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Abstract
The stochastic block model (SBM) is widely studied as a benchmark for graph clustering aka
community detection. In practice, graph data often come with node attributes that bear additional
information about the communities. Previous works modeled such data by considering that the
node attributes are generated from the node community memberships. In this work, motivated by
a recent surge of works in signal processing using deep neural networks as priors, we propose to
model the communities as being determined by the node attributes rather than the opposite. We
define the corresponding model; we call it the neural-prior SBM. We propose an algorithm,
stemming from statistical physics, based on a combination of belief propagation and approximate
message passing. We analyze the performance of the algorithm as well as the Bayes-optimal
performance. We identify detectability and exact recovery phase transitions, as well as an
algorithmically hard region. The proposed model and algorithm can be used as a benchmark for
both theory and algorithms. To illustrate this, we compare the optimal performances to the
performance of simple graph neural networks.

1. Introduction

The stochastic block model (SBM) is widely studied as a benchmark for graph clustering aka community
detection, see e.g. reviews (Fortunato 2010, Abbe 2017, Peixoto 2019). The standard version of the SBM
observed a graph of connections and the goal is to recover the communities from the knowledge of the graph.

However, in practice, graph data often come with node attributes that bear additional information about
the communities. In such a case there are several sources of information on communities one can use: the
structure of the graph (as in the standard SBM), and the features or attributes of the nodes. Past work
developed algorithms and models accounting for such node information. Among the well-known is the
CESNA model of Yang et al (2013) where the attributes are generated via logistic regression on the
community membership. Another model that recently became popular in the context of benchmarking
graph neural networks (GNNs) (e.g. Chien et al 2021, Tsitsulin et al 2021, Fountoulakis et al 2022) is the
contextual SBM (Binkiewicz et al 2017, Deshpande et al 2018), where communities determine centroids for a
Gaussian mixture model generating the node-features. In both these examples, the node attributes are
generated via conditioning on the community label of the node.

In signal processing, another separate line of work, that witnesses a surge of interest, is modeling signals
as the output of a deep generative neural network; for recent reviews see e.g. (Ongie et al 2020, Shlezinger
et al 2020). Deep generative neural networks can be trained on data, and due to their expressivity are able to
capture generic structural properties of the signal. In community detection the signal can be seen as the
community memberships; following the line of work on deep generative priors it is hence of interest to
propose a model where the node attributes are an input of a generative neural network and the node
community memberships are the output thereof. In this work, motivated by a recent surge of works in signal
processing using deep neural networks as priors, we propose to model the communities as being determined
by the node attributes rather than the opposite. We define the corresponding model; that we call the
neural-prior SBM.
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One of the attires of the SBM is that it is amenable to exact statistical analysis of what is the best
achievable performance from an information-theoretic and from algorithmic point of view. This has led to a
line of work, originating in statistical physics, where statistical and computational thresholds are analyzed;
see e.g. Decelle et al (2011b), Abbe et al (2015), Abbe (2017). It is valuable to have a solvable case for which
we know what is statistically and algorithmically achievable; because in the context of modern machine
learning, it is rarely known if or how much the observed performance can be further improved.
Asymptotically exact analysis of the detectability threshold was also performed for the contextual SBM
(Deshpande et al 2018, Lu and Sen 2020). The main topic of the present paper is the statistical physics
analysis of optimal algorithmic performance for a simplified version of the proposed neural-prior SBM that
we call the generalized-linear-model SBM (GLM–SBM).

The GLM–SBMmodel we propose can be used for benchmarking GNNs. Since the model is analyzable,
we can compare the performance of the evaluated GNN to the optimal algorithmic performance in a
non-trivial high-dimensional setting. We treat both the unsupervised and the semi-supervised cases and
accompany our paper with an implementation that can be readily used for comparison by GNN developers.
As far as we found, a model similar to the neural-prior SBM, we propose here, has been used in Cho et al
(2022). In that work it is used as a building block for a large neural network; it was not analyzed per se.

A large part of this paper is dedicated to the asymptotic analysis of the GLM–SBMmodel. We identify
how the detectability phase transition well known from the SBM changed under the presence of the
GLM-prior. We also unveil an exact recovery phase transition that happens when the prior on the latent
variables of the GLM is binary, while the average degree of the SBM remains finite. Such an exact recovery
phase at a finite average degree came to us as a surprise and we find it rather remarkable in view of the fact
that without the GLM prior exact recovery in the standard SBM is only possible for degrees growing
logarithmically with the system size (Abbe et al 2015, Abbe 2017). The exact recovery transition is
discontinuous and makes the problem algorithmically challenging posing a nice set of parameters that can
serve as a benchmark in the attempt of improving GNNs.

2. The neural-prior SBM

2.1. Definition
We consider a set V of |V|= N nodes, a graph G(V,A) on those nodes. Nodes have features/attributes
Fµ ∈ RM of dimensionM, µ= 1, . . . ,N. The features and the graphs are observed. We aim to divide the set of
nodes into q communities with labels sµ ∈ {1, . . . ,q} in such a way that (a) the graph structure correlates
with the labels, e.g. nodes being in the same community are more likely to be connected, and (b) the node
attributes Fµ are correlated with the labels.

2.1.1. SBM
In the SBM the edges Aµν of the graph G are generated conditioned on the group memberships sµ; we
consider the following rule:

PSBM(Aµν = 1|sµ, sν) =
{

ci/N if sµ = sν ,
co/N if sµ ̸= sν ,

(1)

and Aµν = 0 otherwise. Here ci and co are the affinity coefficients common to the SBM. We define the affinity
matrix whose elements are cs,t = ciδs=t + coδs̸=t. We note that the literature often considers a more general
SBM where the affinity matrix has arbitrary elements. The model and analysis proposed in this work could
be readily generalized to that case. We consider a slightly restricted version of the SBM purely for simplicity.
In the SBM the ground truth group memberships sµ are generated at random from a prior that only accounts
for the sizes of the q groups. The node attributes F are simply ignored in the SBM.

2.1.2. Neural-prior SBM
In neural-prior SBM, that we define here, the group memberships sµ can be a generic function on the
attributes Fµ. Such a function can be represented by a deep neural network and learned from ground-truth
data. The training data would be pairs {Fµ, sµ} where attributes act as the neural network inputs and the
group memberships as output labels. For instance, for a L-layer fully connected neural network this reads

sµ = φ(L)
(
W(L) . . .φ(2)

(
W(2)φ(1)(W(1)F)

)
. . .
)

(2)

for the last activation function φ(L) chosen as in multi-class classification tasks.
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The aim of this paper is to provide a benchmark model where the optimal performance can be analyzed
asymptotically exactly. For this we need to (a) define the corresponding asymptotic limit, (b) consider a
simple neural network prior that is amenable to asymptotic analysis. We will also limit ourselves to consider
community detection with two groups of the same size only, q= 2 (this is not a strong limitation, but is
considered in the follow-up for simplicity). With this in mind, in the rest of the paper, we will consider the
following model generating the group memberships sµ.

2.1.3. GLM–SBM
In order to make analysis amenable we will consider the features F to be random and drawn independently as
Fµl ∼N (0,1/M). We then considerM latent variables wl ∼ Pw, l= 1, . . . ,M and generate the community
memberships as

sµ = sign

(
M∑
l

Fµlwl

)
. (3)

This corresponds to a single-layer neural network with a sign activation function. Such a neural network is
also often referred to as the GLM or as the perceptron. We will hence call this variant of the neural-prior
SBM the GLM–SBM.

Concerning the asymptotic limit, we work in the challenging sparse case of SBM. We parameterize the
SBM by the standard parameterization

ci = c+
√
cλ, co = c−

√
cλ. (4)

We then consider N→∞ with c= (ci + co)/2=O(1) is the average degree, and λ=O(1) is the
signal-to-noise ratio. We further work in the high-dimensional limit of the GLM where N/M= α=O(1),
with α being the aspect ratio that will play a role of another signal-to-noise ratio. This is because the higher α
the more correlation there is between the group memberships and the easier the community detection
should be.

The GLM–SBM differs from the SBM because communities are not independent, conditionally on the
features. For instance, in the extreme caseM= 1, all memberships are known, up to a global flip given by w1;
that is to say, they are all very strongly correlated. The GLM–SBM tends toward a SBM when α→ 0. Indeed,
for largeM,

∑M
l Fµlwl tend to independent Gaussian variables.

2.2. Related work
Anticipating the asymptotic analysis that we are aiming at, we note that such an analysis has been done for
the standard SBM in Decelle et al (2011a, 2011b)using the belief propagation (BP) algorithm and the cavity
method from statistical physics for the asymptotic analysis of its behavior. Concerning semi-supervised
learning in the SBM, the information coming from the semi-supervision is readily incorporated into the
analysis of the above papers as has been done in Zhang et al (2014).

The predictions of Decelle et al (2011a, 2011b)have then been partially established rigorously see e.g.
Mossel et al (2015, 2018), Abbe (2017), Coja-Oghlan et al (2017). However, the full conjecture of Decelle et al
(2011a, 2011b)about the asymptotic exactness of their analysis remains an open question from the
mathematical point of view. In this paper, we will use the same techniques as Decelle et al (2011a,
2011b)anticipating a follow-up work putting the conjectures about optimality on a rigorous basis. For the
GLM, which is defined by a dense graphical model, the rigorous analysis is simpler and was carried out in
Barbier et al (2019).

The analysis of the GLM–SBM requires to glue the two graphical models using the GLM as the prior for
the SBM, and the SBM as a source of uncertainty of the outputs of the GLM. Such a glueing of two dense
exactly solvable graphical models for developed in Manoel et al (2017) with rigorous justifications given in
Gabrié et al (2018), Aubin et al (2019), Gerbelot and Berthier (2021). Our work is the first one, as far as we
are aware, where a sparse graphical model (the SBM) is glued to a dense graphical model (the GLM). This
can be done heuristically and is conjectured asymptotically exact along the lines of the works of Decelle et al
(2011a, 2011b). A complete rigorous justification would have to be preceded by the proof of the conjecture
for the SBM that is still open.

The contextual stochastic block model (CSBM) introduced and studied theoretically in Binkiewicz et al
(2017), Deshpande et al (2018)is another version of the SBM incorporating node information. In the CSBM

3
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the node information is modeled via a Gaussian mixture model with each community having their own
centroid. From the analysis point of view, this model takes into account two sources of observation about the
latent variables—the community memberships. This is hence different from the GLM–SBM where one
model serves as a prior for the other instead of as an independent source of information. Modulo this
difference, some of the analysis performed for the CSBM is related to our work. Notably, the detectability
threshold and the linearized message passing algorithm presented in Deshpande et al (2018), Lu and Sen
(2020)are obtained in a similar manner in which we obtain the detectability phase transition and the
linearized algorithm. We note that the semi-supervised version of the CSBM has not been analyzed, but this
could be done rather straightforwardly using the same methods as in Zhang et al (2014).

3. Bayes-optimal estimation of communities

We consider the GLM–SBM as defined above and aim to analyze the Bayes-optimal inference of the
community structure. We will consider in general the semi-supervised setting where next to the structure of
the graph A and the covariates F we observe the communities for a subset Ξ of the nodes, ρ= |Ξ|/N. We
denote by s the vector of unobserved nodes and sΞ the vector of observed nodes. The unsupervised case is
then recovered as the special case where Ξ is an empty set, ρ= 0.

The analysis of this paper is set in the so-called Bayes-optimal setting where we know the details of the
GLM–SBMmodel. The only quantity that we do not observe is the ground truth values of the latent variables
w that generate the group memberships s. For the group memberships, we only observe a fraction ρ of them
in the semi-supervised setting and none of them in the unsupervised setting.

The optimal inference is then done using the posterior distribution over the unobserved communities

P(s|A, sΞ,F) =
P(A|s, sΞ,F)Pprior(s|sΞ,F)

Z(A, sΞ,F)
=

Pprior(s|sΞ,F)
Z(A, sΞ,F)

∏
µ<ν

PSBM(Aµν |sµ, sν) (5)

where Z(A,F, sΞ) is the normalization constant. We used here the definition of the GLM–SBMmodel that
implies P(A|s, sΞ,F) = P(A|s, sΞ). For GLM–SBM the prior on s is

Pprior(s|sΞ,F) =
1

Z(sΞ,F)

ˆ
dwPw(w)

∏
µ

[
Ps,µ(sµ)P0(sµ|

M∑
l

Fµlwl)

]
(6)

where we define P0(t|z) = δt=sign(z) the output distribution and Ps,µ the additional prior distribution, which
is used to inject information about the membership of node µ:

Ps,µ(t) =

{
δt=sµ if µ ∈ Ξ,
1/2 if µ /∈ Ξ.

(7)

In equation (6) we marginalize over the latent variable w. However, since the estimation of the latent
variable w is crucial in order to exploit the full power of the prior (6) it will be instrumental to consider the
posterior as a joint probability of the unobserved nodes and the latent variable

P(s,w|A, sΞ,F) =
Pw(w)

Z̃(A, sΞ,F)

∏
µ

[
Ps,µ(sµ)P0

(
sµ|

M∑
l

Fµlwl

)]∏
µ<ν

PSBM(Aµν |sµ, sν) (8)

Z̃ is the Bayesian evidence. We define the free entropy of the problem as its logarithm:

ϕ(A, sΞ,F) =
1

N
log Z̃(A, sΞ,F). (9)

4
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We seek an estimator ŝ that maximizes the overlap with the ground truth. The Bayes-optimal estimator ŝ
that maximizes it is given by

ŝMMO
µ = argmaxt pµ(t) (10)

where pµ is the marginal posterior probability of node µ. Using the ground truth values sµ of the
communities the maximal mean overlap is then computed as

MMO=
1

N

N∑
µ=1

δ̂sMMO
µ ,sµ . (11)

To estimating the latent variable w, we consider minimizing the mean squared error via the MMSE estimator

ŵMMSE
l =

ˆ
dsdwP(s,w|A, sΞ,F)wl (12)

i.e. ŵMMSE is the mean of the posterior distribution. Again using the ground truth values wl of the latent
variables the MMSE is then computed as

MMSE=
1

M

M∑
l=1

(ŵMMSE
l −wl)

2. (13)

The problem is invariant by a global sign flip of s and w so in practice we measure the following overlaps

qS =
|̂s · s|
N

, qW =
|ŵ ·w|

||ŵ||2||w||2
. (14)

In general, the Bayes-optimal estimation requires the evaluation of the averages over the posterior that is
in general exponentially costly in N andM. In the next section, we will derive the AMP–BP algorithm and
argue that, in the limit N→∞ andM→∞ with N/M= α=O(1) and all other parameters being ofO(1)
this algorithm approximates the MMSE and MMO estimators with an error that vanishes. We give more
precise statements below.

4. The AMP–BP algorithm

To retrieve the communities for the GLM–SBM, our main results rely on an algorithm that we call AMP–BP.
We conjecture that in the large system size, this algorithm cannot be beaten by another polynomial
algorithm. We can also extract the so-called hard phases where the randomly initialized algorithm fails, but
an exponentially costly algorithm would succeed; we do this using an informed initialization and the free
entropy. We then analyze the performance of the algorithm and the associated phase transitions.

4.1. Algorithm
The algorithm is based on BP and approximate message-passing (AMP). BP was used to solve SBM in
Decelle et al (2011b) and conjectured asymptotically optimal among efficient algorithms in doing so. AMP
was used to solve GLM, see e.g. Donoho et al (2009), Krzakala et al (2012), and again conjectured
asymptotically optimal among efficient algorithms in doing so with strong evidence for this being provided
by Celentano et al (2021). We glue these two algorithms together along the lines of Manoel et al (2017),
Aubin et al (2019)to solve the GLM–SBM; we call the resulting algorithm AMP–BP. Using statistical physics
arguments analogous to those in Decelle et al (2011b), Krzakala et al (2012)we conjecture that it provides
asymptotically optimal performance in the considered cases.

We derive the AMP–BP algorithm for the GLM–SBM starting from the factor graph of the problem:

5
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The χs and ψs are probability distributions on the variables s and w; they are called cavity messages. We write
the BP equations for these distributions that read:

χl→µ
wl

∝ Pw(wl)
∏
ν ̸=µ

ψν→l
wl

(15)

ψν→l
wl

∝
∑
sν

χν→ν
sν

ˆ ∏
m̸=l

(
dwmχ

m→ν
wm

)
P0(sν |Fν ·w) (16)

ψν→ν
sν ∝

ˆ ∏
m

(
dwmχ

m→ν
wm

)
P0(sν |Fν ·w) (17)

χµ→µ
sµ ∝ Ps,µ(sµ)

∏
ν ̸=µ

ψν→µ
sµ (18)

χµ→ν
sµ ∝ Ps,µ(sµ)ψ

µ→µ
sµ

∏
η ̸=µ,ν

ψη→µ
sµ (19)

ψµ→ν
sν ∝

∑
sµ

χµ→ν
sµ PSBM(Aµν |sµ, sν). (20)

The proportionality signs∝ denote that all the messages are non-negative numbers summing to one
over their lower indices, the corresponding normalization factors being omitted in our
notation.

These BP equations still include a high-dimensional integral and hence cannot be implemented
efficiently. We simplify them to obtain AMP–BP by using the central limit theorem on the dense side of the
graphical model and keeping only the means and variances of the resulting Gaussians. This is standard in the
derivation of the AMP algorithm, see e.g. Krzakala et al (2012). The details of this derivation are given in
appendix A.

In order to state the final algorithm, we introduce the denoising function:

go(ω,χ,V) =

´
dz
∑

sχsP0(s|z)(z−ω)e−(z−ω)2/2V

V
´
dz
∑

sχsP0(s|z)e−(z−ω)2/2V . (21)

We define the input functions as

fa(Λ,Γ) =

´
dwPw(w)we−Λw2/2+Γw´
dwPw(w)e−Λw2/2+Γw

, fv(Λ,Γ) = ∂Γfa(Λ,Γ). (22)

We denote by Zs the normalization factors obtained so that the messages sum to one over their lower
indices.

To give some intuition we explain what are the variables AMP–BP employs. al is an estimation of the
posterior mean of wl, vl is an estimation of its variance; ωµ is an estimation of the mean of

∑
l Fµlwl and V an

estimation of its variance. ψµ→µ
sµ is a marginal distribution on sµ, as estimated by the AMP on the GLM side,

while χµ→µ
sµ is the distribution as estimated by the BP on the SBM side. Γl is a proxy for estimating the mean

of wl in absence of the prior Pw and Λ is for the variance. ht can be interpreted as an external field enforcing
the nodes not to be in the same group; χµ→ν

sµ is a marginal distribution on sµ (these variables are the
messages of a sum-product message-passing algorithm) and χµsµ is the estimated posterior marginal on sµ,
that we are interested in.
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The AMP–BP algorithm reads:

AMP–BP

input features Fµl, graph G, affinity matrix cs,t, prior information Ps,µ.

Initialize a(0)l = ϵl, v
(0)
l = 1, g(0)o,µ = 0, χµ→ν,(0)

sµ = 1
2 + sµϵ

µ→ν , χµ→µ,(0)
sµ = 1

2 , χ
µ,(0)
sµ = 1

2 , t= 0; where ϵs are
zero-mean small random variables.

repeat
AMP update of ωµ,Vµ

V(t+1)← 1
M

∑
l

v(t)l

ω(t+1)
µ ←

∑
l

Fµla
(t)
l −V(t+1)g(t)o,µ

AMP update of ψµ→µ,go,µ,Λ,Γl

ψµ→µ,(t+1)
sµ ←

ˆ
dzP0(sµ|z)√
2πV(t+1)

µ

e
−

(z−ω
(t+1)
µ )2

2V
(t+1)
µ

g(t+1)
o,µ ← go(ω

(t+1)
µ ,χµ→µ,(t),V(t+1))

Λ(t+1)← 1
M

∑
µ

g2,(t+1)
o,µ

Γ
(t+1)
l ← Λ(t+1)a(t)l +

∑
µ

Fµlg
(t+1)
o,µ

AMP update of the estimated marginals al,vl

a(t+1)
l ← fa(Λ

(t+1),Γ
(t+1)
l )

v(t+1)
l ← fv(Λ

(t+1),Γ
(t+1)
l )

BP update of the field h

h(t+1)
s ← 1

N

∑
µ

∑
sµ

cs,sµχ
µ,(t)
sµ

BP update of the messages χµ→ν for (µν) ∈ G and of the marginals χµ

χµ→ν,(t+1)
sµ ← Ps,µ(sµ)

Zµ→ν
e
−h(t+1)

sµ ψµ→µ,(t+1)
sµ

∏
η∈∂µ\ν

∑
sη

csη,sµχ
η→µ,(t)
sη

χµ,(t+1)
sµ ← Ps,µ(sµ)

Zµ
e
−h(t+1)

sµ ψµ→µ,(t+1)
sµ

∏
η∈∂µ

∑
sη

csη,sµχ
η→µ,(t)
sη

BP update of the SBM-to-GLMmessages χµ→µ

χµ→µ,(t+1)
sµ ← Ps,µ(sµ)

Zµ→µ
e
−h(t+1)

sµ

∏
η∈∂µ

∑
sη

csη,sµχ
η→µ,(t)
sη

t← t+ 1
until convergence of al,vl,χ

µ

output estimated mean al and variance vl of wl and marginal distribution χµ of sµ.

We provide an implementation of AMP–BP in the supplementary material. It is also available from our
repository1.

We draw attention to the output function go that covers the difference between AMP for GLM–SBM and
AMP for GLM alone. In AMP for GLM alone go depends on the observed labels while here we use their
estimated marginals. On the other side, the difference between BP for GLM–SBM and BP for SBM alone are
the messages ψµ→µ in BP update. ψµ→µ can be interpreted as the conditional probability of sµ given w
without SBM.

4.1.1. Estimators
The Bayes-optimal estimators of s and w are obtained according to equations (10) and (12). Expressed using
the AMP–BP messages they become

ŝAMP–BP
µ = sign(2χµ+ − 1), ŵAMP–BP

l = al (23)

where χµ+ is the estimated marginal probability of the event sµ =+1 and al is the estimated mean of wl.

1 https://gitlab.epfl.ch/spoc-idephics/glm-sbm.
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4.1.2. Free entropy
We express also the free entropy ϕ in terms of the messages and variables of AMP–BP at the fixed point; it is
called the Bethe free entropy ϕBethe. The derivation from the factor graph is done in appendix B. Up to a term
that diverges with N we obtain that the Bethe free entropy is

ϕBethe = ϕSBM +ϕGLM (24)

ϕSBM =
1

N

∑
µ

log
∑
sµ

Ps,µ(sµ)e
−hsµ

∏
η∈∂µ

∑
sη

csη,sµχ
η→µ
sη

− 1

N

∑
(µν)∈G

log
∑
sµ,sν

csµ,sνχ
µ→ν
sµ χν→µ

sν +
c

2
(25)

ϕGLM =
1

N

∑
µ

log

ˆ
dzµ√
2πVµ

∑
sµ

χµ→µ
sµ Po(sµ|zµ)e−(zµ−ωµ)

2/2Vµ

+
1

N

∑
l

log

ˆ
dwlPw(wl)e

−Λlw
2
l /2+Γlwl

+
1

N

(∑
l

Λl

2
(a2l + vl)−Γlal +

∑
µ

(ωµ−
∑

l Fµlal)
2

2Vµ

)
. (26)

If the AMP–BP has more than one fixed point then the free entropy serves to select the fixed point of
AMP–BP that corresponds to Bayes-optimal performance. It is the one with the largest free entropy that
should be selected.

We compare later the free entropy of the fixed point of AMP–BP to the free entropy of the fully
informative point where qS = qW = 1. We write it ϕinfo. At this point the messages are delta functions of the
ground truth; we can derive ϕinfo directly from the factor graph and it reads

ϕinfo =
1

α
EPw logPw +

1

N

∑
(µν)∈G

log csµ,sν −
c

2
− (1− ρ) log2. (27)

4.2. Asymptotic optimality conjecture
We conjecture that AMP–BP gives the Bayes-optimal estimator for GLM–SBM in the following sense.

We define the two possible initializations: (a) random initialization, where we initialize the messages
randomly according to their prior distribution, adding no information, as described in the algorithm above;
and (b) informed initialization, where we initialize the estimators to delta functions of the true values of s
and w.

We consider the fixed point of AMP–BP that has the largest Bethe free entropy ϕBethe. We argue that it
suffices to check the random and informed initializations to find all the relevant fixed points.

We conjecture that, asymptotically exactly, the AMP–BP fixed point that has the largest ϕBethe provides
the Bayes-optimal estimators for the GLM–SBMmodel. Its overlap qS is asymptotically equal to the
Bayes-optimal MMO overlap and ϕBethe is equal to ϕ, with high probability as N→+∞. This is aligned with
the same conjecture for BP and the standard SBM from Decelle et al (2011a) and the proofs of this property
for the AMP algorithm and the pure GLMmodel in Barbier et al (2019).

5. Bayes-optimal estimation with AMP–BP and phase transitions

5.1. Gaussian prior, 2nd order transition to partial recovery
In this subsection we consider the GLM prior Pw to be a standard Gaussian. The GLM then produces binary
labels, the group memberships, with the same probability of being in each of the groups.

We conjecture that for this prior the fixed point of AMP–BP reached from random initialization always
corresponds to the Bayes-optimal estimation and no computationally hard phase is present. We observe that
the algorithm converges to the same fixed point for the two possible initializations. In figure 7 in the
appendix E we illustrate that the system size we use is close enough to the thermodynamical limit in the sense
that the change in the curves is small when the size is changed.

The accuracy AMP–BP achieves is depicted in figures 1 (unsupervised case) and 8 (semi-supervised case,
in appendix E). We observe that the larger the snr λ or the aspect ratio α the better the recovery. The recovery
is eased when community memberships are explained by a few features i.e. when α is large.
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Figure 1. Left and right: overlaps qS (group membership estimation) and qW (the GLM latent vector estimation) of the fixed point
of AMP–BP, vs λ for a range of compression ratios α. Vertical dashed lines: theoretical thresholds λc to partial recovery,
equation (29). N= 104, c= 5, Pw Gaussian. We run ten experiments per point. Inset: we plot the ten data points and their mean.

In the unsupervised case, we observe a phase transition from a non-informative fixed point qS = qW = 0
to an informative fixed point qS > 0,qW > 0. The transition is located at a particular critical threshold λc.
This transition is well known for standard SBM, which is recovered here in the α→ 0 limit, where λc = 1 for
q= 2. The transition is of 2nd order; this means that the overlaps vary continuously with respect to λ. In the
semi-supervised case the 2nd order transition disappears.

5.1.1. Linearization, spectral algorithm
λc can be computed by a linear stability analysis of the non-informative fixed point of AMP–BP: at a given λ,
if the algorithm is not stable it will move away from the non-informative fixed point to the informative fixed
point. The linearization of the algorithm is done in appendix C. We obtain the following update equation:

xµ→ν,(t+1) =
λ√
c

 ∑
η∈∂µ\ν

xη→µ,(t) +
2

π

∑
η

(FFT − IN)µ,η
∑
ρ∈∂η

xρ→η,(t−1)

 (28)

where the xs are real random variables and (FFT)µν =
∑

l FµlFνl. Taking the variance of this equation and
averaging over the realizations of the graph we obtain the stability criterion

1= λ2c

(
1+

4α

π2

)
. (29)

Equation (28) can be interpreted as a spectral algorithm; we apply iteratively a linear operator to the
variables

x=
λ√
c

(
B+GB̃

)
x (30)

where

Bµ→ν,ρ→η = δµ=η(1− δρ=ν), Gµ→ν,η =
2

π
(FFT − IN)µ,η, B̃η,µ→ρ = δρ=η. (31)

B is the non-backtracking matrix (Krzakala et al 2013). Such a spectral algorithm will share the phase
transition at signal-to-noise ratio (snr) given by equation (28). The study of the resulting overlap is also of
interest, but we do not consider it in the present article.

5.2. Binary prior, 1st order transition to exact recovery
In this subsection the GLM prior is considered to be Pw = (δw=1 + δw=−1)/2 Rademacher. This still
produces two groups with unbiased sizes.

The fixed point AMP–BP achieves from a random initialization is depicted on figures 2 and 9 (in
appendix E). We observe it admits the same transition to partial recovery at λc, equation (29), as the
Gaussian prior does; this is also predicted by the linearization of the previous part.
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Figure 2. Left and right: overlap qS and free entropy ϕBethe −ϕinfo of the fixed point of AMP–BP, vs λ for several compression
ratios α. N= 104, c= 5, Pw Rademacher, ρ= 0. We run ten experiments per point; the median is plotted and the error bars are
the difference between the 0.85th and 0.15th quantiles. Insets: we plot the median and the ten data points. We use damping for
AMP–BP: we interpolate taking 1/4 of the values at t+ 1 and 3/4 of the values at t.

For values of α > αalgo (that we determine below), we observe another transition; it is discontinuous,
from partial recovery qS > 0,qW > 0 to exact recovery qS = qW = 1. There is a value λalgo such that for
λ > λalgo randomly initialized AMP–BP recovers the group memberships exactly for all nodes. The overlap
qS does not vary continuously at λalgo; over the many independent trials we observe that there is an interval
of overlaps below 1 that cannot be reached by AMP–BP for any λ.

Discontinuous thresholds are related to the existence of several fixed points of AMP–BP and to first-order
phase transitions. A 1st order phase transition is located by comparing the free entropies ϕBethe of the various
fixed points. We notice that next to the AMP–BP fixed point that is reached from a random initialization, the
exact recovery point is a fixed point at all values of λ and α (still considering Pw binary). In the region of λ
and α where these two fixed points differ we need to compare their free entropies. The fixed point with larger
free entropy describes the Bayes-optimal performance that can in general be better than the one of AMP–BP.
The difference between the free entropies of the fixed point reached by AMP–BP from random initialization
and the informative fixed point is depicted on the rhs of figure 2. We see that for λ < λIT the fixed point
reached from random initialization has larger free entropy ϕBethe > ϕinfo and hence describes the optimal
performance. In the region λIT < λ < λalgo the informative fixed point has larger free entropy ϕinfo > ϕBethe,
but randomly initialized AMP–BP does not reach it. This is an algorithmically hard phase where exact
recovery is statistically possible, but the AMP–BP algorithm is sub-optimal. At the same time the AMP–BP
algorithm is conjectured optimal among efficient algorithms (Gamarnik et al 2022) and thus the hardness of
this phase is believed to be intrinsic. For λ > λalgo we only find the exact recovery fixed point.

An exact recovery for the standard SBM is only achievable for graphs of average degrees c diverging
logarithmically with the size of the system (Abbe et al 2015), where the logarithm comes from a type of
coupon collector problem. The existence of an exact recovery phase in graphs of constant degrees is novel as
far as we know. It nicely illustrates the power of the GLM prior that is able to induce it. It is well known that a
1st order phase transition appears for GLM alone with binary weights and known labels (Györgyi 1990,
Sompolinsky et al 1990, Barbier et al 2019). We note, however, that in the GLM–SBM the labels are not
observed directly but via the graph. It is thus not a priori clear that an exact recovery phase can appear.
Without our analysis its existence would not be easy to anticipate.

Let us finally derive the values αalgo above which the exact recovery phase exists. We consider the limit
λ=

√
c; then the graph G consists of two disconnected components, one for each community; and AMP–BP

performs as AMP for GLM alone, up to a global sign. We take into account the proportion e−c of nodes that
are isolated and do not bring information. We obtain that

αalgo = αalgo,perceptron

(
1− e−c

)−1
(32)

where αalgo,perceptron ≈ 1.493 is the algorithmic critical compression ratio of the binary perceptron (Barbier
et al 2019). Similarly the λIT will exist above

αIT = αIT,perceptron

(
1− e−c

)−1
(33)
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where αalgo,perceptron ≈ 1.249 is the information-theoretic critical threshold of the binary perceptron
(Györgyi 1990, Sompolinsky et al 1990, Barbier et al 2019).

The 1st order phase transition λIT and its spinodal λalgo are still present in the semi-supervised case ρ> 0,
for small values of ρ, see figure 9 in appendix E, contrary to the 2nd order phase transition to partial recovery
that vanishes in the semi-supervised case. Moreover, for ρ > αalgo,perceptron/α, perfect recovery is achieved at
any λ, because one has enough train labels to infer w.

6. Analysis in the dense limit

As in Decelle et al (2011a, 2011b)for the sparse SBM, the analysis of the AMP–BP is based on the numerical
investigation of the fixed points and their free entropies on systems large enough that the behavior is
representative of the large-size limit. This is also at the basis of the mathematical difficulty to establish this
prescription rigorously. At the same time, a dense version of the SBM has been proposed and studied fully
rigorously in Lesieur et al (2017), Miolane (2017). This rigorous analysis has then been extended to include
the GLM prior in Aubin et al (2019) that studies a generic instance of low-rank matrix factorization problem
with a generative prior. We hence study the phenomenology of the AMP–BP algorithm in the limit of large
degree c, where it becomes a special case of the framework developed in Aubin et al (2019).

The dense limit is defined by taking pi,po =O(1) and pi − po =O(1/
√
N). SBM is then a low-rank

matrix factorization problem. It is parameterized by its signal-to-noise ratio∆I (which is defined as the
inverse variance of an equivalent additive Gaussian channel). We need∆I as a function of the parameters of
the SBM, that is to say to equalize their signal-to-noise ratios. We compute the Fisher information of the

channel PSBM(Aµν = 1|xµν) = 1
N co +

1√
N
(ci − co)xµν , where xµν =

δsµ=sν√
N

is taken to zero. The mapping

is then

∆I =
1

4

N(pi − po)2

po(1− po)
=

cλ2

c−
√
cλ

+O
( c

N

)
(34)

where pi = ci/N and po = co/N. It is of order one in both sparse case and dense case. Also, we add the factor
1/4 to obtain a phase transition at∆I = 1 in the dense case when α= 0. In the following ρ= 0.

Aubin et al (2019) give the algorithm corresponding to the dense case of AMP–BP algorithm. We
reproduce it in appendix D. Its performances can be tracked by a few scalar equations that are named state
evolution (SE) equations. For Pw Rademacher they read:

qt+1
w = Eξ

[
Zw

(√
q̂twξ, q̂

t
w

)
fw
(√

q̂twξ, q̂
t
w

)2]
(35)

q̂tw = αEξ,η
[
Zo

(√
qts∆Iξ,q

t
s∆I,

√
qtwη,1− qtw

)
fo
(√

qts∆Iξ,q
t
s∆I,

√
qtwη,1− qtw

)2]
(36)

qt+1
s = Eξ,η

[
Zo

(√
qts∆Iξ,q

t
s∆I,

√
qtwη,1− qtw

)
fs
(√

qts∆Iξ,q
t
s∆I,

√
qtwη,1− qtw

)2]
(37)

where qs and qw are the s- and w-overlaps,∆I is the signal-to-noise ratio of the problem, ξ and η are standard
Gaussians and

Zw(γ,Λ) = eΛ/2 coshγ, fw(γ,Λ) = ∂γ logZw (38)

Zo(B,A,ω,V) = e−A/2(cosh(B)+ sinh(B)erf(ω/
√
2V)) (39)

fo(B,A,ω,V) = ∂ω logZo, fs(B,A,ω,V) = ∂B logZo. (40)

Aubin et al (2019) gives also the free entropy of the fixed point of the algorithm for the dense problem.
It reads

ϕBethe,d(qs,qw, q̂w) =−∆I

4
q2s −

1

2α
q̂wqw +ψo(∆Iqs,qw)+

1

α
ψw(q̂w) (41)

where

ψo(∆Iqs,qw) = Eξ,η xlogxZo

(√
∆Iqsξ,∆Iqs,

√
qwη,1− qw

)
(42)
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Figure 3. Left and right: overlap qS and free entropies ϕBethe −ϕinfo and ϕBethe,d −ϕinfo,d of the fixed point of AMP–BP and of the
SE equations of the dense limit, vs∆I for several average degrees cs. We generate instances of GLM–SBM according to the λ
obtained by inverting equation (34). N= 104, α= 3, Pw binary. For AMP–BP we run ten experiments per point; for the SE
equations one experiment. The median is plotted and the error bars are the difference between the 0.85th and 0.15th quantiles.
Insets: we plot the median and the ten data points. We use damping. For SE, the slight decrease of the free entropy at large∆I is
due to numerical imprecision.

ψw(q̂w) = Eξ xlogxZw

(√
q̂wξ, q̂w

)
(43)

xlogx being the function x→ x logx.
The convergence to the dense limit is quite fast; the large degree results are close to the observed results

even for c quite small. Numerically it appears that c≈ 20 is enough (N= 104) to already observe quite small
difference, see figure 3.

The fully informative fixed point is (qs, q̂w,qw) = (1,+∞,1). Its free entropy is

ϕinfo,d =− log2

α
+

∆I

4
. (44)

The analysis of the system of SE equations is done in appendix D; we summarize the four main points: (a)
the fully informative fixed point is stable for all∆I; (b) the width of its stability domain shrinks to zero when
∆I tends to zero; (c) a general necessary condition to observe a fully informative fixed point is that Pw does
not admit everywhere a twice differentiable density; (d) the algorithmic critical compression ratio αalgo,d is
close to αalgo,preceptron.

We also obtain an approximation for the critical point λc of the transition to partial recovery. Aubin et al
(2019) gives us that in the dense limit, the critical snr is

∆I,c =
(
1+ 4

α

π2

)−1
. (45)

The limit c= ω(1) large gives λc =
(
1+ 4α/π2

)−1/2
+O(c/N), as predicted by the linearization.

7. Comparison of performance with standard GNNs on GLM–SBM

GLM–SBM can be used as a benchmark for clustering or classification tasks on attributed graphs. We
compare two simple baselines with AMP–BP. We show that GLM–SBM is simple to define yet challenging
algorithmically, in particular in the case of binary prior close to the first order phase transition.

7.1. An unsupervised baseline
The algorithm is inspired by graph convolution networks; it performs binary clustering. We compare its
performances to the optimal ones given by AMP–BP. Its performances are shown on figures 4 left (Pw

binary) and 10 left (Pw Gaussian, in appendix E).

Data is generated according to the GLM–SBM. We stack the features Fµl into vectors F
(0)
µ ∈ RM or a

matrix F ∈ RN×M. The observed graph G is used for the convolution steps.
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Figure 4. Overlap qS of the baseline algorithms, vs λ. We compare to the overlap obtained by AMP–BP. Left: unsupervised; for the
parameters of the graph convolution we choose a= 0.1 and n= 4. Right: semi-supervised; for the hyperparameters of the GNN
we choose n= 2, Nhidden = 20, learning rate 3.10−4 and L2 penalty 10−3. The train set is ρ= 1/10th of the nodes. N= 104,
c= 5, Pw binary. We run ten experiments per point.

We compute n steps of graph convolution on the features; perform PCA on the transformed features and
keep the largest component; threshold its left vector to obtain the membership of each node. Formally, we

consider the features F(0)µ ∈ RM; we apply n times

F(t+1)
µ = F(t)µ + a

∑
ν∈∂µ

F(t)ν (46)

where a is a scalar. We apply PCA on the new matrix F̂ whose rows are F(n)µ . Writing u ∈ RN the left vector of
its largest component, the estimator is ŝ= sign(u). We tune n and a empirically to optimize the recovery. We
observe that roughly it depends on n and a only by their product an. Also, the optimal a scales like 1/c.

7.2. A semi-supervised baseline
The algorithm is a simple GNN, trained in a semi-supervised way for node classification.

Again data is generated according to the GLM–SBM, with ρ= 1/10. We stack the features Fµl into

vectors F(0)µ ∈ RM. We use the observed graph G for the message-passing steps.
The GNN is made of a two-layer perceptron and a readout layer for the binary classification. It reads:

F(t+1)
µ = F(t)µ +B relu

A
∑
ν∈∂µ

F(t)ν

 , ŝµ = wTF(n)µ (47)

where A is Nhidden ×M learnable, B isM×Nhidden learnable, w ∈ RM learnable and n is the number of steps.
We train it given the labels of the subset of nodes Ξ. We use gradient descent with logistic loss, momentum
and L2 regularization. We do not fine-tune the hyperparameters. Its performances are shown on figures 4
right (Pw binary) and 10 right (Pw Gaussian, in appendix E).

We also performed experiments where the GNN is made of a single-layer perceptron (no relu), as Cheng
et al (2022) does on CSBM. The performances are similar to the multi-layer perceptron, but it requires much
more parameters to be trained (M2 vsMNhidden, and we take Nhidden =O(1)).

7.3. Conclusion on the comparison
As to the GLM–SBM dataset, figure 4 illustrates that, both in the unsupervised and the semi-supervised
settings, the baseline methods have a considerable gap to the optimal performances given by the AMP–BP
algorithm. The GLM–SBM setting is hence suitable to develop GNN algorithms that are able to provide
higher accuracy.

As to the AMP–BP algorithm, it is very scalable. It has a running time similar to the GNN-based
approaches, around a few minutes per point on figure 1 or 2 (including the ten experiments). Its complexity
isO(NM) in time and in memory. This is the smallest any algorithm can do, for reading the input. The
number of steps needed for convergence does not depend on N.
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8. Conclusions

We propose a model of attributed graphs. It is a sparse SBM where the nodes carry features that determine
their community memberships. We solve it, in the sense that we derive an algorithm that is conjectured to
perform optimally among polynomial algorithms. We analyze a linearization of the algorithm and the dense
limit of the model. The model, yet simple, exhibits a rich phenomenology with detectable and exact recovery
phase transitions. It can be used as a challenging benchmark for GNNs.

In the analysis of this paper we only considered two groups. For more than two groups, q> 2, the analysis
can also be done by writing an AMP–BP algorithm; just, the AMP-side would need to correspond to a
single-layer network with multi-class output. The AMP for such a model has been written and studied in
Cornacchia et al (2022) and one would have to merge it with the BP of Decelle et al (2011a). Another
generalization that would be possible to analyze is when the attributes F are drawn from a Gaussian with a
generic covariance. This can be done along the lines of Loureiro et al (2021). On the other hand considering
as a prior the multi-layer neural network (2) with learned weightsW would be more challenging; a
corresponding AMP algorithm that would provide an asymptotically exact solution is not known.

A future direction of work could also be to theoretically analyze the learning of GLM–SBM by a GNN,
i.e. to give insights on the generalization performance of the neural network of section 7; as Cheng et al
(2022) does for a perceptron-based graph convolution network on CSBM. This would be interesting because
few theoretical works address the generalization ability of GNNs.
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Appendix A. Derivation of the algorithm

We write BP for this problem. We start with the factor graph. It contains six different messages:

These messages satisfy these equations:

χl→µ
wl

∝ Pw(wl)
∏
ν ̸=µ

ψν→l
wl

(48)

ψν→l
wl

∝
∑
sν

χν→ν
sν

ˆ ∏
m̸=l

(
dwmχ

m→ν
wm

)
P0(sν |Fν .w) (49)

ψν→ν
sν ∝

ˆ ∏
m

(
dwmχ

m→ν
wm

)
P0(sν |Fν .w) (50)

χµ→µ
sµ ∝ Ps,µ(sµ)

∏
ν ̸=µ

ψν→µ
sµ (51)

χµ→ν
sµ ∝ Ps,µ(sµ)ψ

µ→µ
sµ

∏
η ̸=µ,ν

ψη→µ
sµ (52)

ψµ→ν
sν ∝

∑
sµ

χµ→ν
sµ PSBM(Aµν |sµ, sν). (53)
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We can plug ψ messages into the χ to obtain, for the GLM part:

χl→µ
wl

=
Pw(wl)

Zl→µ

∏
ν ̸=µ

∑
sν

χν→ν
sν

ˆ ∏
m̸=l

(
dwmχ

m→ν
wm

)
P0(sν |Fν .w)

 (54)

the marginals

χl
wl
=

Pw(wl)

Zl

∏
ν

∑
sν

χν→ν
sν

ˆ ∏
m̸=l

(
dwmχ

m→ν
wm

)
P0(sν |Fν .w)

 (55)

where the Zs are normalization factors; and for the SBM part:

χµ→ν
sµ ∝ Ps,µ(sµ)ψ

µ→µ
sµ

∏
η ̸=µ,ν

∑
sη

χη→µ
sη PSBM(Aµη|sµ, sη) (56)

the marginals

χµsµ ∝ Ps,µ(sµ)ψ
µ→µ
sµ

∏
η≠µ

∑
sη

χη→µ
sη PSBM(Aµη|sµ, sη) (57)

and

χµ→µ
sµ ∝ Ps,µ(sµ)

∏
ν ̸=µ

∑
sν

χν→µ
sν PSBM(Aµν |sµ, sν). (58)

A.1. SBM
We can apply the standard simplifications for sparse SBM (Decelle et al 2011b, Zdeborová and Krzakala
2016). We consider only messages on G. This gives

χµ→µ
sµ =

1

Zµ→µ
Ps,µ(sµ)e

−hsµ
∏
η∈∂µ

∑
sη

csη,sµχ
η→µ
sη (59)

χµ→ν
sµ =

1

Zµ→ν
Ps,µ(sµ)ψ

µ→µ
sµ e−hsµ

∏
η∈∂µ\ν

∑
sη

csη,sµχ
η→µ
sη (60)

and the marginals

χµsµ =
1

Zµ
Ps,µ(sµ)ψ

µ→µ
sµ e−hsµ

∏
η∈∂µ

∑
sη

csη,sµχ
η→µ
sη (61)

where hs =
1
N

∑
µ

∑
sµ
cs,sµχ

µ
sµ .

A.2. GLM
For the GLM, we follow closely (Zdeborová and Krzakala 2016).

A.2.1. r-BP
We apply first the simplifications that lead to r-BP. We define and consider the inner part of the χl→µ

wl

message:

ψ̃ν→l
wl

=
∑
sν

χν→ν
sν

ˆ ∏
m̸=l

(
dwmχ

m→ν
wm

)
P0(sν |Fν .w). (62)

We set zν = Fνlwl +
∑

m̸=l Fνmwm. By independence of the w the partial sum behaves like a Gaussian with
mean and variance

ων→l =
∑
m ̸=l

Fνmam→ν , Vν→l =
∑
m̸=l

F 2
νmvm→ν (63)

with

am→ν =

ˆ
dwmχ

m→ν
wm

wm vm→ν =

ˆ
dwmχ

m→ν
wm

w2
m − a2m→ν . (64)
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We replace the integral over all ws by a Gaussian integral over zν ; we obtain

ψ̃ν→l
wl

=
∑
sν

χν→ν
sν

ˆ
dzν√

2πVν→l
e−(zν−Fνlwl−ων→l)

2/2Vν→lP0(sν |zν). (65)

We can simplify. Fνl is small, we expand the exponential:

e
− (zν−Fνlwl−ων→l)

2

2Vν→l = e
− (zν−ων→l)

2

2Vν→l

(
1−

F2νlw
2
l

2Vν→l
+

(zν −ων→l)Fνlwl

Vν→l
+

(zν −ων→l)
2F2νlw

2
l

2V2
ν→l

)
. (66)

We introduce the denoising function; its expression differs from the one of Zdeborová and Krzakala (2016):

go(ω,χ,V) =

´
dz
∑

sχsP0(s|z)(z−ω)e−(z−ω)2/2V

V
´
dz
∑

sχsP0(s|z)e−(z−ω)2/2V . (67)

So

ψ̃ν→l
wl

∝
(
1−

F2νlw
2
l

2Vν→l
+ goFνlwl +

1

2

(
1

Vν→l
+ ∂ωgo + g2o

)
F2νlw

2
l

)
(68)

where we evaluate go in (ων→l,χ
ν→ν ,Vν→l). We exponentiate:

ψ̃ν→l
wl

∝ egoFνlwl+
1
2∂ωgoF

2
νlw

2
l . (69)

We take the product of the ψ̃ to obtain

χl→µ
wl

∝ Pw(wl)e
−Λl→µw

2
l /2+Γl→µwl (70)

where

Λl→µ =−
∑
ν ̸=µ

∂ωgo(ων→l,χ
ν→ν ,Vν→l)F

2
νl, Γl→µ =

∑
ν ̸=µ

go(ων→l,χ
ν→ν ,Vν→l)Fνl. (71)

We close the loop defining the input functions

fa(Λ,Γ) =

´
dwPw(w)we−Λw2/2+Γw´
dwPw(w)e−Λw2/2+Γw

, fv(Λ,Γ) = ∂Γfa(Λ,Γ) (72)

so

al→µ = fa(Γl→µ,Λl→µ), vl→µ = fv(Γl→µ,Λl→µ). (73)

The mean and the variance of the marginals are estimated by

al = fa(Γl,Λl), vl = fv(Γl,Λl) (74)

where

Λl =−
∑
ν

∂ωgo(ων→l,χ
ν→ν ,Vν→l)F

2
νl, Γl =

∑
ν

go(ων→l,χ
ν→ν ,Vν→l)Fνl. (75)

We obtain also the expression of the GLM-to-SBMmessage

ψµ→µ
sµ =

1√
2πVµ

ˆ
dzP0(sµ|z)e−(z−ωµ)

2/2Vµ (76)

where

ωµ =
∑
m

Fµmam→µ, Vµ =
∑
m

F 2
µmvm→µ. (77)
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A.2.2. Time indices
There are two possibilities for mixing the GLM part and the SBM part:

or

We try both; we do not observe any numerical difference.

A.2.3. AMP
Then we go from r-BP to AMP. We remove the dependence of the messages on the target. We keep only the
marginals. The derivation is given by Zdeborová and Krzakala (2016). We obtain that

V(t+1)
µ =

∑
l

F2µmv
(t)
l (78)

ω(t+1)
µ =

∑
l

Fµla
(t)
l −V(t+1)

µ g(t)o,µ (79)

g(t+1)
o,µ = go(ω

(t+1)
µ ,χµ→µ,(t),V(t+1)

µ ) (80)

Λ
(t+1)
l =−

∑
µ

F2µl∂ωgo(ω
(t+1)
µ ,χµ→µ,(t),V(t+1)

µ ) (81)

Γ
(t+1)
l = Λ

(t+1)
l a(t)l +

∑
µ

Fµlg
(t+1)
o,µ . (82)

A.2.4. Further simplifications
F2µm self-averages. We can replace it by its average 1/M in equations (78) and (81). So Λ and V become
scalars. Also, on average,−∂ωgo,µ = g2o,µ. We obtain the algorithm given in the main part.

Appendix B. Free entropy

We start with the factor graph. The Bethe free entropy is the sum of the free entropies of the nodes plus the
factors minus the edges i.e.

NϕBethe =
∑
µ

ϕµ+
∑
l

ϕl +
∑
µ<ν

ϕµν +
∑
µ

ϕµµ

−
∑
µ ̸=ν

ϕµ→ν −
∑
µ

ϕµ→µ−
∑
l,µ

ϕl→µ

17
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where

ϕµ = log
∑
sµ

Ps,µ(sµ)ψ
µ→µ
sµ

∏
ν ̸=µ

ψν→µ
sµ = logZµ

∏
ν ̸=µ

1

Zν→µ
ψ

(83)

ϕl = log

ˆ
dwlPw(wl)

∏
µ

ψµ→l
wl

= logZl
∏
µ

1

Zµ→l
ψ

(84)

ϕµν = log
∑
sµ,sν

χµ→ν
sµ χν→µ

sν P(Aµν |sµ, sν) (85)

ϕµµ = log
∑
sµ

ˆ ∏
m

(
dwmχ

m→µ
wm

)
χµ→µ
sµ P0(sµ|Fµ.w) (86)

ϕµ→ν = log
∑
sµ

χµ→ν
sµ ψν→µ

sµ = log
1

Zν→µ
ψ

+ϕµν (87)

ϕµ→µ = log
∑
sµ

χµ→µ
sµ ψµ→µ

sµ = log
1

Zµ→µ
+ϕµ (88)

ϕl→µ = log

ˆ
dwlχ

l→µ
wl

ψµ→l
wl

= log
1

Zµ→l
ψ

+ϕµµ. (89)

This simplifies to

NϕBethe =
∑
µ

logZµ→µ+
∑
l

logZl −
∑
µ<ν

ϕµν +(1−M)
∑
µ

ϕµµ. (90)

On the SBM side, we have (Zdeborová and Krzakala 2016)

Zµ→µ =
∑
sµ

Ps,µ(sµ)e
−hsµ

∏
η∈∂µ

∑
sη

csη,sµχ
η→µ
sη (91)

∑
µ<ν

ϕµν =
∑

(µν)∈G

log
∑
sµ,sν

csµ,sνχ
µ→ν
sµ χν→µ

sν −N
c

2
. (92)

On the GLM side, we have

ϕµµ = log

ˆ
dzµ√
2πVµ

∑
sµ

χµ→µ
sµ Po(sµ|zµ)e−(zµ−ωµ)

2/2Vµ (93)

logZl =
∑
µ

log Ẑµ→l + log

ˆ
dwlPw(wl)e

−Λlw
2
l /2+Γlwl . (94)

We compute log Ẑµ→l as a function of the target-free elements (we start using that ωµ→l = ωµ− Fµlal→µ and
Vµ→l = Vµ− F2µlvl→µ and expanding). This gives:

∑
l,µ

log Ẑµ→l =M
∑
µ

ϕµµ+
∑
l

Λl

2
(a2l + vl)−Γlal +

∑
µ

(ωµ−
∑

l Fµlal)
2

2Vµ
(95)

which is what Krzakala et al (2014) gives (taking Σl = 1/Λl and Rl = Γl/Λl). Finally, we obtain that the free
entropy ϕ is exactly the sum of the free entropies of the two sub-problems:

ϕBethe = ϕSBM +ϕGLM (96)

ϕSBM =
1

N

∑
µ

log
∑
sµ

Ps,µ(sµ)e
−hsµ

∏
η∈∂µ

∑
sη

csη,sµχ
η→µ
sη

− 1

N

∑
(µν)∈G

log
∑
sµ,sν

csµ,sνχ
µ→ν
sµ χν→µ

sν +
c

2
(97)
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ϕGLM =
1

N

∑
µ

log

ˆ
dzµ√
2πVµ

∑
sµ

χµ→µ
sµ Po(sµ|zµ)e−(zµ−ωµ)

2/2Vµ

+
1

N

∑
l

log

ˆ
dwlPw(wl)e

−Λlw
2
l /2+Γlwl

+
1

N

(∑
l

Λl

2
(a2l + vl)−Γlal +

∑
µ

(ωµ−
∑

l Fµlal)
2

2Vµ

)
. (98)

Appendix C. Linearization and partial recovery threshold

We take Ps,µ(s) = 1/2. The non-informative point qS = qW = 0 is a fixed point of the AMP–BP algorithm. At
this point, we have χµ→ν = 1

2 , χ
µ→µ = 1

2 , χ
µ→ν = 1

2 , al = 0, vl = 1, ωµ = 0, V = 1, ψµ→µ = 1
2 , go,µ = 0,

Λ = 0 and Γl = 0.
We linearize the equations of the algorithm around this point. We write |∗ the evaluation of functions in

this point. We have

δχµ→ν,(t+1) =
∑

η∈∂µ\ν

1

2

( c.,.
c

− 1
)
δχη→µ,(t) + ∂ωψ

µ→µ|∗δω(t+1)
µ + ∂Vψ

µ→µ|∗δV(t+1) (99)

δχµ→µ,(t+1) =
∑
η∈∂µ

1

2

( c.,.
c

− 1
)
δχη→µ,(t) (100)

δa(t+1)
l = ∂Λfa|∗δΛ(t+1) + ∂Γfa|∗δΓ(t+1)

l (101)

δv(t+1)
l = ∂ΛΓfa|∗δΛ(t+1) + ∂ΓΓfa|∗δΓ(t+1)

l (102)

δg(t+1)
o,µ = ∂ωgo|∗δω(t+1)

µ +∇χ go|∗δχµ→µ,(t+1) + ∂Vgo|∗δV(t+1) (103)

where we write c.,. for the affinity matrix and where we have used the standard linearization for SBM. We
have also

δω(t+1)
µ =

∑
l

Fµlδa
(t)
l − δV(t+1)go|∗ −V|∗δg(t)o,µ (104)

δV(t+1) =
1

M

∑
l

δv(t)l (105)

δΛ(t+1) =
2

M

∑
µ

go|∗δg(t+1)
o,µ (106)

δΓ
(t+1)
l = δΛ(t+1)al|∗ +Λ|∗δa(t)l +

∑
µ

Fµlδg
(t+1)
o,µ . (107)

We simplify: go|∗ = 0, ∂ωgo|∗ = 0, ∂Vgo|∗ = 0, ∂Vψ|∗ = 0 and ∂Γfa|∗ = 1 (for PW both Gaussian or

Rademacher). We compute that ∂ωψ|∗ = 1√
2π

(
1
−1

)
and∇χ go|∗ = 2√

2π

(
1
−1

)T
. We assemble equations

together:

δχµ→ν,(t+1) =
∑

η∈∂µ\ν

1

2

( c.,.
c

− 1
)
δχη→µ,(t) + ∂ωψ|∗

(∑
l

Fµlδa
(t)
l −∇χ go|∗δχµ→µ,(t)

)
(108)

δχµ→ν,(t+1) =
∑

η∈∂µ\ν

1

2

( c.,.
c

− 1
)
δχη→µ,(t)

+
∑
η,l

FµlFηl(∂ωψ|∗.∇χ go|∗)δχη→η,(t) − (∂ωψ|∗∇χ go|∗)δχµ→µ,(t) (109)

δχη→η,(t) =
∑
ρ∈∂η

1

2

( c.,.
c

− 1
)
δχρ→η,(t−1). (110)
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The matrices 1
2

( c.,.
c − 1

)
and ∂ωψ|∗∇χ go|∗ share the same eigenvectors. They have one null eigenvalue and

one positive: ci−co
2c = λ√

c
and 2

π . We project to obtain

xµ→ν,(t+1) =
λ√
c

 ∑
η∈∂µ\ν

xη→µ,(t) +
2

π

∑
η

(FFT)µ,η
∑
ρ∈∂η

xρ→η,(t−1) − 2

π

∑
η∈∂µ

xη→µ,(t−1)

 (111)

xµ→ν,(t+1) =
λ√
c

 ∑
η∈∂µ\ν

xη→µ,(t) +
2

π

∑
η

(FFT − IN)µ,η
∑
ρ∈∂η

xρ→η,(t−1)

 (112)

where (FFT)µν =
∑

l FµlFνl.
We obtain the threshold λc of partial recovery taking the variance of the expression 112, discarding the

time indices. We use that (FFT − IN)2µ,ν averages to 1/M if µ ̸= ν and toO(1/M) otherwise. We obtain:

1= λ2c

(
1+

4α

π2

)
. (113)

Appendix D. Dense limit

We consider the limit c large. GLM–SBM is equivalent to a low-rank matrix factorization problem with a
generative prior. It has been studied in Aubin et al (2019). We follow it closely.

We set po = co/N and pi = ci/N of order one and µ=
√
N(pi − po) of order one. The effective inverse

noise of the SBM is Lesieur et al (2017)

∆I =
µ2

po(1− po)
. (114)

D.1. Algorithm
We reproduce here the algorithm given by Aubin et al (2019); we simplify it for a binary output channel and
Pw Rademacher; and we complete it with the semi-supervised case. In the dense limit BP can be
approximated by AMP and our algorithm AMP–BP becomes AMP–AMP.

We set, as in part 6:

Zw(γ,Λ) = eΛ/2 coshγ, fw(γ,Λ) = ∂γ logZw (115)

Zo,µ(B,A,ω,V) =

{
e−A/2+sµB 1

2 (1+ sµerf(ω/
√
2V)) if sµ ∈ sΞ

e−A/2(cosh(B)+ sinh(B)erf(ω/
√
2V)) else

(116)

fo,µ(B,A,ω,V) = ∂ω logZo,µ, fs,µ(B,A,ω,V) = ∂B logZo,µ. (117)

We define the input matrix

Sην = µ
1

1− po

(
Yην
po

− 1

)
(118)

where Y is the observed adjacency matrix; Yην = 1 if there is an edge between η and ν, 0 otherwise.
In the following al and vl are estimators of the mean and the variance of wl; σµ and Σµ the mean and the

variance of sµ.
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AMP–AMP

input features Fµl, input matrix Sην , effective inverse noise∆I, prior information Ps,µ.

Initialize a(0)l = ϵl, v
(0)
l = 1, σ(0)

ν = ϵν , Σ
(0)
ν = 1, g(0)o,µ = 0, t= 0; where ϵs are zero-mean small random variables.

repeat
AMP update of ωµ,Vµ

V(t+1)← 1
M

∑
l

v(t)l

ω(t+1)
µ ←

∑
l

Fµla
(t)
l −V(t+1)g(t)o,µ

AMP update of go,µ,Λ,Γl

g(t+1)
o,µ ← fo,µ(B

(t+1)
µ ,A(t+1), ω(t+1)

µ ,V(t+1))

Λ(t+1)← 1
M

∑
µ

g2,(t+1)
o,µ

Γ
(t+1)
l ← Λ(t+1)a(t)l +

∑
µ

Fµlg
(t+1)
o,µ

AMP update of the matrix factorization part

A(t+1)← ∆I

N

∑
η

σ2,(t)
η

B(t+1)
µ ← 1√

N

∑
η

Sµησ
(t)
η − ∆I

N

∑
η

Σ(t)
η σ

(t−1)
µ

AMP update of the estimated marginals al,vl

a(t+1)
l ← fw(Λ

(t+1),Γ
(t+1)
l )

v(t+1)
l ← ∂Γfw(Λ

(t+1),Γ
(t+1)
l )

AMP update of the estimated marginals σν ,Σν

σ(t+1)
µ ← fs,µ(B

(t+1)
µ ,A(t+1), ω(t+1)

µ ,V(t+1))

Σ(t+1)
µ ← ∂Bfs,µ(B

(t+1)
µ , A(t+1),ω(t+1)

µ ,V(t+1))
t← t+ 1

until convergence of al,vl,σµ,Σµ

output estimated mean al and variance vl of wl, estimated mean σµ and variance Σµ of sµ

D.2. Analysis of the SE equations near the full recovery point
The state evolution equations are given in section 6, equations (35)–(37). We study the conditions of stability
for the fully informative fixed point (qs, q̂w,qw) = (1,+∞,1).

We use the following notation for the update:

(qs, q̂w,qw)
t+1 = ( f1(r, s), f2(r, s), f3(t)), (r, t, s) = (∆Iq

t
s, q̂

t+1
w ,qtw) (119)

where the fi are given by the SE update equations:

f1(r, s) = Eξ,η

e−r/2

(
sinh(

√
rξ)+ cosh(

√
rξ)erf

(√
s

2(1−s)η

))2

cosh(
√
rξ)+ sinh(

√
rξ)erf

(√
s

2(1−s)η

)
 (120)

f2(r, s) = αEξ,η

e−r/2
sinh2(

√
rξ) 2

π(1−s)e
−η2 s

1−s

cosh(
√
rξ)+ sinh(

√
rξ)erf

(√
s

2(1−s)η

)
 (121)

f3(t) = Eξ
[
e−t/2 sinh(

√
tξ) tanh(

√
tξ)
]

(122)

21



Mach. Learn.: Sci. Technol. 4 (2023) 035017 O Duranthon and L Zdeborová

where ξ and η are standard Gaussians.
We expand around (1,+∞,1); we use the parametrization (r, t, s) = (∆I + ϵr,1/ϵ2t ,1− ϵ2s ).

– f 3 – We expand the integrand in f 3 around+∞. This is valid only for
√
tξ = ξ/ϵt ≫ 1; so we introduce a

cut-off δ such that both δ = o(1) and δ = ω(ϵt). For ξ > δ we use the asymptotic
sinh(x) tanh(x) = 1

2e
x − 3

2e
−x + o(e−x); for ξ < δ we develop the Gaussian density to the first (constant)

order. Then

f3(1/ϵ
2
t ) = e−1/2ϵ2t 2

(ˆ ∞

0

dξ√
2π

e−ξ
2/2

(
1

2
eξ/ϵt − 3

2
e−ξ/ϵt

)
−
ˆ δ

0

dξ√
2π

(
1

2
eξ/ϵt − 3

2
e−ξ/ϵt

))

+ e−1/2ϵ2t 2

ˆ δ

0

dξ√
2π

sinh(ξ/ϵt) tanh(ξ/ϵt) (123)

=
1

2

(
1+ erf

(
1√
2ϵt

))
− 3

2

(
1− erf

(
1√
2ϵt

))
− 2e−1/2ϵ2t ϵt

ˆ δ/ϵt

0

dξ√
2π

(
1

2
eξ − 3

2
e−ξ
)
+ 2e−1/2ϵ2t ϵt

ˆ δ/ϵt

0

dξ√
2π

sinh(ξ) tanh(ξ) (124)

= 1−C3ϵte
−1/2ϵ2t (125)

C3 = 2

(√
2

π
+

ˆ ∞

0

dξ√
2π

(
1

2
eξ − 3

2
e−ξ − sinh(ξ) tanh(ξ)

))
≈ 1.3 (126)

where in the last lines we expanded the error function around+∞.
– f 1 – We use the shorthand notation

g(x,y) =
(sinh(x)+ cosh(x)erf(y))2

cosh(x)+ sinh(x)erf(y)
(127)

f1(r, s) = Eξ,η
[
e−r/2g

(√
rξ,η

√
s

2(1− s)

)]
. (128)

Expanding the function is difficult: we can obtain quite easily that

f1(∆I + ϵr,1− ϵ2s ) = 1−C1(∆I)ϵs +O(ϵrϵs, . . .) (129)

but the function C1(∆I) is harder to obtain. Rather we compute directly the derivative to the constant order:

∂ϵs f1(∆I + ϵr,1− ϵ2s ) =−C1(∆I)
(130)

= Eξ,η
[
e−(∆I+ϵr)/2 −η√

2ϵ2s

2√
π
e−η

2/2ϵ2s ∂yg

(√
∆I + ϵrξ,

η√
2ϵs

)]
(131)

=−Eξ,η

[
e−(∆I+ϵr)/2η

√
2

π
∂yg

(√
∆I + ϵrξ,

η√
2

)]
+O(ϵs). (132)

So C1(∆I) =
√

2
πEξ,η

[
e−∆I/2η∂yg

(√
∆Iξ,η

)]
.

– f 2 – We introduce

h(x,y) =
sinh2(x)

cosh(x)+ sinh(x)erf(y/
√
2)

(133)

f2(r, s) = αEξ,η
[
e−r/2 2

π(1− s)
e−η

2 s
1−s h

(√
rξ,η

√
s

1− s

)]
. (134)

The first order is enough since it is not constant; we have:

f1(∆I + ϵr,1− ϵ2s ) =
α

ϵ2s
Eξ,η

[
e−(∆I+ϵr)/2 2

π
e
−η2 1−ϵ2s

ϵ2s h

(√
∆I + ϵrξ,η

√
1− ϵ2s
ϵ2s

)]
(135)
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Figure 5. The limiting perturbation 2 log10(ϵ
∗
s ) = log10(1− q∗w) to the fixed point vs µ for some αs. po = 1/2. These are the fixed

points of equation (139). When initialized above the curves, the system diverges from the fully-informative fixed point. When the
snr∆I = µ2/po(1− po) tends to 0, the size of the attraction basin shrinks to 0.

=
α

ϵs
Eξ,η

[
e−∆I/2

√
2

π
h

(√
∆Iξ,

η√
2

)
+O(ϵr, ϵs)

]
. (136)

So

f1(∆I + ϵr,1− ϵ2s ) =
α

ϵs
C2(∆I), C2(∆I) =

√
2

π
Eξ,η

[
e−∆I/2h

(√
∆Iξ,

η√
2

)]
(137)

C2(∆I) is positive for all∆I.

D.2.1. Stability
We obtain the following update of the perturbation:ϵrϵt

ϵs

→

 −∆IC1(∆I)ϵs√
ϵs/
√
αC2(∆I)√

C3
√
ϵte

−1/4ϵ2t

 . (138)

We consider only the s variable because r does not affect the dynamics and the initialization is done on r and
s, t being inferred then. We have

ϵt+1
s =

√
C3

4

√
ϵts

αC2(∆I)
e−αC2(∆I)/4ϵ

t
s (139)

which is stable for all α and∆I.
Numerically, however, instability can be detected: for ϵs large enough the system diverges from the fully

informative fixed point. We compute numerically the limiting ϵ∗s , such that ϵ
t+1
s = ϵts; we find that ϵ

∗
s tends to

zero fast for∆I or µ going to zero (see figure 5).
In the Gaussian case we have f3(t) = t/(1+ t) and so ϵt+2

s = ϵt+1
t =

√
ϵts/
√
αC2(∆I); so this fixed point

is unconditionally not stable.

D.2.2. Generalization of the prior
We ask for which prior Pw the fully-informative point is stable. We recall that

f3(t) = Eξ

[(ˆ
dwwPw(w)e

−tw2+
√
tξw

)2(ˆ
dwPw(w)e

−tw2+
√
tξw

)−1
]
. (140)
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Figure 6. Update function f3( f2(s)) vs s for many αs. It describes the SE equations at large snr. For α≈ 1.5 the curve is tangent to
the identity at s≈ 0.9; for greater α there is only one fixed point, the perfect recovery one.

We assume that EPww
2 = ρ2w = 1.

We show that if Pw admits everywhere a density twice differentiable, then the fully-informative fixed
point is unstable. Indeed, at large t we have:

f3(t) = Eξ

[
1√
t
e

1
2 ξ

2

(ˆ
dw

(
w√
t
+
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t

)
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+
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t
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2

)2

×
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=

ˆ
dx

(
xPw(x)+

1

t
P ′
w(x)

)2(
Pw(x)+

1

2t
P ′ ′
w (x)

)−1

(143)

= 1−O(1/t) (144)

and obtain an equation similar to the one of the Gaussian case: ϵt+2
s = C ′√ϵts, C ′ > 0, which is unstable.

D.2.3. Large snr
We give an implicit value for the critical compression ratio αalgo,d. We take the limit∆I ≫ 1 and seek
whether the SE updates converge to the fully informative point.

We can simplify the SE equations to one scalar equation. We expand on r=∆Iqs ≫ 1. We have
qs = f1(r, s)→ 1 for all s. As to qz and q̂z, we have

f2(s) = α
2

π

1√
1− s2

Eη

[
1− erf

(
η

√
s

2(1+ s)

)2
]−1

. (145)

We plug f 2 and f 3 together. The fixed points are the s that satisfy the equation s= f3( f2(s)). The function
f3 ◦ f2 is plotted in figure 6.

For α > αalgo,d ≈ 1.5 the updates lead to perfect recovery s= 1, starting from any s. For α < αalgo,d,
perfect recovery is possible only starting from s close to 1; otherwise the iterations lead to a sub-optimal fixed
point.
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Appendix E. Supplementary figures

Figure 7. Thermodynamic limit. Overlap qS of the fixed point of the algorithm AMP–BP, vs λ for a range of population sizes N.
α= 3, c= 5, Pw Gaussian. We run one hundred (N small) or ten experiments (N large) per point. Insets: we plot the standard
deviation over the experiments.

Figure 8. Semi-supervised. Test overlap qS of the fixed point of AMP–BP, vs λ for a range of compression ratios α. The proportion
of train nodes is ρ. Semi-supervised always performs better than unsupervised. N= 104, c= 5, Pw Gaussian. We run ten
experiments per point.
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Figure 9. Semi-supervised, binary prior. Left and right: test overlap qS and free entropy ϕBethe −ϕinfo of the fixed point of the
algorithm AMP–BP, vs λ for several compression ratios α. N= 104, c= 5, Pw Rademacher, ρ= 0.1. We run ten experiments per
point; the median is plotted and the error bars are the difference between the 0.85th and 0.15th quantiles. Insets: we plot the
median and the ten data points. We use damping for AMP–BP: we interpolate taking 1/4 of the values at t+ 1 and 3/4 of the
values at t.

Figure 10. Baselines, Gaussian prior. Overlap qS of the baseline algorithms, vs λ. We compare to the overlap obtained by
AMP–BP. Left: unsupervised; for the parameters of the graph convolution we choose a= 0.1 and n= 4. Right: semi-supervised;
for the hyper-parameters of the GNN we choose n= 2, Nhidden = 20, learning rate 3.10−4 and L2 penalty 10−3. The train set is
ρ= 1/10th of the nodes. N= 104, c= 5, Pw Gaussian. We run ten experiments per point.
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