# Copper (I)-BOX Catalyzed Asymmetric 3-Component Reaction for the Synthesis of Trifluoromethylated Propargylic Ethers and Anilines** 

Nieves P. Ramirez and Jerome Waser*


#### Abstract

An asymmetric 3-component reaction between EthynylBenziodoXoles (EBXs), 2,2,2-trifluorodiazoethane and nucleophiles catalyzed by a $\mathrm{Cu}^{\mathrm{I}}$-BOX (Bisoxazoline) catalyst is described. This protocol gives access to chiral trifluoromethylated propargyl ethers and anilines, which are valuable building blocks in synthetic and medicinal chemistry. The reaction proceeds with high enantioselectivity and yield with different nucleophiles such as primary, secondary and tertiary alcohols, as well as both electron-rich and electron-poor anilines. Aryl-, alkyl- and silyl-substituted alkynes can be successfully introduced as electrophiles. In case of chiral substrates, high catalyst control was observed, leading to good diastereoselectivity.


The unique physico-chemical properties of the fluorine atom have been extensively used for drugs, agrochemicals and materials design. ${ }^{[1-3]}$ In particular, trifluoromethylated propargylic ethers and amines ${ }^{[4,5]}$ are valuable building blocks for synthetic and medicinal chemistry. ${ }^{[6]}$ Reported catalytic enantioselective methods ${ }^{[7]}$ for the synthesis of trifluoromethylated carbinols and anilines are based on (a) the addition of $\mathrm{CF}_{3}$-based nucleophiles to ynones, ${ }^{[7,8]}$ (b) the addition of acetylides onto carbonyl compounds or imines, ${ }^{[9,10]}$ (c) the addition of carbon nucleophiles to trifluoromethylated alkynyl ketones or the reduction of the corresponding trifluoromethylated propargyl imines, ${ }^{[11,12]}$ or (d) the kinetic resolution of the propargyl alcohols (Scheme 1A). ${ }^{[6 a]}$ Nevertheless, stoichiometric amounts of strong bases, lower or higher temperatures, expensive catalysts (Rh, Pd, among others), and/or additives are

[^0]A. Reported approaches towards trifluoromethylated propargylic ethers and amines

B. Reactions with trifluoromethylated diazo compound 1

C. Previous enantioselective 2-components reaction developed by our group


- Only diazoesters compounds
- Two-components reaction giving access to benzoate esters only


Scheme 1. State of the art for the synthesis of fluorinated propargylic ethers and anilines and our approach.
sometimes needed, leading to a narrow scope. Furthermore, most methods give access only to alcohols, requiring extra synthetic steps if the ethers are targeted.

In this context, Multi-Component Reactions (MCRs) involving diazo compounds have demonstrated their synthetic potential. ${ }^{[13-15]}$ Recently, fluorinated diazo compounds, such as 2,2,2-trifluorodiazoethane $\left(\mathrm{HN}_{2} \mathrm{CCF}_{3}, \mathbf{1}\right.$, Scheme 1B), have been used in the synthesis of trifluoromethylated compounds. ${ }^{[16]}$ Nevertheless, enantioselective methods have been mostly limited to cyclopropanation. ${ }^{[17]}$ In the case of MCRs, there are only examples of the use of amines as nucleophiles to access aziridines, triazolines or 1,2diamines. ${ }^{[18]}$ To the best of our knowledge, the use of alcohols as nucleophiles in asymmetric MCRs with fluorinated diazo compounds has never been reported.

In 2016, our group reported an oxyalkynylation reaction of diazo esters using EthynylBenziodoXolones (EBXs) and a copper catalyst. ${ }^{[19]}$ Later, an enantioselective variation of
this reaction was developed using BOX ligands (Scheme 1C) ${ }^{[20]}$ Despite copper being one of the most earthabundant transition metals, it has been only rarely used in carbene-based enantioselective MCRs. ${ }^{[21]}$ Recently, we could extend the use of copper catalysis to a 3-CR (Three Component Reaction) reaction between modified EBX derivatives, diazo compounds, and nucleophiles, such as alcohols ${ }^{[22]}$ or anilines. ${ }^{[23]}$ However, the development of an enantioselective method has not yet been reported.

Herein, we describe the first asymmetric 3-CR between 2,2,2-trifluorodiazoethane (1), EBX derivatives and nucleophiles for the synthesis of trifluoromethylated propargylic ethers and anilines (Scheme 1D). The reaction proceeds with high enantioselectivity for non-chiral alcohols and anilines and high diastereoselectivity under catalyst control for chiral alcohols. In the case of alcohol nucleophiles, primary, secondary and tertiary alcohols could all be used, the latest being challenging targets for traditional etherification reactions. ${ }^{[24]}$

As a model system, we chose the 3-CR of 2,2,2trifluorodiazoethane (1), ${ }^{[25]}$ EthynylBenziodoxole (EBX) 2a and cyclohexanol (3a) (Table 1). After optimization, the enantioselective 3-CR could be performed using commercially available $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}$ and BOX ligand $\mathbf{L 1}$ at room temperature in DCE to give product $\mathbf{4 a a}$ in $85 \%$ yield and $96: 4$ er (Table 1, entry 1). On 0.20 mmol scale, 4 aa was

Table 1: Optimization of the MCR reaction.

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Entry | Modifications | Yield 4 aa | er |
| 1 | none | $85(83)^{[b]}$ | 96:4 |
| 2 | L2 | quant. | 11:89 |
| 3 | $\mathrm{CuCl} / \mathrm{AgNTf} \mathrm{F}_{2}$ | 75 | 93:7 |
| 4 | $\mathrm{CuCl} / \mathrm{AgNTf}_{2}$ and L 2 | 95 | 11:89 |
| 5 | $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{SbF}_{6}$ | 89 | 92:8 |
| 6 | $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$ | 69 | 89:11 |
| 7 | $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{OTf}$ | 77 | 93:7 |
| 8 | $\mathrm{Cu}(\mathrm{OTf}) \bullet$ PhMe | 78 | 95:5 |
| 9 | $\mathrm{Cu}(\mathrm{OAc})_{2}$ | 69 | 85:15 |
| 10 | $\mathrm{Cu}(\mathrm{OTf})_{2}$ | 68 | 96:4 |
| 11 | 4 equiv of 3a | 88 | 94:6 |
| 12 | 1.5 equiv of $\mathbf{3 a}$ | 65 | 95:5 |
| 13 | MeCN | n.d. | n.d. |
| 14 | PhMe | 76 | 94:6 |
|  |  |  |  |

[^1]isolated in $83 \%$ yield. With indaBOX ligand L2, a quantitative yield, but lower selectivity was obtained (Table 1, entry 2). Using similar conditions than in our previous work ${ }^{[206]}$ led to similar results (Table 1, entries 3 and 4). Other counterions, such as $\mathrm{SbF}_{6}{ }^{-}, \mathrm{PF}_{6}{ }^{-}$or $\mathrm{OTf}^{-}$gave $4 \mathbf{a a}$ in similar or lower yields and er (Table 1, entries 5-7).

Different $\mathrm{Cu}^{\mathrm{I}}$ catalysts, such as $\mathrm{Cu}(\mathrm{OTf}) \cdot \mathrm{PhMe}, \mathrm{CuI}$ or CuTc , (Table 1, entry 8 and Supporting Information) were also tested, but no improvement was observed. Using $\mathrm{Cu}^{\text {II }}$ salts, such as $\mathrm{Cu}(\mathrm{OAc})_{2}$ or $\mathrm{Cu}(\mathrm{OTf})_{2}$ was less efficient (Table 1, entries 9-10). A larger excess of 3a did not lead to a significant improvement (Table 1, entry 11). Using only 1.5 equiv. of $\mathbf{3 a}$ afforded compound $\mathbf{4}$ aa in lower yield (Table 1, entry 12). No reaction was observed with MeCN and a lower yield and similar selectivity than with DCE when using PhMe. (Table 1, entries 13 and 14). The use of further solvents and conditions did not lead to any improvement (See Supporting Information for more information).

With these optimized conditions in hand, we explored the scope of the reaction between 1, 2a and different alcohols 3a-3p (Scheme 2). Enantiopure (S)-2-phenylethanol (2b) afforded compound $4 \mathbf{4 b}$ in $70 \%$ yield and $95: 5 \mathrm{dr}$. Switching to tertiary alcohols, tert-butanol (3c) gave 4ac in $72 \%$ yield and 96:4 er. Tert-amyl alcohol (3d) afforded the corresponding propargylic ether $\mathbf{4 a d}$ in $70 \%$ yield and 94:6 er. The presence of an arene in the aliphatic chain ( $\mathbf{3 e - g}$ ) was tolerated, yielding products $\mathbf{4 a e - g}$ in $43-65 \%$ yield with 97:3-98:2 er. ${ }^{[26]}$ Cyclic alcohol $\mathbf{3 h}$ gave $\mathbf{4 a h}$ in $55 \%$ yield and 95:5 er. Trifluoromethylated propargylic ethers $4 \mathbf{a i}$ and 4aj containing pharmaceutically relevant adamantyl substituents ${ }^{[27]}$ were obtained in good yield and enantioselectivity.

We then turned to primary alcohols. Benzyl alcohol ( $\mathbf{3 k}$ ) gave $\mathbf{4 a k}$ in $78 \%$ and 93:7 er. With hexanol (31), the use of a stoichiometric ratio between the $\mathrm{Cu}^{1}$ salt and $\mathbf{L 1}$ was needed to afford 4 al in good enantioselectivity ( $93: 7$ er) (See Supporting Information for more information). Ethanol ( $\mathbf{3 m}$ ) afforded $\mathbf{4 a m}$ in $85 \%$ yield and 93:7 er. The presence of a trimethylsilyl group ( $\mathbf{3 n}$ ) was well tolerated to give 4 an in $58 \%$ yield and $90: 10$ er. At 1 mmol scale product 4 an was obtained in $51 \%$ yield and 93:7 er. Switching to the less nucleophilic trifluoroethanol (30), we observed poor selectivity and moderate yield, probably due to the higher acidity of the propargylic hydrogen. ${ }^{[28,29]}$

Finally, we studied substitution on the alkyne. A strong electron withdrawing nitro group in para-position of the phenyl ring led to high enantioselectivity: Compounds 4bp and 4ba were obtained in $55 \%$ yield/98:2 er and $87 \%$ yield/ 97:3 er, respectively. Ortho-substitution with a bromine group gave product 4 ca in $82 \%$ yield and 93:7 er. Importantly, silyl alkynes giving access to synthetically useful terminal alkynes were also tolerated. Product 4 de was obtained in $60 \%$ yield and 99:1 er. A 93:7 diastereoselectivity was obtained in the case of enantiopure alcohol $\mathbf{3 b}$. Compound $\mathbf{4} \mathbf{e b}$ containing a cyclopropylalkyne was formed in $63 \%$ yield and $92: 8$ diastereoselectivity.

Enantiopure alcohols are widely found in nature. Considering the impressive catalyst control observed with (S)-2phenylethanol (2b), we investigated more complex sub-
cer

Scheme 2. Scope of the 3-CR with 2,2,2-trifluorodiazoethane (1) and different alcohols (3) and EBXs (2). The reactions were performed at 0.20 scale and isolated yields are given. The enantiomeric excess was obtained by chiral HPLC after flash column purification. The diastereomeric ratio was obtained from the crude reaction mixture by ${ }^{19} \mathrm{~F} \mathrm{NMR}$. ${ }^{[a]} 2 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}$ and $2 \mathrm{~mol} \% \mathrm{LI}$.
strates (Scheme 3). We first reoptimized the reaction for the use of the alcohol as limiting reagent (See Supporting Information for more information). The use of 1 equiv. of $(-)$-menthol (5a) gave alkyne $\mathbf{6}$ in $81 \%$ yield and 2:98 dr. When (+)-menthol (5b) was submitted to the same conditions, product 7 was obtained in $89 \%$ yield and 96:4 dr, displaying an excellent catalyst control. Other terpene


Scheme 3. Scope of the 3-CR with 2,2,2-trifluorodiazoethane (1) and chiral alcohols (5). Reaction conditions: Unless otherwise indicated, the reactions were performed at 0.25 mmol scale. Isolated yields by flash column chromatography are given. The diastereomeric ratio was obtained from the crude reaction mixture by ${ }^{19} \mathrm{~F}$ NMR. ${ }^{[2]}$ Using $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{SbF}_{6}$, 1 equiv of $\mathbf{2 a}$ and 4 equiv of alcohol $\mathbf{5 d}$.
derived alcohols gave products $\mathbf{8 - 1 0}$ in 64-89\% yield and 85:15-97:3 dr. With protected serine derivative 5f, ether 11a was obtained in $63 \%$ yield and $93: 7 \mathrm{dr}$. The reaction of alcohol $\mathbf{5 f}$ was also performed with TIPS-substituted reagent $\mathbf{2 d}$, giving compound 11b in $66 \%$ yield and 90:10 dr. Compound 11b was obtained in slightly higher yield and diastereoselectivity at a 1 mmol scale.

Next, we studied anilines as nucleophiles (Scheme 4) ${ }^{[23]}$ We studied first the reaction between 1, 2a and methyl 4aminobenzoate (12a). Unfortunately, despite the good er obtained (98:2); the desired product (13aa) was obtained in only $66 \%$ yield with low reproducibility using the conditions optimized for alcohols. After screening of different BOX ligands, $\mathrm{Cu}^{1}$ catalysts, solvents, concentrations and temperatures, $\mathbf{L} \mathbf{2}$ in combination with the cationic complex formed from $\mathrm{CuCl} / \mathrm{AgNTf}_{2}$ in DCE afforded compound 13 aa in $71 \%$ yield and $94: 6$ er with high reproducibility (See Supporting Information for more information). Compound 13da was obtained in $52 \%$ yield and 86:14 er. Both cyclopropyl ( $c-\operatorname{Pr}$ ) and tert-butyl ( $t$-Bu)-substituted alkynes gave products $\mathbf{1 3} \mathbf{e a}$ and $\mathbf{1 3} \mathbf{f a}$ in $71 \%$ yield and $91: 9$ er and $64 \%$ yield and 94:6, respectively. Thiophene substituted alkyne 13ga was obtained in $65 \%$ yield and 91:9 er. The scope of substituted anilines was then explored. Electron withdrawing groups, such as trifluoromethyl or para-fluoro gave the desired products $\mathbf{1 3 a b}$ and $13 \mathbf{a c}^{[30]}$ in similar yield and selectivity. A ketone group was also tolerated, giving product 13ad in $57 \%$ and $87: 13$ er. 1,2,3,4-Tetrahydroquinoline afforded compound $\mathbf{1 3} \mathbf{a e}$ in moderated yield and good enantioselectivity. The presence of a methyl or methoxy in para position led to lower enantioselectivity (products 13 af and 13 ag ).


Scheme 4. Scope of the 3-CR with 2,2,2-trifluorodiazoethane (1) and anilines (12). The reactions were performed at 0.25 mmol scale. Isolated yields are given. The enantiomeric excess was obtained by chiral HPLC after PTLC.

We also examined phenols and carboxylic acids as nucleophiles (Scheme 5A). In this case, the combination of $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{SbF}_{6}$ and an excess of the nucleophile afforded the best results. With phenols $\mathbf{1 4}$ a and $\mathbf{1 4 b}$, compounds $\mathbf{1 5}$ a


Scheme 5. Scope extension (A) and products modification (B and C). The reactions were performed at 0.20 mmol scale. Isolated yields are given. The enantiomeric excess was obtained by chiral HPLC after flash column purification.
and 15b were obtained in good yield and moderate selectivity. In contrast, using 2-cyclohexanecarboxylic acid (16), we reached good enantioselectivity for ester 17, but the reaction did not go to completion. To determine the absolute configuration of the propargylic ether products, 4 an was deprotected using $\mathrm{BF}_{3} \mathrm{OEt}_{2}$ to give alcohol $\mathbf{1 8}$ in $87 \%$ yield (Scheme 5B). Compound $\mathbf{1 8}$ was reacted with $p$ nitrobenzoyl chloride to give ester 19, which allow us to determine the absolute configuration via X-ray analysis. ${ }^{[30]}$ Deprotection of the TIPS group was performed on compound 11b by treatment with AgF, giving terminal alkyne 20 in $82 \%$ yield, albeit with a lower dr (Scheme 5C).

According to our previous work, ${ }^{[19,20]}$ we propose the following speculative mechanism (Scheme 6): The preformed chiral $\mathrm{Cu}^{\mathrm{I}}$ complex would first react with $\mathbf{1}$ generating Cu carbene $\mathbf{I}$, which then would react with the nucleophile forming the metal-ylide II. Finally, electrophilic alkyne transfer from EBX reagent $\mathbf{2}$ would give the desired product 4 and bistrifluoromethylated alcohol III as by product. For the alkynylation step, a redox mechanism on copper can tentatively be proposed, as reported in case of gold, ${ }^{[31]}$ but further work is needed to better understand this step as well as the observed asymmetric induction (See Supporting Information for more information).

In summary, we have developed the first asymmetric enantioselective 3 -CR between hypervalent iodine reagents, 2,2,2-trifluorodiazoethane (1) and nucleophiles using a $\mathrm{Cu}^{\mathrm{I}}$ catalyst. Tertiary, secondary and primary alcohols as well as electron-rich and electron-poor anilines can be used as nucleophiles affording fluorinated propargylic ethers and anilines in up to 99:1 er. Alkyl-, aryl- and silyl-substituted EBXs could be used in the process, giving access to structurally diverse alkynes. With chiral substrates, high catalyst control was observed leading to good diastereoselectivity.

## Supporting Information

The authors have cited additional references within the Supporting Informatio ${ }^{[32-39]}$ Optimization tables, experimental procedures and analytical data for all new compounds. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR spectra and chiral HPLC traces are included. Raw data for NMR, IR, MS and HPLC


Scheme 6. Plausible mechanism. $\operatorname{Ln}=(\mathrm{MeCN}) \mathrm{L}$.
are freely available on the platform zenodo: https://doi.org/ 10.5281/zenodo. 7991566 .

## Acknowledgements

This publication was created as a part of NCCR Catalysis, a National Center of Competence in Research funded by the Swiss National Science Foundation (Grant No. 180544). Dr. Nieves P. Ramirez thanks the Generalitat Valenciana for a APOSTD 2022 postdoctoral fellowship (CIAPOS/2021/31). Dr. Tobias M. Milzarek is acknowledged for fruitful discussions. We thank Dr. Rosario Scopelliti and Dr. Farzaneh Fadaei Tirani from ISIC-EPFL for the X-ray structures. Open Access funding provided by École Polytechnique Fédérale de Lausanne.

## Conflict of Interest

The authors declare no conflict of interest.

## Data Availability Statement

The data that support the findings of this study are available in the Supporting Information of this article.

Keywords: Alkynes • Asymmetric Catalysis • Fluorinated Diazo Compounds • Multi-Component Reactions • Nucleophiles
[1] D. O'Hagan, Chem. Soc. Rev. 2008, 37, 308.
[2] a) R. D. Chambers, Fluorine in Organic Chemistry, Wiley, Blackwell, 2004; b) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881; c) W. K. Hagmann, J. Med. Chem. 2008, 51, 4359; d) S. Swallow in Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications (Ed.: V. Gouverneur, K. Müller), Imperial College Press, London, 2012; e) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donneelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315; f) M. Inoue, Y. Sumii, N. Shibata, ACS Omega 2020, 5, 10633.
[3] C. Zhang, K. Yan, C. Fu, H. Peng, C. J. Hawker, A. K. Whittaker, Chem. Rev. 2022, 122, 167.
[4] Selected reviews for propargylic alcohols/ethers: a) Y. Nishibayashi, Synthesis 2012, 44, 489; b) S. Puri, ChemistrySelect 2020, 5, 9866.
[5] Selected reviews for propargylic amines: a) S. Arshadi, E. Vessally, L. Edjlali, R. Hosseinzadeh-Khanmiri, E. GhorbaniKalhor, Beilstein J. Org. Chem. 2017, 13, 625; b) J. Irfana, G. C. Chandra Nandi, Eur. J. Org. Chem. 2019, 2704.
[6] Recent examples: a) A. Boreux, G. H. Lonca, O. Riant, F. Gagosz, Org. Lett. 2016, 18, 5162; b) F. Noël, V. D. Vukovic, J. Yi, E. Richmond, P. Kravljanac, J. Moran, J. Org. Chem. 2019, 84, 15926; c) D. Posevins, A. Bemejo-López, J. E. Bäckwall, Angew. Chem. Int. Ed. 2021, 60, 22178; d) R. Kani, T. Inuzuka, Y. Kubota, K. Funabiki, Asian J. Org. Chem. 2022, 11, e202100700.
[7] Selected reviews: a) G. Rubiales, C. Alonso, E. Martínez de Marigorta, F. Palacios, Arkivoc 2014, (ii), 362; b) H. Noda, N. Kumagai, M. Shibasaki, Asian J. Org. Chem. 2018, 7, 599-612, and references therein.
[8] P. Liu, Z.-L. Lei, Y.-Y. Peng, Z.-J. Liu, Q.-Z. Zhu, J.-T. Liu, F. Wu, Adv. Synth. Catal. 2018, 360, 3418.
[9] a) R. Motoki, M. Kanai, M. Shibasaki, Org. Lett. 2007, 9, 2997; b) A. Chinkov, A. Warm, E. M. Carreira, Angew. Chem. Int. Ed. 2011, 50, 2957; c) H. Noda, F. Amemiya, K. Weidner, N. Kumagai, M. Shibasaki, Chem. Sci. 2017, 8, 3260; d) D. Park, C. Jette, J. Kim, W.-O. Jung, Y. Lee, J. Park, S. Kang, M. S. Han, B. M. Stoltz, S. Hong, Angew. Chem. Int. Ed. 2020, 59, 775.
[10] a) Y. Xu, W. R. Dolbier, J. Org. Chem. 2000, 65, 2134; b) G. Magueur, B. Crousse, D. Bonnet-Delpon, Tetrahedron Lett. 2005, 46, 2219; c) H. Xiao, Y. Huang, F.-L. Qing, Tetrahedron: Asymmetry 2010, 21, 2949; d) G. Huang, Z. Yin, X. Zhang, Chem. Eur. J. 2013, 19, 11992; e) K. Morisaki, M. Sawa, J.-Y. Nomaguchi, H. Morimoto, Y. Takeuchi, K. Mashima, T. Ohshima, Chem. Eur. J. 2013, 19, 8417; f) K. Morisaki, M. Sawa, R. Yonesaki, H. Morimoto, K. Mashima, T. Ohshima, J. Am. Chem. Soc. 2016, 138, 6194.
[11] S. Sasaki, T. Yamauchi, M. Kanai, A. Ishii, K. Higashiyama, Bull. Chem. Soc. Jpn. 2015, 88, 200.
[12] a) W.-Q. Du, J.-M. Zhang, R. Wu, Q. Liang, S.-Z. Zhu, J. Fluorine Chem. 2008, 129, 695; b) P. R. Likhar, M. S. Subhas, S. Roy, M. L. Kantam, B. Sridhar, R. K. Seth, S. Biswas, Org. Biomol. Chem. 2009, 7, 85; c) M.-W. Chen, B. Wu, Z.-P. Chen, L. Shi, Y.-G. Zhou, Org. Lett. 2016, 18, 4650; d) M.-W. Chen, Q. Yang, Z. Deng, Y. Zhou, Q. Ding, Y. Peng, J. Org. Chem. 2018, 83, 8688; e) M. Miyagawa, K. Takashima, T. Akiyama, Synlett 2018, 29, 1607; f) B. M. Trost, C.-I. Hung, M. J. Scharf, Angew. Chem. Int. Ed. 2018, 57, 11408.
[13] a) C. de Graaff, E. Ruijter, R. V. Orru, Chem. Soc. Rev. 2012, 41, 3969; b) R. Perez Herrera, E. Marqués-López, Multicomponent Reactions: Concepts and Applications for Design and Synthesis, Wiley, Hoboken, 2015.
[14] a) X. Guo, W. Hu, Acc. Chem. Res. 2013, 46, 2427; b) D. F. Chen, Z. Y. Han, X. L. Zhou, L. Z. Gong, Acc. Chem. Res. 2014, 47, 2365; c) D. Zhang, W. H. Hu, Chem. Rec. 2017, 17, 739.
[15] J. Wang, C.-M. Che, M. P. Doyle, Transition Metal-Catalyzed Carbene Transformations, Wiley, Hoboken, 2022.
[16] Representative reviews: a) P. K. Mykhailiuk, Chem. Rev. 2020, 120, 12718; b) A. Kumar, W. A. Khan, S. Ahamad, K. Mohanan, J. Heterocycl. Chem. 2022, 59, 607.
[17] a) P. Müller, S. Grass, S. P. Shahi, G. Bernardinelli, Tetrahedron 2004, 60, 4755; b) M. Kotozaki, S. Chanthamath, T. Fujii, K. Shibatomi, S. Iwasa, Chem. Commun. 2018, 54, 5110; c) Z. Zhang, C. Tian, Z. Wang, P. Sivaguru, P. Steven, S. P. Nolan, X. Bi, ACS Catal. 2021, 11, 8527; d) J. Altarejos, D. Sucunza, J. J. Vaquero, J. Carreras, Org. Lett. 2021, 23, 6174.
[18] a) Z. Chai, J.-P. Bouillon, D. Cahard, Chem. Commun. 2012, 48, 9471; b) A. Kumar, S. Ahamad, R. Kant, K. Mohanan, Org. Lett. 2019, 21, 2962; c) X.-F. Tan, F.-G. Zhang, J.-A. Ma, Beilstein J. Org. Chem. 2020, 16, 638; d) J. Li, D. Zhang, J. Chen, C. Ma, W. Hu, ACS Catal. 2020, 10, 4559.
[19] D. P. Hari, J. Waser, J. Am. Chem. Soc. 2016, 138, 2190.
[20] a) D. P. Hari, J. Waser, J. Am. Chem. Soc. 2017, 139, 8420; b) D. P. Hari, L. Schouwey, V. Barber, R. Scopelliti, F. FadaeiTirani, J. Waser, Chem. Eur. J. 2019, 25, 9522.
[21] Selected review: X. Zhao, Y. Zhang, J. Wang, Chem. Commun. 2012, 48, 10162.
[22] G. Pisella, A. Gagnebin, J. Waser, Chem. Eur. J. 2020, 26, 10199.
[23] N. P. Ramirez, G. Pisella, J. Waser, J. Org. Chem. 2021, 86, 10928.
[24] J. Xiang, M. Shang, Y. Kawamata, H. Lundberg, S. H. Reisberg, M. Chen, P. Mykhailiuk, G. Beutner, M. R. Collins, A. Davies, M. Del Bel, G. M. Gallego, J. E. Spangler, J. Starr, S. Yang, D. G. Blackmond, P. S. Baran, Nature 2019, 573, 398.
[25] 2,2-difluorodiazoethane was not successful in this transformation.
[26] Lower yields were observed for $\mathbf{4 a f}, \mathbf{4 a g}$ and $\mathbf{4 a h}$ due to the formation of undetermined by-products and difficult purification.
[27] L. Wanka, K. Iqbal, P. R. Schreiner, Chem. Rev. 2013, 113, 3516-3604.
[28] Less nucleophilic alcohols, such as HFIP did not show any reactivity.
[29] When an alcohol or an aniline containing a nitrile group was used, only traces of product could be observed, probably due to catalyst deactivation.
[30] Deposition Numbers 2216834 (for $\mathbf{1 3 a c}$ ) and 2225295 (for 19) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
[31] H. Hu, M. C. Dietl, C. Han, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2021, 60, 10637.
[32] G. J. Kubas, B. Monzyk, A. L. Crumblis in Inorganic Synthesis (Ed.: R. J. Angelici), Wiley, Hoboken, 2007, pp. 68.
[33] S. Chuprun, C. M. Acosta, L. Mathivathanan, K. V. Bukhryakov, Organometallics 2020, 39, 3453.
[34] S. G. E. Amos, D. Cavalli, F. Le Vaillant, J. Waser, Angew. Chem. Int. Ed. 2021, 60, 23827.
[35] L. Hofstra, T. J. DeLano, S. E. Reisman, Org. Synth. 2020, 97, 172.
[36] M. Ramasamy, H.-C. Lin, S.-C. Kuo, M.-T. Hsieh, Synlett 2019, 30, 356
[37] We found different $\alpha_{D}$ value for the same enantiomer described in the literature. This is probably due to the low rotation power of this compound. For more information, see: a) P. Veeraraghavan Ramachandran, B. Gong, A. V. Teodorovic, H. C. Brown, Tetrahedron: Asymmetry 1994, 5, 1061; b) H. Matsutani, T. Kusumoto, T. A. Hiyama, Chem. Lett. 1999, 28, 529; c) Y.-M. Zhang, M.-L. Yuan, W.-P. Liu, J.-H. Xie, Q.-L. Zhou, Org. Lett. 2018, 20, 4486; d) K. Nicholson, J. Dunne, P. DaBell, A. Beaton Garcia, A. D. Bage, J. H. Docherty, T. A. Hunt, T. Langer, S. P. Thomas, ACS Catal. 2021, 11, 2034.
[38] S.-J. Ko, J. Y. Lim, N. Y. Jeon, K. Won, D.-C. Ha, B. T. Kim, H. Lee, Tetrahedron: Asymmetry 2009, 20, 1109.
[39] S. Kim, B. Kim, J. In, Synthesis 2009, 1963.

Manuscript received: April 25, 2023
Accepted manuscript online: June 1, 2023
Version of record online: July 3, 2023

## Table of Content

1. General Information SI3
2. Optimization Studies SI4
A) Optimization for Alcohols
2.1. Influence of the BOX Ligands SI5
2.2. Influence of Solvent, Temperature and Concentration SI5
2.3. Screening of Copper (I) Catalysts and Solvents SI6
2.4. Screening of the Stoichiometry and Copper Catalysts SI6 Stoichiometry using 3a and Copper (I) Catalyst.
2.5. Final screening SI7
2.6. Optimization for Tertiary Alcohols SI
2.7. Optimization for Primary Alcohols SI8
2.8. Control for the Absence of Racemization under the Reaction SI8 Conditions
2.9. Optimization for Chiral Alcohols SI8
2.10. Optimization for Cedrol (5d) SI9
B) Optimization for Anilines
2.11. Screening of Ligands SI9
2.12. Screening of Temperature SI10
2.13. Screening of Solvent, Concentration and Temperature SI10
2.14. Optimization for Carboxylic Acid (16) SI11
3. Synthesis of Starting Materials SI11
3.1. Synthesis of 2,2,2-Trifluorodiazoethane (1) SI11
3.2. EBX Used in the Reaction SI12
3.3. Synthesis of EBX derivatives SI12
3.3.1. Synthesis of Precursors S3 and S4 SI12
3.3.2. Synthesis of Hypervalent lodine Reagents (EBX') (2a-2g) SI14
3.4. Synthesis of alcohols $\mathbf{3 h}$ and $\mathbf{3 p} \mathrm{S} 18$
3.4.1. Preparation of 1-2-fluorophenyl)-2-methylpropan-2-ol (3h) SI18
3.4.2. Preparation of 1-methylcyclododecan-1-ol (3p) SI19
4. Synthesis of $\mathbf{L 2}$ and $\mathbf{L 3}$ SI20
5. Procedures and Compound Characterization for the Enantioselective SI23

3 -Component Reaction between 1, 2 and Alcohols (3, 5)
6. Procedures and Compound Characterization for the Enantioselective SI45
3-Component Reaction between $\mathbf{1 , 2}$ and Anilines (12)
7. Procedures and Compound Characterization for the Enantioselective SI56 3-Component Reaction between 1, 2 and Phenols (14) and Carboxylic Acids (16)
8. Scale up Procedures for Compounds 4an and 11b SI58
8.1. Procedure for the scale up of compound 4an SI58
8.2. Procedure for the scale up for compound 11b SI59
9. Product functionalization SI60
9.1. $\begin{aligned} & \text { Procedure for the deprotection of 4an: Synthesis of }(S)-1,1,1- \\ & \text { trifluoro-4-phenylbut-3-yn-2-ol (18) }\end{aligned}$ SI61
9.2. Derivation of compound 18: Synthesis of (S)-1,1,1-trifluoro-4-pheny SI62 3-yn-2-yl 4-nitrobenzoate (19)
9.3. Procedure for the deprotection of TIPS group: Synthesis of benzyl N-((benzyloxy)carbonyl)-O-((S)-1,1,1-trifluorobut-3-yn-2-yl)-L- serinate (20) ..... SI63
10. Preliminary mechanistic studies ..... SI64
11. Determination of the absolute configuration ..... SI70
a. X-Ray for the Determination of the Absolute Configuration for ..... SI70Anilines
b. X-Ray for the Determination of the Absolute Configuration for ..... SI72 Alcohols
12. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra of Trifluoromethylated Propargylic ..... SI74 Compounds 4, 6, 7, 8, 9, 10, 11, 13, 15, 17, 18, 19, 20
13. Chiral HPLC traces. ..... S163
14. ${ }^{19} \mathrm{~F}$ NMR crude spectra for chiral alcohols to determine the ..... S198diastereomeric ratio (dr)

## 1. General Information

Reagents (precursors of HIR and diazo compounds as well as anilines) and solvents were purchased from different trading houses (Sigma-Aldrich, Fluorochem, TCI) and were used without further purification, unless otherwise stated. TLC was performed on silica gel 60 F254, using aluminum plates, and visualized by exposure with UV. Flash chromatography (FC) was carried out on hand-packed columns of silica gel 60 (230-400 mesh). Infrared (IR) analysis was performed with a JASCO FT/IR b4100 spectrophotometer equipped with an ATR PRO410-S and a ZnSe Prisma and are reported as cm-1 ( $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{br}=\mathrm{broad}$ ). High-resolution mass spectra were performed by the mass spectrometry service of ISIC at EPFL on a MICROMASS (ESI) Ultima API (Waters Instrument). The NMR spectra were recorded on a Bruker DPX-400 spectrometer at 400 MHz for ${ }^{1} \mathrm{H}, 101 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$, and 376 MHz for ${ }^{19} \mathrm{~F}$. The chemical shift ( $\delta$ ) for 1 H and 13 C is given in ppm and referenced to residual signals of the solvents (chloroform-d $7.26 \mathrm{ppm}{ }^{1} \mathrm{H} \mathrm{NMR}$ and $77.16 \mathrm{ppm}{ }^{13} \mathrm{C} \mathrm{NMR}$ ). ${ }^{13} \mathrm{C}$ NMR spectra were recorded with 1 H decoupling and ${ }^{19} \mathrm{~F} \mathrm{NMR}$ as ${ }^{19} \mathrm{~F}$ nondecoupling. Coupling constants are given in hertz. The data is reported using the following abbreviations: s, singlet; d, doublet; q, quartet; m, multiplet; bs, broad signal; app, apparent. $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{SbF}_{6}$ was prepared according to a reported procedure. ${ }^{[1]}$ Racemic samples were prepared according to our previous protocol. ${ }^{[2]}$

[^2]
## 2. Optimization Studies



Stock solution of the catalyst: In an oven-dried microwave vial, catalyst (x mol\%) and ligand ( $\mathbf{y} \mathbf{~ m o l} \%$ ) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum- $\mathrm{N}_{2}$. Finally, dry solvent [concentration] was added into the vial and the resulting colourlesss solution was stirred (430 rpm) at room temperature during 1 h .

Procedure: In an oven-dried microwave vial, compound 2a ( $70 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv.) and nucleophile (if solid) (equiv) were added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum- $\mathrm{N}_{2}$, followed by the addition of 1 ( $0.40 \mathrm{mmol}, 0.33-0.40 \mathrm{M}$ in DCM, 2.00 equiv.) and nucleophile (if liquid) (equiv). The resulting reaction mixture was stirred at RT under $\mathrm{N}_{2}$ atmosphere and the catalytic solution [concentration] was added dropwise. After $\mathbf{t}$ of reaction, the reaction was monitored by TLC (95:5, Pentane/EtOAc) observing full conversion of 2 (unless otherwise noticed). The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc ( 10 mL ). The solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography according to the conditions described for each compound.

## A) Optimization for Alcohols

### 2.1. Influence of the BOX Ligands




L1
(65\%, 93:6 er)


L2
$(61 \%, 92: 8 \text { er) })^{b}$

Reactions were performed at 0.15 mmol scale. In brackets, ${ }^{19} \mathrm{~F}$ NMR yield of the crude reaction mixture using $\mathrm{PhCF}_{3}$ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC. b) The opposite enantiomer was obtained.

### 2.2. Influence of Solvent, Temperature and Concentration



Reactions were performed at 0.15 mmol scale. In brackets, ${ }^{19} \mathrm{~F}$ NMR yield of the crude reaction mixture using PhCF3 as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC. b) The opposite enantiomer was obtained.

### 2.3. Screening of Copper (I) Catalysts and Solvents



Reactions were performed at 0.15 mmol scale. In brackets, ${ }^{19} \mathrm{~F}$ NMR yield of the crude reaction mixture using $\mathrm{PhCF}_{3}$ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.
2.4. Screening of the Stoichiometry and Copper Catalysts Stoichiometry using 3a and Copper (I) Catalyst


Reactions were performed at 0.15 mmol scale. In brackets, ${ }^{19} \mathrm{~F}$ NMR yield of the crude reaction mixture using $\mathrm{PhCF}_{3}$ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

### 2.5. Final screening



| Entry | Solvent and <br> modifications | Yield | er |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | DCE | $\mathbf{8 3}$ | $\mathbf{9 6 : 4}$ |
| $\mathbf{2}$ | PhMe | 76 | $94: 6$ |
| $\mathbf{3}$ | MeCN | n.d. | n.d. |
| $\mathbf{4}$ | $2: 1 \mathrm{Cu}(\mathrm{I}) / \mathrm{L1}$ | 75 | $87: 13$ |

Reactions were performed at 0.15 mmol scale. In brackets, ${ }^{19} \mathrm{~F}$ NMR yield of the crude reaction mixture using $\mathrm{PhCF}_{3}$ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

### 2.6. Optimization for Tertiary Alcohols



| Entry | Modifications | Yield | er |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | none | $\mathbf{7 0}$ | $\mathbf{9 4 : 6}$ |
| $\mathbf{2}$ | $\mathrm{Cu}\left(\mathrm{MeCN}_{4} \mathrm{SbF}_{6}\right.$ | 72 | $95: 5$ |
| $\mathbf{3}$ | $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{SbF}_{6}, 0^{\circ} \mathrm{C}$ and 4 equiv. 3d | 61 | $95.5: 4.5$ |
| $\mathbf{4}$ | $\mathrm{CuCl}^{\prime} / \mathrm{AgNTf}_{2}$ | 49 | $95: 5$ |
| $\mathbf{5}$ | CuCl and $\mathrm{AgNTf}_{2}$ and $\mathrm{L2}$ in $\mathrm{PhCl}(0.025$ | 56 | $96: 4$ |
|  | $\mathrm{M})$ |  |  |
| $\mathbf{6}$ | $\mathrm{Cu}\left(\mathrm{MeCN}_{4} \mathrm{SbF}_{6}\right.$ and $\mathrm{L2}$ | 84 | $96: 4^{\mathrm{a}}$ |
| $\mathbf{7}$ | $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{SbF}_{6}$ and $\mathrm{L2}$ in DCM | 66 | $91: 9$ |

Reactions were performed at 0.15 mmol scale. In brackets, ${ }^{19} \mathrm{~F}$ NMR yield of the crude reaction mixture using PhCF 3 as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC. ${ }^{\text {a }}$ Although these conditions gave slightly better results for tertiary alcohols, they were not well suited for secondary alcohols. To keep a single procedure, we therefore preferred to keep the conditions of entry 1 also for tertiary alcohols.

### 2.7. Optimization for Primary Alcohols



| Entry | $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{SbF}_{6}$ <br> $(\mathrm{X} \mathrm{mol} \mathrm{\%})$ | L1 <br> $(\mathrm{X}$ mol\%) | Yield (\%) | er |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{2}$ | 90 | $93: 7$ |
| $\mathbf{2}$ | 2 | 2.5 | 91 | $85: 15$ |
| $\mathbf{3}$ | 2 | 4 | 84 | $84: 16$ |
| $\mathbf{4}$ | $\mathbf{4}$ | 2 | 74 | $93: 7$ |

Reactions were performed at 0.15 mmol scale. In brackets, ${ }^{19} \mathrm{~F}$ NMR yield of the crude reaction mixture using $\mathrm{PhCF}_{3}$ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

### 2.8. Control for the Absence of Racemization under the Reaction Conditions



Enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

### 2.9. Optimization for Chiral Alcohols



Reactions were performed at 0.15 mmol scale. In brackets, ${ }^{19} \mathrm{~F}$ NMR yield of the crude reaction mixture using $\mathrm{PhCF}_{3}$ as Internal Standard (IS) (1 equiv.) and dr determined by ${ }^{19} \mathrm{~F}$ NMR of the crude reaction mixture.

### 2.10. Optimization for Cedrol (5d)



Reactions were performed at 0.15 mmol scale. In brackets, ${ }^{19} \mathrm{~F}$ NMR yield of the crude reaction mixture using $\mathrm{PhCF}_{3}$ as Internal Standard (IS) (1 equiv.) and dr determined by ${ }^{19} \mathrm{~F}$ NMR of the crude reaction mixture. b) $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}$ was used instead of $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{SbF}_{6}$

## B) Optimization for Anilines

### 2.11. Screening of Ligands




L1 (66\%, 98:2 er)


L2 (98\%, 8:92 er)


L3 (62\%, 13:87 er)


L4 (57\%, 19:81 er)


L5 (86\%, 25:75 er)

Reactions were performed at 0.15 mmol scale. In brackets, ${ }^{19} \mathrm{~F}$ NMR yield of the crude reaction mixture using $\mathrm{PhCF}_{3}$ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

### 2.12. Screening of Temperature



Reactions were performed at 0.15 mmol scale. In brackets, ${ }^{19} \mathrm{~F}$ NMR yield of the crude reaction mixture using $\mathrm{PhCF}_{3}$ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

### 2.13. Screening of Solvent, Concentration and Temperature



Reactions were performed at 0.15 mmol scale. In brackets, ${ }^{19} \mathrm{~F}$ NMR yield of the crude reaction mixture using $\mathrm{PhCF}_{3}$ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC. b) $\mathbf{L 1}$ was used instead of $\mathbf{L 2}$.

### 2.14. Optimization for Carboxylic Acid (17)



| Entry | Modifications | Yield | er |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | None, $\mathbf{1} \mathbf{h}$ | $\mathbf{2 0}$ | $\mathbf{9 0 : 1 0}$ |
| $\mathbf{2}$ | None, $\mathrm{o} / \mathrm{n}$ | 20 | $90: 10$ |
| $\mathbf{3}$ | $\mathrm{Cu}(\mathrm{I})(4 \mathrm{~mol} \%) / \mathrm{L} 1(5 \mathrm{~mol} \%)$ | 20 | $90: 10$ |
| $\mathbf{4}$ | $50^{\circ} \mathrm{C}$ | 15 | $90: 10$ |
| $\mathbf{5}$ | $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mol} \%)$ | 20 | $85: 15$ |

Reactions were performed at 0.20 mmol scale. In brackets, ${ }^{19} \mathrm{~F}$ NMR yield of the crude reaction mixture using $\mathrm{PhCF}_{3}$ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

## 3. Synthesis of Starting Materials

For a better reproducibility, the following syntheses are taken directly from the cited articles reported by our group, unless otherwise is noticed.

### 3.1. Synthesis of $\mathbf{2 , 2 , 2}$-Trifluorodiazoethane (1)



Following a reported procedure, ${ }^{2}$ under argon, 2,2,2-trifluoroethanamine hydrochloride (S1) ( $0.678 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) and sodium nitrite ( $0.379 \mathrm{~g}, 5.50 \mathrm{mmol}, 1.10$ equiv) were dissolved in degassed DCM ( 10 mL ). Degassed water ( $1.00 \mathrm{~mL}, 55.5 \mathrm{mmol}, 11.1$ equiv) was added slowly at $0^{\circ} \mathrm{C}$. The solution was stirred for 2 h at $0^{\circ} \mathrm{C}$ and 1 h at room temperature. Layers were separated and the organic layer was dried over $\mathrm{MgSO}_{4}$, transferred into a vial, sealed, and stored at $-18^{\circ} \mathrm{C}$. The concentration of the obtained solution was determined to be $0.0 .33-0.40 \mathrm{M}$ by ${ }^{19} \mathrm{~F}$ NMR analysis (according to an

[^3]internal reference, $\mathrm{PhCF}_{3}$ ). ${ }^{19}$ F NMR ( $377 \mathrm{MHz}, \mathrm{DCM}-\boldsymbol{d}_{2}$ ) $\boldsymbol{\delta} \mathbf{- 5 5 . 6}$. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2],}[3]$

### 3.2. EBX Used in the Reaction





2e

$2 f$

$2 g$

### 3.3. Synthesis of EBX derivatives



### 3.3.1. Synthesis of Precursors S3 and S4

## 1,1,1,3,3,3-Hexafluoro-2-(2-iodophenyl)-propan-2-ol (S3).

According to a reported procedure, ${ }^{[2],[3]}$ TMEDA ( $1.27 \mathrm{~mL}, 8.40 \mathrm{mmol}, 0.20$ equiv) was added to a solution of n -BuLi ( $37.0 \mathrm{~mL}, 92.0 \mathrm{mmol}, 2.20$ equiv., 2.5 M in hexanes). After 15 min , the cloudy solution was cooled to $0{ }^{\circ} \mathrm{C}$, and $1,1,1,3,3,3$-hexafluoro-2-phenylpropan-2-ol (S2) ( $7.07 \mathrm{~mL}, 42.0 \mathrm{mmol}, 1.00$ equiv) in THF ( 6.0 mL ) was added dropwise. The reaction was stirred for 30 min at $0^{\circ} \mathrm{C}$ and then 18 h at room temperature. Then, THF ( 30.0 mL ) was added, followed by the portionwise addition of $\mathrm{I}_{2}(11.3 \mathrm{~g}, 44.5$ mmol, 1.05 equiv.) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and 4 h at room temperature. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with diethyl ether ( $3 \times 30 \mathrm{~mL}$ ). The combined organic phases were washed with water, brine, dried over $\mathrm{MgSO}_{4}$, and filtered, and the solvent was removed under reduced pressure. The crude product was purified by column chromatography using EtOAc/pentane 3:97 as an eluent to afford 1,1,1,3,3,3- hexafluoro-2-(2-iodophenyl)propan-2-ol (S3) as a colorless oil (13.9 g, $37.5 \mathrm{mmol}, 89 \%$ ): $\mathbf{R f}_{\mathrm{f}} 0.66$ (95:5,

Pentane/EtOAc, visualized by exposure to UV light); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.13$ (dd, $J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), $7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), $7.43(\mathrm{dt}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 7.11(\mathrm{dt}, \mathrm{J}=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.23(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 144.7, 131.4, 130.0, 129.7, 128.0, 122.6 ( $q, J=291.4 \mathrm{~Hz}$ ), $90.6,78.9(q, J=32.1 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( $\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) $\delta-73.4$. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2],[3]}$

3,3-Bis(trifluoromethyl)-1 $\lambda^{3}$-benzo[d][1,2]iodaoxol-1(3H)-yl acetate (S4).


A 500 mL flask was charged with glacial acetic acid ( 188 mL ), 1,1,1,3,3,3-hexafluoro-2-(2-iodophenyl)propan-2-ol (S4) (13.9 g, $37.5 \mathrm{mmol}, 1.00$ equiv.), and cobalt(II) chloride hexahydrate ( $89.0 \mathrm{mg}, 0.375 \mathrm{mmol}, 0.01$ equiv.). The reaction vessel was purged with $\mathrm{O}_{2}$ for 5 min before acetaldehyde ( $21.4 \mathrm{~mL}, 379 \mathrm{mmol}, 10.0$ equiv.) was added in one portion. The reaction mixture was stirred under 1 atm. of $\mathrm{O}_{2}$, delivered by an inflated balloon, at room temperature for 12 h . Acetaldehyde ( $21.4 \mathrm{~mL}, 379 \mathrm{mmol}, 10.00$ equiv.) was added, and the reaction continue for 6 h . The solvent was removed under reduced pressure, and the residue was dissolved in DCM. The organic layer was washed with distilled water ( 50 mL ) and extracted with DCM $(3 \times 50 \mathrm{~mL})$. The organic layer was dried over $\mathrm{MgSO}_{4}$ and filtered, and the solvent was removed under reduced pressure. The obtained residue was triturated in pentane for 0.5 h , filtered, and washed with pentane (operation repeated 2 times) to afford 3,3-bis- (trifluoromethyl)-1 $\lambda$ 3 -benzo[d][1,2]iodaoxol-1(3H)-yl acetate (S4) as a white solid ( $9.91 \mathrm{~g}, 23.2 \mathrm{mmol}, 62 \%$ ): ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $\mathbf{d}_{6}$ ) 7.93 (ddd, J = 8.4, 7.1, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), $7.85-7.69(\mathrm{~m}, 3 \mathrm{H}$, ArH ), $2.19\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathrm{MHz}$, DMSO-d ${ }_{6}$ ) $\delta$ 174.4, 134.2, 131.4, 131.0, 130.8, 129.5-129.0 (m), 123.1 (q, J = 289.5 Hz), 116.1, 84.5-83.7 (m), 20.0; ${ }^{19}$ F NMR (376 $\mathbf{M H z}$, DMSO- $\mathbf{d}_{6}$ ) $\delta \mathbf{- 7 5 . 1}$. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2],[3]}$

### 3.3.2. Synthesis of Hypervalent lodine Reagents $\left(E B X^{\prime}\right)(2 a-2 g)^{[2],[3]}$



To a solution of 3,3-bis(trifluoromethyl)-1 ${ }^{3}$-benzo[d][1,2]iodaoxol1(3H)-yl acetate (S4) (1.00 equiv.) in dry DCM ( $\mathrm{c}=0.2 \mathrm{M}$ ) was added trimethylsilyl trifluoromethanesulfonate (1.10 equiv.) dropwise at room temperature, and the reaction mixture was stirred for 1 h. After this time, the corresponding trimethylethynylsilane ( $\mathbf{S 5 a} \mathbf{-} \mathbf{S 5 g}$ ) ( 1.10 equiv.) was added, and the mixture was stirred for 6 h at room temperature. The reaction mixture was then quenched with saturated aqueous $\mathrm{NaHCO}_{3}$ solution and extracted with dichloromethane ( 3 times). The combined organic extracts were dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography using EtOAc/pentane as an eluent to give the corresponding EBX' reagent ( $\mathbf{2 a} \mathbf{- 2 g}$ ).

## 1-(Phenylethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 $\lambda^{3}$-benzo[d] [1,2]iodaoxole

(2a): ${ }^{[2],[3]}$


2a

Following the general procedure, starting from trimethyl(phenylethynyl)silane (S5a) (192 mg, 1.10 mmol ) and 3,3-bis(trifluoromethyl)- $1 \lambda^{3}$-benzo[d][1,2]iodaoxol-1(3H)-yl acetate (S4) (428 mg, 1.00 mmol ), afforded 1-(phenylethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 $\lambda^{3}$-benzo[d][1,2]iodaoxole (2b) as a white solid ( $395 \mathrm{mg}, 0.840 \mathrm{mmol}, 84 \%$ ) after purification by flash column chromatography ( $100 \%$ Pentane to 97:3 Pentane/EtOAc): $\mathbf{R}_{\mathbf{f}}=0.49$ (95:5 Pentane/EtOAc, visualized by exposure to UV light); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.34-8.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.86(\mathrm{ddt}, \mathrm{J}=7.4,3.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $7.75-7.66$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}$ ), $7.59-7.53$ (m, 2H, ArH), $7.48-7.37$ (m, 3H, ArH); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 133.1,132.8,131.4,130.3,130.1,130.0,128.8,128.5,123.7$ (q, J =
289.8 Hz ), 121.4, 111.6, 105.4, 82.5 - $81.1(\mathrm{~m}), 54.5 ;{ }^{19}$ F NMR (376 MHz, CDCl ${ }_{3}$ ) $\delta$-76.2. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2],[3]}$

## 1-((4-nitrophenyl)ethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro- $\lambda^{3}$ -

benzo[d][1,2]iodaoxole (2b): ${ }^{[2]}$


2b

Following the general procedure, starting from ((4-nitrophenyl)ethynyl)trimethylsilane $(\mathbf{S 5 b})^{[4]}$ (241. mg, 1.10 mmol$)$ and and 3,3-bis(trifluoromethyl)-1 $\lambda^{3}$ -benzo[d][1,2]iodaoxol-1(3H)-yl acetate (S4) (428 mg, 1.00 mmol ), afforded 1-((4-nitrophenyl)ethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 $\lambda^{3}$-benzo[d][1,2]iodaoxole ( $\mathbf{2 b}$ ) as a yellow amorphous solid ( $232 \mathrm{mg}, 0.450 \mathrm{mmol}, 45 \%$ ) after purification by flash column chromatography (100\% Pentane to 90:10 Pentane/EtOAc): $\mathbf{R}_{f}=0.19$ (95:5 Pentane/EtOAc, visualized by exposure to UV light); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathrm{CDCl}_{3}\right) \delta 8.30-$ $8.25(\mathrm{~m}, 2 \mathrm{H} \mathrm{ArH}), 8.24-8.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.90-7.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.78-7.68(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta$ 148.2, 133.5, 133.3, 131.7, 130.2 (br s), 130.1, 128.5, 128.1, 127.9, 124.0, $123.6(q, J=289.8 \mathrm{~Hz}) 111.4,102.3,81.8(\mathrm{~m}), 61.3 ;{ }^{19}$ F NMR (376 $\left.\mathbf{M H z}, \mathrm{CDCl}_{3}\right) \delta-76.1$. The values of the NMR spectra are in accordance with reported literature data•[2]

1-((2-Bromophenyl)ethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 $\lambda^{3}$ benzo[d][1,2]iodaoxole (2c) ${ }^{[3]}$


2c

[^4]Following general procedure, starting from ((2-bromophenyl)ethynyl)trimethylsilane (S5c) ( $234 \mu \mathrm{~L}, 1.10 \mathrm{mmol}$ ) and 3,3-bis(trifluoromethyl)-1 $\lambda^{3}$-benzo[d][1,2]iodaoxol$1(3 \mathrm{H})$-yl acetate (S4) ( $428 \mathrm{mg}, 1.00 \mathrm{mmol}$ ), afforded 1-((2-bromophenyl)ethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 13 - benzo[d][1,2]iodaoxole (2c) as a white solid (535 $\mathrm{mg}, 0.970 \mathrm{mmol}, 97 \%$ ) after purification by flash column chromatography ( $100 \%$ Pentane to 95:5 Pentane/EtOAc): $\mathbf{R}_{\mathbf{f}}=0.34$ ( $95: 5$ Pentane/EtOAc, visualized by exposure to UV light); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.52-8.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.90-7.81(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.76-7.68 (m, 2H, ArH), 7.66 (dd, $J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), 7.57 (dd, J = 7.6, 1.8 Hz , $1 \mathrm{H}, \mathrm{ArH}$ ), 7.35 (td, J = 7.6, 1.3 Hz, 1H, ArH), 7.32 - 7.24 (m, 1H, ArH); ${ }^{13}$ C NMR ( 101 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 134.5,133.2,132.9,131.4,131.2,130.2-129.9(\mathrm{~m}), 130.0,128.9,127.5,126.2$, 123.9, 123.7 ( $q, J=290.6 \mathrm{~Hz}$ ), 111.6, 103.0, 81.8 ( $\mathrm{p}, \mathrm{J}=29.8 \mathrm{~Hz}$ ), 59.6; ${ }^{19}$ F NMR ( 376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$-76.1. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[3]}$
((3,3-Bis(trifluoromethyl)-1 $\lambda^{3}$-benzo[d][1,2]iodaoxol-1(3H) yl)ethynyl)triisopropylsilane (2d): ${ }^{[2],[3]}$


2d

Following the general procedure, starting from triisopropyl((trimethylsilyl)ethynyl)silane (S5d) (2.80 g, 11.0 mmol$)$ and $3,3-$ bis(trifluoromethyl)-1 $\lambda^{3}$-benzo[d][1,2]iodaoxol-1(3H)-yl acetate (S4) $(4.28 \mathrm{~g}, 10.0$ $\mathrm{mmol})$, afforded ((3,3-bis(trifluoromethyl)-1 $1 \lambda^{3}$-benzo[d][1,2]iodaoxol-1(3H)yl)ethynyl)triisopropylsilane (2d) as a white solid ( $5.33 \mathrm{~g}, 9.68 \mathrm{mmol}, 97 \%$ ) after purification by flash column chromatography (100\% Pentane to 97:3 Pentane/EtOAc): $\mathbf{R}_{\mathbf{f}}=0.82$ (95:5 Pentane/EtOAc, visualized by exposure to UV light); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}$, $\mathrm{CDCl}_{3}$ ) $\delta 8.36$ (dd, J = 7.9, 1.5 Hz, 1H, ArH), 7.88-7.81 (m, 1H, ArH), 7.74-7.62 (m, 2H, ArH), 1.23-1.07 (m, 21H, TIPS); ${ }^{13}$ C NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 132.9, 131.3, 130.1, 130.2 - 130.0 (m), 128.3, 123.7 ( $q, J=290.4 \mathrm{~Hz}$ ), 112.3, 111.0, 81.6 (p, J = 29.5 Hz ), 69.9, 18.7, 11.4; ${ }^{19} \mathbf{F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-76.2$. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2],[3]}$
benzo[d][1,2]iodaoxole (2e): ${ }^{[3]}$


Following general procedure, starting from (cyclopropylethynyl)trimethylsilane (S5e) ( $995 \mu \mathrm{~L}, 5.50 \mathrm{mmol}$ ) and 3,3-bis(trifluoromethyl)- $1 \lambda^{3}$-benzo[d][1,2]iodaoxol-1(3H)-yl acetate (S4) (2.14 g, 5.00 mmol), afforded 1-(cyclopropylethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 $\lambda^{3}$ - benzo[d][1,2]iodaoxole (2e) as an off-white solid ( $873 \mathrm{mg}, 2.01 \mathrm{mmol}, 40 \%$ ) after purification by flash column chromatography ( $100 \%$ Pentane to 97:3 Pentane/EtOAc): $\boldsymbol{R}_{\boldsymbol{f}}=0.26$ (95:5 Pentane/EtOAc, visualized by exposure to UV light); ${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) $\delta 8.32$ - $8.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.88-7.74(\mathrm{~m}, 1 \mathrm{H}$, ArH), $7.74-7.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 1.54(\mathrm{tt}, \mathrm{J}=8.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHC}=\mathrm{C}), 1.00-0.91(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}$-cyclopropyl), $0.91-0.85$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-cyclopropyl); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $132.9,131.2,130.2,130.0,129.8,128.2,123.8$ ( $q, J=290.8 \mathrm{~Hz}$ ), 81.7 ( $p, J=29.5 \mathrm{~Hz}$ ), 39.4, 9.5, 1.0; ${ }^{19} \mathbf{F}$ NMR ( $\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta-76.3$. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[3]}$

1-(3,3-Dimethylbut-1-yn-1-yl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 $\lambda^{3}$ benzo[d][1,2]iodaoxole (2f): ${ }^{[2]}$


2f

Following the general procedure, starting from (3,3-dimethylbut-1-yn-1yl)trimethylsilane (S5f) (229 $\mu \mathrm{L}, 1.10 \mathrm{mmol}$ ) and 3,3-bis(trifluoromethyl)- $1 \lambda^{3}$ -benzo[d][1,2]iodaoxol-1(3H)-yl acetate (S4) ( $428 \mathrm{mg}, 1.00 \mathrm{mmol}$ ), afforded 1-(3,3-dimethylbut-1-yn-1-yl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 $\lambda^{3}$-benzo[d][1,2]iodaoxole ( $\mathbf{2 f}$ ) as a white solid ( $350 \mathrm{mg}, 0.780 \mathrm{mmol}, 78 \%$ ) after purification by flash column chromatography (100\% Pentane to 97:3 Pentane/EtOAc): $\boldsymbol{R}_{\boldsymbol{f}}=0.34$ (95:5

Pentane/EtOAc, visualized by exposure to UV light); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.24$ $8.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.89-7.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.74-7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 1.34(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 132.7,131.1,130.3,130.0,128.0,123.9$ ( $\mathrm{q}, \mathrm{J}=290.3 \mathrm{~Hz}$ ), 116.1, 111.2, $81.9(p, J=29.6 \mathrm{~Hz}), 42.0,30.8,29.5 ;{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-76.2$. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2]}$

1-(Thiophen-2-ylethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 $\lambda^{3}$ benzo[d][1,2]iodaoxole (2g): ${ }^{[2]}$

$2 g$

Following general procedure, starting from trimethyl(thiophen-2-ylethynyl)silane (S5g) (182 $\mu \mathrm{L}, 1.10 \mathrm{mmol})$ and 3,3-bis(trifluoromethyl)-1 $\lambda^{3}$-benzo[d][1,2]iodaoxol-1(3H)-yl acetate (S4) (428 mg, 1.00 mmol$)$, afforded 1-(thiophen-2-ylethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 $\lambda^{3}$-benzo[d][1,2]iodaoxole ( 2 g ) as an off-white solid ( $403 \mathrm{mg}, 0.850 \mathrm{mmol}, 85 \%$ ) after purification by flash column chromatography (100\% Pentane to 95:5 Pentane/EtOAc): $\boldsymbol{R}_{f}=0.34$ (95:5 Pentane/EtOAc, visualized by exposure to UV light); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 8.30-8.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.89-7.80(\mathrm{~m}, 1 \mathrm{H}$, ArH), $7.76-7.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.07(\mathrm{dd}, \mathrm{J}=5.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 135.2,133.2,131.4,130.2,123.0,129.9,128.5,127.5$, 123.7 ( $q, J=291.2 \mathrm{~Hz}$ ), 121.3, 111.8, $98.4,81.8(p, J=29.7 \mathrm{~Hz}), 59.7 ;{ }^{19}$ F NMR ( 376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-76.2$. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2]}$

### 3.4. Synthesis of alcohols $3 f$ and 3p

3.4.1. Preparation of 1-2-fluorophenyl)-2-methylpropan-2-ol (3f)


Following a reported procedure, ${ }^{[4]}$ in a two-necked round bottom flask, a solution of S6 was prepared ( $1.0 \mathrm{~mL}, 6.8 \mathrm{mmol}, 2.3$ equiv.) in dry THF ( 60 mL ). The reaction mixture was cooled down to $0^{\circ} \mathrm{C}$ and a solution of $\mathrm{MeMgBr}(5.2 \mathrm{~mL}, 16 \mathrm{mmol}, 2.3$ equiv., 3.0 M in $\mathrm{Et}_{2} \mathrm{O}$ ) in dry THF ( 10 mL ) was added dropwise. The resulting reaction mixture was allowed to reach room temperature and stirred overnight at room temperature under $\mathrm{N}_{2}$ atmosphere. After this time, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL}$, aprox.) and stirred for 15 min . Then, aqueous layer was extracted with EtOAc ( $3 \times 40 \mathrm{~mL}$ ). Organics were recombined, washed with water ( $2 \times 30 \mathrm{~mL}$ ), brine ( $1 \times 10 \mathrm{~mL}$ ), dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and evaporated under reduced pressure. Compound $\mathbf{3 f}$ was obtained after flash column chromatography (Pentane/EtOAc, 90:10 to 80:20) as a colorless oil ( $815 \mathrm{mg}, 4.84 \mathrm{mmol}, 71 \%$ ): $\mathbf{R f}=0.28$ (Pentane/EtOAc, 9:1), visualized by exposure to UV light; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.18-7.11 (m, 2H, ArH), 7.04-6.96 (m, 2H, ArH), 2.76 (d, J = $1.8 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-$ ), 1.18 (d, $\left.J=1.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{x}-\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ( $\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) $\delta-116.1(\mathrm{~m})$. The values of the NMR spectra are in accordance with reported literature data: ${ }^{[4]}$

### 3.4.2. Preparation of 1-2-fluorophenyl)-2-methylpropan-2-ol (3p)



Following a reported procedure: ${ }^{[4]}$ In an oven-dried two necked flask, a solution of cyclododecanone $\mathbf{S 7}\left(1.0 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.00\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was prepared. The solution was cooled down to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{MeMgBr}(2.0 \mathrm{~mL}, 6.0 \mathrm{mmol}$, 1.1 equiv. 3.0 M in $\mathrm{Et}_{2} \mathrm{O}$ ) diluted with THF ( 4 mL ) was added dropwise. The reaction mixture was allowed to reach room temperature and stirred overnight under $\mathrm{N}_{2}$ atmosphere. The reaction mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and the resulting suspension was stirred for 15 min . After this time, $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and EtOAc ( 30 mL ) were added, and the layers were separated. Aqueous layer was separated and extracted with EtOAc (3 20

[^5]mL ). Organics were recombined, washed with brine ( $1 \times 5 \mathrm{~mL}$ ), dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography ( $100 \%$ to $95: 5$, Pentane/EtOAc), affording compound 3 p as a white solid ( $567 \mathrm{mg}, 2.90 \mathrm{mmol}, 52 \%$ ): $\boldsymbol{R}_{\boldsymbol{f}}=0.26$ (95:5 Pentane/EtOAc, stained with $\mathrm{KMnO}_{4}$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.59$-1.49 ( $\mathrm{m}, 2 \mathrm{H}$ ), 1.45-1.24 (m, 21 $\mathrm{H}), 1.17$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 73.8, 36.3, 29.2, 26.6, 26.2, 22.7, 22.2, 20.1. The values of the NMR spectra are in accordance with reported literature data: ${ }^{[4]}$
4. Synthesis of L 2 and $\mathrm{L} 3^{5}$

### 4.1. Preparation of L3



In a round bottom flask, diethyl malonimidate dihydrochloride ( $1.2 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.00$ equiv.) and ( $1 R, 2 S$ )-(+)-cis-1-amino-2-indanol ( $1.6 \mathrm{~g}, 10 \mathrm{mmol}, 2.11$ equiv.) were added. The system was backfilled with $\mathrm{N}_{2}$-vacumm cycles (3 times). Then, dry DCM ( 15 mL ) was added, and the purple suspension was stirred at reflux under $\mathrm{N}_{2}$ atmosphere during 24 h . The reaction was allowed to reach room temperature and $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{~mL})$ was added. Layers were separated and aqueous layer was extracted with DCM ( $3 \times 70 \mathrm{~mL}$ ). Organic layers were recombined, washed with brine ( $1 \times 10 \mathrm{~mL}$ ), dried over anydrous $\mathrm{MgSO}_{4}$, filtered and concentrated under reduced pressure, affording a pale-brown solid, which was recrystallized with $\mathrm{EtOH}(20 \mathrm{~mL})$. Compound L 3 was obtained as a white solid ( 1.25 $\mathrm{g}, 3.71 \mathrm{mmol} 74 \%$ ): ${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.51-7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.30-7.23(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{ArH}$ ), 5.58 (d, J = $\left.8.8 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ar}\right), 5.39-5.32$ (m, 2H, $-\mathrm{CH}_{2} \mathrm{Ar}$ ), 3.40 (dd, J = 17.6, $6.7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CHO}-), 3.28$ (s, 2H, -CH2C=N-), 3.23-3.12 (m, 2H, -CHO-): ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.1,141.7,139.8,128.6,127.6,125.6,125.4,83.7,76.8,39.8,28.8$. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[5]}$

[^6]
### 4.2. Preparation of L2



In an oven dried two-necked round bottomed flask, a solution of L3 ( $502 \mathrm{mg}, 1.52 \mathrm{mmol}$, 1.00 equiv.) in dry THF ( 11.8 mL ) was prepared and the mixture was cooled down to 0 으 and stirred during 15 min . Then, NaH ( $60 \%$ dispersion in mineral oil) ( $182 \mathrm{mg}, 4.56$ $\mathrm{mmol}, 3.00$ equiv.) is added portionwise during 5 min . The mixture was vigorously stirred during 5 min and then, the reaction was allowed to reach room temperature and heated to $50{ }^{\circ} \mathrm{C}$ during 2 h . After this time, the reaction was allowed to reach room temperature and cooled again to $0{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and diluted with $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mL})$. Then, DCM ( 20 mL ) was added and layers were separated. Aqueous layer was extracted with DCM ( $3 \times 20 \mathrm{~mL}$ ) and organics were recombined, washed with brine ( $1 \times 10 \mathrm{~mL}$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure affording a pale-yellow solid, which was recrystallyzed Hexane/EtOAc (2:1, 15 mL ), providing L2 as a white solid ( $385 \mathrm{mg}, 1.08 \mathrm{mmol}, 71 \%$ ): ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.24-7.21(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 5.52$ (dd, J = 7.9, $0.8 \mathrm{~Hz}, 2 \mathrm{H},-$ $\mathrm{CH}_{2} \mathrm{Ar}$ ), 5.33 (ddd, J = 8.0, 7.0, 1.9 Hz, 2H, $-\mathrm{CH}_{2} \mathrm{Ar}$ ), 3.38 (dd, J = 17.7, $6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CHAr}$ ), 3.19 (dd, J = 17.9, 1.9 Hz, 2H, -CHAr), 1.38-1.30 (m, 2H, -cyclopropyl), 1.30-1.23 (m, 2 H , cyclopropyl): ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 166.0, 141.9, 139.9, 128.5, 127.49, 125.8, $125.3,83.5,76.5,39.8,18.5,15.9$. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[5]}$

## 5. Procedures and Compound Characterization for the Enantioselective 3-

 Component Reaction between 1, 2 and Alcohols $(3,5)$In order to avoid reproducibility issues, a stock solution of the catalyst was prepared triplicating the corresponding amount of $\mathrm{Cu}(\mathrm{MeCN})_{4} B F_{4}, L 1$ and $D C E$ belonging to a 0.20 mmol scale 3-CR reaction. Then, the same catalytic stock solution was used for 2 reactions.

Procedure A: Synthesis of Trifluoromethylated Propargylic Ethers 4aa-4ak, 4bp-4eb, 11a-11b.


Stock solution of the catalyst: In an oven-dried microwave vial, $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}(3.8 \mathrm{mg}$, $1.2 \mu \mathrm{~mol}, 0.06$ equiv.) and $\mathbf{L 1}(4.4 \mathrm{mg}, 1.5 \mu \mathrm{~mol}, 0.075$ equiv.) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum $-\mathrm{N}_{2}$. Finally, dry DCE ( 3.9 mL ) was added into the vial and the resulting colourlesss solution was stirring (430 rpm) at room temperature during 1 h .

Procedure: In an oven-dried microwave vial, compound 2 ( $0.20 \mathrm{mmol}, 1.00$ equiv.) and alcohol 3 (if solid) ( $0.40 \mathrm{mmol}, 2.00$ equiv.) were added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum- $\mathrm{N}_{2}$, followed by the addition of 1 ( $0.40 \mathrm{mmol}, 0.33-0.40 \mathrm{M}$ in $\mathrm{DCM}, 2.00$ equiv.) and alcohol 3 (if liquid) ( $0.40 \mathrm{mmol}, 2.00$ equiv.). The resulting reaction mixture was stirred at RT under $\mathrm{N}_{2}$ atmosphere and the catalytic solution ( 1.30 mL ) was added dropwise. After 1 h of reaction, the reaction was monitored by TLC (95:5, Pentane/EtOAc) observing full conversion of $\mathbf{2}$ (unless otherwise noticed). The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc ( 15 mL ). The solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography according to the conditions described for each compound.

Procedure B: Synthesis of Trifluoromethylated Propargylic Ethers 4al-4an.


Stock solution of the catalyst: In an oven-dried microwave vial, $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}(3.8 \mathrm{mg}$, $1.2 \mu \mathrm{~mol}, 0.060$ equiv) and $\mathbf{L 1}$ ( $3.5 \mathrm{mg}, 1.2 \mu \mathrm{~mol}, 0.060$ equiv) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum $-\mathrm{N}_{2}$. Finally, dry DCE ( 3.9 mL ) was added into the vial and the resulting colourlesss solution was stirring ( 430 rpm ) at room temperature during 1 h .

Procedure: In an oven-dried microwave vial, compound 2a (94 mg, $0.20 \mathrm{mmol}, 1.00$ equiv.) was added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum- $\mathrm{N}_{2}$, followed by the addition of 1 ( 0.40 mmol, $0.33-0.40 \mathrm{M}$ in DCM, 2.00 equiv.) and alcohol $31-3 n$ ( $0.40 \mathrm{mmol}, 2.00$ equiv.). The resulting reaction mixture was stirred at RT under $\mathrm{N}_{2}$ atmosphere and the catalytic solution ( 1.30 mL ) was added dropwise. After 1 h of reaction, the reaction was monitored by TLC (95:5, Pentane/EtOAc) observing full conversion of 2 (unless otherwise noticed). The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc ( 15 mL ). The solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography according to the conditions described for each compound.

Procedure C: Synthesis of Trifluoromethylated Propargylic Ethers 6-10.


Stock solution of the catalyst: In an oven-dried microwave vial, $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}(3.8 \mathrm{mg}$, $1.2 \mu \mathrm{~mol} \mathrm{mmol}, 0.060$ equiv.) and L1 ( $4.4 \mathrm{mg}, 1.5 \mu \mathrm{~mol}, 0.075$ equiv.) were charged and
the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum $-\mathrm{N}_{2}$. Finally, dry DCE ( 3.9 mL ) was added into the vial and the resulting colourlesss solution was stirring ( 430 rpm ) at room temperature during 1 h .

Procedure: In an oven-dried microwave vial, compound $\mathbf{2}$ ( $0.30 \mathrm{mmol}, 1.50$ equiv.) and alcohol (5a-5e) (if solid) ( $0.20 \mathrm{mmol}, 1.00$ equiv.) were added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuumN 2 , followed by the addition of $\mathbf{1}(0.40 \mathrm{mmol}, 0.33-0.40 \mathrm{M}$ in DCM, 2.00 equiv.) and alcohol (5a-5e) (if liquid) ( $0.20 \mathrm{mmol}, 1.00$ equiv.). Finally, the catalytic solution ( 1.30 mL ) was added dropwise and the resulting reaction mixture was stirred overnight at RT under $\mathrm{N}_{2}$ atmosphere. The reaction was monitored by TLC (90:10, Pentane/EtOAc) observing full conversion of 5 (unless otherwise noticed). The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc ( 15 mL ). The solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography according to the conditions described for each compound.
(S)-(3-(Cyclohexyloxy)-4,4,4-trifluorobut-1-yn-1-yl)benzene (4aa):


Compound 4aa was prepared from 2a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and cyclohexanol 3a ( $42 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure A . It was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a colourless oil ( $46.8 \mathrm{mg}, 0.166 \mathrm{mmol}, 83 \%$ ): The enantiomeric ratio (er) resulted to be 96:4 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, 254 nm , $\mathrm{t}_{\mathrm{R}(\text { minor })}=5.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { major })}=6.2 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=127.6$ ( $\left.\mathrm{c}=0.375, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC}_{\boldsymbol{R}}=0.63$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $V_{\text {max }}, \mathrm{cm}^{-1}$ ) 2937 ( m ), $2861(\mathrm{w})$, 2229 ( w ), 1491 ( w ), 1447 ( w ), 1440 ( w ), 1361 ( w ), 1274 ( m ), 1254 ( m ), 1219 ( m$), 1184$ (s), 1143 (s), 1100 (m), 770 (s), 761 (s); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $87.40-7.30(\mathrm{~m}, 3 \mathrm{H}$, ArH), 7.49 (dd, J = 8.0, 1.7 Hz, 2H, ArH), 4.76 (q, J = $5.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ), $3.75(\mathrm{td}, J=9.2$, $4.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}-$ ), $2.01-1.87\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$ cyclohexyl), $1.84-1.74\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$
cyclohexyl), 1.58-1.48 (m, 2H, -CH2 cyclohexyl), 1.44-1.23 (m, 4H, -CH2 cyclohexyl); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 132.2,129.3,128.5,127.1,122.9$ ( $q, J=281.5 \mathrm{~Hz}$ ), 121.5, 87.6 , 80.5 ( $q, J=2.4 \mathrm{~Hz}$ ), 78.1, 67.1 ( $q, J=34.8 \mathrm{~Hz}$ ), 32.7, 31.4, 25.7, 24.0, 23.8; ${ }^{19}$ F NMR (376 MHz, CDCl ${ }_{3}$ ) $\delta$-77.3 (d, $J=6.1 \mathrm{~Hz}$ ); HRMS (APPI/LTQ-Orbitrap) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}^{+}$283.1304; Found 283.1306.
(S)-4,4,4-Trifluoro-3-((S)-1-phenylethoxy)but-1-yn-1-yl)benzene (4ab):


Compound 4ab was prepared from 2a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and $(S)-1-$ phenylethanol (3b) ( $50 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure A . It was purified by flash column chromatography ( $100 \%$ to 99:1, Pentane/EtOAc) and obtained as a colorless oil ( $42.6 \mathrm{mg}, 0.140 \mathrm{mmol}, 70 \%$ ): The diastereomeric ratio (dr) resulted to be 95:5 and was determined by ${ }^{19}$ F NMR of the crude mixture; $\boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=65.2\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$; TLC $\boldsymbol{R}_{\boldsymbol{f}}=0.75$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $v_{\text {max }}, \mathrm{cm}^{-1}$ ) 2962 (m), 2946 (m), 2904 (w), 2874 (w), 2146 (w), 1490 (m), 1473 (m), 1467 (m), 1444 (m), 1380 (m), 1270 (s), 1260 (s), 1218 (s), 1191 (s), 1186 (s), 1148 (s), 1141 (s), 967 (m), 946 (m), 930 (m), 772 (s), 758 (s), $730(\mathrm{~m})$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCl $_{3}$, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer ) $\delta 7.50-7.29(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 4.87(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}-), 4.64(\mathrm{q}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H},-$ $\mathrm{OCHCF}_{3}$ ), $1.56\left(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) $\delta$ 142.0, 132.1, 129.3, 128.7, 128.4, 128.3, 127.4, 126.7, 124.2 ( $q, J=281.9 \mathrm{~Hz}$ ), 121.5, 87.8, 80.1 ( $q, J=2.5 \mathrm{~Hz}$ ), 79.7, $67.8(q, J=34.8 \mathrm{~Hz}), 23.6 ;{ }^{19}$ F NMR ( 376 MHz, CDCl $_{3}$, mixture of inseparable diastereoisomers) $\delta-76.7$ ( $\mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}$, minor diastereoisomer), -76.8 ( $\mathrm{d}, \mathrm{J}$ $=6.1 \mathrm{~Hz}$, major diastereoisomer); HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}:$ [M]+ Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}^{+}$304.1070; Found 304.1067.
(S)-(3-(tert-butoxy)-4,4,4-trifluorobut-1-yn-1-yl)benzene (4ac):


Compound 4ac was prepared from 2a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and tertbutanol (3c) ( $40 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure A . It was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a colorless oil ( $37.0 \mathrm{mg}, 0.144 \mathrm{mmol}, 72 \%$ ): The enantiomeric ratio (er) resulted to be 96:4 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { major })}=5.6$ $\min , \mathrm{t}_{\mathrm{R}(\text { minor })}=6.1 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-147.9\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC} \boldsymbol{R f}=0.54$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $\mathrm{v}_{\max } \mathrm{cm}^{-1}$ ) 2981 (w), 2936 (w), 1368 (w), 1350 (w), 1276 (m), 1254 (m), 1220 (m), 1184 (s), 1141 (s), 1087 (m), 898 (m), 772 (s), 763 ( m$) ;{ }^{1} \mathbf{H}^{\text {H NMR }}$ ( 400 MHz, CDCl $_{3}$ ) $\delta 7.47$ (dd, J = 7.8, $1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), $7.37-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 4.74$ (q, J $\left.=5.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}\right), 1.35\left(\mathrm{~s}, 9 \mathrm{H},\left(-\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 132.0,129.2$, $128.5,127.2,123.0(q, J=281.3 \mathrm{~Hz}), 86.6,82.5(q, J=2.2 \mathrm{~Hz}), 77.4,62.9(q, J=35.0 \mathrm{~Hz})$, 27.9; ${ }^{19}$ F NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-77.4$ (d, $J=5.5 \mathrm{~Hz}$ ); HRMS (Sicrit plasma/LTQOrbitrap) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}^{+}$257.1148; Found 257.1139.
(S)-(4,4,4-Trifluoro-3-(tert-pentyloxy)but-1-yn-1-yl)benzene (4ad):


Compound 4ad was prepared from 2a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and 2-methylbutan-2-ol (3d) ( $45 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure A . It was purified by flash column chromatography ( $100 \%$ to 99:1, Pentane/EtOAc) and obtained as a colourless oil ( $37.8 \mathrm{mg}, 0.140 \mathrm{mmol}, 70 \%$ ): The enantiomeric ratio (er) resulted to be 94:6 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, 254 nm , $\mathrm{t}_{\mathrm{R}(\text { major })}=5.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { minor })}=6.0 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-127.8$ ( $\left.\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \operatorname{TLC} R f=0.53(99: 1$

Hexane/EtOAc), visualized by exposure to UV light; IR ( $v_{\text {max }}$ cm $^{-1}$ ) 2975 (m), 2939 (w), 2885 (w), 1491 (m), 1465 (m), 1445 (w), 1389 (m), 1375 (m), 1354 (m), 1324 (m), 1274 (s), 1255 (m), 1217 (m), 1181 (s), 1141 (s), 1087 (s), 938 (m), 921 (w), 889 (m), 878 (m), 771 (s), 755 (s); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCl $_{3}$ ) $\delta 7.50-7.43$ (m, 2H, ArH), $7.36-7.30(\mathrm{~m}, 3 \mathrm{H}$, $\operatorname{ArH}$ ), $4.74\left(\mathrm{q}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}\right), 1.72-1.52\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.31\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.27$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 132.0,129.1$, 128.5, 123.0 ( $q, J=281.2 \mathrm{~Hz}$ ), 121.9, $86.6,82.6,79.7,62.7$ ( $q, J=35.0 \mathrm{~Hz}$ ), $33.8,25.5$, 24.9, 8.5; ${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-77.3$ ( $\mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}$ ); HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}:\left[\mathrm{M}+\mathrm{Na}^{+}\right.$Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NaO}^{+}$293.1124; Found 293.1125.
(S)-(2-Methyl-2-((1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)propyl)benzene (4ae):


Compound 4ae was prepared from $\mathbf{2 a}$ ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and 2-methyl-1-phenylpropan-2-ol ( 4 e ) ( $63 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure A . It was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a colourless oil ( $43.2 \mathrm{mg}, 0.130 \mathrm{mmol}, 65 \%$ ): The enantiomeric ratio (er) resulted to be 97:3 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { major })}=10.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { minor })}=12.7 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-112.3\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC} \mathrm{Rf} 0.45$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $\mathbf{v}_{\text {max }}, \mathbf{c m}^{-1}$ ) 2975 (m), 2934 (w), 2240 (w), 2226 (w), 1491 (m), 1465 (m), 1445 (w), 1389 (m), 1373 (m), 1350 (m), 1324 (m), 1273 (s), 1255 (m), 1242 (m), 1219 (m), 1181 (s), 1141 (s), 1088 (s), 1008 (w), $990(\mathrm{~m}), 938$ (m), 920 (w), 889 (m), 877 (m), 770 (s), 755 ( s$)$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.44$ (dd, J = 8.0, 1.7 Hz, 2H, ArH), 7.37 - 7.19 (m, 8H, ArH), 4.81 (q, J = $5.9 \mathrm{~Hz}, 1 \mathrm{H},-$ $\mathrm{CHCF}_{3}$ ), 2.97 (d, J = $13.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHPh}$ ), 2.85 (d, J = $13.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHPh}$ ), 1.34 (s, 3H, $\mathrm{CH}_{3}$ ), $1.22\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 137.6,132.0,130.8,129.2,128.5$, 128.1, 126.5, 121.5 ( $q, J=280.6 \mathrm{~Hz}$ ), 121.8, $86.9,82.5$ ( $q, J=2.1 \mathrm{~Hz}$ ), $79.8,62.9(q, J=$ $35.2 \mathrm{~Hz}), 48.4,25.6,24.8 ;{ }^{19}$ F NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-77.2(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$ ); HRMS (Sicrit plasma/LTQ-Orbitrap) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}^{+} 333.1461$; Found 333.1449.

1-Fluoro-2-(2-methyl-2-((1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)propyl)benzene (4af)


Compound 4af was prepared from 2a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and 1-(3-fluorophenyl)-2-methylpropan-2-ol ( $\mathbf{3 f}$ ) ( $67.3 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.00$ equiv.) following the procedure A. It was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a colourless oil ( $35.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 50 \%$ ): The enantiomeric ratio (er) resulted to be 98:2 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, $2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { major })}=16.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { minor })}=18.4 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-123.0(\mathrm{c}=$ 0.1, $\mathrm{CHCl}_{3}$ ); TLC Rf 0.58 (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR (vmax, $\mathrm{cm}^{-1}$ ) 2937 (w), 2863 (w), 2859 (w), 1596 (w), 1524 (m), 1491 (m), 1456 (w), 1346 (s), 1274 (m), 1254 (m), 1213 ( w ), 1185 ( s$), 1143$ ( s$), 1105$ (m), 857 (m), 772 (s), 763 (m); ${ }^{1}$ H NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.09-7.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 4.81$ $\left(\mathrm{q}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}\right), 2.97\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 1.26\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.5$ ( $\mathrm{d}, \mathrm{J}=244.9 \mathrm{~Hz}$ ), 133.4 ( $\mathrm{q}, \mathrm{J}=4.4 \mathrm{~Hz}$ ), 132.7, 132.0, 129.2, 128.6, 128.5, 128.4 (d, $J=8.4 \mathrm{~Hz}), 124.5(\mathrm{q}, J=15.3 \mathrm{~Hz}), 123.2(\mathrm{q}, J=285.0 \mathrm{~Hz}), 123.8(\mathrm{q}, J=3.3 \mathrm{~Hz}), 115.2(\mathrm{~d}, J$ $=23.3 \mathrm{~Hz}), 87.0,79.9(\mathrm{q}, J=2.0 \mathrm{~Hz}), 62.9(\mathrm{q}, J=35.7 \mathrm{~Hz}), 40.4,25.5,24.5 ;{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-77.2 (d, $\mathrm{J}=5.5 \mathrm{~Hz}$ ), -116.1--116.7 (m); HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}$ : [ M$]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{4} \mathrm{O}^{+}$350.1288; Found 350.1290.
(S)-(3-Methyl-3-((1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)butyl)benzene (4ag):


Compound $\mathbf{4 a g}$ was prepared from $\mathbf{2 a}$ ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and 2-methyl-4-phenylbutan-2-ol ( $\mathbf{3 g}$ ) ( $69 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure A . It was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a colorless oil ( $30 \mathrm{mg}, 0.087 \mathrm{mmol}, 43 \%$ ): The enantiomeric ratio (er) resulted to be 97:3 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB $\mathrm{N}-5$ column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { major })}=14.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { minor })}=16.8 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}^{23}=-112.2\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC} \operatorname{Rf}=$ 0.65 (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $\mathrm{V}_{\max } \mathrm{cm}^{-1}$ ) 3029 (w), 2973 (w), 2936 ( w ), 1491 (m), 1375 (m), 1350 (m), 1272 (m), 1182 (s), 1139 (s), 1083 (m), 759 (s); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.25$ (d, J = $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), 7.16 - 709 (m, 3H, ArH), 7.07 - 7.03 (m, 3H, ArH), $7.01-6.95(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 4.60\left(\mathrm{q}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}\right), 2.62(\mathrm{td}, \mathrm{J}=$ $13.0,5.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}_{2}-$ ), $2.52\left(\mathrm{td}, J=12.9,5.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}_{2}-\right.$ ), $1.76(\mathrm{td}, J=13.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}$, $-\mathrm{CH}_{2}-$ ), $1.70-1.59\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2}-\right), 1.20\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.17\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 142.5,132.1,129.2,128.51,128.50,128.47,125.9,123.0(\mathrm{q}, \mathrm{J}=281.0 \mathrm{~Hz})$, 121.8, 86.9, $82.4(q, J=1.9 \mathrm{~Hz}), 79.1,62.9(q, J=35.2 \mathrm{~Hz}), 43.3,30.4,26.2,25.6 ;{ }^{19}$ F NMR ( 377 MHz, CDCl $_{3}$ ) $\delta$-77.2 (d, J = 6.2 Hz); HRMS (APPI/LTQ-Orbitrap) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}^{+}$346.1539; Found 346.1554.
(S)-(4,4,4-Trifluoro-3-((1-methylcyclohexyl)oxy)but-1-yn-1-yl)benzene (4ah):


Compound 4ah was prepared from 2a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and 1-methylcyclohexan-1-ol ( $\mathbf{2 h}$ ) ( $51 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure A . It was purified by flash column chromatography (100\% to 99:1, Pentane/EtOAc) and obtained as a colourless oil ( $32.5 \mathrm{mg}, 0.110 \mathrm{mmol}, 55 \%$ ): The enantiomeric ratio (er) resulted to be 95:5 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB

N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { major })}=5.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { minor })}=6.0 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-129.5\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC}$ Rf 0.68 (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $\mathrm{v}_{\max }, \mathrm{cm}^{-1}$ ) $2971(\mathrm{w}), 2936$
 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 7.48$ - $7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.38-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 4.76(\mathrm{q}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H},-$ $\mathrm{CHCF}_{3}$ ), 1.88-1.64 (m, 4H, -CH2 cyclohexyl), 1.51-1.38 (m,5H,-CH2 cyclohexyl), 1.361.25 ( $\mathrm{m}, 4 \mathrm{H},-\mathrm{CH}_{2}$ cyclohexyl $+-\mathrm{CH}_{3}$ ); ${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) $\delta$ 132.0, 129.1, 128.5, $123.1(q, J=282.2 \mathrm{~Hz}), 121.9,86.6,82.7(q, J=2.2 \mathrm{~Hz}), 78.4,62.2(\mathrm{q}, J=35.2 \mathrm{~Hz}), 37.2$, 36.6, 25.7, 25.2, 22.5, 22.2; ${ }^{19}$ F NMR ( $377 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}$ ) $\delta-77.0(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$ ); HRMS (Sicrit plasma/LTQ-Orbitrap) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}^{+}$297.1461; Found 297.1450.
(3R,5R)-1-(((S)-1,1,1-Trifluoro-4-phenylbut-3-yn-2-yl)oxy)adamantane (4ai):


Compound 4ai was prepared from 2a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and adamantan-1-ol (2i) ( $70 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure A . It was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a colorless oil ( $50.0 \mathrm{mg}, 0.150 \mathrm{mmol}, 75 \%$ ): The enantiomeric ratio (er) resulted to be 95:5 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { major) }}$ $=7.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { minor })}=8.3 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23} 9.3\left(\mathrm{c}=0.44, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC}_{\boldsymbol{f}}=0.76$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $\mathrm{V}_{\text {max }} \mathrm{cm}^{-1}$ ) $2971(\mathrm{w}), 2936(\mathrm{~m}), 2868(\mathrm{w}), 1271(\mathrm{~m})$,
 (dd, J = 7.7, 1.8 Hz, 2H, ArH), 7.37-7.30 (m, 3H, ArH), 4.90 (q, J = 6.0 Hz, 1H, -CHCF3), 2.21 (br s, 3H, -ad), 1.94-1.78 (m, 6H, -ad), 1.73-1.59 (m, 6H, -ad); ${ }^{13}$ C NMR ( $\mathbf{1 0 1} \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 132.1,129.1,128.5,121.7(\mathrm{q}, \mathrm{J}=278.2 \mathrm{~Hz}), 121.9,86.4,82.7(\mathrm{q}, J=1.9 \mathrm{~Hz}), 76.6$, 60.8 ( $\mathrm{q}, \mathrm{J}=34.7 \mathrm{~Hz}$ ), 41.8, $36.4,30.8 ;{ }^{19} \mathrm{~F}$ NMR ( 376 MHz, CDCl $_{3}$ ) $\delta-77.3(\mathrm{~d}, J=6.1 \mathrm{~Hz}$ );

HRMS (APPI/LTQ-Orbitrap) $m / z$ : [M] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}^{+} 334.1539$; Found 334.1552.
(1R,2S,5S)-2-Methyl-2-(((S)-1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)adamantane (4aj):


Compound 4aj was prepared from $\mathbf{2 a}$ ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and 2-methyladamant-2-ol ( $\mathbf{2 j}$ ) ( $66 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure A . It was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a colorless oil ( $52.0 \mathrm{mg}, 0.149 \mathrm{mmol}, 75 \%$ ): The enantiomeric ratio (er) resulted to be 97:3 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { major })}=5.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { minor })}=6.2 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=69.3\left(\mathrm{c}=0.775, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC} \boldsymbol{R}_{f}=0.91$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $\mathrm{V}_{\text {max }}, \mathrm{cm}^{-1}$ ) 2960 (w), 2920 (w), 2877 (w), 2251 (w), 2230 (w), 1594 (w), 1494 (m), 1492 (m), 1372 (w), 1361 (w), 1277 (m), 1253 (m), 1220 ( s$), 1191$ (m), 1188 (m), 1152 ( s$), 1079$ (m), 1067 (m), 1004 (w), $990(\mathrm{w}), 877(\mathrm{w}), 773(\mathrm{~s}), 757(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}$, ArH), $7.37-7.27$ (m, 3H, ArH), 4.84 ( $q, J=5.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ), $1.90-1.74$ ( $\mathrm{m}, 9 \mathrm{H},-\mathrm{ad}$ ), $1.62-1.53(\mathrm{~m}, 4 \mathrm{H},-\mathrm{ad}), 1.47-1.48\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{3}+-\mathrm{ad}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 131.9, 129.1, 128.5, 126.0 ( $q, J=280.4 \mathrm{~Hz}$ ), 122.0, $86.8,82.9$ ( $q, J=1.5 \mathrm{~Hz}$ ), 82.6, 62.0 ( q , $J=35.0 \mathrm{~Hz}$ ), $38.6,37.3,36.7,35.4,35.0,33.1,32.4,27.727 .1,22.2 ;{ }^{19} \mathrm{~F}$ NMR ( 377 MHz , $\mathrm{CDCl}_{3}$ ) $\delta-76.6\left(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}\right.$ ); HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}^{+}$348.1696; Found 348.1711.
(S)-(3-(Benzyloxy)-4,4,4-trifluorobut-1-yn-1-yl)benzene (4ak):


Compound 4ak was prepared from 2a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and benzyl alcohol $\mathbf{3 k}$ ( $42 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure A . It was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a colorless oil ( $45.0 \mathrm{mg}, 0.155 \mathrm{mmol}, 78 \%$ ): The enantiomeric ratio (er) resulted to be 93:7 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=8.1$ $\mathrm{min}, \mathrm{t}_{\mathrm{R}(\text { major })}=8.4 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-12.6\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC}$ Rf 0.73 (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $\mathbf{v}_{\text {max }}$, cm $^{-1}$ ) 3033 (w), 2986 (w), 2968 (w), 2936 (w), 1491 (m), 1273 (m), 1255 (m), 1219 (m), 1186 (m), 1143 ( s$), 1091$ (m), 1086 (m), 1083 (m), 772 (s), 755 (m); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCl $_{3}$ ) $\boldsymbol{\delta} 7.55$ - 7.49 (m, 2H, ArH), 7.46-7.31 ( $\mathrm{m}, 8 \mathrm{H}, \mathrm{ArH}$ ), $4.95\left(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.79\left(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.73$ (q, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 136.2,132.3,129.6,128.8,128.6$, 128.5, 128.4, 122.7 (q, $J=281.3 \mathrm{~Hz}$ ), 121.3, $89.0,79.1$ ( $q, J=2.6 \mathrm{~Hz}$ ), 71.4, 68.1 (q, $J=$ 35.4 Hz); ${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-76.5$ ( $\mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}$ ); HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}^{+}$290.0918; Found 290.0917.
(S)-(4,4,4-Trifluoro-3-(hexyloxy)but-1-yn-1-yl)benzene (4al):


Compound 4al was prepared from $\mathbf{2 a}$ ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and hexan-1ol ( 3 I ) ( $51 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure B. It was purified by flash column chromatography ( $100 \%$ to 99:1, Pentane/EtOAc) and obtained as a colourless oil ( $41.5 \mathrm{mg}, 0.146 \mathrm{mmol}, 73 \%$ ). The enantiomeric ratio (er) resulted to be $93: 7$ and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0
hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=6.7$ $\min , \mathrm{t}_{\mathrm{R}(\text { major })}=7.6 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=112.0\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right) ; \boldsymbol{\operatorname { L L C }} \boldsymbol{R}_{\boldsymbol{f}}=0.91$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; $\boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=112.0\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{V}_{\text {max }}, \mathrm{cm}^{-1}\right) 2953(\mathrm{~m})$, 2932 (m), 2872 (w), 2861 (w), 2236 (w), 2110 (w), 1804 (w), 1742 (w), 1491 (m), 1468 ( w ), 1445 ( w ), 1363 (w), 1318 ( w$), 1273$ ( s$), 1254$ (m), 1218 (m), 1184 (s), 1143 (s), 1108 (s), 1012 ( w ), 921 ( w ), 856 ( w ), 757 ( s$) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}$, ArH), $7.42-7.31(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 4.68\left(\mathrm{q}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}\right), 3.86(\mathrm{dt}, J=9.2,6.7 \mathrm{~Hz}$, $1 \mathrm{H},-\mathrm{OCH}_{2}-$ ), $3.66\left(\mathrm{dt}, J=9.2,6.7 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2}-\right), 1.70-1.63\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2}-\right), 1.45-$ $1.36\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ ), 1.36-1.28(m, 4H, $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.91-0.87\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 132.2,129.4,128.5,122.7(q, J=281.9 \mathrm{~Hz}$ ), 121.4, $88.4,79.6$ ( $q, J=2.2$ Hz ), $70.6,69.5(q, J=35.0 \mathrm{~Hz}), 31.7,29.5,25.7,22.7,14.2 ;{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 76.8 (d, J = 5.4 Hz); HRMS (APPI/LTQ-Orbitrap) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}^{+}$284.1383; Found 284.1394.
(S)-(3-Ethoxy-4,4,4-trifluorobut-1-yn-1-yl)benzene (4am):


Compound $4 \mathbf{a m}$ was prepared from $\mathbf{2 a}$ ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and ethanol ( 3 m ) ( $24 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure B. It was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a colorless oil ( $38.9 \mathrm{mg}, 0.171 \mathrm{mmol}, 85 \%$ ): The enantiomeric ratio (er) resulted to be $93: 7$ and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { major })}=8.0$ $\min , \mathrm{t}_{\mathrm{R}(\text { minor })}=8.4 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-110.8\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC}_{\boldsymbol{f}}=0.45$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $\mathrm{v}_{\max }, \mathrm{cm}^{-1}$ ) $2982(\mathrm{w}), 2940(\mathrm{w}), 2922(\mathrm{w}), 2892(\mathrm{w})$, 2233 ( w ), 1491 ( m ), 1445 ( m ), 1361 ( m ), 1318 ( m ), 1271 ( s$), 1256$ (m), 1187 ( s$), 1148$ ( s$)$, 1109 ( s ), 990 (m), 894 (m), 773 (m), 758 ( s$) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.53$ - 7.47 (m, $2 \mathrm{H}, \mathrm{ArH}$ ), $7.41-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 4.70\left(\mathrm{q}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}\right), 3.94(\mathrm{dq}, J=9.2,7.0$ $\mathrm{Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$ ), $3.73\left(\mathrm{dq}, J=9.2,7.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ ), $1.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H},-$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$ ) ; ${ }^{13}$ C NMR ( $\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 132.2,129.5,128.5,122.7(\mathrm{q}, \mathrm{J}=281.7 \mathrm{~Hz}), 121.4$,
121.3, 88.4, $69.3(q, J=35.0 \mathrm{~Hz}), 79.5(\mathrm{q}, J=2.3 \mathrm{~Hz}), 66.0,15.1 ;{ }^{19} \mathrm{~F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-76.8(\mathrm{~d}, \quad \mathrm{~J}=5.4 \mathrm{~Hz}) ;$ HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}$ : [M] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}^{+}$228.0757; Found 228.0754.
(S)-Trimethyl(2-((1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)ethyl)silane (4an):


Compound 4an was prepared from 2a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and 2trimethylsilylethanol ( 3 n ) ( $60 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure B. It was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a colourless oil ( $35.0 \mathrm{mg}, 0.117 \mathrm{mmol}, 58 \%$ ): The enantiomeric ratio (er) resulted to be 90:10 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=5.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { major })}=6.6 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-134.3\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC} \boldsymbol{R}_{\mathrm{f}}=0.74$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $\mathrm{V}_{\max }, \mathrm{cm}^{-1}$ ) $2956(\mathrm{w}), 2900$ (w), 2873 (w), 2233 (w), 1491 (m), 1364 (w), 1316 (w), 1274 (m), 1252 (m), 1219 (m), 1184 (s), 1143 ( s$), 1105$ (m), 954 (w), 860 (m), 838 ( s$), 772$ ( s$), 759$ ( s$) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.51-7.46 (m, 2H, ArH), 7.40-7.32 (m, 3H, ArH), $4.68\left(q, J=5.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}\right.$ ), 3.98 (td, J = 9.1, $7.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2}-$ ), 3.75 (td, J $=9.2,7.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2}$ ) , 1.04 (ddd, J = 9.4, 6.8, $2.3 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{TMS}$ ), $0.06\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$ ); ${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 132.2$, $129.4,128.5,122.7(q, J=281.5 \mathrm{~Hz}), 121.5,88.4,79.6$ ( $q, J=2.6 \mathrm{~Hz}$ ), $69.0(q, J=35.0 \mathrm{~Hz})$, 68.1, 18.1, -1.3; ${ }^{19}$ F NMR ( 376 MHz, CDCl $_{3}$ ) $\delta-76.8(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}$ ); HRMS (APPI/LTQOrbitrap) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{OSi}^{+} 300.1152$; Found 300.1149.
(S)-(4,4,4-Trifluoro-3-(2,2,2-trifluoroethoxy)but-1-yn-1-yl)benzene (4ao)


Compound 4 ao was prepared from 2a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and 2,2,2trifluoroethanol (30) ( $29 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure B. It was
purified by flash column chromatography ( $100 \%$ to 99:1, Pentane/EtOAc) and obtained as a colourless oil ( $30.0 \mathrm{mg}, 0.106 \mathrm{mmol}, 53 \%$ ). The enantiomeric ratio (er) resulted to be 67:33 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=9.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { major })}=14.2 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}^{23}=36.3\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC} \boldsymbol{R}_{f}=0.8(99: 1$ Hexane/EtOAc), visualized by exposure to UV light; IR ( $v_{\text {max }}, \mathrm{cm}^{-1}$ ) 2912 (m), 2855 (m), 1492 (m), 1455 (w), 1445 (w), 1357 (m), 1281 (m), 1269 (m), 1253 (m), 1176 (s), 1140 (s), 1108 (m), 1083 (s), 1004 (w), 986 (w), 972 (w), 940 (w), 917 (m), 867 (m), 758 (m); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.44-7.34(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 4.96(\mathrm{q}, \mathrm{J}$ $=5.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ), 4.20-4.10(m,2H,-OCH2CF3); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 132.3$, $130.1,128.7,123.5(q, J=278.8 \mathrm{~Hz}), 122.1(q, J=281.6 \mathrm{~Hz}), 120.6,90.9,77.4,70.0(q, J$ $=35.6 \mathrm{~Hz}), 65.8(\mathrm{q}, \mathrm{J}=35.8 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-74.0\left(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CF}_{3}\right)$, -76.7 (d, J = $5.4 \mathrm{~Hz},-C F_{3}$ ); HRMS (GC/EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{O}_{3}$ 282.0479; Found 282.000.
(S)-1-Methyl-1-((1,1,1-trifluoro-4-(4-nitrophenyl)but-3-yn-2-yl)oxy)cyclododecane (4bp):


Compound 4bp was prepared from 2b ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and 1-methylcyclododecan-1-ol (3p) ( $36.7 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.00$ equiv.) following the procedure A. It was purified by flash column chromatography ( $100 \%$ to 99:1, Pentane/EtOAc) and obtained as a colorless oil ( $47.0 \mathrm{mg}, 0.111 \mathrm{mmol}, 55 \%$ ): The enantiomeric ratio (er) resulted to be 98:2 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { major })}=19.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { minor })}=21.4 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=39.9$ (c $=$ $0.2, \mathrm{CHCl}_{3}$ ); $\mathbf{T L C} \boldsymbol{R}_{\boldsymbol{f}}=0.69$ (95:5 Hexane/EtOAc), visualized by exposure to UV light; IR
( $\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$ ) 2939 (m), 2856 (w), 1595 (m), 1524 (m), 1472 (m), 1376 (w), 1345 ( s$), 1272$ (m), 1254 (m), 1220 (m), 1181 ( s$), 1141$ ( s$), 1095$ (m), 1083 (m), 853 (m), $770(\mathrm{~s}) ;{ }^{1}$ H NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.20(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 7.60(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 4.82(\mathrm{q}, J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ), 1.28 (br s, 2H, -CH2 cyclododecanol), 1.76-1.64 (m, 2H, -CH2 cyclododecanol), 1.52-1.31 (m, 21H, $-\mathrm{CH}_{2}$ cyclododecanol), $1.28\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz, CDCl $_{3}$ ) $\delta 147.8,132.2,128.6,123.76,122.83$ ( $q, J=282.2 \mathrm{~Hz}$ ), $87.9,84.5,82.9$, 62.3 ( $q, J=35.2 \mathrm{~Hz}$ ), 34.6, 33.5, 26.7, 26.6, 26.1, 24.5, 22.9, 22.8, 22.4, 22.4, 19.9; ${ }^{19}$ F NMR (376 MHz, CDCl ${ }_{3}$ ) $\delta-76.8(d, J=6.1 \mathrm{~Hz}$ ); HRMS (APPI/LTQ-Orbitrap) $m / z$ : $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$425.2172; Found 425.2164.
(S)-1-(3-(Cyclohexyloxy)-4,4,4-trifluorobut-1-yn-1-yl)-4-nitrobenzene (4ba):


Compound 4ba was prepared from 2b ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and cyclohexanol (3a) ( $42 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure A. It was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a colourless oil ( $57.0 \mathrm{mg}, 0.174 \mathrm{mmol}, 87 \%$ ): The enantiomeric ratio (er) resulted to be 97:3 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, 254 nm , $\mathrm{t}_{\mathrm{R}(\text { majer })}=19.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { minor })}=23.6 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-113.9\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \quad$ TLC $\boldsymbol{R}_{f}=0.40(99: 1$ Hexane/EtOAc), visualized by exposure to UV light; IR (vmax, $\mathrm{cm}^{-1}$ ) 293 ( m ), 2856 ( w ), 1596 (m), 1523 (s), 1492 (w), 1455 (w), 1377 (w), 1346 (s), 1309 (w), 1274 (m), 1254 (m), 1184 (s), 1142 (s), 1096 (s), 856 (s), 769 (m), 750 (s); ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.21$ (d, J = 9.0 Hz , $2 \mathrm{H}, \mathrm{ArH}$ ), $7.64\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right.$ ), 4.77 ( $\mathrm{q}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ), $3.73(\mathrm{td}, \mathrm{J}=9.1$, $\left.4.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}\left(\mathrm{CH}_{2}\right)_{2}-\right)$, $2.03-1.90\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$ cyclohexyl), 1.84-1.72(m, $2 \mathrm{H},-\mathrm{CH}_{2}$ cyclohexyl), 1.59-1.39 (m, 3H, -CH2 cyclohexyl), 1.37-1.22 (m, 3H, -CH2 cyclohexyl); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 147.9, 133.1, 133.1, 128.2, 123.7, 123.7, 122.7 ( $q, J=281.5 \mathrm{~Hz}$ ), 85.6 ( $q, J=2.3 \mathrm{~Hz}$ ), 85.3, 78.8, 67.1 ( $q, J=35.2 \mathrm{~Hz}$ ), 32.6, 31.4, 25.6, 23.9, 23.7; ${ }^{19}$ F NMR
(376 MHz, CDCl 3 ) $\delta$ - $77.0\left(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}\right.$ ); HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{3}{ }^{+}$327.1077; Found 327.1075
(S)-1-Bromo-2-(3-(cyclohexyloxy)-4,4,4-trifluorobut-1-yn-1-yl)benzene (4ca):


Compound 4ca was prepared from 2c ( $109.8 \mathrm{mg}, 0.2000 \mathrm{mmol}, 1.00$ equiv.) and cyclohexanol 3 a ( $43 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure A . It was purified by flash column chromatography ( $100 \%$ to 99:1, Pentane/EtOAc) and obtained as a colorless oil ( $59.0 \mathrm{mg}, 0.163 \mathrm{mmol}, 82 \%$ ): The enantiomeric ratio (er) resulted to be 93:7 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { major) }}$ $=7.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { minor })}=8.3 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-147.3\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC} \boldsymbol{R}_{f}=0.66$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $\mathrm{V}_{\text {max }} \mathrm{cm}^{-1}$ ) 2936 ( m ), 2859 (m), 1472 (m), 1451 (w), 1435 ( w ), 1273 (m), 1219 (m), 1181 (s), 1142 (s), 1094 (s), 1054 (m), 1029 (m),
 ArH), 7.50 (dd, $J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), 7.28 (td, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}$ ), 7.22 (td, J = 7.6, 1.4 Hz, 1H, ArH), 4.82 ( $q, J=5.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ), $3.82(\mathrm{td}, \mathrm{J}=9.2,4.6 \mathrm{~Hz}, 1 \mathrm{H},-$ $\left.\mathrm{OCH}\left(\mathrm{CH}_{2}\right)_{2}\right)$, $2.03-1.87\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$ cyclohexanol), $1.84-1.70\left(\mathrm{~m}, 2 \mathrm{H},,-\mathrm{CH}_{2}\right.$ cyclohexanol), $1.60-1.48$ ( $\mathrm{m}, 2 \mathrm{H},-\mathrm{CH}_{2}$ cyclohexanol), $1.44-1.15\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2}\right.$ cyclohexanol); ${ }^{13}$ C NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$ ) $\delta$ 133.9, 132.7, 130.5, 127.2, 125.9, 122.8 (q, $J=281.3 \mathrm{~Hz}), 123.9,86.1,84.9(\mathrm{q}, J=2.6 \mathrm{~Hz}), 78.01,67.1(\mathrm{q}, J=35.0 \mathrm{~Hz}), 32.7,31.2,25.7$, 24.0, 23.8; ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-77.0(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}$ ); HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrF}_{3} \mathrm{O}^{+}$360.0331; Found 360.0331.
(S)-Triisopropyl(4,4,4-trifluoro-3-((2-methyl-1-phenylpropan-2-yl)oxy)but-1-yn-1yl)silane (4de)


Compound 4de was prepared from $\mathbf{2 e}(110.1 \mathrm{mg}, 0.2000 \mathrm{mmol}, 1.00$ equiv.) and 2-methyl-1-phenylpropan-2-ol (3e) ( $62 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) after overnight reaction following the procedure A. It was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a colorless oil ( $49.3 \mathrm{mg}, 0.120 \mathrm{mmol}$, $60 \%$ ): The enantiomeric ratio (er) resulted to be $99: 1$ and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate1 $\mathrm{mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { major })}=19.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { minor })}=23.6 \mathrm{~min} ; \mathrm{TLC} \mathrm{Rf}$ 0.94 (99:1 Hexane/EtOAc), visualized by exposure to UV light; $\boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=87.3$ ( $c=0.36$, CHCl $_{3}$ )IR ( $v_{\text {max }}, \mathrm{cm}^{-1}$ ) $3083(\mathrm{~m}), 3061(\mathrm{~m}), 3031(\mathrm{~m}), 2976(\mathrm{~m}), 2929(\mathrm{~m}), 1492(\mathrm{~m}), 1447(\mathrm{~m})$, 1388 (m), 1372 (m), 1354 (m), 1274 (s), 1254 (m), 1224 (m), 1181 (s), 1141 (s), 1083 (s), 1073 (m), 895 (m), 773 (m), 759 (m); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.31$ - 7.21 (m, 5H, ArH), 4.61 ( $q, J=5.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ), 2.89 ( $\mathrm{q}, \mathrm{J}=13.4 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ph}$ ), $1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3}$ ), 1.07 ( $\mathrm{s}, 21 \mathrm{H}, \mathrm{TIPS}$ ); ${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 137.7,130.8,128.0,126.5,122.9$ ( $q, J=281.2 \mathrm{~Hz}$ ), 100.4, 89.5, 79.5, $62.6(q, J=34.8 \mathrm{~Hz}), 48.4,25.6,24.8,18.6,11.2 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl 3 ) $\delta-77.4(d, J=6.1 \mathrm{~Hz})$. HRMS (Sicrit plasma/LTQ-Orbitrap) $m / z$ : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{OSi}^{+}$413.2482; Found 413.2481.
(S)- Triisopropyl(4,4,4-trifluoro-3-(1-phenylethoxy)but-1-yn-1-yl)silane (4db):


Compound $\mathbf{4 d b}$ was prepared from 2d ( $110.1 \mathrm{mg}, 0.2000 \mathrm{mmol}, 1.00$ equiv.) and ( $S$ )phenylethanol (3b) ( $48 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure A. It was purified by flash column chromatography ( $100 \%$ to 99:1, Pentane/EtOAc) and obtained as a colorless oil ( $47.0 \mathrm{mg}, 0.122 \mathrm{mmol}, 61 \%$ ): The diastereomeric ratio (dr) resulted to
be 93:7 and was determined by ${ }^{19} \mathrm{~F}$ NMR of the crude mixture; $\boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-169.6$ ( $\mathrm{c}=0.1$, $\mathrm{CHCl}_{3}$ ); $\boldsymbol{T L C} \boldsymbol{R}_{\boldsymbol{f}}=0.95$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $v_{\max }$, $\mathrm{cm}^{-1}$ ) 2946 ( s$), 2867$ (s), 1464 ( m ), 1382 ( m ), 1368 ( m ), 1272 ( s$), 1177$ ( s$), 1141$ ( s$), 1125$ ( s$)$, 1092 (s), 1073 (s), 1030 (s), 997 (s), 995 (s), 908 (m), 883 (s), 760 (s); ${ }^{1} \mathbf{H}$ NMR ( 400 MHz, $\mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) $\delta 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.83(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCHPh}), 4.45(\mathrm{q}, J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ), 1.52 (d, J = $6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), $1.05(\mathrm{~s}, 21 \mathrm{H}, \mathrm{TIPS}) ;{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathrm{MHz}$, $\mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer ) $\delta 142.1,128.6,128.1,126.5,123.1(q, J=282.4 \mathrm{~Hz}), 97.7(q, J=1.98$ Hz ), $90.6,79.5,67.7(\mathrm{q}, \mathrm{J}=34.7 \mathrm{~Hz}), 23.4,18.6,11.1 ;{ }^{19} \mathrm{~F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-77.0$ (d, $J=5.4 \mathrm{~Hz}$, minor diastereoisomer), -77.2 ( $d, J=6.1 \mathrm{~Hz}$, major diastereoisomer); HRMS (Sicrit plasma/LTQ-Orbitrap) $m / z:\left[M+\mathrm{H}_{-1}\right]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{OSi}^{+} 383.2013$; Found 383.2012.
(S)-(1-((4-cyclopropyl-1,1,1-trifluorobut-3-yn-2-yl)oxy)ethyl)benzene (4eb):


Compound $\mathbf{4 e b}$ was prepared from $\mathbf{2 e}(86.8 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and (S)phenylethanol (3b) ( $48 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.00$ equiv.) following the procedure A . It was purified by flash column chromatography ( $100 \%$ to 99:1, Pentane/EtOAc) and obtained as a colourless oil ( $33.8 \mathrm{mg}, 0.126 \mathrm{mmol}, 63 \%$ ): The diastereomeric ratio ( dr ) resulted to be 92:8 and was determined by ${ }^{19} \mathrm{~F}$ NMR of the crude mixture; $\boldsymbol{\alpha}^{23}=19.2$ ( $c=0.22$, $\mathrm{CHCl}_{3}$ ); $\mathbf{T L C} \boldsymbol{R}_{\boldsymbol{f}}=0.49$ (99:1Hexane/EtOAc), visualized by exposure to UV light; IR ( $\mathrm{v}_{\max }$, $\mathrm{cm}^{-1}$ ) 2940 (m), 2858 (w), 1596 (m), 1523 (m), 1473 (m), 1346 (s), 1270 (m), 1254 (m), $1220(\mathrm{~m})$, 1181 (m), 1141 (s), 1082 (m), 856 (m), 773 (s); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( 400 MHz, CDCl $_{3}$, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) ס 7.37-7.28(m,5H, ArH), 4.77 (q, J = 6.5 Hz, 1H, -OCHPh), 4.36 (qd, J 5.8, 1.9 Hz, 1H, $\mathrm{CHCF}_{3}$ ), 1.49 (d, J = 6.4 Hz, 3H, CH3), 1.24-1.17 (m, 1H, -CH cyclopropyl), 0.79-0.71 (m, $2 \mathrm{H},-\mathrm{CH}_{2}$ cyclopropyl), 0.66-0.60(m,2H,-CH2 cyclopropyl); ${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$, indicated peaks belongs to the major diastereoisomer) $\delta 142.2,128.6,128.1,126.6$,
$123.2(q, J=282.8 \mathrm{~Hz}), 92.2,79.2,67.4(q, J=34.7 \mathrm{HZ}), 66.4(q, J=2.9 \mathrm{~Hz}), 23.5,8.41$, 8.38, -0.6; ${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-77.1(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}$, major diastereoisomers), 77.2 ( $\mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}$, minor diastereoisomers); HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}^{+}$268.1070; Found 268.1064.
((S)-4,4,4-Trifluoro-3-(((1R,2R,5R)-2-isopropyl-5-methylcyclohexyl)oxy)but-1-yn-1yl)benzene (6):


Compound $\mathbf{6}$ was prepared from 2a ( $141.0 \mathrm{mg}, 0.3000 \mathrm{mmol}, 1.5$ equiv.) and ( $1 R, 2 S, 5 R$ )-5-methyl-2-propan-2-ylcyclohexan-1-ol (5a) ( $31.3 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) following the general procedure C . It was purified by flash column chromatography ( $100 \%$ to 99:1, Pentane/EtOAc) and obtained as a white solid ( $55.0 \mathrm{mg}, 0.163 \mathrm{mmol}$, 81\%): The diastereomeric ratio (dr) resulted to be 2:98 and was determined by ${ }^{19} \mathrm{~F}$ NMR of the crude mixture; $\boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-182.0\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC} \boldsymbol{R}_{f}=0.63$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $v_{\text {max }}, \mathrm{cm}^{-1}$ ) $2959(\mathrm{~m})$, $2953(\mathrm{~m})$, $2921(\mathrm{~m}), 2870(\mathrm{w})$, 2849 ( w ), 1457 ( w ), 1444 (m), 1372 (m), 1315 ( w$), 1264$ (m), 1183 (s), 1137 (s), 1094 (s), 772 (m), 757 (s); ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) $\delta 7.48$ (dd, $J=7.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), $7.39-7.31(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 4.67\left(\mathrm{q}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}\right.$ ), 3.46 (td, $\mathrm{J}=10.6,4.3 \mathrm{~Hz}$, 1H, -OCH-), 2.34-2.23 (m, 3H, -CH2 menthol), 1.70-1.64 (m, 2H, $-\mathrm{CH}_{2}$ menthol), $1.45-$ 1.32 (m, 2H, -CH2 menthol), $1.19-1.07$ (m, 1H, -CH menthol), 1.04. 0.98 (m, 1H, -CH menthol), 0.95 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}$ ), 0.92 ( $\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}$ ), 0.79 ( $\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}$, $3 \mathrm{H},-\mathrm{CH}_{3}$ ); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) $\delta 132.1,129.3,128.5,123.0$ ( q , $J=282.4 \mathrm{~Hz}$ ), 121.7, 87.4, 82.8, $81.3(q, J=2.6 \mathrm{~Hz}), 68.6(q, J=34.8 \mathrm{~Hz}), 48.4,41.3,34.4$, 31.7, 25.2, 23.2, 22.4, 21.1, $15.9 ;{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers) $\delta-77.0(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, minor diastereoisomer), -77.2 (d, $J=6.1 \mathrm{~Hz}$, major diastereoisomer).HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}$ : [M] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}^{+} 338.1852$; Found 338.1850.
((S)-4,4,4-trifluoro-3-(((1S,2S,5S)-2-isopropyl-5-methylcyclohexyl)oxy)but-1-yn-1yl)benzene (7):


Compound 7 was prepared from 2a ( $141.0 \mathrm{mg}, 0.3000 \mathrm{mmol}, 1.5$ equiv.) and ( $1 S, 2 R$, 5S)-5-methyl-2-propan-2-ylcyclohexan-1-ol (5b) ( $31.5 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) following the procedure C. It was purified by flash column chromatography ( $100 \%$ to 99:1, Pentane/EtOAc) and obtained as a white solid ( $60.0 \mathrm{mg}, 0.177 \mathrm{mmol}, 89 \%$ ): The diastereomeric ratio (dr) resulted to be 96:4 and was determined by ${ }^{19} \mathrm{~F}$ NMR of the crude mixture; $\boldsymbol{\alpha}^{23}=117.1\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ;$ TLC $\boldsymbol{R}_{f}=0.77$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$ ) 2957 ( m ), 2921 ( m ), 2874 ( m ), 2233 ( w ), 1457 ( w ), 1446 (w), 1386 (w), 1368 (m), 1361 (w), 1315 (m), 1275 (m), 1177 (s), 1142 (s), 1094 (s), 920
 diastereoisomers, indicated peaks belongs to the major diastereoisomer) $\delta 7.48$ (dd, J $=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), $7.40-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 4.82\left(\mathrm{q}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCF}_{3}\right.$ ), 3.57 (td, $J=10.7,4.3 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}-), 2.33\left(\mathrm{pd}, \mathrm{J}=7.0,2.7 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.12-2.07(\mathrm{~m}, 1 \mathrm{H}$, CH , menthol), 1.71-1.60(m, 2H, -OCHCH2), 1.44-1.30(m, 4H, -CH2 menthol), $0.94(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 7 \mathrm{H}, 2 \times\left(-\mathrm{CH}_{3}\right)+-\mathrm{CH}$ menthol), $0.85\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathbf{N M R}(101 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) $\delta$ 132.1, 129.3, 128.5, 122.8 (q, $J=280.8 \mathrm{~Hz}$ ), 121.6, 87.7, 80.3 (q, J = 2.03 Hz ), 78.2, 66.7 ( $q, J=35.2 \mathrm{~Hz}$ ), 47.9, 39.3, 34.5, 31.6, 25.61, 23.5, 22.4, 21.0, 16.4. ${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-77.03$ ( $\mathrm{d}, J=5.4 \mathrm{~Hz}$, major diastereoisomer), -77.2 ( $\mathrm{d}, \mathrm{J}=$ 5.4 Hz , minor diastereoisomer); HRMS (APCI/QTOF) m/z: [M + H] Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{O}^{+}$339.1930; Found 339.1931.
(1S,2S,4R)-1,7,7-Trimethyl-2-(((S)-1,1,1-trifluoro-4-phenylbut-3-yn-2yl)oxy)bicyclo[2.2.1]heptane (8):


Compound $\mathbf{8}$ was prepared from 2a ( $141.0 \mathrm{mg}, 0.3000 \mathrm{mmol}, 1.5$ equiv.) and $1,7,7-$ trimethylbicyclo[2.2.1]heptan-2-ol (5c) ( $30.9 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) following the procedure C. It was purified by flash column chromatography ( $100 \%$ to 99:1, Pentane/EtOAc) and obtained as a pale-yellow oil ( $50.0 \mathrm{mg}, 0.149 \mathrm{mmol}, 74 \%$ ): The diastereomeric ratio (dr) resulted to be 97:3 and was determined by ${ }^{19} \mathrm{~F}$ NMR of the crude mixture; $\boldsymbol{\alpha}^{23}=-163.5\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right.$ ); $\mathbf{T L C} \boldsymbol{R}_{\boldsymbol{f}}=0.95$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $v_{\text {max }}, \mathrm{cm}^{-1}$ ) 2955 (m), 2881 (m), 2229 (w), 1491 (m), 1455 (m), 1445 (m), 1272 (m), 1256 (m), 1217 (m), 1187 (s), 1141 (s), 1116 (s), 1103 (s), 770 (s), 756 (s); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) $\delta 7.48$ (dd, J $=7.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), $7.39-7.31$ (m, 3H, ArH), 4.69 (q, J = $6.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ), 3.99 (dt, J = 9.5, 2.6 Hz , 1H, -OCH-), 2.32-2.20(m, 1H, -CH borneol), 2.07-2.00 (m, 1H, -CH borneol), 1.77-1.63 ( $\mathrm{m}, 2 \mathrm{H},-\mathrm{CH}_{2}$ borneol), 1.34 ( $\mathrm{dd}, \mathrm{J}=13.4,33.3 \mathrm{~Hz}$ ), $0.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.31-1.21 (m, 2H), $0.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) $\delta 132.1$, 129.3, 128.5, 122.8 (q, $J=281.9 \mathrm{~Hz}$ ), 121.7, $87.9,86.8,80.8$ (q, $J=2.2 \mathrm{~Hz}$ ), 69.9 (q, $J=$ 34.5 Hz ), 49.9, 47.8, 45.2, 36.7, 28.2, 26.5, 19.8, 19.0, 13.8; ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ -77.0 ( $\mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}$, major diastereoisomers), -77.1 ( $\mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}$, minor diastereoisomer). HRMS (APPI/LTQ-Orbitrap) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}^{+} 336.1696$; Found 336.1706.
(3R,3aS,6R,7R,8aS)-3,6,8,8-Tetramethyl-6-(((S)-1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)octahydro-1H-3a,7-methanoazulene (9):


Compound 9 was prepared from 2a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and 1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (5d) ( $181.5 \mathrm{mg}, 0.8000 \mathrm{mmol}, 4.00$ equiv.) following procedure A, but using $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{SbF}_{6}(1.9 \mathrm{mg}, 4.0 \mu \mathrm{~mol}, 2 \mathrm{~mol} \%$ ) instead of $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}$. It was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a white solid ( $51.8 \mathrm{mg}, 0.128 \mathrm{mmol}, 64 \%$ ): The diastereomeric ratio (dr) resulted to be 85:15 and was determined by ${ }^{19} \mathrm{~F}$ NMR of the crude mixture; $\boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=14.0\left(\mathrm{c}=0.38, \mathrm{CHCl}_{3}\right.$ ); $\boldsymbol{T L C} \boldsymbol{R}_{f}=0.63$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $v_{\text {max }} c m^{-1}$ ) 2982 (m), 2958 (m), 2937 (m), 2912 (m), 2871 (m), 1491 (m), 1464 (m), 1444 (m), 1382 (m), 1351 (m), 1322 (w), 1278 (m), 1268 (m), 1253 (m), 1175 ( s$), 1137$ ( s$), 1130$ (m), 1105 (m), 1079 (s), 1003 (w), 989 (w), 970 (w), 921 (w), 910 (w), 896 (w), 863 (w), 763 (m), 755 (s); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCl $_{3}$, major diastereoisomer) $\delta 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.41-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 4.81(\mathrm{q}, \mathrm{J}=5.8 \mathrm{~Hz}$, $1 \mathrm{H},-\mathrm{CHCF}_{3}$ ), 2.30 (td, $J=13.1,6.1 \mathrm{~Hz}, 1 \mathrm{H},-$ cedrol), 1.88 (dq, $J=11.9,6.0 \mathrm{~Hz}, 1 \mathrm{H},-$ cedrol), 1.82-1.77 (m, 2H, -CH2 cedrol), 1.75-1.74 (m, 1H, $-\mathrm{CH}_{2}$ cedrol), 1.71-1.61 (m, 2H, $-\mathrm{CH}_{2}$ cedrol,), 1.57-1.46 (m, 3H, -CH + CH2 cedrol), 1.43-1. 36 (m, 1H, -CH cedrol; s, 3H, $\mathrm{CH}_{3}$ ), 1.31-1.24 (m, 1H, -cedrol; s, $\cdot 3 \mathrm{H},-\mathrm{CH}_{3}$ ), $1.40\left(\mathrm{~m}, 1 \mathrm{H},-\right.$ cedrol; s, $3 \mathrm{H},-\mathrm{CH}_{3}$ ), 1.27 ( s , 3H, - $\mathrm{CH}_{3}$ ); ${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$, major diastereoisomer) $\delta$ 131.9, 129.1, 128.5, $123.1(q, J=281.3 \mathrm{~Hz}), 122.1,86.7,83.1,82.8(q, J=2.2 \mathrm{~Hz}), 62.2(q, J=35.0 \mathrm{~Hz}), 59.7$, $56.9,54.1,43.7,41.5,41.5,37.2,31.7,31.5,29.1,27.9,25.5,23.7,15.8 ;{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereoisomers) $\delta-76.9$ ( $\mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}$, minor diastereoisomer), -77.2 (d, J = 6.1 Hz , major diastereoisomer); HRMS (APPI/LTQ-Orbitrap) $\mathrm{m} / \mathrm{z}$ : [M] ${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{O}^{+} 404.2327$; Found 404.2327.
(3R,8S,9S,10R,13R,14R,17S)-10,13-Dimethyl-17-(5-methylhexyl)-3-(((S)-1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthrene (10):


Compound $\mathbf{1 0}$ was prepared from 2a ( $141.0 \mathrm{mg}, 0.3000 \mathrm{mmol}, 1.5$ equiv.) and ( $3 \mathrm{~S}, 8 \mathrm{~S}$, 9S, 10R, 13R, 14R)-8,10,13-trimethyl-17-[(2R)-6-methylheptan-2-yl]-1,2,3,4,7,9,11,12,14,16,17-dodecahydrocyclopena[a]phenanhren-3-ol (5e) ( 80.1 mg , $0.200 \mathrm{mmol}, 1.00$ equiv.) following the procedure C . It was purified by flash column chromatography ( $100 \%$ to 99:1, Pentane/EtOAc) and obtained as a white solid ( 102 mg , $0.178 \mathrm{mmol}, 89 \%$ ): The diastereomeric ratio (dr) resulted to be 93:7 and was determined by ${ }^{19} \mathrm{~F}$ NMR of the crude mixture; $\boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=796.3$ ( $\mathrm{c}=0.75, \mathrm{CHCl}_{3}$ ); $\mathbf{T L C} \boldsymbol{R}_{f}=0.93$ (9:1Hexane/EtOAc), visualized by exposure to UV light; IR (vmax, cm-1) 2942 ( s ), 2867 (m), 1674 (w), 1491 (m), 1465 (m), 1444 (m), 1382 (m), 1375 (m), 1367 (m), 1275 ( s$)$, 1254 (m), 1180 (s), 1145 (s), 1098 (s), 1018 (m), 874 (w), 755 (s), 709 (m); ${ }^{1}$ H NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) $\delta 7.49$ (dd, $J=7.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), $7.39-7.31$ (m, 3H, ArH), 5.39 (d, J = $5.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{C}=\mathrm{CH}), 4.79\left(\mathrm{q}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}\right), 3.64(\mathrm{dq}, J=11.2,5.7,4.9$ $\mathrm{Hz}, 1 \mathrm{H},-\mathrm{CH}$ choloresterol), 2.51-2.35 (m, 2H, $-\mathrm{CH}_{2}$ cholesterol), 2.09-1.79 (m,5H,-CH2 cholesterol), 1.65-1.43 (m, 6H, $-\mathrm{CH}_{2}$ cholesterol), 1.39-1.30(m,5H), 1.20-1.05 (m, $6 \mathrm{H},-\mathrm{CH}_{2}$ cholesterol), $1.03\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}\right.$ cholesterol $\left.+-\mathrm{CH}_{3}\right), 0.93(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}$ cholesterol $+-\mathrm{CH}_{3}$ ), $0.88\left(\mathrm{dd}, \mathrm{J}=6.7,1.9 \mathrm{~Hz}, 6 \mathrm{H}-2 \mathrm{x}-\mathrm{CH}_{3}\right), 0.69\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) $\delta 140.4,132.2,129.4,128.5,122.8$ ( $q, J=281.5 \mathrm{~Hz}), 122.5$, 121.5, 87.8, 80.3 ( $q, J=2.2 \mathrm{~Hz}$ ), $79.8,67.2(q, J=34.8 \mathrm{~Hz}$ ), 56.9, 56.3, 50.2, 42.5, 39.9, $39.7,39.4,37.1,36.9,36.3,35.9,32.1,32.0,28.4,28.2,27.9,24.4,24.0,23.0,22.7,21.2$, 19.5, 18.9, 12.0; ${ }^{19}$ F NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-77.20(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, minor diastereoisomer), -77.21 (d, $J=5.5 \mathrm{~Hz}$, major diastereoisomer); HRMS (APPI/LTQOrbitrap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{~F}_{3} \mathrm{O}^{+} 568.3887$; Found 568.3912.

Benzyl N-((benzyloxy)carbonyl)-O-((S)-1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)-L-serinate (11a):


Compound 11a was prepared from 2a ( $94 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00$ equiv.) and benzyl 3-hydroxy-2-(phenylmethoxycarbonylamino)propanoate (5f) ( $131.7 \mathrm{mg}, 0.4000 \mathrm{mmol}$, 2.00 equiv.) in 16 h following the procedure A . It was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a white solid ( 64 mg , $0.13 \mathrm{mmol}, 63 \%$ ): The diastereomeric ratio (dr) resulted to be 93:7 and was determined by ${ }^{19} \mathrm{~F}$ NMR of the crude mixture; $\boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=18.4$ ( $\mathrm{c}=0.05, \mathrm{CHCl}_{3}$ ); $\mathbf{T L C} \boldsymbol{R}_{\boldsymbol{f}}=0.13$ (95:5 Hexane/EtOAc), visualized by exposure to UV light and/or KMnO4; IR ( $\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$ ) 2953 (w), 2233 (w), 1749 (m), 1725 (s), 1526 (m), 1519 (m), 1511 (m), 1506 (m), 1494 (m), 1456 (m), 1451 ( w ), 1341 (m), 1274 (s), 1256 (m), 1195 (s), 1188 (s), 1146 (s), 1116 (m), 1070 (m), 1064 (m), 773 (w), 755 (m), 745 (m), 741 (m), 703 (m); 1H NMR ( 400 MHz , $\mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers) $\delta 7.51-7.27$ (m, 15H, ArH), 5.73 ( $\mathrm{d}, \mathrm{J}=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHNH}-), 5.23\left(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 5.12\left(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 4.67$ ( $q, J=5.8 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CHCF}_{3}$ ), $4.25-4.06\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers) $\delta$ 169.5, 156.1, 136.2, 135.2, 132.2, 129.7, 128.7, 128.7, 128.6, 128.5, 128.3, 128.2, 122.3 ( $q, J=283.5 \mathrm{~Hz}$ ), 120.8, 128.2, 89.7, 78.0, 70.4, 70.0-69.7 (m) , 67.8, 67.71 67.3, 54.4; ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers) $\delta-76.4$ ( $\mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}$, major diastereoisomer), -76.5 (d, $J=6.1 \mathrm{~Hz}$, minor diastereoisomer); HRMS (ESI/QTOF) m/z: [M + Na] Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NNaO}_{5}{ }^{+}$534.1499; Found 534.1497.

Benzyl N-((benzyloxy)carbonyl)-O-((S)-1,1,1-trifluoro-4-(triisopropylsilyl)but-3-yn-2-yl)-L-serinate (11b):


Compound 11b was prepared from 2d ( $110.1 \mathrm{mg}, 0.2000 \mathrm{mmol}, 1.00$ equiv.) and benzyl 3-hydroxy-2-(phenylmethoxycarbonylamino)propanoate (5f) ( $131.7 \mathrm{mg}, 0.4000 \mathrm{mmol}$, 2.00 equiv.) in 16 h following the procedure A . It was purified by flash column chromatography ( $100 \%$ to $90: 10$, Pentane/EtOAc) and obtained as a white solid ( 78.0 $\mathrm{mg}, 0.132 \mathrm{mmol}, 66 \%)$ : The diastereomeric ratio (dr) resulted to be $90: 10$ and was determined by ${ }^{19} \mathrm{~F}$ NMR of the crude mixture; $\boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-169.7$ ( $\mathrm{c}=0.1, \mathrm{CHCl}_{3}$ ); $\mathbf{T L C} \boldsymbol{R}_{f}=0.20$ (90:10 Hexane/EtOAc), visualized by exposure to UV light; IR ( $\mathbf{v}_{\text {max }} \mathbf{c m}^{-1}$ ) 2946 (m), 2871 (m), 1749 (m), 1729 (m), 1504 (m), 1462 (m), 1340 (m), 1274 (m), 1220 (m), 1187 ( s$)$, 1148 ( s ), 1119 (m), 1063 (m), 1057 (m), 883 (m), 773 (s); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCl $_{3}$, mixture of inseparable diatereoisomers, indicated peaks belongs to the major diastereoisomer) $\delta 7.39-7.28(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 5.65(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}-$ ), 5.26-5.16 (m, 2H, $-\mathrm{CH}_{2} \mathrm{Ph}$ ), 5.14-5.10 (m, 2H, $\left.-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.67-4.63\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCO}_{2} \mathrm{Bn}\right), 4.44(\mathrm{q}, \mathrm{J}=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ), $4.12\left(\mathrm{dd}, \mathrm{J}=9.3,2.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2}-\right.$ ), $4.05(\mathrm{dd}, \mathrm{J}=9.3,3.1 \mathrm{~Hz}, 1 \mathrm{H},-$ $\mathrm{OCH}_{2}-$ ), 1.07 (s, 21H, -TIPS); ${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$, mixture of diasteroisomers, indicated peaks belongs to the major diastereoisomer) $\delta$ 169.5, 156.1 136.2, 135.3, 128.7, 128.7, 128.6, 128.3, 128.30, 128.2, 122.1 ( $q, J=282.1 \mathrm{~Hz}$ ), 95.5, 93.3, $70.0-69.0$ ( $\mathrm{m}, 2 \mathrm{C}$ ) , 67.7, 67.7, 67.3, $54.3,18.5,11.0 ;{ }^{19} \mathrm{~F}$ NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers) $\delta-76.5$ ( $\mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}$, minor diastereoisomer), -76.8 ( $\mathrm{d}, \mathrm{J}$ $=5.5 \mathrm{~Hz}$, major diastereoisomer); HRMS (ESI/QTOF) m/z: $\left[\mathrm{M} \mathrm{+} \mathrm{Na]}{ }^{+}\right.$Calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{NNaO}_{5} \mathrm{Si}^{+} 614.2520$; Found 614.2536 .
6. Procedures and Compound Characterization for the Enantioselective 3Component Reaction between 1, 2 and Anilines (12)

In order to avoid reproducibility issues, a Stock Solution of the catalyst was prepared triplicating the corresponding amount of CuCl, AgNTf 2, L2 and DCE belonging to a 0.25 mmol scale $3-C R$ reaction. Then, the same catalytic stock solution was used for 2 reactions.

Procedure D: Synthesis of Trifluoromethylated Propargylic Anilines 13aa-13af, 13da, 13ea, 13fa, 13ga.


Stock solution of the catalyst: In an oven-dried microwave vial, $\mathrm{CuCl}(1.5 \mathrm{mg}, 1.5 \mu \mathrm{~mol}$, 0.060 equiv.), $\mathrm{AgNTf}_{2}(5.8 \mathrm{mg}, 1.5 \mu \mathrm{~mol}, 0.060$ equiv.) and L2 ( $6.7 \mathrm{mg}, 1.9 \mu \mathrm{~mol}, 0.075$ equiv) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum- $\mathrm{N}_{2}$. Finally, dry DCE ( 5 mL ) was added into the vial and the resulting pale-green solution was stirring ( 430 rpm ) at room temperature during 1 h .

Procedure: In an oven-dried microwave vial, compound $\mathbf{2}$ ( $0.25 \mathrm{mmol}, 1.00$ equiv.) and aniline (12) (if solid) ( $1.00 \mathrm{mmol}, 4.00$ equiv.) were added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum- $\mathrm{N}_{2}$, followed by the addition of $\mathbf{1}$ ( $0.40 \mathrm{mmol}, 0.33-0.40 \mathrm{M}$ in DCM, 2.00 equiv.) and aniline 12 (if liquid) ( $1.00 \mathrm{mmol}, 4.00$ equiv.). The resulting reaction mixture was stirred at RT under N 2 atmosphere and the catalytic solution ( 1.70 mL ) was added dropwise. After 1 h of reaction, the reaction was monitored by TLC (95:5, Pentane/EtOAc) observing full conversion of 2 (unless otherwise noticed). The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc ( 15 mL ). The solvent was removed under reduced pressure and the resulting residue was purified by preparative thin layer
chromatography (the crude was distributed into 2 plates to favour the separation) according to the conditions described for each compound.

Methyl (R)-4-((1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)amino)benzoate (13aa):


Compound 13aa was prepared from 2a ( $117.5 \mathrm{mg}, 0.2500 \mathrm{mmol}, 1.00$ equiv.) and methyl 4-aminobenzoate (12a) ( $151.2 \mathrm{mg}, 1.000 \mathrm{mmol}, 4.00$ equiv.) following the procedure D . It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a white amorphous solid. ( $59.0 \mathrm{mg}, 0.178 \mathrm{mmol}, 71 \%$ ). The enantiomeric ratio (er) resulted to be $94: 6$ and was determined by chiral HPLC analysis on a Daicel Chiralpak AI column: AI 95:5 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=25.1$ $\mathrm{min}, \mathrm{t}_{\mathrm{R}(\text { major })}=31.2 \mathrm{~min} . \quad \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-387.7\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC} \boldsymbol{R}_{f}=0.13$ (95:5 pentane/ EtOAc); visualized by UV light; IR (vmax, cm-1) 3348 (w), 1699 (m), 1606 (s), 1530 (m), 1492 ( w ), 1437 (m), 1310 (m), 1288 ( s$), 1258$ ( s$), 1181$ ( s$), 1132$ ( s$), 1116$ (m), 1015 ( w$)$, $969(\mathrm{w}), 841(\mathrm{w}), 771(\mathrm{~m}), 757(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.95(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), $7.47-7.41$ (m, 2H, ArH), $7.40-7.30$ (m, 3H, ArH), 6.76 (d, J = 8.9 Hz, 2H, ArH), 5.03 (dq, J = 9.2, 5.9 Hz, 1H, -CHCF 3 ), 4.56 (d, J = $9.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}-$ ), $3.88\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ ); ${ }^{13}$ C NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.0,148.9,132.1,131.7,129.5,128.5,123.7(\mathrm{q}, J=282.4 \mathrm{~Hz}) 121.5$, 121.1, 113.1, 86.7, 79.7 ( $q, J=2.6 \mathrm{~Hz}$ ), $51.9,49.7$ ( $q, J=35.0 \mathrm{~Hz}$ ); ${ }^{19}$ F NMR ( 376 MHz , $\mathrm{CDCl}_{3}$ ) $\delta-75.6(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}) ;$ HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+}$334.1049; Found 334.1051. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2]}$,

Methyl ( $R$ )-4-((1,1,1-trifluoro-4-(triisopropylsilyl)but-3-yn-2-yl)amino)benzoate (13da):


Compound 13da was prepared from 2d ( $137.6 \mathrm{mg}, 0.2500 \mathrm{mmol}, 1$ equiv.) and methyl 4-aminobenzoate (12a) ( $151.2 \mathrm{mg}, 1.000 \mathrm{mmol}, 4.00$ equiv.) following the procedure D . It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a white amorphous solid. ( $54.0 \mathrm{mg}, 0.131 \mathrm{mmol}, 52 \%$ ): The enantiomeric ratio (er) resulted to be $86: 14$ and was determined by chiral HPLC analysis on a Daicel Chiralpak AI column: AI 95:5 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=5.4$ $\mathrm{min}, \mathrm{t}_{\mathrm{R}(\text { major })}=5.7 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=104.1\left(\mathrm{c}=0.275, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC} \boldsymbol{R}_{\mathrm{f}}=0.14$ (97:3 pentane/ EtOAc$)$, visualized by exposure to UV light; IR (vmax, cm-1) 3357 (w), 2946 (m), 2867 (m), 1703 (s), 1699 (m), 1606 (s), 1537 (m), 1523 (m), 1465 (m), 1436 (m), 1320 (m), 1281 (s), 1252 (s), 1178 (s), 1133 (s), 1112 (s), 1044 (m), 1018 (m), 997 (m), 970 (w), 920 (w), 885 (m), $840(\mathrm{~m}), 770(\mathrm{~s}), 767(\mathrm{~s}), 720(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCl $_{3}$ ) $\delta 7.92(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 6.73 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), $4.82\left(\mathrm{dq}, J=9.0,5.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}\right.$ ), $4.33(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H},-\mathrm{NH}-$ ), $3.87\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.05(\mathrm{~s}, 21 \mathrm{H}, \mathrm{TIPS}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.0$, 148.9, 131.6, 123.6 ( $q, J=284.5 \mathrm{~Hz}$ ), 121.5, 110.9, $97.3,89.8$ (br, s), 51.9, 49.8 ( $q, J=34.5$ $\mathrm{Hz}), 18.6,11.1 ;{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-75.7(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}$ ); HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}$ : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{Si}^{+}$414.2071; Found 414.2075. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2]}$

Methyl ( $R$ )-4-((4-cyclopropyl-1,1,1-trifluorobut-3-yn-2-yl)amino)benzoate (13ea):


Compound 13ea was prepared from $\mathbf{2 e}(108.5 \mathrm{mg}, 0.2500 \mathrm{mmol}, 1$ equiv.) and methyl 4-aminobenzoate (12a) ( $151.2 \mathrm{mg}, 1.000 \mathrm{mmol}, 4.00$ equiv.) following the procedure D .

It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a white amorphous solid ( $53.0 \mathrm{mg}, 0.178 \mathrm{mmol}, 71 \%$ ): The enantiomeric ratio (er) resulted to be $91: 9$ and was determined by chiral HPLC analysis on a Daicel Chiralpak AI column: AI 95:5 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { major })}=15.3$ $\min , \mathrm{t}_{\mathrm{R}(\text { minor })}=17.8 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=354.5$ ( $\left.\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC} R f 0.08$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR ( $v_{\text {max }}, \mathrm{cm}^{-1}$ ) 3354 ( m ), 2250 ( w ), 1700 ( s$), 1606$ ( s$)$, 1526 (m), 1437 (m), 1284 ( s$), 1254$ ( s$), 1178$ ( s$), 1130$ ( s$), 1114$ ( s$), 965$ (m), 953 (m), 906 (m), $842(\mathrm{~m}), 813(\mathrm{~m}), 770(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.91(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 6.68 (d, J = 8.9 Hz, 2H, ArH), $4.78-4.68$ (m, 1H, $-\mathrm{CHCF}_{3}$ ), 4.32 (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}-$ ), 3.86 (s, 3H, -CO2Me), 1.31-1.20(m, 1H, -CHC-), 0.84-0.77 (m, 2H, -CH2-), 0.74-0.67 ( $\mathrm{m}, 2 \mathrm{H},-\mathrm{CH}_{2}-$ ); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.1,149.0,131.6,123.7$ ( $\mathrm{q}, \mathrm{J}=281.3 \mathrm{~Hz}$ ), 121.24, 113.0, 91.0, 66.1 ( $q, J=2.6 \mathrm{~Hz}), 51.9,49.2$ ( $q, J=35.1 \mathrm{~Hz}$ ), 8.46, -0.61 ; ${ }^{19}$ F NMR (377 MHz, CDCl ${ }_{3}$ ) $\delta-76.0\left(d, J=5.5 \mathrm{~Hz}\right.$ ); HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+}$298.1049; Found 298.1051.

Methyl (R)-4-((1,1,1-trifluoro-5,5-dimethylhex-3-yn-2-yl)amino)benzoate (13fa):


Compound 13fa was prepared from $\mathbf{2 f}$ ( $112.5 \mathrm{mg}, 0.2500 \mathrm{mmol}, 1.00$ equiv.) and methyl 4-aminobenzoate (12a) ( $151.2 \mathrm{mg}, 1.000 \mathrm{mmol}, 4.00$ equiv.) following the procedure $D$. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a white amorphous solid ( $50.1 \mathrm{mg}, 0.160 \mathrm{mmol}, 64 \%$ ). The enantiomeric ratio (er) resulted to be 94:6 and was determined by chiral HPLC analysis on a Daicel Chiralpak ID column: AI 99:1 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { major })}=9.5$ $\min , \mathrm{t}_{\mathrm{R}(\text { minor })}=10.9 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-20\left(\mathrm{c}=0.33, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC} \boldsymbol{R}_{\boldsymbol{f}}=0.11$ (97:3 pentane/ EtOAc), visualized by UV light; IR ( $\mathbf{v}_{\text {max }}$ cm $^{-1}$ ) 3351 (w), 2974 (w), 2953 (w), 2251 (w), 1703 (m), 1608 ( s ), 1527 ( w ), 1438 (m), 1321 ( w$), 1287$ (m), 1264 (m), 1219 ( w$), 1181$ ( s$), 1133$ (m), 1115 (m), 772 (s); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.91$ (d, $\mathrm{J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), $6.70(\mathrm{~d}, \mathrm{~J}=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), $4.83-4.71\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCF}_{3}\right), 4.34(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}-$ ), $3.86(\mathrm{~s}, 3 \mathrm{H},-$
$\left.\mathrm{OCH}_{3}\right), 1.21\left(\mathrm{~s}, 9 \mathrm{H},\left(-\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.1,149.1,131.6,123.8$ (q, $J=280.4 \mathrm{~Hz}$ ), 121.1, 112.9, 96.0, $69.6(q, J=2.5 \mathrm{~Hz}) ; 51.9,49.1(q, J=34.5 \mathrm{~Hz}), 30.6(3 \mathrm{x}$ $\mathrm{CH}_{3}$ ), 27.6; ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-76.2(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}$ ); HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}$ $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+}$314.1362; Found 314.1364. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2]}$

Methyl ( $R$ )-4-((1,1,1-trifluoro-4-(thiophen-2-yl)but-3-yn-2-yl)amino)benzoate (13ga):


Compound 13ga was prepared from $\mathbf{2 g}(119.0 \mathrm{mg}, 0.2500 \mathrm{mmol}, 1.00$ equiv.) and methyl 4-aminobenzoate (12a) ( $151.2 \mathrm{mg}, 1.000 \mathrm{mmol}, 4.00$ equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a white amorphous solid ( $55.1 \mathrm{mg}, 0.162 \mathrm{mmol}, 65 \%$ ). The enantiomeric ratio (er) resulted to be 91:9 and was determined by chiral HPLC analysis on a Daicel Chiralpak Al column: AI 90:10 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=14.6$ $\mathrm{min}, \mathrm{t}_{\mathrm{R}(\text { major })}=17.4 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-412.5\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \mathbf{T L C} \boldsymbol{R}_{f}=0.11$ (95:5 pentane/ EtOAc), visualized by UV light; IR ( $\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$ ) 3357 (w), 2946 (m), 2867 (m), 1703 (s), 1699 (m), 1606 (s), 1537 (m), 1523 (m), 1465 (m), 1436 (m), 1320 (m), 1281 (s), 1252 ( s$), 1178$ (s), 1133 ( s$), 1112$ ( s$), 1044$ (m), 1018 (m), 997 (m), 970 ( w$), 920$ ( w$), 885$ (m), 840 (m), 770 (s), 767 (s), 720 (m); 1H NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.94$ (d, J = $8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), 7.33 $-7.26(\mathrm{~m}, 2 \mathrm{H}$, tiophene), 6.98 (dd, $J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, tiophene), $6.75(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 5.04 (dq, J = 9.3, 6.0 Hz, 1H, -CHCF3 $), 4.51\left(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}-\right.$ ), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13}$ C NMR ( 101 MHz, CDCl $_{3}$ ) $\delta 167.0,148.8,133.8,131.7,128.6,127.2,123.5(q, J=282.4$ $\mathrm{Hz}), 121.6,120.8,113.1,83.5(\mathrm{q}, \mathrm{J}=2.3 \mathrm{~Hz}), 80.3$, $51.9,49.9(\mathrm{q}, \mathrm{J}=35.2 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ( 376 MHz, CDCl $_{3}$ ) $\delta-75.4\left(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}\right.$ ); HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}$340.0614; Found 340.0614 . The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2]}$
(R)-N-(1,1,1-Trifluoro-4-phenylbut-3-yn-2-yl)-4-(trifluoromethyl)aniline (13ab):


Compound 13ab was prepared from 2a ( $117.5 \mathrm{mg}, 0.2500 \mathrm{mmol}, 1.00$ equiv.) and 4 (trifluoromethyl)aniline (12b) ( $128 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 4.00$ equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a yellow oil ( 50.0 mg , $0.146 \mathrm{mmol}, 65 \%$ ). The enantiomeric ratio (er) resulted to be 94:6 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 95:5 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=10.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { major })}=11.7$ min; TLC Rf 0.20 (97:3 pentane/EtOAc), visualized by UV light; $\boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-320.5$ ( $c=0.1$, $\mathrm{CHCl}_{3}$ ); IR (vmax, cm${ }^{-1}$ ) 2939 (w), 2864 (w), 1595 (w), 1524 (m), 1491 (m), 1346 (s), 1271 (m), 1256 (m), 1217 (m), 1184 ( s$), 1143$ ( s$), 1102$ ( m ), 857 ( m ), 772 ( s$), 759$ ( s$) ;{ }^{1}{ }^{\mathbf{H}} \mathbf{~ N M R ~ ( 4 0 0 ~ M H z , ~}$ $\left.\mathrm{CDCl}_{3}\right) \delta 7.54-7.44(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.40-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.82(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 4.99 (dq, J = 9.2, $5.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ), 4.38 (d, J = $9.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}-$ ); ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 147.7,132.2,129.6,128.6,127.0(q, J=3.7 \mathrm{~Hz}), 126.0,124.7(q, J=271.1 \mathrm{~Hz})$, $123.7(q, J=282.3 \mathrm{~Hz}) .122 .0(q, J=32.6 \mathrm{~Hz}), 121.1,113.6,86.8,79.7(q, J=2.6 \mathrm{~Hz}), 49.9$ ( $q, J=35.2 \mathrm{~Hz}$ ); ${ }^{19}$ F NMR ( 376 MHz, CDCl $_{3}$ ) $\delta-61.5,-75.6(\mathrm{~d}, J=5.4 \mathrm{~Hz}$ ); HRMS (ESI/QTOF) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}^{+}$344.0868; Found 344.0868. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2]}$
(R)-2-Fluoro- $N$-(1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)aniline (13ac):


Compound 13ac was prepared from 2a ( $117.5 \mathrm{mg}, 0.2500 \mathrm{mmol}, 1.00$ equiv.) and 2fluoroaniline (12c) ( $100 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 4.00$ equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a white amorphous solid (45.0 $\mathrm{mg}, 0.153 \mathrm{mmol}, 61 \%$ ). The enantiomeric ratio (er) resulted to be 95:5 and was
determined by chiral HPLC analysis on a Daicel Chiralpak AI N-5 column: AI 99:1 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=5.6$ $\mathrm{min}, \mathrm{t}_{\mathrm{R}(\text { major })}=6.1 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-322.6\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \operatorname{TLC} R_{f}=0.44$ (97:3 pentane/EtOAc), visualized by UV light; IR ( $\mathbf{v}_{\text {max }}$ cm $^{-1}$ ) 3437 (w), 3062 (w), 2237 (w), 1620 (w), 1516 (m), 1454 ( w ), 1338 (m), 1257 (s), 1184 (s), 1134 (s), 752 (s), 849 (w), 1034 (w), 991 (w); ¹H NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.50-7.44 (m, 2H, ArH), 7.40-7.29 (m, 3H, ArH), 7.11-7.02 (m, 2H, ArH), 6.92-6.87 (m, 1H, ArH), 6.85-6.80 (m, 1H, ArH), 4.93 (dq, J = 9.4, 6.0 Hz, 1H, $\mathrm{CHCF}_{3}$ ), 4.37 ( $\mathrm{d}, \mathrm{J}=12.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}-$ ); ${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.3(\mathrm{~d}, \mathrm{~J}=240 \mathrm{~Hz})$, 133.5 ( $d, J=11.4 \mathrm{~Hz}$ ), 132.2, 129.4, 128.5, 124.8 ( $d, J=4.0 \mathrm{~Hz}$ ), 123.8 ( $q, J=280 \mathrm{~Hz}$ ), 121.3, 120.1 ( $\mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}$ ), 115.4 ( $\mathrm{d}, \mathrm{J}=18.7 \mathrm{~Hz}$ ), 114.2, $86.6,80.1(\mathrm{q}, J=2.6 \mathrm{~Hz}), 50.4$ ( $q, J=34.8 \mathrm{~Hz}$ ); ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-75.7(\mathrm{~d}, J=6.1 \mathrm{~Hz}),-134.5(\mathrm{tq}, J=8.9,4.1$ Hz ); HRMS (ESI/QTOF) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{4} \mathrm{~N}^{+}$294.0900, found 294.0905. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2]}$
(R)-1-(3-((1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)amino)phenyl)ethan-1-one (13ad):


Compound 13ad was prepared from 2a ( $117.5 \mathrm{mg}, 0.2500 \mathrm{mmol}, 1.00$ equiv.) and 1-(3-aminophenyl)ethan-1-one ( $\mathbf{1 3 d}$ ) ( $135.2 \mathrm{mg}, 1.00 \mathrm{mmol}, 4.00$ equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a colorless oil ( $45.0 \mathrm{mg}, 0.142 \mathrm{mmol}, 57 \%$ ). The enantiomeric ratio (er) resulted to be $87: 13$ and was determined by chiral HPLC analysis on a Daicel Chiralpak AI N-5 column: AI 95:5 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{tR}($ minor $)=18.6$ $\mathrm{min}, \mathrm{t}_{\mathrm{R}(\text { major })}=31.6 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=18.6\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC} R f=0.25$ (96:4 pentane/EtOAc), visualized by UV light; IR ( $\mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$ ) 1681 ( s$), 1605$ ( s$), 1534$ (m), 1522 (m), 1491 (m), 1441 (m), 1359 (m), 1324 (m), 1303 (m), 1266 (s), 1230 (m), 1184 ( s$), 1134$ ( s$), 789$ (m), 765 (m), 759 (s); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCl $_{3}$ ) $\delta 7.46-7.43$ (m, 3H, ArH), 7.40-7.37 (m, 2H, ArH), 7.36-7.29 (m, 3H, ArH), 6.99 (dd, J = 8.0, $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}$ ), 5.00 (dq, J = 9.4, 6.0 Hz, $\left.1 \mathrm{H},-\mathrm{CHCF}_{3}\right), 4.23(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}-), 2.59\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 198.2,145.4,138.5,132.1,129.8,129.4,128.5,123.8(q, J=282.3 \mathrm{~Hz}), 121.3,120.6$, , 119.2, 113.4, 86.6, 80.1 ( $q, J=2.3 \mathrm{~Hz}$ ), 50.4 ( $\mathrm{q}, J=34.7 \mathrm{~Hz}$ ), 26.9; ${ }^{19}$ F NMR ( 376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-75.6(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz})$; HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[M+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{4} \mathrm{~S}^{+}$394.1084; Found 394.1081.
(R)-1-(1,1,1-Trifluoro-4-phenylbut-3-yn-2-yl)-1,2,3,4-tetrahydroquinoline (13ae):


Compound 13ae was prepared from 2a ( $117.5 \mathrm{mg}, 0.2500 \mathrm{mmol}, 1.00$ equiv.) and 4(trifluoromethyl)aniline (12e) ( $130 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 4.00$ equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a yellow oil (40.1 mg, $0.127 \mathrm{mmol}, 51 \%)$. The enantiomeric ratio (er) resulted to be $94: 6$ and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 99:1 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=5.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { major })}=7.6 \mathrm{~min}$; $\boldsymbol{\alpha}_{\mathrm{D}}{ }^{\mathbf{2 3}}=-20\left(\mathrm{c}=0.33, \mathrm{CHCl}_{3}\right) ; \operatorname{TLC} \boldsymbol{R f}=0.39$ (97:3 pentane/EtOAc), visualized by exposure to UV light; IR ( $\mathbf{v}_{\max } \mathbf{c m}^{\mathbf{- 1}}$ ) 3062 (w), 3028 (w), 2935 (m), 2858 (w), 2233 (w), 1604 (m), 1496 (m), 1454 (m), 1354 (m), 1304 (m), 1254 (s), 1126 (s), 1176 (s), 1057 (w), 991 (w), 891 (w), 833 (w), 752 (s); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.50(\mathrm{dd}, \mathrm{J}=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), 7.41-7.33 (m, 3H, ArH), 7.17-7.10 (m, 1H, ArH), $7.05(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.85-6.74$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}), 5.35\left(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}\right), 3.76\left(\mathrm{dt}, J=11.0,5.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NCH}_{2}\right), 3.43$ ( $\mathrm{dt}, \mathrm{J}=11.0,5.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NCH}_{2}$ ), $2.83\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ ), 2.06-1.96 (m, 2H, $-\mathrm{CH}_{2}-$ ); ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 144.3,132.1,130.0,129.2,128.5,127.3,124.5$ ( $\mathrm{q}, \mathrm{J}=285.4$ $\mathrm{Hz}), 124.6,121.7,118.7,112.8,88.2,78.8(q, J=2.6 \mathrm{~Hz}), 55.4(q, J=33.9 \mathrm{~Hz}), 45.7,28.1$, 21.9; ${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-73.2\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}\right.$ ); HRMS (ESI/QTOF) m/z [M + H] ${ }^{+}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}^{+} 316.1308$, found 316.1310 . The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2]}$
(R)-4-methyl-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)aniline (13af):


Compound 13af was prepared form 2a ( $117.5 \mathrm{mg}, 0.2500 \mathrm{mmol}, 1.00$ equiv.) and $p$ toluidine (12f) ( $107.2 \mathrm{mg}, 1.000 \mathrm{mmol}, 4.00$ equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a pale-yellow oil ( $42.0 \mathrm{mg}, 0.145$ $\mathrm{mmol}, 58 \%$ ). The enantiomeric ratio (er) resulted to be 82:18 and was determined by chiral HPLC analysis on a Daicel Chiralpak AI column: AI 95:5 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=5.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { major })}=6.1 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}$ $=-302.7$ ( $\mathrm{c}=0.1, \mathrm{CHCl}_{3}$ ); TLC $\boldsymbol{R}_{f}=0.23$ (97:3 pentane/EtOAc), visualized by exposure to UV light; IR (vmax, cmn 3371 (w), 2936 (w), 1516 (s), 1491 (m), 1466 (w), 1444 (w), 1353 (m), 1268 (m), 1239 (s), 1181 (s), 1133 (s), 1033 (m), 990 (w), 821 (m), 770 (s), 761 (s); ¹H NMR (400 MHz, CDCl 3 ) $\delta 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.07(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 6.72 (d, J = 8.5 Hz, 2H, ArH), 4.86 (dq, J = 9.5, $6.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ), 3.91 (d, J = 9.5 $\mathrm{Hz}, 1 \mathrm{H},-\mathrm{NH}-$ ), $2.28\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 142.8, 132.1, 130.1, 129.8, $129.3,128.5,123.9$ ( $q, J=281.7 \mathrm{~Hz}$ ), 121.6, 115.0, $86.2,80.9$ ( $q, J=2.2 \mathrm{~Hz}$ ), 51.2 (q, $J=$ $34.1 \mathrm{~Hz}), 20.6 ;{ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-75.7 (d, $\mathrm{J}=6.1 \mathrm{~Hz}$ ); HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}$ : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}^{+}$290.1151; Found 290.1152. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2]}$
(R)-4-Methoxy- $N$-(1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)aniline (13ag):


Compound 13ag was prepared form 2a ( $117.5 \mathrm{mg}, 0.2500 \mathrm{mmol}, 1.00$ equiv.) and $p$ anisidine ( $\mathbf{1 2 g}$ ) ( $123.2 \mathrm{mg}, 1.000 \mathrm{mmol}, 4.00$ equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a pale-yellow oil ( $48.0 \mathrm{mg}, 0.157$ mmol, 63\%). The enantiomeric ratio (er) resulted to be 81:19 and was determined by chiral HPLC analysis on a Daicel Chiralpak AI column: AI 97:3 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=9.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { major })}=10.1 \mathrm{~min}$.; $\boldsymbol{\alpha}^{23}=-236.3\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ;$ TLC $\boldsymbol{R}_{f}=0.12$ (97:3 pentane/EtOAc), visualized by exposure to UV light; IR ( $v_{\max } \mathrm{cm}^{-1}$ ) 2947 ( w ), 1512 ( s$), 1491$ ( m ), 1349 (m), 1270 (m), 1240 ( s ), 1236 (s), 1181 ( s$), 1134$ ( s$), 1033$ (m), 823 (m), 773 (m), 770 (m), 759 (m); ¹H NMR (400 MHz, $\mathrm{CDCl}_{3}$ ) 7.47-7.41 (m, 2H, ArH), 7.37-7.29 (m, 3H, ArH), 6.87-6.77 (m, 4H, ArH), 4.77 (dq, J = 9.8, $6.3 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ), $3.78-3.76\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{NH}-+-\mathrm{OCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 154.3,139.0,132.1,129.3,128.5,123.9(q, J=281.5 \mathrm{~Hz}), 121.6,117.0$, $115.0,86.4,81.0(q, J=2.6 \mathrm{~Hz}), 55.8,52.3(q, J=33.9 \mathrm{~Hz}) ;{ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 75.7 (d, $J=6.8 \mathrm{~Hz}$ ); HRMS (ESI/QTOF) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}^{+} 306.1100$; Found 306.1100. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[2]}$,

## 7. Procedures and Compound Characterization for the Enantioselective 3Component Reaction between 1, 2 and Phenols (14) and Carboxylic Acids (16)

Procedure E: Synthesis of Trifluoromethylated Phenol Ethers 15a-15b and ester (17)
Stock solution of the catalyst: In an oven-dried microwave vial, $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{SbF}_{6}(3.8 \mathrm{mg}$, $1.2 \mu \mathrm{~mol}, 0.060$ equiv) and L1 ( $4.4 \mathrm{mg}, 1.5 \mu \mathrm{~mol}, 0.075$ equiv.) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum $-\mathrm{N}_{2}$. Finally, dry DCE $(3.9 \mathrm{~mL})$ was added into the vial and the resulting colourlesss solution was stirring ( 430 rpm ) at room temperature during 1 h .

Procedure: In an oven-dried microwave vial, compound 2a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and phenol (14a-14b, if solid) ( $0.80 \mathrm{mmol}, 4.00$ equiv.) were added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N2, followed by the addition of $1(0.40 \mathrm{mmol}, 0.33-0.40 \mathrm{M}$ in DCM, 2.00 equiv.) and phenol ( $\mathbf{1 4 a} \mathbf{- 1 4 b}$, if liquid). The resulting reaction mixture was stirred at RT under N 2 atmosphere and the catalytic solution ( 1.30 mL ) was added dropwise. After 1 h of reaction, the reaction was monitored by TLC (95:5, Pentane/EtOAc) observing full conversion of $\mathbf{2}$ (unless otherwise noticed). The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc ( 15 mL ). The solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography according to the conditions described for each compound.
(S)-(4,4,4-Trifluoro-3-phenoxybut-1-yn-1-yl)benzene (15a):


Compound 15a was prepared form 2a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and phenol (14a) ( $75.3 \mathrm{mg}, 0.800 \mathrm{mmol}, 4.00$ equiv.) following the procedure E . It was purified by flash column chromatography ( $100 \%$ Pentane to 97:3 Pentane/EtOAc) and obtained as a pale-yellow oil ( $43.2 \mathrm{mg}, 0.160 \mathrm{mmol}, 80 \%$ ). The enantiomeric ratio (er) resulted to be 80:20 and was determined by chiral HPLC by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=10.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { major })}=11.1 \mathrm{~min} . \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-95.0\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC}$ $\boldsymbol{R}_{f} 0.54$ (99:1 pentane/EtOAc), visualized by exposure to UV light; IR ( $v_{\text {max }}, \mathrm{cm}^{-1}$ ) 2957 ( w ), 2918 (w), 2226 (w), 1595 (w), 1494 (m), 1278 (m), 1255 (m), 1220 (s), 1188 (m), 1148 (s), 1079 (m), 1072 (m), 877 (w), 770 (s), 767 ( s ); ${ }^{1}$ HNMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $87.50-7.44$ (m, 2H, ArH), $7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 5.32\left(\mathrm{q}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}\right)$; ${ }^{13}$ CNMR ( $\mathbf{1 0 1} \mathrm{MHz}$, CDCl $_{3}$ ) $\delta 156.6,132.2,129.8,129.7,128.5,122.3$ (q, J = 281.2 Hz ), 121.0, 118.1, 116.5, 89.4, 78.8 ( $d, J=2.2 \mathrm{~Hz}$ ), 68.6 ( $q, J=36.3 \mathrm{~Hz}$ ); ${ }^{19}$ F NMR ( 376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-76.7(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}) ;$ HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Ag}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{AgF}_{3} \mathrm{O}^{+}$382.9807; Found 382.9807.
(S)-1-fluoro-4-((1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)benzene (15b):


Compound 15b was prepared form 2a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and $p$ fluorophenol (14b) ( $89.7 \mathrm{mg}, 0.800 \mathrm{mmol}, 4.00$ equiv.) following the general procedure E. It was purified by flash column chromatography $(100 \%$ Pentane to $97: 3$ Pentane/EtOAc) and obtained as a pale-yellow oil ( $48.8 \mathrm{mg}, 0.166 \mathrm{mmol}, 83 \%$ ). The enantiomeric ratio (er) resulted to be 78:22 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=11.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}(\text { major })}=13.2 \mathrm{~min} . \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=28.0(\mathrm{c}=$ $0.26, \mathrm{CHCl}_{3}$ ); TLC Rf 0.53 (99:1 pentane/EtOAc), visualized by exposure to UV light; IR ( $v_{\max } \mathrm{cm}^{-1}$ ) 3083 (w), 3055 (w), 2936 (w), 2251 (w), 2229 (w), 1505 (s), 1492 (m), 1365 (w), 1275 (m), 1256 (m), 1241 (m), 1218 (s), 1202 (s), 1147 (s), 1098 (w), 1065 (m), 1004 (w), 990 (w), 909 (m), 884 (w), 830 (m), 774 (s), 757 (m), 735 (m); ¹H NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס $7.47-7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.41-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.11-7.00(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 5.23$ $\left(\mathrm{q}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}\right) .{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9(\mathrm{~d}, J=241.3 \mathrm{~Hz}), 152.7(\mathrm{~d}$, $J=3 \mathrm{~Hz}), 132.2,129.8,128.6,122.2(q, J=281.5 \mathrm{~Hz}), 120.9,118.4(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 116.3$ ( $q, J=23.0 \mathrm{~Hz}$ ), 89.7, $78.5(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 69.6(\mathrm{q}, J=34.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-76.8\left(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz},-\mathrm{CF}_{3}\right),-120.3(\mathrm{~m})$. HRMS (Sicrit plasma/LTQ-Orbitrap) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{4} \mathrm{O}^{+}$295.0741; Found 295.0739.
(S)-1,1,1-Trifluoro-4-phenylbut-3-yn-2-yl cyclohexanecarboxylate (17):


Compound 17 was prepared form 2 a ( $94.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.) and cyclohexanecarboxylic acid (16) ( $90.6 \mathrm{mg}, 0.800 \mathrm{mmol}, 4.00$ equiv.) following the general procedure E. It was purified by PTLC (100\% Pentane) and obtained as a paleyellow oil ( $12.4 \mathrm{mg}, 0.0400 \mathrm{mmol}, 20 \%$ ). The enantiomeric ratio (er) resulted to be 90:10
and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { major) }}=8.2$ $\mathrm{min}, \mathrm{t}_{\mathrm{R}(\text { minor })}=8.6 \mathrm{~min} ; \boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=102.8\left(\mathrm{c}=0.125, \mathrm{CHCl}_{3}\right) ; \mathrm{TLC}_{\mathrm{f}}=0.72$ (99:1 pentane/EtOAc), visualized by exposure to UV light; IR ( $\mathbf{v}_{\text {max }} \mathbf{c m}^{-1}$ ) 3356 (w), 3020 (w), 2931 (w), 2843 (w), 1512 (s), 1346 (m), 1242 (s), 1180 ( s$), 1134$ ( s$), 1034$ (m), 822 (m), 756 (m); ${ }^{1}$ H NMR (400 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 7.51$ - 7.48 (m, 2H, ArH), 7.41-7.29 (m, 3H, ArH), 6.10 ( $\mathrm{q}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H},-$ $\mathrm{CHCF}_{3}$ ), 2.47 ( (tt, J = 11.2, 3.6 Hz, 1H, -COCH-), 2.01-1.94 (m, 2H, -CH2, -cyclohexyl), 1.81 - 1.73 (m, 2H, -CH $H_{2}$ cyclohexyl), 1.70-1.63 (m, 1H, -CH cyclohexyl), 1.53-1.42 (m, 1H, CH cyclohexyl), 1.38-1.21 (m, 4H, -CH2 cyclohexyl); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 173.7, 132.4, 129.7, 128.5, 122.1 ( $q, J=281.2 \mathrm{~Hz}$ ), 121.0, $88.0,78.0(q, J=1.8 \mathrm{~Hz}), 61.7$ (q, $J=$ 37.2 Hz ), 42.8, 29.0, 28.7, 25.7, 25.4, 25.3; ${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-76.6(\mathrm{~d}, \mathrm{~J}=5.4$ Hz ).

## 8. Scale up Procedures for Compounds 4an and 11b

### 8.1. Procedure for the scale up of compound 4an



Stock solution of the catalyst: In an oven-dried microwave vial, $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}(6.3 \mathrm{mg}$, $0.020 \mathrm{mmol}, 0.020$ equiv) and $\mathbf{L 1}(3.5 \mathrm{mg}, 1.2 \mu \mathrm{~mol}, 0.060$ equiv) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum $-\mathrm{N}_{2}$. Finally, dry DCE ( 6.7 mL ) was added into the vial and the resulting colourlesss solution was stirring ( 430 rpm ) at room temperature during 1 h .

Procedure: In an oven-dried microwave vial, compound 2a ( $470.1 \mathrm{mg}, 1.000 \mathrm{mmol}, 1.00$ equiv.) was added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum- $\mathrm{N}_{2}$, followed by the addition of 1 (5.6 $\mathrm{mL}, 2.0 \mathrm{mmol}, 0.33-0.40 \mathrm{M}$ in DCM, 2.00 equiv.) and alcohol $3 n(287 \mu \mathrm{~L}, 2.00 \mathrm{mmol}, 2.00$ equiv.). The resulting reaction mixture was stirred at RT under $\mathrm{N}_{2}$ atmosphere and the catalyst solution ( 6.7 mL ) was added dropwise. After 1.30 h of reaction, the reaction was
monitored by TLC (95:5, Pentane/EtOAc) observing full conversion of 2. The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc ( 40 mL ). The solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography ( $100 \%$ to $99: 1$, Pentane/EtOAc) and obtained as a colourless oil ( $153 \mathrm{mg}, 0.509 \mathrm{mmol}, 51 \%$ ). The enantiomeric ratio (er) resulted to be $93: 7$ and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2 \mu \mathrm{~L}$ sample's injection, $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}(\text { minor })}=5.7$ $\mathrm{min}, \mathrm{t}_{\mathrm{R}(\text { major })}=6.3 \mathrm{~min}$. For characterization, see compound 4an

### 8.2. Procedure for the scale up for compound 11b

Stock solution of the catalyst: In an oven-dried microwave vial, $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}(6.3 \mathrm{mg}$, $0.020 \mathrm{mmol}, 0.02$ equiv.) and $\mathbf{L 1}(7.4 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.025$ equiv.) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum $-\mathrm{N}_{2}$. Finally, dry DCE ( 6.7 mL ) was added into the vial and the resulting colourlesss solution was stirring ( 430 rpm ) at room temperature during 1 h .

Procedure: In an oven-dried microwave vial, compound 2a ( $550.4 \mathrm{mg}, 1.000 \mathrm{mmol}, 1.00$ equiv.) and $\mathbf{1 0}$ ( $630.6 \mathrm{mg}, 2.000 \mathrm{mmol}, 2.00$ equiv.) were added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum$\mathrm{N}_{2}$, followed by the addition of 1 ( $5.6 \mathrm{~mL}, 2.0 \mathrm{mmol}, 0.33-0.40 \mathrm{M}$ in DCM, 2.00 equiv.) The resulting reaction mixture was stirred at RT under $\mathrm{N}_{2}$ atmosphere and the catalyst solution ( 6.7 mL ) was added dropwise. After 1 h of reaction, the reaction was monitored by TLC (95:5, Pentane/EtOAc) observing full conversion of $\mathbf{2}$. The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc ( 40 mL ). The solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography ( $100 \%$ to $90: 10$, Pentane/EtOAc) and obtained as a white solid ( 425.0 mg , $0.718 \mathrm{mmol}, 72 \%$ ). The diastereomeric ratio (dr) resulted to be 97:3 and was determined by ${ }^{19} \mathrm{~F}$ NMR of the crude mixture.

## 9. Product functionalization

### 9.1. Procedure for the deprotection of 4an: Synthesis of (S)-1,1,1-trifluoro-4-phenylbut-3-yn-2-ol (18)



Following a reported procedure, ${ }^{6}$ a solution of $4 \mathrm{an}(126 \mathrm{mg}, 0.420 \mathrm{mmol}, 1.00$ equiv., 93:7 e:r) in dry DCM ( 6.5 mL ) was prepared followed by the dropwise addition of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(396 \mu \mathrm{~L}, 2.35 \mathrm{mmol}, 5.60$ equiv.). The colourless solution was stirred at RT under $\mathrm{N}_{2}$ atmosphere. After 1 h , the reaction was monitored by TLC (95:5, Pentane/EtOAc) and full conversion was observed.

The reaction was quenched adding $\mathrm{NaHCO}_{3}(7 \mathrm{~mL})$ and the biphasic mixture was stirring during 10 min at RT. Then, layers were separated, and the aqueous layer was extracted with DCM ( $3 \times 10 \mathrm{~mL}$ ). Organics were recombined, washed with brine ( $1 \times 5 \mathrm{~mL}$ ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography ( $95: 5$ to $80: 20$, Pentane/EtOAc), yielding compound 18 as a colourless oil ( $73.0 \mathrm{mg}, 0.365 \mathrm{mmol}, 87 \%$ ). The enantiomeric ratio (er) resulted to be 94:6 and was determined by chiral HPLC; $\boldsymbol{\alpha}^{23}=-10.3\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)^{7,8}$; TLC $\boldsymbol{R}_{\boldsymbol{f}}=0.020$ (8:2: Hexane/EtOAc), visualized by exposure to UV light; IR ( $\mathbf{v}_{\text {max }} \mathbf{c m}^{\mathbf{- 1}}$ ) 3379 (w), 2975 (w), 2248 (w), 2229 (w), 1491 (m), 1352 (m), 1273 (m), 1256 (m), 1219 (m), 1186 (s), 1140 (s), 1087 (m), 1071 (m), 772 (s), 759 ( s$) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.51-7.45 (m, 2H, ArH), 7.41-7.32 (m, 3H, ArH), 4.92 (p, J = 5.8 Hz, 1H, -CHCF3), 2.75 (d, J = 8.2 Hz, 1H, -OH); ${ }^{13}$ C NMR (101 MHz, CDCl 3 ) $\delta$ 132.2, 129.7, 128.6, 122.9 ( $\mathrm{q}, \mathrm{J}=$

[^7]$281.9 \mathrm{~Hz}), 121.0,88.1,80.6(\mathrm{q}, \mathrm{J}=2.6 \mathrm{~Hz}), 63.1(\mathrm{q}, J=36.5 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-79.4\left(d, J=5.4 \mathrm{~Hz}\right.$ ); HRMS (APCI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{O}^{+}$201.0522; Found 201.0516. The values of the NMR spectra are in accordance with reported literature data. ${ }^{[8!}$

### 9.2. Derivation of compound 18: Synthesis of (S)-1,1,1-trifluoro-4-phenylbut-3-

 yn-2-yl 4-nitrobenzoate (19) ${ }^{8}$

In a MW vial, a solution of 18 ( $72.0 \mathrm{mg}, 0.360 \mathrm{mmol}, 1.00$ equiv.) in dry DCM ( 1 mL ) was prepared followed by the dropwise addition of $\mathrm{Et}_{3} \mathrm{~N}(75 \mu \mathrm{~L}, 0.57 \mathrm{mmol}, 1.50$ equiv.) and the resulting solution was stirred at room temperature during 30 min . After that, $p$ nitrobenzoyl chloride ( $100 \mathrm{mg}, 0.570 \mathrm{mmol}, 1.50$ equiv.) was slowly added into the solution and the reaction mixture was stirred during 2 h at room temperature. After this time, full conversion was observed (monitored by TLC, 80:20, Pentane/EtOAc) and the reaction mixture was quenched with brine ( $1 \times 5 \mathrm{~mL}$ ). The two-layer mixture was stirred during 15 min and then, extracted with DCM ( $3 \times 10 \mathrm{~mL}$ ). The organic layers were recombined and washed with $\mathrm{NaHCO}_{3}(1 \times 5 \mathrm{~mL})$, dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. Compound 19 was obtained after purification by flash column chromatography ( $100 \%$ Pentane to $80: 20$ Pentane/EtOAc) as a white crystalline solid ( $94.3 \mathrm{mg}, 0.270 \mathrm{mmol}, 75 \%$ ): TLC $\boldsymbol{R}_{f}=0.31$ (99:1 pentane/EtOAc), visualized by exposure to UV light; IR ( $v_{\text {max }}$ cm $^{-1}$ ) 2946 ( $w$ ), 2868 (w), 1750 (w), 1534 (w), 1347 ( w ), 1328 (w), 1275 (m), 1260 (m), 1219 (m), 1195 (m), 1147 (m), 1092 (w), 772 (s). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.36-8.20(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.55-7.47$ (m, 2H, ArH), 7.45-7.30 ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}$ ), 6.33 ( $\mathrm{q}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHCF}_{3}$ ). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 162.6, 151.3, 133.7, 132.4, 131.6, 130.0, 128.6, 123.9, 121.9 (q, $J=281.2 \mathrm{~Hz}$ ), 120.5, 89.1, 63.3 (q, J =

[^8]37.8 Hz ). (One C is not resolved); ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-76.3$ ( $\mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}$ ); HRMS (APCI/QTOF) m/z: [M + H ] ${ }^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{O}^{+}$201.0522; Found 201.0516.The values of the NMR spectra are in accordance with reported literature data. ${ }^{[8]}$
9.3. Procedure for the deprotection of the TIPS group: Synthesis of benzyl $N$ -((benzyloxy)carbonyl)-0-((S)-1,1,1-trifluorobut-3-yn-2-yl)-L-serinate (20)


Following a reported procedure, ${ }^{9}$ a solution of $\mathbf{1 1 b}(425 \mathrm{mg}, 0.738 \mathrm{mmol}, 1.00$ equiv. 93:7 er) in dry $\mathrm{MeOH}(7.6 \mathrm{~mL}$ ) was prepared followed by the slowly addition of AgF ( 140 $\mathrm{mg}, 1.10 \mathrm{mmol}, 1.50$ equiv.). The black mixture was stirred at RT during 30 min under $\mathrm{N}_{2}$ atmosphere. After this time, $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL}))$ was added and the resulting suspension was stirred another additional 10 min . The precipitated was filtrated and the aqueous liquors were extracted with DCM ( $3 \times 20 \mathrm{~mL}$ ). Organics were recombined, washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}(1 \times 10 \mathrm{~mL})$, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography (95:5 to 75:25, Pentane/EtOAc), yielding product 20 as a white solid ( $265.0 \mathrm{mg}, 0.609$ $\mathrm{mmol}, 82 \%$ ). The diastereomeric ratio (dr) resulted to be 70:30 and was determined by ${ }^{19} \mathrm{~F}$ NMR of the crude mixture; $\boldsymbol{\alpha}_{\mathrm{D}}{ }^{23}=-174.3$ ( $c=0.1, \mathrm{CHCl}_{3}$ ); TLC $\boldsymbol{R}_{\boldsymbol{f}}=0.18$ (95:5 Hexane/EtOAc), visualized by exposure to UV light and/or $\mathrm{KMnO}_{4}$; IR ( $\mathbf{v}_{\text {max }}, \mathbf{c m}^{\mathbf{- 1}}$ ) 3303 (w), 3036 (w), 2953 (w), 1744 (m), 1719 (s), 1608 (w), 1510 (m), 1465 (w), 1456 (m), 1341 (m), 1273 (s), 1217 (s), 1189 (s), 1148 (s), 1119 (s), 1057 (m), 860 (w), 772 (s), 759 (m); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers) $\delta 7.37-7.32(\mathrm{~m}$, 10H, ArH), 5.65-5.62 (m, 1H, -NH-), 5.25-5.16 (m, 2H, -CH2Ph), 5.14-5.13 (m, 2H, $\mathrm{CH}_{2} \mathrm{Ph}$ ), 4.63-4.61 (m, 1H, $\left.-\mathrm{CHCO}_{2} \mathrm{Bn}\right), 4.53-4.49\left(\mathrm{~m}, 0.39 \mathrm{H}, \mathrm{CHCF}_{3}\right), 4.43-4.39(0.74 \mathrm{H}$, -CHCF 3 ), 4.27-4.24 (m, 0.32H, $-\mathrm{OCH}_{2}-$ ), 4.12 (dd, J = 9.4, $3.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2}-$ ), 4.04 (dd, J

[^9]$\left.=9.3,3.3 \mathrm{~Hz}, 0.82 \mathrm{H},-\mathrm{OCH}_{2^{-}}\right), 3.95-3.92\left(\mathrm{~m}, 0.31 \mathrm{H},-\mathrm{OCH}_{2^{-}}\right), 2.55(\mathrm{~s}, 0.63 \mathrm{H}, \mathrm{HC} \equiv \mathrm{C}-)$, 2.52 ( $\mathrm{s}, 0.31 \mathrm{H}, \mathrm{HC} \equiv C-$ ); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of inseparable diastereoisomers) $\delta 169.4$ (major diastereoisomer), 169.3 (minor diastereoisomer), 156.02 (major diastereoisomer), 156.00 (minor diastereoisomer), 136.2, 135.2, 128.72, 128.68, 128.64, 128.61, 128.6, 128.34, 128.31, 128.2, 122.0 ( $q, J=282.6 \mathrm{~Hz}$, minor diastereoisomer), 121.9 (q, J = 283.2 Hz , major diastereoisomer), 78.4 (minor diastereoisomer), 78.3 (major diastereoisomer), 73.0 (q, J $=2.4 \mathrm{~Hz}$, major diastereoisomer), 72.9 ( $q, J=2.2 \mathrm{~Hz}$, minor diastereoisomer), 69.9, 69.5, 69.0 ( $q, J=35.8$ Hz ), 68.8 ( $q, J=35.6 \mathrm{~Hz}$, minor diastereoisomer), 67.72 (minor diastereoisomer), 67.69 (major diastereoisomer, 67.3, 54.3; ${ }^{19} \mathbf{F} \mathbf{N M R}\left(377 \mathrm{MHz}\right.$, CDCl $_{3}$, mixture of inseparable diastereoisomers) $\delta-76.6(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, minor diastereoisomer), $-76.8(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, major diastereoisomer);HRMS (APPI/LTQ-Orbitrap) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{5}{ }^{+}$436.1366; Found 436.1376

## 10. Preliminary mechanistic studies

- Decomposition of diazo compound under the presence of the catalytic system (catalytic loading)


Stock solution of the catalyst: In an oven-dried microwave vial, $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}(0.90 \mathrm{mg}$, $3.00 \mu \mathrm{~mol}, 0.020$ equiv) and L1 ( $1.10 \mathrm{mg}, 3.70 \mu \mathrm{~mol}, 0.025$ equiv) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N2. Finally, DCM $-d_{2}(1 \mathrm{~mL})$ was added into the vial and the resulting colourlesss solution was stirred (430 rpm) at room temperature during 1 h .

Experiment description: In an oven dried J young NMR tube, 1 ( $0.430 \mathrm{~mL}, 0.150 \mathrm{mmol}$ ) in DCM ( $0.33-0.40 \mathrm{M}$ ) was added followed by the dropwise addition of the catalytic solution in DCM-d2 (1 mL). The NMR tube was sealed and the ${ }^{19}$ FNMR experiment was submitted.







- Decomposition of diazo compound under the presence of the catalytic system (stoichiometric catalytic loading)


Stock solution of the catalyst: In an oven-dried microwave vial, $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}$ ( 15.7 mg , $0.05 \mathrm{mmol}, 1.000$ equiv) and L1 ( $18.4 \mathrm{mg}, 63.0 \mu \mathrm{~mol}, 0.025$ equiv) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with

3 cycles of vacuum- $\mathrm{N}_{2}$. Finally, DCM-d2 ( 0.35 mL ) was added into the vial and the resulting colourlesss solution was stirring (430 rpm) at room temperature during 1 h .

Experiment description: In an oven dried J young NMR tube, 1 ( $0.14 \mathrm{~mL}, 0.05 \mathrm{mmol}$ ) in DCM ( $0.33-0.40 \mathrm{M}$ ) was added followed by the dropwise addition of the catalytic solution in DCM-d2 ( 0.35 mL ). The NMR tube was sealed and the 19FNMR experiment was submitted.




These experiments support the formation of a Copper carbene between 1 and the preformed $\mathrm{Cu}(\mathrm{I})$-BOX chiral complex, allowing the formation of the cis- and trans- alkene after a fast decomposition of the Copper carbene.

- Synthesis of BOX complex

In an oven-dried J young NMR valve, $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}(0.94 \mathrm{mg}, 3.00 \mu \mathrm{~mol}, 0.020$ equiv ) and L1 ( $1.10 \mathrm{mg}, 3.70 \mu \mathrm{~mol}, 0.025$ equiv) were charged followed by the addition of DCM-d2 ( 1 mL ). The mixture was shaken and then NMR was submitted and recorded. The comparison between the uncomplexed L1 and the complexed mixture is done below.

L1: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ ) $\delta 4.13\left(\mathrm{dd}, \mathrm{J}=10.0,8.7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 4.05(\mathrm{dd}, \mathrm{J}=8.7$, $7.3 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH} 2-), 3.81(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}-$ ), 3.79 ( $\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}-$ ), 1.45 ( s , $\left.6 \mathrm{H},-\mathrm{CH}_{3}\right), 0.85\left(\mathrm{~s}, 18 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right)$.

Cu(MeCN)4BF4+ L1: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ ) $\delta 4.58$ - 4.29 ( $\mathrm{m}, 4 \mathrm{H}$ ), 3.99 (dd, J = 9.9, $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 6 \mathrm{H}), 1.55(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 18 \mathrm{H})$.


This experiment shows the complexation between L 1 and the $\mathrm{Cu}(\mathrm{I})$ catalyst. As it is observable in Spectrum B, the signals appears at more downshielded in comparison to Spectrum A, which indicated coordination of Cu. Moreover, a new signal appears at 2.05
ppm belonging to the MeCN groups from the $\mathrm{Cu}(\mathrm{I})$ catalyst. The defined shape of the signals reveals that $\mathrm{Cu}(\mathrm{I})$, non paramagnetic, species are formed.

- Analysis of the reaction between 1 and the $\mathrm{Cu}(\mathrm{I})$-BOX chiral catalytic system by Mass-Spectrometry.

Stock solution of the catalyst: In an oven-dried microwave vial, $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}(0.94 \mathrm{mg}$, $3.00 \mu \mathrm{~mol}, 0.020$ equiv) and L1 ( $1.10 \mathrm{mg}, 3.70 \mu \mathrm{~mol}, 0.025$ equiv) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N2. Finally, dry DCM ( 1 mL ) was added into the vial and the resulting colourlesss solution was stirred ( 430 rpm ) at room temperature during 1 h .

Experiment description: In an oven dried MW vial, $\mathbf{1}(0.43 \mathrm{~mL}, 0.15 \mathrm{mmol})$ in DCM ( 0.33 - 0.40 M) was added followed by the dropwise addition of the catalytic solution in DCM$(1 \mathrm{~mL})$. Then, $150 \mu \mathrm{~L}$ were transfer to a mass-vial under $\mathrm{N}_{2}$ atmosphere and diluted with dry EtOAc ( 1.3 mL ). The content was directly submitted to mass (ESI-QTOF).


The mass spectra shows the formation of the pre-complex between $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}$ and L1 ( $\mathrm{m} / \mathrm{z}=398.19$ ) containing 1 MeCN . Moreover, a Cu-BOX specie can be observed as a main mass ( $\mathrm{m} / \mathrm{z}=357.16$ ). Finally, with a $\mathrm{m} / \mathrm{z}=144.93$ it is also possible to observe the formation of the Cu-carbene specie. Unfortunately, the copper complex bearing both L1 and the carbene could not be observed, probably due to its low stability.

- Alkyne transfer step: Deprotonation of the X-H insertion product?


Into an oven-dried MW tube, a solution of $\mathbf{S 3}$ ( $185 \mathrm{mg}, 0.500 \mathrm{mmol}, 2.00$ equiv.) in dry THF ( 0.25 mL ) was added to a suspension of NaH ( $60 \%$ mineral oil) ( $20.6 \mathrm{mg}, 0.515 \mathrm{mmol}$, 2.06 equiv.) in dry THF ( 0.25 mL ) at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred under these conditions during 5 h . After that, the reaction mixture was allowed to reach room temperature and the solvent was evaporated. Then, 2a ( $117 \mathrm{mg}, 0.250 \mathrm{mmol}, 1.00$ equiv.) followed by 2,2,2-trifluoroethoxymethylbenzene ( $95.1 \mathrm{mg}, 0.500 \mathrm{mmol}, 2.00$ equiv.) were added into the flask containing the salt. Finally, the catalytic mixture (prepared according previous described protocol) was added dropwise and the reaction mixture was stirred for 1 h at RT, no observing the formation of the desired product after this reaction time..

This experiment shows that the alkyne transfer does not happen via deprotonation of the X-H insertion product by the alkoxylate from S3.

## 11. Determination of the absolute configuration

### 11.1. X-Ray for the Determination of the Absolute Configuration for Anilines



Experimental. Single clear pale colourless needle-shaped crystals of 12ac were used as supplied. A suitable crystal with dimensions $0.57 \times 0.07 \times 0.06 \mathrm{~mm}^{3}$ was selected and mounted on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. The crystal was kept at a steady $T=140.00(11) \mathrm{K}$ during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) solution program using dual methods and by using Olex2 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with SheIXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Crystal Data. $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{4} \mathrm{~N}, M_{r}=293.26$, monoclinic, $P 2_{1}$ (No. 4), $\mathrm{a}=9.2957(4) \AA$ A, $\mathrm{b}=$
 $140.00(11) K, Z=2, Z^{\prime}=1$, 回 $\left(C u K_{\text {® }}\right)=1.045,5457$ reflections measured, 2631 unique ( $R_{\text {int }}=0.0272$ ) which were used in all calculations. The final $w R_{2}$ was 0.1380 (all data) and $R_{1}$ was 0.0497 ( $1 \geq 2$ (I)).

| Compound | 12ac |
| :---: | :---: |
| Formula | $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{4} \mathrm{~N}$ |
| $D_{\text {calc．}} / \mathrm{g} \mathrm{cm}^{-3}$ | 1.410 |
| 团／ $\mathrm{mm}^{-1}$ | 1.045 |
| Formula Weight | 293.26 |
| Colour | clear pale colourless |
| Shape | needle－shaped |
| Size／mm ${ }^{3}$ | $0.57 \times 0.07 \times 0.06$ |
| T／K | 140．00（11） |
| Crystal System | monoclinic |
| Flack Parameter | 0．2（2） |
| Hooft Parameter | 0．05（8） |
| Space Group | P2 ${ }_{1}$ |
| a／Å | 9．2957（4） |
| b／Å | 4．7466（2） |
| $c / A ̊$ | 15．6594（7） |
| ［ ${ }^{\circ}$ | 90 |
| 团 ${ }^{\circ}$ | 91．369（4） |
| 团 ${ }^{\circ}$ | 90 |
| $V / \AA^{3}$ | 690．75（5） |
| $Z$ | 2 |
| Z＇ | 1 |
| Wavelength／Å | 1.54184 |
| Radiation type | Cu K ${ }_{\text {® }}$ |
| $\square_{\text {min }} /{ }^{\circ}$ | 2.823 |
| $\left.\square_{\text {max }}\right]^{\circ}$ | 72.389 |
| Measured Refl＇s． | 5457 |
| Indep＇t Refl＇s | 2631 |
| Refl＇s I $\geq 2$ 团（ ${ }^{\text {a }}$ | 2398 |
| $R_{\text {int }}$ | 0.0272 |
| Parameters | 195 |
| Restraints | 1 |
| Largest Peak | 0.265 |
| Deepest Hole | －0．162 |
| GooF | 1.031 |
| $w R_{2}$（all data） | 0.1380 |
| $w R_{2}$ | 0.1327 |
| $R_{1}$（all data） | 0.0539 |
| $R_{1}$ | 0.0497 |

### 10.2. X-Ray for the Determination of the Absolute Configuration for Alcohols



Experimental. Single colourless needle-shaped crystals of 19 were used as supplied. A suitable crystal with dimensions $0.46 \times 0.04 \times 0.03 \mathrm{~mm}^{3}$ was selected and mounted on an XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at a steady $T=139.99(10) \mathrm{K}$ during data collection. The structure was solved with the ShelXT 2018/2 (Sheldrick, 2015) solution program using dual methods and by using Olex2 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with SheIXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Crystal Data. $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{4}, M_{r}=349.26$, trigonal, $R 3$ (No. 146), $\mathrm{a}=30.7704$ (17) $\mathrm{A}, \mathrm{b}=$
 $139.99(10) K, Z=9, Z^{\prime}=1$, 回 (Cu $\left.K_{\text {® }}\right)=1.115,11947$ reflections measured, 3021 unique ( $\mathrm{R}_{\text {int }}=0.0474$ ) which were used in all calculations. The final $w R_{2}$ was 0.1248 (all data) and $R_{1}$ was 0.0489 ( $1 \geq 2$ 回 $(1)$ ).

| Compound | 19 |
| :---: | :---: |
| Formula | $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{4}$ |
| $D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$ | 1.464 |
| []/mm ${ }^{-1}$ | 1.115 |
| Formula Weight | 349.26 |
| Colour | colourless |
| Shape | needle-shaped |
| Size/mm ${ }^{3}$ | $0.46 \times 0.04 \times 0.03$ |
| T/K | 139.99(10) |
| Crystal System | trigonal |
| Flack Parameter | 0.25(15) |
| Space Group | R3 |
| $a / A ̊$ | 30.7704(17) |
| $b / A ̊$ | 30.7704(17) |
| c/Å | 4.3483(2) |
| [10 | 90 |
| [10 | 90 |
| [1/ | 120 |
| $V /{ }^{3}$ | 3565.4(4) |
| Z | 9 |
| Z' | 1 |
| Wavelength/Å | 1.54184 |
| Radiation type | CuK ${ }^{\text {b }}$ |
| $\mathrm{Q}_{\text {min }} /{ }^{\circ}$ | 2.872 |
| $\square_{\text {max }} /{ }^{\circ}$ | 75.408 |
| Measured Refl's. | 11947 |
| Indep't Refl's | 3021 |
| Refl's I $\geq 2$ ( I ) | 2287 |
| $R$ int | 0.0474 |
| Parameters | 226 |
| Restraints | 1 |
| Largest Peak/e $\AA^{-3}$ | 0.170 |
| Deepest Hole/e $\AA^{-3}$ | -0.278 |
| GooF | 0.994 |
| $w R_{2}$ (all data) | 0.1248 |
| $w R_{2}$ | 0.1137 |
| $R_{1}$ (all data) | 0.0709 |
| $R_{1}$ | 0.0489 |
| CCDC number | 2225295 |

12. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra of Trifluoromethylated Propargylic Compounds

${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

4ac






$$
\begin{aligned}
& \text { されでぼ }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）
${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


## ${ }^{1} \mathrm{H}$ NMR（ $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ）



${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）


${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


人inin

 + ㅈㅔㅔ
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$$
\underbrace{-77.08}
$$


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

4af

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


| 10 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )






${ }^{13}$ C NMR (101 MHz, CDCl 3 )

${ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


J 1

4ai

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$$
\xlongequal{\substack{-77.22 \\-77.24}}
$$





${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

fil



${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


ત્よ

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ )


${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


|  |  |  |  <br>  $\qquad$ |
| :---: | :---: | :---: | :---: |

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





#### Abstract

   ${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) 

4ba     ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 


${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

|| ||
$\int$




${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{19}$ F NMR (376 MHz, $\mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

N゙
긏
$\stackrel{N}{\sim}_{\sim}^{\sim}$
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




## ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\qquad$


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\qquad$
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


 $\underbrace{\text { Nom No }}$

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19} \mathrm{~F}$ NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{19}$ F NMR（ $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）







${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


## 

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19} \mathrm{~F}$ NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


: ت
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



13ab


${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19} \mathrm{~F}$ NMR（ $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19} \mathrm{~F}$ NMR（ $\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ）


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

13ad
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

15b


${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

| 10 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

19
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^10]

## 13. Chiral HPLC traces.

## Chiral HPLC traces for compound 4aa

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | ```RetTime [min]``` | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.278 | MM | 0.1206 | 4931.11426 | 681.46576 | 50.7704 |
| 2 | 5.602 | MM | 0.1283 | 4781.46045 | 621.32062 | 49.2296 |
| Total | ls : |  |  | 9712.57471 | 1302.78638 |  |



| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$ | Height [mAU] | Area <br> \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.785 | MM | 0.1078 | 13.22787 | 2.04507 | 4.0403 |
| 2 | 6.165 | MM | 0.1209 | 314.17172 | 43.31188 | 95.9597 |
| Totals |  |  |  | 327.39959 | 45.35696 |  |

## Chiral HPLC traces for compound 4ac.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref $=360,100$

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.604 |  | 0.1307 | 5712.18896 | 661.55518 | 50.3754 |
| 2 | 6.086 | VV R | 0.1362 | 5627.06055 | 626.94861 | 49.6246 |
| Total |  |  |  | 1.13392 e 4 | 1288.50378 |  |



Signal 1: DAD1 A, Sig=254,4 Ref $=360,100$


## Chiral HPLC traces for compound 4ad.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $2 \mu \mathrm{~L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | RetTime <br> [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$ | Height [mAU] | Area <br> \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.187 | BB | 0.1012 | 3276.57153 | 508.18280 | 48.3940 |
| 2 | 5.785 | BB | 0.1118 | 3494.04858 | 486.31168 | 51.6060 |
| Total | $s$ : |  |  | 6770.62012 | 994.49448 |  |



Signal 1: DAD1 A, Sig=254,4 Ref $=360,100$

| Peak \# | RetTime <br> [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{2}\right]} \end{gathered}$ | Height [mAU] | Area <br> \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.286 | BB | 0.1186 | 5948.41309 | 765.71027 | 93.6132 |
| 2 | 5.950 | BB | 0.1104 | 405.83075 | 56.07053 | 6.3868 |
| Total |  |  |  | 6354.24384 | 821.78080 |  |

## Chiral HPLC traces for compound 4ae.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $2 \mu \mathrm{~L}$ sample's injection.


| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.434 | BB | 0.2055 | 945.10815 | 70.02354 | 48.9305 |
| 2 | 12.286 |  | 0.2542 | 986.42297 | 58.05066 | 51.0695 |
| Total |  |  |  | 1931.53113 | 128.07420 |  |



Signal 1: DAD1 A, Sig=254,4 Ref $=360,100$

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.454 | MM | 0.3207 | 1.15158 e 4 | 598.48419 | 96.9554 |
| 2 | 12.694 | MM | 0.3138 | 361.62051 | 19.20488 | 3.0446 |
| Total | $s$ : |  |  | 1.18774 e 4 | 617.68907 |  |

## Chiral HPLC traces for compound 4af.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360, 100

| Peak | RetTime Type | Width | Area | Height | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | $[\mathrm{~min}]$ | $[\mathrm{min}]$ | $[\mathrm{mAU}$ s] | [mAU] | $\%$ |

----|------|----|-------|---------|-------------------|
$1 \quad 15.666$ MM $0.46631 .55159 \mathrm{e} 4 \quad 554.54999 \quad 52.7421$
$2 \quad 17.305$ MM $0.49891 .39026 \mathrm{e} 4 \quad 464.46289 \quad 47.2579$

Totals : 2.94185 e 41019.01288


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 16.310 | MM | 0.4319 | 1.42347 e 4 | 549.30884 | 97.6747 |
| 2 | 18.400 | MM | 0.4337 | 338.88263 | 13.02343 | 2.3253 |
| Total | s |  |  | 1.45736 e 4 | 562.33227 |  |

## Chiral HPLC traces for compound 4ag.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $2 \mu \mathrm{~L}$ sample's injection.




Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 14.028 | BB | 1 |  |  |  |
| 2 | 16.758 | BB | 0.3750 | 114.57117 | 4.56236 | 3.3457 |
| Total | : |  |  | 3424.40002 | 138.13232 |  |

## Chiral HPLC traces for compound 4ah.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.266 | BB | 0.1015 | 1123.05127 | 169.03957 | 50.1307 |
| 2 | 6.144 |  | 0.1137 | 1117.19653 | 148.55783 | 49.8693 |
| Total | s : |  |  | 2240.24780 | 317.59740 |  |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.187 | MM | 0.1231 | 4663.62256 | 631.56360 | 95.4801 |
| 2 | 5.986 | MM | 0.1147 | 220.77011 | 32.08010 | 4.5199 |
| Total |  |  |  | 4884.39267 | 663.64370 |  |

## Chiral HPLC traces for compound 4ai.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6.805 |  | 0.1403 | 529.74060 | 62.90982 | 50.3046 |
| 2 | 7.861 |  | 0.1580 | 523.32556 | 55.19047 | 49.6954 |
| Totals |  |  |  | 1053.06616 | 118.10030 |  |




## Chiral HPLC traces for compound 4aj.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.





## Chiral HPLC traces for compound 4ak.

Conditions: Daicel Chiralpak IB N-5 column: IA 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.





## Chiral HPLC traces for compound 4al.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6.502 |  | 0.1307 | 2895.74243 | 369.25925 | 49.0296 |
| 2 | 7.440 | MM | 0.1510 | 3010.36548 | 332.27228 | 50.9704 |
| Totals | $s$ : |  |  | 5906.10791 | 701.53152 |  |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100


## Chiral HPLC traces for compound 4am.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.277 | MM | 0.2889 | 4573.02100 | 263.85651 | 50.0946 |
| 2 | 8.837 | MM | 0.4151 | 4555.75195 | 182.92178 | 49.9054 |
| Total |  |  |  | 9128.77295 | 446.77829 |  |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.987 | MM | 0.1572 | 1768.96167 | 187.58540 | 92.9860 |
| 2 | 8.443 | MM | 0.1477 | 133.43443 | 15.05945 | 7.0140 |
| Total |  |  |  | 1902.39610 | 202.64486 |  |

## Chiral HPLC traces for compound 4an.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100



Signal 1: DAD1 A, Sig=254,4 Ref $=360,100$

| Peak \# | $\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.922 | MM | 0. | 296.12933 |  |  |
| 2 | 6.557 | MM | 0.1668 | 2517.28345 | 251.49266 | 89.4744 |
| Total | s : |  |  | 2813.41278 | 285.83983 |  |

## Chiral HPLC traces for compound 4an (1 mmol)

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $2 \mu \mathrm{~L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | RetTime <br> [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.762 | BV R | 0.1209 | 2515.94019 | 313.30023 | 50.6584 |
| 2 | 6.385 | VB | 0.1309 | 2450.54492 | 289.07428 | 49.3416 |
| Total | ls : |  |  | 4966.48511 | 602.37451 |  |



Signal 1: DAD1 A, Sig=254,4 Ref=360, 100


## Chiral HPLC traces for compound 4ao.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.093 |  |  | 34 |  |  |
| 2 | 14.365 |  |  |  |  |  |
| 2 | 14.365 | BB | 0.2831 | 3663.47607 | 196.89226 | 51.3117 |
| Total | $s$ : |  |  | 7139.65112 | 497.42659 |  |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | RetTime [min] | Type | Width [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.038 | BB | 0.1963 | 1496.56714 | 116.16468 | 32.5344 |
| 2 | 14.264 | BB | 0.3206 | 3103.38892 | 145.63454 | 67.4656 |
| Total | s : |  |  | 4599.95605 | 261.79922 |  |

## Chiral HPLC traces for compound 4bp.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.
DAD1 A, Sig=254,4 Ref=360,100 (C:ICHEM321...EVESINP04-338IB100-0 2022-09-23 08-12-27101NP04-338IB100-0.D)



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak <br> \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | Area <br> \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 19.485 | MM | 0.7836 | 500.90356 | 10.65432 | 98.2641 |
| 2 | 21.411 | MM | 0.7312 | 8.84868 | $2.01697 \mathrm{e}-1$ | 1.7359 |
| Totals : |  |  |  | 509.75224 | 10.85602 |  |

## Chiral HPLC traces for compound 4ba.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360, 100

| Peak \# | RetTime <br> [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 19.680 | BV | 0.5606 | 2981.35547 | 74.55145 | 51.5466 |
| 2 | 22.008 | VB | 0.7305 | 2802.44971 | 50.72628 | 48.4534 |
| Total | s |  |  | 5783.80518 | 125.27773 |  |



\footnotetext{
Signal 1: DAD1 A, Sig=254,4 Ref $=360,100$

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 19.807 | MM | 0.8006 | 5087.47705 | 105.90881 | 96.8103 |
| 2 | 23.599 | MM | 0.8543 | 167.62076 | 3.27003 | 3.1897 |
| Total | : |  |  | 5255.09781 | 109.17884 |  |

## Chiral HPLC traces for compound 4ca.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.909 |  | 0.1450 | 5068.94971 | 532.73236 | 49.6663 |
| 2 | 8.495 | VB | 0.1597 | 5137.05615 | 492.35797 | 50.3337 |
| Total |  |  |  | 1.02060 e 4 | 1025.09033 |  |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.697 |  | 0.1729 | 1.62492e4 | 1566.14905 | 92.5799 |
| 2 | 8.341 |  | 0.1695 | 1302.34204 | 128.05785 | 7.4201 |
| Total | s : |  |  | 1.75516 e 4 | 1694.20689 |  |

## Chiral HPLC traces for compound 4de.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 2: DAD1 B, Sig=210,4 Ref=360,100



Signal 2: DAD1 B, Sig=210,4 Ref $=360,100$

| Peak \# | RetTime [min] | Type | Width <br> [min] | Area $[\mathrm{mAU} * \mathrm{~s}]$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4.746 | MM | 0.1197 | 4283.94141 | 596.66980 | 99.2080 |
| 2 | 4.998 | MM | 0.0939 | 34.19955 | 6.07304 | 0.7920 |

## Chiral HPLC traces for compound 13aa.

Conditions: Daicel Chiralpak IA N-5 column: IA 95:5 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360, 100

Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%

$\begin{array}{lllllll}1 & 24.225 & \text { BB } & 0.4924 & 914.58942 & 28.50194 & 49.6263\end{array}$
$\begin{array}{lllllll}2 & 28.001 & \text { BB } & 0.5505 & 928.36426 & 25.87931 & 50.3737\end{array}$

Totals :
$1842.95367 \quad 54.38125$


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 25.072 | MM | 0.5206 | 259.81366 | 8.31850 | 6.1551 |
| 2 | 31.239 | MM | 0.6708 | 3961.32422 | 98.42547 | 93.8449 |
| Total | s : |  |  | 4221.13788 | 106.74397 |  |

## Chiral HPLC traces for compound 13da.

Conditions: Daicel Chiralpak IA N-5 column: IA 97:3 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6.476 | BV | 0.1273 | 926.11584 | 111.02064 | 50.5346 |
| 2 | 6.794 | VB | 0.1349 | 906.52118 | 102.82911 | 49.4654 |
| Total | s |  |  | 1832.63702 | 213.84975 |  |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak RetTime Type | Width | Area | Height | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | [min] | [min] | [mAU*s] | [mAU] | $\%$ |

## Chiral HPLC traces for compound 13ea.

Conditions: Daicel Chiralpak IA N-5 column: IA 95:5 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak <br> \# | RetTime [min] | Type | Width <br> [min] | Area [mAU*s] | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 15.655 | BB | 0.2739 | 453.16168 | 25.42892 | 50.4890 |
| 2 | 18.112 | BB | 0.3645 | 444.38327 | 18.74728 | 49.5110 |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak | RetTime Type | Width | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | [min] | [min] | Height | Area |
| [mAU*s] | [mAU] | $\%$ |  |  |

## Chiral HPLC traces for compound 13fa.

Conditions: Daicel Chiralpak ID N-5 column: ID 99-1:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $2 \mu \mathrm{~L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RetTime Type | Width | Area | Height | Area |  |
| \# | [min] | [min] | [mAU*s] | [mAU] | $\%$ |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.460 | MM | 0.2587 | 1857.13000 | 119.64703 | 94.0435 |
| 2 | 10.880 | MM | 0.5407 | 117.62692 | 3.62590 | 5.9565 |
| Total | s : |  |  | 1974.75693 | 123.27294 |  |

## Chiral HPLC traces for compound 13ga.

Conditions: Daicel Chiralpak IA N-5 column: IA 90:10 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100



Signal 1: DAD1 A, Sig=254,4 Ref=360,100


## Chiral HPLC traces for compound 13ab.

Conditions: Daicel Chiralpak IB N-5 column: IB 95:5 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.441 | MM | 0.4126 | 1.66003 e 4 | 670.56763 | 50.0199 |
| 2 | 11.529 | MM | 0.4555 | 1.65871 e 4 | 606.87750 | 49.9801 |
| Total |  |  |  | 3.31874 e 4 | 1277.44513 |  |



| $\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$ | Width [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: |
| $1 \quad 10.517 \mathrm{MM}$ | 0.4045 | 2.39421 4 | 986.47083 | 93.5312 |
| 211.715 MM | 0.4734 | 1655.89099 | 58.30177 | 6.4688 |
| Totals |  | 2.55980 e 4 | 1044.77259 |  |

## Chiral HPLC traces for compound 13ac.

Conditions: Daicel Chiralpak IA N-5 column: IA 99:1 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 $\operatorname{Ref}=360,100$

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.496 | BV | 0.1113 | 3918.93604 | 536.09155 | 49.4792 |
| 2 | 6.022 | VV R | 0.1209 | 4001.42847 | 499.52161 | 50.5208 |
| Totals |  |  |  | 7920.36450 | 1035.61316 |  |



Signal 1: DAD1 A, Sig=254, 4 Ref=360, 100


## Chiral HPLC traces for compound 13ad.

Conditions: Daicel Chiralpak IB N-5 column: IA 95:5 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | RetTime <br> [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 18.723 | BB | 0.3628 | 5211.18066 | 221.20428 | 49.8027 |
| 2 | 31.821 | BB | 0.6194 | 5252.46973 | 131.10262 | 50.1973 |
| Total | s : |  |  | 1.04637 e 4 | 352.30690 |  |



Signal 1: DAD1 A, Sig=254,4 Ref=360, 100

| Peak \# | RetTime <br> [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 18.655 | MM | 0.3907 | 498.72784 | 21.27726 | 13.0466 |
| 2 | 31.644 | MM | 0.6516 | 3323.92944 | 85.01898 | 86.9534 |
| Total | $s$ : |  |  | 3822.65729 | 106.29625 |  |

## Chiral HPLC traces for compound 13ae.

Conditions: Daicel Chiralpak IB N-5 column: IB 99:1 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.




Signal 1: DAD1 A, Sig=254,4 $\operatorname{Ref}=360,100$

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | $\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.305 | MM | 0.2178 | 1382.85071 | 105.83273 | 5.9476 |
| 2 | 7.571 | MM | 0.3028 | 2.18677 e 4 | 1203.61890 | 94.0524 |
| Total | $s$ : |  |  | 2.32506 e 4 | 1309.45162 |  |

## Chiral HPLC traces for compound 13af.

Conditions: Daicel Chiralpak IA N-5 column: IA 95:5 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.299 |  | 0.0984 | 637.32288 | 99.92163 | 50.0352 |
| 2 | 5.677 |  | 0.1033 | 636.42615 | 93.59975 | 49.9648 |
| Total | $s$ : |  |  | 1273.74902 | 193.52139 |  |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$ | Height [mAU] | Area <br> \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.756 | VV R | 0.1005 | 948.37866 | 144.54817 | 17.9447 |
| 2 | 6.136 | VB | 0.1100 | 4336.62646 | 602.22552 | 82.0553 |
| Total | s : |  |  | 5285.00513 | 746.77370 |  |

## Chiral HPLC traces for compound 13ag.

Conditions: Daicel Chiralpak IA N-5 column: IA 97:3 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.662 | MM | 0.1743 | 5671.71582 | 542.39227 | 19.0763 |
| 2 | 10.107 |  | 0.2082 | 2.40600 e 4 | 1925.89502 | 80.9237 |

Totals : $\quad 2.97318 \mathrm{e} 4 \quad 2468.28729$

## Chiral HPLC traces for compound 15a.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $2 \mu \mathrm{~L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak R \# | RetTime [min] | Type | Width [min] | Area $\left[\mathrm{mAU}^{*} \mathrm{~s}\right]$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.742 |  | 0.1924 | 4921.39600 | 392.18802 | 49.0014 |
| 2 | 10.224 |  | 0.2153 | 5121.98438 | 361.49240 | 50.9986 |
| Totals |  |  |  | 1.00434 e 4 | 753.68042 |  |



Signal 1: DAD1 A, Sig=254,4 Ref=360, 100

| Peak \# | RetTime [min] | Type | Width [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.471 | MM | 0.1950 | 1846.13013 | 157.77492 | 20.2005 |
| 2 | 11.093 | MM | 0.2512 | 7292.90430 | 483.91309 | 79.7995 |
| Totals | S : |  |  | 9139.03442 | 641.68800 |  |

## Chiral HPLC traces for compound 15b.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $2 \mu \mathrm{~L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.830 | BB | 0.2362 | 1697.42236 | 112.40637 | 49.9702 |
| 2 | 11.872 | BB | 0.2793 | 1699.44861 | 94.71603 | 50.0298 |
| Total | s |  |  | 3396.87097 | 207.12240 |  |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | RetTime <br> [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 11.165 | MM | 0.2133 | 1501.39746 | 117.29741 | 22.2481 |
| 2 | 13.230 | MM | 0.2838 | 5247.03516 | 308.11914 | 77.7519 |
| Total | s |  |  | 6748.43262 | 425.41655 |  |

## Chiral HPLC traces for compound 17.

Conditions: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $2 \mu \mathrm{~L}$ sample's injection.


Signal 1: DAD1 A, Sig=254,4 Ref=360, 100

| Peak |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RetTime Type | Width | Area | Height | Area |
| [min] | [min] | [mAU*s] | [mAU] | $\%$ |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.170 | MM | 0.1579 | 1643.01782 | 173.37292 | 89.5142 |
| 2 | 8.572 |  | 0.1567 | 192.46599 | 20.46877 | 10.4858 |

## Chiral HPLC traces for compound 18.

Conditions: Daicel Chiralpak IB N-5 column: IA 95:5 hexane/isopropanol, flow rate $1 \mathrm{~mL} / \mathrm{min}, 2$ $\mu \mathrm{L}$ sample's injection.




Signal 1: DAD1 A, Sig=254,4 Ref=360,100

14. ${ }^{19}$ F NMR crude spectra for chiral alcohols to determine the diastereomeric ratio (dr)


${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$






${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



[^0]:    [*] Dr. N. P. Ramirez, Prof. Dr. J. Waser
    Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (LCSO-ISIC-EPFL) and National Centre of Competence and Research (NCCR Catalysis)
    1015 Lausanne (Switzerland)
    E-mail: jerome.waser@epfl.ch
    [**]A previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv-2023-78fk0).
    © © 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

[^1]:    Conditions: [a] The reactions were performed with 0.15 mmol of $\mathbf{2 a}$. The chiral complex was formed mixing the $\mathrm{Cu}^{\prime}$ catalyst with $\mathbf{L 1}$ or $\mathbf{L 2}$ in the reaction solvent during 1 h . The yield was determined by ${ }^{19} \mathrm{~F}$ NMR using 1 equiv of $\mathrm{PhCF}_{3}$ as internal standard. The er was determined by chiral HPLC. [b] Isolated yield at 0.20 mmol scale is indicated in brackets.

[^2]:    [1] Kubas, G. J.; Monzyk, B.; Crumblis, A. L. in Inorganic Synthesis (Ed.; R. J. Angelici), Wiley \& Sons, Inc., Hoboken, NJ, USA 2007, pp. 68-70

[^3]:    ${ }^{2}$ Ramirez, N.P.; Pisella, G.; Waser, J. Cu(I)-Catalyzed gem-Aminoalkynylation of Diazo Compounds: Synthesis of Fluorinated Propargylic Amines. J. Org. Chem. 2021, 86, 10928-10938.
    ${ }^{3}$ Pisella, G.; Waser, J. Three-Component Reaction for the Synthesis of Highly Functionalized Propargyl Ethers. Chem. Eur. J. 2020, 26, 10199 - 10204.

[^4]:    ${ }^{[4]}$ Chuprun, S.; Acosta, C. M.; Mathivathanan, L.; Bukhryakov, K. V. Molybdenum Benzylidene Complexes for Olefin Metathesis Reactions. Organometallics 2020, 39, 3453-3457.

[^5]:    ${ }^{4}$ Amos, S.G.E., Cavalli, D.; Le Vaillant, F.; Waser, J. Direct Photoexcitation of Ethynylbenziodoxolones: An Alternative to Photocatalysis for Alkynylation Reactions. Angew. Chem. Int. Ed. 2021, 60, 23827-23834.

[^6]:    ${ }^{5}$ Hofstra, L.; DeLano, T. J.; Reisman, S. E. Synthesis of Chiral Bisoxazoline Ligands: (3aR,3a'R,8aS,8a'S)-2,2'-(cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8H-indeno[1,2-d]oxazole). Org. Synth. 2020, 97, 172-188.

[^7]:    6 Ramasamy, M.; Lin, H.-C.; Kuo, S.-C.; Hsieh, M.-T. Lewis Acid-Catalyzed Rearrangement of Fluoroalkylated Propargylic Alohols: An Alternative Approach to 6 -Fluoroalkyl- $\alpha, 8$-enones. Synlett 2019, 30, 356-360..
    ${ }^{7}$ We found different $\alpha_{D}$ value for the same enantiomer described in the literature. This is probably due to the low rotation power of this compound. For more information, see: a) Veeraraghavan Ramachandran, P.; Gong, B.; Teodorovic, A. V.; Brown, H. C. Selective reductions. 52. Efficient Asymmetric Reduction of $\alpha$ Acetylenic $\alpha^{\prime}$-Fluoroalkyl Ketones with Either B-Chlorodiisopinocamphenylborane or B-Isopinocampheyl-9-borabicyclo[3.3.1.]nonane in High Enantiomeric Purity. The Influence of Fluoro Groups in Such Reductions. Tetrahedron: Asymmetry 1994, 5, 1061 - 1074. b) Matsutani, H.; Kusumoto, T.; Hiyama, T. A Facile Synthesis of Optically Active 1, 1, 1 - Trifluoro-3-alkyn-2-ols by Stereospecific Substitution of Optically Active 1-Benzyloxy-2,2,2-trifluoroethyl Tosylate with Lithium Alkynyltriethylaluminates. Chemistry Letters 1999, 28, 529-530. c) Zhang, Y.-M.; Yuan, M.-L.; Liu, W.-P.; Xie, J.-H.; Zhou, Q.-L. IridiumCatalyzed Asymmetric Transfer Hydrogenation of Alkynyl Ketones Using Sodium Formate and Ethanol as Hydrogen Sources. Org. Lett. 2018, 20, 4486 - 4489. d) Nicholson, K.; Dunne, J.; DaBell, P.; Beaton Garcia, A.; Bage, A. D.; Docherty, J. H.; Hunt, T. A.; Langer, T.; Thomas, S. P. A Boron-Oxygen Transborylation Strategy for a Catalytic Midland Reduction. ACS Catal. 2021, 11, 2034 - 2040.

[^8]:    ${ }^{8}$ Ko, S.-J.; Lim, J. Y.; Jeon, N. Y.; Won, K.; Ha, D.-C.; Kim, B. T.; Lee, H. Kinetic resolution of fluorinated propargyl alcohols by lipase-catalyzed enantioselective transesterification. Tetrahedron: Asymmetric 2009, 20, 1109-1114.

[^9]:    ${ }^{9}$ Kim, S.; Kim, B.; In, J. Facile Deprotection of Bulky (Trialkylsilyl)acetylenes with Silver Fluoride. Synthesis 2009, 12, 1963 - 1968.

[^10]:    

