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Unlocking phonon properties of a large and diverse
set of cubic crystals by indirect bottom-up machine
learning approach
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Although first principles based anharmonic lattice dynamics is one of the most common

methods to obtain phonon properties, such method is impractical for high-throughput search

of target thermal materials. We develop an elemental spatial density neural network force

field as a bottom-up approach to accurately predict atomic forces of ~80,000 cubic crystals

spanning 63 elements. The primary advantage of our indirect machine learning model is the

accessibility of phonon transport physics at the same level as first principles, allowing

simultaneous prediction of comprehensive phonon properties from a single model. Training

on 3182 first principles data and screening 77,091 unexplored structures, we identify 13,461

dynamically stable cubic structures with ultralow lattice thermal conductivity below

1Wm−1K−1, among which 36 structures are validated by first principles calculations. We

propose mean square displacement and bonding-antibonding as two low-cost descriptors to

ease the demand of expensive first principles calculations for fast screening ultralow thermal

conductivity. Our model also quantitatively reveals the correlation between off-diagonal

coherence and diagonal populations and identifies the distinct crossover from particle-like to

wave-like heat conduction. Our algorithm is promising for accelerating discovery of novel

phononic crystals for emerging applications, such as thermoelectrics, superconductivity, and

topological phonons for quantum information technology.
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The dynamics of phonons, the quanta of lattice vibrations,
play a critical role in various technologies ranging from
heat dissipation in modern semiconductors1 to thermal

barrier coatings in turbine blades2. In general, applications
involving heat transfer require either extreme phonon impedance
or conduction, which is often the performance-limiting property.
Another application example of phonons is quantum commu-
nication, which can be realized by microwave-frequency phonons
such as acoustic resonators3 and is of significant interest for the
generation of remote entanglement and the secure transmission
of information. Over the recent years, material scientists have
sought new materials with excellent phonon properties through a
combination of laboratory synthesis and computational predic-
tion using density functional theory (DFT). Although the former
requires decades of trial-and-error with the intuition of experi-
enced chemists4, the latter has progressed the discovery of new
materials and the understanding of microscopic phonon trans-
port due to the availability of high-performance computers.
Indeed, tremendous amount of previous studies in the thermal
science have been dedicated to bulk, interfacial, low-dimensional,
and layered materials5–10. Generally speaking, many investiga-
tions on thermal transport in materials have uncovered the
structure-thermal property relationship, including those from
bond strength, structure, and chemistry11–17. Additionally,
unique phonon interactions may arise from certain crystals
promoting anharmonicity and lowering lattice thermal con-
ductivity (κL), including rattler atoms17–19, ferroelectric
instability20, and electron-phonon interactions21,22. Notably,
some studies also advance the theoretical description of phonon
transport, e.g., addition of fourth order anharmonicity23 and
temperature-dependent effective potential for temperature effects
on the interatomic force constants (IFCs)12,24,25.

Despite the robust nature of DFT in predicting thermal
transport properties, the explicit treatment of electronic degrees
of freedom entails significant computational costs when faced
with potentially thousands of candidates to screen target phonon
properties. By majority, previous studies are limited to one or few
materials that may acquire results in a matter of a few days,
depending on their hardware resources. However, with the advent
of materials genome such as Materials Project4 and Open
Quantum Materials Database (OQMD)26, the DFT evaluation of
phase stability and properties of interest for thousands to millions
of previously unexplored materials puts several years of delay on
the synthesis of novel materials. This is especially magnified for
phonon properties. For instance, the κL, one of the most
important phonon properties, is computationally demanding by
DFT, due to the required calculations of large amount of super-
cells with different atomic displacements which is then processed
to give IFCs for the Boltzmann transport equation (BTE)
simulation27.

In response, data-driven techniques such as machine learning
(ML) have surfaced in materials science to address the demanding
costs of DFT, effectively trading some accuracy for significant
speed-up. The basic assumption with ML-based models for pre-
dicting DFT-level properties is the introduction of a finite cutoff,
whereby atomic interactions beyond such cutoff are neglected.
This allows for linear scaling of the computational cost against the
number of atoms as opposed to the cubic scaling with DFT. With
ML, prediction of target properties requires a physically infor-
mative set of inputs as the descriptors. For a sufficiently accurate
model, descriptors should satisfy several requirements, including
(a) distinguishable representation for each system, (b) descriptive
of the similarities/discrepancies between systems, (c) complete-
ness to sufficiently differentiate systems, and (d) simplicity of the
descriptor to ease calculation time28. Given these requirements,
several methods have been proposed over the past few years to

confront computationally costly phonon properties. For example,
progresses have been made in the ML prediction of κL recently,
either directly or indirectly. The direct prediction refers to a ML
model or several models in sequence with κL as the final output.
The majority of studies over the years fall under this category.
Several ML models have been trained on 110 half-Heusler com-
pounds by compiling elemental, compound, and compound-
elemental descriptors, obtaining high validation accuracy and
revealing the bond distance as the most important descriptor for
κL29. Diamond-like materials were explored for ultra-high κL
using a small training datasets through transfer learning of the
three-phonon scattering channel volume, or P3 for short30. On
the other hand, the indirect prediction approach first predicts
lower-level properties eventually leading to κL, including the
atomic forces and the IFCs which are required for κL. To date,
little research has been seen in this subarea. Notably, providing
lower-level physics introduces several advantages over the direct
method. Firstly, with the atomic forces and/or IFCs, one can
compute the full phonon properties, e.g., phonon dispersions,
temperature-dependent κL, and scattering rates. This allows for
in-depth study of the phonon properties at the high-throughput
level without needing to rely strictly on pure DFT. The tem-
perature dependent κL is especially desirable for high-temperature
applications whereas most studies involving ML focus only on
room temperature. Secondly, because κL is not directly computed,
variables involved in the BTE calculation may be modulated, such
as the inclusion of higher order anharmonicity beyond 3rd order
and off-diagonal contribution. Thirdly, atomic forces and IFCs
are much more abundant than single κL values associated with
each structure, allowing for improved training and potential
transferability of information among diverse structures.

Here, we demonstrate a bottom-up approach by application of
the Elemental Spatial Density Neural Network Force Field (Ele-
mental-SDNNFF) for high-quality phonon property prediction of
large materials databases. Previously we have applied the model
to a smaller set of 11,866 structures with half, quaternary, and full
Heusler structures spanning 55 elements31. In this work, we
expand the model to a more complex set of 77,091 cubic struc-
tures containing 16 structural prototypes and 63 chemical species.
This is made possible by our model providing sufficient flexibility
to distinguish many unique atomic environments for the high-
throughput calculation of full phonon properties. Because the
forces are provided, thermodynamic stability of these structures
can be determined via their predicted phonon dispersions which
is not possible in direct methods. In this work, the model is
initially trained on a small subset of 3107 structures and is
iteratively improved on a larger dataset of 77,091 structures with
active learning. Data augmentation is incorporated whereby
equivalent atomic environments are rotated to provide a ~3×
boost to the total atomic forces for training. Then, the final model
is deployed to predict the complete phonon properties of the
remaining stable structures, with speed of three orders of mag-
nitude faster than full DFT calculations for systems containing
greater than 102 atoms as seen by Supplementary Fig. S1. Then,
we focus on the high-quality phonon property prediction
addressing several major challenges for high-throughput material
property prediction. Specifically, by predicting the atomic forces,
access to a full description of harmonic properties, such as pho-
non dispersions, specific heat, and the third order scattering
channel volume, and anharmonic properties, such as the lattice
thermal conductivity, are evaluated simultaneously with a single
neural network model whilst providing deep physical insight and
agreement to DFT. In addition, previous models for Heusler
structures were trained efficiently by nature of providing only
three structural prototypes to the model. Here, although the
structure diversity is significantly more complex, the model
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maintains prediction of meaningful atomic forces and corre-
sponding phonon properties. Overall, our model is capable of
growing and adapting to new datasets for exploration of pre-
viously unseen materials.

Results
Training dataset from active learning rounds. To develop an
ML model for evaluating atomic forces, it is crucial to prepare a
sufficiently large and diverse dataset of various atomic environ-
ments. In theory, there are limitless combinations of atomic
environments considering structural symmetries, chemistries, and
displacements that one may encounter during the evaluation of
atomic forces. This is especially true when involving random or
stochastic displacement methods for generating IFCs such as
compressive sensing lattice dynamics (CSLD)32. As ML methods
specifically supervised learning are interpolative by nature,
selection of training or reference data for evaluation of seemingly
infinite possible atomic environments requires a human-free or
self-informative approach for efficient model training from costly
DFT calculations. The crystalline structures analyzed here are
borrowed from the OQMD database26,33 and are categorized into
16 prototypes spanning four cubic space groups (Table 1). Some
structures are split from the pool for initial training and evaluated
with DFT for their atomic forces. From DFT, the IFCs and
subsequent phonon properties are also gathered for comparison.
Accordingly, the rest of the structures without DFT are marked as
“unexplored” left for the model evaluation stage.

Figure 1 shows the overall workflow for generating the dataset
in Table 1 and training the Elemental-SDNNFF model for
phonon property prediction. First, structures from materials
databases are gathered and filtered for low formation energy and
energy above hull to increase the probability of thermodynamic
stability. Then, supercells are perturbed by a small atomic
displacement and the dataset is split into training and active
learning structures. Thereafter, the training set is evaluated by
DFT and corresponding forces are trained into a set or committee
of models. Here, we manipulate the poor extrapolation capability
of neural networks by evaluating untrained structures and
comparing the predicted forces. Unseen structures with high
force variance in the committee indicate poor representability of
the local atomic environments in the supercell and are proposed
for the next round of training. These structures are passed by

DFT and are retrained into the model, forming a closed loop.
After several rounds, the models are deployed for force evaluation
and phonon calculations of large materials databases. For more
details about structure generation and the active learning
procedure, refer to the “Methods” section.

Prediction of phonon properties. To benchmark the perfor-
mance of the trained model for phonon properties prediction, we
first examine the atomic force accuracy on a small subset of 400
untrained structures. We also compare the performance to
CHGNet, which was recently proposed as a universal potential
energy surface model34. As obtained in Supplementary Fig. S3, we
found a force root mean square error (RMSE) of 29.3 and
121 meV/Å for the Elemental-SDNNFF and CHGNet models,
respectively, showcasing the competitive performance of our
model and its consistency remaining close to the training RMSE
of 18.6 meV/Å. Thereafter, the errors relative to DFT for the
phonon dispersion and corresponding κL at 300 K are shown in
Fig. 2. In Fig. 2a, the RMSE of the frequency is divided by the
frequency range of the corresponding dispersions to normalize
and merge the data to a single histogram and is shown as a
percentage. The average error is 1.88% which is excellent as seen
by the insets of sample dispersions in Fig. 2a. In Fig. 2b, the log
value of the DFT and predicted κL yields an R2 of 0.89 with a
mean average error (MAE) of 0.254 log(Wm−1 K−1), meaning
that the predicted κL is on average within 1.795 times the DFT
value and is shown by the structures within the dashed lines
representing two times the perfect agreement. The prediction
capability is competitive with the 0.12 MAE and 0.87 R2 error
presented by the random forest model trained on ~103

materials35. Additionally, 103 untrained structures with κL from
DFT are evaluated by our model for validation and are compared
in the inset of Fig. 2a. Out of these structures, 67 were predicted
owning <1Wm−1 K−1 and 36 remain within the same range
from DFT values. Notably, at the lower end of the κL range, the
model tends to underpredict the κL with greater intensity
approaching the ultralow range of predicted 0.1Wm−1 K−1. This
is due to the highly sensitive nature of the phonon transport
toward the extrema of the κL, specifically from the quality of
atomic forces in displaced supercells and eventually the 3rd order
IFCs36. Nonetheless, the materials with prediction under

Table 1 Distribution of all cubic structures used for training and screening.

Space group
no.

Structure type Structures calculated by
DFT

Predicted stable structures
by DFT

Unexplored structures Predicted stable unexplored
structures

216 AB 61 58 (96.7%) 209 24 (11.5%)
ABC 452 446 (98.9%) 3144 2980 (94.8%)
ABC2 134 127 (95.5%) 5901 2324 (39.4%)
ABCD 553 549 (99.3%) 8059 5825 (72.3%)

221 AB 365 359 (98.1%) 786 323 (41.1%)
AB3 338 337 (99.7%) 1695 1059 (62.5%)
AB3C3 51 47 (92.2%) 785 64 (8.2%)
AB3C12 5 3 (60.0%) 218 18 (8.3%)
ABC3 103 100 (96.2%) 597 119 (19.9%)

225 AB 163 156 (95.7%) 518 145 (28.0%)
AB3 160 146 (91.2%) 1705 525 (30.8%)
ABC2 581 576 (99.0%) 12,643 7472 (59.1%)
ABC2D6 92 86 (92.5%) 39,171 5227 (13.3%)

227 AB2 52 48 (94.2%) 282 84 (29.8%)
AB2C4 68 66 (98.5%) 1298 864 (66.6%)
ABC2 4 3 (75.0%) 80 6 (7.5%)

Total 3182 3107 (97.7%) 77,091 27,059 (35.1%)

Values in parenthesis indicate percentage out of the left column.
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0.1Wm−1 K−1 are likely to remain within 1Wm−1 K−1 range
and our model is effective at filtering candidates with ultralow κL.

The advantage of our bottom-up ML approach for phonons
manifests from the plethora of information from standard
phonon calculation packages when provided a set of predicted
atomic forces. Indeed, by default phonon frequencies and
scattering matrix elements required for iterative BTE are
computed in advance. From the phonon frequencies, information
like the speed of sound, constant volume heat capacity, and the
three-phonon scattering phase space may be readily computed.
Here, we compare these properties from our neural network
model with those from DFT calculations to further understand
more about the underlying contributions to the predicted κL.
Indeed, the constant volume heat capacity (cv) is directly involved
in computing κL along with the phonon group velocities and
scattering rates. Additionally, the speed of sound (Vs) is a partial
representative of the group velocities for long-wavelength
acoustic modes in crystals20. The three-phonon scattering phase
space (P3), is a quantitative measurement of the number of three-
phonon scattering channels. Unlike cv and Vs, higher P3 is
indicative of larger scattering rates and thus lower κL30. However,
akin to cv and Vs, P3 requires only the second order IFCs and
therefore is computationally inexpensive as a result after the
model is trained. Finally, the mean square displacement (MSD) of
vibrating atoms, usually observed in finite temperature molecular
dynamics, may also be computed from the phonon frequencies
and eigenmodes9. To describe structures with a single value, only
the maximum MSD among all atoms in the primitive cell is
assigned.

In Fig. 3, the comparison of cv, Vs, P3, and maximum MSD
between the neural network model and DFT is shown with the

corresponding R2 and MAE values. Exceptional agreement is
found for cv, followed by Vs, P3, and log(max MSD). With the
small error in phonon frequencies, the mode-weighted global
property cv requires the mode-dependent phonon frequency as a
direct input and is summed up over a dense sampling of Brillouin
zone, and thus expectedly owns the best agreement with DFT37.
The maximum MSD is also constructed similarly and thus owns
high accuracy with DFT. Although Vs is also directly computed
from dispersions, the gradient of phonon frequency with respect
to wave vector is required and is consequentially more sensitive to
the predicted atomic forces than cv. Finally, P3 also uses the
phonon frequencies directly but involves a counting of three
phonon collisions by energy and momentum conservation. In
other words, the error propagated from atomic forces into the
phonon frequencies is compounded resulting in the largest error
out of the other three harmonic phonon properties. Interestingly,
while Fig. 3a–c for the most part experience an even spread of
error, the scatter plot for the maximum MSD in Fig. 3d is shown
with increasing disagreement at higher maximum MSD. This is
because higher maximum MSD, corresponding to softer phonon
modes, usually indicates lower κL, and the second order IFCs are
more sensitive to the atomic displacements and corresponding
forces. In such a case, we anticipate that increasing the atomic
displacements can better capture the anharmonicity and hence
the potential energy surfaces.

Quantification of ultralow κL with predicted properties. Out of
the 77,091 cubic materials set aside for evaluation, 27,059 struc-
tures are predicted by our trained Elemental-SDNNFF model to
have no imaginary phonon frequencies, and thus being poten-
tially thermodynamically stable. These structures are then

Fig. 1 Workflow for training Elemental-SDNNFF models. Arrow and box colors represent different regimes of the workflow with blue, orange, red, and
green representing the structure generation phase, initial model training phase, iterative model training or active learning phase, and the application or
deployment phase, respectively. In the application phase, the final ML model is applied to evaluation of atomic forces, based on which the interatomic force
constants are fitted and phonon properties are subsequently predicted.
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evaluated for predicting full phonon properties including cv, Vs,
P3, maximum MSD, and κL. In the previous section, we show how
the trained model represents DFT-level IFCs while maintaining
speeds on the order of ~103. This was made possible due to the
initial training set and subsequent active learning iterations
generating millions of data points to best fine-tune the model for
handling many structures and chemistries. Despite replacing DFT
with a machine learned model, the process of computing
anharmonic IFCs and subsequently iteratively solving BTE is still
time consuming for several tens of thousands of hypothetical
structures. Therefore, given the large data of phonon properties
evaluated by our model, quantification of trends for κL with
structural and harmonic properties is desired to search materials
with known thermodynamic stability. Previous studies suggest
that κL is strongly correlated with several physical parameters,
including volume of the unit cell Vcell

35, specific heat capacity
cv38, sound velocity Vs

15, three-phonon scattering phase space
volume P330, and thermal MSD39. Henceforth, we have experi-
mented with linear combinations of cv, Vs, P3, max MSD, and Vcell

to correlate with κL. We found the max MSD by itself has the best
performance as a descriptor for κL of crystals. The reason is most
likely due to the major contribution of harmonic phonons in
thermal MSD for κL when compared to those listed above.
Additionally, MSD may be computed as a function of tempera-
ture and is more useful to observe temperature-dependent trends.
A generally inverse-linear relationship is observed between the
log κL and the log(max MSD) (Fig. 4). Note, log(max MSD) is
normalized here in R2½0; 1� based on values found from the DFT
set for ease of comparison. Figure 4a provides evidence of line-
arity through comparison of κL and the max MSD. The fitted red
line shows a decreasing trend of κL with increasing max MSD.

Structures with extremely high maximum MSD are indicative of
rattling atoms, in which strong phonon-phonon scattering and
ultralow κL is prevalent39. Given the agreement of the max MSD
between DFT and predictions in Fig. 3d, Fig. 4b demonstrates the
prediction of both κL and maximum MSD for the 25,901 unex-
plored structures out of the stable 27,059 pool, since some
structures failed in BTE calculations and κL was not plotted.
Again, the trend remains inversely proportional to the descriptor.
We do notice that the newly fitted blue line shows a steeper slope
in comparison to the previous red line by DFT (also shown in the
same plot for comparison), and the difference between the two
lines deviates with increasing maximum MSD. The most probable
cause is the underprediction of κL at the lower extreme (Fig. 2b)
and increased error in the MSD at the higher extreme (Fig. 3d).
Although the ultralow κL may be underestimated on the log scale,
these predictions remain highly beneficial for quickly marking
structures with potential as thermal insulators. To quickly filter
ultralow κL materials, a maximum MSD is set such that the value
of the fitted line is 1.795Wm−1 K−1. This is chosen deliberately
knowing predicted values of κL are within 1.795 times the DFT
value which aids the later filtration for structures less than
1Wm−1 K−1. As such, the maximum MSD filter is set to
0.076Å2 or 0.464 on the normalized log(max MSD) plot. Speci-
fically, we found 9306 total structures with normalized log(max
MSD) higher than 0.464. Out of these structures, the κL of 8873
(95.4%) structures are less than 1Wm−1 K−1. For normalized
log(max MSD) less than 0.464, out of 16,596 structures, the κL of
4590 are less than 1Wm−1 K−1. This means, the success rate for
filtering structures is 66% (8873 out of 13,461 structures) for
those with κL less than 1Wm−1 K−1. Thus, the maximum MSD
is a reliable descriptor for indicating highly unique structures with

Fig. 2 Summary of phonon dispersion and lattice thermal conductivity predictions. a Comparison of the RMSE of phonon frequency normalized by the
structure’s specific frequency range. (Insets) Phonon dispersions linked to the relative error containing DFT (black lines) and prediction (red lines) for
visualization. b κL at 300 K between DFT and the developed single neural network model for 3107 stable structures predicted by DFT. (Inset) The
comparison between the predicted and DFT κL of 64 untrained structures on the same scale.
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out-of-trend values of atomic displacement and corresponding
ultralow κL. Such a critical value of maximum MSD 0.076Å2 may
be used in future works to identify potential candidates for
thermal insulators in cubic structures.

Rattling effect has been proved to induce large MSD in many
systems. To generalize structures with high probability for rattler
atoms, we plot the average of the MSD for each element across
the 25,901 pool in Supplementary Fig. S4. Hydrogen and all alkali
metal elements, including Li, Na, K, Rb, and Cs, have the highest
average MSD among all 63 elements covered here. Some alkaline
earth metal elements including Mg, Ca, Sr, and Ba have medium
MSD. Interestingly, halogen elements including Cl, Br, and I also
possess high MSD. N stands out among the nonmetallic elements
with the next largest being C, P, and Si. Tl also stands out as a
semimetallic element next to Pb and Sn with significantly lower
MSD. Metallic elements including Hg, Cd, Ag, and Au are the
highest in their category although their MSD is much lower than
their alkali metal counterparts.

To visualize the spread of predicted κL in the dataset,
Supplementary Fig. S5 displays the t-distributed stochastic
neighbor embedding (t-SNE) using Elemental-SDNNFF structure
input vectors. For simplification, only one point per structure is
implemented corresponding to a single Elemental-SDNNFF
vector centered at the unit cell rather than on a per-atom basis.
In Supplementary Fig. S5a, the distribution of space group
indicates an overlap of structures with space group number 216

and 225 whereas a majority of structures with space group
number 221 and 227 form visible clusters. This is sensible given
space group 216 is different from space group 225 by just a vacant
lattice site (ABC vs. ABC2) or a different element on the same
lattice site (ABCD vs. ABC2). Supplementary Fig. S5b focuses on
the predicted κL where observable regions of thermally insulating
materials (blue) are highly contrasted from thermally conductive
materials (red). Mainly, the upper left of the figure contains a
mixture of space group 216 and 225 structures with ultralow κL
with some additional blue regions along the bottom and top outer
edge mostly corresponding to 221 and 225. This is further
manifested in Fig. 3c where regions are instead highlighted by the
predicted normalized log(max MSD). To highlight the relation-
ship between κL and max MSD, we subtract the value from unity
to match the properties based on color. As seen by the
comparison between Supplementary Fig. S5b, c, both figures
form identical structure mappings of the predicted κP and
normalized log(max MSD) values, supporting their strong
correlation. Additionally, the congregation of certain out-of-
trend structures with extremely high or low κL indicates a
correlation between Elemental-SDNNFF input vector and
phonon conductors and insulators, suggesting strong structural-
property relationship with phonon transport. Overall, the t-SNE
plots encompass the wide range of unique structures and physics
manifested when applying machine learned atomic force fields
such as the Elemental-SDNNFF.

Fig. 3 Prediction of harmonic properties compared with density functional theory. Comparison of the (a) constant volume heat capacity (cv) at 300 K,
(b) speed of sound (Vs), (c) third order scattering channel volume (P3), and (d) mean square displacement (MSD) at 300 K between DFT and the neural
network model for 3107 DFT predicted stable structures. The MAE of the MSD on the linear scale is 1.163 × 10−2Å2. The black solid line denotes the
perfect match and is guide for eyes.
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Insight from bonding and anti-bonding analysis. In the pre-
vious section, we related thermal displacements to the κL but do
not discuss the effect of chemical bonding. Here, we further
analyze our predicted structures with Crystal Orbital Hamilton
Population (COHP)40 to quantify the contributions to the
bonding and antibonding states. To assign single values of
bonding and antibonding to each structure, we perform inte-
gration over COHP curves for each atomic pair as evaluated by
LOBSTER code and take the average41. Figure 5 displays the
resulting bonding and antibonding with highlighted log values of
predicted κL to observe trends. Notably, at low bonding values
(e.g., <200) and high antibonding (e.g., >1), only
κL < 3Wm−1 K−1 exists. This region contains low interatomic
bonding strength and high phonon anharmonicity, resulting in
ultralow κL. Our observed trend of high antibonding indicates

strong phonon anharmonicity and is consistent with recent stu-
dies by full DFT calculations on other systems16,42–44. On the
other hand, the high bonding (>200) region seems to contain all
ranges of κL. This is understandable from the physics point of
view, whereby the κL is governed by two major mechanisms of
interatomic bonding strength and phonon anharmonicity and
thus the bonding/antibonding contributions might be competing.
It is also worth pointing out that, the application of COHP is a
low-cost indicator of κL requiring only the DFT calculations on
primitive cells after structure optimization, which is very pro-
mising for the filtration of structures with anomalously low κL.

Off-diagonal thermal transport analysis. Recently two different
mechanisms for phonon transport in solids have been
discussed45,46. In crystalline materials, heat carriers propagate
and scatter in a particle-like behavior as described by Peierls-
Boltzmann transport picture for phonon wave-packet dynamics.
Such populations have a well-defined energy (frequency) and
therefore can be interpreted as particle-like excitations with a
well-defined wave vector (q) and mode index (s), and corre-
sponding lattice thermal conductivity is denoted as κP. In con-
trast, in glass materials, heat carriers behave wave-like, hopping
via a Zener-like tunneling between quasi-degenerate vibrational
eigenstates, as described by the Allen-Feldman theory. Such
coherences do not have an absolute energy and cannot be
related to a single eigenstate. Rather, they describe oscillations
between pairs of eigenstates and correspond to an evolution
which does not preserve the nature of the single-particle exci-
tation. Very recently, the importance of such coherences’ con-
tribution to overall lattice thermal conductivity describing the
wave-like interband tunneling of phonons, dubbed as two-
channel thermal transport or off-diagonal contribution of heat-
flux operator, has been theoretically formulated and experi-
mentally validated in ultralow κP materials47–49. With the
phonon property of large-scale crystals being predicted herein, it
is intuitive to explore the two-channel thermal transport beha-
vior of these materials.

Fig. 4 Results of the thermal mean squared displacements against the lattice thermal conductivity. Plots for (a) the DFT κL against DFT computed
normalized log(max MSD) for the 3107 training data and (b) predicted κL against predicted normalized log(max MSD) for the 25,901 pool of unseen
structures. The solid blue line represents fitting with DFT data, whereas the solid red line is fitted with predicted data. The dashed vertical line is indicative
of 0.464 normalized log(max MSD) value corresponding to 0.076Å2 MSD and 1.795Wm−1 K−1 κL in the fitted DFT line. All values of κL and maximum
MSD are at 300 K.

Fig. 5 Bonding-antibonding map as related to lattice thermal
conductivity. Crystal orbital Hamilton population (COHP) analysis for
13,718 stable structures from the prediction pool. Color represents the log
values of the predicted lattice thermal conductivity.
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The contributions of off-diagonal components (καβc ) to the total
thermal conductivity is obtained by48,50:

καβc ¼ _2

kBT
2NΩ

∑
q
∑
j≠j0

j;j0

ωj qð Þ þ ωj0 qð Þ
2

Vα
j;j0 qð ÞVβ

j;j0 qð Þ

´
ωj qð Þnj qð Þ nj qð Þ þ 1

� �
þ ωj0 qð Þnj0 qð Þ nj0 qð Þ þ 1

� �

4 ωj qð Þ � ωj0 qð Þ
� �2

þ Γj qð Þ þ Γj0 qð Þ
� �2 ´ Γj qð Þ þ Γj0 qð Þ

� �

ð1Þ
where ħ, kB, T, N, and Ω are the reduced Planck constant,
Boltzmann constant, absolute temperature, the number of q-
points sampled in reciprocal space, and volume of the unit cell,
respectively. ωj (q), Γj (q), and nj (q) are the frequency, linewidth,
and the equilibrium Bose-Einstein distribution function with
wave vector q and branch j, respectively. Vα

j;j0 qð Þ is the off-
diagonal elements (j ≠ j′) of velocity matrix with direction α, and
can be calculated by:

Vα
j;j0ðqÞ ¼

1
ωjðqÞ þ ωj0ðqÞ

hejðqÞj∇α
qDðqÞjej0ðqÞi ð2Þ

where ej (q) and D are the eigenvector and dynamical matrix,
respectively. In our work, we modified the original ShengBTE
code51 to output the off-diagonal elements of velocity matrix
and then calculate the off-diagonal thermal conductivity based
on Eq. (1).

For calculations of lattice thermal conductivity contribution by
coherence phonons (κc), 1000 structures from each pool of
materials with low (<1Wm−1 K−1), medium
(1–10Wm−1 K−1), and high (>10Wm−1 K−1) κP by traditional
BTE solution are randomly chosen with the same parameters and
force constants from the model prediction step. From these
structures, 869 low, 995 medium, and 999 high κP BTE
calculations successfully converged with average off-diagonal
ratios κc/κP of 2.59, 5.02 × 10−2, and 4.35 × 10−3, respectively.
The κc/κP show good agreement between DFT results and
prediction by our Elemental-SDNNFF model (Supplementary
Fig. S6), which again displays the accuracy of our model. In Fig. 6,

we compute the percentage of off-diagonal contribution which is
defined as κc/κtotal where κtotal= κc+ κP. Good agreement
between our Elemental-SDNNFF predictions on unseen data
and DFT results from training data is observed. Strong linear-like
correlation trend is found between percentage of κc from κtotal.
Generally speaking, the lower κP is, the higher percentage of off-
diagonal contribution by κc could have. For extremely low κP
materials, e.g., κP ~0.1Wm−1 K−1, the κc could contribute as
high as 50% or even 70% of κtotal, showing dominant role of
contributions of the coherences even at room temperature.
Similar phenomenon is also found in perovskite CsPbBr3 at room
temperature and La2Zr2O7 at high temperature48,49. We also
noticed that, for the same κtotal, the κc contribution can differ
quite largely among different structures, leading to a very wide
spread of the log-scale percentage contribution in Fig. 6. This
implies that, the precise off-diagonal contribution percentage
depends on detailed phonon band structures and mode-level
phonon anharmonicity of different materials, rather than the
single absolute value of κP. Figure 6 also shows that there are
considerable amount of structures with dominant wave-like heat
conduction, instead of particle-like conduction as predicted by
traditional Peierls BTE. Our model clearly determines the
crossover from particle-like to wave-like heat conduction (dashed
line in Fig. 6).

To observe mode-level contributions of κP and κc, three low κP
materials (NaKAs KIrCs2Cl6, and CuPdSr2 with space group no.
216, 225, and 216, respectively) from the untrained pool are
chosen with varying coherence contribution for comparison. The
frequency-dependent relaxation time is plotted in Fig. 7. The
materials are provided in order of increasing κP with (prediction
value, DFT validation value) of (0.037, 0.075), (0.101, 0.127), and
(0.68, 0.935)Wm−1 K−1, respectively. The κC values for
(predicted, DFT) results are (0.222, 0.205), (0.252, 0.226), and
(0.07289, 0.08282)Wm−1 K−1, respectively. From comparison
between the predicted (left column in Fig. 7) and DFT (right
column in Fig. 7) results, the general trends of relaxation time
against frequency are captured, confirming again the accuracy of
our ML model. Despite this, κP contributions from the low
frequency range are more pronounced in size and density by eye
in the DFT results (Fig. 7b, d, f) than in the prediction results
(Fig. 7a, c, f). This agrees with the previously observed
underprediction of κP for structures with κP < 1Wm−1 K−1. In
addition, the κC of NaKAs and KIrCs2Cl6 share similar values and
is pronounced by the presence of high mode-level κC contribution
in the entire frequency range. For CuPdSr2, a vast majority of
points own low contribution by coherence phonons thus reducing
the κc. From observation, κC contributions are overshadowed by
dominating mode-level κP throughout the entire frequency range,
leading to lower κc/κtotal ratios as previously seen in Fig. 6.

Conclusion
We demonstrate the development of a bottom-up machine
learning approach through accurately and efficiently predicting
comprehensive phonon properties of ~80,000 crystalline materi-
als, which is realized by evaluating the atomic forces with suffi-
cient DFT representation. The query-by-committee active
learning scheme allows iterative improvement of the models by
simultaneous prediction of atomic forces in the unseen pool of
displaced structures. The final model is deployed for constructing
IFCs for both observed and unseen structures. Given the good
accuracy of phonon properties such as vibrational frequencies
and κL, we exploit the abundant 25,901 pool of structures that are
predicted to be thermodynamically stable by our model and
quantify thermal insulators with simple descriptors. Both MSD
and bonding/antibonding states are two computationally efficient

Fig. 6 The off-diagonal contribution against the total lattice thermal
conductivity at room temperature from two sources of data. The
percentage of the off-diagonal contribution is defined as κc/κtotal, where
κtotal= κc+ κP. The agreement between our Elemental-SDNNFF predictions
on selected 2863 unseen data and DFT from 2397 training data is indicated
by their overlap and matching linear trend. The dashed black line indicates
50% from off-diagonal contribution, above which the wave-like heat
conduction is dominated.
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approaches for screening ultralow κL. We should mention that,
given the high accuracy of harmonic dominant properties such as
maximum MSD, we propose our model as a method to generate
high-quality data for direct prediction of phonon properties
through other machine learning models, such as prediction of
extremely high or low lattice thermal conductivity materials.
Physical insight into off-diagonal contribution to overall phonon
transport is also analyzed with our model, demonstrating the
general trend of high coherence contributions to the total thermal
conductivity for low κL structures and the crossover from
particle-like to wave-like heat conduction in diverse structures.
The precise coherence contribution percentage depends on
detailed phonon band structures and mode-level phonon
anharmonicity of different materials, rather than the single
absolute value of κL. Our algorithm is capable of growing and

being adapted to even larger unseen materials and is promising
for accelerating discovery of crystals for emerging phonon
mediated applications.

Methods
Training dataset generation. We first perform structure filtration by elements,
formation energy, and energy above hull, and then perform structure optimization
(blue path in Fig. 1). The purpose of filtration is to reduce the structure count and
increase the likelihood of stability in subsequent DFT calculations of phonon
dispersions. After structure optimization, we replicate primitive cells into supercells
and displace all atoms by fixed 0.03 Å in random directions to create diversity in
the atomic environments and facilitate training, which is also standard for IFC
calculations. Additionally, for IFC fitting with CSLD, such introduction of random
displacements helps mitigate the innate poor energy conservation of direct force
field models, as demonstrated in previous works36,52. Specifically, due to the nature
of direct force prediction, IFC fitting with methods such as finite difference method
(FDM) does not guarantee zero or near-zero forces for atoms in equilibrium. Such

Fig. 7 The frequency-dependent relaxation time for NaKAs, KIrCs2Cl6, and CuPdSr2. Rows (a, b), (c, d), and (e, f) correspond to the material in the
mentioned order, whereas columns (a, c, e) and (b, d, f) are from our ML model prediction and DFT results, respectively. The size of circles represents the
magnitude of κP, whereas the color represents the ratio of κC/κtotal, i.e., the off-diagonal contribution to overall thermal transport. The diameter of circles is
scaled up equally between predicted and DFT plots for viewing.
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atoms are abundant in FDM whereby only one or two atoms are displaced for IFCs
up to the third order, causing significant disagreement in the force-sensitive lattice
thermal conductivity. Thus, stochastic methods such as CSLD mitigate the energy
conservation issue by displacing all atoms, generating a noise-canceling effect for
subsequent IFCs fitted by predicted forces. Afterwards, we randomly select a small
fraction of displaced supercell structures to serve as the initial training data for the
models. This is passed to DFT calculations, and the resulting ground truth atomic
forces and local atomic environment are passed to five initialized models with
similar architecture but different weights. Here, we used a small subset of existing
DFT data previously calculated for phonon properties. Although we do not
introduce techniques to choose the initial structures for training, we recommend
those such as the principal component analysis (PCA) shown to improve model
representation especially for out-of-trend structures53. After the DFT step, we
perform data augmentation in which atomic environments are rotated according to
nearest neighbor rules, generating ~2–3× increase in the existing dataset (see
schematic in Supplementary Fig. S2). This enhances the dataset diversity for model
training in addition to the already abundant N ×D dataset, where N is the number
of atoms per simulation (or per supercell) and D is the number of DFT simulations.
As an aside, future work is planned to introduce rotational equivariance to the
existing Elemental-SDNNFF model for automatic consideration of rotated atomic
environments without the need for said nearest neighbor rules and rotation
matrices54. This should drastically improve the training efficiency by reducing the
training size while maintaining the current rotational covariance of the force field.

Active learning details. Taking advantage of the interpolative nature of neural
networks, these models serve as a committee that will judge the remaining untrained
or active learning structures for atomic environments. Structures yielding high
uncertainty in the forces indicates poor representation of the corresponding atomic
environments and DFT forces. The uncertainty is evaluated by55:

εi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjf mi � �f ijj

2
D Er

; �f i ¼ f mi
� � ð3Þ

where εi is the indicator for atom i, f mi is the predicted force by model m, and �f i is
the average force across all models in the committee. We take the max(εi) for each
displaced supercell and choose one supercell with the highest max(εi) out of all
supercells associated with a unique structure to promote diversity in atomic
environments for subsequent DFT evaluation. We set the uncertainty threshold to
εi > 50meV/Å well above the force error of the model to guarantee poorly repre-
sented structures in the committee. Those structures with uncertainty above the
threshold are then passed to further DFT calculations and retrained into the model,
forming a closed loop with iterative self-improvement (red circled arrows in Fig. 1).
Once the number of recommended structures converges to near-constant value, we
then publish the model for evaluation of atomic forces and subsequent phonon
properties for all unseen structures (green path in Fig. 1). For more details about the
model details and active learning procedure, we refer the reader to our previous
work31. After seven rounds of active learning with combined data augmentation,
29.4 million atomic environments are successfully trained into the network (Sup-
plementary Fig. S2).

Data availability
The main data supporting the findings of this study, including those generated by full
DFT calculations, are available from the corresponding author upon reasonable request.

Code availability
The trained neural network model and source codes used to evaluate atomic forces in
displaced supercell structures are available from the corresponding author upon
reasonable request.
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