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This work reports on the development and numerical implementation of the linear
electromagnetic gyrokinetic (GK) model in a tokamak flux-tube geometry using a
moment approach based on the expansion of the perturbed distribution function on a
velocity-space Hermite–Laguerre polynomials basis. A hierarchy of equations of the
expansion coefficients, referred to as the gyro-moments (GMs), is derived. We verify the
numerical implementation of the GM hierarchy in the collisionless limit by performing a
comparison with the continuum GK code GENE, recovering the linear properties of the
ion temperature gradient, trapped electron, kinetic ballooning and microtearing modes,
as well as the collisionless damping of zonal flows. An analysis of the distribution
functions and ballooning eigenmode structures is performed. The present investigation
reveals the ability of the GM approach to describe fine velocity-space-scale structures
appearing near the trapped and passing boundary and kinetic effects associated with
parallel and perpendicular particle drifts. In addition, the effects of collisions are studied
using advanced collision operators, including the GK Coulomb collision operator. The
main findings are that the number of GMs necessary for convergence decreases with
plasma collisionality and is lower for pressure gradient-driven modes, such as in H-mode
pedestal regions, compared with instabilities driven by trapped particles and magnetic
gradient drifts often found in the core. The accuracy of approximations often used to
model collisions (relative to the GK Coulomb operator) is studied in the case of trapped
electron modes, showing differences between collision operator models that increase with
collisionality and electron temperature gradient, consistent with the results of Pan et al.
(Phys. Rev. E, vol. 103, 2021, L051202). Such differences are not observed in other edge
microinstabilities, such as microtearing modes. The importance of a proper collision
operator model is also confirmed by analysing the collisional damping of geodesic
acoustic modes and zonal flows.
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1. Introduction

Linear and nonlinear gyrokinetic (GK) simulations are the tools of reference for
describing low-frequency (compared with the ion gyrofrequency, Ωi) and small scales
(of the order of the ion gyroradius, ρi) electromagnetic microinstabilities occurring in the
core and edge regions of fusion devices (Told et al. 2008; Holland et al. 2011; Navarro
et al. 2015; Kotschenreuther et al. 2017; Neiser et al. 2019). On the other hand, the use of
GK in the turbulent simulation of the boundary region, which includes both the edge and
the scrape-off-layer (SOL), remains challenging, despite the recent development of edge
particle and continuum GK codes (Churchill et al. 2017; Mandell et al. 2020; Michels
et al. 2021). Gyrokinetic simulations of the boundary are currently restricted by (i) their
considerable computational cost, (ii) the presence of large-scale fluctuations, which are
not present in the core, and (iii) the challenge of describing the high-collisionality regime
using proper collision operator models, such as the Fokker–Planck Landau collision
operator (Landau 1936), referred to as the Coulomb operator in this work. Turbulence in
the SOL region is most often simulated by models based on drift-reduced Braginskii-like
fluid equations, which evolve the lowest-order particle fluid moments (density, temperature
and velocity) (Zeiler, Drake & Rogers 1997). Braginskii-like fluid simulations of the
SOL turbulence have shown their ability to model the SOL in a complex magnetic field
topology (see, e.g. Stegmeir et al. 2019; Giacomin, Stenger & Ricci 2020; Bufferand et al.
2021), in good agreement with experimental results (see, e.g. De Oliviera et al. 2022;
Galassi et al. 2022). The validity of Braginskii-like models relies on the high-collisionality
assumption, quantified by the smallness of the ratio of the particle mean-free path to
the parallel scale length, λmfp/L‖ � 1. This scaling might not be appropriate to describe
the entire collisionality range of the SOL and, more generally, in the boundary region.
In particular, the high plasma temperature at the top of the pedestal and local transient
events (such as edge localized modes) can significantly lower the plasma collisionality,
even in the SOL, calling for a kinetic description of the boundary region. Aiming to
bridge the gap between fluid and GK simulations, a moment approach to the GK model
based on a Hermite–Laguerre decomposition of the full gyrocentre distribution function
(full-F) was recently introduced in Frei, Jorge & Ricci (2020). This model, which we
refer to as the gyro-moment (GM) approach, is derived in a generalized GK ordering
appropriate to the boundary region and is valid for an arbitrary level of collisionality since
it implements the full GK Coulomb collision operator (Jorge, Frei & Ricci 2019). The
ability of the GM approach to describe drift waves (Jorge, Ricci & Loureiro 2018) and
ion-scale instabilities (Frei, Hoffmann & Ricci 2022b) efficiently has been demonstrated
at an arbitrary level of collisionality using the GK Coulomb collision operator and other
advanced collision operator models (Frei et al. 2021; Frei, Ernst & Ricci 2022a). However,
these investigations are limited to electrostatic and local linear studies neglecting, for
instance, electromagnetic and trapped particle effects, excluding therefore instabilities
such as the trapped electron modes (TEM), recognized as one of the main drives of
electron heat transport in the boundary region (Rafiq et al. 2009; Schmitz et al. 2012), as
well as the kinetic ballooning modes (KBM), which can limit, for instance, the maximal
achievable pressure gradient in H-mode pedestals (Snyder et al. 2009; Wan et al. 2012).

The present work aims to extend previous GM investigations (Jorge et al. 2018, 2019;
Frei et al. 2022b) to a tokamak flux-tube configuration. More precisely, the GK model
we consider in this work, based on the δf and linearized version of Frei et al. (2020),
includes ion and electron species, trapped and passing particles, finite electromagnetic
effects and collisions using advanced collision operators, such as the GK Coulomb
(Li & Ernst 2011; Jorge et al. 2019; Pan & Ernst 2019), Sugama (Sugama, Watanabe
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& Nunami 2009), and improved Sugama (IS) (Sugama et al. 2019) collision operators
(Jorge et al. 2019; Frei et al. 2021, 2022a). We remark that the GK model considered
here is similar to the one implemented in the GPU-native code GX (Mandell et al.
2022), which is designed for fusion reactor optimization based on turbulent calculations
and includes a Dougherty collision operator (Dougherty 1964). The linearized GM
hierarchy equation that we develop allows us to investigate the linear properties of the
ion temperature mode (ITG) with adiabatic and kinetic electrons, the TEM, the KBM, the
microtearing mode (MTMs) and the dynamics of zonal flows (ZFs) including geodesic
acoustic modes (GAMs) and ZF damping in regimes relevant to the boundary region,
from the low-collisionality banana to the high-collisionality Pfirsch–Schlüter regime. Our
numerical results are tested and verified in the collisionless limit with the state-of-the-art
continuum GK code GENE (Jenko et al. 2000; Görler et al. 2011). More precisely, we
compare the linear growth rates and mode frequencies, and investigate the velocity-space
and the ballooning eigenmode structures. In particular, a careful investigation of the
velocity-space structures of the distribution functions allows us to assess the convergence
properties of the GM approach and identify the optimal number of GMs that need to
be retained in the simulations. In addition, the present comparison provides physical
insights into the performance of the GM approach to describe important microinstabilities.
Finding excellent agreement with GENE in all the cases explored in the present work, we
demonstrate that the GM approach can accurately capture kinetic physics such as, e.g.
resonances due to parallel and perpendicular drifts of passing particles, trapped particles,
magnetic gradient drift resonance and small-scale velocity-space features near the passing
and trapped boundary. Furthermore, it is found that the number of GMs necessary to
achieve convergence in the collisionless limit is often of the same order as the number of
velocity-space grid points used in GENE, based on finite difference schemes. As expected,
the number of GMs is significantly reduced as the level of collisionality increases (Frei
et al. 2021). More interestingly, this is also true at low collisionality in the case of
instabilities developing in steep pressure gradient conditions such as the ones appearing in
H-mode operations. We remark that the comparisons presented here can also be extended
to other GK codes using different discretization techniques in velocity space, such as the
GS2 (Dorland 2000) and GKW (Peeters et al. 2009) codes. In addition to a comparison
with the GENE code, we also perform a convergence study of the GM approach in the
collisionless limit with a general electromagnetic dispersion relation of the GK model that
we analytically derive.

In the high-collisionality Pfirsch–Schlüter regime, the regularization of the
velocity-space distribution functions and the availability of advanced collision operator
models expressed in terms of GMs allow us to derive reduced-fluid models as an
asymptotic limit of the GM hierarchy equation. This illustrates the multi-fidelity aspect
of the GM approach. A collision operator model comparison is carried out in this work by
considering instabilities relevant to the edge region. More precisely, deviations in the TEM
linear growth rates (up to 15 %) between the GK Coulomb and other collision operators
at collisionalities relevant to edge H-mode conditions are found, consistent with Pan,
Ernst & Crandall (2020); Pan, Ernst & Hatch (2021). The amplitude of these deviations
depends on the pressure gradients that drive the instability, such as the electron pressure
gradient, and are absent for other edge instabilities such as MTMs, in contrast to the case
of MTMs shown in Pan et al. (2021). In all cases, the IS operator model provides the
smallest deviations with respect to the GK Coulomb. Finally, the impact of collisions on
GAM dynamics and ZF damping is studied. It is shown that, in general, energy diffusion,
conservation laws and finite Larmor radius (FLR) terms in the collision operator models
cannot be ignored when predicting their correct, long-time evolution, consistent with Pan
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et al. (2020, 2021). In view of the importance of turbulent transport and its self-consistent
interaction with ZFs in the boundary region, the present study highlights that a systematic
assessment of the physics fidelity of collision operators is necessary for a detailed and
correct description of the turbulent plasma dynamics in the boundary region and that the
GM approach is an ideal tool to carry out such investigations.

The rest of this paper is structured as follows. In (2), we present the flux-tube linear
GK model that we project onto the Hermite–Laguerre basis yielding the GM hierarchy
equation, and discuss its numerical implementation. In § 3, we investigate the description
within the GM approach of kinetic effects associated with drifts of passing particles.
Section 4 presents a comprehensive collisionless study of microinstabilities and ZF
dynamics with a detailed comparison against the GENE code. Collisional effects are
introduced in § 5 where the high-collisional limit of the GM hierarchy is derived and
the collisionality dependence of edge instabilities is revealed. In § 6, we use the GM
approach to investigate microinstabilities at steep pressure gradients, typically found in
low-collisionality H-mode conditions. Finally, a discussion and an outlook are presented
in § 7. Appendix A reports on convergence studies of the GM approach using an
electromagnetic GK dispersion relation.

2. Flux-tube GM model

The flux-tube approach allows for the simulation of plasma turbulence in a
computational domain that extends along a magnetic field line and over a narrow region.
The flux-tube configuration is motivated by the smallness of the ratio of the typical
perpendicular turbulent scale length, which is of the order the ion Larmor radius ρi (for
ion-scale turbulence), to the perpendicular equilibrium scale L⊥, ρi/L⊥ � 1, and by the
anisotropic nature of turbulence along and perpendicular to the equilibrium magnetic field
lines (Beer, Cowley & Hammett 1995; Xanthopoulos & Jenko 2006). While the flux-tube
approach can be justified in the core region, the flux-tube model allows us to assess the use
of the GM approach in the study of microinstabilities, which are relevant to the boundary
region.

The presentation section is structured as follows. In § 2.1, we present the linearized GK
model. The development of this model in a flux-tube geometry is reported in § 2.2. The
GM approach based on a Hermite–Laguerre decomposition of the perturbed distribution
functions is introduced in § 2.3. The collision operators used in this work are listed in § 2.4,
and, finally, the numerical implementation of the GM hierarchy equation is discussed in
(2.5).

2.1. The GK model
We consider the linearized electromagnetic GK Boltzmann equation in the presence of an
equilibrium magnetic field, as well as density and temperature gradients. The flux-tube
assumption of separation between the turbulent (of the order of ρi) and the equilibrium
(of the order of L⊥) scales allows us to neglect the equilibrium profiles as considered
constant across the computational domain. In the following, we use the gyrocentre
phase-space coordinates Z = (R, μ, v‖, θ), where R = r − ρa is the gyrocentre position,
with r the particle position and ρa(R, μ, θ) = b × v/Ωa its gyroradius. Here, b = B/B,
Ωa = qaB/ma, a is the particle species, μ = mav

2
⊥/[2B(R)] is the magnetic moment,

v‖ = b · v is the component of the velocity parallel to the equilibrium magnetic field and,
finally, θ is the gyroangle. Contrary to Frei et al. (2020), we assume that the gyrocentre
distribution function, Fa = Fa(R, μ, v‖, t), is a perturbed Maxwellian, i.e. Fa = FMa +
ga, with ga = ga(R, μ, v‖, t) the perturbation with respect to the local Maxwellian
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distribution function FMa = Ne−s2
‖a−xa/(π3/2v3

Ta), where ga/FMa � 1, N = Ni(R) = Ne(R)
the background gyrocentre density (assuming qi = +e for simplicity), s‖a = v‖/vTa(R),
xa = μB(R)/Ta(R) and v2

Ta
(R) = 2Ta(R)/ma. Under these assumptions, the linearized

electromagnetic GK Boltzmann equation for the Fourier modes ga(k⊥, �, μ, v‖, t) (with
� the arc-length coordinate along a magnetic field line) is (Hazeltine & Meiss 2003)

∂

∂t
ga + iωBaha + v‖∇‖ha − μ

ma
(b · ∇B)

∂

∂v‖
ha − iω∗

Ta
eχa

Te
FMa = Ca, (2.1)

where we introduce the gyro-averaged electromagnetic field, χa = J0(ba
√

xa)(φ −
v‖ψ), with the perturbed electrostatic potential, φ = φ(k⊥, �, t) and the component
parallel to B of the perturbed magnetic vector potential, ψ = ψ(k⊥, �, t), defined
such that the transverse component of the perturbed magnetic field is δB⊥ � ∇⊥ψ ×
b. The perpendicular wavevector is defined as k⊥ = k − (b · k)b and � is the arc
length describing the direction along B, such that the parallel gradient is ∇‖ = b ·
∇ = ∂�. In addition, we introduce the magnetic drift frequency ωBa = vDa · k, with
vDa = μb × ∇ ln B/qa + v2

‖/Ωab × κ being the combination of the ∇B and curvature
drifts, and the diamagnetic frequency ω∗

Ta = [ωN + ωTa(xa + s2
‖a − 3/2)], with ωN =

Teb × ∇ ln N · k/(eB) and ωTa = Teb × ∇ ln Ta · k/(eB). We remark that, using the
magnetohydrodynamics (MHD) equilibrium condition, J × B = ∇P (with P =∑a NaTa
the total equilibrium pressure), and Ampere’s law, ∇ × B = 4πJ , the magnetic
curvature can be expressed as κ = b · (∇b) = ∇⊥ ln B + (4π∇P)/B2, such that the
magnetic drift frequency, ωBa, becomes ωBa = v2

Ta(xa + 2s2
‖a)RB/(2Ωa)+ v2

Tas2
‖a/Ωab ×

(4π∇P)/B2 · k, where RB = (b × ∇ ln B) · k. FLR effects give rise to the zeroth-order
Bessel function, J0(ba

√
xa), where the argument ba = k⊥vTa/Ωa is the normalized

perpendicular wavevector, with k⊥ = |k⊥|. The non-adiabatic part of the perturbed
gyrocentre distribution function ga that appears in (2.1), ha = ha(k⊥, �, μ, v‖, t), is defined
by

ha = ga + qa

Ta
FMaχa. (2.2)

On the right-hand side of (2.1), the effect of collisions is described by the linearized
collision operator Ca =∑b Cab(k⊥, �, μ, v‖) (Frei et al. 2021). The GK Boltzmann
equation, (2.1), is closed by the GK quasi-neutrality condition

∑
a

q2
a

Ta
(1 − Γ0(aa)) φ =

∑
a

qa
1

Na
2π

∫
dμ dv‖

B
ma

J0(ba
√

xa)ga, (2.3)

that provides the self-consistent electrostatic potential (Frei et al. 2020), where aa = b2
a/2

and Γ0(x) = I0(x)e−x, with I0 the modified Bessel function of order zero, and by the GK
Ampere’s law(

k2
⊥

4π
+
∑

a

q2
aNa

ma
Γ0(aa)

)
ψ =

∑
a

qa2π

∫
dμ dv‖

B
ma

J0(ba
√

xa)v‖ga, (2.4)

that provides the Fourier component of the perturbed magnetic vector potential ψ . We
remark that the linear GK model in (2.1), (2.3) and (2.4) can be obtained from the
full-F model presented in Frei et al. (2020) by neglecting nonlinearities and the terms in
the guiding-centre transformation arising from the large amplitude and long wavelength
components of the fluctuating electromagnetic fields.
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In the present work, the adiabatic electron approximation is also considered. In this
case, electron inertia is neglected, such that the parallel electric field balances the parallel
pressure gradient, and therefore the electron density follows the perturbed electrostatic
potential φ. Imposing that the perturbed electron density vanishes on average on a flux
surface, the GK quasi-neutrality condition, (2.3), can be simplified

q2
i

Ti
(1 − Γ (ai)) φ + e2

Te

(
φ − 〈φ〉fs

) = qi

Ni

∫
dμ dv‖ dθ

B
mi

J0(bi
√

xi)gi, (2.5)

where 〈. . . 〉fs denotes the flux-surface average operator (Dorland & Hammett 1993).
The adiabatic electron approximation allows us to remove the fast electron dynamics
that limits, for instance, the time step in turbulent simulations, thus allowing the study
of ion-driven instabilities such as the ITG (Frei et al. 2022b). However, retaining the
electron dynamics is essential in describing electromagnetic effects and instabilities driven
unstable by trapped electrons.

2.2. Field-aligned coordinate system and flux-tube model
Taking advantage of the highly anisotropic turbulence along and across the magnetic field
lines, we define a coordinate system with one coordinate aligned with the magnetic field
line. To this aim, we introduce the Clebsch-type, field-aligned coordinate system (x, y, z)
and write the equilibrium magnetic field B as

B = B0∇x × ∇y, (2.6)

where B0 is the reference magnetic field strength. Given (2.6), the coordinates (x, y)
generate a plane perpendicular to the magnetic field since B · ∇x = B · ∇y = 0. On
the other hand, the coordinate z is used to describe the direction along the equilibrium
magnetic field line. Among the Clebsch coordinates, we choose to consider (Lapillonne
et al. 2009)

x = X(ψp − ψp(0)), y = Y(q(ψp)χ − φt), z = χ, (2.7a–c)

where ψp is the poloidal flux label, ψp(0) is the value of ψp at the centre of the flux tube,
−π ≤ χ ≤ +π is the straight-field line angle chosen to describe the parallel direction,
q(ψp) is the local safety factor, and φt the geometrical toroidal angle. Therefore, the
coordinate x is a radial magnetic flux-surface label while y labels the magnetic field
lines on a flux surface (binormal coordinate), with X and Y being normalization constants
chosen such that x and y have the unit of length. The Jacobian of the coordinates system is
Jxyz = (∇x · ∇y × ∇z)−1.

In the flux-tube model, the x and y directions are treated in Fourier space by assuming
periodic boundary conditions along them (Ball & Brunner 2021). We thus introduce
the perpendicular wavenumber vector k⊥ = kx∇x + ky∇y, kx and ky being the radial
and binormal wavenumbers, respectively. A real valued fluctuating quantity A(x, y, z) is
therefore expressed as

A(x, y, z) =
∑
kx,ky

A(kx, ky, z) exp(ikxx + ikyy), (2.8)

with A(kx, ky, z) the Fourier components of A. The periodic boundary condition in x is
justified in the local approximation, whereby constant radial equilibrium gradients are
considered, while the safety factor q(ψp) is linearized around the centre of the flux-tube
domain located at x = 0, i.e. we write q(ψp) � q[1 + xs/(Xψp(0))] and introduce the
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magnetic shear s = (ψp(0)/q) dq/dψp, with q = q(ψp(0)) the safety factor at the centre
of the flux tube (Beer et al. 1995). The periodic boundary condition in y stems from the
2π periodicity in the geometrical toroidal angle φt (see (2.7a–c)). The periodicity in the
straight-field line angle χ imposes the boundary conditions along z (Beer et al. 1995;
Lapillonne et al. 2009)

A(kx, ky, z = π) = A(kx + 2πsky, ky, z = −π). (2.9)

The ballooning eigenmode function of the fluctuating quantity A, denoted by AB, can be
constructed by coupling the (kx, z) linear modes through the ballooning transformation
(Connor, Hastie & Taylor 1978)

AB(χ) = A(kx + nkx 2πsky, ky, z), (2.10)

where −∞ ≤ χ = z + 2πnkx ≤ ∞ (with −π ≤ z ≤ π) is the extended ballooning angle.
We note that the norm of the perpendicular wavenumber k⊥, that enters in, e.g. the

Bessel function J0 appearing in (2.1), is expressed by

k⊥=
√

Kxkx + gxykxky + gyyk2
y , (2.11)

where we introduce the effective radial wavenumber Kx = ∇x · k⊥ = gxxkx + gxyky and
the geometrical coefficients given by the metric tensor elements gxx = ∇x · ∇x, gxy = ∇x ·
∇y, gyy = ∇y · ∇y (similar definitions are used for gyz, gxz and gzz). We remark that gxy �= 0
since the x and y coordinates are not orthogonal.

Using the fact that the equilibrium density and temperature varies only along x
(i.e. ∇N = ∇x∂xN and ∇Ta = ∇x∂xTa), the linearized GK Boltzmann equation, (2.1),
describing the time evolution of ga = ga(kx, ky, z, μ, v‖), reads in the (x, y, z) coordinate
system, as

∂

∂t
ga + vTa

Jxyz

s‖a

B̂

∂

∂z
ha + iωBaha − xavTa

2
1

JxyzB̂

∂

∂z
ln B

∂

∂s‖a
ha

+iω∗
Ta

eχa

Te
FaM = Ca, (2.12)

where B̂2 = B2/B2
0 = gxxgyy − gxygxy, and the frequencies

ωBa = v2
Ta

2Ωa

(
xa + 2s2

‖a

)
Cx,y(B)− v2

Ta

2Ωa
s2
‖a

B̂
L⊥

α

q2
, (2.13)

and

ω∗
Ta = 1

L⊥

[
RN + RTa

(
xa + s2

‖a − 3
2

)]
Teky

eB
. (2.14)

Here, the normalized density and temperature gradients, RN = −L⊥∂x ln N and RTa =
−L⊥∂x ln Ta, respectively, and the MHD parameter α = q2βe

∑
a τa(RN + RTa). The

flux-tube approach allows us to approximate the density and temperature gradient lengths
by their local values evaluated at x = 0, LN and LTa , respectively, such that ∂x ln Na =
−1/LN and ∂x ln Ta = −1/LTa . The curvature operator, Cx,y(B) in (2.13), is defined by

Cx,y(B) = Cx(ln B)kx + Cy(ln B)ky, (2.15)

where Cx(A) = (Γ1∂yA + Γ2∂zA)/B̂, Cy(A) = (Γ3∂zA − Γ1∂xA)/B̂ (with Γ1 = gxygyx −
gxxgyy, Γ2 = gxzgyx − gxxgyz and Γ3 = gxzgyy − gxygyz).
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In the present numerical implementation, we consider concentric and circular flux
surfaces modelled by the s − α model (Dimits et al. 2000). Despite its known
inconsistencies (Lapillonne et al. 2009), the s − α model provides an efficient and
easy-to-implement model that can be used to validate simulation codes when the details of
the magnetic geometry are not important. In the s − α model, the normalized amplitude
of the magnetic field is given by B̂ = B/B0 = 1/(1 + ε cos z) where ε is the inverse
aspect ratio assumed to be small, ε � 1. It follows that JxyzB̂ = qR0 (with R0 the major
radius of the tokamak device) and the non-zero metric elements are gxx = 1, gxy = sz,
gyy = 1 + z2s2. We choose the reference equilibrium length L⊥ to be the major radius of
the tokamak device, i.e. we set L⊥ = R0. The parallel derivative of the magnetic field
strength B and the curvature operator Cx,y(B) are therefore expressed by

∂

∂z
ln B = ε sin z, (2.16)

Cx,y(B) = − B̂
R0
(sin zKx + cos zky), (2.17)

with Kx = kx + szky. Given the expressions of the metric elements, the perpendicular
wavenumber k⊥, defined in (2.11), becomes

k⊥=
√

kxKx + szkxky + (1 + s2z2)k2
y . (2.18)

The linearized electromagnetic GK Boltzmann equation, given in (2.1), coupled with the
GK field equations, (2.3) and (2.4), constitute a closed set of partial differential equations.
Within a continuum numerical approach, this set of equations is discretized using a
two-dimensional velocity-space grid where the velocity-space derivatives and integrals
contained in (2.1) and in the collision operator Cab are evaluated numerically. For instance,
the widely used GK continuum code GENE (Jenko et al. 2000) uses a uniform grid in
the (v‖, μ) coordinates in its local and linear flux-tube implementation. Using a different
approach, we develop the GK model into a set of fluid-like equations by expanding the
distribution function on a polynomial basis in the velocity-space coordinates (v‖, μ).

2.3. Gyro-moment expansion
We use a GM approach based on a Hermite–Laguerre expansion of the perturbed
distribution function ga to solve the electromagnetic linearized GK equation given in
(2.12). More precisely, the perturbed gyrocentre distribution function, ga, is expanded onto
a Hermite–Laguerre polynomial basis (Jorge, Ricci & Loureiro 2017; Mandell, Dorland &
Landreman 2018; Jorge et al. 2019; Frei et al. 2020), such that

ga =
∞∑

p=0

∞∑
j=0

Npj
a

Hp(s‖a)Lj(xa)√
2pp!

FMa. (2.19)

In (2.19), we introduce the physicist’s Hermite and Laguerre polynomials, Hp and Lj, that
can be defined via their Rodrigues’ formulas (Gradshteyn & Ryzhik 2014)

Hp(x) = (−1)pex2 dp

d xp

(
e−x2
)
, (2.20a)

Lj(x) = ex

j!
d j

d x j

(
e−xx j

)
, (2.20b)
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and we note their orthogonality relations

∫ ∞

−∞
dxHp(x)Hp′(x)e−x2 = 2pp!

√
πδp′

p , (2.21a)

∫ ∞

0
d xLj(x)Lj′(x)e−x = δ

j′
j . (2.21b)

Using the orthogonality relations, the Hermite–Laguerre velocity moments of ga, i.e. the
GMs Npj

a , are defined by

Npj
a (kx, ky, z) = 1

N
2π

∫
dμ dv‖

B
ma

ga
Hp(s‖a)Lj(xa)√

2pp!
, (2.22)

with N = ∫ dμ dv‖ dθBFMa/ma the background gyrocentre density. We remark that any
polynomial basis could, in principle, be used to expand the perturbed distribution function
ga. For instance, a polynomial basis of interest for high-collisional plasmas, based on
Legendre and associated Laguerre polynomials in the pitch-angle and speed coordinates
ξ = v‖/v and v (or energy v2) respectively, can be used (Belli & Candy 2011). However,
the use of the Hermite–Laguerre basis, which has a long history in plasma physics (see,
e.g. Grant & Feix 1967; Hirshman & Sigmar 1976; Madsen 2013; Schekochihin et al. 2016;
Jorge et al. 2017; Mandell et al. 2018), provides a direct relation to the fluid quantities
that are evolved by Braginskii-like fluid models (Zeiler et al. 1997). For instance, N10

a is
associated with the normalized parallel velocity, ua‖, while N20

a and N01
a to the parallel and

perpendicular temperatures, T‖a and T⊥a.
The Bessel function J0 (appearing in both (2.1) and (2.3) and arising from FLR effects)

and, more generally Jm, with m > 0, can be conveniently expanded onto associated
Laguerre polynomials, Lm

n (x) = (−1)m dmLn+m(x)/d xm, as (Gradshteyn & Ryzhik 2014)

Jm(ba
√

xa) =
(

ba
√

xa

2

)m ∞∑
n=0

n!Kn(ba)

(n + m)!
Lm

n (xa), (2.23)

where we introduce the velocity-independent expansion coefficients

Kn(ba) = 1
n!

(
ba

2

)2n

e−b2
a/4. (2.24)

To simplify our notation, in the rest of the paper we normalize the time t to R0/cs (with
c2

s = Te/mi the ion sound speed), the perpendicular wavenumbers k⊥, kx and ky to ρs =
cs/Ωi the ion sound gyroradius (with Ωi = qiB0/mi the ion gyrofrequency defined with
the reference magnetic field B0), the particle mass ma to mi, the particle charge qa to
the electron charge e, the temperature Ta to the electron equilibrium temperature Te, the
electrostatic potential φ to Te/e, and the magnetic vector potential ψ to ρsB0.

We now project the linearized GK Boltzmann equation onto the Hermite–Laguerre basis
by multiplying (2.1) by BHpLj/

√
2pp! and integrating over the velocity space. This yields
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the linearized GM hierarchy equation defined by

∂

∂t
Npj

a + L⊥
Jxyz

1

B̂

√
τa

σa

{(√
p + 1

∂

∂z
np+1j

a + √
p
∂

∂z
np−1j

a

)

− ∂

∂z
ln B

(
(j + 1)

√
p + 1np+1j

a − j
√

pnp−1j
a − j

√
p + 1np+1j−1

a + √
p(j + 1)np−1j+1

a

)}

+
(

iτaL⊥
qaB̂

Cx,y(B)+ iτa

qa

(−1)α
q2

ky

)(√
( p + 1)( p + 2)np+2j

a + (2p + 1)npj
a

+
√

p( p − 1)np−2j
a − jnpj−1

a − (j + 1)npj+1
a

)
+ iτaL⊥

qaB̂
Cx,y(B)(2j + 1)npj

a

+ i
[
Kjδ

0
pRN + RTa

(
1√
2
Kjδ

2
p + δ0

p

(
2jKj − jKj−1 − (j + 1)Kj+1

))]
kyφ

− i
√

2τa

σa

[
Kjδ

1
p√

2
RN + RTa

(√
3

2
Kjδ

3
p + δ1

p√
2

(
(2j + 1)Kj − jKj−1 − (j + 1)Kj+1

))]
kyψ

= Cpj
a , (2.25)

with σa = √
ma/mi and τa = Ta/Te. In (2.25), we define Cpj

a =∑b Cpj
ab with Cpj

ab =
Cpj

ab(kx, ky, z) the Hermite–Laguerre expansion of the linearized collision operator between
species a and b

Cpj
ab = 2π

∫
dμ dv‖

B
ma

Hp(s‖a)Lj(xa)√
2pp!

Cab. (2.26)

We remark that, in the case of GK collision operators, the linearized collision operator,
Cpj

ab, depends on kx, ky and z through the modulus of the perpendicular wavenumber k⊥
(see (2.18)). On the other hand, Cpj

ab becomes independent of k⊥, if drift-kinetic (DK)
collision operators are used. In (2.25), we also introduce the non-adiabatic GMs npj

a , that
are obtained by projecting (2.2) onto the Hermite–Laguerre basis, yielding

npj
a = Npj

a + qa

τa
Kj

(
φδ0

p −
√
τa

σa
δ1

pψ

)
. (2.27)

Finally, the GK quasineutrality condition and the GK Ampere’s law, (2.3) and (2.4), are
normalized and expressed in terms of GMs as follows:

∑
a

q2
a

τa

(
1 −

∞∑
n=0

K2
n

)
φ =

∑
a

qa

∞∑
n=0

KnN0n
a , (2.28)

and (
2k2

⊥ + βe

∑
a

q2
a

σ 2
a

∞∑
n=0

K2
n

)
ψ = βe

∑
a

qa

√
τa

σa

∞∑
n=0

KnN1n
a , (2.29)

respectively, where βe = 8πNTe/B2
0 is the electron plasma beta. On the other hand,

assuming adiabatic electrons, the GK quasi-neutrality equation, (2.5), becomes[
1 + q2

i

τi

(
1 −

∞∑
n=0

K2
n

)]
φ − 〈φ〉fs = qi

∞∑
n=0

KnN0n
i , (2.30)
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where the flux-surface-averaged operator of a function f is expressed as 〈f 〉fs =∫
dy
∫

dzJxyzf /
∫

dz
∫

dyJxyz. We remark that the argument ba = σa
√

2τak⊥/B̂ of the
kernel functions, Kj = Kj(ba) defined in (2.24), depends on geometrical quantities,
through k⊥ given in (2.11), and on the magnetic field strength B, through its ρa dependence.
We remark that a similar Hermite–Laguerre approach in the δf limit of the GK model has
been recently formulated and implemented in the GX code (Mandell et al. 2018, 2022),
showing a promising numerical efficiency to simulate the collisionless core region to
optimize future reactor designs.

2.4. Linearized collision operator models

To model the effects of collisions Cpj
ab on the right-hand side of (2.25), we use the GM

expansion of advanced collision operator models previously derived and benchmarked
in Frei et al. (2021, 2022b, a). In contrast to the GX code (Mandell et al. 2022) that
implements a Dougherty collision operator, we consider here the linearized GK Coulomb
(Li & Ernt 2011; Pan & Ernst 2019; Frei et al. 2021), the Sugama (Sugama et al. 2009), the
IS (Sugama et al. 2019) collision operators, and like-species Dougherty (Dougherty 1964)
collision operators.

Collisional effects are described by means of the ion–ion collision frequency
(normalized to the ion transit time R0/cs)

νii = 4
√

π

3
R0Ne4 lnΛ

csm
1/2
i T3/2

i

, (2.31)

with lnΛ the Coulomb logarithm. The normalized electron–ion collision frequency is then

νei = νii√
me/mi

(
Ti

Te

)3/2

. (2.32)

The electron and ion neoclassical collisionalities, ν∗
e and ν∗

i , respectively, are then
expressed by (Helander & Sigmar 2002)

ν∗
e =

√
2q
ε3/2

T3/2
i

T3/2
e
νii, ν∗

i = q√
2ε3/2

(
Te

Ti

)1/2

νii, (2.33a,b)

being the collisionless banana regime achieved when ν∗
e � 1 and the high-collisional

Pfirsch–Schlüter regime when ν∗
e � 1/ε3/2 for the electrons.

2.5. Numerical implementation
To solve numerically the linearized GM hierarchy equation, (2.25), we evolve a finite
number of GMs, ( p, j) ≤ (P, J). Throughout the present work, we consider the same
(P, J) for both electrons and ions. In addition, we use a simple closure by truncation
by imposing Npj

a = 0 for ( p, j) > (P, J). While rigorous asymptotic closures can be used
(e.g. a high-collisional closure (Jorge et al. 2017) or a semi-collisional closure Loureiro,
Schekochihin & Zocco 2013), the closure by truncation appears to be sufficiently accurate
for the purposes of the present linear study.

For the spatial discretization, we use a single ky mode in an axisymmetric equilibrium
and evolve a finite number, 2Nkx + 1, of kx modes (the kx modes are coupled through the
parallel boundary condition at finite shear according to (2.9)). The values of the kx modes
allowed in the system are imposed by (2.9) and are labelled by kx,n = δkx ± nkx 2πsky with
nkx = 0, 1, . . . ,Nkx , where δkx = −z0kys. However, for simplicity, we centre the grid of
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radial modes around the kx = 0 mode and neglect the effects of the finite ballooning
angle z0 by setting δkx = 0, if not specified otherwise. The z direction, −π < z ≤ π, is
discretized using Nz grid points that are uniformly distributed and the parallel derivatives,
appearing in (2.25), are evaluated using a fourth-order centred finite difference scheme.
Hyperdiffusion in z, proportional to ∼ ηz∂

4
z , is added on the right-hand side of (2.25)

to avoid artificial numerical oscillations. Since a finite number of kx modes are evolved,
boundary conditions for the nkx = ±Nkx modes are needed for npj

a . While different choices
of boundary conditions exist, we consider

npj
a (−Nkx 2πsky, ky,−π) = npj

a (+Nkx 2πsky, ky,π), (2.34)

for all ( p, j) ≤ (P, J). For comparison, we remark that homogeneous Dirichlet boundary
conditions are used in GENE. However, by increasing Nkx and Nz, our tests show that our
results are not affected by the boundary conditions we impose along z.

An explicit fourth-order Runge–Kutta scheme is used to perform the time integration of
(2.25). We denote with �t the time step and tn the discrete time values. We remark that
the largest possible time step, �t, when the electron dynamics is included, is limited by
the presence of the high-frequency wave ωH (Lee 1987; Lin et al. 2007).

In the present work, the complex frequency of the linear modes, ω = ωr + iγ (where
ωr is the real mode frequency and γ is the mode growth rate), is computed by using the
weighted average

ωn(ky) =
∑

kx,z ω
n
l (kx, ky, z)W(kx, ky, , z)∑

kx,z W(kx, ky, , z)
, (2.35)

of the local complex frequency ωn
l (kx, ky, , z) = ln[φn(kx, ky, z)/φn−1(kx, ky, , z)]/�t

(where φn is the perturbed electrostatic potential at time t = tn). Choosing W(kx, ky, z) =
φn−1(kx, ky, z), we evolve (2.25) until∑

kx,z |ωn
l (kx, ky, z)− ωn(ky)|2W(kx, ky, z)∑

kx,z W(kx, ky, z)
< δ, (2.36)

being δ = 10−4 for all the linear computations presented here. We note that we initialize
the evolution of the GM hierarchy by imposing a perturbed density of constant amplitude
along z for all kx modes. Finally, we remark that a Cartesian message passing interface
(MPI) domain decomposition along kx, z and the Hermite index p is used. While
the present parallelization is sufficient for the applications presented in this work, we
believe that better parallelization strategies can be applied to achieve high computing
performances and good scalability, also in comparison with present GK codes. For
instance, the GPU-native GX code (Mandell et al. 2022) has been developed for this
purpose and successfully achieved this goal.

A comparison between the continuum GK GENE code (Jenko et al. 2000; Görler
et al. 2011) and the GM approach is presented in § 4. In the GENE code, the velocity
space is discretized by uniformly distributed grid points between the normalized intervals
s‖ = v‖/vTa ∈ [−s‖M,+s‖M] and x = μB/Ta ∈ [0, xM] (typically s‖M = 3 and xM = 9 in
our calculations) with a fixed number of grid points in each direction that we denote by Nv‖
and Nμ, respectively. The velocity-space derivatives and integrals are then approximated
using finite difference methods. Hence, the numerical approximation of the distribution
function, ga, is given through the value of ga on a set of discrete grid points. On the
other hand, within the GM approach, the numerical approximation of ga is given by
the Hermite–Laguerre expansion coefficients, Npj

a , such that the distribution function is
reconstructed thanks to the truncated expansion in (2.19), given P and J.
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3. Representation of passing particle drifts in the GM approach

To interpret the investigations of microinstabilities in § 4, we first study analytically and
numerically the GM approach description of kinetic effects associated with the parallel
streaming and perpendicular drifts of passing particles. Particle resonances driven by these
drifts play an important role, e.g. in geodesic acoustic mode (GAM) oscillations, in the
ZF dynamics, and more generally, in the collisionless mechanisms of microinstabilities
(Winsor, Johnson & Dawson 1968; Rosenbluth & Hinton 1998). In addition, the parallel
streaming of passing particles and the finite orbit width (FOW) effects associated with
magnetic gradient drifts can create fine-scale velocity-space structures in the distribution
function (Idomura et al. 2008). It was recently reported (Frei et al. 2022b) that magnetic
gradient drifts broaden the GM spectrum (both Hermite and Laguerre moments), while the
parallel streaming of passing particles usually leads to the requirement of a larger number
of Hermite than Laguerre GMs. Due to their importance, in particular at low collisionality
(e.g. in the banana regime), we identify situations where a large number of GMs is
necessary to resolve fine velocity-space structures. To investigate the representations of
kinetic effects using the GM approach and if not stated otherwise, we consider the
shearless limit (s = 0), the safety factor q = 1.4, and the inverse aspect ratio ε = 0.1. In
addition, we focus on passing ions with adiabatic electrons and, therefore, omit the species
label a in this section for simplicity.

In the remainder of the present section, we study the parallel streaming of passing
particles and illustrate the associated recurrence phenomena in § 3.1. A comparison with
the GENE code confirms the ability of the GM method in the description of fine v‖
structures. FOW effects driven by the perpendicular magnetic drifts are assessed in § 3.2.

3.1. Parallel streaming and recurrence phenomena
Passing particles are known to generate fine filament-like structures in v‖ (Idomura et al.
2008), on scales that decrease linearly with time. To illustrate the appearance of these
fine-scale structures and their effect on the GMs, we consider a simple one-dimensional
model for the distribution function g = g(�, v‖, t) that describes the streaming of particles
along the magnetic field lines (Hammett et al. 1993). Expressed in physical units, this
reads

∂

∂t
g + v‖∂�g = 0, (3.1)

with the initial condition g(�, v‖, 0) = h(v‖) cos(k‖�), being h(v‖) a continuous function
of v‖ and � the curvilinear coordinate along the magnetic field lines. The solution
of (3.1), g(�, v‖, t) = h(v‖) cos[k‖(�− v‖t)], shows an effective wavenumber in velocity
space kv‖ = k‖t that increases linearly with time. Therefore, finer and finer-scale structures
in v‖ appear progressively. To understand the properties of the GM approach to solve
(3.1), we introduce the Hermite moments, Np = ∫ dv‖gHp(s‖)e−s2

‖/
√

π2pp!. Assuming
h(v‖) = h0 constant, the analytical expressions of Np, satisfying the moment hierarchy
equation, ∂tNp + vT(

√
p + 1∂�Np+1 + √

p∂�Np−1)/
√

2 = 0 associated with (3.1), can be
obtained by projecting the analytical solutions of g. One finds

Np =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h0 cos(k‖�)
(−1)p/22p/2

√
2pp!

(
ωtt√

2

)p

e−(ωt t)2/4, p = 2n

h0 cos(k‖�)
(−1)( p−1)/22p/2

√
2pp!

(
ωtt√

2

)p

e−(ωt t)2/4, p = 2n + 1,

(3.2)
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where we introduce the transit frequency, ωt = k‖vT . The filamentation in v‖ yields the
propagation of a wavepacket in the Hermite spectrum to higher values of p as time
increases, with the maximum of the spectrum occurring at ωtt = √

2p. The increase of
the effective wavenumber in velocity space, kv‖ , with time challenges both the continuum
numerical algorithms and the GM approach. In fact, λv‖ = 2π/kv‖ typically sets the
minimal distance between the grid points �v‖ in v‖. Similarly, the minimal number P
of Hermite polynomials necessary for convergence increases with kv‖ . An approximate
expression of kv‖ , that can be represented by an Hermite polynomial of order p, can be
derived by noticing that the distance between the roots of the Hermite polynomials is of
the order of πvT/

√
2p, yielding kv‖ � 2

√
2p/vT ∼ √

p/vT .
As a consequence of the finite velocity-space resolution, a recurrence phenomenon

occurs, which limits the validity of the numerical solutions. The recurrence manifests
as a time-periodic perturbations, which have a purely numerical origin. Recurrence is
observed both in the continuum method and in the GM approach. The recurrence time, TR,
is the time necessary for the structures in the distribution function to develop on a scale
comparable to the numerical resolution, i.e. k‖TR ∼ kmax

v‖ . Within a continuum approach,
TR is estimated as TR � 2πqR0/�v‖ (considering k‖ � 1/qR0 typical of an interchange
mode), while one has

TR � 2
√

2P
qR0

vT
, (3.3)

within the GM approach. Therefore, in continuum GK codes, the recurrence time is
expected to scale linearly with the number of grid points Nv‖ , while TR scales less
favourably in the GM approach as

√
P, according to (3.3).

To illustrate the recurrence phenomenon, we consider the time evolution of the
flux-surface averaged electrostatic potential, 〈φ〉fs, in the absence of density and
temperature gradients, at long radial wavelength and with a small and finite collisionality
(νii � 10−4). The electrostatic potential, 〈φ〉fs, evolves into oscillations, associated with
GAM) (the collisionless dynamics of GAMs is investigated in § 4.5) that are ultimately
damped. We perform the simulations for different values of P (with J = 16) and repeat
the same simulations with GENE, varying the number of grid points Nv‖ (with Nμ = 16).
The results are shown in figure 1. The TR estimates for both cases agree with the analytical
scalings. We note that the amplitudes of the oscillations due to the recurrence are smaller
in the GM approach than in GENE because of the finite collisionality used in the GM
calculations, which damps higher-order GMs. Finally, we remark that the analytical
estimate of the collisionless ZF residual � , defined in (4.1) is in agreement with the
simulation results (see § 4.5).

Finally, we consider the perturbed ion distribution function during the GAM oscillations
at tωG � 10 (with ωG ∼ qvT/R0 the typical GAM frequency) and compare the ion
perturbed distribution functions at the outboard midplane, z = 0, obtained from GENE
and the GM approach in figure 2. For GENE simulations, we use Nv‖ = 1024 and Nμ = 16,
which yield λmin

v‖ � 0.003vT . For the GM approach, we use (P, J) = (256, 16), therefore
setting λmin

v‖ = πvT/
√

2P � 0.14vT . We observe that at tωG � 10, the GM hierarchy is
able to capture the main features of the v‖ filamentation due to the parallel streaming
of passing particles. Finally, we remark that the fine-scale structures in v‖, such as the
ones displayed in figure 2, are expected to be smeared out in nonlinear simulations due to
resonant interactions, such as phase-mixing.

https://doi.org/10.1017/S0022377823000715 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000715


Gyro-moments flux-tube linear simulations 15

(a) (b)

FIGURE 1. Recurrence effects observed in the GM approach for increasing values of P with
J = 16 (a) and in GENE for increasing values of Nv‖ with Nμ = 16 (b). The normalized (in units
of R0/cs) recurrence times are estimated with TR � √

2πqNv‖ for GENE and TR � 2q
√

P for
the GM simulations (see (3.3)) and are shown by the dashed coloured lines. The black dashed
line represents the collisionless ZF residual � given in (4.1) (Rosenbluth & Hinton 1998). We
note that the numerical hyperdiffusion along z is set to zero in all cases. Here, the parameters are
ε = 0.1, q = 1.4 and kx = 0.05.

(b)(a)

FIGURE 2. Modulus of the normalized (to the maximum) ion distribution function at the
outboard midplane obtained with the GM approach with (P, J) = (256, 16) (a) and using GENE
with (Nv‖ ,Nμ) = (1024, 16) for reference (b) during the GAM oscillations shown in figure 1 at
time tωG = 10, which is before the recurrence time TR in both cases. The dashed blue line is the
particle trapping boundary. The parameters are the same as in figure 1.

3.2. Effects of perpendicular magnetic drifts
Similarly to the parallel streaming of passing particles, the perpendicular drifts associated
with the magnetic gradient and curvature frequency, ωBa, drive resonance phenomena.
Here, we consider the resonance driven by FOW effects also associated with ωBa and,
more precisely, with the radial component of the perpendicular magnetic gradient drifts,
vDa · ∇x, appearing in (2.1).

To analytically investigate the representation of FOW effects in the GM approach, we
consider the collisionless time evolution of a radial perturbation, such that k = kx∇x,
in the absence of density and temperature gradients (ω∗

Ta = 0) and neglect terms in
(2.25) related to the parallel variation of B (i.e. b · ∇B = 0). Therefore, we focus on
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passing particles using concentric, circular, flux surface in the small inverse aspect
ratio limit. In the electrostatic limit, multiplying the GK Boltzmann equation, (2.1), by
the phase-factor eiQ cos z with Q = εkxρp[v‖/vT + μBvT/(2v‖T)], ρp = vT/Ωp being the
poloidal gyroradius and Ωp = eBp/m the poloidal gyrofrequency, yields an equation for
the non-adiabatic response h(

∂

∂t
+ v‖

qR0

∂

∂z

)
eiQ cos zh = ∂

∂t

(
eiQ cos z eJ0φ

T
FM

)
. (3.4)

We remark that the factor Q, proportional to ρpkx, is associated with FOW effects due to
the radial drifts, ∇x · vDa, of passing particles.

In order to obtain the first insight on the impact of the FOW effects on the GM spectrum,
we solve (3.4) by introducing the Fourier decomposition h =∑l hleilz−iωt and eφ/T =∑

m φmeimz−iωt. With the help of the Jacobi–Anger identity, eiQ cos z =∑n inJn(Q)einz

(Gradshteyn & Ryzhik 2014), and evaluating the convolutions arising from the products of
z-dependent quantities, such as eiQ cos zh and eiQ cos zφ, (3.4) can be solved for hm, obtaining

hm =
∑

l,l′
il′−lJl(Q)Jl′(Q) ω

ω − v‖(m + l)/(qR0)
J0(b

√
x)φm+l−l′FM. (3.5)

Projecting gm = ∫ dzge−imz−iωt with hm expressed by using (3.5) onto the Hermite–Laguerre
basis yields the collisionless expression of the Fourier component of the GM of gm, i.e.
Npj

m = ∫ dzNpje−izm, given by

Npj
m = −Kj(b)δ0

pφm +
∑

l,l′
il′−lφm+l−l′

Ipj
ll′m√
2pp!

, (3.6)

having defined the resonant velocity-space integral

Ipj
ll′m = 1√

π

∫ ∞

−∞
ds‖

∫ ∞

0
d xJl(Q)Jl′(Q) ωe−s2

‖−x

ω − v‖(m + l)/(qR0)
Hp(s‖)Lj(x)J0(b

√
x). (3.7)

While a closed analytical expression of the resonant integral Ipj
ll′m, given in (3.7), can

be obtained in terms of generalized plasma dispersion relations by following Frei et al.
(2022b) and be evaluated using numerical algorithms (Gürcan 2014)), this is rather
complex and outside the scope of the present work. Instead, we focus here on physical
insights on FOW effects that can be obtained directly by the inspection of the analytical
form of the integral Ipj

ll′m. We first observe that FLR (of the order of b) and FOW (of the
order of εkxρp ∼ qb) effects can be neglected in Ipj

ll′m in the long radial wavelength limit
kx � 1, since J0(b

√
x) ∼ 1, Jl(Q) ∼ 1 for l = 0, and J�(Q) ∼ 0 for l �= 0. In the same

limit, the resonant term contributes to the GMs throughout the j = 0 term because of
the Laguerre orthogonality relation given in (2.21b). On the other hand, when kxρp ∼ 1
(but kxρs � 1), FOW effects drive j > 0 GMs because of the μ dependence of Q in the
arguments of Jl(Q) and the presence of Laguerre polynomials Lj with j > 0, that couples
the Fourier harmonic l. As kxρp � 1 and kxρs ∼ 1, FLR effects drive GMs also through
the x dependence of J0(b

√
x) (Frei et al. 2022b).

We numerically illustrate the effects of resonance driven by FOW and FLR effects
by evolving (3.4), i.e. by solving the GM hierarchy in (2.25) neglecting the background
gradients (RN = RTa = 0) and the parallel gradient of the magnetic field B (∂z ln B = 0),
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(c)(b)(a)

FIGURE 3. Normalized (to the maximum value) GM spectrum for kx = 0.05 (a), kx = 0.5
(b) and kx = 1 (c) during the GAM oscillation at a time tωG � 2. The GM spectrum is
represented on a logarithmic scale and artificially saturated for visualization purposes. Here,
we consider q = 1.4, ε = 0.1.

but retaining the parallel streaming of passing particles. In figure 3, we plot the modulus
of the GM spectrum averaged over z, defined by

〈∣∣Npj
a

∣∣〉
z =

∫
dzJxyz

∣∣Npj
a

∣∣∫
dzJxyz

, (3.8)

obtained numerically during the GAM oscillations, which are an eigensolution of (3.4)
(Sugama et al. 2006), at time tωG � 2 (see § 4.5) for different values of kx. We evolve
(P, J) = (64, 24) GMs. As kx increases, the GM spectrum broadens in both p and j
directions since high-order GMs are driven by FOW and FLR effects. While the FOW
contributes with the parallel streaming in the Hermite GMs because of the s‖ dependence
in y associated with the curvature drift, the increased broadening in Laguerre direction
with kx is associated with the FLR and ∇B drift yielding the x dependence in y. We
remark that the same broadening mechanism of the GM spectrum was identified in the
case of toroidal ITG (Frei et al. 2022b).

4. Collisionless microinstability and comparison with GENE

We now turn to the investigation of the collisionless properties of microinstabilities
using the GM approach. In particular, we focus on the linear study of the ITG, TEM,
KBM and MTM and consider also the dynamics of GAM and ZFs. We perform a detailed
comparison with the continuum GK code GENE, which uses a finite difference method
in velocity space and the same velocity-space coordinates as the GM approach. The linear
growth rates, real mode frequencies, ballooning eigenmode structures, and the associated
velocity-space structures are compared with GENE results as a function of the number
(P, J) of GMs. We find that the GM approach is in excellent agreement with GENE, and
that convergence is most often achieved with a number of GMs of the same order as the
number of grid points used in GENE, i.e. P ∼ Nv‖ and J ∼ Nμ, despite the presence of
strong kinetic features (see § 3). Interestingly, we find that a small number of GMs is
needed for convergence for pressure gradients driven mode (such as the KBM), while it is
increased when sharp gradients in the distribution functions appear (e.g. in the TEM). The
present section provides a verification of the GM approach, which is shown to be able to
represent the collisionless limit of the essential microinstabilities that are responsible for
the anomalous turbulent transport in the boundary of fusion devices.
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The present section considers tests of increasing complexity. In § 4.1, we first perform
the ITG cyclone base case test with adiabatic electrons (Dimits et al. 2000). Then, in
§ 4.2, we illustrate the transition from the ITG mode to the TEM by introducing kinetic
electrons in our model, focusing on the electrostatic limit. Electromagnetic effects are
then considered, studying the KBMs in § 4.3 and the MTMs in § 4.4. Finally, we study the
collisionless GAM and ZF dynamics in § 4.5. In Appendix A, as a further collisionless
study, we focus on the local and strong ballooning limit of the flux-tube model, allowing
us to derive analytically an electromagnetic GK dispersion relation, which we compare
with the solution of the GM approach in the same limit.

4.1. Cyclone base case with adiabatic electrons
As a first linear collisionless test, we consider the electrostatic ITG cyclone base case
scenario with adiabatic electrons (Dimits et al. 2000). The cyclone base case is widely
used to verify GK codes (Merlo et al. 2016; Tronko et al. 2017). In the cyclone base case
scenario, the safety factor, magnetic shear and inverse aspect ratio are fixed at q = 1.4,
s = 0.8, and ε = 0.18, respectively. Additionally, we set the MHD parameter α = 0 also
for the rest of the present work, if not mentioned otherwise. Physical dissipation in the
GMs is introduced by using the GK Dougherty collision operator (Frei et al. 2022b) with
a small but finite value of collisionality (νei = νii = 10−4). The ion density and temperature
gradients are RN = R/LN = 2.22 and RTi = R/LTi = 6.9, corresponding to a value of
η = LN/LTi � 3, which is above the ITG mode linear threshold. We choose Nkx = 5 and
Nz = 24. In addition to GENE, we compare our results with the GX code (Mandell et al.
2022), which uses a similar polynomial decomposition as the one used in this work. If not
indicated, we use a high velocity-space resolution of (Nv‖,Nμ) = (128, 24) in GENE as a
reference.

The ITG growth rate, γ (normalized to cs/R0), is plotted in figure 4 as a function of
the binormal wavenumber ky (normalized to the ion sound Larmor radius ρs) for different
temperature gradients RTi . Different number of GMs, (P, J), are considered also for the GX
code. First, we remark that our results coincide with GX for all values of (P, J). In addition,
both spectral velocity-space codes agree well with the GENE code when (P, J) � (32, 16).
Second, we note that the GM approach provides a better estimate of the ITG growth rate
at long wavelength, even when low values of (P, J) are used, showing that FOW and FLR
effects require a large number of Laguerre GMs for their description. This is needed for
the gyro-averaging, as one can infer from (2.23) (Frei et al. 2022b).

Finally, we perform the ballooning transformation, given in (2.10), to compare the
ballooning eigenmode function φB, as obtained from the GM approach and from GENE.
These are plotted in figure 5. We observe that the functions φB are in good agreement,
peaking at the outboard midplane position. The inspection of the normalized GM
spectrum, defined in (3.8) and also shown in figure 5, reveals that the velocity space
is indeed well resolved with (P, J) = (32, 16). Finally, we observe that convergence is
achieved when P > J, a situation typically found in all cases discussed in the present
paper.

4.2. Ion temperature gradient and TEM
We now introduce the trapped and passing electron dynamics allowing us to investigate
the transition between the ITG and TEM. The electron dynamics introduces fast waves
such as the high-frequency wave, ω2

H = (k2
‖/k

2
⊥)(mi/me)Ω

2
i (Lee 1987; Lin et al. 2007),

that can limit the explicit time stepping scheme. While using a reduced ion mass can limit
the non-adiabatic electron response (Dominski et al. 2015), we consider

√
mi/me � 19.24

for numerical reasons. The reduced ion mass used in this work is sufficient to capture the
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(a) (b)

FIGURE 4. The ITG growth rate γ and real mode frequency ωr as a function of the binormal
wavenumber ky for various ion temperature gradients RTi . Different numbers (P, J) of GMs are
considered, and the results are compared with the continuum GK code GENE (red lines) and
pseudo-spectral code GX (light coloured lines) (Mandell et al. 2022).

(a) (b)

(c)

FIGURE 5. Real part (blue lines), imaginary part (red lines) and modulus (black lines) of the
ballooning eigenmode function φB(χ) normalized to φB(0) (a), obtained using the GM (solid
lines) and GENE (dashed lines). Normalized GM spectrum for the kx = 0 and kx = ±2πsky
modes is plotted on (b,c). The logarithmic scale is artificially saturated. Here, RTi = 6, ky = 0.3
and adiabatic electrons are considered.

main features of the non-adiabatic electron response to investigate the GM convergence.
Due to the localized and fine radial structures associated with the non-adiabatic electron
response (Hallatschek & Dorland 2005), we evolve a larger number of radial modes (i.e.
Nkx = 11), and increase the number of parallel grid points to Nz = 24 to properly resolve
the tails. We use the same resolution in GENE. Electromagnetic effects are neglected in
this section.

The growth rate and real mode frequency of the most unstable mode are shown in
figure 6 as a function of the binormal wavenumber ky, using the same parameters as in
figure 4 and considering a finite electron temperature gradient, R/LTe = R/LTi = 6.96.
The GM approach agrees with GENE at high velocity-space resolution for all wavelengths,
when roughly the same number of GMs as number of grid points, i.e. (P, J) ∼ (Nv‖,Nμ) =
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(a) (b)

FIGURE 6. The ITG and TEM growth rate γ (a) and real mode frequency ωr (b) as a function
of the binormal wavenumber ky for different values of (P, J) (circle makers). GENE simulations
are shown by the cross markers for different resolutions (Nv‖ ,Nμ). The dashed line in the right
panel corresponds to the ion diamagnetic direction for ωr > 0 and to the electron diamagnetic
direction for ωr < 0.

(32, 16), are used. A transition from ITG to TEM is identified near ky � 0.5 when the mode
propagation changes from the ion (ωr > 0) to electron (ωr < 0) diamagnetic direction.

The effects of the electron dynamics are illustrated by investigating the modulus of
the electrostatic ballooning eigenmode function φB (see (2.10)). We consider the same
parameters as in figure 6 and ky = 0.3 at different ballooning angles, z0 = −δkx/sky, and
show the results in figure 7 using (P, J) = (32, 16) and GENE (we also show the GENE
results with a realistic mass ratio for deuterium plasmas). First, we observe that extended
tails in the mode envelope of φB are present and are associated with the non-adiabatic
response of passing electrons (Dominski et al. 2015; Ajay, Brunner & Ball 2021). Second,
while the mode at δkx = 0 and δkx = 0.1 is identified as ITG, a transition to TEM is
observed at δkx � 0.2 at ky � 0.3, in contrast to the ITG–TEM transition occurring at
ky � 0.5 with δkx = 0 in figure 6. An excellent agreement is observed with GENE at
the outboard midplane (χ = 0), where the most unstable part of the mode is localized,
while the small differences that appear in the tails, near χ/π � 2, in the case of the
TEM (δkx = 0.2) are attributed to numerical reasons (Merlo et al. 2016), as confirmed
by increasing the number of grid points, Nz, and the number of radial modes, Nkx . On the
other hand, the value of the parallel diffusion used has little effects on the results.

To investigate the presence of velocity-space structures driven by, e.g. trapped particles,
we compare in figure 8 the modulus of the deviation of the electron distribution function,
ge, from a Maxwellian, which is proportional to the non-adiabatic distribution function
he (see (2.2)), as obtained using GENE and the GM approach with (P, J) = (32, 16). We
focus on the case of the ITG mode (at ky = 0.3) and of the TEM (at ky = 1.3) at the
outboard midplane (z = 0 and kx = 0). While a good qualitative agreement is found in
the ITG case, larger deviations are observed in the TEM case in particular near s‖e = v‖/
vTe = 0 and along the trapped and passing boundary (shown by the dashed blue lines)
where a strong gradient is observed in the GENE case. The deviations between GENE and
the GM approach are also visualized on the right panels of figure 8, where the distribution
functions ge are plotted as a function of xe at s‖e = 0. While (P, J) = (32, 16) is in good
agreement with GENE for the ITG case, differences remain at xe � 2.5 between GENE
and the GMs for the TEM case, despite the convergence in the growth rate with (P, J) =
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(c)(b)(a)

FIGURE 7. Modulus of the electrostatic ballooning eigenmode function φB(χ) (normalized to
φB(0)) obtained using the GM approach with (P, J) = (32, 16) (dashed black lines) and using
GENE (solid red lines with

√
mi/me � 19.24 and solid blue lines with a realistic mass ratio for

deuterium plasmas, i.e.
√

mi/me � 60.59) for increasing values of δkx (from a–c). We consider
an ITG mode (δkx = 0 and δkx = 0.1) and a TEM (δkx = 0.2). The χ range considered for the
numerical solution is truncated for visual reasons. Here, the same parameters as figure 6 are
used, except ky = 0.3.

(32, 16) (see figure 6). These deviations are associated with the finite number of GMs
used in our simulations. In fact, the effects of unresolved GMs can be investigated by
considering the normalized electron GM spectrum, |Npj

e |, associated with the distribution
displayed in figure 8 and plotted in figure 9. As observed, the GM spectrum fills the whole
space and decays only by two orders of magnitude in the Hermite direction going from
p = 0 to p = 32, highlighting the presence of fine structures along v‖ in both ITG and
TEM. Also, we notice that the decay in the Laguerre direction j is faster in the ITG than
in the TEM case, explaining the different levels of deviation observed in the right panel
of figure 8. The effects of the magnetic gradient drifts, associated with the iωBa term
in (2.1), can also be identified by the band-like structures in the GM spectrum of both
cases (Frei et al. 2022b). However, despite the presence of underresolved velocity-space
structures by the GM approach, convergence of the growth rate is achieved in figure 6 with
(P, J) ∼ (32, 16).

Finally, we focus on the case of a TEM developing at long perpendicular wavelengths.
This instability appears when the ion temperature gradient is below the ITG linear
threshold. More precisely, we evaluate the growth rate and real mode frequency of the most
unstable mode as the normalized ion temperature gradient, RTi , is varied at fixed binormal
wavenumber and density and electron temperature gradients, i.e. ky = 0.25, RN = 3 and
RTe = 4.5. The results are shown in figure 10, where the TEM mode (ωr < 0) is observed
for RTi < 4 and the ITG mode is the most unstable mode when RTi � 4 (ωr > 0). While
convergence is achieved with (P, J) = (32, 16) for the ITG mode (when RTi � 4), a larger
number of GMs is required for the TEM at weaker RTi , i.e. (P, J) = (128, 24). The number
of GM needed for convergence is therefore even larger than the TEMs appearing at larger
ky (see figure 6). We remark that achieving convergence in GENE requires approximately
(Nv‖,Nμ) � (64, 16). We notice that the real mode frequency, ωr, is less sensitive to the
resolution in velocity space. The lack of convergence of the GM approach in the case
of TEM at ky = 0.25 is explained by the presence of sharp velocity-space gradients that
occur near the trapped and passing boundary, a feature stronger than the one developing at
ky = 1.3 (see figure 8).
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( f )(e)(d)

(c)(b)(a)

FIGURE 8. Deviation of the distribution from a Maxwellian, |ge| − FM , at the outboard
midplane for to the ITG mode at ky = 0.3 (a–c) and of the TEM at ky = 1.3 (d–f ), obtained
using GENE (a,d) and the GM approach with (P, J) = (32, 16) (b,e). The trapped and passing
boundary is shown by the dashed blue lines. The modulus of distribution function ge along
s‖e = 0 is also shown (c, f ) for different values of (P, J) and GENE. The same parameters as in
figure 7 are used.

(b)(a)

FIGURE 9. Modulus of the normalized electron GM spectrum associated with the ITG (a) and
with the TEM mode (b) plotted on a logarithmic scale (colour bars are artificially saturated at
10−5). The same parameters as in figure 8 are used.

4.3. Kinetic ballooning modes
We now turn to collisionless microinstabilities appearing when electromagnetic effects are
considered. While electromagnetic effects are known to be most often stabilizing (Weiland
& Hirose 1992; Citrin et al. 2014), they can trigger the KBM if the electron plasma beta,
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(a) (b)

FIGURE 10. The ITG and TEM growth rate γ (a) and frequency ωr (b) as a function of the ion
normalized temperature gradient, RTi , for ky = 0.25 and different values of (P, J). GENE results
are shown by the cross markers.

βe = 8πNTe/B2
0, is above a certain threshold (Connor et al. 1978; Tang, Connor & Hastie

1980; Aleynikova & Zocco 2017).
The KBM mode is an ideal MHD mode resulting from the interplay between pressure

gradients, magnetic curvature, and field line bending, modified by kinetic effects. This
mode typically develops at long parallel wavelengths and perpendicular wavelengths of
the order of the ion gyroradius, kyρi � 1 (Belli & Candy 2010). To study the KBM,
we consider the parameters RN = 3, RTe = 4.5, RTi = 8 and ky = 0.25, solving the GM
hierarchy equation, (2.25), coupled to the GK Ampere’s law expressed in terms of GMs
given in (2.29) in addition to the GK quasineutrality condition in (2.28). A scan over βe
is performed for various (P, J). The results are displayed in figure 11 and are compared
with GENE at different velocity-space resolutions. We first observe a discontinuous jump
in the mode frequency, ωr, near βe � βc

e = 0.012, corresponding to the transition between
the KBM and ITG modes, which are stabilized by electromagnetic effects. We remark
that the value of βc

e in figure 10 is less than 5 % smaller with respect to the linear threshold
derived from fluid MHD theory, i.e. βMHD

e , where the kinetic effects are neglected. Second,
while the GM approach requires a number of GMs of the same order as the number of grid
points used in GENE in the case of the ITG mode, i.e. (P, J) � (32, 16), the KBM mode
is well described by fewer GMs, i.e. (P, J) � (16, 8), a number of GMs smaller than the
number of grid points necessary in GENE to achieve convergence.

The low resolution of the GM approach in the case of KBM can be explained by the fact
that the KBM presents fewer fine-scale structures of the distribution function compared
with the ITG and TEM cases (see figure 12). Also, we observe that the GM spectrum
is well resolved, contrary the ITG and TEM cases shown in figure 9. The case of the
KBM mode in figure 12 exemplifies the small number of GMs often required for pressure
gradient-driven modes, with kinetic effects playing a minor role.

Finally, we investigate the ballooning eigenmode function associated with the perturbed
magnetic vector potential, ψ . We plot the ballooning eigenmode function ψB (see (2.10))
for the KBM mode developing at βe = 0.03, with (P, J) = (32, 16), and compare it
with GENE in the left panel of figure 13. The KBM mode is characterized by the
ballooning-parity, such that ψB is anti-symmetric around the outboard midplane located at
χ = 0, i.e. ψB(−χ) = −ψB(χ), while the electrostatic potential eigenmode function, φB,
is symmetric (but not shown). A good agreement in the perturbed magnetic potential ψ is
observed between the GM approach and GENE.
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(a) (b)

FIGURE 11. The ITG and KBM growth rate γ (a) and real mode frequency ωr (b) as a
function of βe for different values of (P, J) (circle markers) compared with the GENE results
(cross markers) for different values of (Nv‖ ,Nμ). The ideal MHD threshold of βMHD

e =
0.6s/[q2

0(2RN + RTe + RTi)] � 0.0132 is shown by the vertical dotted-dashed lines.

(c)(b)(a)

GENE

FIGURE 12. Modulus of ge (normalized to its maximum) at the outboard midplane in the case
of the KBM for βe = 0.03 (see figure 11) obtained using GENE (a) and using (P, J) = (32, 16)
GMs (b), with the corresponding modulus of the normalized electron GM spectrum (c).

(a) (b)

FIGURE 13. Real (blue) and imaginary (red) parts of the ballooning eigenmode function ψB
(normalized to the electrostatic potential φB(0)) in the case of KBM mode when βe = 0.03
(a) and in the case of MTM at ky = 0.3 (b) obtained using GENE (dotted lines) and the GM
approach with (P, J) = (32, 16) (solid lines). The same parameters as in figures 11 and 14 are
used respectively. The χ range is truncated for visual reasons.
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(a) (b)

FIGURE 14. The MTM growth rate γ (a) and real mode frequency ωr (b) as a function of ky
for different values of (P, J) (circle markers) with the GENE results (cross markers) for different
values of (Nv‖ ,Nμ).

4.4. Microtearing modes
As a final collisionless microinstability investigated using the GM approach, we consider
the MTMs, which are driven unstable at finite βe values if the electron temperature
gradient is above a linear threshold (Dickinson et al. 2012). More precisely, MTMs are
usually driven unstable by a combination of finite electron temperature and collisionality
(even small) in the core region (Catto & Rosenbluth 1981). MTMs also exist in the edge
region in the collisionless limit, driven unstable by the electron magnetic drift resonance
effects (Applegate et al. 2007; Dickinson et al. 2013).

Here, we focus on MTMs appearing in edge conditions because of the role of electron
magnetic drift resonance effects that often require a larger number of GMs (see figure 9)
and the fact that it persists at a vanishing value of collisionality, in contrast to core MTMs.
We consider a safety factor q = 4, a magnetic shear s = 2.4, gradients of density and
electron temperature RN = 3 and RTe = 8, respectively, and an electron plasma beta of
βe = 0.02, above the linear thresholds for the MTM onset. While the ion kinetic response
is ignored in previous linear MTM studies (see, e.g. Dickinson et al. 2013), we include it
but neglect gradients in the ion temperature, i.e. RTi = 0. In contrast to the core MTMs
that are extended along the parallel direction, the ballooning MTM eigenmode structure
is considerably less elongated at the higher safety factor and larger shear of the edge.
Therefore, we use Nkx = 11 and Nz = 64.

A scan over the binormal wavenumber, ky, is shown in figure 14 for different numbers
of GMs and with results of GENE. First, we remark that a good agreement is found with
GENE when (P, J) � (32, 16). Second, the MTM growth rate peaks near ky = 0.3, while
the real mode frequency increases in magnitude linearly with the electron diamagnetic
frequency, i.e. ωr ∼ ω∗

e . Third, a larger number of GMs is required to achieve convergence
compared with the KBM case and that number increases with ky, which is a consequence
of the role of the electron magnetic drift motion (proportional to iωBe in (2.1)) in the
collisionless destabilization mechanism of MTMs (Doerk et al. 2012; Dickinson et al.
2013) (see § 3.2). In contrast to KBMs, MTMs are characterized and identified by a tearing
parity where ψB is even around the outboard midplane position, i.e. ψB(−χ) = ψB(χ),
while φB is odd. The ballooning eigenmode function, ψB, in the case of the MTM at
ky = 0.3 is shown on the right panel of figure 13, revealing its tearing parity and in
excellent good agreement with GENE.

The role of the electron magnetic drift motions in the MTM destabilization mechanism
is visualized by considering the electron distribution function and its GM spectrum, both
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(c)(b)(a)

FIGURE 15. Modulus of ge, (normalized to its maximum) for the MTM at ky = 0.3 obtained
using GENE (a) and with (P, J) = (32, 16) (b) with the modulus of the normalized electron GM
spectrum |Npj

e | (c).

displayed in figure 15. While a good agreement between the electron distribution functions
obtained using GENE and the GM approach is observed, the effects of electron magnetic
drifts can be identified by the presence of band-like structures that extends in the Laguerre
direction in the GM spectrum (Frei et al. 2022b). This explains the broad GM spectrum
observed in the MTM simulations compared with the KBM case displayed in figure 12.

4.5. Collisionless GAM dynamics and ZF damping
As a final collisionless test, we consider the time evolution of an initial seeded and radially
dependent density perturbation without equilibrium pressure gradients and with adiabatic
electrons. The initial density perturbation creates a perturbed poloidal flow rapidly
evolving into poloidally non-symmetric and radially localized oscillations, associated with
GAMs (Winsor et al. 1968). GAMs are damped by collisionless processes, such as parallel
streaming and FOW effects due to passing particles (see § 3).

To investigate the collisionless GAM dynamics, we consider q = 1.4, ε = 0.1 and
s = 0. We simulate the time evolution of the flux-surface-averaged electrostatic potential,
〈φ〉fs, by considering an initial perturbed density with a radial wavenumber kx = 0.01.
Because of the fine velocity-space structures associated with GAMs (see § 3.1), we use a
large number of GMs, i.e. (P, J) = (800, 16) and a small but finite collisionality to limit
the effects of the recurrence avoiding the use of artificial velocity-space hyperdiffusion
(collisions do not significantly affect the GAM dynamics in the banana regime, ν∗

i � 1
(see § 5.3). We compare our numerical results with the analytical time prediction derived
in Hinton & Rosenbluth (1999), as well as with the damping rate and frequency, γG and
ωG, given in Sugama et al. (2006). The results are plotted in figure 16 where a GENE
simulation is also shown for comparison. The GAM oscillations are in good agreement
with the analytical predictions, as well as with GENE simulations. The GAM damping γG
and frequency ωG, computed numerically by fitting the time trace of figure 16 with the
model φz(t)/φz(0)−� � A cos(ωGt) exp(−γGt) (with A a fitting constant), are compared
with GENE as a function of the parallel velocity resolutions (i.e. as a function of P and
Nv‖) at various low collisionality in the banana regime. A good agreement is observed for
the GAM damping in the banana regime with the GENE results. Finally, we remark that
the convergence of the GM approach improves with collisionality, consistent with previous
studies (Frei et al. 2021, 2022b).

Following the damping of the GAM oscillations, a non-vanishing residual is observed,
known as the ZF residual. The ZFs are axisymmetric and primarily poloidal flows that play
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(a) (b)

FIGURE 16. (a) Comparison of the time evolution of 〈φ〉fs (t)/ 〈φ〉fs (0) between GENE with
(Nv‖ ,Nμ) = (128, 24) (red solid line with markers) and the GM approach with (P, J) =
(800, 16) (cyan solid line) in the banana regime (ν∗

i = 0.003). The collisionless analytical time
evolution (black dotted) is obtained from the Hinton–Rosenbluth analytical results (Hinton &
Rosenbluth 1999), i.e. 〈φ〉fs (t)/ 〈φ〉fs (0) � (1 −�) exp(−γGt) cos(ωGt)+� , with γG and ωG
obtained from Sugama et al. (2006) and the collisionless residual� defined in (4.1) (solid black
line). (b) Convergence of γG as a function of the number of parallel grid points Nv‖ (Nμ = 24)
for GENE (dashed lines) and as a function of P (J = 18) for the GMs (solid lines) at different
banana collisionalities. Here, q = 1.4, ε = 0.1 and kx = 0.01.

an important role in saturating turbulence (Diamond et al. 2005). Rosenbluth & Hinton
(1998) show that the ratio of the flux-surface-averaged electrostatic potential, 〈φ〉fs (t), to
its initial value, 〈φ〉fs (0), converges to a non-vanishing residual level approximated by

〈φ〉fs (∞)

〈φ〉fs (0)
→ � = 1

1 + q2Θ/ε2
, (4.1)

where the numerical factor Θ = 1.635ε3/2 + 0.5ε2 + 0.36ε5/2 is derived in Xiao & Catto
(2006) including higher-order terms in the small inverse aspect ratio ε. The analytical
prediction of the collisionless ZF residual, given in (4.1), is obtained by assuming
concentric and circular flux surfaces in the ε � 1 limit and a perpendicular wavelength
longer than the ion gyro-radius, kx � 1. Equation (4.1) is confirmed by a number of GK
codes (Merlo et al. 2016), in contrast to gyrofluid models (see, e.g. Beer & Hammett
1996). Indeed, gyrofluid models evolve a considerably smaller number of moments than
the calculations shown in figure 17 and they use closures based on consideration of
the properties of linear instabilities, yielding an artificial damping of the ZF residual
(Rosenbluth & Hinton 1998). In order to compare our numerical results with (4.1), we
average the simulated ZF residual over a time window that extends from a time t to
a time t + τ (with t � 1/γG and τ ∼ 20). We show the time-averaged ZF residual of
〈φ〉fs (∞)/ 〈φz〉fs (0) as a function of ε in figure 17 obtained from the GM approach with
(P, J) = (128, 16). We observe that the time-averaged collisionless ZF residual agrees
well with the analytical prediction � given in (4.1). This confirms that the GM approach
can correctly reproduce the collisionless ZF damping process even with a simple closure
by truncation, in contrast to previous gyrofluid models.
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FIGURE 17. Time-averaged collisionless ZF residual as a function of the inverse aspect ratio,
ε, obtained with (P, J) = (128, 16) GMs (red markers). The solid black line is the analytical
prediction � given in (4.1). The same parameters as in figure 16 are used.

5. High-collisional limit and collisional effects on microinstabilities

While collisional effects are often neglected in the core, they can no longer be ignored
near the separatrix and in the SOL region because of the low plasma temperatures. For
instance, ν∗

e ∼ 0.03 is expected at the top of the pedestal in ITER and ν∗
e � 50 near

the separatrix. The high collisionality significantly affects the linear properties of edge
microinstabilities, in particular the TEMs and MTMs which have been identified to play a
major role in the pedestal region (Fulton et al. 2014; Hatch et al. 2016; Garcia et al. 2022).

We study the collisional dependence of TEMs and MTMs using the GM approach in
this section. In particular, we consider advanced collision operator models, such as the
Coulomb, the Sugama and the IS collision operators (Frei et al. 2021, 2022a). Our results
confirm that the IS operator approaches the Coulomb operator better than the Sugama
operator in the high-collisional Pfirsch–Schlüter regime (Frei et al. 2022a), while the
Sugama operator often underestimates the linear growth rates when FLR terms in the
collision operator cannot be ignored. Consistently with previous works (Pan et al. 2020,
2021) and using the GM approach, we show that the presence of FLR collisional terms
yields a stabilization of the TEM and MTM modes at high collisionality and that the
accuracy (relative to the Coulomb operator) of collision operator models depends on
physical parameters such as, e.g. the electron temperature gradient. In addition, we show
that a high-collisional reduced GM model is able to capture the main trend of the TEM
and MTM linear growth rates in the Pfirsch–Schlüter regime. Finally, because the GAMs
and ZFs are often observed in the edge region, we also assess the effect of collisions and
the choice of collision operators on their dynamics (Pan et al. 2020, 2021).

The present section is structured as follows. In § 5.1, we first derive the high-collisional
limit of the GM flux-tube model, yielding a reduced high-collisional 6GM model. Second,
we investigate the collisionality dependence of TEMs and of the MTMs in typical edge
parameters, from the banana (e.g. top of H-mode pedestals) to the Pfirsch–Schlüter
collisionality regimes (e.g. the bottom of pedestal and SOL) in § 5.2. Finally, we study
the collisional effects on the GAM dynamics and on the ZF damping in §§ 5.3 and 5.4,
respectively.

5.1. Linear high-collisional limit
To consider the high-collisional limit, we assume N00

a ∼ N10
a ∼ N01

a ∼ N20
a and N30

a ∼
N11

a ∼ ενN00
a (Jorge et al. 2017; Frei et al. 2022b), where εν � 1 being the ratio of the

electron mean-free path to the typical parallel scale length (Chapman & Cowling 1941).
We also neglect all higher-order GMs with p + 2j > 3. Evaluating the GM hierarchy
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equation, (2.25), with ( p, j) = (0, 0), (1, 0), (2, 0) and (0, 1), we obtain the evolution
equations for the lowest-order GMs associated with the perturbed gyrocentre density Na,
parallel velocity u‖a, parallel and perpendicular temperatures T‖a and T⊥a, respectively.
Finally, considering ( p, j) = (3, 0) and (1, 1), we obtain the evolution equations for the
parallel and perpendicular heat fluxes, Q‖ and Q⊥. The evolution equations are derived
using the relations between the GMs and the fluctuations of the gyrocentre fluid quantities,
Na = N00

a , u‖a = vTaN10
a /

√
2, T‖a/Ta = √

2N20
a + Na and T⊥a/Ta = Na − N01

a (Frei et al.
2020). Assuming the MHD parameter α = 0, these equations are given in physical units
by

∂

∂t
Na + ∇‖uψ‖a − uψ‖a∇‖ ln B + iRB

qaB

(
T‖a + T⊥a + qa(2K0 − K1)φ

)
+ i
(K0ωN − ωTaK1

) eφ
Te

= 0, (5.1a)

ma
∂

∂t
u‖a + ∇‖T‖a + qa∇‖ (K0φ)− (T‖a − T⊥a + qaK1φ)∇‖ ln B

+ imaRB

2Ωa

(
Q‖a + 4v2

Tauψ‖a − Q⊥a + 2TaΩa

ma
K1
ψ

B

)

− i

√
2eTa

maTe

(K0√
2
ωN + ωTa(K0 − K1)

)
ψ = C10

a , (5.1b)

1
Ta

∂

∂t
T‖a + ∇‖

(
Q‖a

v2
Ta

+ 3uψ‖a

)
− ∇‖ ln B

(
Q‖a

v2
Ta

+ 2Q⊥a

v2
Ta

+ uψ‖a − 2qa

ma
K1ψ

)

+ iv2
TaRB

2ΩaTa

(
7T‖a − 4NaTa + T⊥a + qaφ(4K0 − K1)

)
+ i
(K0(ωN + ωTa)− ωTaK1

) eφ
Te

=
√

2C20
a , (5.1c)

1
Ta

∂

∂t
T⊥a + ∇‖

(
uψ‖a − Q⊥a

v2
Ta

+ qa

Ta
K1ψ

)
− 2∇‖ ln B

(
uψ‖a − Q⊥a

v2
Ta

+ qa

Ta
K1ψ

)

+ iv2
TaRB

2ΩaTa

(
T‖a + 5T⊥a − 3NaTa + qaφ (2K2 + 3K0 − 5K1)

)
+ i (K0(ωN + ωTa)− K1(ωN + 3ωTa)+ 2K2ωTa)

eφ
Te

= −C01
a , (5.1d)

where we introduce uψ‖a = u‖a − qaK0ψ/ma. Similarly, we derive for the parallel and
perpendicular heat fluxes, Q‖a = √

3v3
TaN30

a and Q⊥a = v3
TaN11

a /
√

2

1√
3v3

Ta

∂

∂t
Q‖a +

√
3

2
vTa∇‖

(
T‖a

Ta
− Na

)
+ iv2

Ta

2Ωa
RB

(
8Q‖a√

3v3
Ta

+ 2
√

3uψ‖a

vTa

)

− ivTa

√
3

2
ωTaK0ψ = C30

a , (5.2a)
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√

2
v3

Ta

∂

∂t
Q⊥a + vTa√

2
∇‖

(
Na − T⊥a

Ta

)
+ vTa√

2

qa

Ta
∇‖ (K1φ)

+ vTa√
2

(
T‖a

Ta
− T⊥a

Ta
+ qa

Ta
K1φ

)
∇‖ ln B

+ iv2
Ta

2Ωa
RB

(
6
√

2Q⊥a

v3
Ta

− 3
√

2
qa

Ta
K1ψ + T⊥a

Ta
− Na − qa

Ta
K1φ

)

− ivTa
(K1ωN + ωTa (3K1 − K0 − 2K2)

) eψ√
2Te

= C11
a , (5.2b)

where the GMs, Npj
a , with p + 2j > 3 are neglected. The evolution equations of

the lowest-order gyrocentre fluid quantities, (5.1) and (5.2), are closed by the GK
quasineutrality condition and GK Ampere’s, given (2.28) and (2.29), where the
higher-order GMs that appear in these equations are neglected. Equations (5.1) and
(5.2) constitute a set of linearized fluid-like equations that evolve self-consistently the 6
lowest-order GMs per particle species. We refer to this as the high-collisional 6GM model.
We remark that, while the 6GM simply neglects all higher-order GMs by using a closure by
truncation, previous gyrofluid models (see, e.g. Beer & Hammett 1996; Staebler, Kinsey &
Waltz 2005) are based on ad hoc collisionless closure relations for these GMs derived by
mimicking the linear collisionless response. However, these previous models either neglect
or use simplified collision operator models, in contrast to the 6GM model presented here.
In fact, closed analytical expressions for the Cps

a terms appearing on the right-hand sides
of (5.1) and (5.2) can be used in the case of the DK Coulomb collision operator reported
in the appendix of Frei et al. (2022a) to model collisions accurately in the 6GM model.
While other collision operator models can also be considered, the use of the DK Coulomb
operator guarantees a relatively simple (yet accurate) description of collisional effects, in
contrast to the GK Coulomb operator which relies on the evaluation of a large number of
sums depending on the value of k⊥ (Frei et al. 2021).

5.2. Collisional effects on TEM and MTM microinstabilities
We first consider the collisional effects on a density gradient-driven TEM appearing with
safety factor q = 3, magnetic shear s = 0.8, and inverse aspect ratio ε = 0.3. A finite
density gradient of RN = 4, weaker than typical density gradients found in the middle
of H-mode pedestals, is used and different values of electron temperature gradient are
considered. The ITG drive is neglected for simplicity in this section by considering
RTi = 0. We also use Ti/Te = 1 and introduce electromagnetic effects with βe = 10−4

(below the KBM linear threshold). Given these parameters, a density gradient-driven
TEM is identified in the collisionless limit with a peak growth rate located near ky = 0.5,
propagating in the ion diamagnetic direction, i.e. ωr > 0. We study the effect of collisions
on this density gradient-driven TEM at ky = 0.5.

Since, typically, νeiR0/cs � 1 at the top and bottom of H-mode pedestals, while
νeiR0/cs � 1 in the core, we scan the electron collisionality, ν∗

e , over several orders of
magnitude and compute the TEM growth rate, γ , and the real mode frequency, ωr,
using the DK and GK Coulomb, Sugama, and IS operators. To perform our numerical
investigations, we use (P, J) = (16, 8), which is sufficient to guarantee convergence over
the full collisionality range considered here.

The results of our analysis are shown in figure 18 in the cases of a pure density
gradient driven TEM (i.e. ηe = RTe/RN = 0) and in the case of a TEM driven by equal
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(a) (b)

(c) (d)

FIGURE 18. The TEM growth rate (a,c) and real mode frequency (b,d) as a function of the
electron collisionality, ν∗

e , using the DK and GK Coulomb, Sugama and IS collision operators
with (P, J) = (16, 8), for ηe = 0 (a,b) and ηe = 1 (c,d). The results from the high-collisional
6GM model are plotted for comparison (black cross markers). Here, ky = 0.5.

density and electron temperature gradients (i.e. ηe = 1). We also plot the predictions of
the high-collisional 6GM model, derived in § 5.1, for comparison. First, we observe that
the TEM growth rate decreases with ν∗

e in the banana regime (ν∗
e � 1), while it increases

with ν∗
e in the Pfirsch–Schlüter regime (ν∗

e � 1), in all cases. In addition, collisions tend
to increase the TEM real mode frequency in all cases. It is noticeable that the purely
density-driven TEM mode (ηe = 0) propagates in the ion diamagnetic direction (ωr > 0)
and has a negative frequency when ηe = 1 (Ernst et al. 2009). Second, it is remarkable
that the GK operators damp more strongly the TEM than the DK operators and that the
presence of FLR collisional terms has a smaller effect on ωr (Pan et al. 2020). In addition,
we notice that the 6GM (which ignores the FLR collisional term) overestimates the TEM
growth rate and real mode frequency when ν∗

e � 1, but still captures the correct trend of
the growth rate compared with the DK Coulomb. The agreement of the 6GM model with
the full GM hierarchy improves at a collisionality much larger than the ones considered in
figure 18, i.e. when ν∗

e � 50, but not shown here.
As found in Pan et al. (2020, 2021) for the case of the GK Sugama relative to the GK

Coulomb operator, it is noticeable that, despite the small differences observed between the
Coulomb, Sugama, and IS operators in the case of purely density gradient-driven TEM
(ηe = 0), the presence of finite electron temperature gradient produces a non-negligible
underestimate (up to 15 %) of the TEM growth rate by the (DK and GK) Sugama and IS
operators compared with respect to the (DK and GK) Coulomb operator.

We also notice that the IS operator approaches the predictions of the GK Coulomb
when ηe = 1 and ν∗

e � 1 better than the Sugama one. The study of the TEM growth
rate in Pan et al. (2020, 2021), as confirmed here, suggests that the accuracy of collision
operator models (and the presence of FLR terms) compared with the Coulomb operator
depends on the physical parameters considered, for example, these deviations increase
with collisionality.
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(c)(b)(a)

FIGURE 19. Relative deviations of the TEM growth rate with respect to the case of the GK
Coulomb, σ(γ ), when the DK Coulomb (a), GK Sugama (b) and GK IS (c) are used. The solid
white line is the transition from ion to electron diamagnetic directions. Same parameters as in
figure 18.

Following Pan et al. (2020, 2021), who analyse the dependence on the electron
temperature gradient and collisionality, we first scan the TEM growth rate and frequency
as a function of ηe and ν∗

e using the GK Coulomb collision operator and repeat the
calculations with the DK Coulomb, GK Sugama and GK IS operators. Then, the relative
deviations of the TEM growth rate, σ(γ ) = |γ − γC|/γC (with γC the growth rate obtained
using the GK Coulomb) is computed for all the different operators and the results are
displayed in figure 19, reproducing figure 3(b) of Pan et al. (2021) with the GM approach
and the addition of the GK IS operator. First, we observe that the effects of FLR collisional
damping are clearly visible due to the deviations (up to 20 %) appearing for ν∗

e � 1 when
the DK Coulomb operator is used (Pan et al. 2020, 2021). Second, the deviations between
the GK Sugama and GK IS from GK Coulomb are strongly dependent on the electron
temperature gradient. Consistent with (Pan et al. 2021), for all collisionalities, σ(γ ) peaks
near ηe ∼ 1.2 and increases with collisionality reaching a maximum value of the order of
15 % for the GK Sugama and a value of 8 % for the GK IS. As explained in Pan et al.
(2021), the influence of the electron temperature gradients on the accuracy of the Sugama
and IS operators originates from the approximation in their field component, which are
formulated as a truncated expansion of the v2 moments of the distribution function
and driven by finite RTe (see (2.25) with p = 0 and p = 2), explaining the qualitative
dependence seen in figure 19. In addition, we remark that the GK IS performs better
than the GK Sugama. This can also be explained by the fact that IS operator (Sugama
et al. 2019) contains correction terms that are proportional to the difference between v2

moments of the Sugama and Coulomb operators. The importance of these terms increases
with RTe.

Finally, we investigate the collisional dependence of MTMs. Contrary to the MTM
linear investigations in the core region that report the peak of the growth rate occurring
near νei/ωr ∼ 1 (with ωr is the real MTM mode frequency) and vanish in the collisionless
limit (Hazeltine & Strauss 1976; Catto & Rosenbluth 1981), MTMs found in the edge
region display a different collisionality dependence. Indeed, edge GK simulations of
MTMs (Doerk et al. 2012; Dickinson et al. 2013) suggest that the MTM growth rate does
not vanish in the collisionless limit and remains nearly constant in the weak collisionality
regime, νei/ωr � 1, while collisions have a stabilizing effect in the high-collisional limit,
νei/ωr � 1. Hence, we scan the MTM growth rate and real mode frequency at ky = 0.5
as a function of the electron collisionality, ν∗

e , with the same parameters of the MTM
described in § 4.4 and using the Coulomb, Sugama and IS operators. The results are
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(b)(a)

FIGURE 20. The MTM growth rate (a) and real mode frequency (b) as a function of the electron
collisionality, ν∗

e , using the DK and GK Coulomb, Sugama and IS collision operators with
(P, J) = (16, 8). Here, the parameters are the same as in figure 14 with ky = 0.5.

shown in figure 20, where the high-collisional 6GM model result is plotted as well
for comparison. First, we remark that, in agreement with previous collisional MTM
investigations, the growth rate is stabilized by collisions and flattens out for νei/ωr � 1.
Interestingly, it is found that the choice of the GK operator does not significantly affect the
MTM growth rate for ν∗

e � 1, yielding a larger growth rate than the DK operators, while
the latter have a stabilizing effect on the MTM followed by an increase of the real mode
frequency ωr, not present in the GK operators. We also notice the good agreement between
the 6GM model and the DK Coulomb at high collisionality. Finally, in contrast to the TEM
case (see figure 19) and the results of Pan et al. (2021) that consider a different MTM case
based on JET pedestal parameters, the difference between the different collision operator
models does not show a strong dependence on the electron temperature gradient in the
case of the MTM considered here.

5.3. Collisional effects on GAM dynamics
We now investigate the role of collisions in the GAM dynamics present in the edge region
using the same assumptions as in § 4.5, i.e. adiabatic electrons). Hence, only the ion–ion
collisions are considered in this section. Only a few theoretical works investigate the effect
of collisions on the GAM dynamics (Lebedev et al. 1996; Novakovskii et al. 1997; Gao
2013), despite the fact that collisional effects can affect qualitatively and quantitatively
the GAM damping and frequency when νii � 1. Differences are observed between the
collision operator models (see, e.g. Novakovskii et al. (1997) and Gao (2013), which
consider a Hirschman–Sigmar–Clarke operator and a Krook operator, respectively), and it
is usually found that collisionality decreases the GAM frequency, ωG, while it has a more
complex effect on the GAM damping, γG. More precisely, the GAM damping is essentially
proportional to the collisionality when νii � 1, i.e. γG ∼ νii. On the other hand, the GAM
damping is reduced, and collisional effects on the GAM frequency become important
when νii � 1.

To investigate the effect of collisions and collision operator models on the GAM
dynamics, we consider the collisional dispersion relation derived by Gao (2013) in the
limit of adiabatic electrons and long radial wavelengths, where ion–ion collisional effects
are modelled with a particle conserving Krook operator

Ci = −νii

[
J0hi − FMi

N

∫
dvJ0hi

]
. (5.3)

We remark that the Krook operator in (5.3) conserves particles, but does not conserve
momentum and energy. In our normalized units, the GAM dispersion relation derived by
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(Gao 2013) is

ξ − iν̂
ξ

1
q2

+
[

1
2

− 1
2ξ 2

+
(
ξ 2 + 1 + 1

2ξ 2

)
(1 + ξZ(ξ))

]

− 1
4ξ 3

(
ξ + iν̂

) [1 − (2ξ 2 + 1)(1 + ξZ(ξ))]2

2 + (iν̂ + ξ)Z(ξ)
= 0, (5.4)

with ξ = q(ωG + iγG + iνii)/
√

2, ν̂ = qνii/
√

2 and Z(ξ) = ∫ d xe−x2
/(x − ξ)/2π the

plasma dispersion function. We compare the analytical result in (5.4) with the GM
approach simulations using the same operator in figure 21. To this aim, we project the
Krook collision operator, (5.3), onto the Hermite–Laguerre basis in the DK limit, yielding

Cpj
i = −νii

(
Npj

i − δ0
pδ

0
j N00

i

)
, (5.5)

and compute γG and ωG as a function of νii for different values of the safety factor q. To
highlight the effect of collision operator models, the calculations are also performed using
the DK Coulomb and DK Dougherty collision operators, which conserve momentum and
energy. We first remark that convergence is achieved with (P, J) = (24, 8), a smaller
number of GMs than in the collisionless case (see figure 16). Second, we notice the
GAM damping and frequency, γG and ωG, obtained from the numerical simulations
using the Krook operator, (5.3), and the analytical prediction in (5.4) agree. Third, while
all the collision operators present the same qualitative behaviour with collisionality in
the predictions of γG and ωG, significant quantitative differences can be observed. In
fact, while γG increases with νii for νii � 1, such that γG ∼ νii for all operators, and
eventually decreases for νii � 1, the Krook operator overestimates the GAM damping and
underestimates the GAM frequency. These deviations from the other collision operators
are due to the lack of conservation properties of the Krook operator. Similar observations
on the comparison between the Krook operator and other collision operator models
(including an energy and momentum conserving Krook, a pitch-angle scattering, and
the Hirschman–Sigmar–Clarke collision operators) are reported in Li & Gao (2015). We
remark that the DK Dougherty collision operator yields a stronger GAM damping than
the DK Coulomb operator. Not shown are the results from the Sugama and IS operators
that yield results similar to the DK Coulomb, with a better agreement achieved by the IS
operator at high collisionality.

5.4. Collisional ZF damping
The collisional damping of ZFs was first addressed in Hinton & Rosenbluth (1999) in the
banana regime for radial wavelengths much larger than the ion gyroradius. Their work
demonstrates that the long-time evolution of 〈φ〉fs follows a slow exponential decay that
converges to a finite value that scales as B2

p/B
2 (with Bp the modulus of the poloidal

magnetic field). More recently, by using a momentum conserving pitch-angle scattering
operator for long radial wavelengths, Xiao, Catto & Molvig (2007) extends the analytical
neoclassical prediction of Hinton & Rosenbluth (1999) to arbitrary finite collisionality and
demonstrates that the long-time ZF residual follows

〈φ〉fs (∞)

〈φ〉fs (0)
→ ς = β

1 + β
, (5.6)

where β = ε2/q2. We compare the analytical prediction in (5.6) with the GM approach
considering the Coulomb, the Sugama as well as the pitch-angle scattering operator, and
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(a) (b)

FIGURE 21. GAM damping, γG and frequency, ωG as a function of the collisionality, νii,
obtained from the dispersion relation (5.4) (black markers) and by using the Krook (red markers),
the DK Coulomb (blue markers) and the DK Dougherty (green markers) collision operators.
Different values of the safety factor are considered (q = 3 with solid lines and q = 5 with dashed
lines), with ε = 0.1.

the Dougherty collision operators, two operators not present in our previous ZF collisional
damping tests (see, e.g. Frei et al. 2021). The presence of collisions allows us to evolve a
smaller number of GMs than in the collisionless case to achieve convergences, i.e. (P, J) =
(24, 12) (see figure 17).

Figure 22 shows the time evolution of 〈φ〉fs for three increasing radial wavenumbers,
kx = 0.05, 0.1 and 0.2, with a collisionality level in the Pfirsch–Schlüter regime, i.e. ν∗

i =
3.13. The DK operators are used for kx = 0.05, while the GK operators are considered
for the larger values of kx. Despite the small (but finite) values of radial wavenumbers,
FOW effects are important at these parameters because the associated radial wavelengths
are of the order of the poloidal ion gyroradius ρp, i.e. kxρp � 1 (see § 3). We first observe
that the long-time ZF residual agrees with (5.6) for all operators when kx = 0.05. Second,
the effect of energy diffusion (absent in the pitch-angle scattering operator but present
in the other operators) enhances the collisional ZF damping. Third, the presence of FLR
terms in the collision operators yields a stronger ZF damping. This can be deduced by
comparing the deviation between the GK Coulomb and the DK Coulomb operator in the
kx = 0.1 and kx = 0.2 cases. We also notice the effects of FLR terms associated with
the ion polarization term, which reduces the ZF residual, as it can be seen by comparing
the analytical prediction of (5.6) and the DK Coulomb operator. Fourth, as previously
observed in Frei et al. (2021), the GK Sugama collision operator provides a better
approximation of the GK Coulomb than the other operators, while the GK Dougherty
produces the strongest ZF damping. In Pan et al. (2020, 2021), the ZF damping is shown to
be weaker with the GK Coulomb operator than with the Sugama operator by using GENE.
Finally, we remark that the oscillations appearing at early times when the pitch-angle
operator is used (absent in all other operators) demonstrate that energy diffusion is
important in the collisional damping of high-order GMs. Indeed, these oscillations, which
do not affect the long-time ZF residual, are absent in the operators that implement energy
diffusion and also disappear with the pitch-angle operator when the number of GMs is
increased.

6. Microinstabilities in steep pressure gradient conditions

The presence of steep pressure gradients in the edge pedestals, when R0/LN ∼
RTe,i � 10, leads to microinstabilities that can significantly differ from the ones usually
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(a) (b) (c)

FIGURE 22. Collisional ZF damping for increasing radial wavelengths kx = 0.05 (a), kx = 0.1
(b) and kx = 0.2 (c) when ν∗

i = 3.13. The DK collision operators are used when kx = 0.05,
while the GK collision operators are considered for kx = 0.1 and kx = 0.2. The collisionless and
collisional residuals, � (see figure 17) and ς respectively, are plotted with the black dashed and
blue dashed lines. In the kx = 0.1 and kx = 0.2 cases, the results using the DK Coulomb (blue
dotted) are also shown for comparisons. Here, q = 1.4 and ε = 0.1.

encountered in the edge of L-mode discharges or in the core (Fulton et al. 2014; Xie & Xiao
2015; Xie & Li 2016; Han et al. 2017; Kotschenreuther et al. 2017; Xie, Xiao & Lin 2017b;
Pueschel et al. 2019). In weak equilibrium gradient conditions, microinstabilities are often
characterized by a conventional ballooning eigenmode function, with the electrostatic
potential featuring an even mode parity around the outboard midplane position (χ = 0)
and peaking at the same location with a well-defined mode propagation direction. On the
other hand, numerical studies (Fulton et al. 2014; Xie & Xiao 2015) reveal the existence of
modes with unconventional parallel mode structures peaking at χ �= 0 when the gradients
are increased to values relevant to the H-mode pedestals, i.e. RN ∼ RTe,i � 10. In addition,
transition in the mode parity can occur, often related to discontinuous jumps in the mode
frequency and to changes in the mode propagation direction (e.g. from the ion to the
electron diamagnetic direction or vice versa). The presence of these unconventional modes
can potentially influence the level of particle and heat turbulent transport in the H-mode
pedestal (Fulton et al. 2014; Xie et al. 2017b; Pueschel et al. 2019), and can possibility
affect the commonly used mode identification criteria (Dickinson et al. 2012; Xie, Lu &
Li 2018; Pueschel et al. 2019).

In the present study, we follow the nomenclature used in previous investigations (see,
e.g. Xie et al. 2017b; Pueschel et al. 2019). We characterize the unstable modes by
introducing a label, � ≥ 0, associated with the structure of the ballooning eigenmode
function and, in particular, the mode parity and number of peaks in the parallel direction.
For instance, the � = 0 mode defines the conventional mode structure with even parity
and peaking at the outboard midplane (with no secondary peak). On the other hand, the
� > 0 modes are characterized by multiple peaks present at different parallel locations.
Even values of � denote even parity modes, and vice versa.

The transition from the � = 0 modes to � > 0 can be identified by discontinuous jumps
in the mode frequency ωr and by the appearance of multiple peaks in the ballooning
eigenmode function. We verify our results obtained using the GM approach with the
direct GENE eigensolver, because of the presence of subdominant unstable modes with
similar growth rates and related to the sensitivity of the initial value solver used in this
work to the initial conditions (Xie et al. 2017a). For our investigation, we consider the
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(a) (b)

FIGURE 23. Real mode frequency, ωr, and growth rate, γ , are shown by the blue and red
markers, respectively as a function of the normalized density gradient, RN , obtained by the GM
approach (coloured markers) in the case of ηe = ηi = 1 (a) and ηe = ηi = 0 (b). The results
from the GENE direct eigensolver are plotted by the black markers. The dominant � = 0 mode,
characterized by ωr > 0 when RN � 50, transits to the � = 2 mode with ωr < 0 when RN � 60
in all cases.

parameters q = 2.7, s = 0.5, and ε = 0.18 in the low-collisionality banana regime with
βe = 10−4. Since the � > 0 modes usually have large parallel wavenumbers (see below),
we use Nkx = 10, Nz = 32 points and (P, J) = (24, 8) GMs. We consider the unstable
modes occurring at a binormal wavenumber ky = 0.25, which corresponds to the peak
growth rate at the parameters used in this section.

To illustrate the appearance of the � > 0 modes, we plot the growth rate, γ , and real
mode frequency, ωr, as a function of the normalized density gradient RN in figure 23,
as obtained by using the GM approach and the GENE direct eigensolver in the case of
ηe,i = 1 (i.e. RTe and RTi equivalent to the density gradient RN) and ηe,i = 0 (i.e. absence of
temperature gradients). A discontinuous jump in the real frequency ωr is observed in all
cases, and the ballooning eigenmode functions, obtained with the GM approach below and
above the identified density gradient threshold RN � 50, are analysed in figure 24 in the
case of ηi = ηe = 1. When RN � 50, the most unstable mode displays a conventional, � =
0, ballooning mode structure. On the other hand, the most unstable mode for RN � 50 is
characterized by an unconventional mode structure that peaks at χ = π/2 and χ = 3π/2,
justifying the � = 2 label for this mode. This is in good agreement with the eigenvalue
spectrum obtained with GENE. We remark that the � = 0 and � = 2 modes are both
characterized by a ballooning parity. However, a steeper gradient is required to drive the
� = 2 mode unstable, since it has a larger parallel wavenumber, k‖ ∼ �/qR0 (see figure 24)
. Therefore, it is more sensitive to the stabilization effects of Landau damping than the
� = 0 mode. Finally, we notice that the � = 0 mode persists when ηi = ηe = 0, while it
disappears when the electrons are adiabatic, we identify it as a TEM. Similarly, we identify
the � = 2 mode as a TEM. Therefore, our results confirm that the mode identification
based on the sign of the real mode frequency is ambiguous at steep gradients (Ernst et al.
2009). Indeed, the most unstable mode when RN � 50 changes continuously from the ion
(ωr > 0) to the electron (ωr < 0) diamagnetic directions (see figure 23).

We finally investigate the GM spectrum of the � = 0 and � = 2 modes. A convergence
study reveals that the number of Hermite GMs, P, is reduced when increasing pressure
gradients, such that convergence is achieved when P � 30 for RN ∼ 10, while P � 10 is
sufficient above RN ∼ 50, with a small number of Laguerre GMs, i.e. J ∼ 3 for all cases.
This shows that, in general, the number of GMs decreases with RN . This can be understood
from the fact that the � > 0 modes found in the H-mode pedestals are expected to be less
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(a) (b)

FIGURE 24. Real (blue lines) and imaginary (red lines) parts of the ballooning eigenmode
functions of the electrostatic potential φB (a) and of the magnetic vector potential ψB
(b) corresponding to the � = 0 mode when RN = 20 (dashed lines) and to the � = 2 mode
when RN = 80 (solid lines), identified in figure 23 for ηe = ηi = 1. The ballooning eigenmode
functions, φB and ψB, are normalized to φB(0).

(d )(c)

(b)(a)

FIGURE 25. Electron (a,c) and ion (b,d) GM spectrum of the � = 0 TEM mode when
RN = 20 (a,b) and of the � = 2 TEM when RN = 80 (c,d). Here, ηe,i = 1.

sensitive to magnetic gradient drift resonance effects than instabilities usually found in
the core (Connor, Hastie & Helander 2006). Since magnetic gradient drifts and FOW
effects, proportional to iωBa in (2.1), are responsible for broadening the collisionless GM
spectrum (see § 3), we expect that a small number of GMs is required to describe the
� > 0 modes appearing at steep pressure gradients since modes, for which the parallel
dynamics is essential, have a collisionless GM spectrum considerably less extended than
the modes driven by magnetic gradient effects (Frei et al. 2022b). As a confirmation, we

https://doi.org/10.1017/S0022377823000715 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000715


Gyro-moments flux-tube linear simulations 39

plot in figure 25 the collisionless normalized electron and ion GM spectrum of the � = 0
and � = 2 TEM modes when RN = 20 and 80, respectively. We note the fast decay of
the spectrum in the Hermite direction in the case of RN = 80 compared with RN = 20.
In addition, in the former case, band structures can be identified, which are driven by
the resonance effects associated with the iωBa term (Frei et al. 2022b). Finally, we observe
that the electron GM spectrum is much broader than the ion GM, demonstrating the role of
electron dynamics. The inspection of the collisionless GM spectrum suggests that the GM
approach enables the description of H-mode pedestals with a relatively low velocity-space
resolution even at low collisionality compared with core conditions (see § 4).

7. Conclusion

This work presents the first linear flux-tube GK simulations carried out by using the
GM approach at arbitrary collisionality. The approach is based on the projection of the
perturbed gyrocentre distributions onto a Hermite–Laguerre basis. Building on previous
studies using the same approach but performed in the local limit, kinetic effects of
trapped and passing particles and electromagnetic effects are retained for the first time.
A comprehensive linear study of microinstabilities, which includes the ITG, TEM, KBM,
MTM as well as GAM dynamics and ZF damping, is performed with detailed comparisons
with the continuum GK code GENE in the collisionless limit.

We successfully compare the linear growth rates and mode frequencies, velocity-space
structures of the distribution functions, and eigenmode structures with GENE at low
collisionality. The amplitude of the ZF residual is also verified against analytical
predictions showing the ability of the GM approach to overcome the limitations of
previous gyrofluid models. These investigations assess the convergence properties of the
GM approach and identify the optimal number of GMs in the presence of strong kinetic
effects that feature sharp velocity-space structures due to resonances associated with the
drift of passing particles and the presence of trapped particles. We show that the GM
approach agrees with GENE when the considered number of GMs, (P, J), roughly equals
the number of grid points, (Nv‖,Nμ), used to discretize the velocity space in GENE.
Indeed, we find that P ∼ Nv‖ and J ∼ Nμ are necessary to achieve convergence in most
cases when parameters relevant to the core region are used, such as low collisionality and
weak pressure gradients. On the other hand, we demonstrate that the necessary number of
GMs decreases with collisionality and a reduced number of GMs is sufficient, even in the
low-collisionality regime, to achieve convergence in the case of modes such as KBM and
modes destabilized in steep pressure gradients regions found, e.g. in H-mode pedestals.
This allows us to speculate that the GM approach features convergence properties well
adapted to perform future nonlinear simulations of the plasma boundary.

Taking advantage of the formulation of advanced collision operators, including the
Coulomb, Sugama and, more recently, the IS collision operators within the GM approach,
we investigate the TEM and MTMs (two important edge microinstabilities) exploring a
collisionality from the low-collisionality banana to the high-collisionality Pfirsch–Schlüter
regimes. We demonstrate that the FLR terms in the collision operators are essential since
they reduce the level of collisionality where a significant stabilization of the TEM and
a suppression of the MTM is observed. In addition, comparing the predictions of the
different collision operator models with the GK Coulomb allows for the assessment of the
accuracy of other collision operator models. In all cases, non-negligible deviations with
the GK Coulomb are observed at collisionalities relevant to H-mode pedestals. While
these deviations increase with collisionality in all cases, the most significant ones are
found at finite electron temperature gradients, in particular, in the case of the TEM.
Indeed, the GK Sugama operator underestimates the linear growth rate up to 15 % and
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the GK IS operator up to 8 %. Finally, the impact of collisions on the GAM dynamics
and ZF collisional damping show that the analytical details of collision operator models
(e.g. conservation laws and energy diffusion) are essential to correctly predict their
long-time evolution. In general, the present results demonstrate that a careful analysis
of the collisional dependence of microinstabilities and, more generally, of the impact
of the choice of collision operator model is necessary to carry out accurate collisional
simulations of the plasma dynamics in the boundary region.

While the analysis presented in this work is limited to linear cases, the extension of
the GM method to the nonlinear turbulent regime using advanced collision operators is
underway (Hoffmann, Frei & Ricci 2023). We also remark that significant progress has
been recently made in the development of collisionless nonlinear flux-tube simulations
using a similar approach (Mandell et al. 2022). We also note that, although the
numerical implementation of the GM hierarchy presented here is restricted to the flux-tube
configuration and relies on the linearized GK δf approach, the present study paves the
way to future nonlinear simulations of the boundary region based on the GM approach,
including a realistic geometry and full-F conditions. Ultimately, we expect that the
GM method will enable comprehensive simulations with a reduced computational cost
than high-fidelity GK simulations when applied to, e.g. the Pfirsch–Schlüter regime
and low-collisionality H-mode pedestal conditions. At the same time, the GM approach
provides an improved fluid description over the reduced Braginskii-like fluid model in the
low-collisionality limit. This work represents a first step towards future full-F simulations
of nonlinear turbulence using the GM approach.
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Appendix A. Collisionless, local and strong ballooning limit of the flux-tube model

In this appendix, we perform a collisionless, local and strong ballooning limit analysis
of the GM approach. To this aim, we derive an electromagnetic GK dispersion relation by
solving explicitly the GK model introduced in § 2.1. We treat the electron kinetically and
make no ordering assumption neither on the amplitude of perpendicular wavenumber nor
on the magnitude of the magnetic drift frequency iωBa. The dispersion relation we obtain
allows us to perform a local convergence analysis as a function of the number of GMs
(P, J) in the presence of non-adiabatic electrons and electromagnetic effects. We note that
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the local analysis performed in this section neglects the contributions from the trapped
particles and, therefore, ignores modes driven unstable by trapped particle effects, such
as TEM. Nevertheless, we remark that the contribution from the trapped particles can be
included in the analysis by solving their bounced averaged kinetic equation. We derive the
electromagnetic GK dispersion relation in § A.1 and study the convergence properties of
the GM approach in the case of ITG and KBM in § A.2.

A.1. Local electromagnetic GK dispersion relation
We evaluate (2.1) at the outboard midplane location (i.e. z = 0 and kx = 0). As a
consequence, the parallel gradient of the magnetic field strength vanishes (b · ∇B = 0),
and the contribution from the trapped particles is ignored. The local approximation allows
us to introduce the parallel wavenumber k‖ � 1/q∂z and the perpendicular wavenumber
k⊥, defined in (2.18), reduces to k⊥ = ky. Therefore, the parallel and perpendicular
wavenumbers, k‖ and k⊥, are treated as scalar values and input parameters in the local
limit.

Neglecting collisions appearing on the right-hand side of (2.1) and Fourier transforming
in time, an explicit expression for the perturbed gyrocentre distribution function ga can be
obtained, i.e.

ga =
3∑

j=1

(
g(j)aφφ + g(j)aψψ

)
, (A1)

where the electrostatic, g(j)aφ , and electromagnetic g(j)aψ , components of ga are defined by

g(1)aφ = −qa

τa
FMaJ0(ba

√
xa), (A2a)

g(2)aφ = qa

τa

ωJ0(ba
√

xa)FaM

ω − ωBa − z‖as‖a/σa
, (A2b)

g(3)aφ = − ω∗
TaJ0(ba

√
xa)FMa

ω − ωBa − z‖as‖a/σa
, (A2c)

and

g(1)aψ =
√

2
σa

qa√
τa

FMas‖aJ0(ba
√

xa), (A3a)

g(2)aψ = −
√

2
σa

qa√
τa

ωs‖aJ0(ba
√

xa)FaM

ω − ωBa − z‖as‖a/σa
, (A3b)

g(3)aψ =
√

2τa

σa

ω∗
Tas‖aJ0(ba

√
xa)FMa

ω − ωBa − z‖as‖a/σa
, (A3c)

respectively. Here, the local magnetic drift frequency is ωBa = αa(xa + 2s2
‖a) (with αa =

τak⊥/qa) and z‖a = √
2τak‖/σa.

The electromagnetic GK dispersion relation is obtained by inserting (A1) into the GK
quasineutrality condition and making use of the GK Ampere’s law, given by (2.3) and
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(2.4), respectively. This yields the GK dispersion relation

D(ω; k⊥, k‖,RN,RTa, βe) =
⎛
⎝∑

a

q2
a

τa
(1 − Γ0(aa))−

∑
a

qa

3∑
j=1

δn(j)aφ

⎞
⎠

×
⎛
⎝ k2

βe
+
∑

a

q2
a

σ 2
a

Γ0(aa)−
∑

a

qa

3∑
j=1

δu(j)aψ

⎞
⎠

−
⎛
⎝∑

a

qa

3∑
j=0

δn(j)aψ

⎞
⎠
⎛
⎝∑

a′
qa′

3∑
j′=1

δu(j
′)

a′φ

⎞
⎠ = 0, (A4)

where the zeroth and first-order velocity moments of ga are defined by δn(j)aφ =∫
dvJ0(ba

√
xa)g

(j)
aφ , δn(j)aψ = ∫ dvJ0(ba

√
xa)g

(j)
aψ , δu(j)aφ = ∫ dvJ0(ba

√
xa)s‖ag(j)aφ and δu(j)aψ =∫

dvJ0(ba
√

xa)s‖ag(j)aψ . In order to solve D(ω) = 0 for the mode complex frequency ω, we
consider the following transformation of the velocity resonant term for the unstable modes
when Im(ω) > 0 (Frei et al. 2022b)

1
ω − ωBa − z‖as‖a/σa

= −i
∫ ∞

0
dτ exp

(
iτ(ω − ωBa − z‖as‖a)

)
. (A5)

Equation (A5) allows us to perform analytically the velocity integrals, i.e. the zeroth and
first velocity moments of ga (e.g. in δn(j)aφ and δn(j)aψ ). Using (A5), we derive the analytical
expressions of the zeroth and first-order velocity moments of ga

δn(1)aφ = −qa

τa
Γ0(aa), (A6a)

δn(2)aφ = − iqa

τa
ω

∫ ∞

0
dτeiτωI⊥(τ )I‖(τ ), (A6b)

δn(3)aφ = ik⊥

∫ ∞

0
dτeiτω [RNI‖(τ )I⊥(τ )

+RTa

(
I(2)‖ (τ )I⊥(τ )+ I‖(τ )I

(1)
⊥ (τ )− 3

2
I‖(τ )I⊥(τ )

)]
, (A6c)

δn(2)aψ = i

√
2
σa

qa√
τa

∫ ∞

0
dτωeiτωI⊥(τ )I

(1)
‖ (τ ), (A6d)

δn(3)aψ = −ik⊥

√
2τa

σa

∫ ∞

0
dτeiτω

[
RNI⊥(τ )I

(1)
‖ (τ )

+RTa

(
I(1)⊥ (τ )I

(1)
‖ (τ )+ I⊥(τ )I

(3)
‖ (τ )− 3

2
I⊥(τ )I

(1)
‖ (τ )

)]
, (A6e)
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and

δu(1)aψ = qa

σ 2
a

Γ0(aa), (A7a)

δu(2)aψ = i
2qa

σ 2
a

∫ ∞

0
dτeiτωωI⊥(τ )I

(2)
‖ (τ ), (A7b)

δu(3)aψ = −ik⊥
2τa

σ 2
a

∫ ∞

0
dτeiτω

[
RNI⊥(τ )I

(2)
‖ (τ )

+RTa

(
I(1)⊥ (τ )I

(2)
‖ (τ )+ I⊥(τ )I

(4)
‖ (τ )− 3

2
I⊥(τ )I

(2)
‖ (τ )

)]
, (A7c)

δu(1)aφ = 0, (A7d)

δu(2)aφ = − iqa

√
2

σa
√
τa

∫ ∞

0
dτωeiτωI⊥(τ )I

(1)
‖ (τ ), (A7e)

δu(3)aφ = ik⊥

√
2τa

σa

∫ ∞

0
dτeiτω

[
RNI⊥(τ )I

(1)
‖ (τ )

+RTa

(
I(1)⊥ (τ )I

(1)
‖ (τ )+ I⊥(τ )I

(3)
‖ (τ )− 3

2
I⊥(τ )I

(1)
‖ (τ )

)]
. (A7f )

The τ -dependent complex functions appearing in (A6) and (A7), which arise from the s‖
integration, are given by

I‖(τ ) = 1√
1 + 2iαaτ

exp
(−z2

‖τ
2/4/(1 + 2iαaτ)

)
, (A8a)

I(1)‖ (τ ) = − iτ z‖
2(1 + 2iταa)3/2

exp
(−τ 2z2

‖/4/(1 + 2iταa)
)
, (A8b)

I(2)‖ (τ ) = (2(1 + 2iταa)− τ 2z2
‖)

4(1 + 2iταa)5/2
exp(−z2

‖τ
2/(4(1 + 2iταa))). (A8c)

I(3)‖ (τ ) = − iz‖τ(6(1 + 2iαaτ)− τ 2z2
‖)

8(1 + 2iαaτ)7/2
exp
(−τ 2z2

‖/4(1 + 2iαaτ)
)
, (A8d)

I(4)‖ (τ ) = (12(1 + 2iταa)
2 − 12(1 + 2iταa)τ

2z2
‖ + z4

‖τ
4)

16(1 + 2iταa)9/2
exp
(−τ 2z2

‖/4/(1 + 2iταa)
)
,

(A8e)

while the functions associated with the xa integration are

I⊥(τ ) = 1
1 + iαaτ

I0

(
aa

1 + iαaτ

)
e−aa/(1+iαsτ), (A9a)

I(1)⊥ (τ ) = exp(−aa/(1 + iαaτ))

2(1 + iαsτ)3

×
[
(2(1 + iαsτ)− 2as)I0

(
aa

(1 + iαaτ)

)
+ 2aaI1

(
aa

(1 + iαsτ)

)]
. (A9b)

The GK dispersion relation given in (A4), with the definitions in (A6) and (A7), constitutes
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(a)

(c)

(b)

(d )

FIGURE 26. The ITG growth rate γ (a,c) and mode frequency ωr (b,d) as a function of the
binormal wavenumber ky at k‖ = 0.1 (a,b) and of the parallel wavenumber k‖ at ky = 0.4
(c,d) in the local limit for different numbers of GMs (P, J) (coloured lines). The solution of
the collisionless GK dispersion relation, (A4), is plotted (dashed lines). The case of adiabatic
electrons (ae) is also shown for comparison. Here, the gradients are the same as in figure 6.

the generalization of the ITG dispersion relation derived in Frei et al. (2022b) to the case of
kinetic electrons and electromagnetic effects. We remark that, while the I0 and I1 functions
can be expanded in the case of the electrons using the fact that ae � ai ∼ 1, the electron
FLR effects are kept here at arbitrary order in ae.

The transformation performed in (A5) restricts the validity of the GK dispersion
relation, (A4), to the case of unstable modes, while generalized plasma dispersion
functions (Gürcan 2014; Xie et al. 2017a; Gültekin & Gürcan 2018) can be used to include
stable modes located in the negative quadrant of the complex plane where γ < 0.

A.2. Local limit of ITG and KBM
We now solve numerically the local dispersion relation, given in (A4), focusing on the case
of electrostatic ITG and KBM. We compare the solution of the GK dispersion relation
with the results obtained by solving the GM hierarchy equation, given in (2.25), in the
same limit as a function of the number of GMs (P, J).

We first focus on the ITG mode with kinetic electrons in the electrostatic limit. We
consider the same values of the density and temperature gradients as in figure 6, and fix
the parallel wavenumber at k‖ = 0.1. We scan over the perpendicular wavenumber k⊥ = ky
and show the results in the top panels of figure 26. It is observed that, while the ITG mode
converges with (P, J) � (16, 8) for long perpendicular wavelengths, the GM approach
requires larger values of (P, J) to resolve FLR effects and magnetic gradient drift effect
at smaller perpendicular scales (Frei et al. 2022b). An excellent agreement with the local
dispersion relation is found for (P, J) � (32, 16). Additionally, we remark that the case
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(a)

(c)

(b)

(d )

FIGURE 27. The KBM growth rate γ (a,c) and real mode frequency ωr (b,d) as a function of
βe at ky = 0.25 (a,b) and of ky at βe = 0.008 (c,d) obtained from the GM hierarchy (coloured
lines) for different (P, J). The analytical results from the collisionless GK dispersion relation,
(A4), are shown by the dashed blacked lines. Here, k‖ = 0.1 and the gradients are the same as
figure 11.

of adiabatic electrons is in good agreement with the local GK dispersion relation with
fewer GMs (i.e. (P, J) = (16, 8)) than the case of non-adiabatic electrons with the same
parameters. A scan over the parallel wavenumber at fixed ky = 0.4, displayed in the bottom
panels of figure 26, shows that a larger number of GMs is necessary to resolve localized
modes in the parallel direction due to Landau damping.

We now consider the case of KBM mode in the local limit by solving (A4) at finite
electron plasma pressure, βe. The same values of the temperature and density gradients
as in figure 11 are used. The top panels of figure 27 shows the KBM growth rate γ and
mode frequency ωr as a function of βe for different number of GMs at ky = 0.25. The
solution from the local GK dispersion relation is correctly retrieved by the GM approach
and, consistently with the observations made in § 4.3, a fewer number of GMs (P, J) is
required than in the ITG case (see figure 26) to achieve convergence. The KBM mode
growth rate and frequency are well approached with (P, J) = (8, 4). The same can be
observed at smaller perpendicular wavelengths by varying the binormal wavenumber ky
at fixed βe, as shown in the results plotted in the bottom panels of figure 27. Finally, we
remark that the ITG stabilization and KBM onset occurs at an electron plasma pressure
(i.e. βc

e � 0.002, see figure 27), which is well below the MHD critical value βMHD
e critical

value observed in figure 11 with the same parameters (i.e. βMHD
e � 0.013). This difference

in the KBM onset is due to the absence of trapped electrons in the local dispersion relation,
which destabilize the ITG mode to values of βe close to the MHD critical value (Weiland
& Hirose 1992).
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