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ABSTRACT

Koopmans spectral functionals are a class of orbital-density-dependent functionals designed to accurately predict spectroscopic properties.
They do so markedly better than their Kohn-Sham density-functional theory counterparts, as demonstrated in earlier works on benchmarks
of molecules and bulk systems. This work is a complementary study where—instead of comparing against real, many-electron systems—we
test Koopmans spectral functionals on Hooke’s atom, a toy two-electron system that has analytical solutions for particular strengths of its
harmonic confining potential. As these calculations clearly illustrate, Koopmans spectral functionals do an excellent job of describing Hooke’s
atom across a range of confining potential strengths. This work also provides broader insights into the features and capabilities of Koopmans

spectral functionals more generally.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0138610

. INTRODUCTION

To assist the design of optical and electronic devices, it is
important to be able to predict spectral properties from first prin-
ciples. However, it is impossible to simulate these systems exactly.
Even without the spin degrees of freedom, the corresponding
Schrodinger equation is a differential equation in 3N-dimensional
space, where N is the number of electrons. Solving this equa-
tion directly for practically every system of interest vastly exceeds
today’s (and tomorrow’s) computational capabilities; hence, we
must necessarily make some approximations.

Several different approaches can be taken here. High-level
many-body perturbation theory' (e.g., the GW approximation”)
and wavefunction-based approaches (e.g., coupled cluster’ or Quan-
tum Monte Carlo’) are accurate but computationally expensive,
which limits what systems we can study with these approaches. A
less expensive approach is density-functional theory (DFT).”® DFT

introduces a framework that reformulates the complex many-body
particle problem as a set of N independent single-particle problems
(described by the Kohn-Sham equations) and, therefore, tremen-
dously reduces the complexity. However, DFT is a theory founded
on the prediction of total energies, rather than spectroscopic
properties, and its prediction of spectroscopic properties can be
unreliable at best.

Recently, Koopmans spectral functionals’ '® have been devel-
oped as a beyond-DFT extension designed to improve the prediction
of quasi-particle-related properties. Previous studies have already
demonstrated that Koopmans spectral functionals work well for pre-
dicting spectral properties of real molecules and solids when com-
pared with the solutions obtained from accurate quantum chemistry
methods and experimental results.'”'” However, they have never
been tested on an analytically solvable system. With an exact solu-
tion at hand, the features and capabilities of different functionals can
be evaluated in much greater detail.
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In this paper, we apply Koopmans spectral functionals on one
such analytically solvable system: Hooke’s atom. Before presenting
the results, we will first briefly introduce the theory needed to inter-
pret our findings in Sec. II. This includes a revision of some of
the main problems of standard Kohn-Sham density-functional the-
ory (KS-DFT), a motivation for how Koopmans spectral functionals
address these issues and a quick introduction to Hooke’s atom. In
Sec. 111, we explain the computational methods used in this study. In
Sec. I'V, we present our results from which we draw our conclusions
in Sec. V.

Il. THEORY
A. Problems with standard Kohn-Sham DFT

A spectral theory ought to have quasi-particle energies that
match the total energy differences corresponding to electron
removal, E(N) — Ei(N - 1), and addition, Ei(N + 1) — E(N). This
is true for the exact Green’s function, whose poles are given directly
by these total energy differences, but for KS-DFT, the KS orbital
energies {slfs} are not theoretically related to quasi-particle ener-
gies; they are simply the single-particle energies of some auxiliary
system that happens to have the same ground state density as the
system of interest. The exception to this is the highest occupied
molecular orbital (HOMO) energy in a finite system that correctly
corresponds to the negative ionization potential in the framework
of exact KS-DFT.”"*! Nevertheless, the Kohn-Sham potential is the
best local and static approximation to the true dynamical and non-
local electronic self-energy,”” and in practice, the KS eigenenergies
often qualitatively (and sometimes even quantitatively) compare
well with experiments, and thus, it is common practice to interpret
KS eigenenergies as approximate quasi-particle energies.”

On top of this, errors introduced when approximating the
exchange-correlation potential can make Kohn-Sham energies poor
approximations to quasi-particle energies. One of the main reasons
for this is the erroneous curvature of the total energy as a function
of the total number of electrons for non-integer occupations of the
orbitals” instead of the correct piecewise linear behavior.” It fol-
lows from Janak’s theorem?”” that the incorrect curvature of the total
energy directly affects KS eigenvalues that we would otherwise like
to interpret as quasi-particle energies.

B. Koopmans spectral functionals

Koopmans spectral functionals are a class of functionals
that restore the correspondence between the Kohn-Sham energies
and total energy differences by imposing the condition that the
derivative of the total energy with respect to the occupation
fi of each orbital i must be independent of f; € (0,1). This is
equivalent to

Koopmans
& P

= (¢i|H|¢:) = constant with respect to fi (1)

We call this the “generalized piecewise linearity” (GPWL) condi-
tion.” It is a sufficient but not a necessary condition to fulfill the
piecewise linearity condition discussed in Sec. IT A (which pertains
to the total number of electrons, as opposed to the occupation of
individual orbitals).

This GPWL is imposed on a DFT energy functional E°'"
(the “base” functional, such as the LDA or PBE), via a Koopmans
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correction term. This correction removes, orbital-by-orbital, the
non-linear dependence of the energy E on the orbital occupation f;
and replaces it with a term that is linear in f;:

EKoopmans _ EDFT 4 Z [—(EDFT _ EDFT|ﬁ=O) + fiﬂi]’ (2)
i

where EDFT| fmf is the energy of the (N -1+ f)-electron system

with the occupation of orbital i constrained to be f. 7, is some yet-to-
be-determined constant. The first term counteracts any dependence
of EPT on f;, and the second term replaces it with an explicit linear
dependence.

The above construction of the corrective term is difficult to
evaluate directly, unless we only account for the explicit dependence
of the orbital density on its occupancy. That is to say, if we have an
orbital density p;(r) = fil¢i(r)|* = fini(r), we assume that ¢,(r) is
independent of f;, and hence, p,(r) is linear in f;. In this case,

EDFT|ﬁ=f _ EDFT[P - pi +fni]. (3)

This frozen-orbital picture allows us to evaluate the terms in the cor-
rection, but we cannot neglect the effect of orbital relaxation. To
account for orbital relaxation post hoc, the Koopmans corrections
are scaled by scalar prefactors a; € [0, 1]. These screening parameters
are not fitting parameters but can be calculated from first principles
to impose the GPWL condition. This can be achieved either by finite
difference calculations'*'® or via density functional perturbation
theory.!”
This brings us to the final form of the Koopmans functional:

EKoopmanS[{pi}]
_ EDFT[p] . thi[—(EDFT[P] _EDFT[P —pi]) +ﬁ71i]. (4)

1

(Note that the total density is related to the orbital densities via
p = X;p;-) This end result is an orbital-density-dependent functional
theory (ODDFT) because now the total energy is a functional not of
the total density but of the densities of individual orbitals {p,}.

The effect of these corrections is that the total energy is linear in
each orbital occupancy f;. However, there is one degree of freedom
in this construction: we must choose appropriate slopes #, for these
terms in Eq. (4). The most natural choice is to construct #, such that
these slopes correspond to the ASCF total energy differences as given
by the base DFT functional:

KI DFT DFT
mo=E | B,
=E[p—pi+n]-E™[p-pi], (5)

where the second equality adopted the frozen-orbital approxi-
mation. This is called the Koopmans integer (“KI”) functional.
Alternatively, the so-called “KIPZ” functional additionally includes
a screened Perdew-Zunger one-body self-interaction correction,
where the screened Hartree-plus-xc energy is removed orbital-by-
orbital.”® This additionally ensures that the KIPZ functional is
self-interaction free for one-electron systems.’

Given this construction, the energy &; of orbital i is related
to the difference between the total energy of the N-electron sys-
tem (EPFT(N)) and the total energy of the system where we have
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added/removed one electron (EP'T(N £1)) calculated at the level
of the DFT base functional. These energy differences in turn can be
seen as approximations of the true energy &; of the quasi-particle i:

§=AE=E(N)-E(N-1)
~ EPT(N) - EPFT (N - 1)
~EPPI(N) - EPPT(N - 1)

N-(N-1)
GPwL JEKoopmans

dfi
Koopmans
=g P N

for occupied states and

&= AE; = Ei(N +1) - E(N)
~EPTT(N + 1) - EPFT(N)
_EYN(N+1) - EPFI(N)
- N+1-N

GP;/V'L dEKoopmans

dfi
Koopmans
=g P N

for empty states. Therefore, GPWL allows the KS energies to be
interpreted as quasi-particle energies.

In summary, Koopmans spectral functionals are orbital-
density-dependent functionals that impose a generalized piecewise
linearity condition. By constructing corrective terms parameterized
in terms of ASCF calculations, the resulting Kohn-Sham eigenval-
ues match the corresponding ASCF total energy differences, which
in the framework of DFT are formally meaningful and practically
reliable.

There is an important caveat when it comes to the reliabil-
ity of ASCF results. It is well known that for large molecules and
bulk systems, ASCF total energy differences cease to be reliable and
instead asymptotically approach the corresponding Kohn-Sham
eigenvalue. This stems from the fact that the Kohn-Sham eigen-
states are very delocalized, and removing a single electron from such
an orbital starts to resemble the derivative of the total energy with
respect to the orbital occupancy. Koopmans spectral functionals
overcome this issue by using a basis of localized orbitals. By con-
structing the Koopmans corrections via the total energy differences
that result from the removal of a localized electronic density, the
Koopmans corrections—although they are based on ASCF energy
differences—remain accurate for large and even infinite systems. For
more details, refer to Ref. 14.

C. Hooke’s atom

The goal of this paper is to gain insights into the features and
capabilities of Koopmans spectral functionals by testing them on
Hooke’s atom. This is a system where two electrons are confined in
an external harmonic potential.”” The Hamiltonian of this system is

7/:—%(Vf+vﬁ)+%w2(rf+r§)+i, (6)

T2
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where 15 = |r; — r3|. The strength of the confining harmonic poten-
tial is given by the parameter w. Unlike most two-electron systems,
it is possible to solve this system analytically’®—although this is
only true for particular values of w. The largest finite value with an
analytical solution is w = 1/2, where the exact ground state wave-
function is given (modulo a normalization constant) by

Y(r, 10 = 1/2) — (1 + %) e‘(ff+r§)/4) )

and it has an energy of
E(w=1/2) = 2 Hartree, (8)

and a ground-state density of

p(r) :Z/drz\‘lf(r,rzﬂ2
- 2e‘f2/2{(’27)1/2[i i
+ (r+ %)erf(Z_l/zr)] +e_'2/2}. )

The next largest value with an analytical solution is w = 1/10.
Here, the total energy is

E(w =1/10) = 0.5 Hartree, (10)

and
2 2 2
¥(r, 10 = 1/10) = (1 + ”72 + ;‘—é) e ()20

Each of these analytical solutions corresponds to instances
where a power series expansion of the radial wave function termi-
nates after a finite number of terms. For the general derivation of
these analytical solutions, see Ref. 28.

In addition to these solutions, one can consider the physics of
Hooke’s atom in various limiting cases. Rescaling lengths by ™"/
and energies by w, Eq. (6) becomes

%:—l(vf+vg)+l(rf+r§)+a)_1/2i. (12)
2 2 r12
This makes it clear that the high-density limit (w — oo) corresponds
to the weakly correlated limit, since here the Coulomb term vanishes.
For large but finite w, one can treat wasa perturbation prefactor.
This allows us to derive expansions for the radial wavefunction and
total energy in this limit (see Appendix A).

By similar reasoning, w — 0 corresponds to the strongly corre-
lated limit, and again, one can use perturbation theory to derive the
wavefunction and total energy.”’

Given a two-electron wavefunction and its total energy, we can
also extract various quantities as predicted by the exact functional.
For example, the density given by the exact functional will match
the analytical solution. Less trivially, we can obtain analytical solu-
tions for the exchange-correlation potential and the Kohn-Sham
energy eigenvalues (see Appendix B 1 for details). Moreover, we
can express the Koopmans spectral correction to the exchange-
correlation potential as a functional of quantities obtained by the
“base” functional (see Appendix B 3 for details).
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I1l. COMPUTATIONAL METHODS

In this work, we present Koopmans spectral functional calcu-
lations on Hooke’s atom for w = 1/10, w = 1/2, and w = 10. For the
first two potentials, we compare the results against the analytic solu-
tions. The third potential w = 10 approaches the weakly correlated
limit*’; hence, in lieu of an analytic solution, we rely on numeri-
cal calculations and the high-density expansions for the reference
results.

To apply Koopmans spectral functionals to Hooke’s atom, we
modeled Hooke’s atom using the QUANTUM ESPRESSO distribu-
tion (QE).”"”* The semi-local DFT calculations were performed
using QE version 6.8. The ODD calculations were performed using
koopmans-kep, an implementation of ODD functionals built on top
of QE version 4.1." "'

Because QE is a DFT code that uses a plane-wave basis and
assumes periodic boundary conditions, implementing the aperiodic
harmonic potential of Hooke’s atom within the framework of QE
was not trivial. To achieve this, we implemented a potential that
close to the origin is harmonic, but for asymptotic distances far
from the origin is Coulombic. This is to conform with QE, which
assumes that atomic potentials behave like the Coulomb poten-
tial of a point charge; that is, they should asymptotically approach
—Zya /1, where r is the distance from the nucleus and Z, is the
charge of the nucleus plus any pseudized electrons; in the case of
hookium, Z = 2. The hookium potential is vertically shifted such
that the potential vanishes for large distances, and between the har-
monic and Coulombic regimes, an exponential crossover makes the
potential continuously differentiable. We denote the position of the
transition between the two regimes r.. In all calculations, the elec-
tronic density was confined well within the harmonic region of the
potential.

Practically, using QE to solve Hooke’s atom is excessive. For
example, the system is radially symmetric, and therefore, one only
needs to solve the one-dimensional radial problem. In addition,
using QE prevented us from exploring very large/very small values of
w to stay within the typical length- and energy-scales of real systems.
Nevertheless, we opted to use QE in order for the analysis conducted
here to be transferable to other more complicated systems in the
future.

We perform the calculations with the LDA, PBE, PZ, KI, and
KIPZ functionals. Throughout this work, we will use PBE* as the
semi-local base functional. We performed convergence analyses to
find appropriate values for the energy cutoff, the cell size, and r..
Since relevant length scales decrease with increasing omega, the
convergence analysis gives omega-dependent results summarized in
Appendix C. Input files, output files, and scripts for reproducing our
results can be found at 10.24435/materialscloud:1v-hh, Ref. 44.

IV. RESULTS
A. Quasiparticle energies

As discussed at the beginning of this paper, one of the main
strengths of Koopmans spectral functionals is their ability to accu-
rately predict quasi-particle energies. Thus, we will first examine the

results for the HOMO, LUMO, and LUMO+1 energies; these are
presented in Table I.

ARTICLE scitation.org/journalljcp

The semi-local functionals (LDA and PBE) dramatically over-
estimate the reference HOMO energy. A major improvement is
achieved using the ASCF method. This is an approach where one
performs two DFT (in our case PBE) calculations and uses the result-
ing difference in total energy AE;®® as an approximation of the
quasi-particle energy. As explained before, for a small two-electron
system, we expect this to give a much more accurate estimate than
taking the KS orbital energies. This is also what we observe in these
calculations: for all three values of w, ASCF yields relative errors
for the HOMO energies that are 20-30 times smaller than those
obtained with PBE.

The Koopmans spectral functionals, as well as PZ, match the
performance of ASCF. This is no surprise: for KI, in particular, this
functional is constructed in such a way that its orbital energies match
those of ASCF. Accordingly, with KI, we get an equally significant
improvement over PBE. We will discuss why the KIPZ result is
so similar to the KI result later when discussing the result for the
exchange-correlation potential. For spin-unpolarized two-electron
systems, KIPZ and PZ functionals treat occupied orbitals exactly
the same, provided they use the same screening parameter o (see
Appendix B 3). Since the electrons in Hooke’s atom screen very lit-
tle, the HOMO energy obtained with KIPZ (« ~ 0.89, 0.94, 0.98 for
w =1/10, 1/2, and 10, respectively) is approximately the same as the
one obtained with unscreened PZ (a = 1).

The Koopmans spectral functionals are the only functionals
considered in this study that provide accurate results for the triply
degenerate LUMO energy, giving relative errors that are again 20-30
times smaller than the relative errors obtained with the semilocal
functionals. Also, note that the PZ correction, which yielded very
good results for the HOMO energy, is as inaccurate as PBE and LDA
in the case of the LUMO energy. This is because—unlike Koopmans
spectral functionals—the PZ correction only adds a correction to
filled states, and not to empty ones.

For the LUMO+1 energy, the LDA, PBE, and PZ actually out-
perform the Koopmans spectral functionals. This is very surprising.
If we compare the PBE results (comparing the actual eigenvalue and
the ASCF result), the eigenvalue is closer to the reference result.
This is extremely unusual, as in nearly all real systems, the LDA
and GGA eigenvalues tend to underestimate energy differences of
empty states,’® and total energy differences tend to be much more
reliable. Because the Koopmans orbital energies are constructed to
match these differences in total energies, it is no surprise that in this
case, the results obtained with the Koopmans spectral functionals
are also inaccurate. As such, we believe that this result represents an
outlier, rather than indicating a fundamental failure of Koopmans
spectral functionals.

It is difficult to say why the PBE ASCEF result for the LUMO+1
energy is less accurate than the corresponding eigenvalue. The accu-
racy of the eigenvalue is certainly fortuitous (due to the reasons
discussed in Sec. II A). In future work, we will investigate this
discrepancy—and, more generally, the reliability of Koopmans spec-
tral functionals to predict the energies of empty orbitals for aperiodic
systems.

B. The total energy and total density

Although Koopmans spectral functionals improve the descrip-
tion of excited states, they ought not to adversely affect ground
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TABLE I. The HOMO, LUMO, and LUMO-+1 orbital energies as well as the total energy of Hooke’s atom obtained with different functionals and different values of w. All values
are in Hartree. In parentheses, the difference to the reference solution is given in percent. For PBE, we present the results calculated via the Kohn—Sham eigenenergies (denoted
&) and total energy differences (ASCF). The reference solutions correspond to either analytical results (where they are available) or highly accurate numerical values from the

literature. %

w Method HOMO LUMO LUMO+1 Total
Reference 0.3500° 0.5594" 0.5947" 0.5000°
LDA 0.4258 (+21.67%) 0.4961 (-11.32%) 0.5766 (-3.05%) 0.5038 (+0.75%)
& 0.4251 (+21.46%) 0.4960 (-11.35%) 0.5775 (—2.90%) 0
lio PBE ASCF 0.3526 (+0.73%) 0.5541 (—0.95%) 0.6188 (+4.04%) 0-5006 (+0.12%)
Pz 0.3555 (+1.58%) 0.4967 (-11.21%) 0.5778 (-2.86%) 0.5063 (+1.26%)
KI 0.3527 (+0.76%) 0.5568 (—0.48%) 0.6204 (+4.31%) 0.5006 (+0.12%)
KIPZ 0.3559 (+1.68%) 0.5623 (+0.51%) 0.6358 (+6.90%) 0.5057 (+1.14%)
Reference 1.2500° 2.0132° 2.3107° 2.0000°
LDA 1.4446 (+15.57%) 1.8605 (-7.58%) 2.3052 (-0.24%) 2.0257 (+1.29%)
& 1.4391 (+15.13%) 1.8587 (-7.68%) 2.3062 (-0.19%) 0
% PBE ASCF 1.2563 (+0.51%) 2.0049 (-0.42%) 2.4060 (+4.12%) 2.0090 (+0.45%)
Pz 1.2563 (+0.50%) 1.8599 (-7.62%) 2.3069 (-0.16%) 2.0059 (+0.30%)
KI 1.2564 (+0.52%) 2.0083 (-0.24%) 2.4045 (+4.06%) 2.0090 (+0.45%)
KIPZ 1.2560 (+0.48%) 2.0158 (+0.13%) 2.4425 (+5.71%) 2.0061 (+0.31%)
Reference 17.4487° 28.6898° 37.5239° 32.4487"
LDA 18.4501 (+5.74%) 27.9979 (-2.41%) 37.6990 (+0.47%) 32.6962 (+0.76%)
& 18.3814 (+5.35%) 27.9621 (-2.54%) 37.6717 (+0.39%) o
10 PBE ASCF 17.4891 (+0.23%) 28.6766 (—0.05%) 38.1495 (+1.67%) 32:5311 (+0.25%)
PZ 17.4533 (+0.03%) 27.9655 (—2.52%) 37.6746 (+0.40%) 32.4504 (+0.01%)
KI 17.4913 (+0.24%) 28.6829 (-0.02%) 38.1335 (+1.62%) 32.5329 (+0.26%)
KIPZ 17.4518 (+0.02%) 28.7114 (+0.08%) 38.3260 (+2.14%) 32.4517 (+0.01%)
*The total energy difference between the exact result for E(N = 1) from Eq. (B6) and the exact result for E(N = 2) from Egs. (8) and (10) [see Eq. (B5)].
“The total energy difference between the exact result for E(N = 2) from Egs. (8) and (10) and numerical results for E(N = 3) from Ref. 35 (the ground state energy when computing

the LUMO; that of the first excited state for LUMO+1).
“Exact results for E(N = 2) from Egs. (8) and (10).

4The total energy difference between the exact result for E(N = 1) from Eq. (B6) and a numerical result for E(N = 2) from Ref. 30.
“The total energy difference between numerical results for E(N = 2) from Ref. 30 and for E(N = 3) from Ref. 35 (the ground state energy for LUMO, that of the first excited state for

LUMO+1).
‘Numerical result for E(N = 2) from Ref. 30.

state properties such as the total energy and total density (which
are already relatively well-described by DFT). The total energies
of Hooke’s atom as calculated by the various functionals are listed
alongside the quasiparticle energies in Table I; we see that all func-
tionals obtain total energies that are very close to the reference
results.

As for the total densities, these are presented in Fig. 1. The
KI density is exactly equal to the PBE density. This is expected
since for integer occupations, the total KI energy (and therefore
also its ground state density) is equal to the total energy obtained
with the underlying DFT method. By similar reasoning, the KIPZ
density would be equal to the density of its underlying PZ func-
tional if we took for both functionals the same screening para-
meters. However, they differ slightly because in contrast to the
KIPZ correction, the PZ correction here is unscreened. Compared
to the exact density at small distances, the LDA and PBE densi-
ties are too small and the PZ and KIPZ densities are too large. On
one hand, the LDA and PBE orbitals are over-delocalized due to
the self-interaction error (SIE). On the other hand, KIPZ and PZ

are both methods that explicitly target the one-body SIE. In this
particular case, these methods overshoot, with their densities being
too localized.

C. The exchange-correlation potential

Next, we look at the exchange-correlation potential vy (r).
This is a central quantity in approximate density-functional theory
since it is the only term that is unknown and must be approxi-
mated. Being one of the terms in the Kohn-Sham Hamiltonian, it
directly influences the Kohn-Sham eigenvalues; hence, by studying
the exchange-correlation potential, one may understand the results
for the HOMO level in more detail.

In contrast, ODDFTs do not have one such potential: each
orbital is subjected to its own unique potential. Nevertheless, in
the following, we will compare the vy potentials from DFT calcu-
lations with vk plus the ODD corrective potential from ODDFT
calculations. This is possible because Hooke’s atom has only one
doubly occupied orbital; hence, in this specific case (focusing for
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FIG. 1. The total electronic density as given by semi-local DFT, PZ, and Koop-
mans spectral functionals, as well as the exact analytical result for o = 1/10 and
w =1/2[Egs. (7), (9), and (11)] and the first-order expansion for w = 10 [Egs. (A1)
and (A2)]. Atomic units are used throughout. Although it may not appear to be the
case, the electron density is in all cases normalized such that integrating 47zr2p(r)
from zero to infinity gives two.

the moment on its effect on the occupied manifold), all the elec-
trons are subject to the same local potential, the ODDFT functionals
effectively become DFT functionals, and we can compare the two.
We could not make such a straightforward comparison for a sys-
tem with more electrons. That said, ultimately both the Kohn-Sham
potentials of DFT and the orbital-dependent potentials of ODDFT's
are approximations of the same quantity: the electronic self-energy.
The exact electronic self-energy is a non-local and dynamic quantity.
The Kohn-Sham exchange-correlation potential is the best local and
static approximation to the electronic self-energy,”” whereas ODD
corrections can be interpreted as a contribution to the dynamic but
local self-energy of a discretized spectral functional theory.’” [Spec-
tral functional theories approximate the self-energy with a local but
dynamical quantity, with the exact spectral functional predicting
the exact spectral density p(r,w).”*] Thus, we can always justify
comparing the Kohn-Sham exchange-correlation potential with the
Kohn-Sham exchange-correlation potential plus an ODD correc-
tion by interpreting both as approximations to the exact self-energy,
but for more complex systems, the fact that we would then be
dealing with non-local and/or dynamic quantities would make the
comparison very difficult.

Figure 2 shows the different exchange-correlation approxi-
mations in comparison to the exact exchange-correlation poten-
tial for w = 1/2 as derived in Eq. (B4). The ODD correction for
the KI, KIPZ, and PZ case correspond to the formulas given in
Egs. (B20)-(B22), respectively. The KI potential correction for filled
orbitals is a constant shift to the PBE exchange-correlation poten-
tial. This is already sufficient to reproduce the exact exchange-
correlation potential fairly accurately. At this point, it is important
to stress that all the ingredients of these Koopmans corrections are
computed ab initio. This includes the magnitude of this vertical shift
that takes us from the PBE to the KI result, and it is remarkable how

ARTICLE scitation.org/journalljcp

0.0 /
- ———
—0.2 /
=
g —0.4
> ) — exact
06 —— LDA
PBE
— PZ
— KI
—= KIPZ
=
b 0.00
3
80
PR
>
1 oo0s
~
5
8
i)
—0.10
0 2 4 6 8 10

Radial distance

FIG. 2. The exchange-correlation potential of Hooke’s atom, as given by semi-local
DFT, PZ, and Koopmans spectral functionals. Note that for the ODDFT functionals,
we plot the xc potential of the base functional, plus the orbital-specific correction
applied to the HOMO. We stress that this is only analogous to the corresponding
DFT result because Hooke'’s atom is a two-electron, spin-unpolarized system.

accurately the necessary shift is predicted by the KI functional. The
largest deviation from the exact exchange-correlation potential can
be seen for large radial distances. Here, the constant KI correc-
tion is not capable to correct for the incorrect asymptotic decay
of the PBE exchange-correlation potential. The KIPZ potential cor-
rects this and also recovers the true asymptotic Coulombic behavior
for large distances. For small distances, it performs as well as the
KI correction. The KIPZ and PZ results are very similar, for the
same reasons that were discussed in the context of the HOMO
energy.

Next, we examine the exchange-correlation potential applied
to the HOMO. This is presented in Fig. 3 for w = 1/2; analogous
plots for the other values of w can be found in Appendix D. This
is a key physical quantity since during the evaluation of observables
such as the total energy or the quasiparticle energies, we only ever
consider the potential operating upon a wavefunction and never
just the potential. For example, by looking at the Kohn-Sham equa-
tions Eqs. (B2) and (B3), we can directly deduce the HOMO energy
by multiplying the KS equations on both sides with the ground
state wavefunction and integrating over all space. To visualize the
corresponding integrand, the total exchange-correlation potential
(including ODD corrections for the ODDFT methods) multiplied
with 477 nomo (r) isalso shown in Fig. 3. From this, we can directly
give another perspective on two results that we presented in the
beginning of this section. First, the constant shift of the KI correction
brings the integrand very close to the exact integrand which explains
why we get a very accurate estimate of the HOMO energy with KI.
Second, we can conclude from this figure that neither very small dis-
tances (due to the vanishing r*-factor) nor very large distances (due
to the vanishing electron density) contribute much to the integral.
Therefore, KIPZ does not provide a significant improvement over KI
for the HOMO energy, despite the fact that KIPZ approximates the
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FIG. 3. The potential plotted in Fig. 2 multiplied by the single-electron wavefunction
(upper panel) and 4nr2nHOMo(r) (lower panel).

true exchange-correlation potential more accurately for large radial
distances.

The analogous exchange-correlation potentials of Hooke’s
atom for w=1/10 and w =10 are plotted in Figs. 5 and 6 in
Appendix D. Qualitatively, these plots show the same behavior as
the w = 1/2 case presented in Figs. 2 and 3: the Koopmans correc-
tions shift the DFT exchange-correlation potential downward by the
correctamount to match the exact result. The one exception to this is
w = 10 at large r, where the PZ and KIPZ potentials no longer match
the reference curve (cf. the smaller values of w, where these poten-
tials matched the reference result). It is difficult to conclude anything
definitive from this because the disagreement may simply be due to
the fact that here the reference curve is only approximate (having
been derived from the high-density expansion). Nevertheless, Fig. 6
shows that at the distances that matter most when computing the
HOMO eigenvalue, the agreement remains universally excellent.

V. CONCLUSION

This work shows how the Koopmans orbital energies, con-
structed to deliver total energy differences, provide results for the
HOMO and LUMO energies that are an order of magnitude more
accurate than the ones obtained with standard density-functional
theory for the toy system of Hooke’s atom. This accuracy matches
the findings of earlier studies on real molecules and solids. We also
see how these results directly relate to an excellent resemblance of
the Koopmans potentials to the true exchange-correlation poten-
tial. As a negative outlier, we have also seen that Koopmans spectral
functionals fail to give an accurate prediction of the LUMO+1 level
due to the failure of the ASCF approach in this case. However, as
mentioned before, this happens extremely rarely in real materials
and will be the subject of future work.

As a final note, we would like to mention that this study has
some limitations due to the simplicity of Hooke’s atom. For exam-
ple, Koopmans spectral functionals (and orbital-density-dependent

ARTICLE scitation.org/journalljcp

functionals more generally) give rise to two different sets of orbitals:
canonical orbitals that diagonalize the Hamiltonian and variational
orbitals that minimize the total energy. For one-orbital systems,
such as Hooke’s atom, the Hamiltonian is not a matrix but a num-
ber; consequently, the canonical orbitals are trivially identical to the
variational orbitals. To properly deconstruct and study the canoni-
cal/variational duality of ODDFTs, one would need to study a system
with more electrons.
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APPENDIX A: THE HIGH-DENSITY LIMIT
OF HOOKE'S ATOM

Solving Eq. (12) with first-order perturbation theory™” for
large w yields the wavefunction (modulo a normalization constant)

¥(n,rs0) = (1+(20) " f(27m:) + 0(0™))
w e~ (im)/2 (A1)
where
f(x) =27 (1+1n(2)) + 7"

xle erfc(x) + 2/366}'2 erfc(y)dy. (A2)
0
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Note that Eq. (A1) is written with the same length rescaling as
Eq. (12).
Consequently the total energy in this limit is given by

2\'/? 2
E(w)=3w+(7) a)l/z—f(l—E
m 7

S+ 2) +0(w ). (A3)

For more details on Hooke’s atom in the high-density limit, see
Refs. 29, 40, and 41 (and references therein).

APPENDIX B: POTENTIALS FOR HOOKE’'S ATOM

1. The exact functional

In the following it will be shown how exact expressions for the
exchange and correlation potentials and for the HOMO energy can
be obtained for Hooke’s atom.*

In the ground state of Hooke’s atom, the only two occupied
KS single-orbital wave functions (/)ﬁSOMO and energies eS80 are
identical (one spin-up, the other spin-down). According to the the-
orems of Hohenberg and Kohn, the exact ground state electron
density of the system is the same as the density of the non-interacting
Kohn-Sham system. From this, the exact KS orbital wave function
can be calculated:

1/2
p(5) = 2o = domo(®) = [2p0] . @D

This can be employed to invert the Kohn-Sham equations
1
KS 1| -39+ valp)(0) |67 =650, 82

KS 2:veii[p] (r) = vua[p](r) + vexe(r) + vxc[p](r),  (B3)

and to obtain an expression for the exchange-correlation potential:
vae[p] (1) = eliomo — vext(r) — vu[p](r) — vie[p]. (B4)
The exact HOMO energy can be calculated as
enomo = E(N =2) —E(N = 1). (B5)
Since
3
E(N = 1) = Ew, (B6)

is the energy of a single electron in a three dimensional harmonic
potential, for the cases where we have an analytical solution [Egs. (8)
and (10)] we can obtain the exact HOMO energies:

7
eiomo (@ = 1/10) = 5o Hartree, (B7)
KS 5
enomo(w =1/2) = 1 Hartree (B8)

All the other terms on the right of Eq. (B4) are known analytically
or can be inferred by numerical integration or differentiation of the
analytic expression of the ground state density:

1
Vext(r) = szrz, (B9)
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!
Wi = fd% px ), (B10)
r— 1|
1 VZ KS
vea[p] = -2 L SHomo, (B11)

2 ¢HOMO

and thus one can use Eq. (B4) to obtain the exact exchange-
correlation potential. Furthermore, for two electrons of opposite
spin the exchange potential is just half of the negative of the Hartree
potential,

1
v[p](x) = =2 vup] (x), (B12)
which allows us to obtain the exact correlation potential via

ve[p](x) = vie[p](r) = x[p](r). (B13)

2. Approximate functionals

For the PBE and the LDA functional it is possible to extract the
exchange and the correlation potential individually. These potentials
can be compared with the exact expressions Egs. (B12) and (B13) as

0.0 /_‘
—0.2 >
&
& —04
—0.6
08 exact
—— LDA
0.02 PBE

ve(r)
(

Radial distance

FIG. 4. Exchange (upper panel) and correlation potential (lower panel) obtained
with LDA and PBE compared with the exact exchange potential for w = 1/2.

TABLE II. The simulation parameters for different values of w obtained from
convergence analyses. These parameters are discussed in Sec. I/l

) Energy cutoff (Ry) Cell size (A) re (A)
1/10 20 30.0 8.50
1/2 50 12.5 3.50
10 600 2.6 0.73
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shown in Fig. 4 for w = 1/2. These plots reproduce exactly the results
presented in Ref. 43.

3. Orbital-density-dependent corrections

For Koopmans spectral functionals, in addition to the exchange
and correlation potentials, we must also consider the orbital-specific
corrective terms. These can be obtained by taking the functional
derivative with respect to the orbital density:

~Koopmans _ s
io 6Pia ; . jo

Koopmans
’ >

(B14)

[

where here we have separated the spin index ¢ from the orbital
index i.

For the KI functional, the potential contribution is made up of
three parts:

SILy I di
ic  _ Vtg(c]a ar | 81']‘800' W ‘la,g(r)
6pju’ (1‘) 1o

+(1- éijaggr)vjff,‘diag(r), (B15)

where the scalar (i.e., r-independent) contribution is given by

scalar

Vig = —EHxc [P - Pl] + Epxe [P —pit ni]
_ [ A v (v [p = pi + mi])mi(x'),

(B16)

Vge(T)

=
B
]
8Q
uR
>

|
=
s

8
>

—0.04
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Radial distance
(a)

FIG. 5. The exchange-correlation potential of Hooke's atom with (a) w = 1/10 and (b)
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and the diagonal, non-scalar contribution is

V?Uiag(r) = 71/;)(6(1" [P]) + val-lxc(r) [P - Pid + nin]), (B17)
and the off-diagonal, non-scalar contribution is
ff—dia o o
Vt?o g(r) = (1 - fitT)Vch(r) [P - Pia]) - Vch(l'; [P])
+ fioVie (1 [p = pio + 1ig]). (B18)

Here, fis is the occupancy of orbital i and spin g, n;(r) is the density
of orbital i, p(r) = fini(r) is the occupancy-dependent density, and
p(r) = X, p;(r) is the total density.

Compared with this KI correction, the KIPZ correction
includes few additional terms:'’

LI
: = —< - Ech[”ia] + Vax (I', [”ia])
6p]-0'(l') SPjO'I(r) e

_ f ar' v (r', [nw])n,-g(r’))aijaw,.

(B19)

In the case of Hooke’s atom, these corrective terms simplify
dramatically. In this two-electron system there is only one filled
orbital with n, = p_=1/2p. Thus the general expressions above
simplify to

KI _ 1 _l / / 14
(0ot = ~Bine| 0]+ Binlp] - 5 [ ' vclpl(e e,

Vze(T)
b

first-order expansion

—— LDA
-3 PBE
— PZ
— KI
—-= KIPZ
= 00
Q
2o
u8
7 -05
=
ey
5-1.0
0.0 0.5 1.0 1.5 2.0
Radial distance
(b)

w = 10, as given by semi-local DFT, PZ, and Koopmans spectral functionals. For the

ODDFT functionals we plot the xc potential of the base functional, plus the orbital-specific correction applied to the HOMO. For w = 10 we do not have an analytical solution;
instead, the reference result is derived from the high-density expansion of the wavefunction as given by perturbation theory [Eq. (A1)], from which the exchange-correlation

potential can be obtained as described in Appendix B 1.
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FIG. 6. The potential plotted in Fig. 5 multiplied by the single-electron wavefunction (upper panels) and 47r?nyouo (1) (lower panels). As it did in Fig. 5, the w = 10 reference

curve relies on the first-order approximation in the high-density limit [Eq. (A1)].

VEPZ ()| 12y = VR ()] £ 21— Brixe [%p] — Vhxe Bp](r)
w5 [ @t Do (0
(eet-an )

w0 [ (v o] v o) ) - i [ 6] €0

(B21)

The subscript Hxc indicates that we take the sum of Hartree,
exchange and correlation contributions. Note that the KI potential
does not depend on r in our case, i.e., it implies just a constant shift
compared with the base functional. To include screening we mul-
tiply each expression above with the screening parameter ; of the
corresponding orbital i.

The PZ correction removes the vpy-potential from each
orbital, i.e., the PZ orbital dependent correction is, in general, given

by
PZ
917 (r) = —vine[pi] (x)-
This expression simplifies in the case of Hooke’s atom:

1

ng(r)|fa:l = —VHxc I:*P](r) (B22)

2

If we neglected orbital relaxation, i.e., if we set the screening para-
meters to 1, in our case the PZ and the KIPZ potential would be
identical except for a constant shift. Therefore, they would yield the
same density and hence the same total energy.

APPENDIX C: SIMULATION PARAMETERS

Table IT summarizes the values of key parameters used in the
QUANTUM ESPRESSO calculations presented in this work.

APPENDIX D: ADDITIONAL RESULTS

The exchange-correlation potentials of Hooke’s atom for
w=1/10 and w = 10 are plotted in Figs. 5 and 6 (These are analog
of Figs. 2 and 3).
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