accommodate different scenarios.

2. A methodology to efficiently sample unchosen daily schedules. Enumeration is especially challenging in the activity-travel
context, because of the combinatorial nature of the solution space. Traditionally, the choice set is either considered given (e.g.
Bowman and Ben-Akiva, 2001), or requires rules or constraints (often based on expert knowledge to be defined). The method
we propose generalises this procedure.

3. Sampling a finite choice set is essential for the application of classical maximum likelihood estimation, which: (i) greatly
simplifies the estimation procedure, (ii) formally and explicitly links behaviour and activity schedules, by providing
interpretable parameter estimates, (iii) provides extensive econometric theory to support our analyses.

. Relevant literature

Activity-based models originally emerged in the 1970s as a response to the shortcomings of traditional 4-step models (Vovsha
t al., 2005; Castiglione et al., 2014), namely:

1. trips are the unit of analysis and are assumed independent, meaning that correlations between different trips made by the
same individual are not accounted for properly within the model;

2. models tend to suffer from biases due to unrealistic aggregations in time, space, and within the population; and
3. space and time constraints are usually not included.

The early works of Hägerstraand (1970) and Chapin (1974) established the fundamental assumption of activity-based models,
hat the need to do activities drives the travel demand in space and time. Consequently, mobility is modelled as a multidimensional
ystem rather than a set of discrete observations. Rasouli and Timmermans (2014) and Axhausen (2000) provide in-depth reviews
f the state of research and practice in activity-based modelling.

A significant challenge in activity-based modelling is the estimation of the model parameters. This is especially crucial for
tility-based models: while the activity-based problem can be solved taking advantage of random utility maximisation theory and
conometric concepts and properties, calibrating the model to data is not straightforward — often due to the lack of available data.
n addition, the methodology and assumptions of classical discrete choice modelling cannot easily be transferred to an activity-
ased context. When the scheduling of activities and travel across time and space is formulated as a choice between discrete
lternatives, the problem is multidimensional (involving continuous and discrete choice dimensions such as activity participation,
cheduling, mode, destination, route...) and combinatorial. The full set of solutions cannot be enumerated or fully observed by the
odeller or the decision maker. In addition, while the schedules in the choice set are overall distinct, they might present significant

verlaps in their components. Finally, the constraints further increase the complexity of the problem, limiting the derivation of
losed form probabilities (Recker et al., 2008). These issues are even more challenging when the choice dimensions are considered
imultaneously.

There are therefore two main issues to address: generating a choice set for the purpose of parameter estimation, and formulating
tractable model specification which is able to capture multidimensional correlations.

The combinatorial nature of the problem prevents a full enumeration of the possible alternatives. There exist strategies to estimate
arameters on subsets of alternatives (e.g., Guevara and Ben-Akiva, 2013), but the challenge is to form said set of alternatives to
2
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Both deterministic and stochastic models exist for the generation of spatio-temporal choice sets (Pagliara and Timmermans,
009) for the purpose of parameter estimation. Stochastic models for choice set generation have been thoroughly investigated
n route choice modelling (e.g., Flötteröd and Bierlaire, 2013; Frejinger et al., 2009). Danalet and Bierlaire (2015) adapt and
pply the methodology proposed by Flötteröd and Bierlaire (2013) to sample alternatives in an activity-based context. The
lternatives are activity schedules (defined as paths in a spatiotemporal network). They establish that importance sampling with the
etropolis–Hastings algorithm provides a better model fit than random sampling. However, these methods are not straightforward

o apply to activity-based models because of their multidimensionality, and deterministic approaches are usually preferred in the
iterature. Models that use a deterministic approach typically include a choice set predefined by the modeller, or samples of
lternatives obtained from decision rules reflecting the domain knowledge (e.g., Bowman and Ben-Akiva (2001) enumerate the
easible combinations of primary activity, primary tour type, and number and purpose of secondary tours). In some rule-based
odels, the choice set generation process involves generating a limited set of activities based on rules, and then enumerating the

ombinations (e.g., Arentze and Timmermans, 2000). On the other hand, stochastic approaches do not assume that the choice set is
niversal and known, but rather model the uncertainty associated with it. Deterministic choice sets are used in early activity-based
odels

Several methods are adopted for the estimation of utility parameters, including heuristics (e.g. Recker et al. (2008) and Allahvi-
anloo and Axhausen (2018) use a genetic algorithm to estimate the parameters of their respective utility-based activity-based
odels) and maximum likelihood estimation using discrete models (e.g. Nijland et al., 2009; Arentze et al., 2011; Xu et al.,
017). Nijland et al. (2009) estimate the parameters of Arentze and Timmermans’s need-based activity-based model, which assumes
hat utilities of activities are a function of needs of individuals and households, and that these needs grow over time following a
ogistic function. They use a logit model for the choice of performing an activity on a specific day 𝑑, given that the activity was last

performed on day 𝑠.
Because the assumptions of the logit model are too restrictive to properly capture the randomness and unobserved factors in the

need-building process, Arentze et al. (2011) also estimate the parameters of the need-based model, but with an error components
mixed logit model. The set-up of both models greatly simplifies the choice set considerations: as only one choice dimension is
considered (day of week of participation), the choice set can easily be enumerated. In addition, as they do not model explicitly
activity duration and timing decisions, they do not consider the effect of activity-travel interactions (e.g. timing trade-offs between
activities).

Regue et al. (2015) and Xu et al. (2017) explicitly address the estimation of the parameters of Recker’s Household Activity
Pattern Problem (HAPP). The utility function of the HAPP defines the objective function of a maximisation problem subject to
individual spatio-temporal constraints. Regue et al. (2015) calibrate activity-specific priority parameters for different household
clusters (with respect to scheduling deviations from cluster mean.), using goal programming. They find an overall improvement
of the model performance using edit distance as an error measure, as opposed to a case where the priorities are equal. As they
calibrate their model parameters by confronting their simulated and observed patterns, their methodology cannot provide insights
on unchosen activity patterns. On the other hand, Xu et al. (2017) attempt to improve the behavioural interpretation of the model
simulations with estimated parameters while preserving the constraints of the optimisation problem. They solve a path-size logit
model, where the choice alternatives are clusters of representative patterns from the observed data. The choice set is the combination
of alternatives from unchosen clusters that leads to the minimal D-error. Their methodology is one of the first applications of discrete
choice estimation for an optimisation-based activity-travel model, and shows the added behavioural value of their approach to the
framework. However, it does not ensure unbiased estimators: indeed, they do not correct their maximum likelihood estimation to
account for the calibration on a sample of alternatives and not the full choice set. In addition, the methodology to generate choice
sets creates endogeneity and is biased towards alternatives with high probability of being chosen: the unchosen alternatives are
representative patterns from the observed sample, and the final choice set maximises the information gain. This leads to overfitting,
which would reduce the ability of the model to be applied to different contexts and datasets.

In this paper, we propose a parameter estimation procedure for the simultaneous activity-based model presented in Pougala et al.
(2022). The model simulates daily schedules of activities for a given individual by maximising the utility they gain from participating
to activities. The output is a distribution of schedules conditional on the distribution of the random error terms. The first iteration of
the model demonstrated the ability of the approach to generate realistic activity schedules while explicitly accounting for scheduling
trade-offs. However, the parameters of the utility function were not estimated, and we used instead values from the literature. The
methodology we present here is based on Maximum Likelihood Estimation (MLE). Similarly to other state-of-the-art approaches, we
take advantage of the theoretical robustness and flexibility of discrete choice models for this task, but applied to a framework where
all of the activity-travel choices are considered simultaneously. This allows to capture trade-offs and interrelations between choices,
but with the added cost of complex solution spaces and combinatorial choice sets. We apply here a methodology for choice set
generation using the Metropolis–Hastings algorithm, based on the works of Flötteröd and Bierlaire (2013) and Danalet and Bierlaire
(2015).

Table 1 summarises the papers described in this section, and the methodologies developed or applied by the authors for the
generation of individual choice sets and for the estimation of parameters.

3. Methodology

We present a methodology to estimate the parameters of an activity-based model where all scheduling choice dimensions
3
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Table 1
Relevant literature.

Paper Type of ABM Choice set generation Parameter estimation

Recker et al. (2008) HAPP – Genetic algorithm
Nijland et al. (2009) Needs-based model Full enumeration Logit model
Arentze et al. (2011) Needs-based model Full enumeration Mixed logit
Chow and Recker (2012) HAPP – Inverse optimisation problem
Danalet and Bierlaire (2015) Network-based Metropolis–Hastings sampling –
Regue et al. (2015) HAPP – Pattern clustering and goal programming
Xu et al. (2017) HAPP Pattern clustering and importance sampling Path size logit
Chen et al. (2020) Sequential ABM – Nested logit model
Current paper Simultaneous ABM Metropolis–Hastings sampling Logit model

Fig. 1. Example of a daily schedule. The light gray patches between activities indicate travel. Dawn and dusk are the first and last home activities of the day.

framework. The estimation process consists of two elements: (i) choice set generation, and (ii) discrete choice parameter estimation.
The model, presented in Section 3.1, outputs a distribution of feasible schedules for given individuals, each with socio-demographic
characteristics and timing preferences (desired start time and duration for each activity or group of activities). These features impact
the utility each individual gains from their daily schedule, according to the estimates of the parameters. These estimates are obtained
by defining the scheduling process as a discrete choice problem, and deriving the parameters that maximise the likelihood function.
This procedure is explained in Section 3.2. The likelihood function, as defined by Train (2009), requires an enumeration of the
alternatives of the choice set. We present a methodology to generate an appropriate choice set in Section 3.3.

3.1. Scheduling framework

We use the same definition of a schedule as Pougala et al. (2022): it is a sequence of activities, starting and ending at home, over
a time horizon 𝑇 . An activity 𝑎 is uniquely characterised by a location 𝓁𝑎, a start time 𝑥𝑎, a duration 𝜏𝑎, a cost of participation 𝑐𝑎
and an outbound trip to the location of the next activity with a mode of transportation 𝑚𝑎. The boundary conditions (start and end
of the schedule at home), are modelled as two dummy activities ‘‘dawn’’ and ‘‘dusk’’.

Fig. 1 shows an example of schedule for one person, which includes 3 out-of-home activities (escort, errands, and leisure). The
trips between each location are made by car.

Each schedule 𝑆 is associated with a utility function 𝑈𝑆 , which captures the preferences of the individual for the schedule.We
test multiple specifications of 𝑈𝑆 : a linear-in-parameters utility function, where time sensitivity can be included through scheduling
preferences for each activity (Pougala et al., 2022), and a utility specification originally proposed for the scoring of activity schedules
in the MATSim microsimulator (Feil, 2010), where the utility for activity duration is assumed to have a S-shape.

3.1.1. Utility specification with linear penalties
As defined in Pougala et al. (2022), the schedule utility 𝑈𝑆 is the sum of a generic utility 𝑈 associated with the whole schedule

and utility components capturing the activity-travel behaviour:

𝑈𝑆 = 𝑈 +
𝐴−1
∑

𝑎=0
(𝑈participation

𝑎 + 𝑈 start time
𝑎 + 𝑈duration

𝑎 +
𝐴−1
∑

𝑏=0
𝑈 travel
𝑎,𝑏 ). (1)

The components and the associated assumptions are defined as follows:
1. A generic utility 𝑈 that captures aspects of the schedule that are not associated with any activity (e.g. resource availability

at the level of the household).
2. The utility 𝑈participation

𝑎 associated with the participation of the activity 𝑎, irrespective of its starting time and duration.

𝑈participation
𝑎 = 𝛾𝑎 + 𝛽cost𝑐𝑎 + 𝜀participation, (2)

where 𝛾𝑎 and 𝛽cost are unknown parameters to be estimated from data, and 𝜀𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 is an error term.
3. The utility 𝑈 start time

𝑎 , which captures the perceived penalty created by deviations from the preferred starting time.

𝑈 start time = 𝜃early max(0, 𝑥∗ − 𝑥 ) + 𝜃late max(0, 𝑥 − 𝑥∗) + 𝜀 , (3)
4
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Table 2
Parameters of the linear penalties utility function. The Estimated column indicates whether the parameter is estimated in the
logit specification.
Parameter Notation Associated variable Estimated

Alternative-specific constants 𝛾𝑆,𝑛 –
Activity-specific constant 𝛾𝑎,𝑛 – Yes
Cost of activity participation 𝛽cost𝑎 Cost 𝑐𝑎
Penalty start time (early) 𝜃early

𝑎 Deviation start time 𝛿𝑒,𝑥𝑎 Yes
Penalty start time (late) 𝜃late

𝑎 Deviation start time 𝛿𝓁,𝑥𝑎 Yes
Penalty duration (short) 𝜃short

𝑎 Deviation duration 𝛿𝑠,𝜏𝑎 Yes
Penalty duration (long) 𝜃long

𝑎 Deviation duration 𝛿𝓁,𝜏𝑎 Yes
Travel cost 𝛽𝑡,cost Cost 𝑐𝑡
Travel time 𝛽𝑡,time Time 𝜌𝑎𝑏
Error term (participation) 𝜀participation –
Error term (start time) 𝜀start time –
Error term (duration) 𝜀duration –
Error term (travel time) 𝜀travel –

where 𝜃early
𝑎 ≤ 0 and 𝜃late

𝑎 ≤ 0 are unknown parameters to be estimated from data, and 𝜀start time is an error term.
The first (resp. second) term captures the disutility of starting the activity earlier (resp. later) than the preferred starting time.

4. The utility 𝑈duration
𝑎 associated with duration. This term captures the perceived penalty created by deviations from the

preferred duration.

𝑈duration
𝑎 = 𝜃short

𝑎 max(0, 𝜏∗𝑎 − 𝜏𝑎) + 𝜃long
𝑎 max(0, 𝜏𝑎 − 𝜏∗𝑎 ) + 𝜀duration (4)

where 𝜃short
𝑎 ≤ 0 and 𝜃long

𝑎 ≤ 0 are unknown parameters to be estimated from data, and 𝜀duration is an error term. Similarly
to the specification of start time, the first (resp. second) term captures the disutility of performing the activity for a shorter
(resp. longer) duration than the preferred one,

5. For each pair of locations
(

𝓁𝑎,𝓁𝑏
)

, respectively, the locations of activities 𝑎 and 𝑏 with 𝑎 ≠ 𝑏, the utility 𝑈𝑎,𝑏
travel associated

with the trip from 𝓁𝑎 to 𝓁𝑏. irrespective of the travel time. This term is composed of the penalty associated with the travel
time 𝜌𝑎𝑏, and other travel variables (including variables such as cost, level of service, etc.) Here, we illustrate the framework
with a specification involving travel cost. It also includes an error term, capturing the unobserved variables.

𝑈 travel
𝑎,𝑏 = 𝛽𝑡,time𝜌𝑎𝑏 + 𝛽𝑡,cost𝑐𝑡 + 𝜀travel (5)

where 𝛽𝑡,time and 𝛽𝑡,cost are unknown parameters to be estimated from data, and 𝜀travel is an error term.

The schedules generated by the simulator must be feasible, according to a set of constraints defined at the level of the individual
r the household by the modeller. For example, a schedule is feasible if:

• it does not exceed the maximum (time or cost) budget,
• each activity starts when the trip following the previous activity is finished,
• trips using mode 𝑚 are only made if and when 𝑚 is available,
• each activity meets its respective requirements (e.g. participation of other members of the household, feasible time windows,

follows/precedes another activity)
• ...

The parameters involved in the utility function are summarised in Table 2. Indices 𝑆, 𝑎, and 𝑛 denote respectively a schedule,
n activity and an individual. The Estimated column indicates which parameters are estimated in the current study, with results
resented in Section 4. In this model, the error terms are assumed to be i.i.d. and Extreme Value distributed, with a scale parameter
fixed for identification purposes.

.1.2. Utility function with S-shape duration term
We test the utility specification proposed by Feil (2010), which is a modification of the default MATSIM utility function (Charypar

nd Nagel, 2005). The utility function considers the impact of activity duration with an asymmetric S-shaped curve with an inflection
oint, as formalised by Joh et al. (2005) (Eq. (7)). In their specification, they do not consider the effect of start time. The parameters
f the S-shape are: the inflection point 𝛼𝑎, the slope 𝛽𝑎, and the relative vertical position of the inflection point 𝜁𝑎. When 𝜁𝑎 = 1,
𝑎 can be considered as the duration where the utility reaches its maximum. The parameters involved in the utility function are
ummarised in Table 3. Indices 𝑆, 𝑎 and 𝑛 denote respectively a schedule, an activity and an individual. The Estimated column
ndicates which parameters are estimated in the current study, with results presented in Section 4.

𝑈𝑆 =
𝐴−1
∑

(𝑈act
𝑎 + 𝑈 travel) (6)
5
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Table 3
Parameters of the S-shape utility function. The Estimated column indicates whether the parameter
is estimated in the logit specification.
Parameter Notation Estimated

Maximum utility 𝑈max
𝑎 Yes

Minimum utility 𝑈min
𝑎

Inflection point 𝛼𝑎 Yes
Slope 𝛽𝑎 Yes
Position of inflection 𝜁𝑎

Fig. 2. Effect of duration on utility for the tested specifications.

𝑈act
𝑎 = 𝑈min

𝑎 +
𝑈max
𝑎 − 𝑈min

𝑎

(1 + 𝜁𝑎 exp 𝛽𝑎
[

𝛼𝑎 − 𝜏𝑎
]

)1∕𝜁𝑎
(7)

Fig. 2 illustrates the utilities of work and leisure for both specifications and different values of duration.
3.2. Parameter estimation

The scheduling process can be considered as a discrete choice model where the alternatives are full daily schedules, each
associated with a utility.

In principle, maximum likelihood estimation requires complete enumeration of the alternatives in the choice set. It is possible,
though, to estimate the parameters using only a sample of alternatives. This is actually necessary in the activity-travel context,
where the full choice set 𝐶𝑛 of alternatives is combinatorial and characterised by complex constraints. For each individual 𝑛 in the
sample, we consider a sample of alternatives �̃�𝑛. The maximisation of the likelihood function yields consistent parameter estimates
if a correction term ln𝑃𝑛(�̃�𝑛|𝑖) is introduced to take into account sampling biases (Ben-Akiva and Lerman, 1985):

𝑃𝑖𝑛 = 𝑃𝑛(𝑖|�̃�𝑛) =
𝑒𝜇𝑉𝑖𝑛+ln𝑃𝑛(�̃�𝑛|𝑖)

∑

𝑗∈�̃�𝑛
𝑒𝜇𝑉𝑗𝑛+ln𝑃𝑛(�̃�𝑛|𝑗)

(8)

The alternative-specific correction term ln𝑃𝑛(�̃�𝑛|𝑖) is the logarithm of the conditional probability of sampling the choice set �̃�𝑛
given that 𝑖 is the alternative chosen by person 𝑛. This value depends on the protocol used to generate the choice set.

Each component of the utility function (Eqs. (2)–(5)) is associated with a random term. This defines a mixed logit model with
error components, by creating correlations between alternatives which share the same values for each dimension. The model reduces
to a simple logit model if we assume the error terms to be i.i.d. and Extreme Value distributed, meaning that there is no correlation
between alternatives. This assumption is adopted in the case study presented in Section 4.

3.3. Choice set generation

The estimation of parameters using maximum likelihood estimation requires an evaluation of the likelihood function for each
alternative of the choice set �̃�𝑛. If �̃�𝑛 is a subset of the universal choice set of alternatives 𝐶𝑛, the likelihood function must be
corrected with the probability of sampling the choice set �̃�𝑛 given the chosen alternatives (8). This probability depends on the
generation protocol for the sample. The procedure must therefore be able to produce tractable probabilities, while ensuring the
generation of a pertinent choice set for the estimation of parameters.

More specifically, the choice set should contain alternatives with high probability of being chosen, to represent a choice set that
the individual would actually consider. However, estimating a model with such a choice set would lead to biased model parameters,
which would, in turn, decrease the accuracy and realism of the model predictions. On the other hand, the size of the solution space
requires a strategic procedure to sample alternatives, to avoid only selecting non-informative, or low probability, schedules. The
6
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Fig. 3. Example of neighbouring schedules. The schedules differ in the duration of the time spent at home during lunch time.

strategy to build the choice set must therefore generate an ensemble of high probability schedules, to estimate significant and
meaningful parameters, while still containing low probability alternatives to decrease the model bias (Bierlaire and Krueger, 2020).

The importance sampling of alternatives with the Metropolis–Hastings algorithm (Flötteröd and Bierlaire, 2013; Danalet and
Bierlaire, 2015) is a good strategy to achieve this objective, while keeping tractable probabilities to derive the sample correction
for the likelihood function.

The Metropolis–Hastings algorithm (Hastings, 1970) is a Markov Chain Monte-Carlo method used to generate samples from
a multidimensional distribution, using a predefined acceptance/rejection rule. The procedure is summarised in algorithm 1 (see
Gelman et al., 1995).

Algorithm 1 Metropolis-Hastings algorithm (Gelman et al., 1995)
Choose starting point 𝑋0 from starting distribution 𝑝(𝑋0)
for 𝑡 = 1, 2, ... do

Sample a candidate point 𝑋 ∗ from a transition distribution 𝑞(𝑋 ∗ |𝑋𝑡−1)

Compute acceptance probability 𝛼(𝑋𝑡−1, 𝑋∗) = min
(

𝑝(𝑋∗)𝑞(𝑋𝑡−1|𝑋∗)
𝑝(𝑋𝑡−1)𝑞(𝑋∗

|𝑋𝑡−1)

)

With probability 𝛼(𝑋𝑡−1, 𝑋∗), 𝑋𝑡 ← 𝑋∗, else 𝑋𝑡 ← 𝑋𝑡−1

Each iteration of the random walk is therefore composed of two main steps:

1. Generation of a candidate point,
2. Acceptance or rejection of the candidate point.

In the context of the activity-based framework, each point (or state) is a schedule, and the target distribution is the schedule
utility function (Eq. (1)).

3.3.1. Generation of a candidate point
We define 𝑋𝑡 the state(or point) at time 𝑡. 𝑋𝑡 is a 24 h schedule, discretised in blocks of duration 𝜏 ∈

[

𝜏𝑚𝑖𝑛, 24 − 𝜏𝑚𝑖𝑛
]

(with
𝜏𝑚𝑖𝑛 the minimum block duration). The new candidate point is a neighbouring schedule 𝑋∗, i.e. a schedule that only differs in one
dimension (time, space, or activity participation — see Fig. 3). We define heuristics (operators) 𝜔 ∈ 𝛺 to create 𝑋∗ by modifying
the current state. 𝑋∗ is then accepted or rejected with a given acceptance probability.

Each operator 𝜔 can be selected with a probability 𝑃𝜔, decided by the modeller.
Each schedule 𝑋𝑡 is characterised by one or more anchor nodes 𝜈, at the start of a block, indicating the position of the operator

changes. In this context, each block corresponds to the temporal magnitude of the change.
Each operator must generate a feasible schedule, as defined in Section 3.1. In addition, the following conditions must be satisfied

by the algorithm:

• Each iteration of the Metropolis–Hastings algorithm must be irreducible, meaning that each state of the chain can be reached
in a single step:

𝑄(𝑋𝑡|𝑋𝑡−1) > 0 ∀𝑋𝑡, 𝑋𝑡−1 (9)

For this reason, each operator should apply single changes, or the combination of operators should lead to a state that can
only be reached with this combination.

• Each iteration of the Metropolis–Hastings algorithm must be reversible, i.e. the forward probability (probability to do the
change) and backward probability (probability to undo the change and go back to the previous state) must be strictly positive.

𝑄(𝑋𝑡|𝑋𝑡−1) > 0 ∀𝑋𝑡, 𝑋𝑡−1 (10)

𝑄(𝑋𝑡−1|𝑋𝑡) > 0 ∀𝑋𝑡, 𝑋𝑡−1 (11)

Defining single change operators enables to derive tractable probabilities.
7
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Fig. 4. Initial schedule.

Fig. 5. Change applied by the assign operator.

Fig. 6. Change applied by the swap operator.

The following list describes examples of operators that meet these requirements. Other operators can be created according to
the modeller’s needs and specifications. We illustrate their effect on an example schedule, shown in Fig. 4. In its initial state, we
assume time to be discretised in 24 blocks of length 𝛿 = 1ℎ. We consider two activities: work and leisure, each associated with a
start time 𝑥𝑤 and 𝑥𝑙, a duration 𝜏𝑤 and 𝜏𝑙, and locations 𝓁𝑤, 𝓁𝑙. Considering that home is at location 𝓁ℎ (and 𝓁ℎ ≠ 𝓁𝑤 ≠ 𝓁𝑙), the
individual travels to the other activities using modes 𝑚𝑤 and 𝑚𝑙.

Anchor The anchor operator 𝜔anchor adds an anchor node 𝜈 in the schedule. This change does not affect the activity sequence, but
allows to change the position of the potential modifications of the other operators.

The transition probability associated with this change is the probability of selecting one of the existing blocks as anchor node.

Assign The assign operator 𝜔assign assigns an activity 𝑗 ∈  to a block of duration 𝛿 at position 𝜈, which was previously assigned to
activity 𝑖.  is a set of 𝑁 possible activities. The assignment is done with replacement, which means that 𝑃 (𝑖 = 𝑗) > 0. To respect
validity requirements, the resulting schedule must always start and end at home.

Fig. 5 illustrates an example of modification applied by the assign operator on the initial schedule.

Swap The operator 𝜔swap randomly swaps two adjacent blocks. A block at position 𝜈, 𝑏𝜈 , is randomly selected, then is swapped
with the following block. In order to respect the validity requirements, the resulting schedule must always start and end at home.

Fig. 6 illustrates an example of modification applied by the swap operator on the initial schedule.

Inflate/deflate The inflate/deflate operator 𝜔inf/def allows to perform a shift of the schedule by randomly inflating the duration
(i.e. adding one block of length 𝛿) of the activity 𝑖 at position 𝜈 and deflating the duration (i.e. removing one block of length
𝛿) of an activity 𝑗 of the schedule. The direction of the inflation and deflation (affecting the previous or following block of the
selected one) is randomly chosen. If 𝑖 = 𝑗, the operator only shifts the start time of the activity, while maintaining its duration. This
operator modifies durations without generating infeasible schedules (e.g. schedules with a total duration that is different than the
time budget). In order to ensure the validity constraint that the schedule must start and end at home, the first and last time block
of the schedule cannot be modified.

Fig. 7 illustrates an example of modification applied by the inflate/deflate operator on the initial schedule.
8
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Fig. 7. Change applied by the inflate/deflate operator.

Fig. 8. Change applied by the location operator.

Fig. 9. Change applied by the mode operator.

Location The location operator 𝜔loc changes the location 𝓁𝑖 of a randomly selected activity 𝑖 at position 𝜈, with probability 𝑃loc. The
new location is selected from a set of locations  that is considered known. The travel times following this change are recomputed,
and any excess or shortage of time as compared to the available time budget is absorbed by the time at home. For this reason, and
to remain compliant with validity constraints, the resulting change cannot go over the time budget by more than the minimum time
at home (i.e. 2𝛿). In addition, the home location 𝓁ℎ cannot be changed. The selection of a location must therefore be done according
to a distribution 𝑃𝓁(𝜌) which is conditional on the travel times 𝜌. We assume that this distribution is exogenous to the choice-set
generation algorithm.

Fig. 8 illustrates an example of modification applied by the location operator on the initial schedule.

Mode Similarly to the location operator, the mode operator 𝜔mode changes the mode 𝑚 of the outbound trip of a randomly selected
activity 𝑖 at position 𝜈. The new mode is selected from a set of modes  that is considered known. The travel times following this
change are recomputed, and any excess or shortage of time as compared to the available time budget is absorbed by the time at
home. For this reason, and to remain compliant with validity constraints, the resulting change cannot go over the time budget by
more than the minimum time at home (i.e. 2𝛿). The selection of a mode must therefore be done according to a distribution 𝑃𝑚(𝜌)
which is conditional on the travel times 𝜌. We assume that this distribution is exogenous to the choice-set generation algorithm. As
the last home activity is not linked to an outbound trip, it cannot be selected for a mode change.

Fig. 9 illustrates an example of modification applied by the mode operator on the initial schedule.

Block The block operator 𝜔block modifies the time discretisation by changing the length 𝛿 of the schedule blocks (e.g. from 𝛿 = 30
to 𝛿 = 15 min). This change does not affect the activity sequence, but allows to change the scale of the potential modifications of
the other operators.

The transition probability associated with this change is the probability of selecting one of the possible discretisations.
Fig. 10 illustrates an example of modification applied by the block operator on the previously introduced initial schedule.

Combination This meta-operator 𝜔meta combines 𝑛 distinct operators from the full set of operators 𝛺. 𝑛 is an arbitrary number such
that 𝑛 ∈ 2,… , 𝑁𝑜𝑝, with 𝑁𝑜𝑝 the number of available operators. The transition probabilities of the change are the combined forward
(resp. backward) probabilities of the selected operators. Combining operators through a meta-operator instead of randomly selecting
9
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Fig. 10. Change applied by the block operator.

Table 4
Example of operators.

Name Choice dimension Description Probability

Anchor – Adds or deletes an anchor node 𝑃anchor
Assign Activity participation Assigns activity to a given block 𝑃assign
Swap Activity participation, Time Swaps the activities of two adjacent blocks 𝑃swap
Inflate, Deflate Time Inflates or deflates the duration of a given activity 𝑃inf, def
Mode Mode of transportation Changes the mode of transportation associated with activity 𝑃mode
Location Location Changes the location associated with activity 𝑃loc
Block – Modifies time discretisation of the schedule 𝑃block
Meta-operator All Combines two or more operators 𝑃meta

them ‘‘on the fly’’’ during the random walk offers the advantage of making it easier for the modeller to track the behaviour of the
process. Specifically, the impact of each operator, whether applied individually or in conjunction with others, can be evaluated.

We summarise the previous list in Table 4. As previously mentioned, this list is not exhaustive: other operators can be created
or combined to fit the requirements of the intended applications, or simply to improve the performance of the MH algorithm.

More details on the operators and the derivations of the transition probabilities can be found in Pougala et al. (2021).

3.3.2 Acceptance of candidate points
The target distribution of the MH algorithm is the schedule utility function (Eq. (1)), conditional on the distribution of the error

terms, and with unknown parameters to be estimated. The acceptance probability is defined by:

𝛼(𝑋𝑡−1, 𝑋
∗) = min

(

𝑝(𝑋∗)𝑞(𝑋𝑡−1, 𝑋∗)
𝑝(𝑋𝑡−1)𝑞(𝑋∗, 𝑋𝑡−1)

)

(12)

where 𝑋∗ is the candidate state, 𝑝(𝑖) is an unnormalised positive weight, proportional to the target probability (Flötteröd and
Bierlaire, 2013) and 𝑞(𝑖, 𝑗) is the transition probability to go from state 𝑖 to state 𝑗.

Similarly to Danalet and Bierlaire (2015), for each state 𝑋𝑡, the target weight 𝑝(𝑋𝑡) is defined by:

𝑝(𝑋𝑡) = 𝑈𝑆 (𝑋𝑡) (13)

where 𝑈𝑆 is a schedule utility function with the same specification as the target (Eq. (1)) but with parameters calibrated on a
randomly generated choice set.

The transition distribution 𝑞 is directly obtained from the working operator.
Therefore, the general algorithm (Algorithm 1) can be adapted to the ABM context, as summarised in Algorithm 2.

Algorithm 2 Choice set generation for the ABM with Metropolis-Hastings
𝑡 ← 0, initialise state with random schedule 𝑋𝑡 ← 𝑆0
Initialise utility function with random parameters 𝑈𝑆
for 𝑡 = 1, 2, ... do

Choose operator 𝜔 with probability 𝑃𝜔
𝑋∗, 𝑞(𝑋𝑡, 𝑋∗) ← ApplyChange

(

𝜔,𝑋𝑡
)

function ApplyChange(𝜔, state 𝑋)
return new state 𝑋′, transition probability q(𝑋, 𝑋′)

Compute target weight 𝑝(𝑋∗) = ̃𝑈𝑆 (𝑋∗)
Compute acceptance probability 𝛼(𝑋𝑡, 𝑋∗) = min

(

𝑝(𝑋∗)𝑞(𝑋𝑡|𝑋∗)
𝑝(𝑋𝑡)𝑞(𝑋∗

|𝑋𝑡)

)

With probability 𝛼(𝑋𝑡, 𝑋∗), 𝑋𝑡+1 ← 𝑋∗, else 𝑋𝑡+1 ← 𝑋𝑡

Following Ben-Akiva and Lerman (1985), we define for each individual 𝑛 the alternative specific corrective term for a choice
set 𝐶 of size 𝐽 + 1 with 𝐽 unique alternatives (Eq. (14)). Each alternative 𝑗 is sampled from the target distribution of the
10
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Metropolis–Hastings algorithm with probability 𝑞𝑗𝑛, such that 𝑞𝑗𝑛 = 0 if 𝑗 ∉ 𝐶𝑛.

𝑞(𝑛|𝑖𝑛) =
1
𝑞𝑖𝑛

∏

𝑗∈𝐶𝑛

(

∑

𝑗∈𝐶𝑛

𝑞𝑗𝑛

)𝐽+1−𝐽

(14)

Empirical investigation

The objective of the empirical investigation is to apply the methodology on a real-life case study to illustrate the parameter
stimation procedure. We use the Mobility and Transport Microcensus (MTMC), a Swiss nationwide survey gathering insights on
he mobility behaviours of local residents (BfS and ARE, 2017). Respondents provide their socio-economic characteristics (e.g. age,
ender, income) and those of the other members of their household. Information on their daily mobility habits and detailed records
f their trips during a reference period (1 day) are also available. The 2015 edition of the MTMC contains 57’090 individuals, and
3’630 trip diaries. For illustration purposes, we focus on the sample of full-time students residing in Lausanne (236 individuals).

We start by generating the choice sets of daily schedules for each individual in the sample. Each choice set is composed of 10
lternatives, including the chosen (recorded) schedule.

The second step, once the choice sets have been generated, is to estimate the parameters of the utility function for the sample.
or each individual and each alternative in their respective choice sets, we evaluate the sample correction term (Eq. (14)) to be
dded to the utility function.

.1 Choice sets

For each person in the train dataset, we generate a choice set of 10 alternatives (including the observed schedules) randomly
Section 4.1.1), using the clustering method developed by Allahviranloo et al. (2014), (Section 4.1.2), and following the methodology
resented in Section 3.3.

.1.1 Random generation (benchmark)
We generate each alternative using the following procedure:

1. Randomly choose an activity 𝑎 from a set of possible activities 𝐴, a mode 𝑚 ∈ 𝑀 and a location 𝓁 ∈ 𝐿,
2. Randomly choose a start time 𝑥𝑎, in minutes after midnight. For the second activity and onwards, the start time is

deterministically assigned to the end time of the previous activity with the travel time between both location,
3. Randomly choose a duration 𝜏𝑎, such that 𝜏𝑎 ≤ 𝜏𝑟, with 𝜏𝑟 the remaining duration until midnight.
4. Repeat until there is time remaining.

Assuming that every alternative generated this way has equal probability of being selected, the sampling correction term in Eq. (8)
ancels out.

.1.2 Empirical choice set (benchmark)
We generate a choice set using the two-step clustering method developed by Allahviranloo et al. (2014) to extract representative

ctivity patterns from a given dataset. Xu et al. (2017) further develop this procedure to generate a choice set suitable for discrete
hoice estimation of parameters. The methodology is as follows:

1. Identify representative patterns using a two-step clustering algorithm (combination of affinity propagation and 𝑘-means
clustering). Similar schedules are clustered based on two dedicated metrics (agenda dissimilarity measure and the edit
distance),

2. Create a choice set for each individual 𝑛 by drawing patterns from non-chosen patterns.1

With this method, the choice set is composed of real activity patterns from the dataset.

.1.3 OASIS generation
The initial state 𝑋0 of the random walk is the observed schedule. We implement 6 operators: Block and Anchor, which

nfluence the impact of the other operators, and Assign, Swap, Inflate/Deflate which modify the schedule directly. A Meta-operator
s implemented to combine the actions of two or more operators. Each operator can be chosen with a uniform probability 𝑃operators.

The target distribution of the random walk is the utility function of the activity-based model (Eq. (1)), with a set of parameters
0 that were estimated using randomly sampled choice sets. The target weights are evaluations of this utility function for the current
tate.

The random walk (Algorithm 2) is performed for a number of iterations 𝑛iter. We discard 𝑛warm-up of these iterations to sample
rom a stabilised distribution. To create the choice set, we draw 9 alternatives by only keeping 1 out of 𝑛skip schedules. The
xperimental set-up is summarised in Table 5.

1 Xu et al. (2017) implement an additional step where they personalise the resulting choice set by enforcing individual-specific constraints. We do not,
owever, have access to such constraints in our case study, and therefore consider that each schedule is feasible, and that all clusters have equal probability of
11
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Table 5
Experimental set up of the random walk.
Feature Definition Value

𝛺 Set of operators Block, Assign, Anchor, Swap, Inf/Def, Meta
𝑁operators Number of operators 6
𝑃operators Operator selection probability 1∕𝑁operators
𝑛iter Number of iterations 100,000
𝑛warm-up Warm-up iterations 50,000
𝑛skip Skipped iterations 20

Table 6
Desired times distributions in sample.
Activity Start time Duration

Home –  (17.4, 3.4)
Work Log- (0.65, 4.2, 3.4)  (7.6, 3.7)
Education Log- (0.4, 6.2, 1.7)  (6.7, 2.1)
Leisure  (14.3, 3.5)  (3.5, 2.7)
Shopping Log- (0.3, 4.6, 9.0) Log- (1.3, 0.15, 0.32)

The algorithm was run on a server (2 Skylake processors at 2.3 GHz and 192 GB RAM, with 18 CPUs each, running in parallel)
or each of the 236 students in the sample, for a total runtime of 2.22 min.

.2 Model specification

We consider 5 different activities: home, work, education, leisure and shopping.
Following the definition of Pougala et al. (2022), travel is not considered as a standalone activity, but is always associated with

he origin activity of the trip, if applicable.
We make the following additional simplifications:
• We do not estimate travel parameters, and consider them null in Eq. (1),
• The scheduling preferences (desired start time and durations) are derived from the dataset. For each activity, we fit a

distribution (either normal or log normal) across the student population. The calibrated parameters are reported in Table 6.
For each person, we draw values of desired start times and durations from these distributions.

• For the S-shaped utility function Eq. (7), we assume, as done in Feil (2010), 𝑈min
𝑎 = 0 and 𝜁𝑎 = 1 ∀𝑎. This assumption implies

a symmetric S-shape with positive support.

Table 7 summarises the model specifications implemented in this paper. The models differ in the specification of the utility
function and/or the parameter estimation procedure:

1. Benchmark 1 - Literature parameters: A generic utility function with parameters from the literature (not estimated). The
utility function is given by Eq. (1).

2. Benchmark 2 - Random choice set: An activity-specific utility function, where we estimate all activity-specific parameters
and constants. The choice set is generated randomly. The activity-specific utility function is given by Eq. (15):

𝑈act. sp.
𝑆 = 𝛾𝑎 +

∑

𝑎
[𝜃early

𝑎 max(0, 𝑥∗𝑎 − 𝑥𝑎) + 𝜃late
𝑎 max(0, 𝑥𝑎 − 𝑥∗𝑎)

+ 𝜃short
𝑎 max(0, 𝜏∗𝑎 − 𝜏𝑎) + 𝜃long

𝑎 max(0, 𝜏𝑎 − 𝜏∗𝑎 )] + 𝜀𝑆 (15)

3. Benchmark 3 - Empirical choice set: An activity-specific utility function, where we estimate all activity-specific parameters
and constants. The choice set is generated by drawing from clusters of representative patterns. The activity-specific utility
function is given by Eq. (15).

4. Model 1 - OASIS with flexibility-level parameters : A generic utility function, where we classify activities according to
two levels of flexibility, and estimate the corresponding parameters for both categories. The choice set is generated using
Algorithm 2. The utility function with flexibility-level parameters is given by Eq. (16):

𝑈 flex
𝑆 = 𝛾𝑎 +

∑

𝑓
𝜆𝑎𝑓 [𝜃

early
𝑓 max(0, 𝑥∗𝑎 − 𝑥𝑎) + 𝜃late

𝑓 max(0, 𝑥𝑎 − 𝑥∗𝑎)

+ 𝜃short
𝑓 max(0, 𝜏∗𝑎 − 𝜏𝑎) + 𝜃long

𝑓 max(0, 𝜏𝑎 − 𝜏∗𝑎 )] + 𝜀𝑆 (16)

with 𝑓 a category of flexibility 𝑓 ∈ {Flexible, Not Flexible}. 𝜆𝑎𝑓 is an indicator variable that is 1 if activity 𝑎 belongs to
category 𝑓 , and is an input to the model. In this case study, education and work are considered not flexible, while leisure,
12
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Table 7
Simulation scenarios.

Model Bench. 1 Bench. 2 Bench. 3 1 2 3

Name Literature Random choice set Empirical choice set OASIS Flexibility parameters OASIS Activity-specific OASIS MATSim
Estimated parameters ✓ ✓ ✓ ✓ ✓

MH-Sampled choice set ✓ ✓ ✓

Activity-specific constants ✓ ✓ ✓ ✓ ✓

Activity-specific penalties ✓ ✓ ✓ ✓

Table 8
Parameters from the literature.

Parameter Param.
estimate

1 𝜃early
F 0.0

1 𝜃late
F 0.0

2 𝜃long
F −0.61

2 𝜃short
F −0.61

3 𝜃early
NF −2.4

4 𝜃late
NF −9.6

5 𝜃short
NF −9.6

6 𝜃long
NF −9.6

5. Model 2 - OASIS with activity-specific parameters:. An activity-specific utility function, where we estimate all activity-
specific parameters and constants. The choice set is generated using Algorithm 2. The activity-specific utility function is given
by Eq. (15).

6. Model 3 - OASIS with MATSim scoring function: An activity-specific S-shaped utility for duration, with a choice set
generated using Algorithm 2. The utility function is given by Eq. (6).

We consider that the default model of the OASIS framework is the activity-specific model (Model 2). The comparison with the
other specifications provides the following insights:

• Benchmark 1: this model serves as benchmark for the improvement of estimating the parameters instead of fixed values.
• Benchmark 2 and 3: these models serve as benchmark for the improvement of strategically sampling the choice set instead of

other methods (random generation, selection of representative patterns),
• Model 1: this model is used to evaluate the improvement of estimating activity-specific parameters as opposed to generic

(aggregated) ones,
• Model 3: this model is used to evaluate the improvement of a more complex (non-linear) utility specification, specifically with

respect to activity duration.

The models are estimated with PandasBiogeme (Bierlaire, 2020). The estimation process is done using 70% of observations in
the sample data, where one observation is the daily schedule of one individual.

Finally, we simulate daily schedules for the Lausanne sample. We compare the schedule distributions and distributions of start
times and durations resulting from the specified models withe observed distribution from the dataset.

4.2.1 Parameters
Benchmark 1: Literature parameters The parameters from the literature were used in the first implementation of the framework,
as described in Pougala et al. (2022). Values from the departure time choice literature (e.g. ratios from Small, 1982) were used to
derive the parameters defined in Table 8. The penalty parameters are specific to each flexibility category (flexible (F) or non flexible
(NF) activities). In this set of parameters, we do not consider activity-specific constants (𝛾𝑎 = 0 ∀𝑎 ∈ 𝐴). The assumption behind
this is that, all else being equal, there is no inherent preference to perform any activity (home included). Any effect of this nature
is therefore fully included in the random term of the schedule 𝜀𝑆 .

Benchmark 2: Random choice set The home activity is used as a reference, such that 𝛾home = 0. The magnitudes and signs of the other
constants are relative to the baseline behaviour which is staying at home. The estimated parameters are summarised in Table 9.
Using the random choice set, many parameters result statistically insignificant (𝑝 < 0.05), such as the early and long penalties for
education, or the constants for leisure and work.

We can note that the penalty for a short leisure duration is not statistically significant, which is also expected for an activity
assumed to be flexible. The same comment can be made for the shopping activity, although the value of the parameter is very high
compared to the other magnitudes. This can reflect a lack of alternatives in the choice sets where the shopping activities have longer
durations than the in the observed schedule. Interestingly, for work, the duration parameters are not significant, and the start time
13
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Table 9
Estimation results for the Random choice set model on the student
population.

Parameter Param. Rob. Rob. Rob.
estimate std err 𝑡-stat 𝑝-value

1 𝛾education 5.28 1.4 3.76 0.000172
2 𝜃early

education −1.76 1.38 −1.27 0.204a

3 𝜃late
education −1.13 0.373 −3.02 0.00251

4 𝜃long
education −0.266 0.288 −0.924 0.355a

5 𝜃short
education −10.2 4.43 −2.3 0.0212

6 𝛾leisure 0.507 0.592 0.856 0.392a

7 𝜃early
leisure 0.0779 0.103 0.757 0.449a

8 𝜃late
leisure −1.2 0.157 −7.64 0.0

9 𝜃long
leisure −0.228 0.075 −3.03 0.00242

10 𝜃short
leisure 0.0 –. 0. 1.a

11 𝛾shopping 5.7 1.19 4.77 1.85e−06
12 𝜃early

shopping −2.9 0.711 −4.08 4.5e−05

13 𝜃late
shopping −0.482 0.173 −2.78 0.00541

14 𝜃long
shopping −1.4 0.597 −2.34 0.0191

15 𝜃short
shopping −117.0 23.8 −4.9 9.56e−07

16 𝛾work 0.324 1.44 0.225 0.822a

17 𝜃early
work −0.66 0.21 −3.14 0.00169

18 𝜃late
work −0.533 0.398 −1.34 0.181

19 𝜃long
work −0.0326 0.155 −0.21 0.834a

20 𝜃short
work 0.968 0.857 1.13 0.258a

�̄�2 = 0.013
Estimation time: 1.93 [s]

a Indicates parameters that are not statistically significant based on their
𝑝-value.

enchmark 3: Empirical choice set The home activity is used as a reference, such that 𝛾home = 0. The magnitudes and signs of the other
onstants are relative to the baseline behaviour which is staying at home. The estimated parameters are summarised in Table 10.

Similarly to the random choice set, many parameters result statistically insignificant (𝑝 < 0.05), especially for the shopping and
ork activities. In addition, the penalty for a short duration for work is significant but is positive, which is a counter intuitive result,
s it implies that individuals reward scheduling work for shorter durations than preferred. This indicates that either the preferred
uration (mean of the corresponding cluster), or the choice set is not appropriate (e.g. every alternative except for the chosen one
as a long work duration). In order to correct for this, an additional step after the choice set generation is required to ensure not only
he mathematical feasibility of the sampled schedules but also their concordance with individual-specific constraints, as suggested
y Xu et al. (2017).

odel 1: OASIS with flexibility-level parameters The home activity is used as a reference, such that 𝛾home = 0. The magnitudes and
igns of the other constants are relative to the baseline behaviour which is staying at home. The estimated parameters are summarised
n Table 11. For flexible activities, the parameters indicate a similar behaviour to what is found in the literature: being late is more
enalised than being early (approximately by a factor of 2). The penalties associated with duration have comparable magnitudes,
lthough they are not statistically significant (𝑝 > 0.05). On the other hand, for non flexible activities, being early seems to be more
egatively perceived than being late. The duration penalties are symmetrical.

odel 2: OASIS with activity-specific parameters We consider both activity-specific constants and schedule deviation penalties. For
ll parameters, the home activity is set as a reference, such that 𝛾home = 0. As for model 1, the magnitudes and signs of the
ther coefficients are therefore relative to the home baseline. We estimate 20 parameters for this model (5 per activity), which
re summarised in Table 12.

For education, all of the parameters are statistically significant. Being early is slightly less penalised than being late, although
he penalties are almost symmetrical. The same observation can be made for the penalties associated with duration. For work,
he penalty for being late is not statistically significant (𝑝-value > 0.05), while being early is significantly penalised. The penalties
ssociated with duration have a more negative impact on the utility function; in particular, the activity running for longer than
esired is highly penalised.

Interestingly, most of the parameters associated with leisure are not statistically significant. This could indicate that leisure is not
particularly time constraining activity for students, in the sense that it is less likely to trigger trade-offs in the scheduling process
14
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Table 10
Estimation results for the empirical choice set model on the student
population.

Parameter Param. Rob. Rob. Rob.
estimate std err 𝑡-stat 𝑝-value

1 𝛾education 3.91 0.76 5.15 2.61e−07

2 𝜃early
education 0.924 0.36 2.57 0.0102

3 𝜃late
education −0.533 0.115 −4.63 3.63e−06

4 𝜃long
education −0.379 0.093 −4.07 4.66e−05

5 𝜃short
education −0.949 0.766 −1.24 0.215a

6 𝛾leisure 5.75 0.624 9.21 0.0

7 𝜃early
leisure −0.453 0.0879 −5.15 2.57e−07

8 𝜃late
leisure −0.788 0.211 −3.73 1.94e−04

9 𝜃long
leisure −0.572 0.144 −3.96 7.42e−05

10 𝜃short
leisure −1.15 0.803 −1.43 0.153a

11 𝛾shopping 3.05 1.05 2.90 3.75e−03
12 𝜃early

shopping −0.262 0.343 −0.765 0.445a

13 𝜃late
shopping −0.486 0.220 −2.20 0.0275

14 𝜃long
shopping 0.651 1.01 0.642 0.521a

15 𝜃short
shopping 5.90 3.37 1.75 0.0798a

16 𝛾work 1.90 1.60 1.19 0.235a

17 𝜃early
work −0.97 0.188 −5.16 2.51e−07

18 𝜃late
work −12.5 1.29 −9.73 0.00

19 𝜃long
work 0.535 0.346 1.55 0.122a

20 𝜃short
work 3.69 0.784 4.71 2.49e−06

�̄�2 = 0.54
Estimation time: 3.79 [s]

a Indicates parameters that are not statistically significant based on their
𝑝-value.

Table 11
Estimation results for OASIS flexibility-level model on student
population.

Parameter Param. Rob. Rob. Rob.
estimate std err 𝑡-stat 𝑝-value

1 𝜃early
F −0.175 0.12 −1.46 0.145a

2 𝜃late
F −0.333 0.14 −2.38 0.0171

3 𝜃long
F −0.105 0.0722 −1.45 0.146a

4 𝜃short
F −0.114 0.194 −0.585 0.559a

5 𝜃early
NF −1.14 0.367 −3.10 0.00191

6 𝜃late
NF −0.829 0.229 −3.61 0.0003

7 𝜃long
NF −1.20 0.393 −3.05 0.00231

8 𝜃long
NF −1.19 0.468 −2.54 0.0011

9 𝛾education 16.0 2.46 6.49 8.63e−11

10 𝛾leisure 8.81 1.7 5.17 2.28e−07

11 𝛾shopping 6.85 1.80 3.80 0.000146

12 𝛾work 16.0 2.58 6.18 6.57e−10

�̄�2 = 0.06
Estimation time: 0.34 [s]

a Indicates parameters that are not statistically significant based on their
𝑝-value.
15
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Fig. 11. Examples of simulated schedules (Model 2).

On the other hand, shopping displays high penalties for scheduling deviations, especially with respect to start time. This
behaviour does not support the assumption used in the previous model that shopping is a flexible activity.

Fig. 11 illustrates some schedules generated with activity-specific parameters.

Model 3: OASIS with MATSim specification We estimate the parameters 𝑈max
a , 𝛼𝑎, 𝛽𝑎 for all activities. For identification purposes, we

fix 𝑈min
a = 0 and 𝜁𝑎 = 1. Similarly to the other models, home is associated with a null utility. This assumption also translates the fact

that the duration at home is the remaining budget time after having performed out-of-home activities. The estimated parameters
are summarised in Table 13.

All parameters are significant based on their 𝑝− value.
16
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Table 12
Estimation results for OASIS activity-specific model on student
population.

Parameter Param. Rob. Rob. Rob.
estimate std err 𝑡-stat 𝑝-value

1 𝛾education 18.7 3.17 5.89 3.79e−09
2 𝜃early

education −1.35 0.449 −3.01 0.00264

3 𝜃late
education −1.63 0.416 −3.91 9.05e−05

4 𝜃long
education −1.14 0.398 −2.86 0.00428

5 𝜃short
education −1.75 0.457 −3.84 0.000123

6 𝛾leisure 8.74 1.94 4.50 6.79e−06

7 𝜃early
leisure −0.0996 0.119 −0.836 0.403a

8 𝜃late
leisure −0.239 0.115 −2.07 0.0385

9 𝜃long
leisure −0.08 0.0617 −1.30 0.195a

10 𝜃short
leisure −0.101 0.149 −0.682 0.495a

11 𝛾shopping 10.5 2.20 4.78 1.74e−06
12 𝜃early

shopping −1.01 0.287 −3.51 0.000443

13 𝜃late
shopping −0.858 0.237 −3.63 0.000284

14 𝜃long
shopping −0.683 0.387 −1.76 0.0779a

15 𝜃short
shopping −1.81 1.73 −1.04 0.297a

16 𝛾work 13.1 2.64 4.96 7.16e−07
17 𝜃early

work −0.619 0.217 −2.85 0.00438

18 𝜃late
work −0.338 0.168 −2.02 0.0438

19 𝜃long
work −1.22 0.348 −3.51 0.000441

20 𝜃short
work −0.932 0.213 −4.37 1.23e−05

�̄�2 = 0.62
Estimation time: 1.41 [s]

a Indicates parameters that are not statistically significant based on their
𝑝-value.

For education and work, the 𝛼 parameter (inflection point) is around 2 h, which means that beyond this duration, the utility
ncreases at a decreasing rate (satiation effect). The fact that longer durations are usually scheduled for these activities (as seen in
he observed data, Fig. 12(a)) suggests that the time allocation for education and work is more constraint-driven than utility-driven.
or shopping, we observe the opposite. The inflection point is at a very high duration as compared to the typical values in the
ataset. However, the negative slope suggests a decreasing utility. This seems to indicate a behaviour that the sole participation to
he activity (characterised by a duration 𝜏shopping > 0) has a positive impact on the utility function, but that this utility decreases

with duration.
Interestingly, for leisure 𝑈max

leisure is almost the same as for education, although it is reached much sooner according to the 𝛼
arameter. This suggests a stronger satiation effect for this activity as compared to education, which is expected

4.3 Simulation results

Using the parameters described in the previous section, we simulate schedules for the test dataset. The simulation procedure is
described in detail in Pougala et al. (2022): at each iteration 𝑖 ≤ 𝑛max, we draw a random term 𝜀𝑖 from a known distribution. We
solve the utility maximisation problem for this error instance to obtain a draw from the underlying schedule distribution. We draw
𝑛max = 20 schedules for each individual in the sample.

To compare the results of each model with the original data, we analyse the simulated frequencies of activity participation per
hour of the day, simulated durations and start times for each activity. We compute the Kolmogorov–Smirnov statistic between the
original and simulated distributions for a quantitative evaluation of the goodness-of-fit of these distributions.

4.3.1 Simulated statistics
We compare descriptive statistics of the simulated sample with those observed in the dataset. These statistics are daily averages

of the time spent out-of-home (total and for each activity) and proportion of scheduled activity types. These statistics are derived
exclusively for schedules which contain at least one activity out-of-home. It is worth noting that all models generate significantly
more fully-at-home days (about 5 times more than what is observed in the MTMC data).

The results are summarised in Tables 14 and 15 respectively. The estimated models (Models 1, 2 and 3) generate average
durations that are closer to the observed ones than the model with parameters from the literature. They are especially accurate for
17
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Table 13
Estimation results for OASIS with MATSim specification model on
student population.

Parameter Param. Rob. Rob. Rob.
estimate std err 𝑡-stat 𝑝-value

1 𝑈max
education 4.79 0.443 10.8 0.00

2 𝛼education 1.57 0.202 7.75 9.1e−15
3 𝛽education 7.56 4.84 1.56 0.119

4 𝑈max
leisure 4.47 0.379 4.50 9.1e−15

5 𝛼leisure 0.668 0.213 3.13 0.00172

6 𝛽leisure 2.53 0.686 3.69 0.000225
7 𝑈max

shopping 2.12 0.333 6.36 2.04e−10
8 𝛼shopping 3.66 0.975 3.75 0.000175
9 𝛽shopping −4.85 2.3 −2.1 0.0353

10 𝑈max
work 3.31 0.637 5.19 2.08e−07

11 𝛼work 2.07 0.0459 45. 0.00
12 𝛽work 11.5 0.792 14.5 0.00

�̄�2 = 0.56
Estimation time: 12.22 [s]

Table 14
Average out-of-home duration, in hh:min.

Activity Data Literature Random Empirical OASIS flexibility OASIS Act.-spec. OASIS MATSim

Total 04:53 02:54 06:38 04:23 04:10 05:19 8:20
Education 03:32 01:11 04:43 02:08 02:25 02:29 02:43
Leisure 00:39 00:58 01:34 00:49 01:17 02:32 04:43
Shopping 00:08 00:22 00:08 01:07 00:21 00:10 00:10
Work 00:26 00:05 00:13 00:18 00:07 00:08 00:20

Table 15
Proportion of scheduled activities [%].

Activity Data Literature Random Empirical OASIS flexibility OASIS Act.-spec. OASIS MATSim

Home 71.3 85.3 85.9 85.1 89.3 89.5 66.5
Education 11.2 6.1 5.2 6.4 4.6 3.1 13.0
Leisure 12.8 5.7 7.3 4.0 4.3 6.3 14.5
Shopping 3.7 2.3 0.7 1.6 1.5 0.93 4.2
Work 1.13 0.61 1.0 3.0 0.35 0.20 1.4

the average total time, but the proportions across activities are not as well captured. For example, the average durations spent in
education are underestimated by about 1 h, while the time spent in leisure is overestimated (by 2 h in the case of the activity-specific
model).

Regarding the proportion of scheduled activities (Table 15) Model 2 (OASIS with activity-specific parameters) significantly
nderestimates the frequency of each activity. This is likely due to the approximation of the desired start times, which are computed
or only one instance of the activity, and do not properly account for bimodality or asymmetry in timing preferences (e.g. different
esired start times for doing work in the morning or in the afternoon). This point in discussed further in Section 4.3.5. On the other
and, the MATSim specification seems to provide more realistic results.

.3.2 Time of day participation
Fig. 12(a) shows the typical distribution of activities in the course of a day, for schedules including at least one activity out of

ome. The height of each bar represents the proportion of the sample that is participating in each activity at a given moment of
ime. Before 7:00, almost all of the individuals in the sample are home. The proportion of people undertaking their main education

activity steadily increases during the morning, to reach a peak at 11 h (50%). The proportion decreases at lunch time (40% to 25%
between 12:00 and 13:00) and goes up again in the afternoon. The leisure activity is the second most frequent activity from 10:00
to 15:00. From 16:00 onward, it surpasses education. Work is the third most frequent activity, although in much smaller proportions
than the previous two. Its profile is similar to education.

Figs. 12(b) to 12(g) show the distributions for out-of-home schedules2 resulting from the simulator framework with the 5
mentioned configurations: with parameters from the literature (Fig. 12(b)), activity-specific parameters with random (Fig. 12(c))
and empirical choice set (Fig. 12(d)), OASIS generic (Fig. 12(e)), and activity-specific (Fig. 12(f)) model, and MATSim function

2 Out of the 20 simulated schedules for each individual in the sample.
18
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Fig. 12. Time of day activity frequency. The height of the bars is the proportion of people participating in each activity at a given moment.
19
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(Fig. 12(g)). All configurations, with the exception of the MATSim specification, are able to capture the importance of education
relative to the other activities in the schedule. However, as mentioned in the previous section, for all models, the majority of
generated schedules are full days at home (i.e. no out-of-home activity scheduled).

The original profile of the education activity, with a distinct peak period, is best captured with the OASIS estimated parameters,
both flexibility- and activity-specific. In both cases, the peak is reached before 9:00, as opposed to the observed 11:00 peak. This
discrepancy is likely due to the assumption of a unimodal desired start time; a multimodal distribution (closer to the observed one)
would improve the fit of the simulated distribution.

Interestingly, the leisure activity – and by extension, all activities previously defined as flexible – has very different simulated
profiles from the observed one. With the literature parameters and the MATSim specification, the share of leisure is constant for most
of the day, and comparable to the share of education. On the other hand, with the OASIS activity-specific parameters, the activity
is overrepresented during the night (midnight to 7:00), as compared to the other simulated activities, and the leisure observations
in the data for this time period. The rest of day, the profile is similar to the real one.

For the shopping activity, it is overrepresented in the schedules simulated with the empirical choice set. This is due to the
estimated penalties for shopping which are either insignificant or positive (Table 10).

For the MATSim specification, we notice that the time of day activity frequency is not properly captured for most activities, but
especially for leisure and education which are respectively over- and underrepresented at most times during the day (around 20%
of participation). This is due to the fact that start time is not included in the specification. This result supports the assumption that
the satiation effect for activity duration is different depending on the time of day.

4.3.3 Start time
We compare the simulated start times per activity and model, by visualising the kernel density estimations of the models with

parameters from the literature, generic and activity-specific parameters (Fig. 13), and respective Kolmogorov–Smirnov (KS) statistic
compared to the observed dataset (a lower KS indicates a better fit). We compare the estimated models (flexibility-level parameters,
activity-specific parameters, and MATSim specification) to the benchmark (parameters from the literature).

With the exception of education the activity-specific model is the model that better reproduces the distributions of start time
(lowest KS). The observed distribution of education is truly bimodal, which is not properly captured by either of the estimated
models. This is likely due to the approximation of desired times to a unimodal distribution. The model with parameters from the
literature produces a relatively good fit, but this distribution varies very little from one activity to another.

4.3.4 Duration
Similarly, we compare the simulated durations per activity and model, by visualising the kernel density estimations of each

model (Fig. 14) and computing their respective KS statistic.
For all activities, the model with parameters from the literature tends to generate short activities (𝜏𝑎 ≤ 2 h) more frequently, and

in smaller proportions activities with a duration of about 8 h (for education, leisure and shopping). The three OASIS models generate
more diverse patterns with respect to duration: the flexibility-level model seems to capture well the bimodality of education. On the
other hand, the activity-specific model generates better distributions for work and leisure. The MATSim specification yields the best
results in terms of KS-statistic for education and work. All models tend to generate short instances of the shopping activity, although
there is a non negligible number of schedules with very long shopping activities (8 h), which is not close to what was observed nor
particularly realistic. This limitation is also reflected by the high value of the KS statistic.

4.3.5 Discussion
This empirical investigation using the MTMC has demonstrated the added value of estimating the parameters for the accuracy

and realism of the simulated schedules, as opposed to using constant parameters from the literature. Removing a layer of abstraction
by estimating activity-specific parameters instead of generic parameters aggregated over the set of activities has shown to provide
results fitting the observed distribution better.

As shown by the comparison of benchmark 2 (model with random choice set) with models 1–3, the parameters obtained with
the Metropolis–Hastings algorithm yield simulation results that are more consistent with the observations than those generated with
a random choice set. This indicates the importance of sampling strategically from the solution space, to ensure that the choice set is
contains meaningful (or high probability) alternatives. In addition, the comparison of the values and statistical significance of the
estimated parameters highlights the impact of sampling informative schedules as opposed to random ones, especially with such a
low number of alternatives. For the random choice set, a significant number of alternatives is required to achieve results that are
consistent and comparable with the observed data, as illustrated by Fig. 15. For the Metropolis–Hastings choice set, a low number of
alternatives already yields satisfactory results. This concern is also valid for the choice set obtained by sampling from the clusters of
representative patterns (benchmark 3). This method is faster than the Metropolis–Hastings algorithm, but the number of alternatives
that can be sampled is limited by the number of representative clusters (sampling with replacement is an option, but the consequent
bias must be addressed). This method would therefore require more data than the OASIS generation procedure. In addition, Xu et al.
(2017) do not correct for importance sampling, which introduces an additional bias. The resulting parameters may therefore not be
consistent.

The application of the methodology has also highlighted some limitations: the simplifying assumptions formulated to estimate
the problem have a significant impact on the quality of the solutions. For instance, the distributional assumptions of the desired
20
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Fig. 13. Simulated start times, per model and activity.

and reflective of the observations. This change requires to reconsider the definition of activities, as it implies that the behaviour
towards an activity of the same type (e.g. work) would differ depending on when it is scheduled.

Another finding is that, while the simulated profiles are close to the observed ones, all tested models simulate significantly
more schedules with no out-of-home activities than what is actually observed. The fact that this phenomenon is also observed with
parameters from the literature suggests that the specification itself does not appropriately model the reality. Indeed, because of
its restrictive assumptions on the independence of alternatives the logit model does not account for the correlations, interactions
and unobserved behaviour who clearly impact the scheduling decisions (and specifically, the decision to travel out of home). More
complex specifications must be investigated, starting with mixed logit models which relax the IIA assumption.

5 Conclusion and future work

We have presented a procedure to estimate the parameters of the OASIS framework, which includes the optimisation-based
simulator introduced in Pougala et al. (2022). The estimation process includes: (i) the generation of a choice set for parameter
estimation, with a sufficiently high variety of alternatives to ensure unbiased and stable parameter estimates, with tractable sample
probabilities, and (ii) the discrete choice estimation of the parameters for different model specifications. We have applied our
methodology on a simple case: a time-dependent and linear-in-parameters utility function, and a small dataset. The resulting
parameters are statistically significant and behaviourally interpretable, even with a relatively small number of alternatives in the
choice set. Using the parameters as input for the activity-based simulator, we can demonstrate that the simulated distribution is closer
to the observed one with the estimated parameters as opposed to a benchmark from the literature, with respect to the simulated
activity participation and duration. We have also estimated parameters of a state-of-the-art utility specification, used within the
MATSim microsimulator. The utility function has a more behavioural realistic assumption for the impact of duration on the schedule
utility than the linear specification used so far in OASIS. Another advantage is that the S-shape of the function does not require the
explicit definition of the desired duration. However, the impact of start time is clearly significant based on our analyses, and should
therefore be included in the specification.

In this paper, we have focused on demonstrating the feasibility and added value of the methodology. This is a necessary
foundation for the framework to be able to solve problems of higher complexity, including social interactions or multi-day behaviour.
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Fig. 14. Simulated durations, per model and activity.

Fig. 15. Impact of choice set size on time of day distribution for random choice set model.

Methodological improvements such as choosing appropriate model structures to manage the high correlations (e.g mixtures of logit,
latent class models) are expected to significantly improve the quality of the estimation and the associated simulation results. In
addition, future work will also include the estimation of travel related parameters (e.g., travel time and cost, network accessibility),
which will require network data to compute attributes for chosen and unchosen alternatives. The estimation of travel parameters,
alongside activity parameters, will provide valuable insights on how both dimensions interact and affect the schedule utilities.

We have performed the estimations on small samples, both in terms of observations and alternatives in the choice set. Our results
show that we were able to estimate significant parameters with the Metropolis–Hastings algorithm, whereas the random choice set
requires a greater number of alternatives in order to properly inform the estimation process. The next steps is to find the optimal
number of alternatives 𝑁∗ to sample with the OASIS methodology in order to obtain the best trade-off between estimation quality
and computational efficiency.
22
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Regarding validation, we will investigate in future work a multidimensional distance metric to compare observed and simulated
chedules, similarly to the multidimensional sequence alignment technique used by Recker et al. (2008) or Joh et al. (2002). In
ddition, the calibration of parameters on a synthetic population would allow to evaluate the estimation quality against known
ontrol variables.

Regardless, the results of this paper open the way for significant contributions in activity-based modelling: the methodology to
stimate the parameters allows researchers to explicitly consider behaviour in the activity-based analysis, which is usually a limiting
actor in econometric models. An important contribution of the OASIS framework is that the methodology remains the same for any
hange of context-specific constraints and features or change in utility specification. For example, this methodology was presented
or the specific context of single day and single individual scheduling. Extensions such as multiday or household scheduling would
equire careful consideration: for the choice set generation, dedicated operators should be implemented (e.g. operator changing the
ay of the week of an activity, or whether an activity is performed jointly with a member of the household or solo), and the utility
unction and constraints must be formulated such as to accommodate these interactions. These extensions do not modify the core
ethodology of both the estimation and the simulation. Modellers can therefore develop flexible and tailored models for a variety

f applications to integrate in the framework in a straightforward way. The parameters can then be estimated, even with limited
ata, with positive impact on the realism the resulting simulations.

upplementary materials

The source code for OASIS is available at: https://github.com/transp-or/oasis.
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