

Check for updates

Multicomponent Reaction

How to cite: Angew. Chem. Int. Ed. **2023**, 62, e202305776 doi.org/10.1002/anie.202305776

Copper (I)-BOX Catalyzed Asymmetric 3-Component Reaction for the Synthesis of Trifluoromethylated Propargylic Ethers and Anilines**

Nieves P. Ramirez and Jerome Waser*

Abstract: An asymmetric 3-component reaction between EthynylBenziodoXoles (EBXs), 2,2,2-trifluorodiazoethane and nucleophiles catalyzed by a Cu^I-BOX (Bisoxazoline) catalyst is described. This protocol gives access to chiral trifluoromethylated propargyl ethers and anilines, which are valuable building blocks in synthetic and medicinal chemistry. The reaction proceeds with high enantioselectivity and yield with different nucleophiles such as primary, secondary and tertiary alcohols, as well as both electron-rich and electron-poor anilines. Aryl-, alkyl- and silyl-substituted alkynes can be successfully introduced as electrophiles. In case of chiral substrates, high catalyst control was observed, leading to good diastereoselectivity.

The unique physico-chemical properties of the fluorine atom have been extensively used for drugs, agrochemicals and materials design.^[1-3] In particular, trifluoromethylated propargylic ethers and amines^[4,5] are valuable building blocks for synthetic and medicinal chemistry.^[6] Reported catalytic enantioselective methods^[7] for the synthesis of trifluoromethylated carbinols and anilines are based on (a) the addition of CF_3 -based nucleophiles to ynones,^[7a,8] (b) the addition of acetylides onto carbonyl compounds or imines,^[9,10] (c) the addition of carbon nucleophiles to trifluoromethylated alkynyl ketones or the reduction of the corresponding trifluoromethylated propargyl imines,^[11,12] or (d) the kinetic resolution of the propargyl alcohols (Scheme 1A).^[6a] Nevertheless, stoichiometric amounts of strong bases, lower or higher temperatures, expensive catalysts (Rh, Pd, among others), and/or additives are

[*] Dr. N. P. Ramirez, Prof. Dr. J. Waser
 Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de
 Lausanne (LCSO-ISIC-EPFL) and National Centre of Competence and Research (NCCR Catalysis)
 1015 Lausanne (Switzerland)
 E-mail: jerome.waser@epfl.ch

Scheme 1. State of the art for the synthesis of fluorinated propargylic ethers and anilines and our approach.

sometimes needed, leading to a narrow scope. Furthermore, most methods give access only to alcohols, requiring extra synthetic steps if the ethers are targeted.

In this context, Multi-Component Reactions (MCRs) involving diazo compounds have demonstrated their synthetic potential.^[13-15] Recently, fluorinated diazo compounds, such as 2,2,2-trifluorodiazoethane (HN_2CCF_3 , **1**, Scheme 1B), have been used in the synthesis of trifluoromethylated compounds.^[16] Nevertheless, enantioselective methods have been mostly limited to cyclopropanation.^[17] In the case of MCRs, there are only examples of the use of amines as nucleophiles to access aziridines, triazolines or 1,2-diamines.^[18] To the best of our knowledge, the use of alcohols as nucleophiles in asymmetric MCRs with fluorinated diazo compounds has never been reported.

In 2016, our group reported an oxyalkynylation reaction of diazo esters using EthynylBenziodoXolones (EBXs) and a copper catalyst.^[19] Later, an enantioselective variation of

^[**] A previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv-2023-78fk0).

^{© 2023} The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

this reaction was developed using BOX ligands (Scheme 1C).^[20] Despite copper being one of the most earthabundant transition metals, it has been only rarely used in carbene-based enantioselective MCRs.^[21] Recently, we could extend the use of copper catalysis to a 3-CR (Three Component Reaction) reaction between modified EBX derivatives, diazo compounds, and nucleophiles, such as alcohols^[22] or anilines.^[23] However, the development of an enantioselective method has not yet been reported.

Herein, we describe the first asymmetric 3-CR between 2,2,2-trifluorodiazoethane (1), EBX derivatives and nucleophiles for the synthesis of trifluoromethylated propargylic ethers and anilines (Scheme 1D). The reaction proceeds with high enantioselectivity for non-chiral alcohols and anilines and high diastereoselectivity under catalyst control for chiral alcohols. In the case of alcohol nucleophiles, primary, secondary and tertiary alcohols could all be used, the latest being challenging targets for traditional ether-ification reactions.^[24]

As a model system, we chose the 3-CR of 2,2,2trifluorodiazoethane (1),^[25] EthynylBenziodoxole (EBX) **2a** and cyclohexanol (**3a**) (Table 1). After optimization, the enantioselective 3-CR could be performed using commercially available Cu(MeCN)₄BF₄ and BOX ligand L1 at room temperature in DCE to give product **4aa** in 85 % yield and 96:4 er (Table 1, entry 1). On 0.20 mmol scale, **4aa** was

Table 1: Optimization of the MCR reaction.

N₂ H ^{⊥⊥} CF3	Ph = 0 HC $+ CF_3 + CF_3 +$	Cu(MeCN) ₄ BF ₄ (2 mol%) L1 (2.5 mol%) DCE, N ₂ , RT, 1 h	Ph H CF ₃		
1 (2 equi		2 equiv.)	4aa		
(0.33 - 0.40 DCM)	M in (0.15 M in DCE)				
Entry	Modifications	Yield 4aa	er		
1	none	85 (83) ^[b]	96:4		
2	L2	quant.	11:89		
3	$CuCl/AgNTf_2$	75	93:7		
4	CuCl/AgNTf ₂ and L2	95	11:89		
5	Cu(MeCN)₄SbF ₆	89	92:8		
6	Cu(MeCN) ₄ PF ₆	69	89:11		
7	Cu(MeCN)₄OTf	77	93:7		
8	Cu(OTf)•PhMe	78	95:5		
9	Cu(OAc) ₂	69	85:15		
10	Cu(OTf) ₂	68	96:4		
11	4 equiv of 3 a	88	94:6		
12	1.5 equiv of 3 a	65	95:5		
13	MeCN	n.d.	n.d.		
14	PhMe	76	94:6		
	Me Me o // N // Bu // Bu L1				

Conditions: [a] The reactions were performed with 0.15 mmol of 2a. The chiral complex was formed mixing the Cu¹ catalyst with L1 or L2 in the reaction solvent during 1 h. The yield was determined by ¹⁹F NMR using 1 equiv of PhCF₃ as internal standard. The er was determined by chiral HPLC. [b] Isolated yield at 0.20 mmol scale is indicated in brackets.

isolated in 83 % yield. With indaBOX ligand L2, a quantitative yield, but lower selectivity was obtained (Table 1, entry 2). Using similar conditions than in our previous work^[20b] led to similar results (Table 1, entries 3 and 4). Other counterions, such as SbF_6^- , PF_6^- or OTf^- gave **4aa** in similar or lower yields and er (Table 1, entries 5–7).

Different Cu^I catalysts, such as Cu(OTf)-PhMe, CuI or CuTc, (Table 1, entry 8 and Supporting Information) were also tested, but no improvement was observed. Using Cu^{II} salts, such as Cu(OAc)₂ or Cu(OTf)₂ was less efficient (Table 1, entries 9–10). A larger excess of **3a** did not lead to a significant improvement (Table 1, entry 11). Using only 1.5 equiv. of **3a** afforded compound **4aa** in lower yield (Table 1, entry 12). No reaction was observed with MeCN and a lower yield and similar selectivity than with DCE when using PhMe. (Table 1, entries 13 and 14). The use of further solvents and conditions did not lead to any improvement (See Supporting Information for more information).

With these optimized conditions in hand, we explored the scope of the reaction between **1**, **2a** and different alcohols **3a–3p** (Scheme 2). Enantiopure (*S*)-2-phenylethanol (**2b**) afforded compound **4ab** in 70 % yield and 95:5 dr. Switching to tertiary alcohols, *tert*-butanol (**3c**) gave **4ac** in 72 % yield and 96:4 er. *Tert*-amyl alcohol (**3d**) afforded the corresponding propargylic ether **4ad** in 70 % yield and 94:6 er. The presence of an arene in the aliphatic chain (**3e–g**) was tolerated, yielding products **4ae–g** in 43–65 % yield with 97:3–98:2 er.^[26] Cyclic alcohol **3h** gave **4ah** in 55 % yield and 95:5 er. Trifluoromethylated propargylic ethers **4ai** and **4aj** containing pharmaceutically relevant adamantyl substituents^[27] were obtained in good yield and enantioselectivity.

We then turned to primary alcohols. Benzyl alcohol (3k) gave 4ak in 78% and 93:7 er. With hexanol (3l), the use of a stoichiometric ratio between the Cu^I salt and L1 was needed to afford 4al in good enantioselectivity (93:7 er) (See Supporting Information for more information). Ethanol (3m) afforded 4am in 85% yield and 93:7 er. The presence of a trimethylsilyl group (3n) was well tolerated to give 4an in 58% yield and 90:10 er. At 1 mmol scale product 4an was obtained in 51% yield and 93:7 er. Switching to the less nucleophilic trifluoroethanol (3o), we observed poor selectivity and moderate yield, probably due to the higher acidity of the propargylic hydrogen.^[28,29]

Finally, we studied substitution on the alkyne. A strong electron withdrawing nitro group in *para*-position of the phenyl ring led to high enantioselectivity: Compounds **4bp** and **4ba** were obtained in 55% yield/98:2 er and 87% yield/97:3 er, respectively. *Ortho*-substitution with a bromine group gave product **4ca** in 82% yield and 93:7 er. Importantly, silyl alkynes giving access to synthetically useful terminal alkynes were also tolerated. Product **4de** was obtained in 60% yield and 99:1 er. A 93:7 diastereose-lectivity was obtained in the case of enantiopure alcohol **3b**. Compound **4eb** containing a cyclopropylalkyne was formed in 63% yield and 92:8 diastereoselectivity.

Enantiopure alcohols are widely found in nature. Considering the impressive catalyst control observed with (S)-2-phenylethanol (2b), we investigated more complex sub-

Angew. Chem. Int. Ed. 2023, 62, e202305776 (2 of 6)

© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Communications

Scheme 2. Scope of the 3-CR with 2,2,2-trifluorodiazoethane (1) and different alcohols (3) and EBXs (2). The reactions were performed at 0.20 scale and isolated yields are given. The enantiomeric excess was obtained by chiral HPLC after flash column purification. The diastereomeric ratio was obtained from the crude reaction mixture by ¹⁹F NMR. ^[a] 2 mol% Cu(MeCN)₄BF₄ and 2 mol% L1.

strates (Scheme 3). We first reoptimized the reaction for the use of the alcohol as limiting reagent (See Supporting Information for more information). The use of 1 equiv. of (-)-menthol (**5a**) gave alkyne **6** in 81 % yield and 2:98 dr. When (+)-menthol (**5b**) was submitted to the same conditions, product **7** was obtained in 89 % yield and 96:4 dr, displaying an excellent catalyst control. Other terpene

Scheme 3. Scope of the 3-CR with 2,2,2-trifluorodiazoethane (1) and chiral alcohols (5). Reaction conditions: Unless otherwise indicated, the reactions were performed at 0.25 mmol scale. Isolated yields by flash column chromatography are given. The diastereomeric ratio was obtained from the crude reaction mixture by ¹⁹F NMR. ^[a]Using Cu(MeCN)₄SbF₆, 1 equiv of **2a** and 4 equiv of alcohol **5 d**.

Angew. Chem. Int. Ed. 2023, 62, e202305776 (3 of 6)

85:15–97:3 dr. With protected serine derivative **5f**, ether **11a** was obtained in 63 % yield and 93:7 dr. The reaction of alcohol **5f** was also performed with TIPS-substituted reagent **2d**, giving compound **11b** in 66 % yield and 90:10 dr. Compound **11b** was obtained in slightly higher yield and diastereoselectivity at a 1 mmol scale.

derived alcohols gave products 8-10 in 64-89% yield and

Next, we studied anilines as nucleophiles (Scheme 4).^[23] We studied first the reaction between 1, 2a and methyl 4aminobenzoate (12a). Unfortunately, despite the good er obtained (98:2); the desired product (13aa) was obtained in only 66 % yield with low reproducibility using the conditions optimized for alcohols. After screening of different BOX ligands, Cu^I catalysts, solvents, concentrations and temperatures, L2 in combination with the cationic complex formed from CuCl/AgNTf₂ in DCE afforded compound 13 aa in 71% yield and 94:6 er with high reproducibility (See Supporting Information for more information). Compound 13da was obtained in 52% yield and 86:14 er. Both cyclopropyl (c-Pr) and tert-butyl (t-Bu)-substituted alkynes gave products 13ea and 13fa in 71% yield and 91:9 er and 64% yield and 94:6, respectively. Thiophene substituted alkyne 13ga was obtained in 65% yield and 91:9 er. The scope of substituted anilines was then explored. Electron withdrawing groups, such as trifluoromethyl or para-fluoro gave the desired products 13 ab and 13 ac^[30] in similar yield and selectivity. A ketone group was also tolerated, giving product 13 ad in 57% and 87:13 er. 1,2,3,4-Tetrahydroquinoline afforded compound 13ae in moderated yield and good enantioselectivity. The presence of a methyl or methoxy in para position led to lower enantioselectivity (products 13 af and 13 ag).

© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Scheme 4. Scope of the 3-CR with 2,2,2-trifluorodiazoethane (1) and anilines (12). The reactions were performed at 0.25 mmol scale. Isolated yields are given. The enantiomeric excess was obtained by chiral HPLC after PTLC.

We also examined phenols and carboxylic acids as nucleophiles (Scheme 5A). In this case, the combination of $Cu(MeCN)_4SbF_6$ and an excess of the nucleophile afforded the best results. With phenols **14a** and **14b**, compounds **15a**

Scheme 5. Scope extension (A) and products modification (B and C). The reactions were performed at 0.20 mmol scale. Isolated yields are given. The enantiomeric excess was obtained by chiral HPLC after flash column purification.

Angew. Chem. Int. Ed. 2023, 62, e202305776 (4 of 6)

and **15b** were obtained in good yield and moderate selectivity. In contrast, using 2-cyclohexanecarboxylic acid (**16**), we reached good enantioselectivity for ester **17**, but the reaction did not go to completion. To determine the absolute configuration of the propargylic ether products, **4an** was deprotected using BF₃OEt₂ to give alcohol **18** in 87 % yield (Scheme 5B). Compound **18** was reacted with *p*-nitrobenzoyl chloride to give ester **19**, which allow us to determine the absolute configuration via X-ray analysis.^[30] Deprotection of the TIPS group was performed on compound **11b** by treatment with AgF, giving terminal alkyne **20** in 82 % yield, albeit with a lower dr (Scheme 5C).

According to our previous work,^[19,20] we propose the following speculative mechanism (Scheme 6): The preformed chiral Cu¹ complex would first react with **1** generating Cu carbene **I**, which then would react with the nucleophile forming the metal-ylide **II**. Finally, electrophilic alkyne transfer from EBX reagent **2** would give the desired product **4** and bistrifluoromethylated alcohol **III** as by product. For the alkynylation step, a redox mechanism on copper can tentatively be proposed, as reported in case of gold,^[31] but further work is needed to better understand this step as well as the observed asymmetric induction (See Supporting Information for more information).

In summary, we have developed the first asymmetric enantioselective 3-CR between hypervalent iodine reagents, 2,2,2-trifluorodiazoethane (1) and nucleophiles using a Cu^I catalyst. Tertiary, secondary and primary alcohols as well as electron-rich and electron-poor anilines can be used as nucleophiles affording fluorinated propargylic ethers and anilines in up to 99:1 er. Alkyl-, aryl- and silyl-substituted EBXs could be used in the process, giving access to structurally diverse alkynes. With chiral substrates, high catalyst control was observed leading to good diastereoselectivity.

Supporting Information

The authors have cited additional references within the Supporting Informatio^[32–39] Optimization tables, experimental procedures and analytical data for all new compounds. ¹H NMR, ¹³C NMR, ¹⁹F NMR spectra and chiral HPLC traces are included. Raw data for NMR, IR, MS and HPLC

Scheme 6. Plausible mechanism. Ln = (MeCN)L.

© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

are freely available on the platform zenodo: https://doi.org/ 10.5281/zenodo.7991566.

Acknowledgements

This publication was created as a part of NCCR Catalysis, a National Center of Competence in Research funded by the Swiss National Science Foundation (Grant No. 180544). Dr. Nieves P. Ramirez thanks the Generalitat Valenciana for a APOSTD 2022 postdoctoral fellowship (CIAPOS/2021/31). Dr. Tobias M. Milzarek is acknowledged for fruitful discussions. We thank Dr. Rosario Scopelliti and Dr. Farzaneh Fadaei Tirani from ISIC-EPFL for the X-ray structures. Open Access funding provided by École Polytechnique Fédérale de Lausanne.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the Supporting Information of this article.

Keywords: Alkynes · Asymmetric Catalysis · Fluorinated Diazo Compounds · Multi-Component Reactions · Nucleophiles

- [1] D. O'Hagan, Chem. Soc. Rev. 2008, 37, 308.
- [2] a) R. D. Chambers, Fluorine in Organic Chemistry, Wiley, Blackwell, 2004; b) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881; c) W. K. Hagmann, J. Med. Chem. 2008, 51, 4359; d) S. Swallow in Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications (Ed.: V. Gouverneur, K. Müller), Imperial College Press, London, 2012; e) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donneelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315; f) M. Inoue, Y. Sumii, N. Shibata, ACS Omega 2020, 5, 10633.
- [3] C. Zhang, K. Yan, C. Fu, H. Peng, C. J. Hawker, A. K. Whittaker, *Chem. Rev.* 2022, 122, 167.
- [4] Selected reviews for propargylic alcohols/ethers: a) Y. Nishibayashi, *Synthesis* 2012, 44, 489; b) S. Puri, *ChemistrySelect* 2020, 5, 9866.
- [5] Selected reviews for propargylic amines: a) S. Arshadi, E. Vessally, L. Edjlali, R. Hosseinzadeh-Khanmiri, E. Ghorbani-Kalhor, *Beilstein J. Org. Chem.* 2017, *13*, 625; b) J. Irfana, G. C. Chandra Nandi, *Eur. J. Org. Chem.* 2019, 2704.
- [6] Recent examples: a) A. Boreux, G. H. Lonca, O. Riant, F. Gagosz, Org. Lett. 2016, 18, 5162; b) F. Noël, V. D. Vukovic, J. Yi, E. Richmond, P. Kravljanac, J. Moran, J. Org. Chem. 2019, 84, 15926; c) D. Posevins, A. Bemejo-López, J. E. Bäckwall, Angew. Chem. Int. Ed. 2021, 60, 22178; d) R. Kani, T. Inuzuka, Y. Kubota, K. Funabiki, Asian J. Org. Chem. 2022, 11, e202100700.
- [7] Selected reviews: a) G. Rubiales, C. Alonso, E. Martínez de Marigorta, F. Palacios, *Arkivoc* 2014, (*ii*), 362; b) H. Noda, N. Kumagai, M. Shibasaki, *Asian J. Org. Chem.* 2018, 7, 599–612, and references therein.

- [8] P. Liu, Z.-L. Lei, Y.-Y. Peng, Z.-J. Liu, Q.-Z. Zhu, J.-T. Liu, F. Wu, Adv. Synth. Catal. 2018, 360, 3418.
- [9] a) R. Motoki, M. Kanai, M. Shibasaki, Org. Lett. 2007, 9, 2997;
 b) A. Chinkov, A. Warm, E. M. Carreira, Angew. Chem. Int. Ed. 2011, 50, 2957;
 c) H. Noda, F. Amemiya, K. Weidner, N. Kumagai, M. Shibasaki, Chem. Sci. 2017, 8, 3260;
 d) D. Park, C. Jette, J. Kim, W.-O. Jung, Y. Lee, J. Park, S. Kang, M. S. Han, B. M. Stoltz, S. Hong, Angew. Chem. Int. Ed. 2020, 59, 775.
- [10] a) Y. Xu, W. R. Dolbier, J. Org. Chem. 2000, 65, 2134; b) G. Magueur, B. Crousse, D. Bonnet-Delpon, Tetrahedron Lett. 2005, 46, 2219; c) H. Xiao, Y. Huang, F.-L. Qing, Tetrahedron: Asymmetry 2010, 21, 2949; d) G. Huang, Z. Yin, X. Zhang, Chem. Eur. J. 2013, 19, 11992; e) K. Morisaki, M. Sawa, J.-Y. Nomaguchi, H. Morimoto, Y. Takeuchi, K. Mashima, T. Ohshima, Chem. Eur. J. 2013, 19, 8417; f) K. Morisaki, M. Sawa, R. Yonesaki, H. Morimoto, K. Mashima, T. Ohshima, J. Am. Chem. Soc. 2016, 138, 6194.
- [11] S. Sasaki, T. Yamauchi, M. Kanai, A. Ishii, K. Higashiyama, Bull. Chem. Soc. Jpn. 2015, 88, 200.
- [12] a) W.-Q. Du, J.-M. Zhang, R. Wu, Q. Liang, S.-Z. Zhu, J. Fluorine Chem. 2008, 129, 695; b) P. R. Likhar, M. S. Subhas, S. Roy, M. L. Kantam, B. Sridhar, R. K. Seth, S. Biswas, Org. Biomol. Chem. 2009, 7, 85; c) M.-W. Chen, B. Wu, Z.-P. Chen, L. Shi, Y.-G. Zhou, Org. Lett. 2016, 18, 4650; d) M.-W. Chen, Q. Yang, Z. Deng, Y. Zhou, Q. Ding, Y. Peng, J. Org. Chem. 2018, 83, 8688; e) M. Miyagawa, K. Takashima, T. Akiyama, Synlett 2018, 29, 1607; f) B. M. Trost, C.-I. Hung, M. J. Scharf, Angew. Chem. Int. Ed. 2018, 57, 11408.
- [13] a) C. de Graaff, E. Ruijter, R. V. Orru, Chem. Soc. Rev. 2012, 41, 3969; b) R. Perez Herrera, E. Marqués-López, Multicomponent Reactions: Concepts and Applications for Design and Synthesis, Wiley, Hoboken, 2015.
- [14] a) X. Guo, W. Hu, Acc. Chem. Res. 2013, 46, 2427; b) D. F. Chen, Z. Y. Han, X. L. Zhou, L. Z. Gong, Acc. Chem. Res. 2014, 47, 2365; c) D. Zhang, W. H. Hu, Chem. Rec. 2017, 17, 739.
- [15] J. Wang, C.-M. Che, M. P. Doyle, *Transition Metal-Catalyzed Carbene Transformations*, Wiley, Hoboken, 2022.
- [16] Representative reviews: a) P. K. Mykhailiuk, *Chem. Rev.* 2020, 120, 12718; b) A. Kumar, W. A. Khan, S. Ahamad, K. Mohanan, *J. Heterocycl. Chem.* 2022, 59, 607.
- [17] a) P. Müller, S. Grass, S. P. Shahi, G. Bernardinelli, *Tetrahedron* 2004, 60, 4755; b) M. Kotozaki, S. Chanthamath, T. Fujii, K. Shibatomi, S. Iwasa, *Chem. Commun.* 2018, 54, 5110; c) Z. Zhang, C. Tian, Z. Wang, P. Sivaguru, P. Steven, S. P. Nolan, X. Bi, *ACS Catal.* 2021, 11, 8527; d) J. Altarejos, D. Sucunza, J. J. Vaquero, J. Carreras, *Org. Lett.* 2021, 23, 6174.
- [18] a) Z. Chai, J.-P. Bouillon, D. Cahard, *Chem. Commun.* 2012, 48, 9471; b) A. Kumar, S. Ahamad, R. Kant, K. Mohanan, *Org. Lett.* 2019, 21, 2962; c) X.-F. Tan, F.-G. Zhang, J.-A. Ma, *Beilstein J. Org. Chem.* 2020, 16, 638; d) J. Li, D. Zhang, J. Chen, C. Ma, W. Hu, *ACS Catal.* 2020, 10, 4559.
- [19] D. P. Hari, J. Waser, J. Am. Chem. Soc. 2016, 138, 2190.
- [20] a) D. P. Hari, J. Waser, J. Am. Chem. Soc. 2017, 139, 8420;
 b) D. P. Hari, L. Schouwey, V. Barber, R. Scopelliti, F. Fadaei-Tirani, J. Waser, Chem. Eur. J. 2019, 25, 9522.
- [21] Selected review: X. Zhao, Y. Zhang, J. Wang, *Chem. Commun.* 2012, 48, 10162.
- [22] G. Pisella, A. Gagnebin, J. Waser, Chem. Eur. J. 2020, 26, 10199.
- [23] N. P. Ramirez, G. Pisella, J. Waser, J. Org. Chem. 2021, 86, 10928.
- [24] J. Xiang, M. Shang, Y. Kawamata, H. Lundberg, S. H. Reisberg, M. Chen, P. Mykhailiuk, G. Beutner, M. R. Collins, A. Davies, M. Del Bel, G. M. Gallego, J. E. Spangler, J. Starr, S. Yang, D. G. Blackmond, P. S. Baran, *Nature* **2019**, *573*, 398.

Angew. Chem. Int. Ed. 2023, 62, e202305776 (5 of 6)

© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

5213773 2023, 32, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/anie.202305776 by Bibliothèque De L'Epft-, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library on [28/08/2023].

- [25] 2,2-difluorodiazoethane was not successful in this transformation.
- [26] Lower yields were observed for 4af, 4ag and 4ah due to the formation of undetermined by-products and difficult purification.
- [27] L. Wanka, K. Iqbal, P. R. Schreiner, Chem. Rev. 2013, 113, 3516–3604.
- [28] Less nucleophilic alcohols, such as HFIP did not show any reactivity.
- [29] When an alcohol or an aniline containing a nitrile group was used, only traces of product could be observed, probably due to catalyst deactivation.
- [30] Deposition Numbers 2216834 (for 13ac) and 2225295 (for 19) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- [31] H. Hu, M. C. Dietl, C. Han, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2021, 60, 10637.
- [32] G. J. Kubas, B. Monzyk, A. L. Crumblis in *Inorganic Synthesis* (Ed.: R. J. Angelici), Wiley, Hoboken, **2007**, pp. 68.
- [33] S. Chuprun, C. M. Acosta, L. Mathivathanan, K. V. Bukhryakov, Organometallics 2020, 39, 3453.
- [34] S. G. E. Amos, D. Cavalli, F. Le Vaillant, J. Waser, Angew. Chem. Int. Ed. 2021, 60, 23827.

- [35] L. Hofstra, T. J. DeLano, S. E. Reisman, Org. Synth. 2020, 97, 172.
- [36] M. Ramasamy, H.-C. Lin, S.-C. Kuo, M.-T. Hsieh, Synlett 2019, 30, 356.
- [37] We found different α_D value for the same enantiomer described in the literature. This is probably due to the low rotation power of this compound. For more information, see:
 a) P. Veeraraghavan Ramachandran, B. Gong, A. V. Teodorovic, H. C. Brown, *Tetrahedron: Asymmetry* 1994, 5, 1061;
 b) H. Matsutani, T. Kusumoto, T. A. Hiyama, *Chem. Lett.* 1999, 28, 529;
 c) Y.-M. Zhang, M.-L. Yuan, W.-P. Liu, J.-H. Xie, Q.-L. Zhou, *Org. Lett.* 2018, 20, 4486;
 d) K. Nicholson, J. Dunne, P. DaBell, A. Beaton Garcia, A. D. Bage, J. H. Docherty, T. A. Hunt, T. Langer, S. P. Thomas, *ACS Catal.* 2021, 11, 2034.
- [38] S.-J. Ko, J. Y. Lim, N. Y. Jeon, K. Won, D.-C. Ha, B. T. Kim, H. Lee, *Tetrahedron: Asymmetry* 2009, 20, 1109.
- [39] S. Kim, B. Kim, J. In, Synthesis 2009, 1963.

Manuscript received: April 25, 2023 Accepted manuscript online: June 1, 2023 Version of record online: July 3, 2023

Table of Content

1. Ge	eneral Information	SI3
2. Op	otimization Studies	SI4
•	Optimization for Alcohols	
2.1.	Influence of the BOX Ligands	SI5
2.2.	Influence of Solvent, Temperature and Concentration	SI5
2.3.	Screening of Copper (I) Catalysts and Solvents	SI6
2.4.	Screening of the Stoichiometry and Copper Catalysts	SI6
	Stoichiometry using 3a and Copper (I) Catalyst.	
2.5.	Final screening	SI7
2.6.	Optimization for Tertiary Alcohols	SI7
2.7.	Optimization for Primary Alcohols	SI8
2.8.	Control for the Absence of Racemization under the Reaction	SI8
	Conditions	
2.9.	Optimization for Chiral Alcohols	SI8
2.10.	Optimization for Cedrol (5d)	SI9
В)	Optimization for Anilines	
2.11.	Screening of Ligands	SI9
2.12.	Screening of Temperature	SI10
2.13.	Screening of Solvent, Concentration and Temperature	SI10
2.14.	Optimization for Carboxylic Acid (16)	SI11
3. Sy	nthesis of Starting Materials	SI11
3.1.	Synthesis of 2,2,2-Trifluorodiazoethane (1)	SI11
3.2.	EBX Used in the Reaction	SI12
3.3.	Synthesis of EBX derivatives	SI12
3.3.1.	Synthesis of Precursors S3 and S4	SI12
3.3.2.	Synthesis of Hypervalent Iodine Reagents (EBX') (2a-2g)	SI14
3.4.	Synthesis of alcohols 3h and 3p	SI18
3.4.1.	Preparation of 1-2-fluorophenyl)-2-methylpropan-2-ol (3h)	SI18
3.4.2.	Preparation of 1-methylcyclododecan-1-ol (3p)	SI19
	nthesis of L2 and L3	SI20
5. Pro	ocedures and Compound Characterization for the Enantioselective	SI23
3-0	Component Reaction between 1, 2 and Alcohols (3, 5)	
	ocedures and Compound Characterization for the Enantioselective	SI45
	Component Reaction between 1, 2 and Anilines (12)	
	ocedures and Compound Characterization for the Enantioselective	SI56
	Component Reaction between 1 , 2 and Phenols (14) and Carboxylic	
	ids (16)	
	ale up Procedures for Compounds 4an and 11b	SI58
8.1.	Procedure for the scale up of compound 4an	SI58
8.2.	Procedure for the scale up for compound 11b	SI59
	oduct functionalization	SI60
9.1.	Procedure for the deprotection of 4an : Synthesis of (<i>S</i>)-1,1,1-	SI61
	trifluoro-4-phenylbut-3-yn-2-ol (18)	
9.2.	Derivation of compound 18 : Synthesis of (<i>S</i>)-1,1,1-trifluoro-4-pheny	SI62
	3-yn-2-yl 4-nitrobenzoate (19)	

9.3.		ocedure for the deprotection of TIPS group: Synthesis of be ((benzyloxy)carbonyl)-O-((S)-1,1,1-trifluorobut-3-yn-2-yl)-L-		
	ser	rinate (20)	SI63	
10.	Pr	eliminary mechanistic studies	SI64	
11. De	terr	nination of the absolute configuration		SI70
	a.	X-Ray for the Determination of the Absolute Configuration Anilines	for	SI70
	b.	X-Ray for the Determination of the Absolute Configuration Alcohols	for	SI72
,		and ¹⁹ F NMR Spectra of Trifluoromethylated Propargylic ounds 4 , 6 , 7 , 8 , 9 , 10 , 11 , 13 , 15 , 17 , 18 , 19 , 20		SI74
13. Chi	iral	HPLC traces.		S163
		1R crude spectra for chiral alcohols to determine the reomeric ratio (dr)		S198

1. General Information

Reagents (precursors of HIR and diazo compounds as well as anilines) and solvents were purchased from different trading houses (Sigma-Aldrich, Fluorochem, TCI) and were used without further purification, unless otherwise stated. TLC was performed on silica gel 60 F254, using aluminum plates, and visualized by exposure with UV. Flash chromatography (FC) was carried out on hand-packed columns of silica gel 60 (230–400 mesh). Infrared (IR) analysis was performed with a JASCO FT/IR b4100 spectrophotometer equipped with an ATR PRO410-S and a ZnSe Prisma and are reported as cm-1 (w = weak, m = medium, s = strong, br = broad). High-resolution mass spectra were performed by the mass spectrometry service of ISIC at EPFL on a MICROMASS (ESI) Ultima API (Waters Instrument). The NMR spectra were recorded on a Bruker DPX-400 spectrometer at 400 MHz for ¹H, 101 MHz for ¹³C, and 376 MHz for ¹⁹F. The chemical shift (δ) for 1 H and 13C is given in ppm and referenced to residual signals of the solvents (chloroform-d 7.26 ppm ¹H NMR and 77.16 ppm ¹³C NMR). ¹³C NMR spectra were recorded with 1 H decoupling and ¹⁹F NMR as ¹⁹F nondecoupling. Coupling constants are given in hertz. The data is reported using the following abbreviations: s, singlet; d, doublet; q, quartet; m, multiplet; bs, broad signal; app, apparent. Cu(MeCN)₄SbF₆ was prepared according to a reported procedure.^[1] Racemic samples were prepared according to our previous protocol.^[2]

^[1] Kubas, G. J.; Monzyk, B.; Crumblis, A. L. in Inorganic Synthesis (Ed.; R. J. Angelici), Wiley & Sons, Inc., Hoboken, NJ, USA 2007, pp. 68-70

2. Optimization Studies

<u>Stock solution of the catalyst:</u> In an oven-dried microwave vial, **catalyst (x mol%)** and **ligand (y mol%)** were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N₂. Finally, dry solvent **[concentration]** was added into the vial and the resulting colourlesss solution was stirred (430 rpm) at room temperature during 1 h.

<u>Procedure:</u> In an oven-dried microwave vial, compound **2a** (70 mg, 0.15 mmol, 1.00 equiv.) and **nucleophile (if solid) (equiv)** were added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N₂, followed by the addition of **1** (0.40 mmol, 0.33-0.40 M in DCM, 2.00 equiv.) and **nucleophile (if liquid) (equiv).** The resulting reaction mixture was stirred at RT under N₂ atmosphere and the catalytic solution **[concentration]** was added dropwise. After **t** of reaction, the reaction was monitored by TLC (95:5, Pentane/EtOAc) observing full conversion of **2** (unless otherwise noticed). The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc (10 mL). The solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography according to the conditions described for each compound.

A) Optimization for Alcohols

Influence of the BOX Ligands

2.1.

Reactions were performed at 0.15 mmol scale. In brackets, ¹⁹F NMR yield of the crude reaction mixture using PhCF₃ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC. b) The opposite enantiomer was obtained.

2.2. Influence of Solvent, Temperature and Concentration

N_2 H CF ₃ + 1 (2 equiv.)	CI		CuCl (2 mol%) AgNTf ₂ (2 mol%) L2 (2.5 mol%) Solvent], 16 h, T	Ph H CF ₃
(0.33 - 0.40 M in DCM)	2a (1 equiv.)	3a (4 equiv.)		4aa (yield, er) ^a
Entry	Solvent/[M]	Temperature	e Yield	er
1	PhCl [0.5 M]	RT	90	91:9
2	DCE [0.15 M]	50 °C	quantitative	86:14
3	DCE [0.15 M]	RT	95	89:11

Reactions were performed at 0.15 mmol scale. In brackets, ¹⁹F NMR yield of the crude reaction mixture using PhCF₃ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC. b) The opposite enantiomer was obtained.

2.3. Screening of Copper (I) Catalysts and Solvents

Ph- N2 H CF ₃ + 1 (2 equiv.) (0.33 - 0.40 M in DCM)	2a (1 equiv.)	-3	Cu(MeCN)₄X (2 mol%) L1 (2.5 mol%) [Solvent], 1 h, RT	Ph H CF ₃ 4aa (yield, er) ^a
Entry	Copper (I)	Solvent	Yield	er
	catalyst	5.05		00.44
1	Cu(MeCN)₄SbF ₆	DCE	quantitative	89:11
2	Cu(MeCN) ₄ BF ₄	DCE	88	94:6
3	Cu(MeCN) ₄ SbF ₆	MeCN	n.d.	n.d.
4	Cu(MeCN) ₄ SbF ₆	PhMe	82	93:7
5	Cu(MeCN) ₄ SbF ₆	THF	78	92:8

Reactions were performed at 0.15 mmol scale. In brackets, ¹⁹F NMR yield of the crude reaction mixture using PhCF₃ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

2.4. Screening of the Stoichiometry and Copper Catalysts Stoichiometry using 3a and Copper (I) Catalyst

Ph- N ₂ H CF ₃ + 1 (2 equiv.) (0.33 - 0.40 M in DCM)	2a (1 equiv.) 3a		r Catalyst (2 mol%) L1 (2.5 mol%) 0.15 M], 1 h, RT	Ph H CF ₃ 4aa (yield, er) ^a
Entry	Copper (I)	Equiv of 3a	Yield	er
	catalyst			
1	CuCl/AgNTf ₂	2	75	93:7
2	CuCl/AgNTf ₂	2	95	89:11
	and L2			
3	Cul	2	64	89:11
4	CuTC	2	81	87:13
5	Cu(OTf)xPhMe	2	78	95:5
6	Cu(MeCN) ₄ BF ₄	2	83	96:4
7	Cu(MeCN) ₄ BF ₄	1.5	65	95:5
8	Cu(MeCN) ₄ SbF ₆	2	89	92:8

Cu(OTf)₂ Reactions were performed at 0.15 mmol scale. In brackets, ¹⁹F NMR yield of the crude reaction mixture using PhCF₃ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

2

2

2

2

9

10

11

12

Cu(MeCN)₄PF₆

Cu(MeCN)₄OTf

Cu(OAc)₂

89:11

93:7

85:15

96:4

69

77

69

68

2.5. Final screening

Reactions were performed at 0.15 mmol scale. In brackets, ¹⁹F NMR yield of the crude reaction mixture using PhCF₃ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

2.6. Optimization for Tertiary Alcohols

6

7Cu(MeCN)_4SbF_6 and L2 in DCM6691:9Reactions were performed at 0.15 mmol scale. In brackets, ¹⁹F NMR yield of the crude reaction mixture
using PhCF3 as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after
purification of the crude reaction mixture by PTLC. ^aAlthough these conditions gave slightly better results
for tertiary alcohols, they were not well suited for secondary alcohols. To keep a single procedure, we
therefore preferred to keep the conditions of entry 1 also for tertiary alcohols.

Cu(MeCN)₄SbF₆ and L2

84

96:4^a

2.7. Optimization for Primary Alcohols

Ph- H CF ₃ + 1 (2 equiv.)	CF ₃ +)	Cu(MeCN) ₄ SbF ₆ (X mol%) L1 (Y mol%) DCE [0.15 M], 1 h, RT	Ph H CF ₃	\mathbf{i}
(0.33 - 0.40 M in DCM)	2a (1 equiv.) 3	l (2 equiv.)		4al (yield, er) ^a	
Entry	Cu(MeCN)₄SbF₅ (X mol%)	L1 (X mol%)	Yield (%)	er	
1	2	2	90	93:7	
2	2	2.5	91	85:15	
3	2	4	84	84:16	
4	4	2	74	93:7	

Reactions were performed at 0.15 mmol scale. In brackets, ¹⁹F NMR yield of the crude reaction mixture using PhCF₃ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

2.8. Control for the Absence of Racemization under the Reaction Conditions

Enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

2.9. Optimization for Chiral Alcohols

Entry	Equiv. 2a	Equiv. 5a	Yield (%)	dr
1	1	4	68	96:4
2	1.5	1	70	97:3
3	2	2	59	94:4

Reactions were performed at 0.15 mmol scale. In brackets, ¹⁹F NMR yield of the crude reaction mixture using PhCF₃ as Internal Standard (IS) (1 equiv.) and dr determined by ¹⁹F NMR of the crude reaction mixture.

2.10. Optimization for Cedrol (5d)

Reactions were performed at 0.15 mmol scale. In brackets, ¹⁹F NMR yield of the crude reaction mixture using PhCF₃ as Internal Standard (IS) (1 equiv.) and dr determined by ¹⁹F NMR of the crude reaction mixture. b) Cu(MeCN)₄BF₄ was used instead of Cu(MeCN)₄SbF₆

B) Optimization for Anilines

2.11. Screening of Ligands

Reactions were performed at 0.15 mmol scale. In brackets, ¹⁹F NMR yield of the crude reaction mixture using PhCF₃ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

2.12. Screening of Temperature

3

-10 °C 76 93.5:6.5 Reactions were performed at 0.15 mmol scale. In brackets, ¹⁹F NMR yield of the crude reaction mixture using PhCF₃ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

2.13. Screening of Solvent, Concentration and Temperature

Ph− N2 H CF ₃ +	O CF ₃ CF ₃	+ CuCl (2 AgNTf ₂ (2 L2 (2.5 r [Solvent], 16	2 mol%) mol%)	CF ₃
1 (2 equiv.)		с ['] О ₂ Ме		
(0.33 - 0.40 M in DCM)	2a (1 equiv.)	12a (4 equiv.)	13aa	(yield, er) ^a
Entry	Temperature	e [Solvent]	Yield	er
1	-10	PhCl [0.15 M]	63	97:3
2	RT	PhCl [0.15 M]	93	95:5
3	0	PhCl [0.15 M]	79	96:4
4	RT	DCM [0.15 M]	89	94:6
5	RT	DCE [0.15 M]	87	96:4
6 ^b	RT	DCE [0.15 M]	68	95:5

Reactions were performed at 0.15 mmol scale. In brackets, ¹⁹F NMR yield of the crude reaction mixture using PhCF₃ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC. b) L1 was used instead of L2.

2.14. Optimization for Carboxylic Acid (17)

Reactions were performed at 0.20 mmol scale. In brackets, ¹⁹F NMR yield of the crude reaction mixture using PhCF₃ as Internal Standard (IS) (1 equiv.) and enantiomeric excess determined by chiral HPLC after purification of the crude reaction mixture by PTLC.

3. Synthesis of Starting Materials

For a better reproducibility, the following syntheses are taken directly from the cited articles reported by our group, unless otherwise is noticed.

3.1. Synthesis of 2,2,2-Trifluorodiazoethane (1)

Following a reported procedure,² under argon, 2,2,2-trifluoroethanamine hydrochloride (**S1**) (0.678 g, 5.00 mmol, 1.00 equiv) and sodium nitrite (0.379 g, 5.50 mmol, 1.10 equiv) were dissolved in degassed DCM (10 mL). Degassed water (1.00 mL, 55.5 mmol, 11.1 equiv) was added slowly at 0 °C. The solution was stirred for 2 h at 0 °C and 1 h at room temperature. Layers were separated and the organic layer was dried over MgSO₄, transferred into a vial, sealed, and stored at -18 °C. The concentration of the obtained solution was determined to be 0.0.33-0.40 M by ¹⁹F NMR analysis (according to an

² Ramirez, N.P.; Pisella, G.; Waser, J. Cu(I)-Catalyzed gem-Aminoalkynylation of Diazo Compounds: Synthesis of Fluorinated Propargylic Amines. *J. Org. Chem.* **2021**, *86*, 10928-10938.

³ Pisella, G.; Waser, J. Three-Component Reaction for the Synthesis of Highly Functionalized Propargyl Ethers. *Chem. Eur. J.* **2020**, *26*, 10199 – 10204.

internal reference, PhCF₃). ¹⁹**F NMR (377 MHz, DCM**- d_2) δ –55.6. The values of the NMR spectra are in accordance with reported literature data.^{[2], [3]}

3.2. EBX Used in the Reaction

3.3. Synthesis of EBX derivatives

3.3.1. Synthesis of Precursors S3 and S4

1,1,1,3,3,3-Hexafluoro-2-(2-iodophenyl)- propan-2-ol (S3).

According to a reported procedure,^{[2],[3]} TMEDA (1.27 mL, 8.40 mmol, 0.20 equiv) was added to a solution of n-BuLi (37.0 mL, 92.0 mmol, 2.20 equiv., 2.5 M in hexanes). After 15 min, the cloudy solution was cooled to 0 °C, and 1,1,1,3,3,3-hexafluoro-2phenylpropan-2-ol (**S2**) (7.07 mL, 42.0 mmol, 1.00 equiv) in THF (6.0 mL) was added dropwise. The reaction was stirred for 30 min at 0 °C and then 18 h at room temperature. Then, THF (30.0 mL) was added, followed by the portionwise addition of I₂ (11.3 g, 44.5 mmol, 1.05 equiv.) at 0 °C, and the mixture was stirred at 0 °C for 30 min and 4 h at room temperature. The reaction was quenched with saturated aqueous NH₄Cl (50 mL) and extracted with diethyl ether (3 × 30 mL). The combined organic phases were washed with water, brine, dried over MgSO₄, and filtered, and the solvent was removed under reduced pressure. The crude product was purified by column chromatography using EtOAc/pentane 3:97 as an eluent to afford 1,1,1,3,3,3- hexafluoro-2-(2iodophenyl)propan-2-ol (**S3**) as a colorless oil (13.9 g, 37.5 mmol, 89%): **R**_f 0.66 (95:5, Pentane/EtOAc, visualized by exposure to UV light); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, *J* = 7.9, 1.4 Hz, 1H, Ar*H*), 7.63 (d, *J* = 8.2 Hz, 1H, Ar*H*), 7.43 (dt, *J* = 8.4, 1.4 Hz, 1H, Ar*H*), 7.11 (dt, *J* = 8.0, 1.5 Hz, 1H, Ar*H*), 4.23 (s, 1H, -O*H*); ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 131.4, 130.0, 129.7, 128.0, 122.6 (q, *J* = 291.4 Hz), 90.6, 78.9 (q, *J* = 32.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –73.4. The values of the NMR spectra are in accordance with reported literature data.^{[2],[3]}

3,3-Bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl acetate (S4).

A 500 mL flask was charged with glacial acetic acid (188 mL), 1,1,1,3,3,3-hexafluoro-2-(2-iodophenyl)propan-2-ol (S4) (13.9 g, 37.5 mmol, 1.00 equiv.), and cobalt(II) chloride hexahydrate (89.0 mg, 0.375 mmol, 0.01 equiv.). The reaction vessel was purged with O₂ for 5 min before acetaldehyde (21.4 mL, 379 mmol, 10.0 equiv.) was added in one portion. The reaction mixture was stirred under 1 atm. of O₂, delivered by an inflated balloon, at room temperature for 12 h. Acetaldehyde (21.4 mL, 379 mmol, 10.00 equiv.) was added, and the reaction continue for 6 h. The solvent was removed under reduced pressure, and the residue was dissolved in DCM. The organic layer was washed with distilled water (50 mL) and extracted with DCM (3 × 50 mL). The organic layer was dried over MgSO₄ and filtered, and the solvent was removed under reduced pressure. The obtained residue was triturated in pentane for 0.5 h, filtered, and washed with pentane (operation repeated 2 times) to afford 3,3-bis- $(trifluoromethyl)-1\lambda3$ benzo[d][1,2]iodaoxol-1(3H)-yl acetate (**S4**) as a white solid (9.91 g, 23.2 mmol, 62%): ¹H **NMR (400 MHz, DMSO-d**₆) δ 7.93 (ddd, J = 8.4, 7.1, 1.6 Hz, 1H, ArH), 7.85–7.69 (m, 3H, ArH), 2.19 (s, 3H, -OCH₃); ¹³C NMR (101 MHz, DMSO-d₆) δ 174.4, 134.2, 131.4, 131.0, 130.8, 129.5–129.0 (m), 123.1 (q, J = 289.5 Hz), 116.1, 84.5–83.7 (m), 20.0; ¹⁹F NMR (376 **MHz**, **DMSO-d**₆) δ –75.1. The values of the NMR spectra are in accordance with reported literature data.^{[2],[3]}

3.3.2. Synthesis of Hypervalent Iodine Reagents (EBX') (2a-2g)^{[2],[3]}

To a solution of 3,3-bis(trifluoromethyl)-1 λ^3 -benzo[d][1,2]iodaoxol1(3H)-yl acetate (S4) (1.00 equiv.) in dry DCM (c = 0.2 M) was added trimethylsilyl trifluoromethanesulfonate (1.10 equiv.) dropwise at room temperature, and the reaction mixture was stirred for 1 h. After this time, the corresponding trimethylethynylsilane (S5a–S5g) (1.10 equiv.) was added, and the mixture was stirred for 6 h at room temperature. The reaction mixture was then quenched with saturated aqueous NaHCO₃ solution and extracted with dichloromethane (3 times). The combined organic extracts were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography using EtOAc/pentane as an eluent to give the corresponding EBX' reagent (2a–2g).

<u>1-(Phenylethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 λ^3 -benzo[*d*][1,2]iodaoxole (2a):^{[2],[3]}</u>

Following the general procedure, starting from trimethyl(phenylethynyl)silane (**S5a**) (192 mg, 1.10 mmol) and 3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[*d*][1,2]iodaoxol-1(3*H*)-yl acetate (**S4**) (428 mg, 1.00 mmol), afforded 1-(phenylethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro- $1\lambda^3$ -benzo[*d*][1,2]iodaoxole (**2b**) as a white solid (395 mg, 0.840 mmol, 84%) after purification by flash column chromatography (100% Pentane to 97:3 Pentane/EtOAc): **R**_f = 0.49 (95:5 Pentane/EtOAc, visualized by exposure to UV light); ¹**H NMR (400 MHz, CDCl₃)** δ 8.34 – 8.24 (m, 1H, Ar*H*), 7.86 (ddt, *J* = 7.4, 3.2, 1.4 Hz, 1H, Ar*H*), 7.75 – 7.66 (m, 2H, Ar*H*), 7.59 – 7.53 (m, 2H, Ar*H*), 7.48 – 7.37 (m, 3H, Ar*H*); ¹³**C NMR (101 MHz, CDCl₃)** δ 133.1, 132.8, 131.4, 130.3, 130.1, 130.0, 128.8, 128.5, 123.7 (q, *J* =

289.8 Hz), 121.4, 111.6, 105.4, 82.5 – 81.1 (m), 54.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.2. The values of the NMR spectra are in accordance with reported literature data.^{[2],[3]}

<u>1-((4-nitrophenyl)ethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro- λ^{3-} </u> benzo[*d*][1,2]iodaoxole (2b):^[2]

Following the general procedure, starting from ((4-nitrophenyl)ethynyl)trimethylsilane (S5b)^[4] (241. 1.10 mmol) and and 3,3-bis(trifluoromethyl)-1 λ^3 mg, benzo[d][1,2]iodaoxol-1(3H)-yl acetate (S4) (428 mg, 1.00 mmol), afforded 1-((4nitrophenyl)ethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 λ^3 -benzo[d][1,2]iodaoxole (2b) as a yellow amorphous solid (232 mg, 0.450 mmol, 45%) after purification by flash column chromatography (100% Pentane to 90:10 Pentane/EtOAc): \mathbf{R}_{f} = 0.19 (95:5 Pentane/EtOAc, visualized by exposure to UV light); ¹H NMR (400 MHz, CDCl₃) δ 8.30 -8.25 (m, 2H ArH), 8.24 - 8.21 (m, 1H, ArH), 7.90 - 7.84 (m, 1H, ArH), 7.78 - 7.68 (m, 4H, ArH); ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 133.5, 133.3, 131.7, 130.2 (br s), 130.1, 128.5, 128.1, 127.9, 124.0, 123.6 (q, J = 289.8 Hz) 111.4, 102.3, 81.8 (m), 61.3; ¹⁹F NMR (376 **MHz, CDCl₃**) δ -76.1. The values of the NMR spectra are in accordance with reported literature data.[2]

1-((2-Bromophenyl)ethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 λ^3 benzo[*d*][1,2]iodaoxole (**2c**)^[3]

2c

^[4] Chuprun, S.; Acosta, C. M.; Mathivathanan, L.; Bukhryakov, K. V. Molybdenum Benzylidene Complexes for Olefin Metathesis Reactions. *Organometallics* **2020**, *39*, 3453-3457.

Following general procedure, starting from ((2-bromophenyl)ethynyl)trimethylsilane (**S5c**) (234 µL, 1.10 mmol) and 3,3-bis(trifluoromethyl)-1 λ^3 -benzo[*d*][1,2]iodaoxol-1(3*H*)-yl acetate (**S4**) (428 mg, 1.00 mmol), afforded 1-((2-bromophenyl)ethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 λ 3 - benzo[d][1,2]iodaoxole (**2c**) as a white solid (535 mg, 0.970 mmol, 97%) after purification by flash column chromatography (100% Pentane to 95:5 Pentane/EtOAc): **R**f = 0.34 (95:5 Pentane/EtOAc, visualized by exposure to UV light); ¹**H NMR (400 MHz, CDCl**₃) δ 8.52 – 8.43 (m, 1H, Ar*H*), 7.90 – 7.81 (m, 1H, Ar*H*), 7.76 – 7.68 (m, 2H, Ar*H*), 7.66 (dd, *J* = 8.0, 1.1 Hz, 1H, Ar*H*), 7.57 (dd, *J* = 7.6, 1.8 Hz, 1H, Ar*H*), 7.35 (td, *J* = 7.6, 1.3 Hz, 1H, Ar*H*), 7.32 – 7.24 (m, 1H, Ar*H*); ¹³**C NMR (101 MHz, CDCl**₃) δ 134.5, 133.2, 132.9, 131.4, 131.2, 130.2 – 129.9 (m), 130.0, 128.9, 127.5, 126.2, 123.9, 123.7 (q, *J* = 290.6 Hz), 111.6, 103.0, 81.8 (p, *J* = 29.8 Hz), 59.6; ¹⁹**F NMR (376 MHz, CDCl**₃) δ -76.1. The values of the NMR spectra are in accordance with reported literature data.^[3]

 $((3,3-Bis(trifluoromethyl)-1\lambda^{3}-benzo[d][1,2]iodaoxol-1(3H) yl)ethynyl)triisopropylsilane (2d):^{[2],[3]}$

Following the procedure, from general starting triisopropyl((trimethylsilyl)ethynyl)silane (S5d) (2.80 g, 11.0 mmol) and 3,3bis(trifluoromethyl)-1 λ^3 -benzo[d][1,2]iodaoxol-1(3H)-yl acetate (**S4**) (4.28 g, 10.0 $((3,3-bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)$ mmol), afforded yl)ethynyl)triisopropylsilane (2d) as a white solid (5.33 g, 9.68 mmol, 97%) after purification by flash column chromatography (100% Pentane to 97:3 Pentane/EtOAc): R_f = 0.82 (95:5 Pentane/EtOAc, visualized by exposure to UV light); ¹H NMR (400 MHz, **CDCl₃**) δ 8.36 (dd, J = 7.9, 1.5 Hz, 1H, ArH), 7.88 – 7.81 (m, 1H, ArH), 7.74 – 7.62 (m, 2H, ArH), 1.23 – 1.07 (m, 21H, TIPS); ¹³C NMR (101 MHz, CDCl₃) δ 132.9, 131.3, 130.1, 130.2 - 130.0 (m), 128.3, 123.7 (q, J = 290.4 Hz), 112.3, 111.0, 81.6 (p, J = 29.5 Hz), 69.9, 18.7, 11.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.2. The values of the NMR spectra are in accordance with reported literature data.^{[2],[3]}

benzo[d][1,2]iodaoxole (2e): [3]

Following general procedure, starting from (cyclopropylethynyl)trimethylsilane (**S5e**) (995 µL, 5.50 mmol) and 3,3-bis(trifluoromethyl)-1 λ^3 -benzo[*d*][1,2]iodaoxol-1(3*H*)-yl acetate (**S4**) (2.14 g, 5.00 mmol), afforded 1-(cyclopropylethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 λ^3 - benzo[*d*][1,2]iodaoxole (**2e**) as an off-white solid (873 mg, 2.01 mmol, 40%) after purification by flash column chromatography (100% Pentane to 97:3 Pentane/EtOAc): *R*_f = 0.26 (95:5 Pentane/EtOAc, visualized by exposure to UV light); ¹H NMR (400 MHz, CDCl₃) δ 8.32 – 8.14 (m, 1H, Ar*H*), 7.88 – 7.74 (m, 1H, Ar*H*), 7.74 – 7.59 (m, 2H, Ar*H*), 1.54 (tt, *J* = 8.2, 5.0 Hz, 1H, CHC=C), 1.00 – 0.91 (m, 2*H*, CH₂-cyclopropyl), 0.91 – 0.85 (m, 2H, CH₂-cyclopropyl); ¹³C NMR (101 MHz, CDCl₃) δ 132.9, 131.2, 130.2, 130.0, 129.8, 128.2, 123.8 (q, *J* = 290.8 Hz), 81.7 (p, *J* = 29.5 Hz), 39.4, 9.5, 1.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.3. The values of the NMR spectra are in accordance with reported literature data.^[3]

<u>1-(3,3-Dimethylbut-1-yn-1-yl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 λ^{3-} </u> benzo[*d*][1,2]iodaoxole **(2f):**^[2]

Following the general procedure, starting from (3,3-dimethylbut-1-yn-1-yl)trimethylsilane (**S5f**) (229 μ L, 1.10 mmol) and 3,3-bis(trifluoromethyl)-1 λ^3 -benzo[*d*][1,2]iodaoxol-1(3*H*)-yl acetate (**S4**) (428 mg, 1.00 mmol), afforded 1-(3,3-dimethylbut-1-yn-1-yl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 λ^3 -benzo[*d*][1,2]iodaoxole (**2f**) as a white solid (350 mg, 0.780 mmol, 78%) after purification by flash column chromatography (100% Pentane to 97:3 Pentane/EtOAc): **R**_f = 0.34 (95:5)

Pentane/EtOAc, visualized by exposure to UV light); ¹H NMR (400 MHz, CDCl₃) δ 8.24 – 8.14 (m, 1H, Ar*H*), 7.89 – 7.78 (m, 1H, Ar*H*), 7.74 – 7.64 (m, 2H, Ar*H*), 1.34 (s, 9H, *tBu*); ¹³C NMR (101 MHz, CDCl₃) δ 132.7, 131.1, 130.3, 130.0, 128.0, 123.9 (q, *J* = 290.3 Hz), 116.1, 111.2, 81.9 (p, *J* = 29.6 Hz), 42.0, 30.8, 29.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.2. The values of the NMR spectra are in accordance with reported literature data.^[2]

<u>1-(Thiophen-2-ylethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 λ^{3-} </u> benzo[*d*][1,2]iodaoxole (**2g**):^[2]

Following general procedure, starting from trimethyl(thiophen-2-ylethynyl)silane (**S5g**) (182 µL, 1.10 mmol) and 3,3-bis(trifluoromethyl)-1 λ^3 -benzo[*d*][1,2]iodaoxol-1(3*H*)-yl acetate (**S4**) (428 mg, 1.00 mmol), afforded 1-(thiophen-2-ylethynyl)-3,3-bis(trifluoromethyl)-1,3-dihydro-1 λ^3 -benzo[*d*][1,2]iodaoxole (**2g**) as an off-white solid (403 mg, 0.850 mmol, 85%) after purification by flash column chromatography (100% Pentane to 95:5 Pentane/EtOAc): *R*_f = 0.34 (95:5 Pentane/EtOAc, visualized by exposure to UV light); ¹H NMR (400 MHz, CDCl₃) δ 8.30 – 8.19 (m, 1H, Ar*H*), 7.89 – 7.80 (m, 1H, Ar*H*), 7.76 – 7.66 (m, 2H, Ar*H*), 7.44 – 7.38 (m, 2H, Ar*H*), 7.07 (dd, *J* = 5.1, 3.7 Hz, 1H, Ar*H*); ¹³C NMR (101 MHz, CDCl₃) δ 135.2, 133.2, 131.4, 130.2, 123.0, 129.9, 128.5, 127.5, 123.7 (q, *J* = 291.2 Hz), 121.3, 111.8, 98.4, 81.8 (p, *J* = 29.7 Hz), 59.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.2. The values of the NMR spectra are in accordance with reported literature data^{-[2]}

3.4. Synthesis of alcohols 3f and 3p

3.4.1. Preparation of 1-2-fluorophenyl)-2-methylpropan-2-ol (3f)

Following a reported procedure,^[4] in a two-necked round bottom flask, a solution of **S6** was prepared (1.0 mL, 6.8 mmol, 2.3 equiv.) in dry THF (60 mL). The reaction mixture was cooled down to 0 °C and a solution of MeMgBr (5.2 mL, 16 mmol, 2.3 equiv., 3.0 M in Et₂O) in dry THF (10 mL) was added dropwise. The resulting reaction mixture was allowed to reach room temperature and stirred overnight at room temperature under N₂ atmosphere. After this time, the reaction mixture was quenched with saturated aqueous NH₄Cl (15 mL, aprox.) and stirred for 15 min. Then, aqueous layer was extracted with EtOAc (3 x 40 mL). Organics were recombined, washed with water (2 x 30 mL), brine (1 x 10 mL), dried over anhydrous MgSO₄, filtered, and evaporated under reduced pressure. Compound **3f** was obtained after flash column chromatography (Pentane/EtOAc, 9:10 to 80:20) as a colorless oil (815 mg, 4.84 mmol, 71%): **Rf** = 0.28 (Pentane/EtOAc, 9:1), visualized by exposure to UV light; ¹H NMR (400 MHz, CDCl₃) δ 7.18 - 7.11 (m, 2H, ArH), 7.04 - 6.96 (m, 2H, ArH), 2.76 (d, *J* = 1.8 Hz, 2H, -CH₂-), 1.18 (d, *J* = 1.0 Hz, 6H, 2 x -CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -116.1 (m). The values of the NMR spectra are in accordance with reported literature data^[4]

Following a reported procedure:^[4]In an oven-dried two necked flask, a solution of cyclododecanone **S7** (1.0 g, 5.5 mmol, 1.00 equiv.) in Et₂O (25 mL) was prepared. The solution was cooled down to 0 °C and MeMgBr (2.0 mL, 6.0 mmol, 1.1 equiv. 3.0 M in Et₂O) diluted with THF (4 mL) was added dropwise. The reaction mixture was allowed to reach room temperature and stirred overnight under N₂ atmosphere. The reaction mixture was quenched with sat. aq. NH₄Cl (15 mL) and the resulting suspension was stirred for 15 min. After this time, H₂O (15 mL) and EtOAc (30 mL) were added, and the layers were separated. Aqueous layer was separated and extracted with EtOAc (3 x 20

⁴ Amos, S.G.E., Cavalli, D.; Le Vaillant, F.; Waser, J. Direct Photoexcitation of Ethynylbenziodoxolones: An Alternative to Photocatalysis for Alkynylation Reactions. *Angew. Chem. Int. Ed.* **2021**, *60*, 23827–23834.

mL). Organics were recombined, washed with brine (1x 5 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography (100% to 95:5, Pentane/EtOAc), affording compound **3p** as a white solid (567 mg, 2.90 mmol, 52%): $R_f = 0.26$ (95:5 Pentane/EtOAc, stained with KMnO₄); ¹H NMR (400 MHz, CDCl₃) δ 1.59 - 1.49 (m, 2H), 1.45 - 1.24 (m, 21 H), 1.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 73.8, 36.3, 29.2, 26.6, 26.2, 22.7, 22.2, 20.1. The values of the NMR spectra are in accordance with reported literature data^{.[4]}

- 4. Synthesis of L2 and L3⁵
- 4.1. Preparation of L3

In a round bottom flask, diethyl malonimidate dihydrochloride (1.2 g, 5.0 mmol, 1.00 equiv.) and (1*R*, 2*S*)-(+)-cis-1-amino-2-indanol (1.6 g, 10 mmol, 2.11 equiv.) were added. The system was backfilled with N₂-vacumm cycles (3 times). Then, dry DCM (15 mL) was added, and the purple suspension was stirred at reflux under N₂ atmosphere during 24h. The reaction was allowed to reach room temperature and H₂O (70 mL) was added. Layers were separated and aqueous layer was extracted with DCM (3 x 70 mL). Organic layers were recombined, washed with brine (1 x 10 mL), dried over anydrous MgSO₄, filtered and concentrated under reduced pressure, affording a pale-brown solid, which was recrystallized with EtOH (20 mL). Compound L3 was obtained as a white solid (1.25 g, 3.71 mmol 74%): ¹H NMR (400 MHz, CDCl₃) δ 7.51 - 7.44 (m, 2H, Ar*H*), 7.30 - 7.23 (m, 6H, Ar*H*), 5.58 (d, *J* = 8.8 Hz, 2H, -C*H*₂C=N-), 3.23 – 3.12 (m, 2H, -C*H*₂Ar), 3.40 (dd, *J* = 17.6, 6.7 Hz, 2H, -CHO-), 3.28 (s, 2H, -C*H*₂C=N-), 3.23 – 3.12 (m, 2H, -CHO-): ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 141.7, 139.8, 128.6, 127.6, 125.6, 125.4, 83.7, 76.8, 39.8, 28.8. The values of the NMR spectra are in accordance with reported literature data^{-[5]}

⁵ Hofstra, L.; DeLano, T. J.; Reisman, S. E. Synthesis of Chiral Bisoxazoline Ligands: (3aR,3a'R,8aS,8a'S)-2,2'-(cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8H-indeno[1,2-d]oxazole). *Org. Synth.* **2020**, *97*, 172-188.

4.2. Preparation of L2

In an oven dried two-necked round bottomed flask, a solution of L3 (502 mg, 1.52 mmol, 1.00 equiv.) in dry THF (11.8 mL) was prepared and the mixture was cooled down to 0 ^oC and stirred during 15 min. Then, NaH (60% dispersion in mineral oil) (182 mg, 4.56 mmol, 3.00 equiv.) is added portionwise during 5 min. The mixture was vigorously stirred during 5 min and then, the reaction was allowed to reach room temperature and heated to 50 °C during 2 h. After this time, the reaction was allowed to reach room temperature and cooled again to 0 °C. The reaction mixture was quenched with NH₄Cl (10 mL) and diluted with H₂O (7 mL). Then, DCM (20 mL) was added and layers were separated. Aqueous layer was extracted with DCM (3 x 20 mL) and organics were recombined, washed with brine (1 x 10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure affording a pale-yellow solid, which was recrystallyzed Hexane/EtOAc (2:1, 15 mL), providing L2 as a white solid (385 mg, 1.08 mmol, 71%): ¹H NMR (400 MHz, **CDCl₃**) δ 7.47 - 7.41 (m, 2H, ArH), 7.24 - 7.21 (m, 6H, ArH), 5.52 (dd, J = 7.9, 0.8 Hz, 2H, -CH₂Ar), 5.33 (ddd, J = 8.0, 7.0, 1.9 Hz, 2H, -CH₂Ar), 3.38 (dd, J = 17.7, 6.9 Hz, 2H, -CHAr), 3.19 (dd, J = 17.9, 1.9 Hz, 2H, -CHAr), 1.38 - 1.30 (m, 2H, -cyclopropyl), 1.30 - 1.23 (m, 2H, cyclopropyl): ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 141.9, 139.9, 128.5, 127.49, 125.8, 125.3, 83.5, 76.5, 39.8, 18.5, 15.9. The values of the NMR spectra are in accordance with reported literature data.^[5]

5. Procedures and Compound Characterization for the Enantioselective 3-Component Reaction between 1, 2 and Alcohols (3, 5)

In order to avoid reproducibility issues, a stock solution of the catalyst was prepared triplicating the corresponding amount of Cu(MeCN)₄BF₄, L1 and DCE belonging to a 0.20 mmol scale 3-CR reaction. Then, the same catalytic stock solution was used for 2 reactions.

Procedure A: Synthesis of Trifluoromethylated Propargylic Ethers **4aa-4ak**, **4bp-4eb**, **11a-11b**.

Stock solution of the catalyst: In an oven-dried microwave vial, $Cu(MeCN)_4BF_4$ (3.8 mg, 1.2 µmol, 0.06 equiv.) and L1 (4.4 mg, 1.5 µmol, 0.075 equiv.) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N₂. Finally, dry DCE (3.9 mL) was added into the vial and the resulting colourlesss solution was stirring (430 rpm) at room temperature during 1 h.

<u>Procedure:</u> In an oven-dried microwave vial, compound **2** (0.20 mmol, 1.00 equiv.) and alcohol **3** (if solid) (0.40 mmol, 2.00 equiv.) were added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N₂, followed by the addition of **1** (0.40 mmol, 0.33-0.40 M in DCM, 2.00 equiv.) and alcohol **3** (if liquid) (0.40 mmol, 2.00 equiv.). The resulting reaction mixture was stirred at RT under N₂ atmosphere and the catalytic solution (1.30 mL) was added dropwise. After 1h of reaction, the reaction was monitored by TLC (95:5, Pentane/EtOAc) observing full conversion of **2** (unless otherwise noticed). The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc (15 mL). The solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography according to the conditions described for each compound.

Procedure B: Synthesis of Trifluoromethylated Propargylic Ethers 4al-4an.

<u>Stock solution of the catalyst:</u> In an oven-dried microwave vial, $Cu(MeCN)_4BF_4$ (3.8 mg, 1.2 µmol, 0.060 equiv) and **L1** (3.5 mg, 1.2 µmol, 0.060 equiv) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N₂. Finally, dry DCE (3.9 mL) was added into the vial and the resulting colourlesss solution was stirring (430 rpm) at room temperature during 1 h.

<u>Procedure:</u> In an oven-dried microwave vial, compound **2a** (94 mg, 0.20 mmol, 1.00 equiv.) was added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N₂, followed by the addition of **1** (0.40 mmol, 0.33-0.40 M in DCM, 2.00 equiv.) and alcohol **3I-3n** (0.40 mmol, 2.00 equiv.). The resulting reaction mixture was stirred at RT under N₂ atmosphere and the catalytic solution (1.30 mL) was added dropwise. After 1 h of reaction, the reaction was monitored by TLC (95:5, Pentane/EtOAc) observing full conversion of **2** (unless otherwise noticed). The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc (15 mL). The solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography according to the conditions described for each compound.

Procedure C: Synthesis of Trifluoromethylated Propargylic Ethers 6-10.

<u>Stock solution of the catalyst:</u> In an oven-dried microwave vial, Cu(MeCN)₄BF₄ (3.8 mg, 1.2 μ mol mmol, 0.060 equiv.) and **L1** (4.4 mg, 1.5 μ mol, 0.075 equiv.) were charged and

the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum- N_{2} . Finally, dry DCE (3.9 mL) was added into the vial and the resulting colourlesss solution was stirring (430 rpm) at room temperature during 1 h.

<u>Procedure:</u> In an oven-dried microwave vial, compound **2** (0. 30 mmol, 1.50 equiv.) and alcohol (**5a-5e**) (if solid) (0.20 mmol, 1.00 equiv.) were added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N2, followed by the addition of **1** (0.40 mmol, 0.33-0.40 M in DCM, 2.00 equiv.) and alcohol (**5a-5e**) (if liquid) (0.20 mmol, 1.00 equiv.). Finally, the catalytic solution (1.30 mL) was added dropwise and the resulting reaction mixture was stirred overnight at RT under N₂ atmosphere. The reaction was monitored by TLC (90:10, Pentane/EtOAc) observing full conversion of **5** (unless otherwise noticed). The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc (15 mL). The solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography according to the conditions described for each compound.

(S)-(3-(Cyclohexyloxy)-4,4,4-trifluorobut-1-yn-1-yl)benzene (4aa):

Compound **4aa** was prepared from **2a** (94.0 mg, 0.200 mmol, 1.00 equiv.) and cyclohexanol **3a** (42 µL, 0.40 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colourless oil (46.8 mg, 0.166 mmol, 83%): The enantiomeric ratio (er) resulted to be 96:4 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 µL sample's injection, 254 nm, $t_{R(minor)} = 5.8 \text{ min}$, $t_{R(major)} = 6.2 \text{ min}$; $\alpha_D^{23} = 127.6$ (c = 0.375, CHCl₃); **TLC** *R*_f = 0.63 (99:1 Hexane/EtOAc), visualized by exposure to UV light; **IR** (*v*_{max}, *cm*⁻¹) 2937 (m), 2861 (w), 2229 (w), 1491 (w), 1447 (w), 1440 (w), 1361 (w), 1274 (m), 1254 (m), 1219 (m), 1184 (s), 1143 (s), 1100 (m), 770 (s), 761 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.30 (m, 3H, Ar*H*), 7.49 (dd, *J* = 8.0, 1.7 Hz, 2H, Ar*H*), 4.76 (q, *J* = 5.9 Hz, 1H, -CHCF₃), 3.75 (td, *J* = 9.2, 4.5 Hz, 1H, -OCH-), 2.01 - 1.87 (m, 2H, -CH₂ cyclohexyl), 1.84 - 1.74 (m, 2H, -CH₂

cyclohexyl), 1.58 - 1.48 (m, 2H, -CH₂ *cyclohexyl*), 1.44 - 1.23 (m, 4H, -CH₂ *cyclohexyl*); ¹³C NMR (101 MHz, CDCl₃) δ 132.2, 129.3, 128.5, 127.1, 122.9 (q, *J* = 281.5 Hz), 121.5, 87.6, 80.5 (q, *J* = 2.4 Hz), 78.1, 67.1 (q, *J* = 34.8 Hz), 32.7, 31.4, 25.7, 24.0, 23.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -77.3 (d, *J* = 6.1 Hz); HRMS (APPI/LTQ-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₆H₁₈F₃O⁺ 283.1304; Found 283.1306.

(S)-4,4,4-Trifluoro-3-((S)-1-phenylethoxy)but-1-yn-1-yl)benzene (4ab):

Compound 4ab was prepared from 2a (94.0 mg, 0.200 mmol, 1.00 equiv.) and (S)-1phenylethanol (3b) (50 µL, 0.40 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colorless oil (42.6 mg, 0.140 mmol, 70%): The diastereomeric ratio (dr) resulted to be 95:5 and was determined by ¹⁹F NMR of the crude mixture; α_D^{23} = 65.2 (c = 0.2, CHCl₃); **TLC** $R_f = 0.75$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR (v_{max} , cm^{-1}) 2962 (m), 2946 (m), 2904 (w), 2874 (w), 2146 (w), 1490 (m), 1473 (m), 1467 (m), 1444 (m), 1380 (m), 1270 (s), 1260 (s), 1218 (s), 1191 (s), 1186 (s), 1148 (s), 1141 (s), 967 (m), 946 (m), 930 (m), 772 (s), 758 (s), 730 (m); ¹H NMR (400 MHz, CDCl₃, , mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) δ 7.50 – 7.29 (m, 10H, ArH), 4.87 (q, J = 6.5 Hz, 1H, -OCH-), 4.64 (q, J = 5.7 Hz, 1H, -OCHCF₃), 1.56 (d, J = 6.4 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) δ 142.0, 132.1, 129.3, 128.7, 128.4, 128.3, 127.4, 126.7, 124.2 (q, J = 281.9 Hz), 121.5, 87.8, 80.1 (q, J = 2.5 Hz), 79.7, 67.8 (q, J = 34.8 Hz), 23.6; ¹⁹F NMR (376 MHz, CDCl₃, mixture of inseparable diastereoisomers) δ -76.7 (d, J = 5.4 Hz, minor diastereoisomer), -76.8 (d, J = 6.1 Hz, major diastereoisomer); HRMS (APPI/LTQ-Orbitrap) m/z: [M]+ Calcd for C₁₈H₁₅F₃O⁺ 304.1070; Found 304.1067.

(S)-(3-(tert-butoxy)-4,4,4-trifluorobut-1-yn-1-yl)benzene (4ac):

Compound **4ac** was prepared from **2a** (94.0 mg, 0.200 mmol, 1.00 equiv.) and *tert*butanol (**3c**) (40 µL, 0.40 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colorless oil (37.0 mg, 0.144 mmol, 72%): The enantiomeric ratio (er) resulted to be 96:4 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 µL sample's injection, 254 nm, t_{R(major)} = 5.6 min, t_{R(minor)} = 6.1 min; α_D^{23} = -147.9 (c = 0.1, CHCl₃); **TLC** *Rf* = 0.54 (99:1 Hexane/EtOAc), visualized by exposure to UV light; **IR** (*v*_{max}, *cm*⁻¹) 2981 (w), 2936 (w), 1368 (w), 1350 (w), 1276 (m), 1254 (m), 1220 (m), 1184 (s), 1141 (s), 1087 (m), 898 (m), 772 (s), 763 (m); ¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (dd, *J* = 7.8, 1.8 Hz, 2H, Ar*H*), 7.37 – 7.30 (m, 3H, Ar*H*), 4.74 (q, *J* = 5.9 Hz, 1H, -CHCF₃), 1.35 (s, 9H, (-CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 132.0, 129.2, 128.5, 127.2, 123.0 (q, *J* = 281.3 Hz), 86.6, 82.5 (q, *J* = 2.2 Hz), 77.4, 62.9 (q, *J* = 35.0 Hz), 27.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -77.4 (d, *J* = 5.5 Hz); HRMS (Sicrit plasma/LTQ-Orbitrap) *m*/*z*: [M + H]⁺ Calcd for C₁₄H₁₆F₃O⁺ 257.1148; Found 257.1139.

(S)-(4,4,4-Trifluoro-3-(tert-pentyloxy)but-1-yn-1-yl)benzene (4ad):

Compound **4ad** was prepared from **2a** (94.0 mg, 0.200 mmol, 1.00 equiv.) and 2methylbutan-2-ol (3d) (45 μ L, 0.40 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colourless oil (37.8 mg, 0.140 mmol, 70%): The enantiomeric ratio (er) resulted to be 94:6 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection, 254 nm, t_{R(major)} = 5.3 min, t_{R(minor)} = 6.0 min; α_D^{23} = -127.8 (c = 0.1, CHCl₃); **TLC** *Rf* = 0.53 (99:1 Hexane/EtOAc), visualized by exposure to UV light; **IR** (v_{max} , cm^{-1}) 2975 (m), 2939 (w), 2885 (w), 1491 (m), 1465 (m), 1445 (w), 1389 (m), 1375 (m), 1354 (m), 1324 (m), 1274 (s), 1255 (m), 1217 (m), 1181 (s), 1141 (s), 1087 (s), 938 (m), 921 (w), 889 (m), 878 (m), 771 (s), 755 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.50 - 7.43 (m, 2H, ArH), 7.36 - 7.30 (m, 3H, ArH), 4.74 (q, J = 5.9 Hz, 1H, -CHCF₃), 1.72 - 1.52 (m, 2H, -CH₂CH₃), 1.31 (s, 3H, -CH₃), 1.27 (s, 3H, CH₃), 0.97 (t, J = 7.5 Hz, 3H, -CH₃); ¹³ C NMR (101 MHz, CDCl₃) δ 132.0, 129.1, 128.5, 123.0 (q, J = 281.2 Hz), 121.9, 86.6, 82.6, 79.7, 62.7 (q, J = 35.0 Hz), 33.8, 25.5, 24.9, 8.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -77.3 (d, J = 5.4 Hz); HRMS (APPI/LTQ-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₅H₁₇F₃NaO⁺ 293.1124; Found 293.1125.

(S)-(2-Methyl-2-((1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)propyl)benzene (4ae):

Compound 4ae was prepared from 2a (94.0 mg, 0.200 mmol, 1.00 equiv.) and 2-methyl-1-phenylpropan-2-ol (4e) (63µL, 0.40 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colourless oil (43.2 mg, 0.130 mmol, 65%): The enantiomeric ratio (er) resulted to be 97:3 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 µL sample's injection, 254 nm, $t_{R(major)} = 10.5 \text{ min}$, $t_{R(minor)} = 12.7 \text{ min}$; $\alpha_D^{23} = -112.3$ (c = 0.1, CHCl₃); **TLC** Rf 0.45 (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR (v_{max}, cm⁻¹) 2975 (m), 2934 (w), 2240 (w), 2226 (w), 1491 (m), 1465 (m), 1445 (w), 1389 (m), 1373 (m), 1350 (m), 1324 (m), 1273 (s), 1255 (m), 1242 (m), 1219 (m), 1181 (s), 1141 (s), 1088 (s), 1008 (w), 990 (m), 938 (m), 920 (w), 889 (m), 877 (m), 770 (s), 755 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, J = 8.0, 1.7 Hz, 2H, ArH), 7.37 – 7.19 (m, 8H, ArH), 4.81 (q, J = 5.9 Hz, 1H, -CHCF₃), 2.97 (d, J = 13.4 Hz, 1H, -CHPh), 2.85 (d, J = 13.4 Hz, 1H, -CHPh), 1.34 (s, 3H, -CH₃), 1.22 (s, 3H, -CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 137.6, 132.0, 130.8, 129.2, 128.5, 128.1, 126.5, 121.5 (q, J = 280.6 Hz), 121.8, 86.9, 82.5 (q, J = 2.1 Hz), 79.8, 62.9 (q, J = 35.2 Hz), 48.4, 25.6, 24.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -77.2 (d, J = 5.5 Hz); HRMS (Sicrit **plasma/LTQ-Orbitrap)** *m*/*z*: [M + H]⁺ Calcd for C₂₀H₂₀F₃O⁺ 333.1461; Found 333.1449.

1-Fluoro-2-(2-methyl-2-((1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)propyl)benzene (4af)

Compound 4af was prepared from 2a (94.0 mg, 0.200 mmol, 1.00 equiv.) and 1-(3fluorophenyl)-2-methylpropan-2-ol (3f) (67.3 mg, 0.400 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colourless oil (35.0 mg, 0.100 mmol, 50%): The enantiomeric ratio (er) resulted to be 98:2 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 0.5 mL/min, 2 μL sample's injection, 254 nm, $t_{R(major)}$ = 16.3 min, $t_{R(minor)}$ = 18.4 min; α_D^{23} = -123.0 (c = 0.1, CHCl₃); **TLC** Rf 0.58 (99:1 Hexane/EtOAc), visualized by exposure to UV light; **IR** (*v_{max}*, *cm*⁻¹) 2937 (w), 2863 (w), 2859 (w), 1596 (w), 1524 (m), 1491 (m), 1456 (w), 1346 (s), 1274 (m), 1254 (m), 1213 (w), 1185 (s), 1143 (s), 1105 (m), 857 (m), 772 (s), 763 (m); ¹H NMR (400 MHz, **CDCl**₃) δ 7.46 - 7.40 (m, 2H, ArH), 7.37 - 7.30 (m, 5H, ArH), 7.09 - 7.00 (m, 2H, ArH), 4.81 (q, J = 5.9 Hz, 1H, -CHCF₃), 2.97 (s, 2H, -CH₂), 1.26 (s, 6H, -CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 161.5 (d, J = 244.9 Hz), 133.4 (q, J = 4.4 Hz), 132.7, 132.0, 129.2, 128.6, 128.5, 128.4 (d, J = 8.4 Hz), 124.5 (q, J = 15.3 Hz), 123.2 (q, J = 285.0 Hz), 123.8 (q, J = 3.3 Hz), 115.2 (d, J = 23.3 Hz), 87.0, 79.9 (q, J = 2.0 Hz), 62.9 (q, J = 35.7 Hz), 40.4, 25.5, 24.5; ¹⁹F NMR (376 **MHz, CDCl**₃) δ -77.2 (d, J = 5.5 Hz), -116.1 – -116.7 (m); **HRMS (APPI/LTQ-Orbitrap)** m/z: [*M*]⁺ Calcd for C₂₀H₁₈F₄O⁺ 350.1288; Found 350.1290.

(S)-(3-Methyl-3-((1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)butyl)benzene (4ag):

Compound 4ag was prepared from 2a (94.0 mg, 0.200 mmol, 1.00 equiv.) and 2-methyl-4-phenylbutan-2-ol (3g) (69 µL, 0.40 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colorless oil (30 mg, 0.087 mmol, 43%): The enantiomeric ratio (er) resulted to be 97:3 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 µL sample's injection, 254 nm, $t_{R(major)} = 14.0 \text{ min}$, $t_{R(minor)} = 16.8 \text{ min}$; $\alpha_D^{23} = -112.2$ (c = 0.1, CHCl₃); TLC Rf = 0.65 (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR (vmax, cm⁻¹) 3029 (w), 2973 (w), 2936 (w), 1491 (m), 1375 (m), 1350 (m), 1272 (m), 1182 (s), 1139 (s), 1083 (m), 759 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 6.6 Hz, 1H, ArH), 7.16 - 709 (m, 3H, ArH), 7.07 - 7.03 (m, 3H, ArH), 7.01 - 6.95 (m, 3H, ArH), 4.60 (q, J = 5.8 Hz, 1H, -CHCF₃), 2.62 (td, J = 13.0, 5.1 Hz, 1H, $-CH_2$ -), 2.52 (td, J = 12.9, 5.1 Hz, 1H, $-CH_2$ -), 1.76 (td, J = 13.1, 5.1 Hz, 1H, -CH₂-), 1.70 – 1.59 (m, 1H, -CH₂-), 1.20 (s, 3H, -CH₃), 1.17 (s, 3H, -CH₃); ¹³C NMR (101 **MHz, CDCl**₃) δ 142.5, 132.1, 129.2, 128.51, 128.50, 128.47, 125.9, 123.0 (q, J = 281.0 Hz), 121.8, 86.9, 82.4 (q, J = 1.9 Hz), 79.1, 62.9 (q, J = 35.2 Hz), 43.3, 30.4, 26.2, 25.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -77.2 (d, J = 6.2 Hz); HRMS (APPI/LTQ-Orbitrap) m/z: [M]⁺ Calcd for C₂₁H₂₁F₃O⁺ 346.1539; Found 346.1554.

(S)-(4,4,4-Trifluoro-3-((1-methylcyclohexyl)oxy)but-1-yn-1-yl)benzene (4ah):

Compound **4ah** was prepared from **2a** (94.0 mg, 0.200 mmol, 1.00 equiv.) and 1methylcyclohexan-1-ol (**2h**) (51 μ L, 0.40 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colourless oil (32.5 mg, 0.110 mmol, 55%): The enantiomeric ratio (er) resulted to be 95:5 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μL sample's injection, 254 nm, $t_{R(major)} = 5.2$ min, $t_{R(minor)} = 6.0$ min; $\alpha_D^{23} = -129.5$ (c = 0.1, CHCl₃); TLC Rf 0.68 (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR (*v_{max}*, *cm*⁻¹) 2971 (w), 2936 (m), 2868 (w), 1271 (m), 1256 (m), 1219 (m), 1181 (s), 1139 (s), 1083 (m), 759 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.48 - 7.43 (m, 2H, ArH), 7.38 - 7.30 (m, 3H, ArH), 4.76 (q, *J* = 5.9 Hz, 1H, -CHCF₃), 1.88 - 1.64 (m, 4H, -CH₂ cyclohexyl), 1.51 - 1.38 (m, 5H, -CH₂ cyclohexyl), 1.36 -1.25 (m, 4H, -CH₂ cyclohexyl + -CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 132.0, 129.1, 128.5, 123.1 (q, *J* = 282.2 Hz), 121.9, 86.6, 82.7 (q, *J* = 2.2 Hz), 78.4, 62.2 (q, *J* = 35.2 Hz), 37.2, 36.6, 25.7, 25.2, 22.5, 22.2; ¹⁹F NMR (377 MHz, CDCl₃) δ -77.0 (d, *J* = 5.5 Hz); HRMS (Sicrit plasma/LTQ-Orbitrap) *m/z*: [*M* + *H*]⁺ Calcd for C₁₇H₂₀F₃O⁺ 297.1461; Found 297.1450.

(3R,5R)-1-(((S)-1,1,1-Trifluoro-4-phenylbut-3-yn-2-yl)oxy)adamantane (4ai):

Compound **4ai** was prepared from **2a** (94.0 mg, 0.200 mmol, 1.00 equiv.) and adamantan-1-ol (**2i**) (70 mg, 0.40 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colorless oil (50.0 mg, 0.150 mmol, 75%): The enantiomeric ratio (er) resulted to be 95:5 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection, 254 nm, t_{R(major)} = 7.0 min, t_{R(minor)} = 8.3 min; **a**_D²³ 9.3 (c = 0.44, CHCl₃); **TLC** *R*_f = 0.76 (99:1 Hexane/EtOAc), visualized by exposure to UV light; **IR** (*v*_{max}, *cm*⁻¹) 2971 (w), 2936 (m), 2868 (w), 1271 (m), 1256 (m), 1219 (m), 1181 (s), 1139 (s), 1083 (m), 759 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (dd, *J* = 7.7, 1.8 Hz, 2H, Ar*H*), 7.37 - 7.30 (m, 3H, Ar*H*), 4.90 (q, *J* = 6.0 Hz, 1H, -*CHC*F₃), 2.21 (br s, 3H, -ad), 1.94 - 1.78 (m, 6H, -ad), 1.73 - 1.59 (m, 6H, -ad); ¹³C NMR (101 MHz, CDCl₃) δ 132.1, 129.1, 128.5, 121.7 (q, *J* = 278.2 Hz), 121.9, 86.4, 82.7 (q, *J* = 1.9 Hz), 76.6, 60.8 (q, *J* = 34.7 Hz), 41.8, 36.4, 30.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -77.3 (d, *J* = 6.1 Hz); HRMS (APPI/LTQ-Orbitrap) *m/z*: [M]⁺ Calcd for C₂₀H₂₁F₃O⁺ 334.1539; Found 334.1552.

(1*R*,2*S*,5*S*)-2-Methyl-2-(((*S*)-1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)adamantane (**4aj**):

Compound 4aj was prepared from 2a (94.0 mg, 0.200 mmol, 1.00 equiv.) and 2methyladamant-2-ol (2j) (66 mg, 0.40 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colorless oil (52.0 mg, 0.149 mmol, 75%): The enantiomeric ratio (er) resulted to be 97:3 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 µL sample's injection, 254 nm, $t_{R(major)} = 5.7$ min, $t_{R(minor)} = 6.2$ min; $\alpha_D^{23} = 69.3$ (c = 0.775, CHCl₃); **TLC** $R_f = 0.91$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR (v_{max} , cm^{-1}) 2960 (w), 2920 (w), 2877 (w), 2251 (w), 2230 (w), 1594 (w), 1494 (m), 1492 (m), 1372 (w), 1361 (w), 1277 (m), 1253 (m), 1220 (s), 1191 (m), 1188 (m), 1152 (s), 1079 (m), 1067 (m), 1004 (w), 990 (w), 877 (w), 773 (s), 757 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.44 (m, 2H, ArH), 7.37 – 7.27 (m, 3H, ArH), 4.84 (q, J = 5.8 Hz, 1H, -CHCF₃), 1.90 – 1.74 (m, 9H, -ad), 1.62 – 1.53 (m, 4H, -ad), 1.47 – 1.48 (m, 4H, -CH₃ + -ad); ¹³C NMR (101 MHz, CDCl₃) δ 131.9, 129.1, 128.5, 126.0 (q, J = 280.4 Hz), 122.0, 86.8, 82.9 (q, J = 1.5 Hz), 82.6, 62.0 (q, J = 35.0 Hz), 38.6, 37.3, 36.7, 35.4, 35.0, 33.1, 32.4, 27.7 27.1, 22.2; ¹⁹F NMR (377 MHz, **CDCl₃)** δ -76.6 (d, J = 5.5 Hz); **HRMS (APPI/LTQ-Orbitrap)** m/z: [M]⁺ Calcd for C₂₁H₂₃F₃O⁺ 348.1696; Found 348.1711.

(S)-(3-(Benzyloxy)-4,4,4-trifluorobut-1-yn-1-yl)benzene (4ak):

Compound **4ak** was prepared from **2a** (94.0 mg, 0.200 mmol, 1.00 equiv.) and benzyl alcohol **3k** (42 µL, 0.40 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colorless oil (45.0 mg, 0.155 mmol, 78%): The enantiomeric ratio (er) resulted to be 93:7 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 µL sample's injection, 254 nm, t_{R(minor)} = 8.1 min, t_{R(major)} = 8.4 min; α_D^{23} = -12.6 (c = 0.1, CHCl₃); **TLC** Rf 0.73 (99:1 Hexane/EtOAc), visualized by exposure to UV light; **IR** (**v**_{max}, **cm**⁻¹) 3033 (w), 2986 (w), 2968 (w), 2936 (w), 1491 (m), 1273 (m), 1255 (m), 1219 (m), 1186 (m), 1143 (s), 1091 (m), 1086 (m), 1083 (m), 772 (s), 755 (m); ¹H NMR (400 MHz, CDCl₃) δ 7.55 - 7.49 (m, 2H, Ar*H*), 7.46 - 7.31 (m, 8H, Ar*H*), 4.95 (d, *J* = 11.9 Hz, 1H, -CH₂Ph), 4.79 (d, *J* = 11.9 Hz, 1H, -CH₂Ph), 4.73 (q, *J* = 5.8 Hz, 1H, -CHCF₃); ¹³C NMR (101 MHz, CDCl₃) δ 136.2, 132.3, 129.6, 128.8, 128.6, 128.5, 128.4, 122.7 (q, *J* = 281.3 Hz), 121.3, 89.0, 79.1 (q, *J* = 2.6 Hz), 71.4, 68.1 (q, *J* = 35.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.5 (d, *J* = 6.1 Hz); HRMS (APPI/LTQ-Orbitrap) *m*/*z*: [M]⁺ Calcd for C₁₇H₁₃F₃O⁺ 290.0918; Found 290.0917.

(S)-(4,4,4-Trifluoro-3-(hexyloxy)but-1-yn-1-yl)benzene (4al):

Compound **4al** was prepared from **2a** (94.0 mg, 0.200 mmol, 1.00 equiv.) and hexan-1ol (**3l**) (51 μ L, 0.40 mmol, 2.00 equiv.) following the procedure B. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colourless oil (41.5 mg, 0.146 mmol, 73%). The enantiomeric ratio (er) resulted to be 93:7 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 µL sample's injection, 254 nm, $t_{R(minor)} = 6.7$ min, $t_{R(major)} = 7.6$ min; $\alpha_D^{23} = 112.0$ (c = 0.35, CHCl₃); **TLC** $R_f = 0.91$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; $\alpha_D^{23} = 112.0$ (c = 0.35, CHCl₃); **IR** (v_{max} , cm^{-1}) 2953 (m), 2932 (m), 2872 (w), 2861 (w), 2236 (w), 2110 (w), 1804 (w), 1742 (w), 1491 (m), 1468 (w), 1445 (w), 1363 (w), 1318 (w), 1273 (s), 1254 (m), 1218 (m), 1184 (s), 1143 (s), 1108 (s), 1012 (w), 921 (w), 856 (w), 757 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.53 - 7.46 (m, 2H, ArH), 7.42 - 7.31 (m, 3H, ArH), 4.68 (q, J = 5.8 Hz, 1H, -CHCF₃), 3.86 (dt, J = 9.2, 6.7 Hz, 1H, -OCH₂-), 3.66 (dt, J = 9.2, 6.7 Hz, 1H, -OCH₂-), 1.70 - 1.63 (m, 2H, -OCH₂CH₂-), 1.45 -1.36 (m, 2H, -CH₂-), 1.36 - 1.28 (m, 4H, -CH₂CH₃), 0.91 - 0.87 (m, 3H, -CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 132.2, 129.4, 128.5, 122.7 (q, J = 281.9 Hz), 121.4, 88.4, 79.6 (q, J = 2.2Hz), 70.6, 69.5 (q, J = 35.0 Hz), 31.7, 29.5, 25.7, 22.7, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.8 (d, J = 5.4 Hz); HRMS (APPI/LTQ-Orbitrap) m/z: [M]⁺ Calcd for C₁₆H₁₉F₃O⁺ 284.1383; Found 284.1394.

(S)-(3-Ethoxy-4,4,4-trifluorobut-1-yn-1-yl)benzene (4am):

Compound **4am** was prepared from **2a** (94.0 mg, 0.200 mmol, 1.00 equiv.) and ethanol (**3m**) (24 µL, 0.40 mmol, 2.00 equiv.) following the procedure B. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colorless oil (38.9 mg, 0.171 mmol, 85%): The enantiomeric ratio (er) resulted to be 93:7 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 µL sample's injection, 254 nm, $t_{R(major)} = 8.0$ min, $t_{R(minor)} = 8.4$ min; $\alpha_D^{23} = -110.8$ (c = 0.1, CHCl₃); **TLC** $R_f = 0.45$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; **IR** (v_{max} , cm^{-1}) 2982 (w), 2940 (w), 2922 (w), 2892 (w), 2233 (w), 1491 (m), 1445 (m), 1361 (m), 1318 (m), 1271 (s), 1256 (m), 1187 (s), 1148 (s), 1109 (s), 990 (m), 894 (m), 773 (m), 758 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.53 - 7.47 (m, 2H, Ar*H*), 7.41 - 7.30 (m, 3H, Ar*H*), 4.70 (q, *J* = 5.8 Hz, 1H, -CHCF₃), 3.94 (dq, *J* = 9.2, 7.0 Hz, 1H, -OCH₂CH₃), 1.32 (t, *J* = 7.0 Hz, 3H, -CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 132.2, 129.5, 128.5, 122.7 (g, *J* = 281.7 Hz), 121.4,

121.3, 88.4, 69.3 (q, J = 35.0 Hz), 79.5 (q, J = 2.3 Hz), 66.0, 15.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.8 (d, J = 5.4 Hz); HRMS (APPI/LTQ-Orbitrap) m/z: [M]⁺ Calcd for $C_{12}H_{11}F_{3}O^{+}$ 228.0757; Found 228.0754.

(S)-Trimethyl(2-((1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)ethyl)silane (4an):

Compound 4an was prepared from 2a (94.0 mg, 0.200 mmol, 1.00 equiv.) and 2trimethylsilylethanol (**3n**) (60 µL, 0.40 mmol, 2.00 equiv.) following the procedure B. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colourless oil (35.0 mg, 0.117 mmol, 58%): The enantiomeric ratio (er) resulted to be 90:10 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate1 mL/min, 2 μL sample's injection, 254 nm, $t_{R(minor)} = 5.9 \text{ min}$, $t_{R(maior)} = 6.6 \text{ min}$; $\alpha_D^{23} = -134.3$ (c = 0.1, CHCl₃); **TLC** $R_f = 0.74$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR (v_{max} , cm^{-1}) 2956 (w), 2900 (w), 2873 (w), 2233 (w), 1491 (m), 1364 (w), 1316 (w), 1274 (m), 1252 (m), 1219 (m), 1184 (s), 1143 (s), 1105 (m), 954 (w), 860 (m), 838 (s), 772 (s), 759 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.51 - 7.46 (m, 2H, ArH), 7.40 - 7.32 (m, 3H, ArH), 4.68 (q, J = 5.9 Hz, 1H, -CHCF₃), 3.98 (td, J = 9.1, 7.1 Hz, 1H, -OCH₂-), 3.75 (td, J = 9.2, 7.0 Hz, 1H, -OCH₂-), 1.04 (ddd, J = 9.4, 6.8, 2.3 Hz, 2H, -CH₂TMS), 0.06 (s, 9H, -Si(CH₃)₃)); ¹³C NMR (101 MHz, CDCl₃) δ 132.2, 129.4, 128.5, 122.7 (q, J = 281.5 Hz), 121.5, 88.4, 79.6 (q, J = 2.6 Hz), 69.0 (q, J = 35.0 Hz), 68.1, 18.1, -1.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.8 (d, J = 6.1 Hz); HRMS (APPI/LTQ-**Orbitrap)** *m*/*z*: [M]⁺ Calcd for C₁₅H₁₉F₃OSi⁺ 300.1152; Found 300.1149.

(S)-(4,4,4-Trifluoro-3-(2,2,2-trifluoroethoxy)but-1-yn-1-yl)benzene (4ao)

Compound **4ao** was prepared from **2a** (94.0 mg, 0.200 mmol, 1.00 equiv.) and 2,2,2trifluoroethanol (**3o**) (29 μL, 0.40 mmol, 2.00 equiv.) following the procedure B. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colourless oil (30.0 mg, 0.106 mmol, 53%). The enantiomeric ratio (er) resulted to be 67:33 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μL sample's injection, 254 nm, t_{R(minor)} = 9.0 min, t_{R(major)} = 14.2 min; α_D^{23} = 36.3 (c = 0.3, CHCl₃); **TLC** *R*_f = 0.8 (99:1 Hexane/EtOAc), visualized by exposure to UV light; **IR** (*v*_{max}, *cm*⁻¹) 2912 (m), 2855 (m), 1492 (m), 1455 (w), 1445 (w), 1357 (m), 1281 (m), 1269 (m), 1253 (m), 1176 (s), 1140 (s), 1108 (m), 1083 (s), 1004 (w), 986 (w), 972 (w), 940 (w), 917 (m), 867 (m), 758 (m); ¹**H NMR (400 MHz, CDCl₃)** δ 7.52 - 7.50 (m, 2H, ArH), 7.44 - 7.34 (m, 3H, ArH), 4.96 (q, *J* = 5.6 Hz, 1H, -CHCF₃), 4.20 - 4.10 (m, 2H, -OCH₂CF3); ¹³C **NMR (101 MHz, CDCl₃)** δ 132.3, 130.1, 128.7, 123.5 (q, *J* = 278.8 Hz), 122.1 (q, *J* = 281.6 Hz), 120.6, 90.9, 77.4, 70.0 (q, *J* = 35.6 Hz), 65.8 (q, *J* = 35.8 Hz); ¹⁹**F NMR (376 MHz, CDCl₃)** δ -74.0 (t, *J* = 8.2 Hz, -OCH₂CF3); -76.7 (d, *J* = 5.4 Hz, -CF₃); **HRMS (GC/EI)** *m/z*: [M]⁺ Calcd for C₁₂H₈F₆O₃ 282.0479; Found 282.000.

(*S*)-1-Methyl-1-((1,1,1-trifluoro-4-(4-nitrophenyl)but-3-yn-2-yl)oxy)cyclododecane (**4bp**):

Compound **4bp** was prepared from **2b** (94.0 mg, 0.200 mmol, 1.00 equiv.) and 1methylcyclododecan-1-ol (**3p**) (36.7 mg, 0.400 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colorless oil (47.0 mg, 0.111 mmol, 55%): The enantiomeric ratio (er) resulted to be 98:2 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 µL sample's injection, 254 nm, $t_{R(major)}$ = 19.5 min, $t_{R(minor)}$ = 21.4 min; α_D^{23} = 39.9 (c = 0.2, CHCl₃); **TLC** *R*_f = 0.69 (95:5 Hexane/EtOAc), visualized by exposure to UV light; **IR** (*v*_{max}, *cm*⁻¹) 2939 (m), 2856 (w), 1595 (m), 1524 (m), 1472 (m), 1376 (w), 1345 (s), 1272 (m), 1254 (m), 1220 (m), 1181 (s), 1141 (s), 1095 (m), 1083 (m), 853 (m), 770 (s); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.9 Hz, 2H, Ar*H*), 7.60 (d, *J* = 8.9 Hz, 2H, Ar*H*), 4.82 (q, *J* = 5.8 Hz, 1H, -CHCF₃), 1.28 (br s, 2H, -CH₂ cyclododecanol), 1.76 - 1.64 (m, 2H, -CH₂ cyclododecanol), 1.52 - 1.31 (m, 21H, -CH₂ cyclododecanol), 1.28 (s, 3H, -CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 132.2, 128.6, 123.76, 122.83 (q, *J* = 282.2 Hz), 87.9, 84.5, 82.9, 62.3 (q, *J* = 35.2 Hz), 34.6, 33.5, 26.7, 26.6, 26.1, 24.5, 22.9, 22.8, 22.4, 22.4, 19.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.8 (d, *J* = 6.1 Hz); HRMS (APPI/LTQ-Orbitrap) *m/z:* [*M*]⁺ Calcd for C₂₃H₃₀F₃NO₃⁺ 425.2172; Found 425.2164.

(S)-1-(3-(Cyclohexyloxy)-4,4,4-trifluorobut-1-yn-1-yl)-4-nitrobenzene (4ba):

Compound **4ba** was prepared from **2b** (94.0 mg, 0.200 mmol, 1.00 equiv.) and cyclohexanol (**3a**) (42 µL, 0.40 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colourless oil (57.0 mg, 0.174 mmol, 87%): The enantiomeric ratio (er) resulted to be 97:3 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 µL sample's injection, 254 nm, $t_{R(major)} = 19.8 \text{ min}, t_{R(minor)} = 23.6 \text{ min}; <math>\alpha_D^{23} = -113.9$ (c = 0.1, CHCl₃); **TLC** $R_f = 0.40$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; **IR** (v_{max} , cm^{-1}) 293 (m), 2856 (w), 1596 (m), 1523 (s), 1492 (w), 1455 (w), 1377 (w), 1346 (s), 1309 (w), 1274 (m), 1254 (m), 1184 (s), 1142 (s), 1096 (s), 856 (s), 769 (m), 750 (s); ¹**H NMR (400 MHz, CDCl₃)** δ 8.21 (d, J = 9.0 Hz, 2H, ArH), 7.64 (d, J = 9.0 Hz, 2H, ArH), 4.77 (q, J = 5.8 Hz, 1H, -CHCF₃), 3.73 (td, J = 9.1, 4.5 Hz, 1H,-OCH(CH₂)₂-), 2.03 - 1.90 (m, 2H, -CH₂ cyclohexyl), 1.84 - 1.72 (m, 2H, -CH ₂ cyclohexyl), 1.59 - 1.39 (m, 3H, -CH₂ cyclohexyl), 1.37 - 1.22 (m, 3H, -CH₂ cyclohexyl); ¹³**C NMR (101 MHz, CDCl₃)** δ 147.9, 133.1, 133.1, 128.2, 123.7, 123.7, 122.7 (q, J = 281.5 Hz), 85.6 (q, J = 2.3 Hz), 85.3, 78.8, 67.1 (q, J = 35.2 Hz), 32.6, 31.4, 25.6, 23.9, 23.7; ¹⁹**F NMR**

(376 MHz, CDCl₃) δ -77.0 (d, J = 6.1 Hz); HRMS (APPI/LTQ-Orbitrap) m/z: [M]⁺ Calcd for C₁₆H₁₆F₃NO₃⁺ 327.1077; Found 327.1075.

(S)-1-Bromo-2-(3-(cyclohexyloxy)-4,4,4-trifluorobut-1-yn-1-yl)benzene (4ca):

Compound 4ca was prepared from 2c (109.8 mg, 0.2000 mmol, 1.00 equiv.) and cyclohexanol 3a (43 µL, 0.40 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colorless oil (59.0 mg, 0.163 mmol, 82%): The enantiomeric ratio (er) resulted to be 93:7 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 µL sample's injection, 254 nm, t_{R(major)} = 7.7 min, $t_{R(minor)}$ = 8.3 min; α_D^{23} = -147.3 (c = 0.1, CHCl₃); TLC R_f = 0.66 (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR (v_{max}, cm⁻¹) 2936 (m), 2859 (m), 1472 (m), 1451 (w), 1435 (w), 1273 (m), 1219 (m), 1181 (s), 1142 (s), 1094 (s), 1054 (m), 1029 (m), 997 (w), 946 (w), 773 (s), 756 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 7.9, 1.5 Hz, 1H, ArH), 7.50 (dd, J = 7.6, 1.8 Hz, 1H, ArH), 7.28 (td, J = 7.6, 1.4 Hz, 1H, ArH), 7.22 (td, J = 7.6, 1.4 Hz, 1H, ArH), 4.82 (q, J = 5.8 Hz, 1H, -CHCF₃), 3.82 (td, J = 9.2, 4.6 Hz, 1H, -OCH(CH₂)₂), 2.03 - 1.87 (m, 2H, -CH₂ cyclohexanol), 1.84 - 1.70 (m, 2H, , -CH₂ cyclohexanol), 1.60 - 1.48 (m, 2H, -CH₂ cyclohexanol), 1.44 - 1.15 (m, 4H, -CH₂ cyclohexanol); ¹³C NMR (101 MHz, CDCl₃) δ 133.9, 132.7, 130.5, 127.2, 125.9, 122.8 (q, J = 281.3 Hz), 123.9, 86.1, 84.9 (q, J = 2.6 Hz), 78.01, 67.1 (q, J = 35.0 Hz), 32.7, 31.2, 25.7, 24.0, 23.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -77.0 (d, J = 6.1 Hz); HRMS (APPI/LTQ-Orbitrap) m/z: [M]⁺ Calcd for C₁₆H₁₆BrF₃O⁺ 360.0331; Found 360.0331.

(S)-Triisopropyl(4,4,4-trifluoro-3-((2-methyl-1-phenylpropan-2-yl)oxy)but-1-yn-1yl)silane (**4de**)

Compound 4de was prepared from 2e (110.1 mg, 0.2000 mmol, 1.00 equiv.) and 2methyl-1-phenylpropan-2-ol (3e) (62 µL, 0.40 mmol, 2.00 equiv.) after overnight reaction following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colorless oil (49.3 mg, 0.120 mmol, 60%): The enantiomeric ratio (er) resulted to be 99:1 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate1 mL/min, 2 μ L sample's injection, 254 nm, t_{R(major)} = 19.8 min, t_{R(minor)} = 23.6 min; **TLC** Rf 0.94 (99:1 Hexane/EtOAc), visualized by exposure to UV light; $\alpha_D^{23} = 87.3$ (c = 0.36, CHCl₃)IR (*v_{max}, cm*⁻¹) 3083 (m), 3061 (m), 3031 (m), 2976 (m), 2929 (m), 1492 (m), 1447 (m), 1388 (m), 1372 (m), 1354 (m), 1274 (s), 1254 (m), 1224 (m), 1181 (s), 1141 (s), 1083 (s), 1073 (m), 895 (m), 773 (m), 759 (m); ¹H NMR (400 MHz, CDCl₃) δ 7.31 - 7.21 (m, 5H, ArH), 4.61 (q, J = 5.9 Hz, 1H, -CHCF₃), 2.89 (q, J = 13.4 Hz, 2H, -CH₂Ph), 1.31 (s, 3H, CH₃), 1.21 (s, 3H, CH₃), 1.07 (s, 21H, TIPS); ¹³C NMR (101 MHz, CDCl₃) δ 137.7, 130.8, 128.0, 126.5, 122.9 (q, J = 281.2 Hz), 100.4, 89.5, 79.5, 62.6 (q, J = 34.8 Hz), 48.4, 25.6, 24.8, 18.6, 11.2; ¹⁹F**NMR (376 MHz, CDCl₃)** δ -77.4 (d, J = 6.1 Hz). **HRMS (Sicrit plasma/LTQ-Orbitrap)** m/z: $[M + H]^+$ Calcd for C₂₃H₃₆F₃OSi⁺ 413.2482; Found 413.2481.

(S)- Triisopropyl(4,4,4-trifluoro-3-(1-phenylethoxy)but-1-yn-1-yl)silane (4db):

Compound **4db** was prepared from **2d** (110.1 mg, 0.2000 mmol, 1.00 equiv.) and (*S*)-phenylethanol (**3b**) (48 μ L, 0.40 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colorless oil (47.0 mg, 0.122 mmol, 61%): The diastereomeric ratio (dr) resulted to

be 93:7 and was determined by ¹⁹F NMR of the crude mixture; $\alpha_D^{23} = -169.6$ (c = 0.1, CHCl₃); TLC $R_f = 0.95$ (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR (v_{max} , cm^{-1}) 2946 (s), 2867 (s), 1464 (m), 1382 (m), 1368 (m), 1272 (s), 1177 (s), 1141 (s), 1125 (s), 1092 (s), 1073 (s), 1030 (s), 997 (s), 995 (s), 908 (m), 883 (s), 760 (s); ¹H NMR (400 MHz, CDCl₃, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) δ 7.40 - 7.27 (m, 5H, Ar*H*), 4.83 (q, *J* = 6.4 Hz, 1H, -OC*H*Ph), 4.45 (q, *J* = 5.9 Hz, 1H, -C*H*CF₃), 1.52 (d, *J* = 6.4 Hz, 3H, C*H*₃), 1.05 (s, 21H, TIPS); ¹³C NMR (101 MHz, CDCl₃, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) δ 142.1, 128.6, 128.1, 126.5, 123.1 (q, *J* = 282.4 Hz), 97.7 (q, *J* = 1.98 Hz), 90.6, 79.5, 67.7 (q, *J* = 34.7 Hz), 23.4, 18.6, 11.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -77.0 (d, *J* = 5.4 Hz, minor diastereoisomer), -77.2 (d, *J* = 6.1 Hz, major diastereoisomer); HRMS (Sicrit plasma/LTQ-Orbitrap) m/z: [M + H₋₁]⁺ Calcd for C₂₁H₃₀F₃OSi⁺ 383.2013; Found 383.2012.

(S)-(1-((4-cyclopropyl-1,1,1-trifluorobut-3-yn-2-yl)oxy)ethyl)benzene (4eb):

Compound **4eb** was prepared from **2e** (86.8 mg, 0.200 mmol, 1.00 equiv.) and (*S*)phenylethanol (**3b**) (48 µL, 0.40 mmol, 2.00 equiv.) following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colourless oil (33.8 mg, 0.126 mmol, 63%): The diastereomeric ratio (dr) resulted to be 92:8 and was determined by ¹⁹F NMR of the crude mixture; α_D^{23} = 19.2 (c = 0.22, CHCl₃); **TLC** *R*_f = 0.49 (99:1Hexane/EtOAc), visualized by exposure to UV light; **IR** (*v*_{max}, *cm*⁻¹) 2940 (m), 2858 (w), 1596 (m), 1523 (m), 1473 (m), 1346 (s), 1270 (m), 1254 (m), 1220 (m), 1181 (m), 1141 (s), 1082 (m), 856 (m), 773 (s); ¹H NMR (400 MHz, CDCl₃, mixture of **inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer**) δ 7.37 - 7.28 (m, 5H, Ar*H*), 4.77 (q, *J* = 6.5 Hz, 1H, -OC*H*Ph), 4.36 (qd, *J* 5.8, 1.9 Hz, 1H, -*CHC*F₃), 1.49 (d, *J* = 6.4 Hz, 3H, *CH*₃), 1.24 - 1.17 (m, 1H, -*CH* cyclopropyl), 0.79 - 0.71 (m, 2H, -*CH*₂ cyclopropyl), 0.66 - 0.60 (m, 2H, -*CH*₂ cyclopropyl); ¹³C NMR (101 MHz, CDCl₃, **indicated peaks belongs to the major diastereoisomer**) δ 142.2, 128.6, 128.1, 126.6, 123.2 (q, J = 282.8 Hz), 92.2, 79.2, 67.4 (q, J = 34.7 HZ), 66.4 (q, J = 2.9 Hz), 23.5, 8.41, 8.38, -0.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -77.1 (d, J = 5.4 Hz, major diastereoisomers), -77.2 (d, J = 6.1 Hz, minor diastereoisomers); HRMS (APPI/LTQ-Orbitrap) m/z: $[M]^+$ Calcd for C₁₅H₁₅F₃O⁺ 268.1070; Found 268.1064.

((*S*)-4,4,4-Trifluoro-3-(((1*R*,2*R*,5*R*)-2-isopropyl-5-methylcyclohexyl)oxy)but-1-yn-1yl)benzene (**6**):

Compound **6** was prepared from **2a** (141.0 mg, 0.3000 mmol, 1.5 equiv.) and (1*R*,2*S*,5*R*)-5-methyl-2-propan-2-ylcyclohexan-1-ol (5a) (31.3 mg, 0.200 mmol, 1.00 equiv.) following the general procedure C. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a white solid (55.0 mg, 0.163 mmol, 81%): The diastereomeric ratio (dr) resulted to be 2:98 and was determined by ¹⁹F NMR of the crude mixture; α_{D}^{23} = -182.0 (c = 0.1, CHCl₃); **TLC** R_{f} = 0.63 (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR (v_{max}, cm⁻¹) 2959 (m), 2953 (m), 2921 (m), 2870 (w), 2849 (w), 1457 (w), 1444 (m), 1372 (m), 1315 (w), 1264 (m), 1183 (s), 1137 (s), 1094 (s), 772 (m), 757 (s); ¹H NMR (400 MHz, CDCl₃, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) δ 7.48 (dd, J = 7.9, 1.8 Hz, 2H, ArH), 7.39 - 7.31 (m, 3H, ArH), 4.67 (q, J = 5.8 Hz, 1H, -CHCF₃), 3.46 (td, J = 10.6, 4.3 Hz, 1H, -OCH-), 2.34 - 2.23 (m, 3H, -CH₂ menthol), 1.70 - 1.64 (m, 2H, -CH₂ menthol), 1.45 -1.32 (m, 2H, -CH₂ menthol), 1.19 – 1.07 (m, 1H, -CH menthol), 1.04 . 0.98 (m, 1H, -CH menthol), 0.95 (d, J = 6.5 Hz, 3H, -CH₃), 0.92 (d, J = 7.2 Hz, 3H, -CH₃), 0.79 (d, J = 7.0 Hz, 3H, -CH₃); ¹³C NMR (101 MHz, CDCl₃, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) δ 132.1, 129.3, 128.5, 123.0 (q, J = 282.4 Hz), 121.7, 87.4, 82.8, 81.3 (q, J = 2.6 Hz), 68.6 (q, J = 34.8 Hz), 48.4, 41.3, 34.4, 31.7, 25.2, 23.2, 22.4, 21.1, 15.9; ¹⁹F NMR (376 MHz, CDCl₃, mixture of inseparable diastereoisomers) δ -77.0 (d, J = 5.5 Hz, minor diastereoisomer), -77.2 (d, J = 6.1 Hz, (APPI/LTQ-Orbitrap) diastereoisomer).HRMS major m/z: [M]⁺ Calcd for C₂₀H₂₅F₃O⁺ 338.1852; Found 338.1850.

((*S*)-4,4,4-trifluoro-3-(((1*S*,2*S*,5*S*)-2-isopropyl-5-methylcyclohexyl)oxy)but-1-yn-1yl)benzene (**7**):

Compound 7 was prepared from 2a (141.0 mg, 0.3000 mmol, 1.5 equiv.) and (1S, 2R, 5S)-5-methyl-2-propan-2-ylcyclohexan-1-ol (5b) (31.5 mg, 0.200 mmol, 1.00 equiv.) following the procedure C. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a white solid (60.0 mg, 0.177 mmol, 89%): The diastereomeric ratio (dr) resulted to be 96:4 and was determined by ¹⁹F NMR of the crude mixture; α_D^{23} =117.1(c = 0.1, CHCl₃); **TLC** R_f = 0.77 (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR (v_{max}, cm⁻¹) 2957 (m), 2921 (m), 2874 (m), 2233 (w), 1457 (w), 1446 (w), 1386 (w), 1368 (m), 1361 (w), 1315 (m), 1275 (m), 1177 (s), 1142 (s), 1094 (s), 920 (w), 863 (w), 773 (s), 759 (s), 706 (m); ¹H NMR (400 MHz, CDCl₃, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) δ 7.48 (dd, J = 7.8, 1.8 Hz, 2H, ArH), 7.40 - 7.30 (m, 3H, ArH), 4.82 (q, J = 5.8 Hz, 1H, CHCF₃), 3.57 (td, J = 10.7, 4.3 Hz, 1H, -OCH-), 2.33 (pd, J = 7.0, 2.7 Hz, 1H, -CH(CH₃)₂), 2.12 – 2.07 (m, 1H, CH, menthol), 1.71 - 1.60 (m, 2H, -OCHCH₂), 1.44 - 1.30 (m, 4H, -CH₂ menthol), 0.94 (d, J = 6.8 Hz, 7H, 2x(-CH₃) + -CH menthol), 0.85 (d, J = 6.9 Hz, 3H, -CH₃); ¹³C NMR (101 MHz, CDCl₃, mixture of inseparable diastereoisomers, indicated peaks belongs to the major **diastereoisomer)** δ 132.1, 129.3, 128.5, 122.8 (q, J = 280.8 Hz), 121.6, 87.7, 80.3 (q, J = 2.03 Hz), 78.2, 66.7 (q, J = 35.2 Hz), 47.9, 39.3, 34.5, 31.6, 25.61, 23.5, 22.4, 21.0, 16.4. ¹⁹**F NMR (376 MHz, CDCl₃)** δ -77.03 (d, J = 5.4 Hz, major diastereoisomer), -77.2 (d, J = 5.4 Hz, minor diastereoisomer); HRMS (APCI/QTOF) m/z: [M + H]⁺ Calcd for C₂₀H₂₆F₃O⁺ 339.1930; Found 339.1931.

(1*S*,2*S*,4*R*)-1,7,7-Trimethyl-2-(((*S*)-1,1,1-trifluoro-4-phenylbut-3-yn-2yl)oxy)bicyclo[2.2.1]heptane (**8**):

Compound 8 was prepared from 2a (141.0 mg, 0.3000 mmol, 1.5 equiv.) and 1,7,7trimethylbicyclo[2.2.1]heptan-2-ol (5c) (30.9 mg, 0.200 mmol, 1.00 equiv.) following the procedure C. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a pale-yellow oil (50.0 mg, 0.149 mmol, 74%): The diastereomeric ratio (dr) resulted to be 97:3 and was determined by ¹⁹F NMR of the crude mixture; α_D^{23} = -163.5 (c = 0.1, CHCl₃); TLC R_f = 0.95 (99:1 Hexane/EtOAc), visualized by exposure to UV light; IR (v_{max}, cm⁻¹) 2955 (m), 2881 (m), 2229 (w), 1491 (m), 1455 (m), 1445 (m), 1272 (m), 1256 (m), 1217 (m), 1187 (s), 1141 (s), 1116 (s), 1103 (s), 770 (s), 756 (s); ¹H NMR (400 MHz, CDCl₃, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) δ 7.48 (dd, J = 7.9, 1.8 Hz, 2H, ArH), 7.39 - 7.31 (m, 3H, ArH), 4.69 (q, J = 6.0 Hz, 1H, -CHCF₃), 3.99 (dt, J = 9.5, 2.6 Hz, 1H, -OCH-), 2.32 – 2.20 (m, 1H, -CH borneol), 2.07 - 2.00 (m, 1H, -CH borneol), 1.77 - 1.63 (m, 2H, -CH₂ borneol), 1.34 (dd, J = 13.4, 33.3 Hz), 0.92 (s, 3H, CH₃), 0.87 (s, 3H, CH₃), 1.31 - 1.21 (m, 2H), 0.86 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) δ 132.1, 129.3, 128.5, 122.8 (q, J = 281.9 Hz), 121.7, 87.9, 86.8, 80.8 (q, J = 2.2 Hz), 69.9 (q, J = 34.5 Hz), 49.9, 47.8, 45.2, 36.7, 28.2, 26.5, 19.8, 19.0, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -77.0 (d, J = 6.1 Hz, major diastereoisomers), -77.1 (d, J = 6.1 Hz, minor diastereoisomer). **HRMS (APPI/LTQ-Orbitrap)** *m/z:* [M]⁺ Calcd for C₂₀H₂₃F₃O⁺ 336.1696; Found 336.1706.

(3*R*,3a*S*,6*R*,7*R*,8a*S*)-3,6,8,8-Tetramethyl-6-(((*S*)-1,1,1-trifluoro-4-phenylbut-3-yn-2yl)oxy)octahydro-1H-3a,7-methanoazulene (**9**):

Compound 9 was prepared from 2a (94.0 mg, 0.200 mmol, 1.00 equiv.) and 1,7,7trimethylbicyclo[2.2.1]heptan-2-ol (5d) (181.5 mg, 0.8000 mmol, 4.00 equiv.) following procedure A, but using Cu(MeCN)₄SbF₆ (1.9 mg, 4.0 µmol, 2 mol%) instead of Cu(MeCN)₄BF₄. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a white solid (51.8 mg, 0.128 mmol, 64%): The diastereomeric ratio (dr) resulted to be 85:15 and was determined by ¹⁹F NMR of the crude mixture; α_D^{23} = 14.0 (c = 0.38, CHCl₃); **TLC** R_f = 0.63 (99:1 Hexane/EtOAc), visualized by exposure to UV light; **IR** (*v_{max}, cm⁻¹*) 2982 (m), 2958 (m), 2937 (m), 2912 (m), 2871 (m), 1491 (m), 1464 (m), 1444 (m), 1382 (m), 1351 (m), 1322 (w), 1278 (m), 1268 (m), 1253 (m), 1175 (s), 1137 (s), 1130 (m), 1105 (m), 1079 (s), 1003 (w), 989 (w), 970 (w), 921 (w), 910 (w), 896 (w), 863 (w), 763 (m), 755 (s); ¹H NMR (400 MHz, CDCl₃, major diastereoisomer) δ 7.49 - 7.43 (m, 2H, ArH), 7.41 - 7.30 (m, 3H, ArH), 4.81 (q, J = 5.8 Hz, 1H, -CHCF₃), 2.30 (td, J = 13.1, 6.1 Hz, 1H, -cedrol), 1.88 (dq, J = 11.9, 6.0 Hz, 1H, -cedrol), 1.82 - 1.77 (m, 2H, -CH₂ cedrol), 1.75 - 1.74 (m, 1H, -CH₂ cedrol), 1.71 - 1.61 (m, 2H, -CH₂ cedrol,), 1.57 - 1.46 (m, 3H, -CH + CH₂ cedrol), 1.43 - 1. 36 (m, 1H, -CH cedrol; s, 3H, -CH₃), 1.31 - 1.24 (m, 1H, -cedrol; s, ·3H, -CH₃), 1.40 (m, 1H, -cedrol; s, 3H, -CH₃), 1.27 (s, 3H, -CH₃); ¹³C NMR (101 MHz, CDCl₃, major diastereoisomer) δ 131.9, 129.1, 128.5, 123.1 (q, J = 281.3 Hz), 122.1, 86.7, 83.1, 82.8 (q, J = 2.2 Hz), 62.2 (q, J = 35.0 Hz), 59.7, 56.9, 54.1, 43.7, 41.5, 41.5, 37.2, 31.7, 31.5, 29.1, 27.9, 25.5, 23.7, 15.8; ¹⁹F NMR (376 **MHz, CDCl₃, mixture of diastereoisomers)** δ -76.9 (d, J = 6.1 Hz, minor diastereoisomer), -77.2 (d, J = 6.1 Hz, major diastereoisomer); HRMS (APPI/LTQ-Orbitrap) m/z: [M]⁺ Calcd for C₂₅H₃₁F₃O⁺ 404..2327; Found 404.2327.

(3*R*,8*S*,9*S*,10*R*,13*R*,14*R*,17*S*)-10,13-Dimethyl-17-(5-methylhexyl)-3-(((*S*)-1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthrene (**10**):

Compound **10** was prepared from **2a** (141.0 mg, 0.3000 mmol, 1.5 equiv.) and (3*S*, 8*S*, 9S, 14*R*)-8,10,13-trimethyl-17-[(2*R*)-6-methylheptan-2-yl]-10R, 13R, 1,2,3,4,7,9,11,12,14,16,17-dodecahydrocyclopena[a]phenanhren-3-ol (5e) (80.1 mg, 0.200 mmol, 1.00 equiv.) following the procedure C. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a white solid (102 mg, 0.178 mmol, 89%): The diastereomeric ratio (dr) resulted to be 93:7 and was determined by ¹⁹F NMR of the crude mixture; α_D^{23} = 796.3 (c = 0.75, CHCl₃); TLC R_f = 0.93 (9:1Hexane/EtOAc), visualized by exposure to UV light; IR (vmax, cm-1) 2942 (s), 2867 (m), 1674 (w), 1491 (m), 1465 (m), 1444 (m), 1382 (m), 1375 (m), 1367 (m), 1275 (s), 1254 (m), 1180 (s), 1145 (s), 1098 (s), 1018 (m), 874 (w), 755 (s), 709 (m); ¹H NMR (400 MHz, CDCl₃, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) δ 7.49 (dd, J = 7.9, 1.8 Hz, 2H, ArH), 7.39 - 7.31 (m, 3H, ArH), 5.39 (d, J = 5.4 Hz, 1H, -C=CH), 4.79 (q, J = 5.8 Hz, 1H, -CHCF₃), 3.64 (dq, J = 11.2, 5.7, 4.9 Hz, 1H, -CH choloresterol), 2.51 - 2.35 (m, 2H, -CH₂ cholesterol), 2.09 - 1.79 (m, 5H, -CH₂ cholesterol), 1.65 – 1.43 (m, 6H, -CH₂ cholesterol), 1.39 – 1.30 (m, 5H), 1.20 - 1.05 (m, 6H, $-CH_2$ cholesterol), 1.03 (s, 4H, -CH cholesterol + $-CH_3$), 0.93 (d, J = 6.5 Hz, 4H, -CHcholesterol + -CH₃), 0.88 (dd, J = 6.7, 1.9 Hz, 6H -2 x -CH₃), 0.69 (s, 3H, -CH₃); ¹³C NMR (101 MHz, CDCl₃, mixture of inseparable diastereoisomers, indicated peaks belongs to the major diastereoisomer) δ 140.4, 132.2, 129.4, 128.5, 122.8 (q, J = 281.5 Hz), 122.5, 121.5, 87.8, 80.3 (q, J = 2.2 Hz), 79.8, 67.2 (q, J = 34.8 Hz), 56.9, 56.3, 50.2, 42.5, 39.9, 39.7, 39.4, 37.1, 36.9, 36.3, 35.9, 32.1, 32.0, 28.4, 28.2, 27.9, 24.4, 24.0, 23.0, 22.7, 21.2, 19.5, 18.9, 12.0; ¹⁹F NMR (377 MHz, CDCl₃) δ -77.20 (d, J = 5.5 Hz, minor diastereoisomer), -77.21 (d, J = 5.5 Hz, major diastereoisomer); HRMS (APPI/LTQ-**Orbitrap)** m/z: [M]⁺ Calcd for C₃₇H₅₁F₃O⁺ 568.3887; Found 568.3912.

Benzyl *N*-((benzyloxy)carbonyl)-O-((*S*)-1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)-*L*-serinate (**11a**):

Compound 11a was prepared from 2a (94 mg, 0.20 mmol, 1.00 equiv.) and benzyl 3hydroxy-2-(phenylmethoxycarbonylamino)propanoate (5f) (131.7 mg, 0.4000 mmol, 2.00 equiv.) in 16 h following the procedure A. It was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a white solid (64 mg, 0.13 mmol, 63%): The diastereomeric ratio (dr) resulted to be 93:7 and was determined by ¹⁹F NMR of the crude mixture; $\alpha_D^{23} = 18.4$ (c = 0.05, CHCl₃); TLC $R_f = 0.13$ (95:5 Hexane/EtOAc), visualized by exposure to UV light and/or KMnO₄; IR (v_{max}, cm⁻¹) 2953 (w), 2233 (w), 1749 (m), 1725 (s), 1526 (m), 1519 (m), 1511 (m), 1506 (m), 1494 (m), 1456 (m), 1451 (w), 1341 (m), 1274 (s), 1256 (m), 1195 (s), 1188 (s), 1146 (s), 1116 (m), 1070 (m), 1064 (m), 773 (w), 755 (m), 745 (m), 741 (m), 703 (m); 1H NMR (400 MHz, **CDCl₃**, mixture of inseparable diastereoisomers) δ 7.51 - 7.27 (m, 15H, ArH), 5.73 (d, J = 8.8 Hz, 1H, -CHNH-), 5.23 (d, J = 4.3 Hz, 2H, -OCH₂-), 5.12 (d, J = 5.1 Hz, 2H, -OCH₂-), 4.67 (q, J = 5.8 Hz, 2H, -CHCF₃), 4.25 – 4.06 (m, 2H, -OCH₂); ¹³C NMR (101 MHz, CDCl₃, mixture of inseparable diastereoisomers) δ 169.5, 156.1, 136.2, 135.2, 132.2, 129.7, 128.7, 128.7, 128.6, 128.5, 128.3, 128.2, 122.3 (q, J = 283.5 Hz), 120.8, 128.2, 89.7, 78.0, 70.4, 70.0 - 69.7 (m), 67.8, 67.71 67.3, 54.4; ¹⁹F NMR (376 MHz, CDCl₃, mixture of inseparable diastereoisomers) δ -76.4 (d, J = 6.1 Hz, major diastereoisomer), -76.5 (d, J = 6.1 Hz, minor diastereoisomer); HRMS (ESI/QTOF) m/z: [M] + Na]⁺ Calcd for C₂₈H₂₄F₃NNaO₅⁺ 534.1499; Found 534.1497.

Benzyl *N*-((benzyloxy)carbonyl)-O-((*S*)-1,1,1-trifluoro-4-(triisopropylsilyl)but-3-yn-2-yl)-L-serinate (**11b**):

Compound **11b** was prepared from **2d** (110.1 mg, 0.2000 mmol, 1.00 equiv.) and benzyl 3-hydroxy-2-(phenylmethoxycarbonylamino)propanoate (5f) (131.7 mg, 0.4000 mmol, 2.00 equiv.) in 16 h following the procedure A. It was purified by flash column chromatography (100% to 90:10, Pentane/EtOAc) and obtained as a white solid (78.0 mg, 0.132 mmol, 66%): The diastereomeric ratio (dr) resulted to be 90:10 and was determined by ¹⁹F NMR of the crude mixture; $\alpha_D^{23} = -169.7$ (c = 0.1, CHCl₃); **TLC** $R_f = 0.20$ (90:10 Hexane/EtOAc), visualized by exposure to UV light; IR (v_{max}, cm⁻¹) 2946 (m), 2871 (m), 1749 (m), 1729 (m), 1504 (m), 1462 (m), 1340 (m), 1274 (m), 1220 (m), 1187 (s), 1148 (s), 1119 (m), 1063 (m), 1057 (m), 883 (m), 773 (s); ¹H NMR (400 MHz, CDCl₃, mixture of inseparable diatereoisomers, indicated peaks belongs to the major diastereoisomer) δ 7.39 - 7.28 (m, 10H, ArH), 5.65 (d, J = 8.9 Hz, 1H, -NH-), 5.26 - 5.16 (m, 2H, -CH₂Ph), 5.14 - 5.10 (m, 2H, -CH₂Ph), 4.67 - 4.63 (m, 1H, -CHCO₂Bn), 4.44 (q, J = 5.8 Hz, 1H, -CHCF₃), 4.12 (dd, J = 9.3, 2.9 Hz, 1H, -OCH₂-), 4.05 (dd, J = 9.3, 3.1 Hz, 1H, -OCH2-), 1.07 (s, 21H, -TIPS); ¹³C NMR (101 MHz, CDCl₃, mixture of diasteroisomers, indicated peaks belongs to the major diastereoisomer) δ 169.5, 156.1 136.2, 135.3, 128.7, 128.7, 128.6, 128.3, 128.30, 128.2, 122.1 (q, J = 282.1 Hz), 95.5, 93.3, 70.0 - 69.0 (m, 2C), 67.7, 67.7, 67.3, 54.3, 18.5, 11.0; ¹⁹F NMR (377 MHz, CDCl₃, mixture of inseparable diastereoisomers) δ -76.5 (d, J = 6.2 Hz, minor diastereoisomer), -76.8 (d, J = 5.5 Hz, major diastereoisomer); HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for $C_{31}H_{40}F_3NNaO_5Si^+$ 614.2520; Found 614.2536.

6. Procedures and Compound Characterization for the Enantioselective 3-Component Reaction between 1, 2 and Anilines (12)

In order to avoid reproducibility issues, a Stock Solution of the catalyst was prepared triplicating the corresponding amount of CuCl, AgNTf₂, L2 and DCE belonging to a 0.25 mmol scale 3-CR reaction. Then, the same catalytic stock solution was used for 2 reactions.

Procedure D: Synthesis of Trifluoromethylated Propargylic Anilines **13aa-13af**, **13da**, **13ea**, **13fa**, **13ga**.

<u>Stock solution of the catalyst:</u> In an oven-dried microwave vial, CuCl (1.5 mg, 1.5 μ mol, 0.060 equiv.), AgNTf₂ (5.8 mg, 1.5 μ mol, 0.060 equiv.) and L2 (6.7 mg, 1.9 μ mol, 0.075 equiv) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N₂. Finally, dry DCE (5 mL) was added into the vial and the resulting pale-green solution was stirring (430 rpm) at room temperature during 1 h.

<u>Procedure:</u> In an oven-dried microwave vial, compound **2** (0.25 mmol, 1.00 equiv.) and aniline (**12**) (if solid) (1.00 mmol, 4.00 equiv.) were added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N₂, followed by the addition of **1** (0.40 mmol, 0.33-0.40 M in DCM, 2.00 equiv.) and aniline **12** (if liquid) (1.00 mmol, 4.00 equiv.). The resulting reaction mixture was stirred at RT under N2 atmosphere and the catalytic solution (1.70 mL) was added dropwise. After 1h of reaction, the reaction was monitored by TLC (95:5, Pentane/EtOAc) observing full conversion of **2** (unless otherwise noticed). The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc (15 mL). The solvent was removed under reduced pressure and the resulting residue was purified by preparative thin layer

chromatography (the crude was distributed into 2 plates to favour the separation) according to the conditions described for each compound.

Methyl (R)-4-((1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)amino)benzoate (13aa):

Compound 13aa was prepared from 2a (117.5 mg, 0.2500 mmol, 1.00 equiv.) and methyl 4-aminobenzoate (**12a**) (151.2 mg, 1.000 mmol, 4.00 equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a white amorphous solid. (59.0 mg, 0.178 mmol, 71%). The enantiomeric ratio (er) resulted to be 94:6 and was determined by chiral HPLC analysis on a Daicel Chiralpak AI column: AI 95:5 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection, 254 nm, t_{R(minor)} = 25.1 min, $t_{R(major)} = 31.2$ min. $\alpha_D^{23} = -387.7$ (c = 0.1, CHCl₃); TLC $R_f = 0.13$ (95:5 pentane/ EtOAc); visualized by UV light; IR (vmax, cm-1) 3348 (w), 1699 (m), 1606 (s), 1530 (m), 1492 (w), 1437 (m), 1310 (m), 1288 (s), 1258 (s), 1181 (s), 1132 (s), 1116 (m), 1015 (w), 969 (w), 841 (w), 771 (m), 757 (m); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.8 Hz, 2H, ArH), 7.47 – 7.41 (m, 2H, ArH), 7.40 – 7.30 (m, 3H, ArH), 6.76 (d, J = 8.9 Hz, 2H, ArH), 5.03 (dq, J = 9.2, 5.9 Hz, 1H, -CHCF₃), 4.56 (d, J = 9.2 Hz, 1H, -NH-), 3.88 (s, 3H, -CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 148.9, 132.1, 131.7, 129.5, 128.5, 123.7 (q, J = 282.4 Hz) 121.5, 121.1, 113.1, 86.7, 79.7 (q, J = 2.6 Hz), 51.9, 49.7 (q, J = 35.0 Hz); ¹⁹F NMR (376 MHz, **CDCl₃)** δ -75.6 (d, J = 5.5 Hz); **HRMS (ESI/QTOF)** m/z: [M + H]⁺ Calcd for $C_{18}H_{15}F_{3}NO_{2}^{+}$ 334.1049; Found 334.1051. The values of the NMR spectra are in accordance with reported literature data.^{[2],}

Methyl (R)-4-((1,1,1-trifluoro-4-(triisopropylsilyl)but-3-yn-2-yl)amino)benzoate (13da):

Compound 13da was prepared from 2d (137.6 mg, 0.2500 mmol, 1 equiv.) and methyl 4-aminobenzoate (12a) (151.2 mg, 1.000 mmol, 4.00 equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a white amorphous solid. (54.0 mg, 0.131 mmol, 52%): The enantiomeric ratio (er) resulted to be 86:14 and was determined by chiral HPLC analysis on a Daicel Chiralpak AI column: AI 95:5 hexane/isopropanol, flow rate1 mL/min, 2 μ L sample's injection, 254 nm, t_{R(minor)} = 5.4 min, $t_{R(major)} = 5.7 \text{ min}$; $\alpha_{D}^{23} = 104.1 (c = 0.275, CHCl_3)$; **TLC** $R_f = 0.14$ (97:3 pentane/ EtOAc), visualized by exposure to UV light; IR (vmax, cm-1) 3357 (w), 2946 (m), 2867 (m), 1703 (s), 1699 (m), 1606 (s), 1537 (m), 1523 (m), 1465 (m), 1436 (m), 1320 (m), 1281 (s), 1252 (s), 1178 (s), 1133 (s), 1112 (s), 1044 (m), 1018 (m), 997 (m), 970 (w), 920 (w), 885 (m), 840 (m), 770 (s), 767 (s), 720 (m); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.9 Hz, 2H, ArH), 6.73 (d, J = 8.8 Hz, 2H, ArH), 4.82 (dq, J = 9.0, 5.8 Hz, 1H, -CHCF₃), 4.33 (d, J = 9.2 Hz, 1H, -NH-), 3.87 (s, 3H, -CH₃), 1.05 (s, 21H, TIPS); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 148.9, 131.6, 123.6 (q, J = 284.5 Hz), 121.5, 110.9, 97.3, 89.8 (br, s), 51.9, 49.8 (q, J = 34.5 Hz), 18.6, 11.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.7 (d, J = 6.1 Hz); HRMS (ESI/QTOF) m/z: $[M + H]^+$ Calcd for C₂₁H₃₁F₃NO₂Si⁺ 414.2071; Found 414.2075. The values of the NMR spectra are in accordance with reported literature data.^[2]

Methyl (*R*)-4-((4-cyclopropyl-1,1,1-trifluorobut-3-yn-2-yl)amino)benzoate (**13ea**):

Compound **13ea** was prepared from **2e** (108.5 mg, 0.2500 mmol, 1 equiv.) and methyl 4-aminobenzoate (**12a**) (151.2 mg, 1.000 mmol, 4.00 equiv.) following the procedure D.

It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a white amorphous solid (53.0 mg, 0.178 mmol, 71%): The enantiomeric ratio (er) resulted to be 91:9 and was determined by chiral HPLC analysis on a Daicel Chiralpak AI column: AI 95:5 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection, 254 nm, t_{R(major)} = 15.3 min, t_{R(minor)} = 17.8 min; α_D^{23} = 354.5 (c = 0.1, CHCl₃); TLC *Rf* 0.08 (99:1 Hexane/EtOAc), visualized by exposure to UV light; **IR** (*v_{max}*, *cm*⁻¹) 3354 (m), 2250 (w), 1700 (s), 1606 (s), 1526 (m), 1437 (m), 1284 (s), 1254 (s), 1178 (s), 1130 (s), 1114 (s), 965 (m), 953 (m), 906 (m), 842 (m), 813 (m), 770 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.9 Hz, 2H, Ar*H*), 6.68 (d, *J* = 8.9 Hz, 2H, Ar*H*), 4.78 – 4.68 (m, 1H, -CHCF₃), 4.32 (d, *J* = 8.9 Hz, 1H, -N*H*-), 3.86 (s, 3H, -CO₂Me), 1.31 - 1.20 (m, 1H, -CHC-), 0.84 - 0.77 (m, 2H, -CH₂-), 0.74 - 0.67 (m, 2H, -CH₂-); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 149.0, 131.6, 123.7 (q, *J* = 281.3 Hz), 121.24, 113.0, 91.0, 66.1 (q, *J* = 2.6 Hz), 51.9, 49.2 (q, *J* = 35.1 Hz), 8.46, -0.61; ¹⁹F NMR (377 MHz, CDCl₃) δ -76.0 (d, *J* = 5.5 Hz); HRMS (ESI/QTOF) *m/z:* [*M* + *H*]⁺ Calcd for C₁₅H₁₅F₃NO₂⁺ 298.1049; Found 298.1051.

Methyl (R)-4-((1,1,1-trifluoro-5,5-dimethylhex-3-yn-2-yl)amino)benzoate (13fa):

Compound **13fa** was prepared from **2f** (112.5 mg, 0.2500 mmol, 1.00 equiv.) and methyl 4-aminobenzoate (**12a**) (151.2 mg, 1.000 mmol, 4.00 equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a white amorphous solid (50.1 mg, 0.160 mmol, 64%). The enantiomeric ratio (er) resulted to be 94:6 and was determined by chiral HPLC analysis on a Daicel Chiralpak ID column: AI 99:1 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection, 254 nm, t_{R(major)} = 9.5 min, t_{R(minor)} = 10.9 min; α_D^{23} = -20 (c = 0.33, CHCl₃); **TLC** *R*_{*f*} = 0.11 (97:3 pentane/ EtOAc), visualized by UV light; **IR (v_{max}, cm⁻¹)** 3351 (w), 2974 (w), 2953 (w), 2251 (w), 1703 (m), 1608 (s), 1527 (w), 1438 (m), 1321 (w), 1287 (m), 1264 (m), 1219 (w), 1181 (s), 1133 (m), 1115 (m), 772 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.9 Hz, 2H, Ar*H*), 6.70 (d, *J* = 8.9 Hz, 2H, Ar*H*), 4.83 – 4.71 (m, 1H, -CHCF₃), 4.34 (d, *J* = 8.9 Hz, 1H, -NH-), 3.86 (s, 3H, -

OCH₃), 1.21 (s, 9H, (-CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 149.1, 131.6, 123. 8 (q, J = 280.4 Hz), 121.1, 112.9, 96.0, 69.6 (q, J = 2.5 Hz); 51.9, 49.1 (q, J = 34.5 Hz), 30.6 (3 x CH₃), 27.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.2 (d, J = 6.1 Hz); HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₉F₃NO₂⁺ 314.1362; Found 314.1364. The values of the NMR spectra are in accordance with reported literature data.^[2]

Methyl (R)-4-((1,1,1-trifluoro-4-(thiophen-2-yl)but-3-yn-2-yl)amino)benzoate (13ga):

Compound 13ga was prepared from 2g (119.0 mg, 0.2500 mmol, 1.00 equiv.) and methyl 4-aminobenzoate (12a) (151.2 mg, 1.000 mmol, 4.00 equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a white amorphous solid (55.1 mg, 0.162 mmol, 65%). The enantiomeric ratio (er) resulted to be 91:9 and was determined by chiral HPLC analysis on a Daicel Chiralpak AI column: AI 90:10 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection, 254 nm, t_{R(minor)} = 14.6 min, $t_{R(major)} = 17.4$ min; $\alpha_{D}^{23} = -412.5$ (c = 0.1, CHCl₃); **TLC** $R_{f} = 0.11$ (95:5 pentane/ EtOAc), visualized by UV light; **IR** (v_{max}, cm⁻¹) 3357 (w), 2946 (m), 2867 (m), 1703 (s), 1699 (m), 1606 (s), 1537 (m), 1523 (m), 1465 (m), 1436 (m), 1320 (m), 1281 (s), 1252 (s), 1178 (s), 1133 (s), 1112 (s), 1044 (m), 1018 (m), 997 (m), 970 (w), 920 (w), 885 (m), 840 (m), 770 (s), 767 (s), 720 (m); 1**H NMR (400 MHz, CDCl₃)** δ 7.94 (d, J = 8.9 Hz, 2H, ArH), 7.33 - 7.26 (m, 2H, tiophene), 6.98 (dd, J = 5.1, 3.6 Hz, 1H, tiophene), 6.75 (d, J = 8.9 Hz, 2H, ArH), 5.04 (dq, J = 9.3, 6.0 Hz, 1H, -CHCF₃), 4.51 (d, J = 9.3 Hz, 1H, -NH-), 3.87 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 148.8, 133.8, 131.7, 128.6, 127.2, 123.5 (q, J = 282.4) Hz), 121.6, 120.8, 113.1, 83.5 (q, J = 2.3 Hz), 80.3, 51.9, 49.9 (q, J = 35.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.4 (d, J = 6.1 Hz); HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for $C_{16}H_{13}F_3NO_2S^+$ 340.0614; Found 340.0614. The values of the NMR spectra are in accordance with reported literature data.^[2]

(R)-N-(1,1,1-Trifluoro-4-phenylbut-3-yn-2-yl)-4-(trifluoromethyl)aniline (13ab):

Compound 13ab was prepared from 2a (117.5 mg, 0.2500 mmol, 1.00 equiv.) and 4-(trifluoromethyl)aniline (12b) (128 µL, 1.00 mmol, 4.00 equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a yellow oil (50.0 mg, 0.146 mmol, 65%). The enantiomeric ratio (er) resulted to be 94:6 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 95:5 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection, 254 nm, $t_{R(minor)}$ = 10.5 min, $t_{R(maior)}$ = 11.7 min; **TLC** Rf 0.20 (97:3 pentane/EtOAc), visualized by UV light; α_D^{23} = -320.5 (c = 0.1, CHCl₃); IR (v_{max}, cm⁻¹) 2939 (w), 2864 (w), 1595 (w), 1524 (m), 1491 (m), 1346 (s), 1271 (m), 1256 (m), 1217 (m), 1184 (s), 1143 (s), 1102 (m), 857 (m), 772 (s), 759 (s); ¹H NMR (400 MHz, **CDCl₃**) δ 7.54 – 7.44 (m, 4H, ArH), 7.40 - 7.30 (m, 3H, ArH), 6.82 (d, J = 8.7 Hz, 2H, ArH), 4.99 (dq, J = 9.2, 5.9 Hz, 1H, -CHCF₃), 4.38 (d, J = 9.2 Hz, 1H, -NH-); ¹³C NMR (101 MHz, **CDCl₃**) δ 147.7, 132.2, 129.6, 128.6, 127.0 (q, J = 3.7 Hz), 126.0, 124.7 (q, J = 271.1 Hz), 123.7 (g, J = 282.3 Hz). 122.0 (g, J = 32.6 Hz), 121.1, 113.6, 86.8, 79.7 (g, J = 2.6 Hz), 49.9 $(q, J = 35.2 \text{ Hz}); {}^{19}\text{F} \text{NMR} (376 \text{ MHz}, \text{CDCl}_3) \delta - 61.5, -75.6 (d, J = 5.4 \text{ Hz}); \text{HRMS} (ESI/QTOF)$ m/z: [M + H]⁺ Calcd for C₁₇H₁₂F₆N⁺ 344.0868; Found 344.0868. The values of the NMR spectra are in accordance with reported literature data.^[2]

(R)-2-Fluoro-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)aniline (13ac):

Compound **13ac** was prepared from **2a** (117.5 mg, 0.2500 mmol, 1.00 equiv.) and 2-fluoroaniline (**12c**) (100 μ L, 1.00 mmol, 4.00 equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a white amorphous solid (45.0 mg, 0.153 mmol, 61%). The enantiomeric ratio (er) resulted to be 95:5 and was

determined by chiral HPLC analysis on a Daicel Chiralpak AI N-5 column: AI 99:1 hexane/isopropanol, flow rate 1 mL/min, 2 µL sample's injection, 254 nm, $t_{R(minor)} = 5.6$ min, $t_{R(major)} = 6.1$ min; $\alpha_D^{23} = -322.6$ (c = 0.1, CHCl₃); TLC $R_f = 0.44$ (97:3 pentane/EtOAc), visualized by UV light; **IR (v**_{max}, cm⁻¹) 3437 (w), 3062 (w), 2237 (w), 1620 (w), 1516 (m), 1454 (w), 1338 (m), 1257 (s), 1184 (s), 1134 (s), 752 (s), 849 (w), 1034 (w), 991 (w); ¹H NMR (400 MHz, CDCl₃) δ 7.50– 7.44 (m, 2H, Ar*H*), 7.40–7.29 (m, 3H, Ar*H*), 7.11–7.02 (m, 2H, Ar*H*), 6.92–6.87 (m, 1H, Ar*H*), 6.85–6.80 (m, 1H, ArH), 4.93 (dq, *J* = 9.4, 6.0 Hz, 1H, -CHCF₃), 4.37 (d, *J* = 12.8 Hz, 1H, -N*H*-); ¹³C NMR (101 MHz, CDCl₃) δ 152.3 (d, *J* = 240 Hz), 133.5 (d, *J* = 11.4 Hz), 132.2, 129.4, 128.5, 124.8 (d, *J* = 4.0 Hz), 123.8 (q, *J* = 280 Hz), 121.3, 120.1 (d, *J* = 7.3 Hz), 115.4 (d, *J* = 18.7 Hz), 114.2, 86.6, 80.1 (q, *J* = 2.6 Hz), 50.4 (q, *J* = 34.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.7 (d, *J* = 6.1 Hz), -134.5 (tq, *J* = 8.9, 4.1 Hz); HRMS (ESI/QTOF) *m/z* [*M* + *H*]⁺ calcd for C₁₆H₁₂F₄N⁺ 294.0900, found 294.0905. The values of the NMR spectra are in accordance with reported literature data.^[2]

(R)-1-(3-((1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)amino)phenyl)ethan-1-one (13ad):

Compound **13ad** was prepared from **2a** (117.5 mg, 0.2500 mmol, 1.00 equiv.) and 1-(3aminophenyl)ethan-1-one (**13d**) (135.2 mg, 1.00 mmol, 4.00 equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a colorless oil (45.0 mg, 0.142 mmol, 57%). The enantiomeric ratio (er) resulted to be 87:13 and was determined by chiral HPLC analysis on a Daicel Chiralpak AI N-5 column: AI 95:5 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection, 254 nm, tR(minor) = 18.6 min, tR(major) = 31.6 min; α_D^{23} = 18.6 (c = 0.4, CHCl₃); TLC Rf = 0.25 (96:4 pentane/EtOAc), visualized by UV light; IR (vmax, cm⁻¹) 1681 (s), 1605 (s), 1534 (m), 1522 (m), 1491 (m), 1441 (m), 1359 (m), 1324 (m), 1303 (m), 1266 (s), 1230 (m), 1184 (s), 1134 (s), 789 (m), 765 (m), 759 (s); ¹H NMR (**400 MHz, CDCl₃**) δ 7.46 - 7.43 (m, 3H, Ar*H*), 7.40 - 7.37 (m, 2H, Ar*H*), 7.36 - 7.29 (m, 3H, Ar*H*), 6.99 (dd, J = 8.0, 2.7 Hz, 1H, Ar*H*), 5.00 (dq, *J* = 9.4, 6.0 Hz, 1H, -CHCF₃), 4.23 (d, *J* = 9.4 Hz, 1H, -N*H*-), 2.59 (s, 3H, -COCH₃); ¹³C NMR (**101 MHz, CDCl₃**) δ 198.2, 145.4, 138.5, 132.1, 129.8, 129.4, 128.5, 123.8 (q, J = 282.3 Hz), 121.3, 120.6, , 119.2, 113.4, 86.6, 80.1 (q, J = 2.3 Hz), 50.4 (q, J = 34.7 Hz), 26.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.6 (d, J = 6.2 Hz); HRMS (ESI/QTOF) m/z: $[M + Na]^+$ Calcd for $C_{20}H_{21}NNaO_4S^+$ 394.1084; Found 394.1081.

(R)-1-(1,1,1-Trifluoro-4-phenylbut-3-yn-2-yl)-1,2,3,4-tetrahydroquinoline (13ae):

Compound 13ae was prepared from 2a (117.5 mg, 0.2500 mmol, 1.00 equiv.) and 4-(trifluoromethyl)aniline (12e) (130 µL, 1.00 mmol, 4.00 equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a yellow oil (40.1 mg, 0.127 mmol, 51%). The enantiomeric ratio (er) resulted to be 94:6 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 99:1 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection, 254 nm, $t_{R(minor)}$ = 5.3 min, $t_{R(major)}$ = 7.6 min; α_{D}^{23} = -20 (c = 0.33, CHCl₃); TLC Rf = 0.39 (97:3 pentane/EtOAc), visualized by exposure to UV light; IR (v_{max}, cm⁻¹) 3062 (w), 3028 (w), 2935 (m), 2858 (w), 2233 (w), 1604 (m), 1496 (m), 1454 (m), 1354 (m), 1304 (m), 1254 (s), 1126 (s), 1176 (s), 1057 (w), 991 (w), 891 (w), 833 (w), 752 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 7.8, 1.8 Hz, 2H, ArH), 7.41–7.33 (m, 3H, ArH), 7.17–7.10 (m, 1H, ArH), 7.05 (d, J = 7.4 Hz, 1H, ArH), 6.85–6.74 (m, 2H, ArH), 5.35 (q, J = 6.8 Hz, 1H, -CHCF₃), 3.76 (dt, J = 11.0, 5.0 Hz, 1H, -NCH₂), 3.43 (dt, J = 11.0, 5.0 Hz, 1H, -NCH₂), 2.83 (t, J = 6.5 Hz, 2H, -CH₂-), 2.06– 1.96 (m, 2H, -CH₂-); ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 132.1, 130.0, 129.2, 128.5, 127.3, 124.5 (q, J = 285.4) Hz), 124.6, 121.7, 118.7, 112.8, 88.2, 78.8 (q, J = 2.6 Hz), 55.4 (q, J = 33.9 Hz), 45.7, 28.1, 21.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -73.2 (d, J = 6.8 Hz); HRMS (ESI/QTOF) m/z [M + H]⁺ calcd for C₁₉H₁₇F₃N⁺ 316.1308, found 316.1310. The values of the NMR spectra are in accordance with reported literature data.^[2]

(*R*)-4-methyl-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)aniline (**13af**):

Compound 13af was prepared form 2a (117.5 mg, 0.2500 mmol, 1.00 equiv.) and ptoluidine (12f) (107.2 mg, 1.000 mmol, 4.00 equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a pale-yellow oil (42.0 mg, 0.145 mmol, 58%). The enantiomeric ratio (er) resulted to be 82:18 and was determined by chiral HPLC analysis on a Daicel Chiralpak AI column: AI 95:5 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection, 254 nm, t_{R(minor)} = 5.8 min, t_{R(major)} = 6.1 min; α_D^{23} = -302.7 (c = 0.1, CHCl₃); **TLC** R_f = 0.23 (97:3 pentane/EtOAc), visualized by exposure to UV light; IR (vmax, cm⁻¹) 3371 (w), 2936 (w), 1516 (s), 1491 (m), 1466 (w), 1444 (w), 1353 (m), 1268 (m), 1239 (s), 1181 (s), 1133 (s), 1033 (m), 990 (w), 821 (m), 770 (s), 761 (s); ¹H NMR (400 **MHz, CDCl**₃) δ 7.46 - 7.43 (m, 2H, Ar*H*), 7.37 - 7.29 (m, 3H, Ar*H*), 7.07 (d, *J* = 8.4 Hz, 2H, ArH), 6.72 (d, J = 8.5 Hz, 2H, ArH), 4.86 (dq, J = 9.5, 6.2 Hz, 1H, -CHCF₃), 3.91 (d, J = 9.5 Hz, 1H, -NH-), 2.28 (s, 3H, -CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 142.8, 132.1, 130.1, 129.8, 129.3, 128.5, 123.9 (q, J = 281.7 Hz), 121.6, 115.0, 86.2, 80.9 (q, J = 2.2 Hz), 51.2 (q, J = 34.1 Hz), 20.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.7 (d, J = 6.1 Hz); HRMS (ESI/QTOF) m/z: $[M + H]^+$ Calcd for C₁₇H₁₅F₃N⁺ 290.1151; Found 290.1152. The values of the NMR spectra are in accordance with reported literature data.^[2]

(R)-4-Methoxy-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)aniline (13ag):

Compound 13ag was prepared form 2a (117.5 mg, 0.2500 mmol, 1.00 equiv.) and panisidine (12g) (123.2 mg, 1.000 mmol, 4.00 equiv.) following the procedure D. It was purified by PTLC (95:5, Pentane/EtOAc) and obtained as a pale-yellow oil (48.0 mg, 0.157 mmol, 63%). The enantiomeric ratio (er) resulted to be 81:19 and was determined by chiral HPLC analysis on a Daicel Chiralpak AI column: AI 97:3 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection, 254 nm, t_{R(minor)} = 9.7 min, t_{R(major)} = 10.1 min.; $\alpha_D^{23} = -236.3$ (c = 0.1, CHCl₃); **TLC** $R_f = 0.12$ (97:3 pentane/EtOAc), visualized by exposure to UV light; **IR** (*v_{max}, cm*⁻¹) 2947 (w), 1512 (s), 1491 (m), 1349 (m), 1270 (m), 1240 (s), 1236 (s), 1181 (s), 1134 (s), 1033 (m), 823 (m), 773 (m), 770 (m), 759 (m); ¹H NMR (400 **MHz, CDCl**₃) δ 7.47 - 7.41 (m, 2H, Ar*H*), 7.37 - 7.29 (m, 3H, Ar*H*), 6.87 - 6.77 (m, 4H, Ar*H*), 4.77 (dq, J = 9.8, 6.3 Hz, 1H, -CHCF₃), 3.78 - 3.76 (m, 4H, -NH- + -OCH₃); ¹³C NMR (101 **MHz, CDCl**₃) δ 154.3, 139.0, 132.1, 129.3, 128.5, 123.9 (q, J = 281.5 Hz), 121.6, 117.0, 115.0, 86.4, 81.0 (q, J = 2.6 Hz), 55.8, 52.3 (q, J = 33.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.7 (d, J = 6.8 Hz); HRMS (ESI/QTOF) m/z: $[M + H]^+$ Calcd for C₁₇H₁₅F₃NO⁺ 306.1100; Found 306.1100. The values of the NMR spectra are in accordance with reported literature data.^{[2],}

7. Procedures and Compound Characterization for the Enantioselective 3-Component Reaction between 1, 2 and Phenols (14) and Carboxylic Acids (16)

Procedure E: Synthesis of Trifluoromethylated Phenol Ethers 15a-15b and ester (17)

<u>Stock solution of the catalyst</u>: In an oven-dried microwave vial, Cu(MeCN)₄SbF₆ (3.8 mg, 1.2 μ mol, 0.060 equiv) and L1 (4.4 mg, 1.5 μ mol, 0.075 equiv.) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N₂. Finally, dry DCE (3.9 mL) was added into the vial and the resulting colourlesss solution was stirring (430 rpm) at room temperature during 1 h.

<u>Procedure:</u> In an oven-dried microwave vial, compound **2a** (94.0 mg, 0.200 mmol, 1.00 equiv.) and phenol (**14a-14b**, if solid) (0.80 mmol, 4.00 equiv.) were added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N2, followed by the addition of 1 (0.40 mmol, 0.33-0.40 M in DCM, 2.00 equiv.) and phenol (**14a-14b**, if liquid). The resulting reaction mixture was stirred at RT under N2 atmosphere and the catalytic solution (1.30 mL) was added dropwise. After 1h of reaction, the reaction was monitored by TLC (95:5, Pentane/EtOAc) observing full conversion of **2** (unless otherwise noticed). The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc (15 mL). The solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography according to the conditions described for each compound.

(S)-(4,4,4-Trifluoro-3-phenoxybut-1-yn-1-yl)benzene (15a):

Compound **15a** was prepared form **2a** (94.0 mg, 0.200 mmol, 1.00 equiv.) and phenol (**14a**) (75.3 mg, 0.800 mmol, 4.00 equiv.) following the procedure E. It was purified by flash column chromatography (100% Pentane to 97:3 Pentane/EtOAc) and obtained as a pale-yellow oil (43.2 mg, 0.160 mmol, 80%). The enantiomeric ratio (er) resulted to be 80:20 and was determined by chiral HPLC by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 µL sample's injection, 254 nm, $t_{R(minor)} = 10.4$ min, $t_{R(major)} = 11.1$ min. $\alpha_D^{23} = -95.0$ (c = 0.1, CHCl₃); **TLC** R_f 0.54 (99:1 pentane/EtOAc), visualized by exposure to UV light; **IR** (v_{max} , cm⁻¹) 2957 (w), 2918 (w), 2226 (w), 1595 (w), 1494 (m), 1278 (m), 1255 (m), 1220 (s), 1188 (m), 1148 (s), 1079 (m), 1072 (m), 877 (w), 770 (s), 767 (s); ¹HNMR (400 MHz, CDCl₃) δ 7.50 - 7.44 (m, 2H, ArH), 7.41 - 7.29 (m, 5H), 7.15 - 7.07 (m, 3H, ArH), 5.32 (q, J = 5.5 Hz, 1H, -CHCF₃); ¹³CNMR (101 MHz, CDCl₃) δ 156.6, 132.2, 129.8, 129.7, 128.5, 122.3 (q, J = 281.2 Hz), 121.0, 118.1, 116.5, 89.4, 78.8 (d, J = 2.2 Hz), 68.6 (q, J = 36.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.7 (d, J = 5.4 Hz); HRMS (ESI/QTOF) m/z: [M + Ag]⁺ Calcd for C₁₆H₁₁AgF₃O⁺ 382.9807; Found 382.9807.

(S)-1-fluoro-4-((1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)oxy)benzene (15b):

Compound 15b was prepared form 2a (94.0 mg, 0.200 mmol, 1.00 equiv.) and pfluorophenol (14b) (89.7 mg, 0.800 mmol, 4.00 equiv.) following the general procedure E. It was purified by flash column chromatography (100% Pentane to 97:3 Pentane/EtOAc) and obtained as a pale-yellow oil (48.8 mg, 0.166 mmol, 83%). The enantiomeric ratio (er) resulted to be 78:22 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 µL sample's injection, 254 nm, $t_{R(minor)}$ = 11.1 min, $t_{R(major)}$ = 13.2 min. α_D^{23} = 28.0 (c = 0.26, CHCl₃); TLC Rf 0.53 (99:1 pentane/EtOAc), visualized by exposure to UV light; IR (*v_{max}, cm⁻¹*) 3083 (w), 3055 (w), 2936 (w), 2251 (w), 2229 (w), 1505 (s), 1492 (m), 1365 (w), 1275 (m), 1256 (m), 1241 (m), 1218 (s), 1202 (s), 1147 (s), 1098 (w), 1065 (m), 1004 (w), 990 (w), 909 (m), 884 (w), 830 (m), 774 (s), 757 (m), 735 (m); ¹H NMR (400 MHz, **CDCl₃**) δ 7.47 - 7.42 (m, 2H, ArH), 7.41 - 7.30 (m, 3H, ArH), 7.11 - 7.00 (m, 4H, ArH), 5.23 (q, J = 5.4 Hz, 1H, -CHCF₃). ¹³CNMR (101 MHz, CDCl₃) δ 158.9 (d, J = 241.3 Hz), 152.7 (d, J = 3 Hz), 132.2, 129.8, 128.6, 122.2 (q, J = 281.5 Hz), 120.9, 118.4 (d, J = 8.2 Hz), 116.3 (q, J = 23.0 Hz), 89.7, 78.5 (d, J = 1.6 Hz), 69.6 (q, J = 34.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.8 (d, J = 5.4 Hz, -CF₃), -120.3 (m). HRMS (Sicrit plasma/LTQ-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₆H₁₁F₄O⁺ 295.0741; Found 295.0739.

(S)-1,1,1-Trifluoro-4-phenylbut-3-yn-2-yl cyclohexanecarboxylate (17):

Compound **17** was prepared form **2a** (94.0 mg, 0.200 mmol, 1.00 equiv.) and cyclohexanecarboxylic acid **(16)** (90.6 mg, 0.800 mmol, 4.00 equiv.) following the general procedure E. It was purified by PTLC (100% Pentane) and obtained as a pale-yellow oil (12.4 mg, 0.0400 mmol, 20%). The enantiomeric ratio (er) resulted to be 90:10

and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection, 254 nm, t_{R(major)} = 8.2 min, t_{R(minor)} = 8.6 min; α_D^{23} = 102.8 (c =0.125, CHCl₃); TLC *R*_f = 0.72 (99:1 pentane/EtOAc), visualized by exposure to UV light; IR (v_{max}, cm⁻¹) 3356 (w), 3020 (w), 2931 (w), 2843 (w), 1512 (s), 1346 (m), 1242 (s), 1180 (s), 1134 (s), 1034 (m), 822 (m), 756 (m); ¹H NMR (400 MHz, CDCl₃) δ 7.51 - 7.48 (m, 2H, Ar*H*), 7.41 - 7.29 (m, 3H, Ar*H*), 6.10 (q, *J* = 5.8 Hz, 1H, -CHCF₃), 2.47 (tt, *J* = 11.2, 3.6 Hz, 1H, -COC*H*-), 2.01 - 1.94 (m, 2H, -CH₂, -cyclohexyl), 1.81 - 1.73 (m, 2H, -CH₂ cyclohexyl), 1.70 - 1.63 (m, 1H, -CH cyclohexyl), 1.53 - 1.42 (m, 1H, -CH cyclohexyl), 1.38 - 1.21 (m, 4H, -CH₂ cyclohexyl); ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 132.4, 129.7, 128.5, 122.1 (q, *J* = 281.2 Hz), 121.0, 88.0, 78.0 (q, *J* = 1.8 Hz), 61.7 (q, *J* = 37.2 Hz), 42.8, 29.0, 28.7, 25.7, 25.4, 25.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.6 (d, *J* = 5.4 Hz).

8. Scale up Procedures for Compounds 4an and 11b

8.1. Procedure for the scale up of compound 4an

<u>Stock solution of the catalyst:</u> In an oven-dried microwave vial, $Cu(MeCN)_4BF_4$ (6.3 mg, 0.020 mmol, 0.020 equiv) and **L1** (3.5 mg, 1.2 µmol, 0.060 equiv) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N₂. Finally, dry DCE (6.7 mL) was added into the vial and the resulting colourlesss solution was stirring (430 rpm) at room temperature during 1 h.

<u>Procedure:</u> In an oven-dried microwave vial, compound **2a** (470.1 mg, 1.000 mmol, 1.00 equiv.) was added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N₂, followed by the addition of **1** (5.6 mL, 2.0 mmol, 0.33-0.40 M in DCM, 2.00 equiv.) and alcohol **3n** (287 μ L, 2.00 mmol, 2.00 equiv.). The resulting reaction mixture was stirred at RT under N₂ atmosphere and the catalyst solution (6.7 mL) was added dropwise. After 1.30 h of reaction, the reaction was

monitored by TLC (95:5, Pentane/EtOAc) observing full conversion of **2**. The reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc (40 mL). The solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography (100% to 99:1, Pentane/EtOAc) and obtained as a colourless oil (153 mg, 0.509 mmol, 51%). The enantiomeric ratio (er) resulted to be 93:7 and was determined by chiral HPLC analysis on a Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate1 mL/min, 2 μ L sample's injection, 254 nm, t_{R(minor)} = 5.7 min, t_{R(major)} = 6.3 min. *For characterization, see compound* **4an**

8.2. Procedure for the scale up for compound 11b

<u>Stock solution of the catalyst:</u> In an oven-dried microwave vial, Cu(MeCN)₄BF₄ (6.3 mg, 0.020 mmol, 0.02 equiv.) and **L1** (7.4 mg, 0.025 mmol, 0.025 equiv.) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N₂. Finally, dry DCE (6.7 mL) was added into the vial and the resulting colourlesss solution was stirring (430 rpm) at room temperature during 1 h.

<u>Procedure:</u> In an oven-dried microwave vial, compound **2a** (550.4 mg, 1.000 mmol, 1.00 equiv.) and **10** (630.6 mg, 2.000 mmol, 2.00 equiv.) were added and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N₂, followed by the addition of **1** (5.6 mL, 2.0 mmol, 0.33-0.40 M in DCM, 2.00 equiv.) The resulting reaction mixture was stirred at RT under N₂ atmosphere and the catalyst solution (6.7 mL) was added dropwise. After 1 h of reaction, the reaction mixture was filtered through a short pad of celite and rinsed up with EtOAc (40 mL). The solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography (100% to 90:10, Pentane/EtOAc) and obtained as a white solid (425.0 mg, 0.718 mmol, 72%). The diastereomeric ratio (dr) resulted to be 97:3 and was determined by ¹⁹F NMR of the crude mixture.

9. Product functionalization

9.1. Procedure for the deprotection of 4an: Synthesis of (S)-1,1,1-trifluoro-4phenylbut-3-yn-2-ol (18)

Following a reported procedure,⁶ a solution of **4an** (126 mg, 0.420 mmol, 1.00 equiv., 93:7 e:r) in dry DCM (6.5 mL) was prepared followed by the dropwise addition of $BF_3.OEt_2$ (396 µL, 2.35 mmol, 5.60 equiv.). The colourless solution was stirred at RT under N₂ atmosphere. After 1h, the reaction was monitored by TLC (95:5, Pentane/EtOAc) and full conversion was observed.

The reaction was quenched adding NaHCO₃ (7 mL) and the biphasic mixture was stirring during 10 min at RT. Then, layers were separated, and the aqueous layer was extracted with DCM (3 x 10 mL). Organics were recombined, washed with brine (1 x 5 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography (95:5 to 80:20, Pentane/EtOAc), yielding compound **18** as a colourless oil (73.0 mg, 0.365 mmol, 87%). The enantiomeric ratio (er) resulted to be 94:6 and was determined by chiral HPLC; $\alpha_D^{23} = -10.3$ (c =1, CHCl₃)^{7,8}; **TLC** *R*_f = 0.020 (8:2: Hexane/EtOAc), visualized by exposure to UV light; **IR** (**v**_{max}, **cm**⁻¹) 3379 (w), 2975 (w), 2248 (w), 2229 (w), 1491 (m), 1352 (m), 1273 (m), 1256 (m), 1219 (m), 1186 (s), 1140 (s), 1087 (m), 1071 (m), 772 (s), 759 (s); ¹H NMR (400 MHz, CDCl₃) δ 7.51 - 7.45 (m, 2H, Ar*H*), 7.41 - 7.32 (m, 3H, Ar*H*), 4.92 (p, *J* = 5.8 Hz, 1H, -CHCF₃), 2.75 (d, *J* = 8.2 Hz, 1H, -OH); ¹³C NMR (101 MHz, CDCl₃) δ 132.2, 129.7, 128.6, 122.9 (q, *J* =

⁶ Ramasamy, M.; Lin, H.-C.; Kuo, S.-C.; Hsieh, M.-T. Lewis Acid-Catalyzed Rearrangement of Fluoroalkylated Propargylic Alohols: An Alternative Approach to *β*-Fluoroalkyl- α , β -enones. *Synlett* **2019**, *30*, 356 – 360..

⁷ We found different α_D value for the same enantiomer described in the literature. This is probably due to the low rotation power of this compound. For more information, see: a) Veeraraghavan Ramachandran, P.; Gong, B.; Teodorovic, A. V.; Brown, H. C. Selective reductions. 52. Efficient Asymmetric Reduction of *α*-Acetylenic *α'*-Fluoroalkyl Ketones with Either *θ*-Chlorodiisopinocamphenylborane or *θ*-Isopinocampheyl-9-borabicyclo[3.3.1.]nonane in High Enantiomeric Purity. The Influence of Fluoro Groups in Such Reductions. *Tetrahedron: Asymmetry* **1994**, *5*, 1061 – 1074. b) Matsutani, H.; Kusumoto, T.; Hiyama, T. A Facile Synthesis of Optically Active 1, 1, 1 – Trifluoro-3-alkyn-2-ols by Stereospecific Substitution of Optically Active 1-Benzyloxy-2,2,2-trifluoroethyl Tosylate with Lithium Alkynyltriethylaluminates. *Chemistry Letters* **1999**, *28*, 529-530. c) Zhang, Y.-M.; Yuan, M.-L.; Liu, W.-P.; Xie, J.-H.; Zhou, Q.-L. Iridium-Catalyzed Asymmetric Transfer Hydrogenation of Alkynyl Ketones Using Sodium Formate and Ethanol as Hydrogen Sources. *Org. Lett.* **2018**, *20*, 4486 – 4489. d) Nicholson, K.; Dunne, J.; DaBell, P.; Beaton Garcia, A.; Bage, A. D.; Docherty, J. H.; Hunt, T. A.; Langer, T.; Thomas, S. P. A Boron-Oxygen Transborylation Strategy for a Catalytic Midland Reduction. *ACS Catal.* **2021**, *11*, 2034 – 2040.

281.9 Hz), 121.0, 88.1, 80.6 (q, J = 2.6 Hz), 63.1 (q, J = 36.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -79.4 (d, J = 5.4 Hz); HRMS (APCI/QTOF) m/z: $[M + H]^+$ Calcd for C₁₀H₈F₃O⁺ 201.0522; Found 201.0516. The values of the NMR spectra are in accordance with reported literature data.^[8]

9.2. Derivation of compound 18: Synthesis of (*S*)-1,1,1-trifluoro-4-phenylbut-3yn-2-yl 4-nitrobenzoate (19)⁸

In a MW vial, a solution of 18 (72.0 mg, 0.360 mmol, 1.00 equiv.) in dry DCM (1 mL) was prepared followed by the dropwise addition of Et₃N (75 µL, 0.57 mmol, 1.50 equiv.) and the resulting solution was stirred at room temperature during 30 min. After that, pnitrobenzoyl chloride (100 mg, 0.570 mmol, 1.50 equiv.) was slowly added into the solution and the reaction mixture was stirred during 2 h at room temperature. After this time, full conversion was observed (monitored by TLC, 80:20, Pentane/EtOAc) and the reaction mixture was quenched with brine (1 x 5 mL). The two-layer mixture was stirred during 15 min and then, extracted with DCM (3 x 10 mL). The organic layers were recombined and washed with NaHCO₃ (1 x 5 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Compound **19** was obtained after purification by flash column chromatography (100% Pentane to 80:20 Pentane/EtOAc) as a white crystalline solid (94.3 mg, 0.270 mmol, 75%): TLC R_f = 0.31 (99:1 pentane/EtOAc), visualized by exposure to UV light; IR (v_{max}, cm⁻¹) 2946 (w), 2868 (w), 1750 (w), 1534 (w), 1347 (w), 1328 (w), 1275 (m), 1260 (m), 1219 (m), 1195 (m), 1147 (m), 1092 (w), 772 (s). ¹H NMR (400 MHz, CDCl₃) δ 8.36 – 8.20 (m, 4H, ArH), 7.55 - 7.47 (m, 2H, ArH), 7.45 - 7.30 (m, 3H, ArH), 6.33 (q, J = 5.6 Hz, 1H, -CHCF₃). ¹³C NMR (101 MHz, CDCl₃) δ 162.6, 151.3, 133.7, 132.4, 131.6, 130.0, 128.6, 123.9, 121.9 (q, *J* = 281.2 Hz), 120.5, 89.1, 63.3 (q, *J* =

⁸ Ko, S.-J.; Lim, J. Y.; Jeon, N. Y.; Won, K.; Ha, D.-C.; Kim, B. T.; Lee, H. Kinetic resolution of fluorinated propargyl alcohols by lipase-catalyzed enantioselective transesterification. *Tetrahedron: Asymmetric* **2009**, *20*, 1109 – 1114.

37.8 Hz). (One C is not resolved); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.3 (d, *J* = 5.4 Hz); HRMS (APCI/QTOF) m/z: [M + H]⁺ Calcd for C₁₀H₈F₃O⁺ 201.0522; Found 201.0516.The values of the NMR spectra are in accordance with reported literature data.^[8]

9.3. Procedure for the deprotection of the TIPS group: Synthesis of benzyl *N*-((benzyloxy)carbonyl)-O-((*S*)-1,1,1-trifluorobut-3-yn-2-yl)-L-serinate (20)

Following a reported procedure,⁹ a solution of **11b** (425 mg, 0.738 mmol, 1.00 equiv. 93:7 er) in dry MeOH (7.6 mL) was prepared followed by the slowly addition of AgF (140 mg, 1.10 mmol, 1.50 equiv.). The black mixture was stirred at RT during 30 min under N₂ atmosphere. After this time, HCl (1 M, 10 mL)) was added and the resulting suspension was stirred another additional 10 min. The precipitated was filtrated and the aqueous liquors were extracted with DCM (3 x 20 mL). Organics were recombined, washed with sat. NH₄Cl (1 x 10 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography (95:5 to 75:25, Pentane/EtOAc), yielding product 20 as a white solid (265.0 mg, 0.609 mmol, 82%). The diastereomeric ratio (dr) resulted to be 70:30 and was determined by ¹⁹F NMR of the crude mixture; α_{D}^{23} = -174.3 (c = 0.1, CHCl₃); **TLC** R_{f} = 0.18 (95:5 Hexane/EtOAc), visualized by exposure to UV light and/or KMnO₄; IR (v_{max}, cm⁻¹) 3303 (w), 3036 (w), 2953 (w), 1744 (m), 1719 (s), 1608 (w), 1510 (m), 1465 (w), 1456 (m), 1341 (m), 1273 (s), 1217 (s), 1189 (s), 1148 (s), 1119 (s), 1057 (m), 860 (w), 772 (s), 759 (m); ¹H NMR (400 MHz, CDCl₃, mixture of inseparable diastereoisomers) δ 7.37 - 7.32 (m, 10H, ArH), 5.65 - 5.62 (m, 1H, -NH-), 5.25 - 5.16 (m, 2H, -CH₂Ph), 5.14 - 5.13 (m, 2H, -CH₂Ph), 4.63 - 4.61 (m, 1H, -CHCO₂Bn), 4.53 - 4.49 (m, 0.39H, CHCF₃), 4.43 - 4.39 (0.74H, -CHCF₃), 4.27 - 4.24 (m, 0.32H, -OCH₂-), 4.12 (dd, J = 9.4, 3.1 Hz, 1H, -OCH₂-), 4.04 (dd, J

⁹ Kim, S.; Kim, B.; In, J. Facile Deprotection of Bulky (Trialkylsilyl)acetylenes with Silver Fluoride. *Synthesis* **2009**, *12*, 1963 – 1968.

= 9.3, 3.3 Hz, 0.82H, -OCH₂-), 3.95 - 3.92 (m, 0.31H, -OCH₂-), 2.55 (s, 0.63H, $HC \equiv C -$), 2.52 (s, 0.31H, $HC \equiv C -$); ¹³C NMR (101 MHz, CDCl₃, mixture of inseparable diastereoisomers) δ 169.4 (major diastereoisomer), 169.3 (minor diastereoisomer), 156.02 (major diastereoisomer), 156.00 (minor diastereoisomer), 136.2, 135.2, 128.72, 128.68, 128.64, 128.61, 128.6, 128.34, 128.31, 128.2, 122.0 (q, J = 282.6 Hz, minor diastereoisomer), 121.9 (q, J = 283.2 Hz, major diastereoisomer), 78.4 (minor diastereoisomer), 78.3 (major diastereoisomer), 73.0 (q, J = 2.4 Hz, major diastereoisomer), 72.9 (q, J = 2.2 Hz, minor diastereoisomer), 69.9, 69.5, 69.0 (q, J = 35.8Hz), 68.8 (q, J = 35.6 Hz, minor diastereoisomer), 67.72 (minor diastereoisomer), 67.69 (major diastereoisomer, 67.3, 54.3;¹⁹F NMR (377 MHz, CDCl₃, mixture of inseparable diastereoisomer)) δ -76.6 (d, J = 5.5 Hz, minor diastereoisomer), -76.8 (d, J = 5.5 Hz, major diastereoisomer);HRMS (APPI/LTQ-Orbitrap) m/z: [M + H]⁺ Calcd for C₂₂H₂₁F₃NOs⁺ 436.1366; Found 436.1376.

10. Preliminary mechanistic studies

 Decomposition of diazo compound under the presence of the catalytic system (catalytic loading)

Stock solution of the catalyst: In an oven-dried microwave vial, $Cu(MeCN)_4BF_4$ (0.90 mg, 3.00 µmol, 0.020 equiv) and L1 (1.10 mg, 3.70 µmol, 0.025 equiv) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N2. Finally, DCM-d₂ (1 mL) was added into the vial and the resulting colourlesss solution was stirred (430 rpm) at room temperature during 1 h.

Experiment description: In an oven dried J young NMR tube, 1 (0.430 mL, 0.150 mmol) in DCM (0.33 – 0.40 M) was added followed by the dropwise addition of the catalytic solution in DCM-d2 (1 mL). The NMR tube was sealed and the ¹⁹FNMR experiment was submitted.

• Decomposition of diazo compound under the presence of the catalytic system (stoichiometric catalytic loading)

Stock solution of the catalyst: In an oven-dried microwave vial, $Cu(MeCN)_4BF_4$ (15.7 mg, 0.05 mmol, 1.000 equiv) and L1 (18.4 mg, 63.0 µmol, 0.025 equiv) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with

3 cycles of vacuum-N₂. Finally, DCM-d2 (0.35 mL) was added into the vial and the resulting colourlesss solution was stirring (430 rpm) at room temperature during 1 h.

Experiment description: In an oven dried J young NMR tube, **1** (0.14 mL, 0.05 mmol) in DCM (0.33 – 0.40 M) was added followed by the dropwise addition of the catalytic solution in DCM-d2 (0.35 mL). The NMR tube was sealed and the 19FNMR experiment was submitted.

These experiments support the formation of a Copper carbene between **1** and the preformed Cu(I)-BOX chiral complex, allowing the formation of the *cis*- and *trans*- alkene after a fast decomposition of the Copper carbene.

• Synthesis of BOX complex

In an oven-dried J young NMR valve, Cu(MeCN)₄BF₄ (0.94 mg, 3.00 μ mol, 0.020 equiv) and L1 (1.10 mg, 3.70 μ mol, 0.025 equiv) were charged followed by the addition of DCM-d2 (1 mL). The mixture was shaken and then NMR was submitted and recorded. The comparison between the uncomplexed L1 and the complexed mixture is done below.

L1: ¹H NMR (400 MHz, CD₂Cl₂) δ 4.13 (dd, J = 10.0, 8.7 Hz, 2H, -OCH₂-), 4.05 (dd, J = 8.7, 7.3 Hz, 2H, -OCH₂-), 3.81 (d, J = 7.4 Hz, 1H, -CH-), 3.79 (d, J = 7.4 Hz, 1H, -CH-), 1.45 (s, 6H, -CH₃), 0.85 (s, 18H, -(CH₃)₃).

Cu(MeCN)4BF4+ L1: ¹H NMR (400 MHz, CD₂Cl₂) δ 4.58 - 4.29 (m,4H), 3.99 (dd, J = 9.9, 6.7 Hz, 2H), 2.05 (s, 6H), 1.55 (s, 6H), 0.94 (s, 18H).

This experiment shows the complexation between L1 and the Cu(I) catalyst. As it is observable in Spectrum B, the signals appears at more downshielded in comparison to Spectrum A, which indicated coordination of Cu. Moreover, a new signal appears at 2.05

ppm belonging to the MeCN groups from the Cu(I) catalyst. The defined shape of the signals reveals that Cu(I), non paramagnetic, species are formed.

 Analysis of the reaction between 1 and the Cu(I)-BOX chiral catalytic system by Mass-Spectrometry.

Stock solution of the catalyst: In an oven-dried microwave vial, $Cu(MeCN)_4BF_4$ (0.94 mg, 3.00 µmol, 0.020 equiv) and L1 (1.10 mg, 3.70 µmol, 0.025 equiv) were charged and the vial was capped with a septum. Then, the system was evacuated and backfilled with 3 cycles of vacuum-N2. Finally, dry DCM (1 mL) was added into the vial and the resulting colourlesss solution was stirred (430 rpm) at room temperature during 1 h.

Experiment description: In an oven dried MW vial, **1** (0.43 mL, 0.15 mmol) in DCM (0.33 – 0.40 M) was added followed by the dropwise addition of the catalytic solution in DCM- (1 mL). Then, 150 μ L were transfer to a mass-vial under N₂ atmosphere and diluted with dry EtOAc (1.3 mL). The content was directly submitted to mass (ESI-QTOF).

The mass spectra shows the formation of the pre-complex between $Cu(MeCN)_4BF_4$ and L1 (m/z = 398.19) containing 1 MeCN. Moreover, a Cu-BOX specie can be observed as a main mass (m/z = 357.16). Finally, with a m/z = 144.93 it is also possible to observe the formation of the Cu-carbene specie. Unfortunately, the copper complex bearing both L1 and the carbene could not be observed, probably due to its low stability.

• Alkyne transfer step: Deprotonation of the X-H insertion product?

Into an oven-dried MW tube, a solution of **S3** (185 mg, 0.500 mmol, 2.00 equiv.) in dry THF (0.25 mL) was added to a suspension of NaH (60% mineral oil) (20.6 mg, 0.515 mmol, 2.06 equiv.) in dry THF (0.25 mL) at 0 °C. The resulting reaction mixture was stirred under these conditions during 5 h. After that, the reaction mixture was allowed to reach room temperature and the solvent was evaporated. Then, **2a** (117 mg, 0.250 mmol, 1.00 equiv.) followed by 2,2,2-trifluoroethoxymethylbenzene (95.1 mg, 0.500 mmol, 2.00 equiv.) were added into the flask containing the salt. Finally, the catalytic mixture (prepared according previous described protocol) was added dropwise and the reaction mixture was stirred for 1 h at RT, no observing the formation of the desired product after this reaction time..

This experiment shows that the alkyne transfer does not happen via deprotonation of the X-H insertion product by the alkoxylate from **S3**.

11. Determination of the absolute configuration

11.1. X-Ray for the Determination of the Absolute Configuration for Anilines

Experimental. Single clear pale colourless needle-shaped crystals of **12ac** were used as supplied. A suitable crystal with dimensions $0.57 \times 0.07 \times 0.06$ mm³ was selected and mounted on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. The crystal was kept at a steady *T* = 140.00(11) K during data collection. The structure was solved with the **ShelXT** (Sheldrick, 2015) solution program using dual methods and by using **Olex2** 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with **ShelXL** 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on *F*².

Crystal Data. $C_{16}H_{11}F_{4}N$, $M_r = 293.26$, monoclinic, $P2_1$ (No. 4), a = 9.2957(4) Å, b = 4.7466(2) Å, c = 15.6594(7) Å, $P = 91.369(4)^\circ$, $P = 90^\circ$, V = 690.75(5) Å³, T = 140.00(11) K, Z = 2, Z' = 1, $P(Cu K_P) = 1.045$, 5457 reflections measured, 2631 unique ($R_{int} = 0.0272$) which were used in all calculations. The final wR_2 was 0.1380 (all data) and R_1 was 0.0497 ($I \ge 2 P(I)$).

Compound	12ac
Formula	$C_{16}H_{11}F_4N$
D _{calc.} / g cm ⁻³	1.410
₪/mm ⁻¹	1.045
Formula Weight	293.26
Colour	clear pale
	colourless
Shape	needle-shaped
Size/mm ³	0.57×0.07×0.06
<i>Т/</i> К	140.00(11)
Crystal System	monoclinic
Flack Parameter	0.2(2)
Hooft Parameter	0.05(8)
Space Group	P21
a/Å	9.2957(4)
b/Å	4.7466(2)
c/Å	15.6594(7)
₽/°	90
₽ / °	91.369(4)
₽/°	90
V/Å ³	690.75(5)
Z	2
Ζ'	1
Wavelength/Å	1.54184
Radiation type	Cu K
₽min/°	2.823
⊡ _{max} /°	72.389
Measured Refl's.	5457
Indep't Refl's	2631 2398
Refl's I≥2 ⊡(I) R _{int}	0.0272
Parameters	195
Restraints	195
Largest Peak	0.265
Deepest Hole	-0.162
GooF	1.031
wR_2 (all data)	0.1380
wR_2 (an data)	0.1327
R_1 (all data)	0.0539
R_1 (an data)	0.0497
•••	0.0107

10.2. X-Ray for the Determination of the Absolute Configuration for Alcohols

Experimental. Single colourless needle-shaped crystals of **19** were used as supplied. A suitable crystal with dimensions $0.46 \times 0.04 \times 0.03 \text{ mm}^3$ was selected and mounted on an XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at a steady *T* = 139.99(10) K during data collection. The structure was solved with the **ShelXT** 2018/2 (Sheldrick, 2015) solution program using dual methods and by using **Olex2** 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with **ShelXL** 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on *F*².

Crystal Data. $C_{17}H_{10}F_{3}NO_{4}$, $M_{r} = 349.26$, trigonal, R3 (No. 146), a = 30.7704(17) Å, b = 30.7704(17) Å, c = 4.3483(2) Å, $\square = 90^{\circ}$, $\square = 90^{\circ}$, $\square = 120^{\circ}$, $V = 3565.4(4) Å^{3}$, T = 139.99(10) K, Z = 9, Z' = 1, \square (Cu K_{\square}) = 1.115, 11947 reflections measured, 3021 unique (R_{int} = 0.0474) which were used in all calculations. The final wR_{2} was 0.1248 (all data) and R_{1} was 0.0489 (I $\ge 2\square$ (I)).

Compound	19
Formula	$C_{17}H_{10}F_{3}NO_{4}$
<i>D_{calc.}</i> / g cm ⁻³	1.464
ิ /mm⁻¹	1.115
Formula Weight	349.26
Colour	colourless
Shape	needle-shaped
Size/mm ³	0.46×0.04×0.03
Т/К	139.99(10)
Crystal System	trigonal
Flack Parameter	0.25(15)
Space Group	R3
a/Å	30.7704(17)
b/Å	30.7704(17)
<i>c</i> /Å	4.3483(2)
? / °	90
? / °	90
₽ / °	120
V/ų	3565.4(4)
Ζ	9
Ζ'	1
Wavelength/Å	1.54184
Radiation type	Cu <i>K</i> ℤ
₽ _{min} /°	2.872
?max∕°	75.408
Measured Refl's.	11947
Indep't Refl's	3021
Refl's I≥2⊡(I)	2287
R _{int}	0.0474
Parameters	226
Restraints	1
Largest Peak/e Å ⁻³	0.170
Deepest Hole/e Å ⁻³	-0.278
GooF	0.994
wR ₂ (all data)	0.1248
wR ₂	0.1137
R₁ (all data)	0.0709
R_1	0.0489
CCDC number	2225295

12. ¹H, ¹³C and ¹⁹F NMR Spectra of Trifluoromethylated Propargylic Compounds

-90 -100 δ (ppm) 0 -10 -190 -2 -20 -30 -40 -50 -60 -70 -80 -110 -120 -130 -140 -150 -160 -170 -180

SI76

στροπη

SI80

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 δ(ppm)

SI89

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 δ (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 δ(ppm)

-90 -100 δ (ppm) 0 -10 -160 -170 -180 -190 -2 -20 -30 -40 -50 -60 -70 -80 -110 -120 -130 -140 -150

¹³C NMR (101 MHz, CDCl₃)

 $< \frac{-76.82}{-76.83}$

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 δ(ppm)

¹³C NMR (101 MHz, CDCl₃)

SI101

SI106

¹³C NMR (101 MHz, CDCl₃)

SI119

-40 -100 -110 δ (ppm) -70 0 -10 -60 -90 -20 -30 -50 -80 -120 -130 -140 -150 -160 -170 -180 -190 -200

 $<^{-77.14}_{-77.15}$

SI123

SI135

¹⁹F NMR (376 MHz, CDCl₃)

 $< \frac{-75.42}{-75.43}$

¹H NMR (400 MHz, CDCl₃)

110 100 δ (ppm)

90 80 70 60 50 40

130 120

140

10 200

190

180

160 150

170

0

10

30 20

 $< \frac{-75.64}{-75.65}$

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 δ (ppm)

¹H NMR (400 MHz, CDCl₃)

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 δ (ppm)

 $<^{-75.72}_{-75.73}$

¹³C NMR (101 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 δ (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 δ(ppm)

SI155

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 δ (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 δ(ppm)

SI159

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -100 -120 -130 -140 -150 -160 -170 -180 -190 -200 δ(ppm)

13. Chiral HPLC traces.

Chiral HPLC traces for compound 4aa.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

				Area [mAU*s]	Height [mAU]	
1	5.278	MM	0.1206	4931.11426	681.46576	50.7704
2	5.602	MM	0.1283	4781.46045	621.32062	49.2296

Totals :

9712.57471 1302.78638

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	RetTime Type [min]	[min]	[mAU*s]	[mAU]	%
1	5.785 MM	0.1078	13.22787	2.04507	4.0403
2	6.165 MM	0.1209	314.17172	43.31188	95.9597
Total	s :		327.39959	45.35696	

Chiral HPLC traces for compound 4ac.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	5.604	BV	0.1307	5712.18896	661.55518	50.3754
2	6.086	VV F	0.1362	5627.06055	626.94861	49.6246

1.13392e4 1288.50378

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.580	MM	0.1299	4109.42627	527.07288	95.7457
2	6.086	MM	0.1233	182.59717	24.68895	4.2543

Totals : 4292.02344 551.76183

Chiral HPLC traces for compound 4ad.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μL sample's injection.

Pe	ak	RetTime	Туре	Width	Area	Height	Area
					[mAU*s]	[mAU]	%
	1	5.187	BB	0.1012	3276.57153	508.18280	48.3940
	2	5.785	BB	0.1118	3494.04858	486.31168	51.6060

6770.62012 994.49448

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
1	5.286	BB	0.1186	5948.41309	765.71027	93.6132
2	5.950	BB	0.1104	405.83075	56.07053	6.3868

Totals : 6354.24384 821.78080

Chiral HPLC traces for compound 4ae.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μL sample's injection.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.454	MM	0.3207	1.15158e4	598.48419	96.9554
2	12.694	MM	0.3138	361.62051	19.20488	3.0446
Tota]	s :			1.18774e4	617.68907	

Chiral HPLC traces for compound 4af.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime # [min] 	2.	[min]	[mAU*s]	 %
1 15.666 2 17.305	MM	0.4663	1.55159e4	52.7421

Totals :

2.94185e4 1019.01288

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

	21		Area [mAU*s]	0	
1 16	.310 MM	0.4319	1.42347e4	549.30884	97.6747
2 18	.400 MM	0.4337	338.88263	13.02343	2.3253
Totals :			1.45736e4	562.33227	

Chiral HPLC traces for compound 4ag.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μL sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type # [min]	[min]	[mAU*s]		
1 13.744 BB	0.3321	2321.16016	100.26518	50.4277
2 15.841 BB	0.3849	2281.78857	82.95090	49.5723

4602.94873 183.21608

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

				Area [mAU*s]	0	
1	14.028	BB	0.3531	3309.82886	133.56996	96.6543
2	16.758	BB	0.3750	114.57117	4.56236	3.3457
Total	s :			3424.40002	138.13232	

SI168

Chiral HPLC traces for compound 4ah.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

# [min]	Width Area [min] [mAU*s]	[mAU]	%
1 5.266 BB	0.1015 1123.05127	169.03957	50.1307
2 6.144 BB	0.1137 1117.19653	148.55783	49.8693
Totals :	2240.24780	317.59740	

				Area [mAU*s]	0	
1	5.187	MM	0.1231	4663.62256	631.56360	95.4801
2	5.986	MM	0.1147	220.77011	32.08010	4.5199
Total	s :			4884.39267	663.64370	

Chiral HPLC traces for compound 4ai.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

1053.06616 118.10030

#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	6.979	BB	0.1602	5694.57617	534.82843	94.5344
2	8.314	VB R	0.1591	329.23828	30.40454	5.4656
Totals	:			6023.81445	565.23297	

Chiral HPLC traces for compound 4aj.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	[min]		[min]		[mAU]	%
1	5.688	MM	0.1352	3125.57520	385.36795	51.9455
2	6.297	MM	0.1364	2891.45093	353.32962	48.0545

6017.02612 738.69757

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

				Area	0	
				[mAU*s]		
1	5.686	MM .	0.1312	3861.04785	490.50647	96.6070
2	6.244	MM	0.1459	135.60649	15.49576	3.3930

Totals : 3996.65434 506.00223

Chiral HPLC traces for compound 4ak.

<u>Conditions:</u> Daicel Chiralpak IB N-5 column: IA 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.062	VV R	0.1744	2134.05518	178.67944	49.6312
2	8.496	VB	0.1964	2165.76782	163.65567	50.3688

```
Totals :
```

4299.82300 342.33511

				Area [mAU*s]	-	
1	8.126	MM	0.1405	407.25095	48.31989	6.5027
2	8.432	MM	0.2316	5855.58350	421.42700	93.4973
Totals	:			6262.83444	469.74689	

Chiral HPLC traces for compound 4al.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

					Height [mAU]	
-						
1	6.502	MM	0.1307	2895.74243	369.25925	49.0296
2	7.440	MM	0.1510	3010.36548	332.27228	50.9704

				Area [mAU*s]	0	
1	6.689	MM	0.1285	435.36194	56.47586	6.7167
2	7.620	MM	0.1779	6046.44287	566.58496	93.2833
Total	s :			6481.80481	623.06082	

Chiral HPLC traces for compound 4am.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

				Area	0	
					[mAU]	
1	8.277	MM	0.2889	4573.02100	263.85651	50.0946
2	8.837	MM	0.4151	4555.75195	182.92178	49.9054

9128.77295 446.77829

				Area [mAU*s]	0	
				[IIIAO 3]		
				•		
_	7.987			1768.96167		
2	8.443	MM	0.1477	133.43443	15.05945	7.0140
Total	s :			1902.39610	202.64486	

Chiral HPLC traces for compound 4an.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

				Area [mAU*s]		
-						
1	5.762	BV R	0.1209	2515.94019	313.30023	50.6584
2	6.385	VB	0.1309	2450.54492	289.07428	49.3416

Totals :

4966.48511 602.37451

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

				Area [mAU*s]	0	
1	5.922	MM	0.1437	296.12933	34.34717	10.5256
2	6.557	MM	0.1668	2517.28345	251.49266	89.4744
Total	s :			2813.41278	285.83983	

Chiral HPLC traces for compound 4an (1 mmol)

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μL sample's injection.

	DAD1 A, Sig=254,4 Ref=360,	100 (C:\CHEM32\EVES\NPC	04-278IB100-0 2022-07-21 14	-57-42\01NP04-278IB100-	-0.D)	
mAU	5.7 62	385				
250		ம்				
200						
150						
100						
50						
0-	l					
	5	10	15	20	25	30 min

Peak R	etTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
-		-				
1	5.762	BV R	0.1209	2515.94019	313.30023	50.6584
2	6.385	VB	0.1309	2450.54492	289.07428	49.3416

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 5.737 MM	0.1471	481.03482	54.52038	7.3340
2 6.303 MM	0.1801	6077.96826	562.47162	92.6660
Totals :		6559.00308	616.99200	

Chiral HPLC traces for compound 4ao.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

				Area [mAU*s]	0	
1	9.093	BB	0.1769	3476.17505	300.53433	48.6883
2	14.365	BB	0.2831	3663.47607	196.89226	51.3117

Totals :

7139.65112 497.42659

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type # [min]			0	
1 9.038 BB	0.1963	1496.56714	116.16468	32.5344
2 14.264 BB	0.3206	3103.38892	145.63454	67.4656
Totals :		4599.95605	261.79922	

Chiral HPLC traces for compound 4bp.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type # [min]	[min]	[mAU*s]	[mAU]	%
1 18.573 BB 2 19.874 BB	0.4746	- 437.50229 422.32590	13.70035	50.8825

859.82819 24.75883

					Height [mAU]	
1	19.485	MM	0.7836	500.90356	10.65432	98.2641
2	21.411	MM	0.7312	8.84868	2.01697e-1	1.7359
Total	.s :			509.75224	10.85602	

Chiral HPLC traces for compound 4ba.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

# [min]	Width Area [min] [mAU*s]	
1 19.680 BV	0.5606 2981.35547	74.55145 51.5466
2 22.008 VB	0.7305 2802.44971	50.72628 48.4534
Totals :	5783.80518	125.27773

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

				Area	0	
				[mAU*s] 		
1	19.807	MM	0.8006	5087.47705	105.90881	96.8103
2	23.599	MM	0.8543	167.62076	3.27003	3.1897

Totals : 5255.09781 109.17884

Chiral HPLC traces for compound 4ca.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type # [min]	[min]	[mAU*s]		
1 7.909 BV	0.1450	5068.94971	532.73236	49.6663
2 8.495 VB	0.1597	5137.05615	492.35797	50.3337

Totals :

1.02060e4 1025.09033

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Height Area Area [mAU] % # [min] [min] [mAU*s] ----| 1 7.697 MM 0.1729 1.62492e4 1566.14905 92.5799 8.341 MM 0.1695 1302.34204 128.05785 7.4201 2 Totals : 1.75516e4 1694.20689

Chiral HPLC traces for compound 4de.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

				Area [mAU*s]	0	
		-				
1	4.748	VV R	0.1122	3189.68555	418.96887	50.4971
2	5.147	VB	0.1199	3126.89209	388.69141	49.5029
Totals	:			6316.57764	807.66028	

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
1	4.746	MM	0.1197	4283.94141	596.66980	99.2080
2	4.998	MM	0.0939	34.19955	6.07304	0.7920

```
Totals :
```

4318.14095 602.74284

Chiral HPLC traces for compound 13aa.

<u>Conditions</u>: Daicel Chiralpak IA N-5 column: IA 95:5 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	24.225	BB	0.4924	914.58942	28.50194	49.6263
2	28.001	BB	0.5505	928.36426	25.87931	50.3737

Totals :

1842.95367 54.38125

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#		51	[min]	Area [mAU*s]	[mAU]	
1	25.072	MM	0.5206	259.81366	8.31850	6.1551
2	31.239	MM	0.6708	3961.32422	98.42547	93.8449

Totals :	4221.13788	106.74397

Chiral HPLC traces for compound 13da.

<u>Conditions</u>: Daicel Chiralpak IA N-5 column: IA 97:3 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	RetTime Type [min]	[min]	[mAU*s]	[mAU]	%
-					
1	6.476 BV	0.1273	926.11584	111.02064	50.5346
2	6.794 VB	0.1349	906.52118	102.82911	49.4654
Totals	5 :		1832.63702	213.84975	

				Area [mAU*s]	0	
-						
1	5.447	MM	0.1019	97.64458	15.96888	13.1191
2	5.708	MM	0.1174	646.65021	91.83762	86.8809
Totals	:			744.29478	107.80649	

Chiral HPLC traces for compound 13ea.

<u>Conditions</u>: Daicel Chiralpak IA N-5 column: IA 95:5 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

#		[min]	Area [mAU*s]	[mAU]	
	15.655	 	 453.16168		
	18.112	 	444.38327		

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

				Area [mAU*s]	0	
1	15.372	MM	0.3051	1225.85059	66.96079	91.2460
2	17.773	MM	0.3857	117.60568	5.08213	8.7540
Total	.s :			1343.45627	72.04292	

Chiral HPLC traces for compound 13fa.

<u>Conditions</u>: Daicel Chiralpak ID N-5 column: ID 99-1:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

				Area [mAU*s]	0	
1	9.309	BB	0.2179	1497.95154	105.31300	50.6998
2	10.580	BB	0.4940	1456.60144	42.91156	49.3002

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

	-		Area [mAU*s]	0	
1	9.460 MM	0.2587	1857.13000	119.64703	94.0435
2	10.880 MM	0.5407	117.62692	3.62590	5.9565
Total	s :		1974.75693	123.27294	

Chiral HPLC traces for compound 13ga.

Conditions: Daicel Chiralpak IA N-5 column: IA 90:10 hexane/isopropanol, flow rate 1 mL/min, 2 μL sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
1	14.626	BB	0.3020	1002.59393	50.86053	50.0314
2	17.211	BB	0.3461	1001.33539	44.58021	49.9686

2003.92932 95.44075

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#		[min]	Area [mAU*s]	[mAU]	%
	14.631		 510.90845		
_	17.353		4752.14844		

Totals :

5263.05688 229.95186

Chiral HPLC traces for compound 13ab.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 95:5 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

				Area [mAU*s]	Height [mAU]	
1	10.441	MM	0.4126	1.66003e4	670.56763	50.0199
2	11.529	MM	0.4555	1.65871e4	606.87750	49.9801
Total	s :			3.31874e4	1277.44513	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
1	10.517	MM	0.4045	2.39421e4	986.47083	93.5312
2	11.715	MM	0.4734	1655.89099	58.30177	6.4688

Totals : 2.55980e4 1044.77259

Chiral HPLC traces for compound 13ac.

<u>Conditions</u>: Daicel Chiralpak IA N-5 column: IA 99:1 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 5.496 BV	0.1113	3918.93604	536.09155	49.4792
2 6.022 VV R	0.1209	4001.42847	499.52161	50.5208

7920.36450 1035.61316

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

				Area [mAU*s]		
-						
1	5.585	BV	0.1187	225.07982	28.95849	5.7761
2	6.058	VB	0.1142	3671.63843	485.70844	94.2239
Totals	s :			3896.71825	514.66693	

Chiral HPLC traces for compound 13ad.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IA 95:5 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type # [min]	[min]	[mAU*s]	[mAU]	%
1 18.723 BB 2 31.821 BB		5211.18066 5252.46973		
2 31.821 DD	0.0194	5252.409/5	151.10202	50.1975
Totals :		1.04637e4	352.30690	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type # [min]			Height [mAU]	Area %
1 18.655 MM	0.3907	498.72784	21.27726	13.0466
2 31.644 MM	0.6516	3323.92944	85.01898	86.9534
Totals :		3822.65729	106.29625	

Chiral HPLC traces for compound 13ae.

Conditions: Daicel Chiralpak IB N-5 column: IB 99:1 hexane/isopropanol, flow rate 1 mL/min, 2 μL sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	[min]		[min]	Area [mAU*s]	[mAU]	
1	5.358	BB	0.1830	3503.92358	260.32596	50.5465
2	7.743	BB	0.2428	3428.16113	193.40060	49.4535

Totals :

6932.08472 453.72656

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

		21		Area	Height [mAU]	Area %
					[IIIA0]	
	5.305				105.83273	
2	7.571	MM	0.3028	2.18677e4	1203.61890	94.0524

Totals	:	2.32506e4	1309.45162

Chiral HPLC traces for compound 13af.

<u>Conditions</u>: Daicel Chiralpak IA N-5 column: IA 95:5 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

	DAD1 A, Sig=254,4 Ref=360,100 (C	CHEM32\NIEVES\NP	01-133IA95-5 2022-01-1	9 12-49-11\01NP01-133IA	95-5.D)	
mAU –	5 .6777					
80	ப்ப்					
60						
40						
20						
0	/\\					
	5	10	15	20	25	30 min

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	[min]		[min]		[mAU]	%
1	5.299 5.677	BV	0.0984	637.32288	99.92163 93.59975	50.0352

Totals : 1273.74902 193.52139

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	------
 -----|------|
 -----|

 1
 5.756
 VV R
 0.1005
 948.37866
 144.54817
 17.9447

 2
 6.136
 VB
 0.1100
 4336.62646
 602.22552
 82.0553

 Totals :
 5285.00513
 746.77370

Chiral HPLC traces for compound 13ag.

<u>Conditions</u>: Daicel Chiralpak IA N-5 column: IA 97:3 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	[min]		[min]	Area [mAU*s]		%
1	8.553	BV	0.1576	4860.35986	474.20950	49.9697
2	9.060	VB	0.1675	4866.26270	445.32407	50.0303

Totals :

9726.62256 919.53357

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	[min]		[min]		[mAU]	%
1	9.662	MM	0.1743	5671.71582	542.39227	19.0763
2	10.107	MM	0.2082	2.40600e4	1925.89502	80.9237
Total	s :			2.97318e4	2468.28729	

Chiral HPLC traces for compound 15a.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μL sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	[min]		[min]	Area [mAU*s]		%
1	9.742	VV	0.1924	4921.39600	392.18802	49.0014
2	10.224	VB	0.2153	5121.98438	361.49240	50.9986

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	10.471	MM	0.1950	1846.13013	157.77492	20.2005
2	11.093	MM	0.2512	7292.90430	483.91309	79.7995
Tota]	ls :			9139.03442	641.68800	

Chiral HPLC traces for compound 15b.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μL sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	[min]	51	[min]	[mAU*s]	Height [mAU]	%
1	9.830	BB	0.2362	1697.42236	112.40637	49.9702
2	11.872	BB	0.2793	1699.44861	94.71603	50.0298

Totals :

3396.87097 207.12240

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	11.165	MM	0.2133	1501.39746	117.29741	22.2481
2	13.230	MM	0.2838	5247.03516	308.11914	77.7519
Total	.s :			6748.43262	425.41655	

Chiral HPLC traces for compound 17.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IB 100:0 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak F	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
1	8.263	MM	0.2000	3010.18140	250.80333	52.9851
2	8.634	MM	0.1947	2670.99951	228.65280	47.0149

Totals :

5681.18091 479.45613

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 8.170 MM	0.1579	1643.01782	173.37292	89.5142
2 8.572 MM	0.1567	192.46599	20.46877	10.4858
Totals :		1835.48381	193.84169	

Chiral HPLC traces for compound 18.

<u>Conditions</u>: Daicel Chiralpak IB N-5 column: IA 95:5 hexane/isopropanol, flow rate 1 mL/min, 2 μ L sample's injection.

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type # [min]			0	
1 11.670 MM	0.4595	2150.76636	78.01522	50.2528
2 15.842 MM	0.6137	2129.12695	57.82581	49.7472
Totals :		4279.89331	135.84103	

				Area [mAU*s]	0	
-						
1	8.921	BB	0.1728	3469.08984	309.40891	93.7306
2	9.955	BB	0.1752	232.03981	20.31787	6.2694
Totals	:			3701.12965	329.72678	

14. ¹⁹F NMR crude spectra for chiral alcohols to determine the diastereomeric ratio (dr)

