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Abstract

Diffusion models generating images conditionally on
text, such as Dall-E 2 [51] and Stable Diffusion[53], have
recently made a splash far beyond the computer vision com-
munity. Here, we tackle the related problem of generating
point clouds, both unconditionally, and conditionally with
images. For the latter, we introduce a novel geometrically-
motivated conditioning scheme based on projecting sparse
image features into the point cloud and attaching them to
each individual point, at every step in the denoising process.
This approach improves geometric consistency and yields
greater fidelity than current methods relying on unstruc-
tured, global latent codes. Additionally, we show how to ap-
ply recent continuous-time diffusion schemes [59, 21]. Our
method performs on par or above the state of art on con-
ditional and unconditional experiments on synthetic data,
while being faster, lighter, and delivering tractable likeli-
hoods. We show it can also scale to diverse indoors scenes.

1. Introduction
Given the popularity of depth sensors and laser scanners,

point clouds have become ubiquitous, with applications to
robotics, autonomous driving, and augmented reality. Fur-
thermore, they do not suffer from the precision/complexity
trade-off inherent to voxel grids, and scale better and more
generally than graph-based representations such as meshes.
As a result, they have been extensively used for analytical
tasks such as classification [46, 47, 60, 70, 48] and segmen-
tation [46, 47, 16, 60, 12, 70, 72]. Recent work has turned
to point cloud synthesis and its many applications to 3D
content creation. However, this remains an emerging field
and state of the art methods [66, 4, 25, 38, 71, 68] operate
on small datasets that feature only a handful of object types
[5]. More importantly, the generated shapes are typically
not anchored in any prior and are thus difficult to control.

We present a novel approach that can mitigate these is-
sues, taking our inspiration from generative methods that
perturb samples with a diffusion process [58, 21] and de-
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Figure 1: Our generative approach is based on denoising
diffusion models (DDMs) and can be conditioned on im-
ages. At each denoising step we project the point cloud to
the image, sample sparse features, and concatenate them to
the locations, thus guiding the denoising process and yield-
ing point clouds consistent with the images.

noise them with a deep network, which can later be used
to synthesize new samples by iteratively denoising a sig-
nal. Specifically, most denoising-based approaches gener-
ate novel samples from pure noise. But to mirror the suc-
cess of text-based image synthesis [51, 53, 54], a generative
approach must be able to not only produce samples of suffi-
cient quality and diversity, but also ground them in contex-
tual information. Applying this generic idea to point clouds
is, however, not straightforward. We show how to achieve
this by conditioning the network with sparse image features.

Unlike previous works relying on unstructured, global
embeddings, we do so in a geometrically-principled way,
by projecting the point cloud into an image, sampling sparse
features at those locations, and feeding them to the network
along with the point location, at each denoising step, as il-
lustrated in Fig. 1. This allows us to render 3D objects
geometrically and semantically consistent with the image
content, while controlling the viewpoint. Unlike regression
models, such as monocular depth, our method can gener-
ate plausible hypotheses for occluded regions. This work
is thus a first step towards unlocking the applicability of
denoising diffusion models to practical scenarios such as
3D content creation, generating priors for automotive or



robotics applications, and single-view 3D reconstruction.
In short, we propose a novel generative point cloud

model and show how to condition it on images. Our main
contributions are: (i) We propose a framework composed
of a permutation-equivariant Set Transformer [31] trained
with a continuous-time diffusion scheme, which performs
on par with the state of the art on unconditional synthesis
while running 10x faster and delivering exact probabilities.
(ii) We augment it with geometrically-principled condition-
ing to generate point clouds from images, yielding better
reconstructions than with unstructured global embeddings,
with state of the art performance. (iii) We bring denoising
diffusion models for point cloud synthesis to the real world
by applying our method to the Taskonomy dataset [67].

2. Related work

Denoising diffusion models. Denoising diffusion models
[58, 15] are trained to denoise data perturbed by Gaus-
sian noise. This process is applied iteratively during in-
ference, and models are able to generate high-quality sam-
ples mirroring the distribution of the training data from ran-
dom noise, optionally with a conditioning signal. They
have shown great success synthesizing images from text
[51, 53, 54], speech [7, 29, 43, 8], 3D objects [18, 42], and
recently point clouds [38, 71, 68]. Diffusion models can be
applied discretely, with a Markov chain [58, 15], or continu-
ously with stochastic differential equations [27, 59]. We use
a continuous formulation first proposed in [59], specifically
an extension proposed in [21].

Generative point clouds models. Point cloud synthesis
has been tackled with a wide array of techniques, includ-
ing Variational Auto-Encoders (VAEs) [26], Generative Ad-
versarial Networks (GANs) [63, 1, 33, 9, 57, 17, 26, 34],
and autoregressive models [61]. Set-VAE [26] proposed an
attention-based hierarchical VAE applicable to sets, such
as point clouds. Achlioptas et al. [1] introduced l-GAN,
operating over latents encoding shape, and r-GAN, di-
rectly on point clouds. SP-GAN [34] guides the gener-
ator with a global, uniformly distributed spherical prior
and a local, random latent code to disentangle global and
local shape. PointGrow [61] relies on an autoregressive
model that samples each point conditionally on previously-
generated points. ShapeGF [4] learns distributions over
gradient fields, moving randomly sampled points to high-
density areas such as surfaces. Xie et al. [65] formulate a
permutation-invariant energy-based model with a PointNet.
Of more direct importance to us are two other families, dis-
cussed separately: those based on normalizing flows (NF)
and denoising diffusion models (DDM).

NFs for point cloud synthesis. Normalizing flows make
powerful generative models and have been applied to point

(a) Source image (b) GECCO (c) GECCO (d) Ground Truth
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Figure 2: Image-conditioned generation. We condi-
tion denoising diffusion models with images (a) in a
geometrically-principled manner. Our model can recon-
struct the shapes accurately from that view (b), and also
generate plausible completions for regions not visible in the
image (c, d), even under drastic occlusions (rows 3-5).

cloud synthesis [66, 25, 45, 28, 44]. PointFlow [66] broke
ground by proposing a framework dividing the problem into
two stages. First, a latent code responsible for the shape
of the object, s ∼ Pθs , is sampled. Second, individual
points pi are sampled i.i.d. conditionally on s, meaning that
a cloud {pi} is sampled with probability

P ({pi}) =
∫
s∈S

Pθs(s)

n∑
i=0

Pθp(pi|s). (1)

A downside of this formulation is the intractability of the
probability computation, requiring an integral over all s:
they thus train with an ELBO loss. In contrast, C-flow
[45] models the point cloud jointly with a NF. This avoids
the intractable probability, but they encounter difficulty in
defining invertible layers which respect the permutation
equivariance of point clouds. Their solution is to canoni-
calize the order of points with space-filling curves, which
makes the approach complex. An alternative would be
to use continuous-time NFs [13]. Unfortunately, powerful
continuous-time models are known to be slow and expen-



sive to train [22]: as training progresses and the dynamics
of the ODE become more complex, the cost of solving it
with the precision necessary for stable backpropagation be-
comes impractically large.

DDMs for point cloud synthesis. This family, which our
approach belongs to, has seen significant developments over
the past year [38, 71, 68]. DPM [38] revisited the PointFlow
[66] formulation (Eq. 2), replacing the normalizing flow
P (pi|s) with a diffusion model. It relies on shape latents
to parameterize the prior distribution with NFs, and uses
them to condition a discrete DDM. It splits the loss into two
additive terms, which requires tuning hyperparmeters – our
approach is simpler. PVD [71] trains a discrete DDM di-
rectly on point clouds (without shape latents) using a point-
voxel network (PVCNN) that enables 3D convolutions [36].
It can optionally take in depth images as input to perform
shape completion on occluded regions. This is achieved by
freezing a set of points, extracted from the depth map, and
optimizing over a set of ‘free’ points – we do geometrically-
principled conditioning with RGB images instead, which is
more widely applicable. Moreover, the authors argue that
conventional permutation-equivariant architectures operat-
ing on pure point representations such as PointNet++ [47]
are difficult to apply to diffusion models – we show we can
achieve similar performance with a very simple architecture
[31]. In a different direction, PDR [39] proposes a dual-
network approach to shape completion based on DDMs.

More recently, LION [68] proposed another two-stage
approach. First, VAEs are used to obtain latent represen-
tations of both global shape, and points. Second, a DDM
is trained to model those latent spaces. They use a con-
tinuous diffusion model, like we do, but their reliance on
shape latents means that computing exact probabilities is
not tractable. Like PVD, LION uses PVCNN [36] for the
encoder, decoder, and diffusion models. Finally, it may con-
dition samples with different signals, such as images or text
embeddings, by conditioning the shape latent with adaptive
Group Normalization in the PVCNN layers. In contrast, we
use a convolutional backbone to extract image features at
the locations 3D points project to, concatenate them to the
positional features, and feed them to the network.

Other single-view reconstruction approaches. Most of
the generative point cloud methods our approach belongs
to tackle only the unconditional problem. There is a wide
array of relevant works on shape synthesis from single im-
ages, including regression and generative models, and us-
ing different representations such as voxels or meshes. 3D-
R2N2 [10] maps multiview images to occupancy grids with
recurrent networks, but its resolution is limited due to us-
ing voxel grids. Pixel2Mesh [62] produces meshes from
images by progressively deforming an ellipsoid using inter-
mediate features extracted from the image. AtlasNet [14],

also mesh-based, generates 3D shapes by mapping multi-
ple squares to shape surfaces. Chen et al. [6] learn point
clouds from images by supervising their projections onto
the image plane with samples from ground-truth silhouettes.
Pix2Point [32] uses a 2D-3D hybrid network with an opti-
mal transport loss to reconstruct point clouds from outdoor
images. PSGN [11] combines an image and a random vec-
tor with a feedforward network to turn them into a point
cloud, supervising with a permutation-equivariant loss. Oc-
cNet [40] tackles 3D reconstruction as the decision bound-
ary of a learned occupancy classifier, which unlike voxel-
based methods can be evaluated at arbitrary resolutions. Fi-
nally, there is of course a large body of work on monocular
depth estimation: we refer the reader to [41].

3. Method

In order to follow the framework of [21, 59], we need to
design a network sθ to approximate the score sθ(p, t, c) ≈
∇p log pt(p|c), where c is an optional conditioning signal.
We treat the point set {pi}, pi ∈ RD, i = 1, . . . , N as a
vector p ∈ RN×D. Since our network sθ is permutation-
equivariant, working with p is sound. We present experi-
ments with D = 3, but the approach is general.

3.1. Score network

Our score network sθ(p, t, c) (where dependency on c
is optional) is inspired by the Set Transformer [31], which
we choose as a powerful permutation-invariant architecture
specifically designed for unordered inputs, such as point
clouds. It treats each point as a token, but due to the
quadratic scaling of self-attention, it instead uses cross-
attention with a number of inducers, whose initial values are
learned. Compared to the original Set Transformer, in each
layer we use an extra shallow MLP on the inducers and not
just on the tokens. Specifically to the task of diffusion, we
“inject” the noise parameter t through the bias and scale of
the Group Normalization [64] layers in the network, simi-
larly to [68]. We also follow the recent approach of [50] and
use Gaussian activations, allowing us to use a simple linear
projection of input coordinates R3 → Rdnn , where dnn is
the dimensionality of the input to the Set Transformer. We
found this approach substantially better than the more com-
mon Fourier feature embedding.

3.2. Image-based conditioning

We undertake the goal of geometrically-principled point
cloud generation conditioned on images. Specifically, we
wish to: (a) generate point clouds in the reference frame of
the camera; (b) accurately reconstruct the visible part of the
object; and (c) build plausible hypotheses for occluded or
ambiguous regions in a generative fashion. Note that the
last property sets our approach apart from most supervised
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Figure 3: Unconditional point cloud synthesis on ShapeNet. All examples contain 2048 points.

approaches, such as monocular depth, which treat the prob-
lem point/pixel-wise and largely ignore the different modes
of the posterior. Property (a) differs from most prior work
on conditional generative models for point clouds, which
usually condense the image into an unstructured, global em-
bedding, losing much of the geometric detail. We achieve
our goals through camera frustum reparameterization of the
point cloud and point-wise projective conditioning.

Projective conditioning. In order to provide the network
with a highly accurate conditioning signal we need to main-
tain a geometrical interpretation of the model. We do so
by using a ConvNeXt backbone [35] to extract multi-scale
image features. At any time t in the diffusion process,
we take the point cloud {pi}t, project the points onto the
image plane, look up the image features corresponding to
each projection using bilinear interpolation, and concate-
nate them to the point’s location before feeding them to the
transformer. This way each point knows the individual im-
age properties at its location. We use this approach, which
has a small computational overhead, to condition the reverse
diffusion process at every step, as shown in Fig. 1. We con-
catenate the point location and its associated feature prior to
the MLP that projects the features to dnn dimensions, and
use the exact same transformer architecture for conditional
and unconditional settings, making this the only difference
between sθ(p, t) and sθ(p, t, c). For points outside of im-
age bounds the bilinear look-up simply returns zeros.

Camera frustum reparameterization. Current diffusion
models are constrained to well-centered small objects and
thus work directly in Rn, but in Sec. 4.3 we wish to model
points contained in the camera’s viewing frustum only. Our
solution is to reparameterize the coordinates. Since the pro-
jection of each point on the image plane (ph, pw) ∈ [0, 1]2,
and its depth pd ∈ R+, we can biject it to

(u, v, l) =
(
S−1(ph), S

−1(pw), log(pd)
)
∈ R3, (2)

where S−1 is the inverse sigmoid function. We use standard
diffusion in (u, v, l) and map points back to (x, y, z) at the
end. We do not use any reparameterization for ShapeNet.

Implementation details. Our Set Transformer-based net-
work has 6 layers and takes inputs of dimensionality dnn =
384. For unconditional models, we simply project the 3D
point location to dnn. For image-conditioned models, we
extract multi-scale ConvNeXt features of sizes 96, 192, 384
(total: 672), concatenate them to the point’s location, and
project them to dnn. We train our models with 1024 or 2048
points, subsampling datasets which contain more points per
example, for data augmentation. We follow [20] in initial-
izing transformer skip-connections with small weights and
optimise the network (including the ConvNeXt) with Ad-
aBelief [73] with learning rate 2 · 10−4, for a number of
steps depending on the dataset (see appendix). For each
dataset we scale the data globally to zero mean, unit vari-
ance (which we undo at inference time) and pick σmax by
estimating the maximum pairwise distance between train-
ing examples. We train using the preconditioning and loss
formulation of [21], with the main departure in that we sam-
ple σ values log-uniformly over (10−4, σmax) instead of log-
normally. As in [59], we found it beneficial to apply an ex-
ponential moving average to the weights of our model: we
use a rate of 0.999. We implement our software with JAX
[3] and Equinox [24] and use Diffrax [23] for ODE solv-
ing. For inference we use the 2nd-order stochastic sampler
of [21] (later referred to as ‘SDE’) or the probability flow of
[59] (later: ‘ODE’), with 128 steps. Please refer to Sec. 4.4
for an ablation study, and to Table 6 for computational de-
tails: our approach is both faster and lighter than compara-
ble methods. Code and models are available.

4. Experiments
We use ShapeNet [5] to evaluate unconditional point

cloud synthesis in Sec. 4.1, and with image conditioning



MMD↓ COV↑ (%) 1-NNA↓ (%)
Model CD EMD CD EMD CD EMD

A
IR

P
L

A
N

E

Oracle 0.214 0.369 46.17 49.88 64.44 63.58

r-GAN [1] 0.447 2.309 30.12 14.32 98.40 96.79
l-GAN-CD [1] 0.340 0.583 38.52 21.23 87.30 93.95

l-GAN-EMD [1] 0.397 0.417 38.27 38.52 89.49 76.91
PointFlow [66] 0.224 0.390 47.90 46.41 75.68 70.74
SoftFlow [25] 0.231 0.375 46.91 47.90 76.05 65.80
SetVAE [26] 0.200 0.367 43.70 48.40 76.54 67.65
DPF-Net [28] 0.264 0.409 46.17 48.89 75.18 65.55

DPM [38] 0.213 0.572 48.64 33.83 76.42 86.91
PVD [71] 0.224 0.370 48.88 52.09 73.82 64.81
LION [68] 0.219 0.372 47.16 49.63 67.41 61.23

GECCO (ours) 0.245 0.368 48.15 48.40 72.10 62.96

C
H

A
IR

Oracle 2.618 1.555 53.02 51.21 51.28 54.76

r-GAN [1] 5.151 8.312 24.27 15.13 83.69 99.70
l-GAN-CD [1] 2.589 2.007 41.99 29.31 68.58 83.84

l-GAN-EMD [1] 2.811 1.619 38.07 44.86 71.90 64.65
PointFlow [66] 2.409 1.595 42.90 50.00 62.84 60.57
SoftFlow [25] 2.528 1.682 41.39 47.43 59.21 60.05
SetVAE [26] 2.545 1.585 46.83 44.26 58.84 60.57
DPF-Net [28] 2.536 1.632 44.71 48.79 62.00 58.53

DPM [38] 2.399 2.066 44.86 35.50 60.05 74.77
PVD [71] 2.622 1.556 49.84 50.60 56.26 53.32
LION [68] 2.640 1.550 48.94 52.11 53.70 52.34

GECCO (ours) 2.793 1.601 46.68 49.40 56.57 54.68

C
A

R

Oracle 0.938 0.791 50.85 55.68 51.70 50.00

r-GAN [1] 1.446 2.133 19.03 6.539 94.46 99.01
l-GAN-CD [1] 1.532 1.226 38.92 23.58 66.49 88.78

l-GAN-EMD [1] 1.408 0.899 37.78 45.17 71.16 66.19
PointFlow [66] 0.901 0.807 46.88 50.00 58.10 56.25
SoftFlow [25] 1.187 0.859 42.90 44.60 64.77 60.09
SetVAE [26] 0.882 0.733 49.15 46.59 59.94 59.94
DPF-Net [28] 1.129 0.853 45.74 49.43 62.35 54.48

DPM [38] 0.902 1.140 44.03 34.94 68.89 79.97
PVD [71] 1.077 0.794 41.19 50.56 54.55 53.83
LION [68] 0.913 0.752 50.00 56.53 53.41 51.14

GECCO (ours) 1.044 0.769 50.00 56.82 56.82 49.15

Table 1: Unconditional generation (global normaliza-
tion). Generation metrics on three ShapeNet categories.
MMD-CD is multiplied by 103, and MMD-EMD by 102.
The top 3 are highlighted in gray (darker is better).

in Sec. 4.2. We then show that our method can translate
to larger-scale, real data on the Taskonomy dataset [67] in
Sec. 4.3, and ablate it and showcase some of its properties
in Sec. 4.4. We render point clouds with Mitsuba 3 [19].

4.1. Unconditional generation on ShapeNet

Dataset.We evaluate our approach on the dataset most com-
monly used for generative shape modelling: ShapeNet [5].
We follow the methodology, splits, and metrics introduced
by PointFlow [66], which provides point clouds sampled
from the original meshes, and train single-class models for
three categories: airplane, chair, and car. In order to ensure
reproducibility we compare against the results published in
[68], the most recent and thorough. While PointFlow nor-
malizes the data globally to zero-mean per axis, and unit
variance, others methods use per-shape normalization: we

MMD↓ COV↑ (%) 1-NNA↓ (%)
Model CD EMD CD EMD CD EMD

A
IR

P
L

A
N

E

Oracle 0.230 0.539 42.72 45.68 69.26 67.78

TreeGAN [57] 0.558 1.460 31.85 17.78 97.53 99.88
ShapeGF [4] 0.313 0.636 45.19 40.25 81.23 80.86
SP-GAN [34] 0.403 0.766 26.42 24.44 94.69 93.95
PDGN [17] 0.409 0.701 38.77 36.54 94.94 91.73
GCA [69] 0.359 0.765 38.02 36.30 88.15 85.93
LION [68] 0.356 0.593 42.96 47.90 76.30 67.04

GECCO (ours) 0.354 0.572 44.20 50.12 76.17 68.89

C
H

A
IR

Oracle 3.864 2.302 49.7 42.11 55.14 54.76

TreeGAN [57] 4.841 3.505 39.88 26.59 88.37 96.37
ShapeGF [4] 3.724 2.394 48.34 44.26 58.01 61.25
SP-GAN [34] 4.208 2.620 40.03 32.93 72.58 83.69
PDGN [17] 4.224 2.577 43.20 36.71 71.83 79.00
GCA [69] 4.403 2.582 45.92 47.89 64.27 64.50
LION [68] 3.846 2.309 46.37 50.15 56.50 53.85

GECCO (ours) 4.119 2.410 48.64 52.42 55.36 56.80

C
A

R

Oracle 1.05 0.829 47.44 48.01 57.53 56.68

TreeGAN [57] 1.142 1.063 40.06 31.53 89.77 94.89
ShapeGF [4] 1.020 0.824 44.03 47.16 61.79 57.24
SP-GAN [34] 1.168 1.021 34.94 31.82 87.36 85.94
PDGN [17] 1.184 1.063 31.25 25.00 89.35 87.22
GCA [69] 1.074 0.867 42.05 48.58 70.45 64.20
LION [68] 1.064 0.808 42.90 50.85 59.52 49.29

GECCO (ours) 1.063 0.802 46.31 49.15 60.51 47.87

Table 2: Unconditional generation (per-shape normal-
ization). Same as Table 1, with per-shape normalization.

consider both. We use 2048 points for all methods.

Metrics. We consider two distance metrics between point
clouds: the chamfer distance (CD), which measures the av-
erage squared distance between each point in one set to its
nearest neighbor on the other set; and the earth mover’s dis-
tance (EMD), which solves the optimal transport problem.
Given point sets p = {pi} and q = {qi} with N points
each, and ϕ a bijection between them, they are defined as:

CD(p,q) =
1

N

[∑
p∈p

min
q∈q

∥p− q∥22 +
∑
q∈q

min
p∈p

∥p− q∥22

]
, (3)

EMD(p,q) =
1

N
min

ϕ:p→q

∑
p∈p

∥p− ϕ(p)∥2. (4)

Given these two similarity functions, we sample as many
point clouds as there are in the reference set Sr to obtain
a generated set Sg and compute three metrics between the
ground truth and sampled collections. To compute cover-
age (COV) we find the nearest neighbor in the reference set
for each point cloud in the generated set, and compute the
fraction of shapes in the reference set that are matched to
at least one shape in the reference set. It can capture mode
collapse, but not the quality of the samples. The minimum
matching distance (MMD) is a complementary metric that
measures the average minimum distance from every sam-
ple in the reference set to every sample in the generated set.
PointFlow [66] proposes an arguably better metric also used



airplane bench cabinet car chair display lamp loudspeaker rifle sofa table telephone vessel average

3D-R2N2 [10] 0.227 0.194 0.217 0.213 0.270 0.314 0.778 0.318 0.183 0.229 0.239 0.195 0.238 0.278
PSGN [11] 0.137 0.181 0.215 0.169 0.247 0.284 0.314 0.316 0.134 0.224 0.222 0.161 0.188 0.215
Pixel2Mesh [62] 0.187 0.201 0.196 0.180 0.265 0.239 0.308 0.285 0.164 0.212 0.218 0.149 0.212 0.216
AtlasNet [14] 0.104 0.138 0.175 0.141 0.209 0.198 0.305 0.245 0.115 0.177 0.190 0.128 0.151 0.175
OccNet [40] 0.140 0.157 0.156 0.153 0.209 0.260 0.394 0.269 0.142 0.185 0.176 0.129 0.200 0.198
GECCO 0.106 0.097 0.110 0.103 0.142 0.138 0.186 0.158 0.097 0.123 0.107 0.090 0.132 0.122

OccNet [40] w/ ICP 0.151 0.158 0.141 0.139 0.196 0.247 0.380 0.251 0.155 0.188 0.207 0.138 0.203 0.196 (+1.02%)
GECCO w/ ICP 0.081 0.088 0.100 0.093 0.117 0.119 0.164 0.141 0.073 0.114 0.111 0.083 0.128 0.109 (+11.9%)

Table 3: Image-conditional generation on ShapeNet-Vol. L1 Chamfer distance between samples reconstructed from an
image and the ground truth point clouds (lower is better), following [40]. Qualitative results are available in Fig. 2.

for GANs: 1-Nearest Neighbour Accuracy (1-NNA). It is
defined as the accuracy of a leave-one-out classifier that as-
signs each sample in Sr∪Sg to the ‘class’ (set) of its closest
neighbor, other than itself. Note that a perfect oracle would
score ∼50%. As all three metrics rely on nearest neigh-
bours, they can be computed with CD or EMD: we report
both. Details are provided in the supplementary material.

Results. Results are shown in Table 1 for global normal-
ization, and Table 2 for per-shape normalization. 1-NNA
is the metric favored by most recent papers. Our method
performs on par with LION, the state of the art, on the first
benchmark and slightly outperforms it on the second. In ad-
dition to the baselines, we consider an oracle that spits out
samples from the training set instead of generating novel
ones. Our method outperforms this oracle in 1-NNA-EMD
for all three categories in Table 1, which suggests that the
dataset is at the saturation point, or that the distance metrics
fail to fully capture the quality of the samples. We show
samples and ground truth examples in Fig. 3.

4.2. Conditional generation on ShapeNet-Vol

Dataset. None of the baselines used in the previous sec-
tion are able to condition the generative process with im-
ages, with the exception of LION, which may optionally
train DDMs conditioned with CLIP embeddings [49, 55]
extracted from ShapeNet renders. While seemingly effec-
tive this approach is not geometrically principled, and the
paper offers only qualitative examples. We thus turn to
the ShapeNet-Vol benchmark, originally introduced by 3D-
R2N2 [10], which provides rendered images and voxelized
models for 13 ShapeNet categories: each shape is rendered
from 24 viewpoints at 137×137 pixels. We align the point
clouds to the camera pose for each view and train our mod-
els with the conditioning scheme of Sec. 3.2. Note that un-
like the unconditional experiments in the previous section,
here we train a single model for all 13 categories.

Results. We follow the evaluation protocol for single-view
reconstruction introduced by OccNet [40]. For mesh-based
methods, such as OccNet, the benchmark samples 100k
points from the mesh and computes the chamfer distance

Split Model Chamfer ↓ Chamfer (ICP) ↓

Test GECCO 0.661 / 0.502 0.444 / 0.242
Monocular depth [56] 0.632 / 0.527 0.558 / 0.451

Val GECCO 0.541 / 0.427 0.361 / 0.222
Monocular depth [56] 0.567 / 0.490 0.497 / 0.418

Table 4: Evaluation on Taskonomy with mean / median
values. Note that we do not use the validation set for early
stopping, so ‘validation’ and ‘test’ both act as test sets.
The difference in performance in ‘test’ is due to out-of-
distribution scenes in that subset (see appendix for details).

between the generated and ground truth point clouds as a
quality metric – including points occluded in the image.
For point-based methods such as PSGN [11], the bench-
mark simply samples more points (no meshing). In order
to reach the required number of points, we simply gener-
ate multiple samples for each image and concatenate them.
Note that following [40], we use the L1 chamfer distance,
defined as in Eq. 3 but without squaring the norms. Occ-
Net reconstructs the model in a canonical reference frame,
which is also used for evaluation, but our method generates
predictions from the point of view of the camera: we move
our predictions to this canonical frame with the ground truth
pose. We report results in Table 31. Our models outperform
all mesh-based methods, including OccNet, and also PSGN.
Additionally, we noticed that our generated point clouds
were slightly misaligned, but not those from OccNet. We
hypothesized this was due to OccNet generating samples in
a canonical reference frame rather than the camera’s point
of view, which while advantageous here does lose gener-
alization. We confirmed this by aligning the point clouds
with ICP [2, 52] and re-computing the metric: our method
improves by 12% relative, compared to OccNet’s 1%. Note
that unlike OccNet, our approach does not need normalized
data in a canonical pose and it can deal with non-watertight
meshes. On the other hand, it does require known camera
intrinsics. We show qualitative examples in Fig. 2.

1For OccNet we run the latest model available in their repository, im-
proved from the original paper. For others we use the results from [40].

https://github.com/autonomousvision/occupancy_networks
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Figure 4: Qualitative examples on Taskonomy. Color encodes depth. We show point clouds with 2048 points each, from
the cameras’s point of view, and from a bird’s eye view. The red dot in BEV marks the location of the camera.

4.3. Conditional generation on Taskonomy

We also wish to showcase how our method scales to real
data, and past the object-centric nature of ShapeNet that
most generative methods are limited to. For this purpose
we turn to Taskonomy [67], which contains a large dataset
of scanned indoor scenes with high-quality depth maps, and
convert them into point clouds by sampling and unproject-
ing 8192 points per image. We sample points inversely pro-
portionally to pixel depth, to emulate per-surface-area den-
sities. This yields a rich image-point cloud dataset.

Given the lack of generative methods that can scale up to
this data, we compare with a monocular depth method from
[56], also trained on Taskonomy. We first adjust the abso-
lute scale and shift of its output by comparing with ground
truth depth (as in the loss function of MiDaS [30]) and pro-
ceed by unprojecting with the same procedure as when cre-
ating the dataset. For GECCO, we directly predict the point
clouds in absolute units, using the (u, v, l) reparameteriza-
tion introduced in Sec. 3.2. We use 2048 points for both
training and evaluation. We compare the two approaches
qualitatively in Fig. 4, and quantitatively in Table 4, using
the same metric as in Sec. 4.2 and Table 3. This experiment
confirms our method extends beyond object-centric views
to real scenes, and greatly outperforms similarly-sized base-
lines benefitting from years of research on monocular depth.
As in Sec 4.2, we also report results with ICP. For the base-
line we disabled scale estimation, as it degrades the results.

4.4. Ablation studies and further experiments

Ablation study: Global vs projective conditioning. We
evaluate our approach to conditioning the denoising pro-
cess through projective geometry with the more standard

Conditioning Sampler Ndenoise ICP Subset L1-CD↓ ∆ ↑ (%)

Global ODE 128 ✗ – 0.305 –
Projective ODE 128 ✗ – 0.286 +6.6%

Global SDE 128 ✗ – 0.302 –
Projective SDE 128 ✗ – 0.283 +6.7%

Global ODE 128 ✓ – 0.280 –
Projective ODE 128 ✓ – 0.259 +8.1%

Global SDE 128 ✓ – 0.276 –
Projective SDE 128 ✓ – 0.257 +7.4%

Projective SDE 8 ✗ – 0.615 -117.3%
Projective SDE 16 ✗ – 0.309 -9.2%
Projective SDE 32 ✗ – 0.286 -1.1%
Projective SDE 64 ✗ – 0.287 -1.4%
Projective SDE 128 ✗ – 0.283 –

Projective SDE 8 ✓ – 0.353 -37.4%
Projective SDE 16 ✓ – 0.267 -3.9%
Projective SDE 32 ✓ – 0.258 -0.4%
Projective SDE 64 ✓ – 0.258 -0.4%
Projective SDE 128 ✓ – 0.257 –

Global SDE 128 ✗ 50% 0.308 -2.0%
Global SDE 128 ✓ 50% 0.283 -2.5%

Projective SDE 128 ✗ 50% 0.289 -2.1%
Projective SDE 128 ✓ 50% 0.261 -1.6%

Table 5: Ablation study on the OccNet benchmark.
We compare conditioning with global context vs projec-
tive lookups (sec. 3.2), probability flow (‘ODE’) [59] vs the
stochastic solver (‘SDE’) of [21], the number of solver iter-
ations, and the impact of reducing the training data to 50%.
We conduct these experiments with 1024 points, for speed.

approach relying on a global embedding. Instead of bilin-
ear lookup for each point, we mean-pool the CNN features
and inject them globally as in [68], alongside t, through the
bias and scale of normalization layers. We compare both
approaches on the OccNet benchmark of Sec. 4.2. As we
do not aim to compare against those baselines, we use 1024
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Figure 5: Log-probabilities while training. Dashed line:
CD 1-NNA (Sec. 4.1) on the validation set. Solid: valida-
tion set log-probability (normalized); diamonds mark max-
ima. Notice how the decreasing likelihood of sampling val-
idation examples does not increase (i.e., degrade) 1-NNA.

points rather than 100k, for simplicity. Results are shown in
Table 5. Our projective conditioning is 7-8% more accurate.

Ablation study: Numerical solvers. We consider the Occ-
Net [40] benchmark and ablate the use of the probability
flow solver proposed in [59] versus the stochastic solver
used in [21]. We find the latter superior and turn to the
effect of the number of solver steps. We observe that more
solver steps bring larger perceptual improvements which are
not always captured by the chamfer distance, up to about
128 steps, which we use in all other experiments in the pa-
per. We report the numbers in Table 5: relative values take
Ndenoise = 128 as reference. It should be noted that tech-
nically, both solvers use two network evaluations per step.

Ablation study: training with fewer samples. We train
conditional models with only 50% of the data and report
a surprisingly small drop in performance: ∼2% (Table 5).
This holds for both projective and global conditioning.

Probabilities as a metric. Our approach allows us to com-
pute exact probabilities over the validation set, following
the method in [59]. The maxima in probability corresponds
to the optimal state in terms of novel generative perfor-
mance. On ShapeNet, which is quite small, we notice that
our models overfit in terms of this metric while maintain-
ing low 1-NN accuracy: we report their evolution in the
unconditional setting in Fig. 5. This corroborates our obser-
vation that the ShapeNet benchmark is relatively saturated:
by some metrics, state-of-the-art methods may even outper-
form an oracle which simply returns the training set. We
argue that tractable likelihoods may prove very useful in
datasets and tasks with no other easy means of validation.

Point cloud upsampling by inpainting. Another applica-
tion of our method is point cloud upsampling. To upsample

Figure 6: Point cloud upsampling examples. Top: orig-
inal point clouds with 2048 points. Bottom: we upsample
them by 50x to 102k points. Left: Our inpainting technique
yields high-quality point clouds. Right: Artifacts may ap-
pear occasionally, especially on complex, irregular struc-
tures. Note: figure is rendered with a smaller point size.

Num. params Inference speed

LION (unconditional) 110M 2.51 s/example
PVD (unconditional) 27.7M 2.95 s/example
GECCO (unconditional) 13.7M 0.25 s/example

GECCO (conditional) 47.7M 0.27 s/example

Table 6: Size and speed comparison. Measured on an
NVIDIA A100 GPU with 40Gb, with 2048 points and batch
of 64. GECCO uses the SDE sampler with 128 steps.

from n to m points, following the blueprint of [37], we dif-
fuse input {p0..n} to σmax and concatenate with new points
sampled from the prior, {pn..m}. We then reverse-diffusion,
computing the scores on all points {p0..m}, but use them
only to update {pn..m}, while {p0..n} is reversed determin-
istically to the input. Compared to models following Eq. 2,
this approach treats the input {p0..n} as the latent code s.
We use 4 resampling sub-steps (see [37]) per solver step,
and when upsampling by large factors, in order to stay in
the range of m the network is trained for, we concatenate
multiple conditionally-independent completions of {p0..n}.
We find this procedure to result in coherent, high-resolution
point clouds: see Fig. 6 for examples.

5. Conclusions
We propose a novel approach to condition denoising dif-

fusion models in a geometrically-principled manner by pro-
jecting generated point clouds to an image and augmenting
point locations with sparse features from a convolutional
backbone. Our framework relies on a simple permutation-
equivariant transformer, trained with a continuous-time dif-
fusion scheme. It yields state-of-the-art results in single-
view synthesis, while performing on par in the uncondi-
tional setting. It can also deliver exact probabilities, and up-
sample by inpainting. We believe this is a first step towards
controllable diffusion point cloud models on real data. Fu-
ture work will explore occlusion on large-scale datasets,
multi-view inference, and completion via inpainting.
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