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Abstract
Background Obtaining accurate displacement measurements for large material deformation and/or rotation presents a distinct 
challenge to digital image correlation (DIC) due to cumulative and decorrelation errors, particularly near material boundaries.
Objective We aim to accurately measure the deformation gradient tensor near boundary discontinuities in situations of large 
deformation and large deformation gradients.
Methods To achieve this goal, the locations of randomly distributed particles are tracked using an open-source particle-
tracking software, Trackpy. A least-squares estimate of the deformation gradient tensor field uses nearest-neighbor material 
vectors and a first-order Finite Difference (FD) approximation, circumventing common errors in other methods. The error 
caused by FD approximation and that incurred by measurement are derived and tested with exhaustive numerical simula-
tions. Furthermore, a uniaxial tensile test and mode-I fracture experiment are conducted with particle-embedded hydrogels 
to validate the method.
Results Numerical results corroborate a theoretical expression of measurement error. They show that the FD error increases 
while the measurement error decreases for a growing estimating radius. Moreover, measurement error is linearly correlated to 
displacement noise. A benchmark uniaxial tensile test validates the accuracy of the proposed estimator, and the near-crack-tip 
measurements in a tensile fracture experiment demonstrate the estimator’s capabilities near a free surface, when a material 
undergoes large deformation and rotation. The results of the displacement and strain data are benchmarked against kinematic 
data obtained using an open-source DIC software, Ncorr. Computation time for both methods is compared.
Conclusions A deformation gradient tensor estimator is developed based on a particle tracking technique and a least squares 
routine. Theoretical error bounds on the estimator are verified by numerical simulations, and the method’s capability is con-
firmed by physical experiments in evaluating large deformation and rotation near a free boundary. The proposed estimator 
is expected to open a door towards future material tests and experimental mechanics studies, especially in large deformation 
and large rotation scenarios.

Keywords Deformation gradient tensor · Particle tracking · Error quantification · Fracture mechanics

Introduction

Material deformation is the most essential kinematic pro-
cess in solid mechanics, and its quantification remains  
a cornerstone of experimental mechanics. From the 
point-wise strain gauge  [1] to state-of-the-art full-field 

measurement techniques [2], material deformation has been 
represented using linearized strain tensor components in a 
wide variety of cases. Traditionally, this has provided an 
accurate picture of small deformations in stiff engineering 
materials. However, the deformation gradient tensor, F , can 
give a more complete description of material deformation, 
particularly for a material undergoing large deformation, 
which occurs often in the case of elastomers [3] or hydro-
gels [4, 5]. F can be used to separate material rotation and 
stretch via polar decomposition  [6], thereby separating 
rigid-body rotation, which does not cost any strain energy, 
from the stretch, which does. Furthermore, when materials 
undergo local rotation, F avoids mis-measurement of the 
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linearized strain components that can be altered by the large 
rotation, and deviate from the material’s physical deforma-
tion states [7, 8].

In order to quantify F , as is shown by way of example 
for the uniaxially loaded bar in Fig. 1(a), the measurement 
of displacements at material points throughout the loading 
process is imperative [6]. Imaging methods have the dis-
tinct advantage of generating full-field displacement meas-
urements. These methods include electronic speckle pattern 
interferometry (ESPI) [9], Moiré interferometry [10, 11], 
and digital image correlation (DIC) [2, 12, 13]. Among these 
methods, DIC stands out due to its facile experimental setup, 

robustness to environmental noise, and high flexibility vis-à-
vis the selection of a measurement range [12–15].

In DIC, displacement data is obtained at gridded points 
by correlation of pixel subsets in speckle images before 
and after deformation. In order to obtain the displacement 
data, a warping vector consisting of stretches, shears and 
rigid translations is often used to optimize the correlation; 
however, oftentimes, rotation of a subset is not included in 
the warping vector. This may generate inaccuracies in the 
measured displacement data. Nevertheless, the grid format 
of displacement measurements enables elementary gradient 
computations with finite difference methods, rendering the 
calculation of F simple. Despite its experimental and ana-
lytical convenience, implementation of DIC is challenging 
when a material undergoes large rotation or deformation, as 
can occur at a free interface, or near a crack tip. The chal-
lenge in implementing DIC under such circumstances arises 
due to the assumption of small changes in a subset’s orien-
tation and shape [16]. In order to overcome this limitation, 
a wide range of strategies have been proposed, such as the 
ring template [17], polar coordination [18], a deformation 
transfer scheme [19], quasi-conformal mapping [20], scale-
invariant feature transform (SIFT) [21–23], and speeded-up 
robust features (SURF) [24, 25]. Among these methods, the 
last two feature-based methods, are the most accepted in the 
implementation of DIC for initial guess improvement, due to 
their high robustness [25]. However, a sufficiently dense dis-
tribution of feature points in high quality images is required 
in these methods, and false matches cannot be completely 
eliminated [20]. Incremental DIC has also been used for the 
measurement of large deformation, whereby the reference 
images are updated throughout the process, thus reducing 
the decorrelation error [26, 27], but this inevitably leads 
to error accumulation Boundary discontinuities raise addi-
tional difficulties in the implementation of DIC, as occurs 
for cracks [28] or shear bands [29]. Although methods of 
discontinuity identification [30, 31], subset splitting [16, 
32], and mesh-based methods [33–35] have been suggested, 
problems of low-error tolerance and heavy dependence on 
the accuracy of the initial guess or the crack recognition 
make error quantification challenging.

As an alternative to DIC, particle tracking measures dis-
placement fields via dispersed particles. While this method 
is less popular, it inherently avoids the subset decorrelation 
and splitting problems in DIC, and enables reliable evalua-
tion of large deformation and large rotation, especially near 
free surfaces. When correctly implemented, it can be highly 
accurate, achieving sub-pixel resolution of the particle posi-
tions [36–44]. Based on an image sequence of particles, the 
particle tracking algorithm can be generally implemented 
with two steps: particle locating, and particle linking [36]. 
By spatially locating particles in an individual frame and 
temporally linking across consecutive frames (e.g., particles 

Fig. 1  (a) A typical example of material deformation - schematic of 
a uniaxial tensile test of a bar with embedded particles. Particles are 
randomly distributed in the material in the reference state, indicated 
by blue dots. Upon loading, the material deforms and the particles 
are displaced accordingly, through a displacement vector ( ̂un , black 
arrows) to their current locations (orange dots). For an arbitrary par-
ticle, e.g., the red particle shown in the inset, its k nearest neighbor 
particles can be found, with a relative position d̂n indicated by the 
green arrows. (b) A time series of crack propagation during a physi-
cal experiment. With careful loading, the crack, indicated by yellow 
dashed line, propagates slowly at a velocity around 10 μm/s from 
left side to right side. Dispersed particles are effectively tracked. For 
example, the two particles, encircled in red and blue, are tracked very 
close to the crack tip despite their large displacements. The scale bar 
in frame I corresponds to 10 μm
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tracked during crack propagation shown in Fig. 1(b)), parti-
cle trajectories are tracked and their displacements obtained. 
Depending on the imaging system, particle tracking can be 
extended from 2D to 3D [41–43, 45], realizing non-contact 
full-field measurements in both macro-scale and micro-/
nano-scale in a manner similar to DIC [46–48].

Most developments and applications of particle track-
ing in the last three decades are found in biophysics [36, 
42, 49–51], where particle tracking is used extensively 
for micro-rheology with the help of the mean squared dis-
placement (MSD) of particles. The primary reason for this 
application is the simplicity of the initial guess for linking 
particles - as they undergo Brownian motion, their expected 
subsequent location in a given timestep is identical to their 
initial location. In the mechanics community, particle track-
ing has been applied to measure velocity in particle track-
ing velocimetry (PTV) for experimental fluid mechanics [41, 
52–54]. When compared to the correlation-based particle 
image velocimetry (PIV) [55], PTV is more advantageous, 
as it yields increased spatial resolution and decreased com-
putational cost [38, 39, 54]. The main factor that hinders 
further development and popularity of particle tracking 
is the non-gridded data format arising from the random 
distribution of particles. Randomly sampled data poses a 
challenge to gradient estimation. Even though local least-
squares fitting of displacement fields and interpolation from 
irregular data to a regular grid have been reported [45, 56], 
performance of the methods under large gradients is unclear, 
and the related estimation errors have not been completely 
characterized.

In this manuscript, a full-field method for estimating 
the deformation gradient tensor is proposed, based on the 
non-gridded displacement data obtained from particle 
tracking in a manner similar to recent work [56]. At each 
particle location, the deformation gradient tensor is esti-
mated from the displacement measurements of the given 
center particle and its k-nearest neighbors (see the inset of 
Fig. 1(a)). A detailed derivation of the deformation gradi-
ent estimator is given in “Estimator Derivation and Theory 
of Estimator Error” section, followed by an analysis of the 
estimator’s finite difference (FD) and measurement errors. 
In “Numerical Experiments and Parameter Sensitivity of 
the Finite-Difference and Measurement Error” section, 
the performance of the estimator is assessed via numerical 
simulations. Indeed, its error is computed as a function of 
parameters using numerically generated particle location 
data. The estimator is then employed in physical experi-
ments in “Experimental Results” section, where its accu-
racy is validated with a uniaxial tensile test of a hydrogel 
sample. Furthermore, its effectiveness in large deformation/
rotation measurement adjacent to a free boundary is con-
firmed by a mode I fracture experiment. These data are 
then directly compared with a DIC measurement of the 

displacement data using the same raw images. The relative 
merits of the particle tracking method and the proposed esti-
mator are evaluated in the discussion of the results. With the 
advantages of full-field non-contact measurement, flexible 
selection of measurement range and resolution, inexpensive 
computational cost, and easy extension to 3D, the proposed 
particle tracking-based estimator and error quantification 
may open the door for future experimental mechanics study 
and material tests, broadening the tools available to the 
experimental mechanics community.

Estimator Derivation and Theory 
of Estimator Error

Estimator Derivation

In order to compute the deformation gradient F(r) at a parti-
cle’s location r0 in the reference state, the particle’s displace-
ment upon applied deformation, u0 , and those of its k-nearest 
neighbors (located at r1,… , rk ) are first evaluated, as shown 
in Fig. 1(a). F(r) = ��(�) + � quantifies the variation of the 
displacement field across infinitesimal distances, where the 
displacement of the nth particle is given by ûn , for n ranging 
from 0 to k.

Assuming that the k-nearest neighbors, particles 1,… , k 
are close to particle 0, a first-order Taylor expansion 
of displacement closely approximates the nth particle’s 
displacement:

The values of the displacement field at particle locations 
are replaced with measurements from experiments, and a  
least squares estimate of ��(r0) is computed over all k equa-
tions. Summing with the identity tensor produces an esti-
mate of F(r0) as follows:

where G is the argument which minimizes the term 
∑k

n=1

‖û
n
− û

0
−G

T
d
n
‖

2 , dn = rn − r0 is the relative position of 
the nth neighbor, and 

‖.‖ denotes the Euclidean norm.
Note that none of the dyadic tensors dnd

T
n are invertible. 

Indeed, when k = 1 , displacement variation is measured only 
along a single direction; thus, the gradient cannot be inferred 
along the perpendicular plane. As a result, a minimum num-
ber of neighbors, equal to the number of spatial dimensions, 
is required to estimate the gradient. The stochastic nature 
of particle positions realized in experiments ensures that 
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the sum of tensors 
∑k

n=1
dnd

T
n  is almost surely invertible - 

indeed, in three dimensions with 3 or more particles, the 
particles would have to be aligned perfectly for this not to 
be the case. This occurs with probability zero.

To estimate F , a reference set of dn must be measured 
before deformation occurs, representing the undeformed 
material. In time-dependent experiments, these dn are reused 
for measurement of the deformation gradient at each time 
step. Noise in the initial measurement of dn thus affects all 
estimates. Inaccuracies arising from noise in the reference 
set of dn can be minimized by oversampling - recording a 
series of frames prior to deformation which can be used to 
reduce the noise in the measured value of dn . The anticipated 
noise due to a single measurement of dn would be limited 
by the resolution of the particle’s location in the particle 
tracking algorithm. Typically, the point-spread function of 
particles can be used to achieve subpixel resolution of par-
ticle locations; for an average inter-particle spacing of ∼ 40 
pixels, this corresponds to an error of approximately 1% in 
the magnitude and direction of dn.

Theory of Estimator Error

In “Estimator Derivation” section, one important assumption 
underpinned the estimator of equation (2). Inter-particle dis-
tances were assumed to be small for the k-nearest neighbors. 
This is consistent with neglecting the higher order terms of 
the Taylor expansion of displacement, and in practice, pro-
duces an approximation error referred to as ‘finite difference 
error,’ �FD . Error in the measurements of particle positions 
constitute a second source of error, denoted by �M.

In Appendix 1, it is shown that assuming independent 
Gaussian measurements ûn ∼ N(�(�n),

𝜎2

3
I) and that one 

does not use nearest neighbors across cracks or sharp lobes, 
the estimator’s mean square error (MSE) can be expanded 
as:

where �FD and �M are given by 

where A =
1

R2k

∑k

n=1
dnd

T
n , �in is the location along the line 

connecting the 0th and nth particle at which the second-order 
Taylor expansion generates the exact displacement compo-
nent ui . ‖.‖F denotes the Frobenius norm.
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Both errors �FD and �M depend on {dn}kn=1 . While the dn 
are random, they are measured quantities, and can be used 
to compute �M from experimental data. On the other hand, 
computing �FD requires knowledge of second-order deriva-
tives of displacement, which are unknown in practice.

Under the hypothesis of independent, unbiased Gauss-
ian measurements, the estimator given in equation (2) is the 
minimum mean square error estimator (MMSE) in the sense 
that it minimizes �M.

Numerical Experiments and Parameter 
Sensitivity of the Finite‑Difference 
and Measurement Error

A series of numerical simulations are run to investigate 
the performance of the estimator given in equation (2). In 
each instance, k neighbors are sampled uniformly at random 
inside a sphere of radius R around a center particle at r0 , 
as shown schematically in Fig. 2. A displacement field is 
prescribed to all particles. Noise sampled from N(0,

�2

3
I) 

is added to the displacement field values at each particle 
location. The displacement measurements resulting from 
the data generated in this fashion are used to estimate the 
deformation gradient at r0.

As mentioned in “Estimator Derivation and Theory of 
Estimator Error” section, error arises from both the FD 

Fig. 2  Instance of numerically simulated data: the position of 7 
neighboring particles is sampled uniformly at random inside sphere 
of 

R = 1
 . The position of each particle is made inaccurate by applying 

Gaussian noise
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approximation and the measurement. In order to evaluate 
these two sources of error systematically, two sets of simu-
lations are run.

In both batches of simulated data, error is averaged over 
10,000 instances for each triplet of values (k,R, �) . This 
generates the red curves in Figs. 3 and 4. Relative error is 
defined as:

In physical experiments, k and R are related by the par-
ticle density; however, using the simulated data, we vary 
them independently to evaluate the estimator’s sensitivity 
to these parameters.

(5)Δ =
‖�(�0) −

̂F(r0)‖F

‖�(�0)‖F

The first batch of numerical experiments is simulated 
without measurement noise in order to isolate FD error. A 
sinusoidal displacement field is prescribed with frequency 
‖�‖ = 1 , and uniformly random direction and offset,

Fig. 3  Relative finite difference error as computed in equations  (4a) 
and (5) of the F-estimator for a sinusoidal displacement field 
�(�) = (cos(� ⋅ r + �), sin(� ⋅ r + �), 1) , and zero measurement 
noise, averaged over 10,000 instances. The shaded area indicates one 
estimated standard deviation’s width from the mean for (a) k = 7 , 
� = 0 and (b) R = 1 , � = 0 . Blue lines indicate the scaling identified 
in the legend as a guide to the eye

Fig. 4  Relative measurement error as computed in Eqs. (4b) and (5) 
of the 

F
-estimator for a linear displacement field �(�) = � , averaged 

over 10,000 instances. The shaded area of one estimated standard 
deviation’s width from mean (a) � = 0.1 , k = 7 , (b) R = 1 , k = 7 , and 
(c) R = 1 , � = 0.1 . Blue lines indicate the scaling identified in the leg-
end as a guide to the eye
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The sinusoidal displacement field is selected to ensure 
that the second-order derivatives, and thus the error, are 
bounded.

As seen in Fig. 3(a), for fixed k, O(R) dependence is 
observed. R does not appear to affect the standard devia-
tion. Meanwhile, for fixed R, error decreases with respect 
to k as shown in Fig. 3(b) before seemingly reaching a 
nonzero asymptotic limit.

In the next set of numerical experiments, measurement 
noise is introduced. Instead of a sinusoidal field, linear 
displacements are prescribed on the particles so as to 
negate FD error,

In addition to relative error of the deformation gradient, the 
expected error �M is also reported. It is computed at each 
instance, and then averaged.

In Fig. 4(a) and (b), error rates obey O(
1

R
) , and O(�) . 

Neither R nor � affect the standard deviation of the error. 
Furthermore, for fixed R and � , error is seen to decrease 
as 

O(
1
√

k
)
 in Fig. 4(c). The expected measurement error �M  

is very close to the error observed in simulations after 
averaging over simulation instances.

Numerical simulations confirm the first-order nature 
of the FD error of the estimator given by equation (2). 
Moreover, the behavior of �M reveals 

1
√

k filtering of meas-
urement noise; this is typically observed in unweighted 
averaging. In addition, signal-to-noise ratio (SNR) is 
expressed in the 

�

R dependence. When neighbors are 
within 

≈ �
 distance of the center particle, measurement 

noise can completely overwhelm measurement of the 
direction. As a result, it may be beneficial to omit very 
close neighbors in gradient computations. Larger R leads 
to more robust measurements, but also penalizes the lin-
ear approximation through an increased FD error. This 
constitutes an intrinsic trade-off between measurement 
and FD errors. The optimal choice of R or k depends on 
the displacement fields and the magnitude of measure-
ment noise. For large curvatures on the scale of R, the 
bulk of the error arises from FD approximation, suggest-
ing the optimal value of R might be smaller, provided k 
remains sufficiently large, e.g. 

≥ 7 . In physical experi-
ments, k and R are related through the numerical density 
of the particles � . The theoretical computations of meas-
urement error match those of simulations, underscoring 
the accuracy of the theoretical expressions.

(6)�(�) =

⎛

⎜

⎜

⎝

cos(� ⋅ r + �)

sin(� ⋅ r + �)

1

⎞

⎟

⎟

⎠

.

(7)�(�) = �.

Experimental Results

To evaluate the accuracy and effectiveness of the proposed 
deformation gradient estimator, three physical experiments - 
2D and 3D uniaxial tensile tests, and a mode I fracture test 
- are carried out on the micro-scale testing apparatus shown 
in Fig. 5(a). The samples used in these experiments are poly-
acrylamide hydrogels, which are prepared based on the recipe 
that has been widely used for fracture experiments [5, 57, 58]. 
Micro polystyrene particles (diameter 1.1 ± 0.1 µm, Sigma-
Aldrich) are mixed with the hydrogel solution at a concentration 
of 0.005 wt.% . The hydrogel is polymerized between two glass 
plates separated by 190 µm spacers, and immersed in water for 
more than 24 h to reach equilibrium before cutting into 1 cm 

Fig. 5  (a) Experimental setup. The hydrogel sample is clamped by 
two grips which are symmetrically actuated by a servo motor used 
to apply uniaxial tensile loading. The sample is illuminated using a 
diascopic dark-field light source. Throughout the experiment, the 
sample remains immersed in a water bath. The light scattered by 
embedded particles is imaged onto the sensor of a high-resolution 
camera through a microscope via a 10× water-immersion objective. 
(b) The displacement field along loading direction, û2 , under uniaxial 
tensile loading, is depicted. Particles are tracked densely throughout 
the field-of-view. The smoothness of the displacement distribution 
assures that tracking is accurate. The scale bar is 100 µm
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wide samples. The samples are immersed in a water bath and 
illuminated with a dark-field scheme. The samples are tightly 
clamped by two grips which are symmetrically actuated by a 
servo motor for exerting tensile loading. A microscope (Nikon 
eclipse Ti, tube lens magnification: 1.5× ), equipped with a 10× 
water-immersion objective (Nikon Plan Fluor 10×/0.30W) and 
a high-resolution camera (Hamamatsu C13440, resolution: 
2048 × 2048 pixels, bit depth: 16 bit), is used to record the 
images (image stacks for 3D) of the particles embedded in the 
transparent hydrogel. The use of the water-immersion objective 
ensures high fidelity imaging of the particles by minimizing the 
refractive index mismatch between the hydrogel and objective.

The procedure of estimating the deformation gradient ten-
sor from particle images is shown in Algorithm (1). The particle 
images are first pre-processed by a bandpass filter to suppress 
image noise and to remove any large structures, which might be 
falsely detected as a particle during the tracking process. The fil-
tered images are then used as inputs for the open-source particle 
tracking algorithm, Trackpy [59], which accurately locates parti-
cles in individual frames, and then correctly links them to their tra-
jectories in consecutive frames. Discrete displacement fields can 
be inferred from particle trajectories, and the deformation gradient 
tensor at each particle location can be computed by the proposed 
estimator given in equation (2). Continuous fields can be obtained 
from the particle tracking data by interpolation over the desired 
field at each particle. Furthermore, other deformation tensors, e.g., 
finite strain tensor, can be conveniently computed according to 
their definitions from continuum mechanics theory [6].

Algorithm 1 Deformation gradient tensor estimation based on parti-
cle tracking

Input: Image sequence
Output: Deformation gradient tensor and derivative tensors, i.e., 

rotation tensor, stretch tensor, strain tensors.

 Phase 1 - Particle tracking

  + Image pre-processing (optional)
  + Find particle locations in individual images
      - Input an estimate of particle diameter
      - Filter out spurious particles
      - Check sub-pixel accuracy
  + Link particles in consecutive images

 Phase 2 - Estimation of deformation gradient tensor

  + Construct displacement fields from particle trajectories
  + Loop over all particles
      - Find k nearest neighbor particles and their relative positions

       - Perform finite difference with estimator (2)

 Phase 3 - Calculation of other deformation tensors (optional)

  + Polar decomposition → stretch tensor and rotation tensor
  + Deformation tensor → finite strain tensor
  + Constitutive model → stress tensor

2D Uniaxial Tensile Test

A uniaxial tensile test is conducted first to verify accuracy 
of the proposed estimator since the displacement field and 
deformation gradient tensor are well known for linear elastic 
solids under the assumption of small strains as:

and

where D is a constant, 2 × 2 matrix representing the con-
stant deformation and c is 2 × 1 vector representing the rigid 
displacement. For such a linear displacement field, the FD 
error is zero, as it is fully described by the first order Taylor 
expansion in equation (1).

While loading the sample, particle images are recorded 
at each strain increment. By tracking the particles before 
and after deformation, the displacement fields are meas-
ured, e.g., the displacement component along the loading 
direction, û2 , as shown in Fig. 5(b). The displacement fields 
yield the displacement gradient tensor D̂fit by fitting a plane 
to equation (8) using a least squares routine, and thus the 
deformation gradient tensor, F̂fit . Once F̂fit is determined, 
on the one hand, the uniaxial strain, �22 , is easily calculated 
with continuum mechanics theory as 6.14% , confirming 
the small strain assumption; on the other hand, the small 
mean squared errors MSE(û1 − u1,fit) = 0.15 pixel and 
MSE(û2 − u2,fit) = 0.37 pixel from plane fitting of û1 and û2 
demonstrate the high accuracy of the fitting, and enable the 
FD error-free F̂fit to be used as a reference for evaluation of 
our deformation gradient estimator.

The deformation gradient tensor, F̂ , is computed using 
the estimator given by equation (2) at each discrete par-
ticle by selecting a given number of nearest-neighbor 
particles, k. The relative error between F̂ and F̂fit is calcu-
lated according to equation (5), and is shown in Fig. 6(a) 
where k = 7 is used for estimation. For most particles, the 
relative error remains near-zero and indicates the high 
accuracy of our proposed estimator; some particles show 
a larger discrepancy (maximum difference of 4% ); this 
might arise from the non-uniform distribution of parti-
cles, or local incorrect linking. The relative error is evalu-
ated for a varied k, and compared to the theoretical meas-
urement error in equation (4), as shown in Fig. 6(b). The 
relative error is observed to be larger than the theoretical 
prediction throughout the range of k from 5 to 100, which 
may arise due to the least squares fit of displacement, or 
due to inaccuracies in the measurement of the reference 
state. Furthermore, the relative error is found to decrease 
at a rate of O(

1

k
) until saturation at very large values of k 

(8)�(�) = �� + �,

(9)�(�) = ��(�) + � = � + �,
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due to the finite domain size. The O(
1

k
) rate can be under-

stood by considering the error rate of O(
�

R
√

k
) derived 

from numerical simulations and the fact that R is related 
to k via the 2D particle density � , 

R =
√

k∕��  , which 
yields an error dependence O(

1

k
) as observed experimen-

tally. The reduced rate of decrease in the large-k limit 
results from the finite size of the domain. Nevertheless, 
a degree of consistency is established between theory and 
experiment, and effectiveness of the estimator proposed 
in equation (2) is confirmed.

Mode I Fracture Test

Our proposed estimator was also used to measure the defor-
mation gradient near a mode I crack tip, where large defor-
mation and rotation occur. The experiment is carried out 
with the same experimental setup depicted in Fig. 5(a) and a 

similar particle-embedded hydrogel sample. A notch is pre-
cut at the center of one edge of the sample, and it propagates 
slowly upon careful application of remote tensile loading. 
Images of particles are recorded before the crack is hundreds 
of micrometers away from field-of-view at 3 frames per sec-
ond. The recorded particle images are bandpass-filtered, and 
tracked with Trackpy [59]. The particles are first located in 
individual frames with an estimated diameter of 19 pixels, 
and then linked to their trajectories. Considering the sub-
stantial displacements near the crack tip between consecutive 
images, a velocity-based prediction function is employed for 
robust particle linking. An adaptive search regime is also 
applied so as to balance the number of candidate particles, 
and avoid incorrect delinking (search range too small) or an 
overwhelming number of particle candidates (search range 
too large). As can be seen from the time series shown in 
Fig. 1(b), the particles are correctly tracked, even very close 
to the crack tip.

Therefore, the displacement fields are accurately 
retrieved, and the displacement component along the loading 
direction, û2,pt , is symmetric to the crack path, as shown in 
Fig. 7(a). The measured displacement is valid in the imme-
diate vicinity of the crack tip, as can be seen in the inset of 
Fig. 7(a). For comparison, the open-source DIC software 
Ncorr [60] is used to calculate the displacement field with 
a 39-pixel subset radius and 10-pixel grid spacing. The 
obtained displacement data is filtered by a cutoff threshold 
of correlation coefficient (here we use 0.5) to ensure a relia-
ble correlation. Although the particle images are not optimal 
for DIC analysis, the calculation parameters are optimized 
by numerous trial calculations, and the subset size is verified 

Fig. 6  (a) Relative Frobenius error between the estimated F̂ and the 
spatially averaged Fth obtained by fitting a plane to the displacement 
fields. The large area with near-zero relative error highlights the 
accuracy of the proposed estimator. (b) Experimental and theoretical 
relative error is calculated as a function of the number of neighbor-
ing particles used for the estimation, k. The red solid line is the aver-
age experimental relative error for all particles, and the red shaded 
area indicates one standard deviation. The green dashed line is plotted 
according to equation (4b), and the blue solid line O(1∕k) is plotted 
as a guide to the eye

Fig. 7  Displacement fields are measured in a Mode I fracture experi-
ment of a particle-embedded hydrogel sample. Displacement fields 
along the loading direction, u2 , were measured by both particle track-
ing and DIC during crack propagation. The scale bars are 100 µm 
in each panel and 20 µm in the insets. (a) Displacement fields û2,pt 
tracked at discrete particles. The particles are tracked robustly, and 
the obtained displacement is symmetric about the crack path. Inset: 
particles are tracked within 10 µm of the crack tip. (b) Displacement 
fields û2,dic calculated with DIC. A grid with 10-pixel spacing is spec-
ified in the 1400 × 800 pixel region-of-interest (ROI) for DIC calcula-
tion using a circular subset with a 39-pixel radius. The displacement 
field û2,dic appears as similar to the displacement field û2,pt obtained 
by particle tracking; however, artifacts and gaps are readily identifi-
able near the crack surface as well as in the immediate vicinity of the 
crack tip. Correlation is not achieved at the crack tip, as shown in the 
inset. (c) The difference between û2,dic interpolated at particle loca-
tions and û2,pt determined by particle tracking
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by the average sum of square of subset intensity gradients 
(SSSIG) [61] to ensure the accuracy of our DIC measure-
ment. The displacement component, û2,dic , calculated with 
DIC is shown in Fig. 7(b), and its deviation from the particle 
tracking measurement, Δû2 = û2,dic − û2,pt , is computed by 
interpolation of û2,dic at particle locations; Δû2 is shown in 
Fig. 7(c). Away from the crack, the DIC and particle track-
ing measurements offer a very similar value of displace-
ment, and the difference is near zero. While the agreement 
confirms the high accuracy of both methods, some spikes 
and voids are seen near the crack surface and crack tip in the 
DIC field, leading to a large discrepancy in these regions, 
as shown in Fig. 7(c). û2,dic seems correct as it approaches 
the crack surface, but in fact, the correlation is unrealistic, 
because the subset is displaced outside the material bound-
ary. Due to large deformation, subsets near the crack tip 
are characterized by unreliable correlation coefficients and 
filtered out, leaving voids in the data, as shown in the inset 
of Fig. 7(b). Accurate displacement measurement is funda-
mental for deformation gradient estimation, no matter which 
estimation approach is employed. Therefore, in the presence 
of free surfaces and large deformation or rotation, the parti-
cle tracking-based method is more reliable.

Using our deformation gradient estimator given by equa-
tion (2), the deformation gradient tensor F is estimated at 
each particle’s location with its 7 nearest-neighbor particles, 
as shown in Fig. 8. Components F̂11

 and F̂22 are symmetric 
about the crack path while components F̂12 and F̂21 are anti-
symmetric. The F̂ estimated from the measured displace-
ments resembles the identity tensor ahead of the crack tip 
in the far field. Approaching the crack tip, F̂ strongly devi-
ates from the identity tensor, as deformation becomes large; 
the dominant component is F̂22 . In the post-crack regions, 
off-diagonal components, F̂12 and F̂21 , are larger, especially 
near the crack surface. It is also visible in these regions that 
F̂22 is less than 1, as the deformation is evaluated relative to 
the first frame of the recorded images, where the sample is 
stretched compared to the relaxed state, which it comes close 
to attaining in the wake of the crack. To enable a rigorous 
study, an image of the particles in the material’s reference 
state should be included as the reference for particle posi-
tions, but maintaining focus on a same group of particles 
is challenging. Alternatively, the particle locations in the 
reference state could be estimated by calculating the uniaxial 
tensile stretch far ahead of the crack, where the stretch is 
approximately uniform [62]. Here, displacement is measured 
relative to the uniformly stretched configuration in the first 
frame for consistency when comparing to the strains meas-
ured from the DIC data.

The Eulerian-Almansi finite strain tensor, êpt , is com-
puted at each particle location using the estimated F̂ via 
êpt = (I − B̂

−1
)∕2 , where B̂ is the left Cauchy-Green deforma-

tion tensor, 
B̂ = F̂F̂

T ; these strain components are shown in 

Fig. 9(a)–(c). The same strain tensor, êdic , is evaluated using 
the DIC data by fitting a plane to the displacement fields in 
a local 5 × 5-nodes window, as shown in Fig. 9(d)–(f). The 
difference between DIC measurement and our particle track-
ing-based estimation, Δê = êdic − êpt , is further computed, 
and plotted in Fig. 9(g)–(i). It is observed that both methods 
measure similar strain distributions, with dominant tensile 
strain near the crack tip and substantial shear strain in the 
wake of the crack. The measured strain values are similar for 
all components in most of the ROI, as the near-zero differ-
ence suggests. An apparent discrepancy occurs near the crack 
surface and crack tip, resulting from a poor correlation when 
performing DIC in these regions. Near the crack surface, the 
strain measured from particle tracking-based estimation is 
smooth, but is jagged in the DIC measurement, even though 
the displacement fields are smooth, as shown in Fig. 7(b).  
In the vicinity of the crack tip, particle tracking-based esti-
mation generates strain data very close to the crack tip, but 
a noticeable void is observed in DIC measurement. The 
agreement with DIC away from the free boundary confirms 
the effectiveness of our proposed F estimator and derivative 
kinematic quantities such as the Eulerian-Almansi strain. The 
measurements appear to be accurate near free surfaces, dem-
onstrating the significant advantage of the particle tracking-
based method in such scenarios.

The time consumed for particle tracking, particle linking, 
and 

F
 estimation is evaluated and plotted in Fig. 10, with 

respect to the indicated parameter. All the computations for 
the total 251 frames are done in a desktop computer with 
a 4-core Intel i8-7700K CPU, 64 GB RAM, and a Nvidia 
Titan Xp GPU.

Fig. 8  Components of deformation gradient tensor near a Mode  I 
crack tip evaluated with the proposed estimator: (a) F̂11

 , (b) F̂12
 , (c) 

F̂21 , and (d) F̂22 . Note that the ranges of color bars are not identical for 
clear representation of the fields. The scale bar corresponds to 100 µm
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In general, the particle locating and F estimation are the 
two most time-consuming steps, significantly exceeding the 
time required for particle linking. For all three processes, 
the computational time increases approximately linearly 
with the primary parameter: the time for locating particles 
linearly increases with the given particle diameter estimate; 
the time for particle linking linearly increases with search 
radius; the time for F estimation is proportional to the num-
ber of neighbor particles involved for the estimator. In all 
calculated deformation fields throughout the manuscript, 
red-annotated parametric values in Fig. 10 are used; these 
deformation data are shown in Figs. 7–9. These primary 
parameter values ensure sub-pixel accuracy of particle locat-
ing (inset of Fig. 10(a)), robustness of particle linking, and 
reliable non-smoothed estimation of local F.

Hundreds of seconds are required to calculate the full-
field deformation gradient tensor for 251 frames. In con-
trast to DIC, particle tracking generally requires a higher 
frame rate, especially in our fracture experiment, where the 
displacement can be large near the crack tip. To obtain the 
DIC results shown in Figs. 7 and 9, 26 frames (approxi-
mately 1/10 of those used in particle tracking) are calcu-
lated with Ncorr [60] using the same hardware, which takes 
more than a thousand seconds. Increasing the number of 
frames used would linearly increase the computational time 
to carry out the DIC. The comparison of computational effi-
ciency between the two methods is primitive; indeed, our 

implementation of the proposed estimator might not be fully 
optimized, and furthermore, commercial software for both 
particle tracking and DIC is likely to improve the tracking/
correlation performance. Nevertheless, this comparison indi-
cates that the particle tracking-based method is a competitive 

Fig. 9  Comparison of Eulerian-Almansi finite strain tensors obtained 
from the particle tracking-based estimation and the DIC calculation. 
(a)–(c) Components of finite strain tensor êpt obtained by particle 
tracking and the deformation gradient estimation: ê11,pt , ê12,pt , and 
ê22,pt , respectively. (d)–(f) Components of finite strain tensor êdic cal-
culated from DIC: ê11,dic , ê12,dic , and ê22,dic , respectively. (g)–(i) Dif-
ference of strain components measured by DIC and particle tracking: 
Δê11 , Δê12 , and Δê22 , respectively, where Δê = êdic − êpt . The scale 
bar corresponds to 100 µm

Fig. 10  Time consumption for particle tracking and F estimation for 
a total 251 frames. Red marks indicate the parameters that are used 
for calculating deformation fields shown in Figs. 7–9. The grey dashed 
line represents a linear regression of the data as a guide to the eye. (a) 
The time cost for locating particles is plotted as the estimate particle 
diameter in Trackpy [59]. Inset: the histogram of the fractional part of 
particles’ coordinates x (blue) and y (orange) located with a diameter 
of 19 pixels. As the particles are randomly distributed in the sample, 
the good uniformity of the distribution confirms the subpixel accuracy 
of particle locations. (b) The time cost for linking particles in consec-
utive frames as a function of the search range. A search range of 15 
pixels is selected for our experiments; this ensures reliable linking of 
particles near a crack tip as shown in Fig. 1(b). (c) The time cost for 
estimating F as a function of the number of involved neighboring par-
ticles. 7 nearest-neighbor particles are used in the estimation of F , as 
this value provides a good compromise between estimation accuracy 
and spatial resolution of strong gradients
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alternative to DIC for deformation measurement in terms of 
computational cost, and its merits exhibited in the fracture 
experiment demonstrate strong potential for improving kin-
ematic measurements that comprise large deformation or 
rotation, especially near sample boundaries.

The DIC implementation used in this manuscript is car-
ried out with open-source software, Ncorr [60]. Since the 
development of this software, DIC has seen significant 
advances [16, 20, 25, 31], and commercial implementations 
may be even more capable of addressing some of the free-
boundary artifacts identified here. Despite the shortcomings 
of the DIC implementation we used, we made a significant 
effort to optimize the accessible DIC parameters, and thus the 
comparison is informative as both particle tracking and DIC 
software employed are state-of-the-art open source versions.

3D Uniaxial Tensile Test

We further apply particle tracking to 3D displacement meas-
urement in a uni-axially stretched hydrogel sample, and 
extend our proposed estimator to 3D in order to estimate F 
and strain fields. The sample is incrementally loaded with 
uni-axial stretch using the same experimental setup shown 
in Fig. 5(a), and a 100 µm-thick volume is recorded in image 
stacks by varying the relative position of the objective with 
a step size of 2 µm.

The particles are randomly distributed in the recorded vol-
umetric image. Despite the sphericity of the particles, they 
appear as elongated ellipses in the images, with the major axis 
oriented parallel to the X3 axis, as can be seen in the magnified 
volumetric image of the scattered intensity field recorded for a 
single particle in the top left inset of Fig. 11(a). The ellipsoi-
dal particle shape is also rendered in cross-sections through 
the center of the particle, as shown in Fig. 11(a). The particle 
appears to be an isotropic Gaussian blob in the X1X2 plane, 
but appears greatly elongated along X3 . The elongated particle 
shape occurs as a consequence of the out-of-focus light, which 
can be eliminated by confocal microscopy. Also, due to the 
imperfect illumination and as a result the asymmetric point 
spread function (PSF), a slight, but still observable, tilt of the 
particle appears in the X3X1 cross-section.

Despite the deficiency of the imaging system’s illumi-
nation scheme, particles are robustly located and linked in 
3D by Trackpy [59] for a total of 16 volumes. Particle tra-
jectories are plotted in 3D in Fig. 11(b), and color-coded 
according to the displacement component, u2 . As can be seen 
from the trajectories, the particles displace predominantly 
along the loading direction, X2 , with an apparent displace-
ment gradient; displacement along X3 is also substantial; 
however, this displacement is exaggerated in the trajectory 

plot due to the aspect ratio of the axes. The displacement 
fields, calculated in the last frame, are then used to esti-
mate F with our proposed estimator given by equation (2), 
at each particle location with 15 neighboring particles. The 
Green-Lagrange finite strain tensor is further inferred from 
F̂ , and the uniaxial strain is measured at 0.069, with a small 
standard deviation of 4.1% over all measurements. This 
experiment, by extending particle tracking from 2D to 3D 
while maintaining the accuracy and robustness, confirms the 
effectiveness of our proposed estimator in the evaluation of 
3D deformation gradients.

Fig. 11  3D particle tracking in a uniaxial tensile test. A hydrogel 
sample is uniaxially stretched by a total of 15 incremental loading 
steps, using the experimental setup shown in Fig. 5(a). (a) A 3D view 
of the light scattered by a single particle, and imaged in the image 
stack. The image intensity is encoded by color. The cross-sections of 
the particle through its center in the X1X2 , X2X3 , and X3X1 planes as 
indicated. Scale bars in the upper left corners represent 2 µm in the 
X1 and X2 direction, and 10 µm in the X3 direction. (b) 3D Particle 
trajectories color-coded by the value of the displacement component 
û2 . Note that the aspect ratio of the axes is not equal, for the sake of 
clarity of particle trajectories; thus, the out-of-plane displacement u3 
is exaggerated
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Discussion

Although the estimator given by equation (2) can be shown 
to be the MMSE with respect to �M , it must be noted that 
this does give any guarantee on �FD . Indeed, higher-order 
methods exist and can reduce FD error. However, they also 
require meeting a set of constraints which conflict with 
�M ’s optimality. Depending on the displacement field and 
measurement noise, higher-order methods may or may not 
improve accuracy.

The theoretical description of expected error in equa-
tion (4) gives insights into the variation of the error. Not only 
does it enable a computation of expected measurement error 
in physical experiments, but it highlights the importance of 
several parameters, in particular, the matrix A defined in 
equation (4) which contains information on the geometry of 
the problem. The inverse of A in the estimation of deforma-
tion gradients can be used to determine an upper-bound of 
the error, which depends linearly on 

1

�min(A) . Although nor-
malized by 

1

k , its eigenvalues do vary with k. For instance, to 
ensure invertibility, k must be larger than the number of spa-
tial dimensions. Nevertheless, even when 

A
 is invertible, if 

k is relatively small, neighbors could be closely aligned with 
high probability, leading to poor SNR of the displacement 
variation along certain directions. The noise in the estimated 
deformation gradient would be amplified along these direc-
tions, as a consequence of the small minimal eigenvalue of 

A
 , �min(A) . However, as k increases, neighbors are less and 

less likely to be aligned; as a consequence, richer measure-
ments of displacement variation are more probable, leading 
to a better eigenvalue distribution of A and lower estimator 
variance. For k → ∞ , A and its inverse converge almost 
surely to a multiple of the identity matrix. Consequences of 
the properties of A are visible in the numerical experiments 
reported in Fig. 3(b), where standard deviation decreases as 
k increases. Error also decreases due to an increasing small-
est eigenvalue before approaching an asymptotic limit.

The proposed estimator is developed based on the par-
ticle tracking method. Both the particle tracking and DIC 
methods can realize non-contact, full-field displacement 
measurement with similar computational cost, and can be 
extended to 3D measurements, depending on the imaging 
system. Indeed, DIC has become more popular than particle 
tracking in experimental solid mechanics, thanks to its grid-
ded data format. With the proposed estimator, non-gridded 
data is no longer a problem for estimating F , and particle 
tracking demonstrates several distinctive advantages in 
deformation measurement. First, unlike DIC, particle track-
ing does not require dense speckle patterns, and thus, it can 
have a flexible selection of particle density, which is benefi-
cial for applications where dense particles are not desired, 
e.g., in biological systems. Second, particles are located in 

individual images and then linked across images in order to 
obtain trajectories. As a consequence, the accuracy of par-
ticle tracking is independent of the extent of deformation, 
circumventing the decorrelation or cumulative errors that 
arise when DIC is applied in situations of large deforma-
tion [26, 27]. Moreover, particles offer the advantage that 
they can be fully embedded, and thus when subject to very 
large deformation, they do not break their attachment to the 
sample [63]. Third and most poignantly, particle tracking 
is effective extremely close to free surfaces and under large 
deformation and/or rotation, as demonstrated in the fracture 
experiment. The method’s robustness can be guaranteed by 
a sufficient frame rate. In circumstances where a high frame 
rate cannot be achieved, a hybrid DIC-aided tracking method 
is suggested [64], where sparse DIC calculations can be used 
to provide reliable prediction for particle linking.

More attention is advocated for the deformation gradi-
ent tensor. In the wide application of experimental meth-
ods to the measurement of deformation, strain tensors are 
used extensively; however, deformation cannot be fully 
described by the strain tensors. For example, in the pre-
viously described fracture experiment, material rotation 
is measured to be more than 30 deg near the crack tip by 
polar decomposition of F [62], which otherwise cannot be 
extracted from finite strain tensors or from the linearized 
strain tensor. Furthermore, novel constitutive models, e.g., 
hyperelastic material model  [65, 66], require the defor-
mation gradient tensor to correctly describe the nonlinear 
material behavior. Finally, several analytical tools in solid 
mechanics, e.g. the J-integral [67, 68], also use kinematic 
information exclusively available in F . Our proposed estima-
tor, from the experimental perspective, enables the applica-
tion of the theoretically-developed novel material models 
and mechanics tools by accurately estimating F.

Conclusion

In this manuscript, a technique for estimating the deformation  
gradient is developed and analyzed based on a set of randomly  
dispersed displacements measured by particle tracking. The 
deformation gradient estimator given by equation (2) is derived  
in detail, and its expected error is decomposed and expanded 
into measurement error �M and FD error �FD . Based on the 
standard deviation of displacement measurements, �M can be 
computed for estimation of error in experiments. Computation  
of �FD is impossible without knowledge of second order deriv-
atives of displacement. This estimator is subjected to a variety 
of tests using simulated data, and then employed in the analy-
sis of physical experiments. In simulations, FD error is seen to  
follow the rate O(R) . Furthermore, it decreases as the number  
of nearest neighbors grows, k, before reaching a nonzero 
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asymptotic limit. As for measurement error, numerical simula-
tions boast a O(

�

R
√

k
) , corroborating that measurement noise  

is filtered when the number of neighbors increases. In physical 
experiments, the accuracy of the estimator is verified in both 
2D and 3D, and its effectiveness in measuring complicated 
deformation such as occurs adjacent to free boundaries is con- 
firmed. Our proposed estimator, based on particle tracking, is 
expected to open a door for future material tests and experi-
mental mechanics study, particularly in soft materials that 
routinely undergo large deformation or substantial rotation, 
especially near their boundaries.

Appendix 1 Estimator Error

Following “Estimator Derivation and Theory of Estimator 
Error” section, the aim is to estimate the deformation gradient 
of a center particle 0, by measuring displacements û0,… , ûk of  
it and its k-nearest neighbors, randomly dispersed at positions 

r0,… , rk
 . Each of the k + 1 particles lie in the search-ball Ω of 

radius R, centered at r0.
Measurements are assumed to be independent Gaussian 

variables such that 𝜖n,i = ûn,i − ui(rn) ∼ N(0,
𝜎2

3
) . Emphasis 

is put on obtaining an exact expression of estimator (2)’s mean 
square error (MSE).

To obtain this expression, the difference ∇ui(r0) − ∇̂ui(r0) 
is derived for each component i of the displacement field, 
by including the remainder of the Taylor expansion in equa-
tion (1). Then, the error is computed by expanding the Frobe-
nius norm

Beginning with the derivation of the difference ∇u
i
(r

0
)−

∇̂u
i
(r

0
) , a Taylor expansion including remainder is expanded 

for displacement component i. �in is a point along the line 
ranging from r0 to rn . This point is different for each com-
ponent i of displacement. The Taylor expansion holds for all 
neighbors 1,… , k provided that ui is twice continuously dif-
ferentiable everywhere in the search ball Ω . In experiments, 
as long as neighbors are not included across cracks or sharp 
lobes, this condition should be satisfied.

Each of the n = 1,… , k equations are multiplied by dn . 
Then, they are summed together.

(10)
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2
F
=

3
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)dn

Multiplication by the inverse of 
∑k

n=1
dnd

T
n yields an expres-

sion of row i of the deformation gradient fi . It can be sub-
tracted from the estimator given by equation (2)’s ith row, f̂i,

A =
1

R2k

∑k

n=1
dnd

T
n is defined. Furthermore,

The expectation conditioned on {dn}kn=1 of the square error of 
the estimator is taken. Recognizing that �[Xi ∣ {dn}

k
n=1

] = 0 
and that Yi ∣ {dn}

k
n=1

 is constant

First, a few steps are taken to expand the conditional expec-
tation of 

‖Xi‖
2.

Mutual independence of the various �n,i implies that 
�[�m,i�n,i] =

�2

3
�nm where �nm is the Kronecker delta. Equa-

tion (14) becomes
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for any matrix 
M

 and vector v of compatible sizes, equa-
tion (15) can be recast into

Finally, by symmetry of A,

and the conditional expectation of ‖Xi‖
2 is

Then, taking the norm of Yi yields

Measurement and Finite Difference (FD) errors, �M and �FD 
are defined.

Finally, an expression of the MSE of estimator (2) can be 
obtained from the Frobenius norm.

(16)‖Mv‖
2 = tr(vvTMT

M)

(17)

�[‖Xi‖
2 ∣ {dn}

k
n=1

]

=
�2

3R2k
{tr(

1

k

k
�

n=1

dn

R

d
T
n

R
A

−T
A

−1)

+ k‖A−1 1

k

k
�

n=1

dn

R
‖

2}

=
�2

3R2k
{tr(AA−T

A
−1)

+ k‖A−1 1

k

k
�

n=1

dn

R
‖

2}

(18)tr(AA−T
A

−1) = tr(A−1)

(19)

�[‖Xi‖
2 ∣ {dn}

k
n=1

] =
�2

3R2k
(tr(A−1)

+ k‖A−1 1

k

k
�

n=1

dn

R
‖

2)

(20)‖Yi‖
2 =

R2

4
‖

1

k

k
�

n=1

d
T
n

R
∇2ui(�

i
n
)
dn

R
A

−1 dn

R
‖

2

(21)

�M =

�

�

�

�

3
�

i=1

�[‖Xi‖
2 ∣ {dn}

k
n=1

]

=
�

R
√

k

�

�

�

�

tr(A−1) + k‖A−1 1

k

k
�

n=1

dn

R
‖

2

(22)

�FD =

�

�

�

�

3
�

i=1

‖Yi‖
2

=
R

2

�

�

�

�

3
�

i=1

‖

1

k

k
�

n=1

d
T
n

R
∇2ui(�

i
n
)
dn

R
A

−1 dn

R
‖

2

Appendix 2 Translation Test

Translation experiments are carried out in the x- and y- 
directions with the experimental setup shown in Fig. 5(a). 
For each direction, the sample is translated by a precise 
translation stage (Marzhauser-Wetzlar, Tango controller) 
for 10 steps with a step size of 5 µm (scale: 1pixel = 0.43�

m). Images in the initial state and each translated state are 
recorded, and processed with the procedures and parameters 
that have been used in the experiments described in the main 
text. Displacement fields in final states, i.e., after 50 µm 
translation in the x- or y-direction, are calculated based on 
particle tracking, and shown in Fig. 12(a) and (b), respec-
tively. The deviations of the measured displacements from 
the applied ones are plotted in Fig. 12(c) and (d), for x- and 
y-translation, respectively. It is seen that the particles tracked 
in the y-translation test show a larger deviation than those 
in the x-translation test. At each translation step, the mean 
value of the displacements measured for all the particles 
are calculated and plotted in Fig. 12(e) and (f), for trans-
lation along x and y, respectively. The average measured 
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Fig. 12  Experimental results of translation tests in the x- and y-directions. 
(a) and (b) Displacement fields tracked at particle locations after 50 µm 
translation in the x- and y-direction, respectively. The deviations of these 
measured displacement fields to the prescribed 50 µm displacement are 
shown in (c) and (d). The scale bars are 100 µm. (e) and (f) The mean 
measured displacement in the x- and y-directions after each translation 
increment of 5 µm. Dark dashed lines with a slope of 1 are plotted as a 
guide to the eye. Inset: the mean deviation of the measured displacement 
from the applied displacement is calculated for all particles. The standard 
deviation is indicated by the shaded region
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displacements boast agreement with the prescribed value, 
and the deviations shown in the insets also confirm sub-
micron accuracy. Despite the larger standard deviation in 
the y-translation test than in the x-translation test, the aver-
age standard deviation for 10 translation steps in both tests 
are within half a micron, i.e., 0.15 micron (0.35 pixel) for 
x-translation and 0.24 micron (0.56 pixel) for y-translation. 
From this base-line noise measurement, we set the noise 
level at 0.455 pixel ( 

0.56+0.35

2  ) for the theoretical calculations 
in the main text.
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