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A generalized reinforcement 
learning based deep neural 
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Human cognition is characterized by a wide range of capabilities including goal-oriented selective 
attention, distractor suppression, decision making, response inhibition, and working memory. Much 
research has focused on studying these individual components of cognition in isolation, whereas in 
several translational applications for cognitive impairment, multiple cognitive functions are altered 
in a given individual. Hence it is important to study multiple cognitive abilities in the same subject 
or, in computational terms, model them using a single model. To this end, we propose a unified, 
reinforcement learning-based agent model comprising of systems for representation, memory, value 
computation and exploration. We successfully modeled the aforementioned cognitive tasks and show 
how individual performance can be mapped to model meta-parameters. This model has the potential 
to serve as a proxy for cognitively impaired conditions, and can be used as a clinical testbench on 
which therapeutic interventions can be simulated first before delivering to human subjects.

High-level human cognition consists of a variety of functions or capabilities, including selective processing 
of goal-relevant information, suppression of goal-irrelevant information, action selection, reward processing, 
working memory, etc. There is a long history of empirical research that studies the various cognitive functions 
individually while excluding other functions. However, to understand these cognitive functions as functions of 
an integrative agent, it is essential to study them holistically, revealing the synergies among these functions that 
come into play as an agent interacts with its environment.

While empirical research on cognitive functions suffers from this fragmented approach due to several chal-
lenges including participant burden, limited resources and expertise, theoretical investigation also often reflects 
this piecemeal approach, offering a wide variety of models that describe individual cognitive functions. There 
have been efforts to construct integrative computational frameworks that capture a range of cognitive func-
tions. For example, the “ACT-R” system has been proposed as a general framework for modeling a wide variety 
of cognitive  processes1. Subsequently, it was extended to include visual attention, and its properties, like speed 
and selectivity, as they vary from subject to  subject1. Similarly, the “Soar” architecture can successfully integrate 
different levels of reasoning, planning, reactive execution, and learning from  experience2. The importance of 
more holistic and integrative models has been emphasized by several researchers, resulting in many unified 
computational models of cognition. As these models evolved, a certain similarity among these modeling archi-
tectures began to reveal itself. For example, common features of three such cognitive architectures viz., ACT-R1, 
 Soar2,3, and  SIGMA4 have been  described5. More on fragmented and integrative approach is updated in the 
supplementary material.

Neuropsychiatric disorders are characterized by a wide range of cognitive dysfunctions, and the degree 
to which these disorders are mapped to specific neural substrates is still being  resolved6. Just as theoreticians 
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sought to create unified architectures of cognition, experimental cognitive scientists also made efforts to move 
away from exclusivist approaches and began to study multiple cognitive functions in human population cohorts 
 simultaneously7. One such experimental system is the BrainE platform, which includes a range of cognitive 
assessments like selective attention (SA), response inhibition (RI), working memory (WM), and distractor 
processing (DP) in both non-emotional and emotional  context8. The BrainE system measures both behavio-
ral parameters and electroencephalography (EEG) signals, thereby creating an opportunity to relate cognitive 
behavior to neural substrates.

In this paper, we present a unified architecture of cognition that can model a range of cognitive functions, 
including SA, RI, WM, DP, etc. The proposed model has the following components: 1) sensory representation, 
2) memory, 3) value computation, 4) exploration, and 5) action selection. The model is cast broadly within the 
framework of reinforcement learning (RL)9–11. Notably, the action selection strategy, which involves pursuit of 
explorative and exploitative modes, each of which is regulated based on the underlying value dynamics is novel 
to our approach. The model has elements common to deep neural networks and two novel neural elements 
that are not typically found in such networks viz., 1) flip-flop neurons and 2) oscillator neurons. First proposed 
 in12, the flip-flop neurons are fashioned after flip-flops in digital systems theory and can store memories. In the 
oscillator network, the lateral interactions are designed such that the oscillators exhibit desynchronized dynam-
ics. Such oscillator networks have been used before to implement exploratory functions essential for achieving 
randomness in action selection in RL  models13. We hypothesized that this modeling framework can replicate 
the subject’s performance with respect to diverse cognitive decision-making tasks.

In the following section, we will describe the methods starting with a brief overview of the experimental 
setup, the cognitive testing paradigms used, and the various tasks conducted to evaluate cognitive abilities. This 
is followed by a brief overview of the model architecture that is used to simulate the experimental tests, various 
building blocks of the model architecture and their mathematical formulation, and how they are integrated to 
mimic an experimental subject. In the “Results” section, we summarize the main results, including the training 
phase, the performance evaluation and the meta-parameters used for tuning the performance. We compare the 
model performance with experimental results. The final section concludes the results and discusses the utility, 
limitations, and future scope.

Materials and methods
The proposed Generalized Reinforcement Learning-based Deep Neural Network (GRLDNN) agent model, as 
shown in the Fig. 1, can simulate various experimental paradigms that can test different cognitive functions 
such as SA, RI, WM, and DP.

The experimental tasks. A repertoire of tasks was prescribed to capture a range of cognitive functions 
that comprise human decision-making. The cognitive functions that we focus on in these tasks are the ability to 
selectively attend to relevant stimuli, inhibit responses to irrelevant stimuli, avoid distractors during an attention 
task, and working memory. We primarily focused on modeling the cognitive assessments like SA, RI, WM, DP 
conducted using BrainE  platform8. In addition to this we have also modeled additional experimental paradigms 
such as the N-back task to assess working memory load and the 2 × 5 task, which evaluates the sequence pro-
cessing capabilities. To test the effectiveness of the Q-learning network we have also modeled the T-maze and 
Grid-world tasks. The details of the tasks are described in the supplementary material.

GRLDNN (Generalized reinforcement learning-based deep neural network) agent model. We 
present a unified RL-based deep network architecture that can simulate all the experimental tasks described in 
Supplementary material (Section S1).

A schematic of the model architecture is given in Fig. 1. The model has five distinctly identifiable components 
viz.—1) Representational System (RS) consists of a series of layers—convolutional layers followed by fully-
connected layers, that generate compact representations of the input images. 2) Memory System (MS) is a layer 
of flip-flop neurons that receives the inputs from the RS via a fully connected weight stage. This system has the 
memory property. 3) Value Computation System (VC) combines the neural outputs of the MS and computes 
the value function. 4) Explorer comprises a nonlinear oscillator network, wherein the oscillators interact via 
inhibitory connections, generating desynchronized oscillations. The randomness inherent in the chaotic oscilla-
tory dynamics of this system introduces a level of randomness in the action selection at the output layer, driving 
exploratory behavior. 5) Action Selection System (AS) is the output of the entire architecture that combines the 
outputs of the MS via a trainable weight stage and the output of the Explorer. The AS is trained using Q-learning 
described in detail in the supplementary materials14.

Representational system. The input stimulus is presented as an image to the input layer of the RS, which is 
trained as a convolutional  autoencoder15,16. The RS module consists of an input layer followed by four convo-
lutional and max-pooling layers. A fully connected layer follows the four layers of the convolutional and max-
pooling layers. Another fully connected later is used to reduce the encoder output to 1 × 64. The convolutional 
layers use a 3 × 3 filter window size. Mean squared error is used as the output loss. At the decoder end, the 1 × 64 
feature output is expanded, followed by deconvolutional layers and pooling layers, at the end of which the origi-
nal image is reconstructed back. Output from the fully connected layer of the encoder part of RS is provided as 
the input to the MS.

Memory system. The output of the RS module is presented to the MS via a fully connected weight stage. The 
MS, as mentioned before, is a 1D layer of flip-flop neurons. This layer is divided into two equal sections—MS1 
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and MS2. MS1 has D1-type flip-flop neurons, whereas MS2 has D2-type flip-flop neurons. The flip-flop archi-
tecture is provided in the supplementary material.

The feature vector from the RS module ( XRS) reaches the flip-flop neurons of MS1 and MS2 over the weight 
stages ( WRS→MS1

i ) and WRS→MS2
i  , respectively. So, the effective input received at MS1 is WRS→MS1

i (t) ∗ XRS 
(Supplementary material).

The output of the encoder part of the RS module is presented as the input, XRS(t), to the J and K ports of 
the flip-flop neurons present in the MS1/MS2 sub-blocks of the MS, WRS→JMS1

i ,WRS→KMS1
i , WRS→JMS2

i  and 

Figure 1.  (A) Overview of (Generalized Reinforcement Learning-based Deep Neural Network) GRLDNN 
model architecture. RS, Representational System is used for stimulus recognition; Memory System (MS) and 
Action Selection (AS) block along with the Explorer (E) is used for stimulus to action mapping. The encoder 
output from RS is presented to the MS where the stimulus is processed, and the action selection takes place 
at AS. (B) Block diagram of the Agent Model architecture. RS, Representation System Block; Explorer Block 
consisting of N1/N2 Oscillator pair; AS, Action Selection Block; O, Output block; VAL, Value Computation 
Block where the Value function is computed; QVal, Q-value function; MS, Memory System block.
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WRS→KMS2
i  denote the weights from the RS layer to the respective J and K inputs of the MS1/MS2 sub-blocks 

(Supplementary material).

Computations in the MS1/MS2 sub-blocks of the memory system. The J and K inputs for the flip-flop neurons 
of MS1 and MS2 are given by Eqs. (1,2,3,4) below. The output of the flip-flop neuron is expressed by Eqs. (5, 6), 
which is in line with the circuit diagram and the truth table given in the supplementary material. The output is 
also influenced by the modulatory input received from the  VC17.

where K1 < 0 and K2 > 0 and �MS1and�MS2 are the sigmoid gain parameters.

Value computation system. The value is computed using a weighted sum of the outputs of the flip-flop neurons 
of MS1. Thus, the value function ‘VAL’, is computed as per Eq. (11) below,

Explorer module. The explorer module consists of a network of nonlinear oscillators. These are thought to be 
implemented by two pools of neurons, N1 and N2, connected back-to-back. The MS2-type flip-flop neurons 
of MS project to N1, whereas the output of the N1 neural layer, in turn, influences the N2 neural layer. N1 and 
N2 form a loop, with inhibitory projections from N1 to N2 and excitatory projections from N2 to N1. Such 
excitatory-inhibitory pairs of neurons pools have been shown to exhibit  oscillations10,18. In the present case, it 
turns out that the equations that couple a single N1 neuron bidirectionally to a single N2 neuron can be classi-
fied as a general oscillator system called Lienard system, which exhibits limit cycle  oscillations19. The dynamics 
of N1-N2 neuronal pools is defined as,

(1)JMS1(t) = WRS→JMS1
i (t)XRS(t)

(2)KMS1(t) = WRS→KMS1
i XRS(t)

(3)JMS2(t) = WRS→JMS2
i (t)XRS(t)

(4)KMS2(t) = WRS→KMS2
i XRS(t)

(5)VMS1
i (t) = JMS1

(

1− VMS1
i (t − 1)�MS1

)

+ (1− KMS1)V
MS1
i (t − 1)�MS1

(6)VMS2
i (t) = JMS2

(

1− VMS2
i (t − 1)�MS2

)

+ (1− KD2)V
D2
i (t − 1)�D2

(7)VMS1
i (t) = �

MS1(t)WRS→MS1
i (t)XRS(t)

(8)VMS2
i (t) = �

MS2(t)WRS→MS2
i (t)XRS(t)

(9)�
MS1(t) =

(

1

1+ eK1∗(VAL(t)−θMS1)

)

(10)�
MS2(t) =

(

1

1+ eK2∗(VAL(t)−θMS2)

)

(11)VAL(t) =

n
∑

i=1

WMS1→VC
i (t)VMS1

i

(12)τN1

dVN1
i

dt
= −VN1

i +

n
∑

j=1

WN1→N1
ij VN1

j +WN2→N1
i VN2

i − VMS2
i (t)

(13)τN2

dUN2
i

dt
= −UN2

i +

n
∑

j=1

WN2→N2
ij VN2

j (t)−WN1→N2
i VN1

i

(14)VN2
i (t) = tanh

(

�
MS2(t)UN2

i

)

(15)VA
j (t) =

n
∑

i=1

WMS1→AS
i,j (t)VMS1

i
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where VN1
i  and UN2

i  are the internal states of N1 and N2 neurons, respectively, VN2
i  is the output of the N2 neuron, 

WN1→N1 and WN2→N2 are weight kernels representing lateral connectivity in N1 and N2 modules, respectively, 
τN1 and τN2 are the time constants of N1 and N2, respectively, WN1→N2 is the connection strength from N1 to N2, 
WN2→N1 is the connection strength from N2 to N1, and �N2 is the parameter which controls the slope of the sig-
moid in N2. VA

j (t) and VB
j (t) are the inputs arriving at AS1 block from MS1 and MS2 (via N1 &N2) respectively.

Lateral connections among coupled oscillators of the explorer module. The lateral connectivity in the N1 or 
N2 network is modeled using constant weights where weights between two neurons is given by WN1→N1 and 
WN2→N2,

where ǫ is the magnitude of the connection strength of lateral connections among the neighbouring neurons in 
both N1 and N2 modules.

Action selection module: Q‑learning. The network’s final output is a linear sum of the output of the MS1 block 
and the output of the explorer module.

The output VA
i  is combined with the output VB

i  (Eq. 16) at the AS block as shown in (Eq. 19) below.

The action selection mechanism at AS is facilitated using a race  model20–23. The output of the AS block (− VAS
i ) 

is compared against a threshold Vth . The neuron (ith) whose output crosses the threshold first, is considered a 
winner, and the ith action is selected.

Reward and learning. The weights between the neurons in the MS1 block and the AS module are updated 
using Q-Learning24 as shown in (Eqs. 22,23,24).

where γ = 0 (discount factor).

Backward propagation. In this model, trainable weights are located in three areas: i) MS1-block to AS weight 
stage, ii) MS1 block to VC block weight stage, and iii) RS to MS1/MS2 block weight stage (Supplementary mate-
rial). The weights between the various modules are updated using the backpropagation algorithm. The weight 
update between the MS1 and the AS blocks is governed by Q-learning, while the weight update between MS1 to 
VC is done using temporal difference (TD)-learning. The MS1/MS2 subblocks used flip-flop neurons, and the 
weight update between RS and MS is done using TD-learning. The weight training equations are described in 
detail in the supplementary material.

More details about the Markov decision model and the state and action spaces are given in the supplementary 
material.

Performance assessment. The model performance is assessed in terms of the metrics of accuracy, reac-
tion time, speed, consistency, and efficiency, as defined in Supplementary material. We have also.

(16)VB
j (t) =

n
∑

i=1

WN2→AS
i,j (t)VN2

i (t)

(17)
−WN1→N1

ij = WN2→N2
ij = 1 for i = j;

−WN1→N1
ij = WN2→N2

ij = ǫ, otherwise;

(18)VA
i (t) =

n
∑

i=1

WMS1→AS
i,j (t)VMS1

i

(19)τAS
dVAS

i

dt
= −VAS

i − VA
i (t)+ VB

i (t)

(20)τAS
dVAS

i

dt
= −VAS

i − �
MS1(t)VMS1

i (t)+ �
MS2(t)WN2→AS

i VN2
i (t)

(21)If ,VAS
i (t) > Vth; then AS = i

(22)Qt(s, a) = VN1
j (t)

(23)δ(t) = r(t)+ γ max
a

Qt+1(s, a)− Qt(s, a)

(24)Qt+1(s, a) = Qt(s, a)+ η

(

r(t)+ γ max
a

Qt+1(s, a)− Qt(s, a)
)
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Results
In this section, we describe the performance of the GRLDNN model that is used to simulate the four cognitive 
functions of SA, RI, WM, and DP experimentally assessed using the BrainE platform. In the subsequent sub-
sections, we will first show the progress of state value functions and the Q-value functions during the learning 
process. Then we will show the impact of parameter tuning with respect to lateral connections strengths and 
threshold ( ǫ and VTH ). Then we implement an inverse model using a neural network that can calibrate the meta 
parameters of the GRLDNN model so that the model can simulate the experimental performance. We then pre-
sent a comparison of the average performance between both the model and the experimental results. In addition 
to the results of the cognitive assessments conducted using BrainE  platform8, we also show the performance 
results of the N-back task, which tests the working memory load and present a comparison between the model 
and the experimental results. The results of the other tasks such as the 2 × 5(sequence processing) and T-maze 
are updated in the  supplementary material.

Training phase. As the learning progresses, the magnitude of the value functions at the end of each trial 
keeps increasing and approach the maximum value of 1, as the model learns the task accurately. The Q-values 
for the respective state and action pairs corresponding to the correct action are higher, whereas the values cor-
responding to the wrong action are lower. Figure 2A represents the state value function for the Go Green (SA) 
task, and Fig. 2B represents the Q-value at the end of training epochs, at the last instance of the Go Green trials. 
The state value and Q-value functions for other tasks are described in the supplementary material.

The test dataset contains 33% of the green-colored rockets and 67% of other colored rockets in the SA task. 
The blue bar represents the ‘Go’ action and the yellow bar represents the ‘No Go’ action.

Effect of parameter tuning. The performance of cognitive tasks depends on various factors. We observed 
variations in the model performance by tuning specific meta parameters, using performance metrics of accuracy, 
reaction time, speed, consistency, and efficiency. The meta-parameters that are varied are ǫ and VTH.

• ǫ influences the lateral connectivity strength of the N1 and N2 coupled oscillator system, which controls the 
level of exploration in the model.

• VTH is the threshold that appears in the race model, used in the AS module where the action selection occurs, 
which controls how fast the decision can be made (reaction time).

Effect of the threshold (VTH) and lateral connectivity strength ( ǫ ) on the performance. Figure 3 shows the varia-
tion in performance with respect to speed and consistency for various values of lateral connection strength ( ǫ ) 
and threshold (VTH) illustrated for Go Green (SA) task. VTH is varied in the range of 0.3 to 0.5 in steps of 0.1 and 
ǫ takes values of 0.01, 0.03, 0.05 and 0.1. Figure 3A1 and Fig. 3A2 show the variation in decision-making speed 
with respect to changes in ǫ and VTH. Figure 3A3 and Fig. 3A4 shows a similar variation in consistency. From the 
results, it can be seen that speed is inversely proportional to both the threshold and lateral connection strength.

Our results show that for lower values of the action selection threshold, the model performance exhibit higher 
speeds and vice versa. This is expected since the lower the threshold, the faster the action selected. The AS block 
being implemented as a race model decides on the action to be selected based on the threshold.

Hence by searching for an optimum in the meta-parameter space consisting of lateral connection strength 
and action selection threshold ( ǫ, VTH ), it is possible to match the model’s performance with experimental 
data. We modeled the mapping between the experimental parameters (speed, consistency) and the model meta-
parameters ( ǫ, VTH ), tuned using a simple multilayer perceptron model (MLP). Given the input values of speed 
and consistency, we can predict the corresponding values of ǫ and VTH . Hence by varying the values of the two 
meta-parameters, we were able to calibrate the GRLDNN model so that the model can approximately simulate 
the experimental performance. The model fit between the predicted and desired values of ǫ and VTH is as shown 
in Fig. 4 below for the Go Green (SA) task. Twelve data points were used for training from the combination of 

Figure 2.  (A) The state value functions over the epochs during the training phase of the Go Green (SA) task. 
(B) The Q-value at the end of training for the Go Green task that requires selective attention to the green colored 
rockets while ignoring other isoluminant colors—red, pink, blue, cyan. The blue bar represents the ‘Go’ action 
and the yellow bar represents the ‘No-Go’ action.
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Figure 3.  Plot of performance parameters for various tasks, with threshold ( varying between 0.3 to 0.5 
and lateral connection strength ǫ ranging between 0.01 to 0.1. (A1,A2) The speed with which the decision is 
made for Go-Green (SA) task, (A3,A4) Consistency for Go-Green (SA) task, which indicates how consistent 
the performance was with respect to speed across trials. It also indirectly indicates the standard deviation of 
the speed of performance. Similarly, (B1–B4) represents the Go-Green (Response Inhibition) task, (C1–C4) 
indicates the Middle Fish (Distractor Processing) task, (D1–D4) indicate performance on the Lost Star task.

Figure 4.  (A) The parameter fit is checked for the predicted vs. desired meta parameter ( ǫ ). (B) The parameter 
fit is checked for the predicted vs. desired meta parameter  (VTH).
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meta-parameters ( ǫ and VTH ), and the training error was in the order of ~  10−5 after 50,000 epochs. The predicted 
and desired values of both the threshold and epsilon were matched.

The performance results of the GRLDNN agent model were compared with the experimental results of healthy 
 subjects8. In the GRLDNN agent model, decision-making scenarios were simulated for the different cognitive 
functions of SA, RI, WM, DP by modeling the test paradigms for Go Green, Middle Fish, and Lost Star tasks. The 
model’s performance was tuned using the meta-parameters ( VTH(pred) and ǫ) to match the experimental results. 
By navigating through the parameter space as shown in Fig. 3, we selected the values of VTH = 0.4 and ǫ = 0.05 , 
which was found to be closely matching with the average performance results of the experimental subjects. The 
RMSE (root mean squared error) was found to be lowest at 0.007 for VTH = 0.4 and ǫ = 0.05 when compared 
with the average performance of experimental results.

Figure 5 shows the performance comparison of the model and experimental data, where the blue bar repre-
sents the model performance, and the yellow bar represents the experimental performance results for all mod-
eled tasks. As seen in the case of the Go Green task, the GRLDNN agent model recorded an average speed of 
0.3510± 0.065 and 0.3756± 0.0279 for SA and RI, respectively (Fig. 5A, dark blue bar) compared to the experi-
mental results, which recorded an average speed of 0.3580± 0.0534 and 0.3976± 0.0612 , for SA and RI, respec-
tively (Fig. 5A, yellow bar). Similar comparisons can be made for performance metrics for all modeled tasks.

Hence by mapping the performance characteristics across different cognitive tasks onto the meta-parameter 
space and navigating through the same, we are able to replicate empirical performance on different cognitive 
abilities using the GRLDNN model.

The performance characteristics of the N-back task is as shown in Fig. 6. The model performance results of 
the N-back task are comparable and relatable to the experimental  results25. The response time and the accuracy 
were evaluated for both target and non-target stimuli. We have simulated up to N = 4. The blue bar indicates the 
model performance and the orange bar indicates the experimental results.

The performance characteristics of the sequence processing (2 × 5) and other tasks are updated in the  sup-
plementary material. We have considered two additional RL tasks that involves action based state transitions 
to show the effectiveness of our model. We have also discussed the stability aspects and convergence of the Q 
networks in the supplementary material.

Discussion
Using the proposed GRLDNN model, we successfully modeled tasks to assess a variety of cognitive abilities, 
including SA, RI, WM, and DP. By varying the meta-parameters, VTH and ǫ, we were able to tune the perfor-
mance outputs of the model (Fig. 3). Notably, our model results were comparable to that of experimental results 
for healthy subjects, as shown in Fig. 5.

The current GRLDNN model is an agent model built using a reinforcement learning framework and imple-
mented partly using a deep neural network. Although the model is proposed as a generic agent model that 
can simulate a variety of cognitive and decision-making tasks, the model’s architecture was originally inspired 
by an earlier model of the basal  ganglia10 as shown in Fig. 7A. The representational system is analogous to the 
cortico-striatal projections that are thought to be capable of compressing the cortical state and generate abstract 

Figure 5.  Comparison of performance of the GRLDNN model with the experimental results and data adapted 
 from8 (A) Speed (B) Consistency, (C) Accuracy, (D) Reaction Time, (E) Efficiency. EXP, experimental results; 
MODEL, Model performance Results.
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representations of the  same26. The memory system is analogous to the striatum proper, and the flip-flops are 
comparable to the medium spiny neurons (MSNs) of the striatum. The MSNs are known to exhibit UP/DOWN 
states, a property that is thought to subserve working memory  functions27,28. In digital systems, flip-flops are 
used as memory elements that serve as building blocks to implement sequential logic. Thus, in the proposed 
agent model, the presence of flip-flop neurons in the memory system affords the model the ability to process 
sequences and perform decision-making functions thereon. The value computation block is analogous to sub-
stantia nigra pars compacta (SNc)—it integrates the outputs of the flip-flop neurons of the memory system and 
computes the value function. The connections from the memory system to the action selection block is analogous 
to the direct pathway of the basal ganglia. The longer route from the memory system to the explorer block and 
onward to the action selection block is analogous to the indirect pathway. In modeling literature that describes 
the decision-making functions of the basal ganglia using reinforcement learning, there is a subclass of models 

Figure 6.  Comparison of performance of the GRLDNN model with the experimental results and data adapted 
 from25 (A) Accuracy when the current stimulus is the target (B) Accuracy for non-target stimulus , (C) 
Response time for Target Stimulus, (D) Response Time for non-Target Stimulus.

Figure 7.  Biological Representation of GRLDNN Agent Model inspired by (A) Basal Ganglia (BG) architecture 
and (B) the equivalent representation of prefrontal cortex (PFC) Architecture. SNc, Substantia Nigra pars 
compacta; STR, Striatum; GPi, Globus Pallidus interna; GPe, Globus Pallidus externa; STN, Subthalamic 
Nucleus; MSN, Medium Spiny neurons; STN-GPe forms a coupled oscillator system with interconnectivity 
weights W between STN and GPe and ǫ is the lateral connection strengths among the neurons of STN and GPe. 
Action is selected based on the winner neuron crossing the threshold  (VTH) first. VTA, ventral tegmental area; 
OFC, Orbitofrontal cortex; DLPFC, dorsolateral prefrontal cortex; IFG, inferior frontal gyrus; FPC, frontopolar 
cortex; ACC, anterior cingulate cortex; FPC is modeled using a coupled oscillator system with interconnectivity 
weights W between oscillators N1 and N2 and ǫ is the lateral connection strengths among the neurons of N2. 
OFC/DLPFC to ACC weights are updated using Q-learning.
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that attribute the role of exploratory drive to the indirect pathway, which is essential to sample the action space 
 randomly10. Finally, the action selection block itself is analogous to globus pallidus interna (GPi), the output 
port of the basal ganglia.

The proposed agent model can also be compared to another brain region known for its decision-making 
functions—the prefrontal cortex (PFC). Figure 7B shows the analogy between the components of the pro-
posed GRLDNN agent model and areas of PFC whose contributions to decision making have been described 
 extensively29–32.

The dorsolateral prefrontal cortex (DLPFC) receives inputs from the primary and secondary sensory asso-
ciation cortices of the posterior brain (Klaus and Pennington 2019). The DLPFC is also considered to be the 
terminus of the dorsal visual pathway, also called the “where” or “how” pathway that determines how to use visual 
information by supplying such information to the decision-making mechanisms of the  PFC33. The DLPFC is 
also known for its working memory functions, subserved by dopamine-receptor expressing neurons and gated 
by dopaminergic projections from mesencephalic  regions30. Thus, the memory system in the proposed agent 
model is suitably comparable to DLPFC.

Single unit electrophysiological studies have shown the involvement of the orbitofrontal cortex (OFC) in value 
 computation31. The role of OFC in value computation was also confirmed by functional imaging  studies29. Since 
dopaminergic activity is strongly linked to reward signalling, projections from the ventral tegmental area (VTA) 
to PFC were implicated in the value computations of  OFC32. Electroencephalographic  studies34, on subjects 
engaged in decision-making activities, have implicated the frontopolar cortex (FPC) in exploratory behavior. 
Thus, the exploratory block in the proposed model is comparable to FPC. The inferior frontal  gyrus35,36 is sug-
gested to encode information about NoGo processes and has strong implications for action selection mechanisms, 
especially action stopping. On the other hand, Anterior Cingulate Cortex (ACC)37,38 is suggested to encode 
information about the uncertainty in choices, hence important for estimating utility values of action choices. 
Currently only one level of working memory processing is tested in the model. Going forward this aspect will 
be incorporated where the impact of memory load (by increasing the number of stars and the perceptual levels) 
can be analysed both experimentally as well as in the model.

The current model also can be made more robust and has the scope of conducting patient profiling. By tun-
ing the appropriate model parameters, we are able to match the experimental results, thereby demonstrating its 
potential use for profiling real patients. There is a scope to explore further and incorporate aspects of various 
disease conditions and cognitive disabilities into the model. With respect to the modeling of working memory, 
we have considered tests at only one difficulty level in our model. There is a scope to scale the model to adopt 
multiple levels of cognitive loads. The future work also includes integrating the cortical and the subcortical mod-
ules into a single framework. In the future, these modeling efforts could also be expanded to include emotion 
processing and modeling of electrophysiological signals. Altogether, this study opens doors to modeling various 
cognitive dimensions of the same individual through a unified agent-based modeling framework.

Data availability
The raw data supporting the conclusions of this article will be made available by the authors, without undue 
reservation. Further, inquires can be directed to the corresponding author. The MATLAB code of the proposed 
GRDLNN model (http:// model db. yale. edu/ 267532) is available on the ModelDB  server39 and an access code 
will be provided on request.
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