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What is the Fourier Transform of a Spatial Point
Process?

Tuomas A. Rajala, Sofia C. Olhede Member, IEEE, Jake P. Grainger and David J. Murrell

Abstract—This paper determines how to define a discretely
implemented Fourier transform when analysing an observed
spatial point process. To develop this transform we answer four
questions; first what is the natural definition of a Fourier trans-
form, and what are its spectral moments, second we calculate
fourth order moments of the Fourier transform using Campbell’s
theorem. Third we determine how to implement tapering, an
important component for spectral analysis of other stochastic
processes. Fourth we answer the question of how to produce an
isotropic representation of the Fourier transform of the process.
This determines the basic spectral properties of an observed
spatial point process.

Index Terms—Spectral density function, Spatial point pro-
cesses, Debiased periodogram, Tapering.

I. INTRODUCTION

SPatial point processes are an important form of observa-
tional data structure, for example in forest ecology [77],

communications networks [57], [49], epidemiology [31], so-
cial science [72], pharmacology [35] and medicine [2] amongst
many other application fields. Understanding the properties
of a point process can be approached from many different
perspectives [24], and the aim of this paper is to determine
how to extract the frequency (or scale/wavenumber) behaviour
of an observed point process, as well as connect that to its
spectral representation.

The most common assumption used when analysing spatial
processes is that of spatial homogeneity (or stationarity). This
means that if you shift all of the observations by a fixed
spatial shift, the distribution of those observations does not
change from the distribution of the original sample; and if the
observational window is changed, then understanding the full
set of observations remains tractable. A consequence of this
probabilistic invariance in distribution is the spectral repre-
sentation of a stochastic process. The existence of the spectral
representation of a stochastic process means the Fourier trans-
form fully characterises the second order properties of that
stochastic process. The Fourier transform also characterises
the second order properties of a point process, see e.g. [20].
Yet unlike random fields and time series, spectral analysis
of point processes is still in its infancy, see also [5], [6],
[56], and critically, the digital processing of a point process
remains fully outstanding. Recent interest in Fourier features
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in machine learning based approaches for point patterns such
as [38], [44] show the potential of using Fourier based
information as features for estimation and detection. The
work in this manuscript both establishes what Fourier features
to calculate for homogeneous processes from a sampling
perspective, and their large but finite sampling area properties,
just like [33] determined the large but finite properties of
Fourier representations for random fields. We note that ma-
chine learning techniques [73], [48] utilised Fourier features
in learning algorithms for parametric models before precise
and general understanding was established.

Thus despite inspirational work by the aforementioned
authors, several key aspects of discrete spectral analysis lie
unresolved when applied to observed point processes. In
particular, 1) how do we define the discrete Fourier Transform
of a point process to have desirable statistical properties, whilst
keeping computational costs as low as possible (bearing in
mind that we cannot use a Fast Fourier Transform, so should
not expect that level of computational efficiency)? 2) How
does that discrete transform relate to the underlying spectral
measure of the process? 3) Can the discrete transform be
improved by linear operations such as tapering as is the case
for other stochastic processes? 4) If yes, how do we then
select a taper? 5) How do we define a radial or isotropic
transformation to simplify the representation of the spatial
point process? There are many, many more questions to answer
before bringing the spectral analysis of spatial point processes
to the sophistication of the analysis of random fields, but
these currently unresolved questions are positioned as the
first hurdles to overcome in the path of whomever wishes to
develop more sophisticated spectral analysis techniques. Once
the fundamental properties of the spectral representation of a
stationary point process have been developed and understood,
results could be extended to inhomogeneous point processes,
but that is not the aim of this work.

To put this in the context of information theory; understand-
ing how to compute the Fourier transform from a spatially
compact signal had already sparked a lengthy debate from the
first introduction of tapering [70], and selection of optimal
tapers using localization operators [67], [66], [17]. While
some aspects of tapering in the context of point patterns is
reflected by topics in mature (multi)dimensional tapering and
spectral estimation [1], [45], [46], [33], understanding how
to adapt these ideas to spatial point processes remains fully
outstanding, and must be answered using our understanding
of irregularly sampled processes [11]. Understanding and
characterising point patterns is naturally a problem of general
interest, e.g. [12], [13].
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Fig. 1. A realisation of a log-Gaussian Cox process (left), the estimated
against true product density (middle), and estimated against true spectral
density function on a decibel scale (right).

Why then do we want to understand the spectral information
of a point pattern? The spectral information of any stochastic
process is the same as the spatial information as there is a
bijection between the two, but the former is directly showing
the scale of variation of the process. To illustrate, let us
simulate a complex point pattern and compare its spectral
content with its usual spatial representation. Log-Gaussian Cox
processes [55], popularly used in applications, are marginally
stationary processes whose patterns are more variable than
models that do not depend on latent random variables. The
pattern (a single realization), and its estimated spectrum (the
subject of this paper) are shown in Figure 1. We have chosen
a process which is isotropic, a choice we have made so that
its usual spatial representation and spectrum is isotropic also,
and thus easier to interpret. In the left hand subplot we see
the pattern itself, in the middle subplot we show a common
spatial summary, the pair correlation function (pcf) comparing
both the estimate and the known theoretical for the process,
and in the right hand subplot we show the spectrum on a
decibel scale (10 log10), both estimated and theoretical. While
the raw pattern (left) looks mainly unremarkable, naturally its
periodicity is present in the pcf (middle), but is more obvious
in the spectrum (right). We can even estimate the periodicity as
having frequency 1. This is immediately recoverable directly
from its estimated spectrum.

Calculating the Fourier transform of a point process is useful
beyond the point pattern itself. If we sample a stochastic
process with a point process then the spectrum of a point
pattern is equally important to that of the stochastic process
to determining the spectrum of the observations, e.g. [50].
For this reason; the study of the frequency information of an
observed process is of interest in its own right, and beyond, and
we will discuss the implications that arise for point processes.

To get to the point where we can estimate the spectrum of
a point pattern, we need to answer the five questions posed
earlier. We will therefore start by determining how to compute
Fourier transforms of point processes, discussing the question
of how to form direct spectral estimators [58] in this setting.
This will be answered in terms of the mean and (co)-variance
of the different discrete Fourier transforms that we define.
The first surprising result is that the natural direct spectral
estimator is biased unless it is mean corrected (this bias was
noted by [23], but only corrected in an ad-hoc fashion). We

show how to perfectly eliminate this bias.
In order to understand the variance and covariance of a

direct spectral estimator, we need to calculate a fourth order
moment of our choice for the discrete spectral transform.
This is complicated since Campbell’s formula is required to
derive its form for a point process. This approach can be
contrasted with using Isserliss’ theorem to determine higher
order moments for a Gaussian Process [40]. Calculating co-
variances between direct spectral estimators gives us a way to
determine what grid of wavenumbers the spectral estimator is
uncorrelated at, and thus where to evaluate it.

Tapering [70] is required to define direct spectral estima-
tors which avoid leakage; but how to taper a point pattern
is an open question. Most tapers are defined for regularly
spaced stochastic processes; but there are some continuous
tapers. We choose to use the continuous tapers of Riedel and
Sidorenko [60] to construct the direct spectral estimator, and
use multitapers to reduce the variance of such estimators. We
will determine how to implement both.

Many spatial models are radially symmetric, or isotropic.
This prompts us to describe how to construct an isotropic
representation of the spectral content of a point processes.
There are two possible approaches, namely using the Bessel
function [23] to do the transformation; or isotropizing a
general spectral representation [25]. We describe how to define
the appropriate tapering in this instance, inspired by other
isotropic harmonic decompositions [41].

To summarise the main results in this paper, we begin in
Lemma IV.1 by describing one of the fundamental issues
with spectral analysis of point processes, namely, the standard
periodogram is more biased for point processes than for
random fields. This problem is further detailed for the tapered
case in Theorem IV.1. In order to better understand this
bias problem, and develop a solution, Proposition IV.1 and
Corollary IV.1 provide more detailed statistical properties of
the usual tapered Fourier transform of a point process (the
fundamental building block of all estimators discussed in this
paper). In Lemma IV.2 and Corollary IV.2, we demonstrate
that our proposed debiased tapered periodogram indeed re-
moves the additional bias present in the standard tapered
periodogram. In order to understand the effect of smoothing,
we explore the correlation of the proposed tapers periodogram
in Theorem V.1, Example V.1 and Proposition V.1. Finally, in
Propositions VII.1 and VII.2 we deal with isotropic estimators.

The paper is organized as follows. In Section II we define
the basic concepts required by the second order representation
of a point pattern. In Section III we discuss tapering of the
DFT and the direct moments of the DFT.

In Section IV we determine how to form a spectral density
estimator from our understanding of how to form the DFT
and its mean and variance. The next step is to study the
covariance structure of such spectral density estimators, see
Section V. We then use that understanding to define how to do
linear smoothing in Section VI. For multidimensional spectral
representations, the full anisotropic structure can be hard to
interpret; we therefore propose 1d isotropic or isotropised
summaries to characterise such processes, in Section VII.
We then present a simulation study in Section VIII, and
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demonstrate the potential of the proposed methodology in an
example from forest ecology in Section IX. We conclude with
a discussion in Section X.

II. NOTATION AND DEFINITIONS

In this Section we shall give the basic notation necessary
for the spectral analysis of a spatially homogeneous point
process. We assume that we observe a spatially homogeneous
point process X with intensity λ = ρ(1) > 0 and with
ρ(2)(z) defined as the (second order) product density of X .
Assuming X is spatially homogeneous means that ρ(2)(z) only
has one argument (z ∈ Rd, namely the spatial shift) rather than
depending on two local spatial variables (say x and y rather
than just z = x − y). We assume that X is a simple point
process on Rd, meaning no duplicate points are allowed. We
take d = 2, 3, . . . , and so exclude the case of d = 1, which is
relatively well-studied, see for example the references in [19],
[43], [75]. For a (Borel) set A in Rd, we define |A| for the
volume of A and N(A) = |X ∩ A| for the number of points
of X ⊂ Rd in A. For set A and z ∈ Rd, denote the z shifted
set by Az = {x+ z : x ∈ A}. We denote by B any subset of
Rd where points are observed (or equivalently our observation
domain). For any complex number z we use the superscript
z∗ to denote the conjugate of z.

In complete analogue with a random field we shall define the
spectral density of X as the Fourier transform of the complete
covariance function of X . This is the standard approach, and
was first proposed by [6]. The complete covariance function
of a stationary point process is therefore

γ(z) ≡ λδ(z) + ρ(2)(z)− λ2, z ∈ Rd, (1)

where δ(·) is the Dirac delta function. The spectral density
function (sdf) [6] of the point process X is then defined as
the Fourier transform of the complete covariance function:

f(k) ≡ F [γ](k) =

∫
Rd

e−2πik·zγ(z) dz

= λ+

∫
Rd

e−2πik·z[ρ(2)(z)− λ2]dz, k ∈ Rd. (2)

This representation is in direct analogy with the corresponding
spectral decomposition of a random field or a time series. The
symbol F denotes the Fourier transform, with i as the imag-
inary unit. We refer to the argument k as the “wavenumber”
rather than frequency to acknowledge its multi-dimensionality.
This is a natural choice of a Fourier transform in analogy to the
analysis of random fields [68]. To avoid additional constants
in the inverse Fourier transforms, we parameterise the Fourier
transform with wavenumber instead of the customary angular
frequency ω = 2πk used by [6] and some others.

For a time series or random field there are a number
of spectral results, ranging from the spectral representation
theorem (I) [58, p130] and to Bochner’s (Herglotz) theorem
(II) [58]. Both these results are not exactly available in the

point process setting, but for a time series Xt we can note
them:

Xt
(I)
= µ+

∫ 1
2

− 1
2

e2πiktdZ(k), Var{dZ(k)} (II)
= f(k)dk,

(3)

γ(τ)
(III)
=

∫ 1
2

− 1
2

f(k)e2πikτ dk, f(k)
(IV )
=
∑
τ

γ(τ)e−2πikτ .

(4)

Equation (3) decomposes Xt into random contributions asso-
ciated with each frequency k. The covariance in Eqn (4) is
also decomposed into weighted frequency contribution. Both
of these observations are important for the interpretation of the
Fourier representation of Xt. “Important” contributions corre-
spond to f(k) being considerably larger relative to other f(k′)
as in that scenario Var{dZ(k)} is bigger than Var{dZ(k′)}
and therefore |dZ(k)| likely to be larger than |dZ(k′)|. Spectral
representations of point processes are also discussed in [20,
Ch. 8]. We can yet again decompose the (complete) covariance
in terms of a spectral representation as in (II), and it takes the
form in terms of a d-dimensional Fourier transform of

f(k) =

∫
e−2πik·zγ(z) dz

= λ+

∫
e−2πik·z

{
ρ(2)(z)− λ2

}
dz. (5)

We refer to f(k) as the spectrum of X . We note that the
Fourier transform can be inverted to yield the equality of (an
analogy of III):

ρ(2)(z) = λ2 +

∫
Rd

f(k)e2πik·z dk. (6)

We assume the spectrum is the primary object of interest
in our study of point patterns, as the covariance γ(z) can
be fully determined from it, and the covariance characterises
the point process. We see directly from (5) that ρ(2)(z)− λ2

and not the complete covariance γ(z) is playing the role of a
time series covariance. From a nonparametric perspective the
spectrum characterises what wavenumbers are more notable
(distinct) in the process. As (5) specifies a constant level λ
to all wavenumbers, the notable (distinct) wavenumbers are
determined from the Fourier transform of ρ(2)(z)− λ2.

We have to exercise some caution when interpreting the
Fourier transform as a bijective transform. Yes, it should
contain the same information about scale, but the meaning
of the word “scale” will be different from a simple spatial
understanding. In time or space the notion is associated
with the support of γ(z) or ρ(2)(z). Being supported over a
wavenumber k means variation over scales 1/∥k∥ is present
in the correlation function, or to represent the variability
in γ(z) we need wavenumbers ∥k∥ present in the spectral
representation. The function ρ(2)(z)− λ2 is often approached
in terms of what scales it is non-zero at, but the variation in the
function can also be associated with long or short scales. So
for a covariance function, we now have two notions of what it
means to possess scales ∥k∥; either γ(u/∥k∥) is non-zero for
unit vector u or γ(z) is variable (changing) and the scale of
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the change is ∥k∥. Imagine observing a sinusoid with period
k. The function will hit unity at a regular set of z values, and
so it will be supported at those z values, but also its Fourier
transform will be supported at 1/k.

This is clear from Figure 2 where covariance is present at
smaller or medium scales smoothly for the clustered Thomas
processes, or repelled for the Matérn hard-core processes. As
the Matérn process’ complete covariance function is discon-
tinuous, its Fourier transform is supported over all scales (due
to the Heisenberg-Gabor uncertainty principle [14]). This can
be deduced from (6). To reproduce the discontinuity we need
all scales in the Fourier representation.

pcf ~ r sdf λ ~ k  (10log10)

0 10 20 30 40 0.00 0.25 0.50 0.75 1.00
−5.0

−2.5

0.0

2.5

5.0

0

1

2

3

4

Model:  MaternII r5 MaternII r2 Thomas FL Thomas MS

Fig. 2. Pair correlation pcf = ρ(2)/λ2 (pcf, left) and corresponding scaled
spectral density function f/λ (sdf/λ, right) for two stationary and isotropic
non-Poisson point process models, two variants each, with known pcfs. For
the Thomas processes the sdf is given in the text. For the regular Matérn II
process the sdf was numerically approximated using the Hankel transform (cf.
Section 7). See details of the processes and the variants in Section VIII.

We see from (5) that not all wavenumbers are given equal
weighting. First all wavenumbers are given an equal weighting
λ and then the Fourier transform of ρ(2)(z)−λ2 determines the
wavenumbers that are up–weighted (added) or down–weighted
(subtracted) relative to the overall level of λ. We then observe
what wavenumbers are important to the representation of the
point process, which gives more information, conveniently
decomposed on a scale–by–scale manner.

For a random field or a stochastic process in d–dimensions
a few cartoon characteristics are important. For a discretely
sampled process in Zd the simplest random process, white
noise, is constant across wavenumbers yielding a spectrum
that takes the form of σ2 on [− π

∆ , π
∆ ]d, where ∆ > 0 is the

sampling period, and zero otherwise. For a point process the
choice of definition of the spectral density does not imply a
decay because of the inclusion of the term λδ(z) in space.
However once we remove this term, we expect a decay of the
remaining spectrum f(k) − λ as ∥k∥→ ∞. Otherwise (5)
would contain additional singularities. Furthermore at k = 0
we retain

f(0) = λ+

∫ {
ρ(2)(z)− λ2

}
dz. (7)

The second term in this expansion is not required to be zero,
and for the Thomas process for example, it is not zero, as it
takes the form of [56, p 55]:

f(k) = λ+ λµe−4π2∥k∥2σ2

(8)

where µ is the per-cluster expected point count and σ is the
Gaussian dispersal kernel standard deviation.

It is clear from this expression that we cannot arrive at a
zero contribution due to the exponential.

As we shall be studying the moments of a point process, it is
convenient to restate Campbell’s theorem [10, Sec. 4.3.3], and
we shall use this result multiple times. The theorem applies
to any measurable function h : Rnd 7→ R+ with n = 1, 2, . . .,
and states that (assuming product densities of order n ρ(n) are
well defined for any given n)

E

̸=∑
x1,...,xn∈X

h(x1, . . . , xn)

=

∫
Rnd

h(x1, . . . , xn)ρ
(n)(x1, . . . , xn)dx1 · · · dxn, (9)

where the summation is over distinct point tuples. Note
that if the point pattern X is stationary then ρ(1)(x) = λ
is constant for any x, and ρ(n)(x1, . . . , xn) = ρ(n)(x1 −
xn, . . . , xn−1 − xn, 0). With some abuse of notation, we
shall use the same symbol for non-stationary as well as
stationary product densities, where the latter function has n−1
arguments for an nth order product density, e.g. we write
ρ(n)(z1, . . . , zn−1) = ρ(n)(z1, . . . , zn−1, 0).

We define a new parameterisation to capture how the
process’s f(k) differs from that of a Poisson process. We
define the nth deviation of the nth order product density as

ρ̃(n)(z1, . . . , zn−1) =
ρ(n)(z1, . . . , zn−1)− λn

λn
, (10)

for n = 2, 3, . . . , where the argument of the product density
zl ∈ Rd for l = 1, . . . , n − 1. For a Poisson process
these n = 2, 3, . . . deviations from Poissonianity will all be
identically zero. By understanding deviations from Poisson
behaviour, we get greater insight into the underlying process of
interest. For completeness we also define the Fourier transform
of the deviations:

f̃ (n)(k) = F
{
ρ̃(n)(z)

}
,

where if n = 2 we suppress the superscript. With this
definition we find that

f̃(k) =
f(k)− λ

λ2
, w ∈ Rd, f(k) = λ+ λ2f̃(k). (11)

Thus in a sense, f̃(k) encapsulates the deviation of the
function from a constant spectral density of λ via the term
λ2f̃(k).

Already [20, p. 337] discusses some differences in spectral
representation of time series versus that of point processes.
We would argue that decay of the spectrum is still reasonable
to assume once λ has been subtracted (so the decay of f̃(k)
is reasonable to assume for large magnitude wavenumbers).
Having established the theoretical spectral description of point
processes, we now turn to their sampling properties.

III. DIRECT SPECTRAL SUMMARIES OF POINT PATTERNS

In this section, we shall revisit the possible definitions of
a spectral estimator for a point pattern. We shall start by
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defining a direct Fourier transform and taper this definition
to ameliorate edge effects, resulting in families of spectral
estimators. We also discuss other choices of spectral estimators
used in the literature already. To see the spectral characteristics
of X we start from what is known as Bartlett’s periodogram
estimator [23] based on observing a point pattern in region
B ⊂ Rd, written as

I0(k) ≡ λ̂+ |B|−1

̸=∑
x,y∈X∩B

e−2πik·(x−y), k ∈ Rd, (12)

where we have set λ̂ = |B|−1|X ∩ B|. This definition uses
all the data (or points) available to us, {x : x ∈ X ∩ B},
but is simply a possible choice amongst all possible direct
spectral estimators. Normally a direct spectral estimator is one
which is bilinear in the DFT of the data, see for example
the discussion in [58, Ch 5–6]. We recall a bilinear form is
a function D(x,y) satisfying in the first argument D(x1 +
x2,y) = D(x1,y)+D(x2,y), and equivalently in the second
argument. Bilinear forms have been thoroughly discussed in
signal processing for the analysis of time series [52]. As a
point process consists of locations the best we can hope for
in terms of bilinearity will be in terms of sesquilinearity of
the Fourier transform as the point locations will appear in
the argument of the complex exponential. Sesquilinearity of
D(x,y) simply generalises a bilinear form to the Hermitian
symmetry, additionally requiring D(x,y) = D(y∗,x) as well
as D(x,y) satisfying D(x1 +x2,y) = D(x1,y) +D(x2,y).

In time series the bilinear form has been chosen to ensure
that spectral estimators are real-valued, and often non-negative
though some bilinear estimators are not, see e.g. Guyon’s
spectral estimator [34]. We define the tapered DFT of a point
process X for a specified general (square) integrable function
h(x) (referred to as a ‘data taper’ by [58]) with Fourier
transform H(k) and unit norm (i.e. ∥h∥2= 1), to be

Jh(k) ≡
∑

x∈X∩B

h(x)e−2πik·x, k ∈ Rd. (13)

Spectral estimators in time series are bilinear in the ob-
served real-valued process Xt and sesquilinear in its Fourier
transform Jh(k). We shall still require that the form of the
estimator is sesquilinear in the DFT of the point process, but
the estimators will not be bilinear in X , the point pattern, as
this will not be possible to achieve. We shall also define

J̃h(k) = Jh(k)− λH(k).

Because x appears in the argument of the complex exponential,
we cannot define an estimator that is bilinear directly in the
data. In practice also one has to decide what taper function to
use. For 1D point processes tapering has been used [15], but
also multitapering has been used on interpolated data [21].
Here, we do not interpolate, do not implement localised
analysis, and do not implement analysis in 1D. It is more
complex to implement interpolation in higher dimensions, as
they are not orderly, unlike a time series time argument.

Based on Jh(k) the natural spectral estimator becomes its
modulus square or

Ih(k) ≡ |Jh(k)|2 =
∑

x∈X∩B

h(x)h∗(x)

+

̸=∑
x,y∈X∩B

h(x)h∗(y)e−2πik·(x−y).

(14)

If we take h(z) = h0(z) = |B|− 1
21(z ∈ B) then we recover

Bartlett’s periodogram in (12) from (14). If we do not take
the h0(z) taper then Bartlett’s periodogram is not exactly
recovered. The point of using a general function h(z) is that
abruptly ending the inclusion of points when we leave the
region B causes ripples in wavenumber, and therefore a worse
estimation of the spectrum, as is also the case of time series
when not using a taper [58]. We study the whole family of
estimators Ih(k), where a new member of the family is defined
for each choice of h. We also note that (14) is a direct spectral
estimator [58, p. 207]. Multidimensional tapers are available
to us [36], [65], and can be pre-computed. Our choice of
tapering corresponds to using continuous tapers evaluated at
random locations. We have deduced an asymptotic distribution
for Jh(k) using [7] but this result cannot be applied to Ih(k)
even if it superficially may seem to be of the correct form.

Note that the sum in (14) cannot be evaluated in a computa-
tionally efficient manner, unlike the DFT, as the locations {x}
are not regularly spaced, which is unfortunate, but unavoid-
able. Finally (14) is bilinear in Jh(k) but it is not bilinear in
X , unlike the commensurate expressions for the DFT of time
series and random fields.

For completeness we also note the isotropic estimator of
[23, Eqn. 3.3] in 2D, namely

Ī0(∥k∥) ≡ λ̂+
1

|B|

̸=∑
x,y∈X∩B

J0 (2π∥k∥∥x− y∥) , (15)

where J0(x) denotes the Bessel function of order 0, specified
in Section VII. The d-dimensional extension is given later
in equation (18). Ī0 is less clearly bilinear in the data, but
if we start from the estimator I0 of (12) and average it
over orientations analytically, then we arrive at this form. We
therefore with a slight abuse of our terminology also refer to
it as a bilinear estimator. There is one additional correction
made by [23]. As we shall see, for low wavenumbers there is
a bias inherent in (15). To address this problem [23, Eqn. 3.4]
suggests taking for some choice of lower bound t0 > 0,

ID(∥k∥) =
{

Ī0(t0) if ∥k∥≤ t0
Ī0(∥k∥) if ∥k∥> t0

. (16)

The authors of [23] suggest taking t0 so that Ī0(t0) is at a
minimum, and also suggest smoothing the estimated ID, which
we clarify in Section VI. The authors also discuss iterated
methods of bias correction in their Section 5, and correcting
biased estimators of the correlation.

Note also that we have modified the estimator in (15) to
divide by |B| rather then the observed number of points in
the region, N(B), as do for example [23], as it is much
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preferable not to have a random denominator. We shall discuss
the usage of I0(·) versus ID(·) further on in Section VII, and
the implications of when the process is truly isotropic or not.

As can be surmised from (14) the expectation of the general
estimator E {Ih(k)} is a convolution between the Fourier
transform of the observation window B and the true spectrum,
and if h(z) does not go to zero nicely at the boundary
of B then the periodogram becomes quite complicated in
terms of its expectation. Inspection of (14) also raises a
second problem, namely that there is a constant contribution
|B|−1|X ∩ B| which does not give any wavenumber specific
information, and is correlated between wavenumbers. This
term is new to time series and random fields, if not new
to the expectation of the periodogram of randomly sampled
stochastic processes, see [50], [11].

Should we choose to taper isotropically in 2D then we
instead use an isotropic taper hI(·)

Īh(∥k∥) ≡ λ̂+

̸=∑
x,y∈X∩B

hI (∥x− y∥)J0 (2π∥k∥·∥x− y∥) .

(17)
Note that this cannot necessarily be constructed. Say Jh(·)
with an isotropic taper would be made with the largest
spherical domain and a compact support could be constructed,
but what does that imply for Ih(·)? Radial tapers can be
determined as described in [65], whether in 2D continuous
space or discrete space. Equation (17) can be of course be
extended into higher dimensions. In general we would have in
dimension d = 1, 2, 3, 4, . . .

Īh(∥k∥) ≡ λ̂+

̸=∑
x,y∈X∩B

hI (∥x− y∥)

· Jd/2−1 (2π∥k∥∥x− y∥) ∥x− y∥−(d/2−1).
(18)

We can also use more than one taper, and will use a
sequence of orthogonal functions {hm} [58], that will be used
to get a new estimator. We will assume they are all of unit
energy and are all (pairwise) orthogonal. This means we will
require ||hm||2= 1 and∫

Rd

hm(z)hm′(z) dz = δmm′ . (19)

We shall study the properties of direct spectral estimators of
the form of Eqn (14). This will help us to characterise the
second order properties of the process X . Most of time series
analysis is based on discrete regular sampling for instance,
and so most tapers are designed for that scenario. We chose
to use continuous tapers, rather than interpolating the points
to a regular grid. This leaves as possible tapers to use the
spheroidal wavefunctions (continuous but hard to compute), as
well as the cosine tapers of [60]. These correspond to separable
taper choices; non-separable choices with be discussed in
Section VII.

IV. DISTRIBUTIONAL PROPERTIES OF BILINEAR
SPECTRAL ESTIMATORS

In this Section we derive the asymptotic marginal distribu-
tion of the tapered periodogram, and its asymptotic expec-

tation. We shall start from the simplest spectral estimator,
namely the Bartlett periodogram as specified by (12) and
calculate its properties. We also define the transfer function
corresponding to a taper h to be

H = F [h], H0 = F [h0]. (20)

We shall now be quite concrete and understand some common
cases of spatial data, and their sampling, and choose as early
special cases Cartesian product domains. We shall focus on
the cuboid sampling domain:

B□(l) = [−l1/2, l1/2]× . . .× [−ld/2, ld/2].

Lemma IV.1. Assume that X is a homogeneous point process
with intensity λ and twice differentiable spectrum f(k) at
all values of k ̸= 0. Assume X is observed in a cuboid
domain B□(l) with a centroid at 0, which is growing in every
dimension or minj lj → ∞. Then the expected value of the
periodogram I0(k) satisfies the equation

EI0(k) = f(k) + |B|−1λ2T (B, k) + o(1), k ̸= 0, (21)

for

T (B, k) =

d∏
j=1

sin2(πkj lj)

(πkj)2
.

Proof. See Appendix A.

This is not what we would expect as a large sample
expectation of the spectrum, given our experience for time
series and random fields in that the term |B|−1λ2T (B, k) has
been added. To get there, we need to understand the DFT
Jh(k) better.

We note that in general h(x)e−2πik·x is identically dis-
tributed but not independent for many choices of point pro-
cesses X , making the choice of a Central Limit Theorem
(CLT) a bit more complex. For a large class of processes one
such CLT is given by [7]. If we compare the quantity in (13)
with [7], then we see that q ∈ N and p = 1, in their notation.
We do not have to worry about e−2πik·x being a function of
several of the points, and this is why q = 1. Citing [7], we
can deduce from their Theorem 1 that as |B| diverges Jh(k)
is asymptotically Gaussian. We recover the second moments
by direct calculations:

Proposition IV.1. Assume that X is a stationary point process
with intensity λ and with spectrum f(k), and that h is a unit
energy taper supported in the domain B□(l) itself only. Then
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the first moments of the direct spectral estimator Jh(k) are
given by:

E {Jh(k)} = E
∑

x∈X∩B

h(x)e−2πik·x (22)

= λ

∫
Rd

h(x)e−2πik·x dx = λH(k), k ∈ Rd

Var {Jh(k)} = λ+ λ2

∫
Rd

|H(k′ − k)|2 f̃(k′) dk′

+ λ2 |H(k)|2 − λ2|H(k)|2

= λ+ λ2

∫
Rd

|H(k′ − k)|2 f̃(k′) dk′ (23)

Rel {Jh(k)} = λ

∫
Rd

H(k′ − 2k)H(k′)dk′

+

∫
Rd

U(k, z)e−2πik·z{ρ(z)− λ2}dz, (24)

with U(k, z) =
∫
h(x)h(z + x)e−2πik·(2x) dx.

Proof. See Appendix B and notice the definition of (20).

Why do we bother with determining the first two mo-
ments of the point pattern? The spectrum characterises any
stationary/homogeneous process and so is a key summary to
estimate [8]. Estimation will be linear in the periodogram, but
once Jh(k) is approximately Gaussian, the distribution of the
periodogram is determined from these moments, using theory
developed for quadratic forms in normal variates [42].

In the above Proposition the term Rel {·} denotes “relation”,
also known as the “complimentary covariance”, see e.g. [54].
With these moments, and the result of [7] we deduce the
following corollary.

Corollary IV.1. Assume X satisfies the constraints of [7],
then the DFT satisfies:

Jh(k)
L→ NC (λH(k), f(k), r(k)) , (25)

r(k) = λ

∫
Rd

H(k′ − 2k)H(k′)dk′

+

∫
Rd

U(k, z)e−2πik·z{ρ(z)− λ2}dxdz,

U(k, z) =

∫
h(x)h(z + x)e−2πik·(2x) dx.

We can view Jh(k) as a complex-valued scalar or a real-
valued two-vector. NC(µ,Σ, C) is the general complex normal
and its arguments are its mean µ, it covariance Σ, as well
as its relation or complimentary covariance C. It should be
contrasted with the complex proper normal NC(µ,Σ), that
has zero relation.

What can we then say about Ih(k)? Using the continuous
mapping theorem [22] we can deduce from (25) that if
we consider only arguments k so that the complementary
covariance is negligible then

|Jh(k)|2
L→ f(k)

2
χ2
2

(
λ2|H(k)|2

f(k)

)
, (26)

where the parameters of the non–central χ2
ν(µ

2) (ν denoting
the degrees of freedom, and µ2 the non-centrality parameter).
We give the form of H(k) in (20).

We can also use the uniform integrability of the variable
Jh(k), to get the asymptotic moments of I0(k) from these
limits. In fact, the expectation of any member of that family
of tapered estimates takes the form of:

E {Ih(k)} =

∫
Rd

|H(k′ − k)|2f(k′)dk′ + λ2|H(k)|2. (27)

This can be derived straightforwardly by direct computation
from (14) by taking expectations with Campbell’s formula and
using the convolution theorem. We see immediately the bias
of this estimator, namely the λ2|H(k)|2 term. To remove the
non-centrality bias, we define the bias-corrected periodogram
from the de-biased discrete Fourier transform

Ĩh(k) =
∣∣∣J̃h(k)∣∣∣2 . (28)

Note also the discussion in [20, p. 292], where the theory
of signed measures is used to make the equivalent defini-
tion, if with additional mathematical sophistication. Therefore
Jh(k) − λH(k) = J̃h(k) can be called the signed measure.
The quantity J̃h(k) is the DFT of the process X0 dual to
the mean-corrected random measure N0(dx) = N(dx)−λdx
where N is the dual counting measure of the point process X .
As we have subtracted H(k) off the discrete Fourier transform,
it is no longer strictly positive, but once we take the modulus
square we are guaranteed to arrive at a real-valued positive
quantity.

There is one wavenumber which is problematic, namely k =
0. For the periodogram we have h0(x) = 1B(x)/

√
|B|. Thus

we have

J0(k) =
1√
|B|

∑
x∈X∩B

e−2πik·x, (29)

J0(0) =
1√
|B|

N(B) =
√
∥B∥λ̂. (30)

This removes the problem of a non-zero mean of the DFT,
as long as we assume that we know the intensity λ, and so
are in the position to remove this effect. Assuming knowledge
of this quantity is not a major hurdle, as it can be estimated
consistently for largish areas (|B|→ ∞), by just counting the
number of points and dividing by the area. For completeness
we also define the signed measure DFT as

J̃h(k) = Jh(k)− λ̂H(k) . (31)

We note directly from (25), that

J̃h(k) → NC{0, f(k), r(k)}. (32)

Also it follows

J̃0(0) =
√
|B|λ̂− λ̂H0(0) =

√
|B|λ̂−

√
|B|λ̂ = 0, (33)

trivially. Thus we cannot estimate the DFT at wavenumber
zero. For a time series analysis when calculating DFTs we
subtract off the sample mean, and then also the mean corrected
DFT is zero at wavenumber zero. In a time series setting the
periodogram at wavenumber zero is often not plotted.

We note that a second way to do bias correction is by means
of

Ĭ(k;h) =
∑

x,y∈X

h(x)h(y)e−2πik·(x−y) − λ̂2 |H(k)|2 . (34)
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The advantage of the first estimator in (28) is that it is
naturally non-negative and removes the error before we take
the modulus square. This also should have a positive impact on
the variance. In addition, where as λ̂ is an unbiased estimator
for λ, λ̂2 can be a biased estimator for λ2.

For additional generality, we could consider a more sophis-
ticated estimator than (34) or (28) see e.g. [14, Ch. 6], and
define

Ig(k) =
∑

x∈X∩B

∑
y∈X∩B

g(x, y)e−2πik·(x−y) − λ̂2G(k, k),

(35)
where g(x, y) is a kernel which may have a spec-

ified support, that has to be selected, and G(k, k) =∑
x

∑
y g(x, y)e

−2πik·(x−y). This estimator suffers from not
being positive by design. For example we could define
g(x, y) = h(x)h∗(y) with h(x) a multi-dimensional data
taper [36], or we could make a non-separable choice of
g(x, y) = h(∥x − y∥). Depending on the choice of g(x, y)
the quantity Ig(k) may satisfy a number of desirable char-
acteristics such as positivity, asymptotic unbiasedness and
computational efficiency.

Looking at the debiased periodogram, we can now deter-
mine further properties of Ih(k), or properties of Ĩh(k). To
produce an estimator that is smoothed we need to study the
covariance and variance of Ĩh(k1) and Ĩh(k2). We first look
at E

{
Ĩh(k)

}
. We find that its finite sample form is specified

by the following Lemma, and then give a form of the bias for
large spatial regions in Theorem IV.1.

Lemma IV.2. Assume that X is a homogeneous point process
with a spectral density f(k). Then the bias-corrected tapered
periodogram has a first moment given by:

E
{
Ĩh(k)

}
=

∫
Rd

|H(k′ − k)|2f(k′)dk′.

Proof. See Appendix C.

Thus as long as H(k) is getting more concentrated in
wavenumber (e.g. H(k) → δ(k)), this is asymptotically in
|B| an unbiased estimator of f(k). Using the signed measure
DFT of (31) to study X is more convenient, as this lets us
avoid the contribution that affects the low wavenumbers.

Let us write down what grid we get large sample unbiased-
ness for, customarily called the Fourier grid, and this is useful
when the observational domain B is a box.

Definition IV.1. The Fourier wavenumber grid for a point
process observed on a cuboid domain B□(l) corresponds to
the points

K(l) : = K(B□(l))

= {kn : kn =
(
pn1/l1, . . . , pnd/ld

)
, pnj ∈ Z}.

(36)

Note that the physical units of the wavenumber elements
is per unit length, such as m−1. Referring to Lemma IV.1
we see that the zero wavenumber, or taper h0 related bias
term T (B, k), vanishes using this grid not only removing
any asymptotic bias at low wavenumbers, but also giving us
a sampling of the wavenumbers that approximately leads to

independent periodogram ordinates, rather like in the random
field case, see Example V.1.

These results establish what wavenumber grid we should
evaluate a standard spectral estimator of a time series at, in
analogy to the the Fourier frequencies [58, p. 197–198] in time
series. Their basic importance follows because we can expect
the direct Fourier transform to be Gaussian and so uncorrelated
implies independence.

A second feature of time series is the notion of the Nyquist
wavenumber [58, p. 98]. This does not exist for point pro-
cesses. It may seem counter intuitive that there is no upper
limit to the wavenumbers we can estimate. When analysing
a process that has been sampled in space, such as a random
field, we expect to see aliasing. Aliasing is when variation
that is happening very rapidly is confused with slower cycles,
because when we have sampled more sparsely, rapid variation
cannot be resolved. For random locations of the point process
the pairwise distances can be any real-valued value, so the
Nyquist wavenumber does not (in a sense) exist.

Theorem IV.1 (Large–Domain Expectation of the tapered
periodogram). Assume that X is a stationary point process
with intensity λ and twice differentiable spectrum f(k) at
all values of k ̸= 0, and that h is a unit energy taper (e.g.
∥h∥= 1) supported in the cuboid domain B□(l) only. Assume
X is observed in B□(l), which is growing in every dimension,
that is min lj → ∞. Then the expected value of the tapered
periodogram Ih(k) satisfies the equation

EIh(k) = f(k) + λ2|H(k)|2+o(1), w ̸= 0, (37)

where H(k) is the Fourier transform of h(x), as defined by
(20).

Proof. See Appendix E.

This theorem establishes that the tapered periodogram is a
biased estimator of the spectrum of the point pattern. Previous
authors made up an ad-hoc corrections [23] to remove the
bias. Our result will suggest a method to arrive at a positive
spectral density estimator that is not biased. This is the basic
and important result; equivalent to [8, Section V]. In fact,
asymptotics are well–understood both for time series and
random fields. Our (previous) understanding of asymptotics for
spectral estimation of point processes hearkens back to [20] or
[23]. In the latter reference the authors informally refer back
to Chemistry theory by Hansen and McDonald, discussing the
properties of gasses.

Corollary IV.2 (Bias–corrected periodogram). Assume that
X is a stationary point process with intensity λ and twice
differentiable spectrum f(k) at all values of k ̸= 0, and
that h is a unit energy taper supported in the cuboid domain
B□(l) only. Assume X is observed in B□(l), which is growing
in every dimension. Then the expected value of the tapered
periodogram Ĩh(k) satisfies the equation

EĨh(k) = f(k) + o(1), k ̸= 0. (38)

Proof. See Appendix D.
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Fig. 3. Top row: Four example data patterns in a rectangle of area 2e4 units, exhibiting regularity, complete randomness, small scale clustering, and clustering
with a left-right axis directionality. Second row: Their debiased periodograms excluding k = 0. Third row: Their multitapered debiased periodograms, 3× 3
sine-tapers. Bottom row: Their rotationally averaged (un-tapered) periodograms, including the case without debiasing. The 2D summaries use a k-grid with a
step size 0.005 in both directions. The rotational averaging was estimated at ∥k∥= 0.0050, 0.0075, . . . , 0.2500 using a box kernel having a radius 1.5 times
the k-grid step size 0.005.

Therefore, we see that we have completely removed the
bias previously observed in the taperered periodogram. This
fact, combined with the elegance and low computation cost
of the debiasing adjustment, suggests that this is the correct
way to construct estimates of the spectrum of a point process.
Furthermore, Corollary IV.2 shows the importance of remov-
ing the spectral bias before squaring – otherwise it gets hard
to isolate and remove the effect at zero wavenumber, which
is exacerbated at higher intensities (growing λ), as is clear
from (37). Note that the estimator Ĩh(k) is debiased relative
to E {Ih(k)}, but is still guaranteed to be non-negative. This
can be compared to removing µ̂ from a time series before
calculating the periodogram.

Finally, to employ smoothing for purposes of variance

reduction, we will extend the tapered estimator to include
multiple tapers. Define M ≥ 1 estimates of the spectrum via

Itm(k) =
∑

x,y∈X∩B

hm(x)e−i2πk·xh∗
m(y)ei2πk·y, (39)

for m = 1, . . . ,M , which is not bias-corrected but
where we assume∫

Rd

hm(x)h∗
m′(x)dx = δmm′ ,

where δmm′ = 1 if m = m′ and 0 otherwise. Of course (39)
still suffers from low-wavenumber bias. To define a debiased
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estimator we take

Ĩtm(k) =

( ∑
x∈X∩B

hm(x)e−i2πk·x − λHm(k)

)

·

 ∑
y∈X∩B

h∗
m(y)ei2πk·y − λH∗

m(k)

 ,

(40)

for m = 1, . . . ,M . We subsequently average these estimates
over m to reduce variance.

In (39) we have a product of hm(x)h∗
m(y). This is an

inevitable consequence of the bilinear form of the periodogram
from the Fourier transform. The most natural way of making
multidimensional and separable tapers would be for x =(
x1 . . . xd

)T
to define the component-wise product taper

hm(x) = h̃m1(x1) . . . h̃md
(xd). We will then need to re-

enumerate m1, . . . ,md into a single index. For instance in
2D if we have three tapers in 1D, then we will end up
with nine tapers in 2D, and m will range from one to nine.
These estimates can also be arrived at starting from (13) and
Jh(k). As we shall use M tapers linearly, and M2 for the
quadratic estimators, we shall use the subscript ‘0’ to refer to
the untapered periodogram, and m = 1, . . . ,M to refer to the
subsequent tapers.

Tapering is very common for stochastic processes. Initially
the idea was hotly contested, but its utility is now firmly
established both for time series and random fields [18], [76].
The idea of tapering is to ameliorate edge effects that leads
to the asymptotically leading bias term. This is important in
1D [70], [76] but of greater importance in 2D and higher [18].
In 2D and higher the edge effects become more pronounced,
and indeed asymptotically dominant [47], [53]. We also use
multitapering to stabilise the variance of any estimator, as
described for time series in [76]. We shall describe the
necessary steps to perform linear estimation of the spectrum
of a 2D and higher dimension point process in Section VI.

Let us set theory aside for a moment and consider some
spectral estimates for archetypal point patterns. Figure 3
demonstrates the debiased periodogram, the debiased mul-
titapered periodogram, with sine-tapers, and a rotationally
averaged 1D summary of the peridogram (defined in Sections
VI&VII) for four point patterns exhibiting different structural
behaviour. The aspect ratio of the figure panels are kept
the same only to have an orderly figure: Due to debiasing
we can estimate the periodogram on wavenumbers of our
own choosing, and not just on the Fourier grid which in
these examples would be different for different tapers. The
wavenumber-grid in this illustration is a regular grid with a
step size 0.005 in both dimensions.

We see that information is present at wavenumbers up to
∥k∥≈ 0.2. The tapering smooths the periodogram, as expected.
There is a dark well near the origin for the regular pattern,
and a bright hump for the clustered pattern, and both features
transfer to the rotationally averaged curves (compare with
Figure 2). The anisotropy of the fourth pattern is hinted by
the anisotropy visible in the 2D periodograms as elongation
of the “hump” in the second dimension. The elongation is
perpendicular to the elongations of the clusters in the data

because wavenumbers relate inversely to spatial units. The
rotationally averaged periodogram was also computed from the
(not shown) non-debiased periodogram for comparison. There
is a very prominent bias near ∥k∥= 0 for the non-debiased
version, which illustrates why the proposed debiasing step is
relevant when applying the method in practice.

V. COVARIANCE OF BILINEAR SPECTRAL ESTIMATORS

In this Section we determine the covariance of the peri-
odogram, in anticipation of smoothing the periodogram. If we
compare the developments of the previous sections to that of
spectral analysis, it would seem that we are in a good position
to estimate the spectrum, especially as we can assume the
spectral deviation function f̃(k) is smooth. The smoothness of
f̃(k) follows from the decay of ρ̃(z). Simple Fourier theory
stipulates that the decay of ρ̃(z) yields the smoothness of
f̃(k). From a mean-square error perspective on estimating the
spectrum, to understand how to smooth the periodogram away
from zero wavenumber, and to do so we need to further study
the variance and covariance of direct spectral estimators.

Our main concern is : 1) Is the variance finite? 2) Can we
find a grid of wavenumbers so that the estimated spectrum
is uncorrelated at these points? To be able to answer such
questions we must study what the variance and covariance of
the DFT is. Let us determine the second order properties of
spectral estimators. Core to our understanding of smoothing
will be the variance and covariance of the tapered functions.
This will be established in the following theorem. For brevity
define

ϕk(x) = e−2πik·x, k, x ∈ Rd. (41)

With this notation we have

Itm(k) =
∑

x,y∈X∩B

hm(x)h∗
m(y)ϕk(x− y), (42)

for m = 1, . . . ,M . Above we note that we have the same
value of m across x and y in (42) as this corresponds to a
modulus square.

Theorem V.1. Let Itm(k) denote the (tapered) periodogram
given by (39). The covariance between the (tapered) peri-
odogram and itself across two wavenumbers k1, k2 ∈ Rd then
takes the form of (44).

Proof. The proof is in Appendix F.

This theorem derives the general expression for the co-
variance of the periodogram, and will help us in general to
determine how to do linear smoothing. The cross-correlation
also relates to [8, Section V], and helps us understand when
we can treat Fourier coefficients as uncorrelated (and with
asymptotic Gaussianity as independent). Uncorrelatedness is
important to the smoothing, as it ensures a variance reduction
by averaging. Whilst, the expression derived in Theorem V.1
is general, and only requires the assumptions of homogeneity
of the point process in space, it is hard to understand so let us
study some special cases. Let us study this general correlation
in the instance of the Poisson process where we know that

ρ(n)(x1, . . . , xn) = λn, (43)
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Cov{Itm(k1), I
t
m′(k2)} =

∫
B4

ρ(4)(x, y, z, v)hm(x)hm(y)hm′(z)hm′(v)ϕk1
(x− y)ϕk2

(z − v) dxdydvdz

+

∫
B3

ρ(3)(x, y, v) [hm(x)hm(y)hm′(x)hm′(v)ϕk1
(x− y) {ϕk2

(x− v) + ϕ−k2
(x− v)}

+ hm(x)hm(y)hm′(y)hm′(v)ϕk1
(x− y) {ϕk2

(y − v) + ϕ−k2
(y − v)}

+ϕk2
(x− y)h2

m(v)hm′(x)hm′(y) + ϕk1
(x− y)h2

m′(v)hm(x)hm(y)
]
dxdydv

+

∫
B2

ρ(2)(x, y) [hm(x)hm(y)hm′(x)hm′(y)ϕk1
(x− y) {ϕk2

(x− y) + ϕ−k2
(x− y)}

+
{
h2
m(x)hm′(x)hm′(y) + h2

m′(x)hm(x)hm(y)
}
{ϕk1(x− y) + ϕk2(x− y)}+ h2

m(x)h2
m′(y)

]
dxdy

+ λ

∫
B

h2
m(x)h2

m′(x) dx− λ2 − λ

∫
B2

hm(x)hm(y)hm′(x)hm′(y) [ϕk1(x− y) + ϕk2(x− y)] ρ(2)(x, y)dxdy

−
{∫

B2

hm(x)hm(y)ϕk1(x− y)ρ(2)(x, y)dxdy

}
·
{∫

B2

hm′(x)hm′(y)ϕk2(x− y)ρ(2)(x, y)dxdy

}

(44)

and consider the case of k1 = k2 = k.
For completeness we also define the spectral bandwidth bh

by

b2h ≡
∫
Rd

∥k∥2|H(k)|2 dk. (45)

Example V.1 (Covariance of Spectral Estimates for Poisson
Processes). Let Itm(k) denote the tapered periodogram given
by (39) for a Poisson process with intensity λ using a
single taper m, and assume that ∥k∥> max{bhm

, bhm′}. We
can determine the covariance between the periodogram using
different tapers (m and m′) or at different frequencies by the
following:

Cov{Itm(k), Itm′(k)} =

λ

∫
B

h2
m(x)h2

m′(x) dx+ λ2δmm′ + o(1).

Note that o(1) is in |B| diverging. The covariance between
the (tapered) periodogram and itself at different wavenumbers
(k1 and k2) takes the form of

Cov{Itm(k1), I
t
m(k2)} = λ∥hm∥44= o(1).

Proof. The proof can be found in Appendices G and H.

At this stage we have simplified our assumptions to the
Poisson process which is quite disappointing. The reason why
we have chosen to do so is clear from Theorem V.1. If
we assume the process is Poisson then several terms cancel.
However if the Fourier transform is turning Gaussian as we
have discussed in (25) in Section III, with uniform integrability
of Jh(k) the following proposition holds.

Proposition V.1. Let Itm(k) denote the tapered periodogram
given by (39), and Ĩtm(k) the tapered bias corrected peri-
odogram. Assume X satisfies the assumptions given for (25)
and that ∥f̃ (m)∥0< ∞ for m = 2, 3, 4, 5, 6. Then

Cov{Ĩtm(k1), Ĩ
t
m′(k2)} = o(1) +

∣∣∣E{J̃m(k1)J̃
∗
m′(k2)}

∣∣∣2 .

To derive the form of the latter term we note

E{J̃m(k1)J̃
∗
m′(k2)} = Cov {Jm(k1), Jm′(k2)}

= λδmm′ + λ2Cov1 {Jm(k1), Jm′(k2)}
(46)

where we have f̃(k) given by (11) and so

Cov1 {Jm(k1), Jm′(k2)}

≡
∫∫

Rd×Rd

ρ̃(x− y)hm(x)e−2πik1·xh∗
m′(y)e2πik2·y dx dy

+ o(1)

=

∫∫
Rd×Rd

∫
Rd

f̃(k′)e−2πix·(k1−k′)e2πiy·(k2−k′)dk′

· hm(x)h∗
m′(y) dx dy + o(1)

=

∫
Rd

f̃(k′)Hm(k1 − k′)H∗
m′(k2 − k′)dk′ + o(1). (47)

We note that as Hm(k) has concentrated support we will be
able to apply similar arguments to those of Appendix D to
determine nearly uncorrelated DFTs.

Proof. See Appendix I

Definition V.1. The tapered Fourier wavenumber grid for a
point process observed on a cuboid domain B□(l) corre-
sponds to the points

KM (B□(l)) =

{kn : kn =
(
pn1τ(ϵ)/l1, . . . , pndτ(ϵ)/ld

)
, pnj ∈ Z},

(48)

where τ(ϵ) is the smallest positive real number such that∣∣∫ Hm(τ(ϵ)− k′)H∗
m′(k′) dk′

∣∣ < ϵ, for all m,m′ ∈
{1 . . .M}.

These results hint at producing general methodology; we
can for the Poisson process figure out how to do non-
parametric estimation. This is however not enough and we
need to determine the variance of the periodogram more gen-
erally. To go further than Example V.1 and avoid the Poisson
assumption we refer back to (25). As Jh(k) is becoming
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Gaussian for larger sample sizes this implies its moments must
also start to behave like the moments of the Gaussian Jh(k).

Note that this result is not contradictory to Theorem V.1
from a dimensional perspective as this theorem concerns the
modulus square of the Fourier transform. With these moments
we can now consider the problem of estimation. We might
feel an increasing degree of unease as we have succumbed
to the usual fallacy of only deriving the most general results
for a Poisson process. However as the observational domain
becomes larger we would expect |Hm(k)| to concentrate and
so having a non-constant spectrum will become less of an
issue.

VI. LINEAR SMOOTHING

Having already derived the first and second order properties
of the periodogram, in this Section we propose an accurate
estimator of f(k) formed by smoothing. If we fully char-
acterise f(k) then we have fully characterised γ(z), as the
Fourier transform is a bijection. Just like for a time series or
random field, a key question concerns the correct method for
quadratic characterisation and estimation.

We want to start from the random variables {Ih(k)}
or {Ĩh(k)} and directly from those quantities (non-
parametrically) estimate the spectral density. As long as we
seek to estimate f(k) at points k where the function f(k) is
continuous, averaging {I0(k)} (or {Ĩh(k)}) locally seems like
a sensible strategy. [23] proposed smoothing the 2D isotropic
ĨD(k) as defined in (16), and applied a weighted average
smoother with user tuned weights. This approach, however,
does not determine how to sample wavenumbers, or remove
correlation. We would additionally like to include the new
form of bias removal before smoothing.

We have two clear options available to us, either smoothing
the raw periodogram at the Fourier frequencies (de-biasing is
not needed at the Fourier frequencies, because we defined the
grid such that the bias will be 0), or by using multitapering. We
then have two possible estimators, namely the bias–corrected
multi-taper estimator of [76] as well as a multi-dimensional
kernel density estimator [26]. They are both linear in the
estimated spectrum. We shall use the periodogram rather than
another estimator for the kernel density estimation, as it is
easier to keep track of bias and correlation.

We therefore define the multitaper estimator [76] (and refer
to [36], [51])

I
t

M (k) =
1

M

M∑
m=1

Ĩtm(k), k ∈ Rd, (49)

where Ĩtm(k) is defined in (39).
Why is it advantageous to use the estimator in (49)? Because

Ĩtm(k) is uncorrelated across m = 1, . . . ,M it follows that the

variance of I
t

M (k) decreases like 1/M . Or

Var{ItM (k)}

=
1

M2

M∑
m=1

M∑
m′=1

Cov{Ĩtm(k), Ĩtm′(k)}

=
1

PM2

M∑
m=1

M∑
m′=1

(
λδmm′ + λ2(f̃(k) + o(1))δmm′

)2
=

λ2

M2

M∑
m=1

(
1 + λf̃(k)

)2
+ o(1/M)

=
λ2

M

{
1 + λf̃(k)

}2

+ o(1/M)

=
1

M
{f(k) + o(1)}2 + o(1/M), (50)

where the last equality follows from Lemma J.1, which is a
consequence of Proposition V.1. We shall explore these results
in practical scenarios in simulations in Section VIII.

An additional useful modification is to consider a one-
dimensional smoothing-function W (k) and a bandwidth ma-
trix Ω and implement multidimensional smoothing, see
e.g. [26], and averaging over directions, thus reducing the
statistic to magnitude t = ∥k∥ only,

Ih(t; Ω) =
∑
k′∈K

Ω−1W
(
Ω−1 (||k′||−t)

)
Ĩh (k

′) , (51)

which we refer to as the “rotationally averaged periodogram”.
[56] call a version of this function the R-spectrum. Alterna-
tively, one could average also over the magnitudes to arrive at a
summary function in direction. In 2D the convenient argument
would be the polar angle; [56] call this version the θ-spectrum
and use it to study anisotropy.

VII. ISOTROPIC SPECTRAL ESTIMATION

In this Section we show how to form isotropic estimators
and discuss their properties. Isotropic estimators are vitally
important in two dimensions and higher as it becomes in-
creasingly difficult to interpret spectra. To simplify our rep-
resentation, it is commonly assumed that we are analysing
isotropic processes, and that only isotropic summaries need to
be produced.

We therefore consider the special case of stationary and
isotropic point processes for which the complete covariance
function depends only on distance, γ(z) = γI(||z||) [20,
p. 310–311]. Such radial functions [32] are special as we
do not require any orientational specificity in our spectral
representation. The isotropy of γ(z) transfers through the
Fourier transform to the sdf so in turn f(k) = fI(||k||). We
shall refer to the treatment of isotropic random fields when
implementing analysis [59]. An alternative is discussed by [27]
and [25], for random fields.

The orientation invariance of the spectrum leads to dimen-
sional reduction of the multidimensional Fourier transform.
Three basic concepts are useful for the isotropic analysis:
Recall the Bessel function of order ν > −1/2

Jν(t) =
tν

2νπ1/2Γ(ν + 1/2)

∫ π

0

sin2ν(u) cos[t cos(u)] du,
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for t ≥ 0. It is connected to the d-dimensional Fourier
transform via [74, Sec 3]

∫
Sd−1

e−2πtiv·udu = 2π t−(d/2−1)Jd/2−1(2πt) ∀v ∈ Sd−1,

for t ≥ 0, we can also note relationships between radial and
Cartesian Fourier representations, see for example [32] or [28].

Recall also the (1-dimensional) Hankel transform of order
m of a function g : [0,∞] 7→ R

Hν [g](t) =

∫ ∞

0

g(r)Jν(tr)r dr, t ≥ 0.

Then if we assume X is a stationary and isotropic process
with a radial second order product density ρ

(2)
I , the sdf at

wavenumber k with t = ∥k∥> 0 takes the form

fI(t = ∥k∥) ≡ f(k)

= λ+

∫
Rd

{
ρ(2)(z)− λ2

}
e−2πik·z dz

= λ+

∫ ∞

0

{
ρ
(2)
I (r)− λ2

}
rd−1

∫
Sd−1

e−2πri k·u du dr

= λ+ 2π

∫ ∞

0

{
ρ
(2)
I (r)− λ2

}(r
t

)d/2−1

Jd/2−1(2πtr)rdr

≡ λ+ 2π Hd/2−1

[{
ρ
(2)
I (r)− λ2

}(r
t

)d/2−1
]
(2πt), (52)

i.e. the sdf is linearly related to the Hankel transform of the
complete covariance function.

Finally we recall the radially averaged set covariance func-
tion,

ν̄B(r) ≡
1

|Sd−1|

∫
Sd−1

|B ∩Bru|du, r ≥ 0

where νB(z) ≡ |B ∩Bz| is the set covariance function of the
set B [39, Appendix B.3].

We start by noting the expectation of (18); by direct
calculation it follows that this takes the form:

E{Īh(∥k∥)} = λ+

∫
B

∫
B∩B−z

hI (∥z∥)

· Jd/2−1 (2π∥k∥∥z∥) ∥z∥d/2−1 ρ̃(2)(∥z∥) dzdx.

As the change of variable to polar coordinates means we will
multiply by ∥z∥d−1, and this will correspond to a d/2 − 1
Hankel transform of the taper h(·) multiplied by the product
density. For more details on the Hankel transform see [32].

To gain insight into how we might estimate the radial
sdf besides numerically rotation-averaging the d-dimensional

periodogram using Eq. (51) we analytically rotation-average
Bartlett’s periodogram (Eq. 14): with t ≥ 0

I0(t) ≡
1

|Sd−1|

∫
Sd−1

I0(tu) du

=
1

|B||Sd−1|
∑

x∈X∩B

∑
y∈X∩B

∫
Sd−1

e−2πi(tu)·(x−y) du

= λ̂+
1

|B||Sd−1|

̸=∑
x,y∈X∩B

∫
Sd−1

e−2πti(x−y)·u du

= λ̂+
2π

|B||Sd−1|td/2−1

·
̸=∑

x,y∈X∩B

Jd/2−1(2πt∥x− y∥) ∥x− y∥−(
d
2−1),

(53)

which in the planar case simplifies to

d=2
= λ̂+

1

|B|

̸=∑
x,y∈X∩B

J0(2πt∥x− y∥).

This explains the motivation behind the isotropic estimator
discussed by [6] and [23]. The aforementioned authors prefer
to normalise by N(B) rather than by |B|, corresponding
to dividing (53) by λ̂. Like the classical periodogram, the
isotropic “shortcut” estimator of Eq.(53) is highly biased near
0, as has already been observed by [23]. The biases are
described in the following proposition.

Proposition VII.1. The isotropic estimator given by (53) has
expectation

E
{
Ī0(t)

}
=

λ+ 2π Hd/2−1

[{
ρ
(2)
I (r)− λ2

}(r
t

)d/2−1 ν̄B(r)

|B|

]
(2πt)

+ 2πλ2 Hd/2−1

[(r
t

)d/2−1 ν̄B(r)

|B|

]
(2πt) (54)

Proof. The proof follows by applying the Campbell’s theorem
and adding and subtracting

2πλ2 Hd/2−1

[(r
t

)d/2−1 ν̄B(r)

|B|

]
(2πt) =

λ2 1

|Sd−1||B|

∫
Sd−1

T (B, tu)du.

If we compare the formulas for the isotropic sdf in (52) and
the expectation in Proposition VII.1, we recognise two sources
of bias, just like with the periodogram. There is a convolution
with a function ν̄B/|B|, coming from the finite observation
window like in the periodogram but this time radially av-
eraged, and a centring bias term that is a radially averaged
version of the d-dimensional bias. Diggle’s truncation-to-local-
minimum construction, see (16), tries to correct for the biases,
but among other things, it will not work well for a clustered
process as the spectrum near zero will be underestimated.
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To work towards a tapered estimator, consider rotation av-
eraging the debiased, tapered estimator of (28), in expectation,

E
1

|Sd−1|

∫
Sd−1

Ĩh(tu) du

= λ+
2π

|Sd−1|td/2−1
E

[ ̸=∑
x,y∈X∩B

h(x)h(y)

· Jd/2−1 (2πt∥x− y∥) ∥x− y∥−(
d
2−1)

]

− λ2

|Sd−1|

∫
Sd−1

|H(tu)|2 du.

(55)

The problem is that a radial function hI might not exist
for which hI(||x− y||) = h(x)h(y). But if we consider data-
tapering the observed differences {x − y : x, y ∈ X ∩ B}
instead of in B, then we can device a taper hI in B ⊕
B =

⋃
x∈B{B + x}, thus we propose the following isotropic

estimator:

Īh(t) ≡ λ̂− λ̂2BiasI(t) +
2π

|Sd−1|td/2−1|B|

·
̸=∑

x,y∈X∩B

hI(x− y)Jd/2−1(2πt∥x− y∥) ∥x− y∥1− d
2 .

(56)

The bias correction term consists of the rotation average of
both the taper and the set covariance of B,

BiasI(t) = 2πHd/2−1

[(r
t

)d/2−1 p̄B,h

|B|

]
(2πt), where

p̄B,h(r) = |Sd−1|−1

∫
Sd−1

|B ∩Bru|hI(ru)du,

and depends only on t = |k|. We warn the reader that the
estimator of (56) is not necessarily positive, but like previous
authors [50], [4], we sacrifice positivity in order to remove
large part of the bias. Additional issues arise from estimation
of the required λ2, as the standard estimator λ̂2 is biased
with a term depending on λ/|B| and a term depending on
the unknown second order product density of the underlying
process. In our examples we use the slightly less biased
estimator of λ̂2 = N(B)[N(B)− 1]/|B|2 which removes the
first order bias. On the positive side, note that the debiased
isotropic estimator without particular tapering (i.e. hI ≡ 1)
can be formed without any tuning parameters.

We may now ask what radial taper to use. Tapers are
normally designed for processes observed in discrete time or
space. We have discussed using separable tapers, and now
note that the choice of the taper needs to match the obser-
vational domain. For example it is difficult to match a square
observational domain with a radial taper, unless one chooses a
compact taper inscribed by the box. There are therefore three
considerations 1) demanding the taper be separable in space,
2) isotropic in space, or 3) exactly compact in space. Discrete
and isotropic tapers have been been determined numerically
by [65]. This will not be an option for us as we need to evaluate
the tapers at random locations.

Slepian and co-authors have studied the design of tapers
in arbitrary dimensions [66]. Often solutions are in terms of
prolate spheroidal wavefunctions. Their discrete analogue is
the prolate spheroidal wave sequences, which are similar to the
set of Hermite function [78]. However, the isotropic estimator
can be seen as an estimator for the Fourier transform of the
(non-stationary) first moment of the difference process Z =
{z = x − y : x, y ∈ X ∩ B}, with the connection ρ(2)(z) =
λZ(z)/|B ∩Bz|.

Assuming the observation window is a cuboid B = B□(l),
then the difference vector observation window is B ⊕ B =∏d

j=1[−lj , lj ], and we can create the d-dimensional taper
related to the Hermite functions as the product of the squared
exponentials

hI(z) =

d∏
j=1

e−az2
j /(2lj)

2

, z ∈ Rd (57)

We see that if lj = l for all j, then hI becomes radial.
This is related to circular harmonic decompositions, see [41].
The authors of [78] recommend using a scaling factor which
we have adjusted for a sampling region of zj ∈ (−lj , lj),
but which they match to the spheroidal wave functions. We
propose setting a = 25, as this numerically seems to not
down–weight too much data, or have a too large jump near
the border of B ⊕B.

In a sense our above construction is a “fix” as it only works
for the 0th Hermite function, and using more than one taper
will even if lj = l for all j not lead to isotropic functions.
This is not unsurprising as the sampling domain will leave an
imprint, and capturing this set of information requires using
more than the first taper, see analogous discussion in 1D [58,
Ch. 6]. Also, if we have a spatial sampling that is highly
elongated rectangle rather than a square then another solution
needs to be chosen. Finally we may ask ourselves, what
happens if we have a point process X which is anisotropic
but we still evaluate (15) in 2D for the pattern? Because
it incorporates angular averaging we expect the RHS of the
expression to only depend on ∥k∥ as it does.

Proposition VII.2. The large area expectation of Diggle’s
estimator given in (15) when B is a cuboidal box B□(l) and
when the spectrum is not necessarily isotropic takes the form
in terms of f̃(k) as defined in (11) of

E{ID(k)} = λ+ λ2

∫
Rd

f̃(k′)
δ(∥k∥−∥k′∥)

∥k∥
dk′

+

∫
Rd

δ(∥k∥−∥k′∥)
∥k∥

|B|−1T (B,w − k′)dk′ + o(1),

(58)

where T (B, k) is defined in Lemma IV.1.

Proof. The proof is provided in Appendix K.

This shows what happens when we calculate isotropic
summaries of quantities that are not isotropic per se. Thus the
two propositions determine what expectation the analytically
orientationally averaged periodogram and the second shows us
how Diggle’s estimator mixes orientational information up to
produce an isotropic estimator.
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VIII. SIMULATIONS

To study the behaviour of the estimators we have discussed,
and additionally some of the debiasing results, we conducted
an extensive simulation study.

A. Details for executing the simulations study

We simulated three stationary models in 2D to represent the
archetypal spatial patterns of regularity, complete randomness
and clustering. Throughout the simulations the intensity, i.e.
expected number of points per unit area, was kept constant at
λ ≡ 0.01. The processes were simulated in square observation
windows Bn = [−ln/2, ln/2]

2 of increasing area, such that on
average we observed λ|Bn|= λl2n = n = 25, 50, 100, 200, 400
or 800 points. For example, ln=100 = 100 and ln=400 = 200
spatial units. We chose the regime both to explore the often
encountered small data scenarios and to ascertain asymptotic
behaviour. The models below are tuned so that they produce
patterns with visually distinct structures at ln=100.

Complete randomness i.e. the Poisson process has no ad-
justable parameters after λ was fixed. Spatial regularity is
represented by the Matérn type II process [39, Section 6.5.2]
in two variants, one with hard-core radius 2 (variant “r2”)
and one with radius 5 (variant “r5”) which correspond to
about 40% and 90% of the maximum allowed radius for
the process given λ, respectively. The clustering behaviour is
represented by the Thomas process [39, Section 6.3.2] with
cluster intensity κ and Gaussian dispersal kernel standard
deviation σ and again in two variants, one with many small
or tight clusters (κ = 0.6λ, σ = 2, variant “MS”) and one
with a few large clusters (κ = 0.3λ, σ = 6, variant “FL”).
The per-cluster expected point count µ was then fixed via the
property µκ = λ to 1.67 and 3.33, respectively. The theoretical
pair correlation functions and spectral density functions of
the models are depicted in Figure 2. Example patterns of
each model and observation window combination are given
in Supplement Figure 8.

For the estimation of the 2D spectra we fixed the wavenum-
ber grid to k ∈ [−0.3, 0.3]2 with 101 equidistant steps in each
dimension, giving the step size 0.006 in both dimensions. This
scale was chosen to cover the interesting range of non-constant
values for all models (cf. Figure 2). To reduce the effect of
high wavenumber noise only the values on the sub-grid k ∈
[−0.2, 0.2]2 were considered when integrating over k for the
quality metrics discussed below. When a rotationally averaged
curve was to be computed using Eq. (51), the averaging was
done over the magnitude-grid ∥k∥= 0.003, 0.006, . . . , 0.300
using a box kernel and if not otherwise stated, radius of
1.25 · 0.006. The radial Hermite taper parameter was fixed
to a = 25.

We summarised the quality of each estimator
I. = I.(k;x) under all combinations of a model
M and observation window Bn, say Mn, with an
integrated summary. First, we estimated per-wavenumber
variance V (k;Mn) = Var [I.(k;x)|x ∼ Mn], bias
Bias(k;Mn) = E [I.(k;x)− fM (k)|x ∼ Mn] and mean
square error MSE(k;Mn) = V (k;Mn) +Bias2(k;Mn).
The fM stand for the theoretical sdf of the

model M. Then these were summarised further
to iV ar(Mn) =

∑
k V (k;Mn), the integrated

squared bias iBias2(Mn) =
∑

k Bias2(k;Mn) and
iMSE(Mn) = iV ar(Mn) + iBias2(Mn). Smaller
iV ar, iBias2 and iMSE indicate better quality. The
quantities were estimated from 1000 simulations of every
Mn.

The estimator for a periodogram is given in equation
(28) with the debiasing term included. Bartlett’s periodogram
(“periodogram”) has the taper h0(x) = |Bn|−

1
21Bn

(x) for
window Bn. For the multitapering (“mt M”), defined in
equation (39) with M = M̃2 tapers each having a parameter
m = (m̃1, m̃2) ∈ {1, . . . , M̃}2, we used the orthogonal
sine-tapers hm(x) = 1Bn

(x)
∏2

j=1 sin[πm̃j(xj + lj/2)/lj ].
For the kernel smoothed estimators (“smoothed b”), we first
compute the Bartlett’s periodogram and then, given the esti-
mate I0 on the wavenumber gird, we convolute it with a b× b
discrete template having approximately Gaussian weights.

All computations were done using the R-software [62,
v.3.6.3]. Simulations were done with the help the R-package
spatstat [3, v.1.64-1]. Each of the discussed estimators
were programmed into an R-package ppspectral, available
on request from the first author.

TABLE I
THE FRACTION OF BIAS REMOVED BY THE PROPOSED BIAS CORRECTION.

MAXIMUM IS 1.00.

n
Model Estimator 25 50 100 200 400 800
MatérnII r5 periodogram 1.00 1.00 1.00 0.98 0.99 1.00
MatérnII r5 mt M = 32 0.99 1.00 1.00 1.00 1.00 1.00
MatérnII r2 periodogram 1.00 1.00 1.00 0.99 0.99 1.00
MatérnII r2 mt M = 32 1.00 1.00 1.00 1.00 1.00 1.00
Poisson periodogram 1.00 1.00 1.00 0.98 0.99 1.00
Poisson mt M = 32 1.00 1.00 1.00 1.00 1.00 1.00
Thomas FL periodogram 0.93 0.98 0.99 0.97 0.99 1.00
Thomas FL mt M = 32 0.35 0.86 0.98 1.00 1.00 1.00
Thomas MS periodogram 0.98 0.99 1.00 0.97 0.99 1.00
Thomas MS mt M = 32 0.89 0.98 1.00 1.00 1.00 1.00

B. The effect of debiasing

As we saw in Figure 3, the debiasing term has a large effect
on the quality of the estimates. Table I provides the fractions
of bias removed by the debiasing term for the Bartlett’s
periodogram and M = 32 multitapered periodogram. Nearly
all bias is removed, with the only notable exception being the
65% bias left in the multitapered periodogram when data is
an arguably very small sample of Thomas FL variant.

We illustrate the form of the biases in Figure 4 for two
model variants. The centring bias is always positive, as ex-
pected from equation (27). Bartlett’s periodogram bias (cf.
Lemma IV.1) is concentrated along the axis where one of the
sinc functions is constantly 1 and near the origin where the sec-
ond sinc function grows to 1. The multitapered periodogram
has a square-shape around the origin.

C. Overall quality of the debiased estimators

Figure 5 summarises the estimated integrated variance,
squared bias and MSE of the estimators with various tuning
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Fig. 4. The effect of bias removal for two of the models described in the
text. Theoretical sdf on the left, and then towards the right, estimated mean of:
Bartlett’s periodogram, biased and debiased; Multitapered M = 32, biased
and debiased. Estimated with sample sizes n = 800.

parameters. Only the debiased estimators are included, and
the values are given in log10-scale and relative to the baseline
given by Bartlett’s periodogram.

Multitaper with M = 12 (i.e. only one taper) does not differ
in iMSE from the periodogram as the benefit of averaging
does not apply. With more than one taper the variance is
reduced, e.g. M = 32 it goes down by 90%, and the bias
stays at baseline, but adding more and more tapers (M = 62)
starts to introduce bias especially for low sample sizes. The
bias is more prominent for the clustered cases, and based
on the earlier discussion this is due to oversmoothing at
small wavenumbers. Both the variance reduction and the over-
smoothing happens with the post-hoc smoothing as well. From
the results we can confirm that some smoothing is beneficial
but again a balance must be struck to avoid oversmoothing
(cf. Section VI). The regular process is more resilient to
oversmoothing with reasonable sample sizes.

D. Rotational averaging and isotropic estimation

Isotropic estimation, either by averaging radially or by the
isotropic shortcuts discussed in Section 7, is an important
dimension reduction step for easier visual inspection of the
periodogram (particularly for 3D data). The kernel-based
rotation averaging depends on a bandwidth parameter, and
we studied how this affects the quality metrics. We set the
bandwidth radius to BF ·0.006 and varied the bandwidth factor
BF from 1 to 10. Figure 6 provides the iBias2 and iMSE
for the debiased Bartlett’s periodogram when comparing the
rotationally averaged estimates to the true 1D isotropic sdfs
(cf. Figure 2).

The Poisson process has a constant sdf so oversmoothing
will not be penalised. For the clustered processes even a small
bandwidth introduces bias, but this is typically more than
offset by the reduction in variance. The error for the few large
clusters variant is more sensitive to changes in the bandwidth
than the many small clusters. This is because the effective
range of wavenumbers where the sdf exhibits structure is more
concentrated, and thus easier to smooth out, than the few large
cluster variant (cf. Figure 2).

The strongly regular variant “r5” is similar to the clustered
cases in that an optimal bandwidth is clearly present. For the
less regular “r2” variant the error is like that of the Poisson
process, possibly due to the target sdf being a weak oscillation
around a constant and this being hard to detect. If we look at
the integrated squared bias we however do see that with large
enough data oversmoothing is detectable.

We note that since multitapered periodograms and locally
averaged periodograms are already smoothed, their rotational
averaged estimates exhibit smoothing bias at smaller band-
width factors (results not worth showing here).

TABLE II
SCORES iMSE, iBias AND iV ar FOR ISOTROPIC ESTIMATORS,

RELATIVE TO RADIALLY AVERAGED DEBIASED PERIODOGRAM WITH
OPTIMISED SMOOTHING BANDWIDTH.

No taper Squared-exponential taper
Model iMSE iBias2 iVar iMSE iBias2 iVar
MatérnII r5 6.12 0.21 8.57 3.51 0.29 4.90
MatérnII r2 22.40 3.52 23.07 15.59 1.09 16.12
Poisson 15.72 10.53 15.89 13.76 5.75 13.77
Thomas FL 1.22 0.04 1.81 1.32 0.14 1.97
Thomas MS 4.34 0.01 6.50 3.58 0.04 5.35

To compare the radial averaging to direct isotropic estima-
tion, we estimated the debiased isotropic periodogram and
the squared-exponential tapered isotropic periodogram with
a = 25. Table II provides the relative quality scores for the
isotropic and the tapered isotropic periodograms relative to
radially averaged periodogram with the best bandwidth for
each model and data size, cf. Figure 6. The values are medians
over the sample sizes n ≥ 50.

In iMSE sense the radially averaged periodogram performs
the best, chiefly because iMSE is of order iVar and the radial
averaging greatly reduces the variance. However, in terms of
bias the isotropic estimator provides more accuracy, except for
Poisson when no oversmoothing is possible. Adding a smooth
taper to the isotropic estimator further reduces the bias, but can
increase the variance, likely due to some data near the edges is
being filtered out. The bias occurs near ∥k∥= 0, mostly when
∥k∥< 1/(

√
2ln) (illustration in Supplements Figure 9).

IX. SPECTRAL PROPERTIES OF THE BARRO COLORADO
ISLAND DATA

The Barro Colorado Island (BCI) rainforest data set [16]
contains a census of tree and shrub species from a 1000m by
500m region on Barro Colorado Island, Panama. We illustrate
the techniques developed in this paper on the point patterns
corresponding from three species contained in the BCI data,
using the 2015 census, using only individuals that are alive.

Figure 7 shows an example analysis for three species from
the BCI data, namely Annona acuminata, Herrania purpurea,
and Psychotria marginata. The top row shows the point
patterns for each of the three species, the middle row shows
estimates of their spectral density functions computed using
multitapering, and the bottom row shows estimates of the pair
correlation function for each species. It is clear that there are
substantial differences in the structures present in the spectral
density functions of these species. Firstly, in the case of
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Fig. 5. Relative integrated variance (top row), squared integrated bias (middle), and integrate mean square error (bottom) for different models and estimators
of spectral density at various levels of sample size n. The values are relative to debiased Bartlett’s periodogram, which has the value 0 in the presented
log10-scale. For example, a value of -1 means the error is of order 0.1 relative to the periodogram.
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Fig. 6. Integrated squared bias (top) and integrated MSE of the rotationally averaged Bartlett’s periodogram when compared to the true 1D isotropic sdf. The
rotational averaging bandwidth was BF · 0.006, where the bandwidth factor BF is on the x-axis. The models are described in the text.

Annona acuminata (left), we see clearly anisotropic behaviour,
similar to the anisotropic clustering shown in Figure 3. This
is to be expected as A. acuminata is usually associated with
very moist soils and has previously been associated with the
stream (a linear structure) running through the plot [37], [29].
Secondly, in the case of Herrania purpurea (middle) we see
no structure at all, which is reassuring as this suggests that the
features seen in the other two species are signal and not just
noise. Again, this makes ecological sense as H. purpurea is a
lower canopy tree that has seeds widely dispersed by monkeys
and other animals. Finally for Psychotria marginata (right) we
see more isotropic behaviour, with information present at low
wavenumbers until ∥k∥≈ 0.005, corresponding to correlation
on scales of length around 200. Additionally, there is further
information until ∥k∥≈ 1/15, which corresponds to the peak
seen in the pair correlation function until scales around 15.
This clustering is likely caused by seeds being relatively poorly

dispersed [69], but also because P. marginata is associated
with moist soils leading to a build up of large clusters of trees
in the low plateau and swamp regions of the plot in the upper
left quadrant of the BCI plot [37], [29].

X. CONCLUSIONS

Spectral analysis and Fourier features are classical and im-
portant tools for characterizing and understanding time series
and random fields [58], [24], in for example estimation and
detection problems. When first introduced, the fundamental
theory of spectral analysis for random fields and time series
corresponded to understanding what Fourier transform to use,
and determining the first and second moments of that Fourier
transform for stationary time series and random fields [61].
This led researchers to develop the by now well–established
theory of spectral analysis (again for time series and random
field) from which a large and sophisticated theory of spectral
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Fig. 7. Top row: Point patterns of three different species from the BCI data. Middle row: Multitaper spectral estimates from the above point patterns, rescaled
by the intensity and plotted on a decibel scale, i.e. 10 log10(Ī

t
M (k)/λ̂) with M = 32. Bottom row: Estimated pair correlation function for the three species,

i.e. ρ̂(2)(z)/λ̂2.

analysis was built. This set of methods has more recently been
discovered in machine learning [48], [73]. The corresponding
theory for spatial point processes has been neglected apart
from some notable and not very recent exceptions [5], [6],
[56]. For point processes machine learning researchers have
just started to discover the utility of Fourier-based meth-
ods [38], [44]. Current state of the art for the spectral analysis
of point processes is that we really do not even know what
to compute, and know even less how to address its digital
implementation.

This article has addressed this first outstanding problem.
We have calculated the expectation of natural method of
moments estimators. We have imported state of the art ideas
from signal processing as part of this process, and have
addressed how to taper for variance reduction in this setting.
Introducing tapering in this setting required us to determine
how to taper, where we chose to use continuous space tapers,
not to interpolate as had been done by previous authors. We

showed that in the setting of Gaussian convergence, multitaper
estimates of the spectral density have a decreased variance.
Our simulation studies verify our theoretical results, and the
general utility of tapering outside the most restrictive class
where we can prove everything.

This manuscript does not seek to address how to bring
spectral analysis of point processes into the 21st century, and
reproduce all results available for time series and random
fields. Instead we have taken an important first step by
adapting existing signal processing tools for time series and
random fields and shown how they can be modified to help us
estimate the spectral content of a spatial point process. This
paves the way forward to develop more sophisticated theory
which can be applied to complex spatial point pattern datasets
and more sophisticated algorithms.
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APPENDIX A
PROOF OF LEMMA IV.1

Proof. We start the proof by noting that (using that B is
centred)

EI0(k) = λ+ |B|−1

∫
B

∫
B−x

e−2πik·zρ(2)(z)dz (59)

= λ+ |B|−1

∫
B

∫
B−x

e−2πik·z[ρ(2)(z)− λ2]dzdx

+ |B|−1λ2

∫
B

∫
B−x

e−2πik·zdz

= λ+ |B|−1

∫
Rd

|B ∩B−z|e−2πik·z[ρ(2)(z)− λ2]dz

+ |B|−1λ2T (B, k)

= λ+

∫
Rd

G(1)∗(k′)G̃(2)(k′ − k) dk′

+ |B|−1λ2T (B, k),

by the convolution theorem, after we have defined the func-
tions:

G(1)(k) = |B|−1

∫
Rd

|B ∩B−z|e−2πik·z dz = |B|−1T (B, k)

G̃(2)(k) =

∫
Rd

e−2πik·z[ρ(2)(z)− λ2]dz = λ2f̃(k).

Note that from Gradshteyn 3.741 with the change of variables
xj = πkj lj that we get (recalling |B|=

∏
j lj):∫

Rd

T (B, k) dk =

∫
Rd

∏
j

sin2(πkj lj)

(πkj)2
dkj

=

∫
Rd

∏
j

l2j
sin2(xj)

x2
j

(dxj/(πlj))

= |B|
∏
j

(π/π) = |B|. (60)

We have defined

T (B, k) =

d∏
j=1

sin2(πkj lj)

(πkj)2
, k ∈ Rd. (61)

We now go back to our definition of EI
(2)
0 (k), and explore

this more carefully. We also fix 0 < β < 1, and expand the
expectation as follows (realising that care needs to be taken
around the pole):

EI
(2)
0 (k) = λ2

∫
Rd

G(1)∗(k − k′)G̃(2)(k′)dk′

= λ2
d∏

j=1

∫ kj− 1

l
1−β
j

−∞
+

∫ kj+
1

l
1−β
j

kj− 1

l
1−β
j

+

∫ ∞

kj+
1

l
1−β
j


·G(1)∗(k − k′)G̃(2)(k′)dk′

= EI
(2)
1...1(k) +EI

(2)
12...(k) + · · ·+EI

(2)
d···d(k).

We can note directly, that taking a supremum over G(1)∗(k−
k′) in the range of integration, and assuming the integral

of G(2)(k) is finite (which is true from Parseval-Rayleigh
relationships)

EI
(2)
11 (k) = O(|B|−1

d∏
j=1

l2−2β
j ) = O(

d∏
j=1

l1−2β
j ), (62)

which requires β > 1/2 to be o(1). The same holds for the
other elements apart from EI

(2)
2...2(k). We therefore have

EI
(2)
0 (k)

= λ2
d∏

j=1

∫ kj+
1

l
1−β
j

kj− 1

l
1−β
j

G(1)∗(k − k′)G̃(2)(k′)dk′ {1 + o(1)}

≡ I(2)
0 (k) {1 + o(1)} , (63)

so that

I(2)
0 (k) ≡ λ2

d∏
j=1

∫ kj+
1

l
1−β
j

kj− 1

l
1−β
j

G(1)∗(k − k′)G̃(2)(k′)dk′.

We assume that f̃(k) is twice differentiable at k (everywhere
possibly but k = 0) so that we get for all k ̸= 0 and for
∥k − k′′∥< ∥k − k′∥

f̃(k′) = f̃(k) +∇f̃(k)T (k′ − k)

+
1

2
(k′ − k)

T
H̃f (k

′′) (k′ − k) ,
(64)

defining ∇f̃(k) as the gradient and H̃f (k) as the Hessian
matrix.

Substituting this expansion back into (63) we get with a
change of variables

I(2)
0 (k) = λ2

∫ k1+
1

l
1−β
1

k1− 1

l
1−β
1

. . .

∫ kp+
1

l
1−β
p

kp− 1

l
1−β
p

G(1)∗(k − k′)

·

{
f̃(k) +∇f̃(k)T (k′ − k)

+
1

2
(k′ − k)

T
H̃f (k

′′) (k′ − k)

}
dk′

= λ2f̃(k)

∫ k1+
1

l
1−β
1

k1− 1

l
1−β
1

. . .

∫ kp+
1

l
1−β
p

kp− 1

l
1−β
p

G(1)∗(k − k′) dk′

+
1

2
tr

{
H̃f (k

′′)

∫ k1+
1

l1−β

k1− 1

l1−β

. . .

∫ kp+
1

l1−β

kp− 1

l1−β

|B|−1

· T (B, k − k′) · (k′ − k) (k′ − k)
T

dk′

}
.

(65)

We can then note that∫ k1+
1

l1−β

k1− 1

l1−β

. . .

∫ kp+
1

l1−β

kp− 1

l1−β

G(1)(k − k′) dk′ = 1 + o(1).
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By direct calculation we then find∫
Rd

G(1)(k)dk = |B|−1

∫
Rd

∫
Rd

|B ×B−z|e−i2πk·z dzdw

= |B|−1

∫
Rd

|B ×B−z|δ(z) dz

= 1.

Note that this is now consistent with (60), and achieves a value
of 1. Second,∫ k1+

1

l1−β

k1− 1

l1−β

. . .

∫ kp+
1

l1−β

kp− 1

l1−β

(k′ − k)
T
G(1)∗(k − k′) dk′ = 0,

as
|B ×B−z|= |B ×Bz|,

implies that this function |B × B−z| is symmetric (or even)
in z, and real-valued, which implies that its Fourier transform
also is real-valued. The symmetric integral of an even times
an odd function is always zero.

We now also determine

B =

∫ k1+
1

l
1−β
1

k1− 1

l
1−β
1

. . .

∫ kp+
1

l1−β

kp− 1

l1−β

G(1)∗(k − k′)

· (k − k′) (k − k′)
T

dk′.

Let us start by a change of variables. Let us first define the
matrix

L = diag (l1, . . . , ld) .

Thus the change of variables is

ν = πL (k − k′) ⇐⇒ k′ = k −L−1ν/π. (66)

With this change of variables we get that

B =

∫ lβ1 /2

−lβ1 /2

. . .

∫ lβp/2

−lβp/2

G(1)∗(k − k′) · (k − k′) (k − k′)
T

dk′

=

∫ lβ1 /2

−lβ1 /2

. . .

∫ lβp/2

−lβp/2

d∏
j=1

π2l2j sin
2(νj)

|B|ν2j
·L−1π−dννTL−1π−d dνj(1/lj)

=

∫ lβ1 /2

−lβ1 /2

. . .

∫ lβp/2

−lβp/2

d∏
j=1

lj sin
2(νj)

|B|ν2j
L−1ννTL−1 dνj .

(67)

We then find if all the lj = l then if 0 < β

tr {B} =

∫ lβ/2

−lβ/2

. . .

∫ lβ/2

−lβ/2

d∏
j=1

sin2(νj)

ν2j

d∑
q=1

(νq/l)
2 dνj

= d · 1

l2

(∫ ∞

−∞

sin2(x)

x2
dx

)d−1 ∫ lβ/2

−lβ/2

sin2(x) dx

=
d

l2
πd−1lβ {1 + o(1)} . (68)

This decreases with increasing l as long as β < 2 (which
follows as we have assumed β < 1), and as the next error term
is O(l−β). We therefore want to chose β → 1, or for some

fixed ϵ > 0 take β = 1 − ϵ. Putting all of these components
together we get that

EI0(k) = λ+ |B|−1

∫
Rd

|B ∩B−z|e−2πik·z[ρ(2)(z)− λ2]dz

+ |B|−1λ2T (B, k)

= λ+ λ2f̃(k) +
1

2
tr

{
H̃f (k

′′)
d

l2−β
πd−1 {1 + o(1)}

}
+ |B|−1λ2T (B, k)

= λ+ (−λ+ f(k)) {1 + o(1)}

+
1

2
tr

{
H̃f (k

′′)
d

l2−β
πd−1 {1 + o(1)}

}
+ |B|−1λ2T (B, k)

= f(k) {1 + o(1)}+ o(1) + |B|−1λ2T (B, k).

APPENDIX B
PROOF OF PROPOSITION IV.1

Proof. We start from using Eqn. (9) and determine that

E {Jh(k)} = E
∑
x∈X

h(x)e−2πik·x

= λ

∫
Rd

h(x)e−2πik·x dx

= λH(k). (69)

Subsequently we find using Eqn. (9)

E
{
|Jh(k)|2

}
= E

∑
x∈X

∑
y∈X

h(x)e−2πik·xh∗(y)e2πik·y


= E

∑
x∈X

|h(x)|2

+E


̸=∑

x∈X,y∈X

h(x)e−2πik·xh∗(y)e2πik·y


= λ

∫
Rd

|h(x)|2 dx+

∫∫
Rd×Rd

ρ(2)(x− y)

· h(x)e−2πik·xh∗(y)e2πik·y dx dy

= λ+

∫∫
Rd×Rd

ρ(2)(x− y)h(x)e−2πik·x

· h∗(y)e2πik·y dx dy. (70)

We now calculate the variance as

Var {Jh(k)} = E
{
|Jh(k)|2

}
− |E {Jh(k)}|2

= λ+

∫∫
Rd×Rd

ρ(2)(x− y)h(x)e−2πik·x

· h∗(y)e2πik·y dx dy − |λH(k)|2 .
(71)

We now define the renormalised quantity

ρ̃(2)(z) =
ρ(2)(z)− λ2

λ2
, z ∈ Rd. (72)
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The expression in (71) then can be simplified to

Var {Jh(k)} = λ+

∫∫
Rd×Rd

ρ(2)(x− y)h(x)e−2πik·x

· h∗(y)e2πik·y dx dy − |λH(k)|2

= λ+ λ2

∫∫
Rd×Rd

(
ρ̃(2)(x− y) + 1

)
· h(x)e−2πik·xh∗(y)e2πik·y dx dy − |λH(k)|2

= λ+ λ2

∫∫
Rd×Rd

ρ̃(2)(x− y)h(x)e−2πik·x

· h∗(y)e2πik·y dx dy

= λ+ λ2Var1 {Jh(k)} , (73)

where we define

Var1 {Jh(k)} ≡
∫∫

Rd×Rd

ρ̃(2)(x− y)h(x)e−2πik·x

· h∗(y)e2πik·y dx dy.

To simplify this expression we note that

Var1 {Jh(k)} =

∫
Rd×Rd

ρ̃(2)(x− y)h(x)e−2πik·x

· h∗(y)e2πik·y dx dy

=

∫
Rd×Rd

[∫
Rd

f̃ (2)(k′)e2πi(x−y)·k′
dk′
]

· h(x)e−2πik·xh∗(y)e2πik·y dx dy

=

∫
Rd×Rd

∫
Rd

f̃ (2)(k′)e−2πi(x−y)·(k−k′)dk′

· h(x)h∗(y) dx dy

=

∫
Rd

f̃ (2)(k′) |H(k − k′)|2 dw′. (74)

This yields the desired expression for the variance. We return
to the expression of the relation of the DFT. We aim to show
that

Rel {Jh(k)} = λ

∫
Rd

H(k′ − 2k)H(k′)dk′

+

∫
Rd

U(k, z)e−2πik·z{ρ(z)− λ2}dxdz.

We have by the definition of the relation [64]

Rel {Jh(k)} = E
{
(Jh(k))

2
}
− (E {Jh(k)})2 .

We then note that

E
{
(Jh(k))

2
}
= E

∑
x∈X

∑
y∈X

h(x)e−2πik·xh(y)e−2πik·y


= E

∑
x∈X

{h(x)}2 e−4πik·x

+E


̸=∑

x∈X,y∈X

h(x)e−2πik·xh(y)e−2πik·y


= λ

∫
Rd

{h(x)}2 e−4πik·xdx

+

∫∫
Rd×Rd

ρ̄(2)(x− y)h(x)e−2πik·x

· h(y)e−2πik·y dx dy

= λ

∫
Rd

{h(x)}2 e−4πik·xdx+Rel1 {Jh(k)} .

(75)

We now seek to simplify this and write

Rel1 {Jh(k)} = λ2

∫∫
Rd×Rd

(
ρ̃(2)(x− y) + 1

)
· h(x)e−2πik·xh(y)e−2πik·y dx dy.

We additionally have from (69):

E2 {Jh(k)} = λ2H2(k).

Putting all of this together we get that

Rel {Jh(k)} = λ

∫
Rd

{h(x)}2 e−4πik·xdx

+ λ2

∫∫
Rd×Rd

(
ρ̃(2)(x− y) + 1

)
h(x)e−2πik·x

· h(y)e−2πik·y dx dy − λ2H2(k)

= λ

∫
Rd

{h(x)}2 e−4πik·xdx

+ λ2

∫∫
Rd×Rd

ρ̃(2)(x− y)h(x)e−2πik·x

· h(y)e−2πik·y dx dy.

We now implement a change of variables, and set z = x− y.
We then have∫∫

Rd×Rd̃

ρ(2)(x− y)h(x)e−2πik·xh(y)e−2πik·y dx dy

=

∫∫
Rd×Rd̃

ρ(2)(z)h(x)e−2πik·xh(x− z)e−2πik·(x−z) dx dz,

and so with the definition of

U(k, z) ≡
∫

h(x)h(z + x)e−2πik·(2x)dx, (76)

the expression is a consequence of the above expressions.

APPENDIX C
PROOF OF LEMMA IV.2

Proof. We start from

Ĩh(k) = |Jh(k)− λH(k)|2 ,

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3269514

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



SUBMITTED MANUSCRIPT 22

and so take

E
{
Ĩh(k)

}
= E{|Jh(k)|2} − λE{Jh(k)H∗(k)}

− λE{J∗
h(k)H(k)}+ λ2E{|H(k)|2}.

We now use Campbell’s theorem to evaluate these expecta-
tions. We already have from Proposition IV.1 that

E
{
|Jh(k)|2

}
= λ+

∫∫
Rd×Rd

ρ(2)(x− y)h(x)e−2πik·x

· h∗(y)e2πik·y dx dy.

Also we note that

H(k) =

∫
Rd

h(x)e−2πik·x dx. (77)

We also note

E {Jh(k)} = λH(k).

Therefore we have

E
{
Ĩh(k)

}
=E{|Jh(k)|2} − λE{Jh(k)H∗(k)}

− λE{J∗
h(k)H(k)}+ λ2E{|H(k)|2}

= E{|Jh(k)|2} − λ2 |H(k)|2

= λ+

∫∫
Rd×Rd

{ρ(2)(x− y)− λ2}h(x)e−2πik·x

· h∗(y)e2πik·y dx dy. (78)

We note that the multiplication in (78) leads to a convolution
in the wavenumber domain. If we rewrite

ρ(2)(z)− λ2 =

∫
Rd

(f(k)− λ)e2πik·z dk, (79)

then rewriting (78) we get

E
{
Ĩh(k)

}
= λ+

∫∫
Rd×Rd

∫
Rd

(f(u)− λ)

· exp(−2πiu · (x− y) + 2πik · (x− y)) du

· h(x)h∗(y) dx dy

= λ+

∫
Rd

(f(u)− λ)∥H(k − u)∥2 du

=

∫
Rd

f(u)∥H(k − u)∥2 du, (80)

as given.

APPENDIX D
PROOF OF COROLLARY IV.2

Proof. Starting from Lemma IV.2 we can note that

E{Ĩh(k)} =

∫
Rd

|H(k′ − k)|2 f(k′) dk′. (81)

Now we need to assume properties of |H(k)| in order to
simplify this expression. Assume the cuboid domain has side
length l, and that we have selected a data taper so that it has
unit norm: ∫

Rd

∥h(x)∥2 dx = 1.

We assume the data taper h(x) is compactly supported in space
and well–concentrated in wavenumber to region W ⊂ Rd so
that ∫∫

W
|H(k)|2 dk = 1− εl, (82)

where l > 0 is the minimum length scale in any dimension
of W , and we assume ϵl → 0 as |l|→ ∞. We now repeat the
arguments posed in Appendix A, for a different window h(x)
then the (spatial) box–car to the region.

We now return to (81) and present a similar argument to
Appendix A. We note that

E{Ĩh(k)} =

∫
Rd

|H(k′ − k)|2 f(k′) dk′

=

∫
Rd

|H(k′ − k)|2
(
λ+ λ2f̃(k′)

)
dk′

= λ+ λ2

∫
Rd

|H(k′ − k)|2 f̃(k′) dk′

= λ+ λ2

∫
W

|H(k′ − k)|2 f̃(k′) dk′

+ λ2

∫
Rd\W

|H(k′ − k)|2 f̃(k′) dk′

= λ+E1{Ĩh(k)}+E2{Ĩh(k)}, (83)

where f [n] denotes the nth derivative of the function f and
we use this equation to define the latter two terms. We note
that ∣∣∣E2{Ĩh(k)}

∣∣∣ ≤ λ2εl∥f̃∥0. (84)

Thus we only need to understand the remaining term in the
expression. We then obtain with a Lagrange form of the
remainder

E1{Ĩh(k)} = λ2

∫
W

|H(k′ − k)|2 f̃(k′) dk′

= λ2

∫
W

|H(k′ − k)|2
[
f̃(k) + f̃ [1](k)(k′ − k)

+
1

2
f̃ [2](k)(k′ − k)2 +R[3](k, k′)

]
dk′

= λ2(1− εl)f̃(k) +
1

2
λ2f̃ [2](k)

·
∫
W

|H(k′ − k)|2 (k′ − k)2 dk′ + R̃[3](k).

(85)

We can note that

|R[3](k, k′)|≤ 1

3!
sup
k′′

|f̃ [3](k′′)|
∫

|k′ − k|3|H(k′ − k)|2 dk′.

(86)
Putting these terms together we obtain that

E{Ĩh(k)} = λ+ λ2(1− εl)f̃(k) +
1

2
λ2f̃ [2](k)

·
∫
W

|H(k′ − k)|2 (k′ − k)2 dk′ + R̃[3](k)

= λ+ λ2f̃(k) + o(1), (87)

which completes the expression.
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APPENDIX E
PROOF OF THEOREM IV.1

Proof. The expectation of the tapered Fourier transform is
(see (9))

EIt(k) =

∫
R2d

h(x)h(y)e−2πik·(x−y)ρ(2)(x, y) dx dy

+

∫
Rd

h2(x)ρ(1)(x) dx

= λ

∫
R
h2(x)dx+

∫
B2

h(x)h(y)e−2πik·(x−y)

· ρ(2)(x− y)dxdy

= λ · 1 +
∫
B2

h(x)h(y)e−2πik·(x−y)

· [ρ(2)(x− y)− λ2]dxdy

+ λ2

∫
B2

h(x)h(y)e−i2πk·(x−y)dxdy

= λ+

∫
Rd

∫
Rd

h(x)h(y)e−2πik·(x−y)

· [ρ(2)(x− y)− λ2]dxdy

+ λ2h(B, k)h(B,−k)

= λ+

∫
Rd

∫
Rd

h(x)h(y)e−2πik·(x−y)

· [ρ(2)(x− y)− λ2]dxdy

+ λ2 |H(k)|2

= λ+EIt,(2)(k) + λ2 |H(k)|2 , (88)

this defining the quantity EIt,(2)(k).
The expression EIt,(2)(k) mirrors what we can see in (59).

We see directly the benefits of tapering, |H(k)| will decay
rapidly from zero so there will be no effect from the third
term, there will be less blurring in the second term apart from
very close to k = 0.

From which we see that we can re-express this under-
standing in the Fourier domain, again using the convolution
theorem. We define

EIt,(2)(k) =

∫
Rd

∫
Rd

h(x)h(y)e−2πik·(x−y)

· [ρ(2)(x− y)− λ2]dxdy.

To explore this further we again do a change of variables:

EIt,(2)(k) =

∫
Rd

∫
Bz

h(x)h(x−z)e−i2πk·z[ρ(2)(z)−λ2]dxdz.

We define the inner product window using that h(x) is
compactly supported to get

Wh(z) =

∫
Bz

h(x)h(x− z)dx

=

∫
Rd

h(x)h(x− z)dx

=

∫
Rd

|H(k)|2 e2πik·z dk.

We could also divide by |B ∩ B−z|h(x)h(x − z) as long as
we are inside the domain. Outside B we cannot, and so this

is why we cannot remove all bias in the spectrum even if we
bias–correct as suggested by [34].

With this window we can note that

EIt,(2)(k) = λ2

∫
Rd

|H(k′ − k)|2 f̃(k′) dk′. (89)

Ideally we would like |H(k)|2 = δ(k), but this is not possible
as |B| is finite. If we assume f̃(k) is smooth and possessing
two derivatives then if B is growing we can obtain nearly
unbiasedness. We now assume that |H(k)|2 is concentrated to
a region in wavenumber W and again use a Taylor expansion.
There are two approaches to this, either [60] or [71].

The systematic bias: λ2h(B, k)h(B,−k) = |H(k)|2 re-
places the sinc functions for the square box. As we have
chosen the function h to be well–concentrated [71], [60], [76],
the effect of this is limited.

We assume that∫
W

|H(k)|2 dk = 1− εl, where εl = o(1). (90)

We also assume that f̃(k) is upper bounded by ∥f̃∥0. We then
have

EIt,(2)(k) = λ2

∫
Rd\W

|H(k′ − k)|2 f̃(k′) dk′

+ λ2

∫
W

|H(k′ − k)|2 f̃(k′) dk′.
(91)

We note that∫
Rd\W

|H(k′ − k)|2 f̃(k′) dk′ ≤ ∥f̃∥0{1− {1− εl}}.

We can yet again utilise the Taylor expansion of (64) inside
W . We find

EIt,(2)(k) = λ2

∫
W

|H(k′ − k)|2 f̃(k′) dk′ {1 + o(1)}

= λ2

∫
W

|H(k′ − k)|2
{
f̃(k) +∇f̃(k)T (k′ − k)

+
1

2
(k′ − k)

T
H̃f (k

′′) (k′ − k)

}
dk′ {1 + o(1)}

= λ2f̃(k) + 0 + λ2

∫
W

|H(k′ − k)|2 1

2
(k′ − k)

T

· H̃f (k
′′) (k′ − k) dk′.

(92)

We note that

∥
∫
W

|H(k′ − k)|2 1

2
(k′ − k)

T
H̃f (k

′′) (k′ − k) dk′∥2

≤ |H̃f (k
′′)|
∫
W

|H(k′ − k)|2 1

2
(k′ − k)

T
(k′ − k) dk′

= |H̃f (k
′′)|
∫
W

|H(k)|2 w2dk = O(1/l).

Then

EIt(k) = λ+EIt,(2)(k) + λ2 |H(k)|2

= f(k) + 0 +O(1/l) + λ2 |H(k)|2 .

We have that |H(k)|2 decays in ∥k∥. If k /∈ W then the
influence of this term becomes negligible.
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APPENDIX F
PROOF OF THEOREM V.1

Proof. For brevity we define the notation ϕk(x) = e−2πik·x.
From first principles using Campbell’s theorem we may
deduce that the uncentred second moment of Itm(k1) with
Itm′(k2) takes the form of

E
{
Itm(k1)I

t
m′(k2)

}
= E

 ̸=∑
x,y∈X

hm(x)hm(y)ϕk1
(x− y) +

∑
x∈X

h2
m(x)


·

 ̸=∑
z,v∈X

hm′(z)hm′(v)ϕk2
(z − v) +

∑
q∈X

h2
m′(q)


= E

{ ̸=∑
x,y∈X

hm(x)hm(y)ϕk1
(x− y)

·
̸=∑

z,v∈X

hm′(z)hm′(v)ϕk2(z − v)

}

+E

{∑
x∈X

h2
m(x)

̸=∑
y,z∈X

hm′(y)hm′(z)ϕk2
(y − z)

+
∑
x∈X

h2
m′(x)

̸=∑
y,z∈X

hm(y)hm(z)ϕk1(y − z)

}

+E

∑
x∈X

h2
m(x)

∑
y∈X

h2
m′(y)


= V1(k1, k2) + V2(k1, k2) + V3. (93)

This latter equation defines the three terms V1(k1, k2),
V2(k1, k2) and V3 (where the latter does not depend on k1 and
k2 even if V2 is the sum of two terms, one only depending
on k1 and the other only depending on k2). We now need to
further split these terms up in order to learn about the cases
when we can have repeats of locations or not. We start with
V1. For convenience we suppress “∈ X” notation. First, we
note:

V1(k1, k2) = E

{ ̸=∑
x,y

hm(x)hm(y)ϕk1(x− y)

·
̸=∑
z,v

hm′(z)hm′(v)ϕk2(z − v)

}
,

therefore,

V1(k1, k2) (94)

= E

̸=∑
x,y

̸=∑
z,v

1 (x ̸= z, x ̸= v)1 (y ̸= z, y ̸= v) (95)

· hm(x)hm(y)hm′(z)hm′(v)ϕk1
(x− y)ϕk2

(z − v)

+E

̸=∑
x,y

̸=∑
z,v

1 (x = z, x ̸= v)1 (y ̸= z, y ̸= v)

· hm(x)hm(y)hm′(z)hm′(v)ϕk1
(x− y)ϕk2

(x− v)

+E

̸=∑
x,y

̸=∑
z,v

1 (x ̸= z, x = v)1 (y ̸= z, y ̸= v)

· hm(x)hm(y)hm′(z)hm′(v)ϕk1(x− y)ϕk2(z − v)

+E

̸=∑
x,y

̸=∑
z,v

1 (x ̸= z, x ̸= v)1 (y = z, y ̸= v)

· hm(x)hm(y)hm′(z)hm′(v)ϕk1(x− y)ϕk2(z − v)

+E

̸=∑
x,y

̸=∑
z,v

1 (x ̸= z, x ̸= v)1 (y ̸= z, y = v)

· hm(x)hm(y)hm′(z)hm′(v)ϕk1
(x− y)ϕk2

(z − v)

+E

̸=∑
x,y

̸=∑
z,v

1 (x = z, x ̸= v)1 (y = v, y ̸= z)

· hm(x)hm(y)hm′(z)hm′(v)ϕk1
(x− y)ϕk2

(z − v)

+E

̸=∑
x,y

̸=∑
z,v

1 (x = v, x ̸= z)1 (y = z, y ̸= v)

· hm(x)hm(y)hm′(z)hm′(v)ϕk1
(x− y)ϕk2

(z − v).
(96)

We have here assumed that hm(x) is compactly supported on
B for all values of p used. Using the simplification implied
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by (9) we obtain the expression of

V1(k1, k2)

= E

{ ̸=∑
x,y

hm(x)hm(y)ϕk1
(x− y)

·
̸=∑
z,v

hm′(z)hm′(v)ϕk2
(z − v)

}

=

∫
B4

ρ(4)(x, y, z, v)hm(x)hm(y)hm′(z)hm′(v)

· ϕk1
(x− y)ϕk2

(z − v)dxdydvdz

+

∫
B3

ρ(3)(x, y, v)hm(x)hm(y)hm′(x)hm′(v)

· ϕk1(x− y)ϕk2(x− v)dxdydv

+

∫
B3

ρ(3)(x, y, z)hm(x)hm(y)hm′(z)hm′(x)

· ϕk1
(x− y)ϕk2

(z − x)dxdydz

+

∫
B3

ρ(3)(x, y, v)hm(x)hm(y)hm′(y)hm′(v)

· ϕk1
(x− y)ϕk2

(y − v)dxdydv

+

∫
B3

ρ(3)(x, y, z)hm(x)hm(y)hm′(z)hm′(y)

· ϕk1(x− y)ϕk2(z − y)dxdydz

+

∫
B2

ρ(2)(x, y)hm(x)hm(y)hm′(x)hm′(y)

· ϕk1
(x− y)ϕk2

(x− y)dxdy

+

∫
B2

ρ(2)(x, y)hm(x)hm(y)hm′(y)hm′(x)

· ϕk1
(x− y)ϕk2

(y − x)dxdy.

We will be able to use the orthogonality between the data
tapers {hm′(x)} but this will be easier in the Fourier domain
where we can assume local smoothness of the Fourier trans-
form of ρ(n)(. . . ), and carry out the usual Taylor series. Now
we start by implementing the calculations for the Poisson case,
to see the mechanics.

The next term in the expansion is then

V2(k1, k2) = E

{∑
v

h2
m(v)

̸=∑
x,y

hm′(x)hm′(y)ϕk2
(x− y)

+
∑
x

h2
m′(x)

̸=∑
v,y

hm(x)hm(y)hm′(v)hm′(y)ϕk1
(x− y)

}

=

∫
B3

ρ(3)(x, y, v)h2
m(v)hm′(x)hm′(y)ϕk2

(x− y) dxdydv

+

∫∫
B2

ρ(2)(x, y)hm′(x)hm′(y)h2
m(x)ϕk2

(x− y) dxdy

+

∫∫
B2

ρ(2)(x, y)h2
m(y)hm′(x)hm′(y)ϕk2(x− y) dxdy

+

∫
B3

ρ(3)(x, y, v)h2
m′(v)hm(x)hm(y)ϕk1

(x− y) dxdydv

+

∫∫
B2

ρ(2)(x, y)h2
m′(x)hm(x)hm(y)ϕk1

(x− y) dxdy

+

∫∫
B2

ρ(2)(x, y)h2
m′(y)hm(x)hm(y)ϕk1(x− y) dxdy.

The final term is in turn using (9)

V3 = E

[∑
x

h2
m(x)

∑
y

h2
m′(y)

]
= E

∑
x ̸=y

h2
m(x)h2

m′(y) +E
∑
x

h2
m(x)h2

m′(x)

=

∫
B2

ρ(2)(x, y)h2
m(x)h2

m′(y) dx dy

+ λ

∫
B

h2
m(x)h2

m′(x) dx. (97)

We can put these terms together to determine the covariance
between the periodogram at two different wavenumbers and
using two different tapers as follows:

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3269514

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



SUBMITTED MANUSCRIPT 26

Cov{Itm(k1), I
t
m′(k2)}

=

∫
B4

ρ(4)(x, y, z, v)hm(x)hm(y)hm′(z)hm′(v)

· fk1
(x− y)fk2

(z − v)dxdydvdz

+

∫
B3

ρ(3)(x, y, v)hm(x)hm(y)hm′(x)hm′(v)

· fk1(x− y)fk2(x− v)dxdydv

+

∫
B3

ρ(3)(x, y, z)hm(x)hm(y)hm′(z)hm′(x)

· fk1
(x− y)fk2

(z − x)dxdydz

+

∫
B3

ρ(3)(x, y, v)hm(x)hm(y)hm′(y)hm′(v)

· fk1
(x− y)fk2

(y − v)dxdydv

+

∫
B3

ρ(3)(x, y, z)hm(x)hm(y)hm′(z)hm′(y)

· fk1(x− y)fk2(z − y)dxdydz

+

∫
B2

ρ(2)(x, y)hm(x)hm(y)hm′(x)hm′(y)

· fk1
(x− y)fk2

(x− y)dxdy

+

∫
B2

ρ(2)(x, y)hm(x)hm(y)hm′(y)hm′(x)

· fk1
(x− y)fk2

(y − x)dxdy

+

∫
B3

ρ(3)(x, y, v)h2
m(v)hm′(x)hm′(y)fk2

(x− y)dxdydv

+

∫∫
B2

ρ(2)(x, y)h2
m(x)hm′(x)hm′(y)fk2

(x− y)dxdy

+

∫∫
B2

ρ(2)(x, y)h2
m(y)hm′(x)hm′(y)fk2(x− y)dxdy

+

∫
B3

ρ(3)(x, y, v)h2
m′(v)hm(x)hm(y)fk1

(x− y)dxdy

+

∫∫
B2

ρ(2)(x, y)h2
m′(x)hm(x)hm(y)fk1

(x− y)dxdy

+

∫∫
B2

ρ(2)(x, y)h2
m′(y)hm(x)hm(y)fk1(x− y)dxdy

+

∫
B2

ρ(2)(x, y)h2
m(x)h2

m′(y) dx dy + λ

∫
B

h2
m(x)h2

m′(x) dx

−
{
λ+

∫
B2

hm(x)hm(y)e−ik1
T (x−y)ρ(2)(x− y)dxdy

}
·
{
λ+

∫
B2

hm′(x)hm′(y)e−ik2
T (x−y)ρ(2)(x− y)dxdy

}
,

so we have

Cov{Itm(k1), I
t
m′(k2)}

=

∫
B4

ρ(4)(x, y, z, v)m(4)(x, y, z, v) dxdydzdv

+

∫
B3

ρ(3)(x, y, z)m(3)(x, y, z) dxdydz

+

∫
B2

ρ(2)(x, y)m(2)(x, y) dxdy

−
{
λ+

∫
B2

hm(x)hm(y)e−ik1
T (x−y)ρ(2)(x− y)dxdy

}
·
{
λ+

∫
B2

hm′(x)hm′(y)e−ik2
T (x−y)ρ(2)(x− y)dxdy

}
,

this defining m(4)(x, y, z, v), m(3)(x, y, z) and m(2)(x, y),
respectively.

We start by noting that the multiplier of ρ(3) takes the form
of

m(3)(x, y, z)

= hm(x)hm(y)hm′(x)hm′(z)ϕk1(x− y)ϕk2(x− z)

+ hm(x)hm(y)hm′(z)hm′(x)ϕk1(x− y)ϕ−k2(x− z)

+ hm(x)hm(y)hm′(y)hm′(z)ϕk1(x− y)ϕk2(y − z)

+ hm(x)hm(y)hm′(z)hm′(y)ϕk1(x− y)ϕ−k2(y − z)

+ h2
m(z)hm′(x)hm′(y)ϕk2

(x− y)

+ h2
m′(z)hm(x)hm(y)ϕk1

(x− y)

= hm(x)hm(y)hm′(x)hm′(z)ϕk1
(x− y)

· {ϕk2
(x− z) + ϕ−k2

(x− z)}
+ hm(x)hm(y)hm′(y)hm′(z)ϕk1

(x− y)

· {ϕk2
(y − z) + ϕ−k2

(y − z)}
+ ϕk2

(x− y)h2
m(z)hm′(x)hm′(y)

+ ϕk1
(x− y)h2

m′(z)hm(x)hm(y).

Looking at the positive term multiplying ρ(2)(x, y) we can
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simplify to

m(2)(x, y)

= hm(x)hm(y)hm′(x)hm′(y)ϕk1
(x− y)ϕk2

(x− y)

+ hm(x)hm(y)hm′(y)hm′(x)ϕk1
(x− y)ϕk2

(y − x)

+ h2
m(x)hm′(x)hm′(y)ϕk2

(x− y)

+ h2
m(y)hm′(x)hm′(y)ϕk1

(x− y)

+ h2
m′(x)hm(x)hm(y)ϕk1(x− y)

+ h2
m′(x)hm(x)hm(y)ϕk2(x− y) + h2

m(x)h2
m′(y)

= hm(x)hm(y)hm′(x)hm′(y)fk1(x− y)

· {fk2(x− y) + f−k2(x− y)}
+ h2

m(x)hm′(x)hm′(y) {fk2
(x− y) + fk1

(x− y)}
+ h2

m′(x)hm(x)hm(y) {fk2
(x− y) + fk1

(x− y)}
+ h2

m(x)h2
m′(y)

= hm(x)hm(y)hm′(x)hm′(y)ϕk1
(x− y)

· {ϕk2
(x− y) + ϕ−k2

(x− y)}
+
{
h2
m(x)hm′(x)hm′(y) + h2

m′(x)hm(x)hm(y)
}

· {ϕk2
(x− y) + ϕk1

(x− y)}
+ h2

m(x)h2
m′(y).

Then it follows that we can simplify the final term using (98).
We then, for the tapered periodogram, get (99).

This gives the covariance between the tapered periodogram
with different tapers, at different wavenumbers, and it quite
a useful general expression, as the following expression will
show.

{
λ+

∫
B2

hm(x)hm(y)e−ik1
T (x−y)ρ(2)(x− y)dxdy

}{
λ+

∫
B2

hm′(x)hm′(y)e−ik2
T (x−y)ρ(2)(x− y)dxdy

}
= λ2 + λ

∫
B2

(hm(x)hm(y)ϕk1(x− y) + hm′(x)hm′(y)ϕk2(x− y))ρ(2)(x− y)dxdy

+

{∫
B2

hm(x)hm(y)ϕk1(x− y)ρ(2)(x− y)dxdy

}{∫
B2

hm′(x)hm′(y)ϕk2(x− y)ρ(2)(x− y)dxdy

} (98)

Cov{Itm(k1), I
t
m′(k2)} =

∫
B4

ρ(4)(x, y, z, v)hm(x)hm(y)hm′(z)hm′(v)ϕk1
(x− y)ϕk2

(z − v) dxdydvdz

+

∫
B3

ρ(3)(x, y, v) [hm(x)hm(y)hm′(x)hm′(v)ϕk1(x− y) {ϕk2(x− v) + ϕ−k2(x− v)}

+ hm(x)hm(y)hm′(y)hm′(v)ϕk1
(x− y) {ϕk2

(y − v) + ϕ−k2
(y − v)}

+ϕk2
(x− y)h2

m(v)hm′(x)hm′(y) + ϕk1
(x− y)h2

m′(v)hm(x)hm(y)
]
dxdydv

+

∫
B2

ρ(2)(x, y) [hm(x)hm(y)hm′(x)hm′(y)ϕk1
(x− y) {ϕk2

(x− y) + ϕ−k2
(x− y)}

+
{
h2
m(x)hm′(x)hm′(y) + h2

m′(x)hm(x)hm(y)
}
{ϕk2

(x− y) + ϕk1
(x− y)}+ h2

m(x)h2
m′(y)

]
dxdy

+ λ

∫
B

h2
m(x)h2

m′(x) dx− λ2 − λ

∫
B2

hm(x)hm(y)hm′(x)hm′(y)(ϕk1(x− y) + ϕk2(x− y))ρ(2)(x, y)dxdy

−
{∫

B2

hm(x)hm(y)ϕk1(x− y)ρ(2)(x, y)dxdy

}
·
{∫

B2

hm′(x)hm′(y)ϕk2(x− y)ρ(2)(x, y)dxdy

}

(99)
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APPENDIX G
PROOF OF EXAMPLE V.1 PART I

Proof. This proposition both determines the variance of a
single taper periodogram, and the cross-covariance between
the tapers at a fixed wavenumber k for a Poisson Process. If we
start from the assumption of Poissonian (namely (43)) then we
find (100). We now need to massage this expression in order
to understand the correlation. We first note that the last and
first terms cancel exactly, leaving us with (101) which defines
the sequence {Tj(k)}. We need some extra relationships to

simplify these expressions. We note that∫
B

hm(x)hm′(x) dx = δmm′∫
B

hm(x)ϕ2k(x) dx ≈ 0, k > bh > 0,∫
Hm(k′ − 2k)Hm′(k′) dk′ ≈ 0 k > bh > 0,

where bh is the bandwidth of the window defined in (45). We
find

T1(k) = λ3

∫
B3

hm(x)hm(y)hm′(x)hm′(v)ϕk(x− y)

· {ϕk(x− v) + ϕ−k(x− v)} dxdydv

= λ3Hm(−k)Hm′(−k)

∫
Hm(k′ − 2k)Hm′(k′) dk′

+ λ3δmm′Hm(k)Hm′(−k).

Cov{Itm(k), Itm′(k)} =

∫
B4

λ4hm(x)hm(y)hm′(z)hm′(v)ϕk(x− y)ϕk(z − v) dxdydvdz

+

∫
B3

λ3 [hm(x)hm(y)hm′(x)hm′(v)ϕk(x− y) {ϕk(x− v) + ϕ−k(x− v)}

+ hm(x)hm(y)hm′(y)hm′(v)ϕk(x− y) {ϕk(y − v) + ϕ−k(y − v)}
+ϕk(x− y)h2

m(v)hm′(x)hm′(y) + ϕk(x− y)h2
m′(v)hm(x)hm(y)

]
dxdydv

+

∫
B2

λ2 [hm(x)hm(y)hm′(x)hm′(y)ϕk(x− y) {ϕk(x− y) + ϕ−k(x− y)}

+
{
h2
m(x)hm′(x)hm′(y) + h2

m′(x)hm(x)hm(y)
}
{ϕk(x− y) + ϕk(x− y)}+ h2

m(x)h2
m′(y)

]
dxdy

+ λ

∫
B

h2
m(x)h2

m′(x) dx− λ2 − λ

∫
B2

hm(x)hm(y)hm′(x)hm′(y)(ϕk(x− y) + ϕk(x− y))λ2dxdy

−
{∫

B2

hm(x)hm(y)ϕk(x− y)λ2dxdy

}
·
{∫

B2

hm′(x)hm′(y)ϕk(x− y)λ2dxdy

}

(100)

Cov{Itm(k), Itm′(k)} = λ3

∫
B3

[hm(x)hm(y)hm′(x)hm′(v)ϕk(x− y) {ϕk(x− v) + ϕ−k(x− v)}

+hm(x)hm(y)hm′(y)hm′(v)ϕk(x− y) {ϕk(y − v) + ϕ−k(y − v)}] dxdydv

+ λ3

∫
B2

ϕk(x− y)hm′(x)hm′(y) + ϕk(x− y)hm(x)hm(y) dxdy

+ λ2

∫
B2

[hm(x)hm(y)hm′(x)hm′(y)ϕk(x− y) {ϕk(x− y) + ϕ−k(x− y)}

+
{
h2
m(x)hm′(x)hm′(y) + h2

m′(x)hm(x)hm(y)
}
2ϕk(x− y)] dxdy

+ λ

∫
B

h2
m(x)h2

m′(x) dx− 2λ3

∫
B2

hm(x)hm(y)hm′(x)hm′(y)ϕk(x− y) dxdy

=

7∑
j=1

Tj(k)

(101)
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The next term is

T2(k) = λ3

∫
B3

hm(x)hm(y)hm′(y)hm′(v)ϕk(x− y)

· {ϕk(y − v) + ϕ−k(y − v)} dxdydv

= λ3δmm′Hm(k)Hm′(−k)

+ λ3Hm(−k)Hm′(−k)

∫
Hm(k′ − 2k)Hm′(k′) dk′.

The following term is

T3(k) = λ3

∫
B2

ϕk(x− y)hm′(x)hm′(y)

+ ϕk(x− y)hm(x)hm(y) dxdy

= λ3Hm′(k)Hm′(−k) + λ3Hm(k)Hm(−k).

The next term is

T4(k) = λ2

∫
B2

[
hm(x)hm(y)hm′(x)hm′(y)ϕk(x− y)

· {ϕk(x− y) + ϕ−k(x− y)}
]
dxdy

= λ2

∣∣∣∣∫ Hm(k′ − 2k)Hm′(k′) dk′
∣∣∣∣2 + λ2δmm′ .

The next term then takes the form

T5(k) = 2λ2

∫
B2

{h2
m(x)hm′(x)hm′(y)

+ h2
m′(x)hm(x)hm(y)}ϕk(x− y) dxdy

= 2λ2

{
Hm′(−k)

∫
R2d

Hm(k′′)Hm(k′ − k′′)

·Hm′(k − k′) dk′dk′′

+Hm(−k)

∫
R2d

Hm′(k′′)Hm′(k′ − k′′)

·Hm(k − k′) dk′dk′′

}
.

The next term takes the form of

T6(k) = λ

∫
B

h2
m(x)h2

m′(x) dx ∼ λ

|B|
.

And the final term is negative:

T7(k) = −2λ3

∫
B2

hm(x)hm(y)hm′(x)hm′(y)ϕk(x− y)dxdy

= −2λ3

∣∣∣∣∫ Hm(k − k′)Hm′(k′) dk′
∣∣∣∣2 .

As we have assumed the wavenumber k is sufficiently large
both |Hm(k)|≈ |Hm′(k)|≈ 0. This means the only surviving
contributions are

Cov{Itm(k), Itm′(k)} ≈ λ

∫
B

h2
m(x)h2

m′(x) dx+ λ2δmm′ .

This yields the stated result. We can derive the o(1) terms
formally should we wish by quantifying the leakage in l, the
length of a side.

APPENDIX H
PROOF OF EXAMPLE V.1 PART II

Proof. If we start from the assumption of Poissonian
(namely (43)) then we have (102). Continuing on with the
calculations we find (103).

We like in the previous case split this into seven parts
{T̃j(k)}. We find that

T̃1(k)

= λ3

∫
B3

h2
m(x)hm(y)hm(v)ϕk1

(x− y)

· {ϕk2(x− v) + ϕ−k2(x− v)} dxdydv

= λ3Hm(−k1)Hm(−k2)

∫
Rd

Hm(k′)Hm(k1 + k2 − k′) dk′

+ λ3Hm(−k1)Hm(k2)

∫
Rd

Hm(k′)Hm(k1 − k2 − k′) dk′.

Cov{Itm(k1), I
t
m(k2)} =

∫
B4

λ4hm(x)hm(y)hm(z)hm(v)ϕk1
(x− y)ϕk2

(z − v) dxdydvdz

+

∫
B3

λ3
[
h2
m(x)hm(y)hm(v)ϕk1

(x− y) {ϕk2
(x− v) + ϕ−k2

(x− v)}

+ hm(x)h2
m(y)hm(v)ϕk1

(x− y) {ϕk2
(y − v) + ϕ−k2

(y − v)}
+ϕk2

(x− y)h2
m(v)hm(x)hm(y) + ϕk1

(x− y)h2
m(v)hm(x)hm(y)

]
dxdydv

+

∫
B2

λ2 [hm(x)hm(y)hm(x)hm(y)ϕk1
(x− y) {ϕk2

(x− y) + ϕ−k2
(x− y)}

+
{
h2
m(x)hm(x)hm(y) + h2

m(x)hm(x)hm(y)
}
{ϕk2(x− y) + ϕk1(x− y)}+ h2

m(x)h2
m(y)

]
dxdy

+ λ

∫
B

h4
m(x) dx− λ2 − λ

∫
B2

h2
m(x)h2

m(y)(ϕk1(x− y) + ϕk2(x− y))λ2dxdy

−
{∫

B2

hm(x)hm(y)ϕk1(x− y)λ2dxdy

}
·
{∫

B2

hm(x)hm(y)ϕk2(x− y)λ2dxdy

}
(102)
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Cov{Itm(k1), I
t
m(k2)} =

∫
B3

λ3
[
h2
m(x)hm(y)hm(v)ϕk1

(x− y) {ϕk2
(x− v) + ϕ−k2

(x− v)}

+ hm(x)h2
m(y)hm(v)ϕk1(x− y) {ϕk2(y − v) + ϕ−k2(y − v)}

+ϕk2
(x− y)h2

m(v)hm(x)hm(y) + ϕk1
(x− y)h2

m(v)hm(x)hm(y)
]
dxdydv

+

∫
B2

λ2
[
h2
m(x)h2

m(y)ϕk1(x− y) {ϕk2(x− y) + ϕ−k2(x− y)}

+
{
h3
m(x)hm(y) + h3

m(x)hm(y)
}
{ϕk2

(x− y) + ϕk1
(x− y)}] dxdy

+ λ

∫
B

h4
m(x) dx− λ3

∫
B2

h2
m(x)h2

m(y)(ϕk1
(x− y) + ϕk2

(x− y))dxdy

(103)

If k1 − k2, k1 + k2 ̸= 0 and is some fixed number, then this
becomes negligible. The next term is

T̃2(k) = λ3

∫
B3

hm(x)h2
m(y)hm(v)ϕk1

(x− y)

· {ϕk2
(y − v) + ϕ−k2

(y − v)} dxdydv
= λ3Hm(k1)Hm(−k2)

·
∫
Rd

Hm(k′)Hm(k2 − k1 − k′) dk′

+ λ3Hm(k1)Hm(−k2)

·
∫
Rd

Hm(k′)Hm(k2 + k1 − k′) dk′.

If k1 − k2, k1 + k2 ̸= 0 and is some fixed number, then this
becomes negligible. The next term is

T̃3(k) = λ3

∫
B3

[
ϕk2(x− y)h2

m(v)hm(x)hm(y)

+ ϕk1
(x− y)h2

m(v)hm(x)hm(y)
]
dxdydv

= λ3 |Hm(k2)|2 + λ3 |Hm(k1)|2 .

As k1, k2 > bh the bandwidth this contribution becomes
negligible. The next contribution in the expression takes the
form

T̃4(k) =

∫
B2

λ2

[
h2
m(x)h2

m(y)ϕk1
(x− y)

· {ϕk2
(x− y) + ϕ−k2

(x− y)}

]
dxdy

= λ2

∣∣∣∣∫
Rd

Hm(k′)Hm(k1 + k2 − k′) dk′
∣∣∣∣2

+ λ2

∣∣∣∣∫
Rd

Hm(k′)Hm(k1 − k2 − k′) dk′
∣∣∣∣2 .

Then the next term is

T̃5(k) = 2λ2

∫
B2

h3
m(x)hm(y)

· {ϕk2(x− y) + ϕk1(x− y)} dxdy.

Figuring out the size of this contribution is a little bit more
complex. The integral will do a Fourier transform in y of

hm(y) in k1 and k2, and also the conjugate will be taken. The
Fourier transform in y will be supported when |k1|< bh and
|k2|< bh, but will not be supported when either magnitude gets
too large. The second Fourier transform in x will be somewhat
more spread–this is because we are Fourier transforming
h3
m(x), which will be a third order convolution once Fourier

transformed. But as long as we can use the joint concentration
in |k1|< bh and |k2|< bh this will still be negligible.

The next term is given by

T̃6(k) = λ

∫
B

h4
m(x) dx = λ∥hm∥44= o(1).

To see why this is true, note that if hm(x) is constant then
we can easily calculate the higher order norms. We find by
using the Cauchy–Schwarz inequality that if p ̸= q that

T 2
6 (k) =

[∫
B

h2
m(x)h2

m′(x) dx

]2
≤
∫
B

h4
m(x)

∫
B

h4
m′(x)

⇒ 0 ≤
∫
B

h2
m(x)h2

m′(x) dx ≤ max{
∫
B

h4
m(x),

∫
B

h4
m′(x)}.

(104)

We also note that

12 =

[∫
B

1 · h2(x) dx

]2
≤
∫
B

12 dx ·
∫
B

h4(x) dx

⇒ 1

|B|
≤
∫
B

h4(x) dx.

We now need to determine an upper bound. We then look at[∫
B

h4(x) dx

]2
≤
∫
B

12 dx ·
∫
B

h8(x) dx

= |B|
∫
B

h8(x) dx. (105)

Then we have

1

|B|
≤
∫
B

h4(x) dx ≤

√
|B|
∫
B

h8(x) dx. (106)

We can for any taper h(x) calculate
∫
B
h4(x) dx explic-

itly. For the constant function we get 1
|B| . For tapers well–

concentrated we would expect a similar decrease, but for any
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choice of taper we can calculate the value of the 4th norm
explicitly.

Thus we understand a bit more about this term. Moving on
to the next aspect of the computation, finally,

T̃7(k) =− λ3

∫
B2

h2
m(x)h2

m(y)

· {ϕk1(x− y) + ϕk2(x− y)}dxdy

=− λ3

∣∣∣∣∫
Rd

Hm(k′)Hm(k1 − k′) dk′
∣∣∣∣2

− λ3

∣∣∣∣∫
Rd

Hm(k′)Hm(k2 − k′) dk′
∣∣∣∣2 .

This shows each individual contribution as long as |k1 −
k2|, |k1 + k2|> bh. This completes the proof.

APPENDIX I
PROOF OF PROPOSITION V.1

Proof. Assume X satisfies the assumptions given for (25)
and (32). Note from Proposition IV.1 that

0 ≤ Var {Jh(k)} = λ+ λ2

∫
Rd

f̃ (2)(k′) |H(k − k′)|2 dw′

≤ λ+ λ2∥f̃ (2)∥0
∫
Rd

|H(k − k′)|2 dw′

= λ+ λ2∥f̃ (2)∥0< ∞. (107)

We can then deduce from [22, Theorem 6.1] that J̃h(k) is
uniformly integrable. However to be able to compute the
covariance of the periodogram from the convergence of law
to the Gaussian, then we need to show that |J̃m(k)|4, or even
|J̃m(k1)|2|J̃m′(k2)|2 are uniformly integrable. We now apply
[22, Theorem 6.2] and assume ∥f̃ (2)∥0, ∥f̃ (3)∥0, ∥f̃ (4)∥0,
∥f̃ (5)∥0 and ∥f̃ (6)∥0 are all finite which assures |J̃m(k)|4 and
|J̃m(k1)|2|J̃m′(k2)|2 are uniformly integrable. We can then
deduce that as J̃m(k) has converged in law to a Gaussian
random variable, the moments of J̃m(k) can be computed from
the Gaussian law.

It follows that Isserlis’ [40] theorem can be applied by
using [22, Theorem 6.2] and so

Cov{Ĩtm(k1), Ĩ
t
m′(k2)} = E{J̃m(k1)J̃

∗
m(k1)J̃m′(k2)J̃

∗
m′(k2)}

+ o(1)−E{J̃m(k1)J̃
∗
m(k1)}E{J̃m′(k2)J̃

∗
m′(k2)}

= E{J̃m(k1)J̃m′(k2)}E{J̃∗
m(k1)J̃

∗
m′(k2)}

+E{J̃m(k1)J̃
∗
m′(k2)}E{J̃∗

m(k1)J̃m′(k2)}+ o(1)

= o(1) +
∣∣∣E{J̃m(k1)J̃

∗
m′(k2)}

∣∣∣2 .
We note that the same sort of calculations as Proposition IV.1
can be applied and so for k1 ̸= k2

E{J̃m(k1)J̃
∗
m′(k2)}

= E{(Jm(k1)− λHm(k1))(J
∗
m′(k2)− λH∗

m′(k1))}
= E{Jm(k1)J

∗
m′(k2)} − λ2Hm(k1)H

∗
m′(k2).

We now calculate the covariance as

Cov {Jm(k1), Jm′(k2)}
= E{Jm(k1)J

∗
m′(k2)} − λ2Hm(k1)H

∗
m′(k2)

= λδmm′δk1k2 +

∫∫
Rd×Rd

ρ(2)(x− y)

· hm(x)e−2πik1·xh∗
m′(y)e2πik2·y dx dy

− λ2Hm(k1)H
∗
m′(k2). (108)

We now define the renormalised quantity

ρ̃(2)(z) =
ρ(2)(z)− λ2

λ2
, z ∈ Rd. (109)

The expression in (108) then can be simplified to

Cov {Jm(k1), Jm′(k2)}

= λδmm′δk1k2 + λ2

∫∫
Rd×Rd

(
ρ̃(2)(x− y) + 1

)
· hm(x)e−2πik1·xh∗

m′(y)e2πik2·y dx dy

− λ2Hm(k1)H
∗
m′(k2)

= λδmm′δk1k2
+ λ2

∫∫
Rd×Rd

ρ̃(2)(x− y)

· hm(x)e−2πik1·xh∗
m′(y)e2πik2·y dx dy

= λδmm′δk1k2
+ λ2Cov1 {Jm(k1), Jm′(k2)} , (110)

where we define

Cov1 {Jm(k1), Jm′(k2)}

≡
∫∫

Rd×Rd

ρ̃(2)(x− y)hm(x)e−2πik1·xh∗
m′(y)e2πik2·y dx dy.

(111)

To simplify this expression we note that

Cov1 {Jm(k1), Jm′(k2)}

=

∫∫
Rd×Rd

ρ̃(2)(x− y)hm(x)e−2πik1·xh∗
m′(y)e2πik2·y dx dy

=

∫∫
Rd×Rd

∫
Rd

f̃ (2)(k′)e2πi(x−y)·k′
dk′

· hm(x)e−2πik1·xh∗
m′(y)e2πik2·y dx dy

=

∫∫
Rd×Rd

∫
Rd

f̃ (2)(k′)e−2πix·(k1−k′)e2πiy·(k2−k′)dk′

· hm(x)h∗
m′(y) dx dy

=

∫∫
Rd

f̃ (2)(k′)Hm(k1 − k′)H∗
m′(k2 − k′)dk′. (112)

Note that it is not dimensionally contradictory to Theo-
rem V.1 as the periodogram is the modulus square of the
Fourier transform. We note that as Hm(k) has concentrated
support we can apply similar arguments to those of Appendix
D, as will follow.

APPENDIX J
PROOF OF LEMMA J.1

Lemma J.1. Assume X satisfies the assumptions given
for (25) and that ∥f̃ (j)∥0< ∞ for j = 2, 3, 4, 5, 6. Assume the
two multitapers hm(x) and hm′(x) are orthogonal and are
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well concentrated on the compact set W ⊂ Rd with length
scale l so that for some chosen ϵl = o(1/l)

∫
W
|Hm(k)|2 dk = 1− ϵl.

Then assuming k1, k2 ∈ KM (B□(l))

Cov1 {Jm(k1), Jm′(k2)}

≡
∫
Rd

f̃ (2)(k′)Hm(k1 − k′)H∗
m′(k2 − k′)dk′ + o(1)

= f̃ (2)(k1)δm′mδk1k2
+O(1/l). (113)

Proof. We assume that for a choice of εl we can define a
wavenumber region W

∫
W

|Hm(k)|2 dk = 1− εl, where εl = o(1). (114)

We also assume that f̃(k) is upper bounded by ∥f̃∥0. We then
have

Cov1 {Jm(k1), Jm′(k2)}

=

∫
Rd\W

Hm(k1 − k′)H∗
m′(k2 − k′)f̃(k′) dk′

+

∫
W

Hm(k1 − k′)H∗
m′(k2 − k′)f̃(k′) dk′.

(115)

We note that

∣∣∣∣∣
∫
Rd\W

Hm(k1 − k′)H∗
m′(k2 − k′)f̃(k′) dk′

∣∣∣∣∣
≤ ∥f̃∥0{1− {1− εl}}.

(116)

We can yet again utilise the Taylor expansion of (64) inside

W . We find

Cov1 {Jm(k1), Jm′(k2)}

=

∫
W

Hm(k1 − k′)H∗
m′(k2 − k′)f̃(k′) dk′ {1 + o(1)}

= {1 + o(1)}
∫
W

Hm(k1 − k′)H∗
m′(k2 − k′)

·

{
f̃(k1) +∇f̃(k1)

T (k′ − k1)

+
1

2
(k′ − k1)

T
H̃f (k

′′) (k′ − k1)

}
dk′

= δk1k2

∫
W

Hm(k1 − k′)H∗
m′(k1 − k′)f̃(k1) dk

′

+ {1 + o(1)}
∫
W

Hm(k1 − k′)H∗
m′(k2 − k′)

·

{
∇f̃(k1)

T (k′ − k1)

+
1

2
(k′ − k1)

T
H̃f (k

′′) (k′ − k1)

}
dk′

= f̃(k1)δm′mδk1k2 +O(1/
√
l)

+

∫
W

Hm(k1 − k′)H∗
m′(k2 − k′)

· 1
2
(k′ − k1)

T
H̃f (k

′′) (k′ − k1) dk′.

We note that∥∥∥∥∥
∫
W

Hm(k1 − k′)H∗
m′(k2 − k′)

· 1
2
(k′ − k1)

T
H̃f (k

′′) (k′ − k1) dk′

∥∥∥∥∥
2

≤ |H̃f (k
′′)|
∫
W

Hm(k1 − k′)H∗
m′(k2 − k′)

· 1
2
(k′ − k1)

T
(k′ − k1) dk′

= |H̃f (k
′′)|
∫
W

Hm(k1 − k′)H∗
m′(k2 − k′)w2dk = O(1/l).

Then

Cov {Jm(k1), Jm′(k2)} = λδmm′δk1k2

+ λ2Cov1 {Jm(k1), Jm′(k2)}
= λδmm′δk1k2

+ λ2f̃(k)δm′mδk1k2

+O(1/
√
l) +O(1/l).

APPENDIX K
PROOF OF PROPOSITION VII.2

Proof. An interesting question is what if we use Diggle’s
estimator even if the point process is not isotropic. We recall
that the estimator takes in 2D the form

Ī0(|k|) = λ̂+ |B|−1

̸=∑
x,y∈X∩B

J0 (2π|k|·∥x− y∥) . (117)
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We can still compute the estimator for any observed point-
process X , even if X was not an isotropic process. The
estimator Ī0(|k|) has expectation

E{Ī0(|k|)} = λ+ |B|−1

̸=∑
x,y∈X∩B

EJ0 (2π|k|·∥x− y∥)

= λ+ |B|−1

∫
B

∫
B−x

J0 (2π|k|·|z|) ρ(2)(z) dz dx

= λ+ |B|−1

∫
B

∫
B−x

J0 (2π|k|·|z|)

·
{
ρ(2)(z)− λ2

}
dz dx

+ λ2|B|−1

∫
B

∫
B−x

J0 (2π|k|·|z|) dz dx

= λ+ |B|−1

∫
Rd

|B ×B−z|·J0 (2π|k|·|z|)

·
{
ρ(2)(z)− λ2

}
dz

+ λ2|B|−1

∫
B

|B ×B−z|·J0 (2π|k|·|z|) dz

= EĪ
(1)
0 (|k|) +EĪ

(2)
0 (|k|) +EĪ

(3)
0 (|k|), (118)

the latter defining the form of these three contributions.
Just like before we shall explicitly demonstrate the effects

of this convolution. We have that the Fourier transform of the
Bessel function is

F {J0 (2π|k|·|z|)} (u)

=

∫∫
J0 (2π|k|·|z|) e−2πiz·udz

=

∫ ∞

0

∫ 2π

0

J0 (2π|k|r) e−2πir|u|cos(ϕ−ϕu)2π|k|d|k|dϕ

=

∫ ∞

0

J0 (2π|k|r) 2π|k|d|k|
∫ 2π

0

e−2πi|k||u|cos(ϕ−ϕu)dϕ.

We now note that

J0(x) =
1

2π

∫ π

−π

e−ix sin tdt.

Thus

F {J0 (2π|k|·|z|)} (u) =
∫ ∞

0

J0 (2π|k|r) (2π)2J0 (2πr|u|) rdr

= (2π)2
δ(|k|−|u|)

|k|
.

We now use the convolution theorem to deduce that:

EĪ
(3)
0 (|k|) = |B|−1

∫
B

|B ×B−z|·J0 (2π|k||z|) dz

=

∫
Rd

δ(|k|−|u|)
|k|

|B|−1T (B, u) du. (119)

Thus the low magnitude wavenumber bias is determined by
this term. The reason this is a low wavenumber term is the
form of |T (B, u)|: this is concentrated near |u|= 0, and on
top the convolution is aggregating over all wavenumbers with
the same modulus. We have assumed rectangular sampling
domain.

The second term in the expectation of (118) takes the form
of

EĪ
(2)
0 (|k|)

= |B|−1

∫
Rd

|B ×B−z|·J0 (2π|k||z|)
{
ρ(2)(z)− λ2

}
dz.

As multiplications in wavenumber are convolutions in space,
we need to compute

F
{
|B|−1·|B ×B−z|·J0 (2π|k||z|)

}
(u)

=

∫
Rd

|B|−1·|B ×B−z|·J0 (2π|k||z|) e−2πiuT z dz

=

∫
Rd

δ(|k|−|u′|)
|k|

|B|−1T (B, u′ − u) du′

F
{
ρ(2)(z)− λ2

}
(u) = λ2f̃(u). (120)

With these pieces we have that

EĪ
(2)
0 (|k|)

=

∫
Rd

∫
Rd

λ2f̃(u′)
δ(|k|−|u′′|)

|k|
|B|−1T (B, u′′ − u′) du′′du′.

(121)

We now see that further blurring is present in (121) from
averaging out the direction. In the standard non-isotropic case
this was just a convolution of f̃(k) with |B|−1T (B, k). To get
a feeling for its behaviour we note that as |B|−1T (B, k) →
δ(k)/(2π). In this case we get for d = 2

EĪ
(2)
0 (|k|) →

∫
R2

∫
R2

λ2f̃(u′)
δ(|k|−|u′′|)

2π|k|
δ(u′′ − u′) du′′du′.

So this expression is what follows; an orientationally averaged
spectral density. Now assume additionally that the spectrum
is isotropic, namely f̃(u′) = f̃0(|u′|), and then we get as
|B|→ ∞,

EĪ
(2)
0 (|k|) →

∫
R2

λ2f̃0(|u′′|)δ(|k|−|u′′|)
2π|k|

du′′

= λ2

∫
R+

f̃0(u
′′)

δ(|k|−|u′′|)
|k|

|u′′| d|u′′|

= f̃0(|k|). (122)

This shows that asymptotically we would recover the isotropic
spectral density from this component. Finally we can write

EĪ0(|k|) = λ+ f̃0(|k|) + o(1)

+

∫
Rd

δ(|k|−|u|)
|k|

|B|−1T (B, u) du.
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VIII. Note that the exact number of points in each realisation varies slightly.
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