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Abstract

This thesis explores the challenges and solutions linked to the implementa-
tion of Constrained Inverse Reinforcement Learning (CIRL) for real world
application. To this end we study two algorithms, one utilizes stochas-
tic gradient descent ascent (SGDA-CIRL), while the other incorporates IQ-
Learn, an advanced imitation learning algorithm. Findings reveal that the
Q-CIRL algorithm shows potential and succeeds in recovering a reward for
which the expert is optimal but fails to generalize to new transitions dynam-
ics. Meanwhile, the SGDA-CIRL algorithm demonstrates fast convergence
and results comparable to CIRL with known dynamics. Additionally, an
open-source framework for CIRL is developed, providing a versatile plat-
form for implementing and extending CIRL algorithms and reinforcement
learning techniques.
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Chapter 1

Introduction

When applying reinforcement learning to safety-critical systems such as
autonomous driving and robotics, it becomes necessary to incorporate con-
straints to prevent the agent from taking actions that could be harmful or
violate safety regulations based on the learned policy. One approach to for-
mulating these constraints would be to penalize all state-action pairs that
the agent should avoid. Although this approach is feasible, it does not guar-
antee that the constraints will not be violated. In fact, if violating the con-
straints leads to a higher expected reward compared to an alternative path,
the agent would choose the violating path. While it may seem straight-
forward to design the reward function to prevent this, it often proves to
be a challenging task in real-world scenarios. Constrained reinforcement
learning addresses this issue by explicitly incorporating constraints into the
optimization problem, ensuring that they are not violated.

The problem of designing a reward function is in fact a well known draw-
back of the reinforcement learning approach. It becomes particularly diffi-
cult for complex goals and if the rewards are inaccurately specified, it can
lead to poor performance and potentially unsafe behavior. Inverse rein-
forcement learning tackles this problem by incorporating the reward func-
tion into the learning process itself, rather than treating it as a predefined
hyperparameter before training. However, just because the goal is learned
does not mean that it is safer. This is why we investigate constrained in-
verse reinforcement learning (CIRL).

CIRL not only incorporates the reward function into the learning process
but also explicitly considers safety constraints to ensure that the learned
policy adheres to safety guidelines [Schlaginhaufen and Kamgarpour, 2023].
By imposing constraints on the optimization problem, the agent is trained to
make decisions that not only maximize the cumulative reward but also sat-
isfy the specified safety requirements. This approach provides a framework
for ensuring the achievement of goals with the assurance of safety, mak-
ing it particularly valuable in safety-critical domains such as autonomous
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driving and robotics.

Contributions The main contributions of this work include the design,
implementation, and evaluation of two novel algorithms inspired by the
work of Schlaginhaufen and Kamgarpour [2023] and Garg et al. [2021].
The report also presents the development of a Python framework dedi-
cated to CIRL and RL algorithms, providing researchers and practitioners
with a user-friendly platform for experimentation and development. Ad-
ditionally, the existing Sycabot framework has been extended to support
CIRL with the integration of jetbots, enabling the application of CIRL algo-
rithms in real-world scenarios. This work further explores the challenges,
requirements, and limitations associated with implementing CIRL in dis-
crete cases, offering valuable insights into the practical considerations and
potential limitations of these techniques. Overall, it advances the field of
CIRL by introducing novel algorithms, providing a dedicated framework,
extending existing frameworks, and contributing to the understanding of
the complexities involved in deploying CIRL algorithms.
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Chapter 2

Methodology

2.1 Background

2.1.1 Constrained Markov Decision Process

A Constrained Markov Decision Process [Altman, 1999] provides a com-
prehensive mathematical framework to study stochastic decision making
problems with safety constraints. A CMDP is defined by a tuple M =
(S ,A,P , ν0, r,Ψ, b, γ), where S denotes the state space with |S| = n; A
the action space with |A| = m; P : S × A → ∆S the transition law where
∆S denotes the probability simplex over S and P (s′|s, a) the probability of
transitioning from state s to s′ following action a; r ∈ Rnm the reward; ν0
is the initial state distribution; Ψ := [Ψ1, · · · ,Ψk] ∈ Rnm×k the matrix of
safety constraint costs and b ∈ Rk the corresponding threshold. Starting
from some initial state s0 ∼ ν0, the agent can at each step in time t, choose
an action at ∈ A, will arrive in some state st+1 ∼ P (·|st, at), and receives
reward r(st, at) and safety cost Ψ(st, at). The agent’s goal is then to find a
policy π : S → ∆A which optimizes the CMDP problem

max
π∈Π

r⊤µπ + βH(π) (2.1)

s.t. Ψ⊤µπ ≤ b.

Here, µπ is the occupancy measure defined as

µπ(s, a) := (1− γ)

[
∞

∑
t=0

γt Pr (st = s, at = a)

]
, (2.2)

and H(π) = E(s,a)∼µπ [− logπ(a|s)] is an entropy regularization with inverse
temperature parameter β ≥ 0.1 For notational convenience, all equations
in this chapter will be derived using the occupancy measure. As shown by

1The entropy regularization term encourages for exploration by penalizing policies that
are too deterministic.
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Schlaginhaufen and Kamgarpour [2023] the regularized CMDP problem is
for β > 0 equivalent to an unconstrained MDP problem of the form

max
π∈Π

(r−Ψξ)⊤µπ + βH(π), (2.3)

where ξ is an optimal dual variable for the safety constraints.

2.1.2 Max Entropy Reinforcement Learning

For a given reward function r ∈ R, maximum entropy RL [Haarnoja et al.,
2017, Bloem and Bambos, 2014] aims to solve a given CMDP problem by
learning a policy that maximizes the expected cumulative discounted re-
ward along with the entropy in each state

max
π∈Π

r⊤µπ + βH(π). (2.4)

Bloem and Bambos [2014] show that the optimal policy for (2.4) is given by

π∗(a|s) =
1
Zs

exp(Q∗(s, a)/β), (2.5)

where Zs is a normalization factor given by Zs = ∑a′ exp(Q∗(s, a′)/β) and
Q∗(s, a) is the optimal soft Q-function [Haarnoja et al., 2017] defined as

Q∗(s, a) = r(s, a) + γEs′∼P(·|s,a)
[
V∗(s′)

]
, (2.6)

where the optimal value function is given by

V∗(s) = β log ∑
a′

exp
(

1
β

Q∗(s, a′)
)

. (2.7)

2.2 Problem formulation

Given a CMDP without reward M \ r = (S ,A,P , ν0,Ψ, b, γ) and a data
set of demonstrations D = {(si

t, ai
t)

T
t=0}N

i=1 from some expert µE, CIRL aims
to recover a reward function for which the expert’s policy is optimal for
the CMDP problem (2.1). As shown by Schlaginhaufen and Kamgarpour
[2023], the max entropy CIRL problem can be cast as the following min-max
optimization problem,

min
ξ≥0 r∈R

max
π∈Π

r⊤(µπ − µ̂E
D) + βH(µπ) + ξ⊤(b−Ψ⊤µπ) (2.8)

= min
ξ≥0 r∈R

max
π∈Π

w⊤Φ⊤(µπ − µ̂E
D) + βH(µπ) + ξ⊤(b−Ψ⊤µπ)

= min
ξ≥0 r∈R

max
π∈Π

LD(π,w, ξ)),

where the reward class is r ∈ R := {rw = Φw : Φ ∈ Rmn×d, ∥w∥ ≤ c} and
the empirical expert occupancy measure is given by

µ̂E
D(s, a) =

1− γ

N

N

∑
i=1

T

∑
t=0

γt
1(si

t = s, ai
t = a). (2.9)
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2.3 GDA-CIRL

To solve the min-max problem (2.8), recent work by Schlaginhaufen and
Kamgarpour [2023] proposes to use a gradient descent-ascent algorithm,
where the policy and rewards are updated within a single optimization
loop. The policy is updated using Natural Policy Gradient (NPG)2 with
softmax parametrization of the policy [Cen et al., 2020], while the dual
variables w and ξ are updated using projected sub-gradient descent. The
pseudo-code of the algorithm is presented in Algorithm 1. This algorithm
has been shown to provably converge by the work of Renard [2023]. In the

Algorithm 1
Gradient descent-ascent for constrained entropy-regularized IRL
Input: Expert data D, learning rate η, max_iter
Output: Learned reward r, learned policy π
Initialize: π ∈ Π, ξ = 0, w = 0

while not max_iter do
Do primal update with:

r ← Φw(t) −Ψξ(t)

Qπ(t) ← Soft-Q evaluation(r, M \ r)

π(t+1) ← NPG(Qπ(t)
, ηπ)

Do dual update with:

w(t+1) ← PBC (w(t) − ηw∇wLD(π(t+1),w(t), ξ(t)))

ξ(t+1) ← P[0,∞)(ξ
(t) − ηξ∇ξLD(π(t+1),w(t), ξ(t)))

end while

Algorithm 1, as shown by Cen et al. [2021], the NPG update is given by the
following update rule in the policy space,

π(t+1)(a|s) ∝
(
π(t)(a|s)

)1− βηπ
1−γ

exp

(
ηπQπ(t)

(s, a)
1− γ

)
, (2.10)

and the gradients for w and ξ are given by

∇wLD(π(t),w, ξ) = Φ⊤(µπ(t) − µ̂E
D) (2.11)

∇ξLD(π(t),w, ξ) = (b−Ψ⊤µπ(t)
),

where PBc denotes the projection onto the ball Bc := {w : ∥w∥ ≤ c} and
P[0,∞) the trivial projection onto the non-negative orthant.

2Haarnoja et al. [2018] show that for a step ηπ = (1− γ)/β NPG is completely equivalent
to soft policy iteration.
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Moreover, to perform soft-Q evaluation for a given policy π, we recursively
compute,

Q(t)(s, a) = r(s, a) + ∑
s′

P(s′|s, a)V(t−1)(s′), (2.12)

where

V(t−1)(s′) = ∑
a′

Q(t−1)(s′, a′)π(s′|a′), (2.13)

and then stop when the error ||Q(t) − Q(t−1)||1≤ 10−9 [Sutton and Barto,
2018].

While the implementation of this algorithm is relatively straightforward,
the soft-Q evaluation step assumes that we can exactly evaluate the value
of a policy, which requires complete knowledge and a clear understand-
ing of the system’s dynamics. The dual update in Eq. (2.11) also requires
the dynamics to evaluate the occupancy measure µπ(t)

. This mean that we
require to know the probability distributions that govern the movement
of our robot. However, in reality, this is often not the case, and the best
we can do is approximate a model of our robot’s dynamics. Furthermore,
when dealing with large or even continuous state and action spaces, exact
value evaluation methods become prohibitively expensive. Instead, Sutton
and Barto [2018] offer to learn from experiences to overcome this limitation.
Learning from actual experience doesn’t require any prior knowledge about
the environment’s dynamics, yet it can still achieve optimal behavior with
the added benefits of not depending on a model anymore.

2.4 SGDA-CIRL

In the previous section, we discussed the need to develop an algorithm
that can learn without having precise knowledge of the environment’s dy-
namics. Instead, our algorithm should learn from a replay buffer Bπ =
{(si

t, ai
t, s′it)T

t=0}N
i=1 which contains N rollouts obtained by following the policy

π until time T. To this end, we estimate the Q-function in the primal update
via temporal difference learning and the gradients in the dual update via
Monte Carlo sampling. Moreover, in practice we use a done signal d which
is 1 when the agent reaches a terminal state. This approach optimizes iter-
ation time by permitting the truncation of episodes before reaching time T,
while still being aware of the episode’s end time Td in order to later recover
the discounted reward3.

3Refer to chapter 3 for further details on this.
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2.4.1 Primal update

For the primal NPG update, we need an estimate of the soft-Q function
Qπ. For this purpose, we use soft Q-learning [Haarnoja et al., 2017] to
approximately evaluate the Q-function of the policy π. In this algorithm,
we aim to minimize the cost

JQ = E(s,a)∼µπ

[
1
2
(
Q(s, a)−Es′∼P (·|s,a)

[
y(s, a, s′)

])2
]

, (2.14)

where y(s, a, s′) is the target Q-value given by

y(s, a, s′) = r(s, a) + γVπ(s′), (2.15)

and
Vπ(s) = ∑

a
π(a|s)Qπ(s, a). (2.16)

In practice, problem (2.14) is approximately solved using stochastic gradient
descent. Therefore, the Monte Carlo estimate of the gradient of JQ(si, ai) at
iteration j becomes

∇̂Q JQ(s, a) =
1
N

N

∑
i=1

T

∑
t=0

(
Qπ(j−1)

(si
t, ai

t)− yπ
(j−1)

(si
t, ai

t, s′it)
)
1(s = si

t, a = ai
t).

(2.17)

2.4.2 Dual update

A straightforward approach to address this is by replacing explicit gradi-
ent descents on the dual variables with stochastic gradient descent (SGD)
algorithms. In this approach, the expectations are estimated by the sample
averages

∇̂wLD(π,w, ξ) =
1− γ

N

N

∑
i=1

T

∑
t=0

γtΦ(si
t, ai

t)−Φ⊤µ̂E
D , (2.18)

∇̂ξLD(π,w, ξ) = b− 1− γ

N

N

∑
i=1

T

∑
t=0

γtψ(si
t, ai

t).

Then, the Q-function associated with the reward can be learned by Q-
learning and used to update the policy with Natural Policy Gradient (NPG).

2.4.3 Algorithm

This gives us the following practical algorithm:
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Algorithm 2 CIRL with stochastic GDA
Input: Expert state occupancy measure σE, reward feature matrix Φ, constraint
cost Ψ, learning rates η, max_iter.
Output: Learned reward r, learned policy π.
Initialize: π ∈ Π, ξ = 0, w = 0, Q = 0, π = US×A.

for step j in {1, · · · , N} do
Reset environment to a random initial state s0 ∼ ν0.
for trajectory in {1, · · · , T} do

while not done do
Observe state s and take random action a ∼ π(·|s)
Observe next state s’, and done signal d.
Store (s, a, s′, d) in replay buffer Bπ .

end while
end for
Calculate reward as: r ← Φw(j) −Ψξ(j)

Update Q by one step of Q-learning using (2.17):

Qπ(j)
(s, a) = Qπ(j−1)

(s, a)− ηQ∇̂Q JQ(s, a) (2.19)

Update π by one step of NPG:

π(j+1) ← NPG(Qπ(j)
, ηπ) (2.20)

Update ξ and w by one step of gradient descent using (2.18).

w(j+1) ← PBC (w(j) − ηw∇̂wLD(π(j+1),w(j), ξ(j))) (2.21)

ξ(j+1) ← P[0,∞)(ξ
(j) − ηξ∇̂ξLD(π(j+1),w(j), ξ(j))),

end for

2.5 Q-CIRL

The key idea of IQ-Learn [Garg et al., 2021], a recent state of the art imitation
learning algorithm, is to exploit the bijection between rewards and soft-Q
functions, proved by Garg et al. [2021], to reformulate the IRL objective
in terms of Q functions. Similarly, we can reformulate the original CIRL
problem (2.8) in terms of Q as follows

min
ξ≥0 r∈R

max
π∈Π

E(s,a)∼µπ [(T πQ) (s, a)]−E(s,a)∼µ̂E
D

[(T πQr) (s, a)]−H(µπ) + ξ⊤b

(2.22)
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where (T πq) (s, a) = q(s, a)− γEs′∼P (.|s,a)
a′∼π(.|s′)

[q(s′, a′)− β logπ(a′|s′)] and

Q(s, a) = Qr(s, a)− ξ⊤QΨ(s, a), (2.23)
Qr(s, a) = r(s, a) + γEs′∼P (.|s,a)

[
Vπ
r (s′)

]
,

QΨ(s, a) = Ψ(s, a) + γEs′∼P (.|s,a)

[
∑
a′

QΨ(s′, a′)π(a′|s′)
]

.

Note that only the Qr function is regularized and that r is the same as in
(2.3). For a fixed policy, the reformulated problem is entirely equivalent
to the original problem, this can be demonstrated through the bijection
property established by Garg et al. [2021]. This formulation allows us to use
the IQ-learn algorithm developed by Garg et al. [2021] while performing Q-
learning steps to learn the Q function associated with the constraints. After
training the optimal policy can be recovered using (2.5) with the overall
soft-Q function

Q(s, a) = Qr(s, a)− ξ⊤QΨ(s, a). (2.24)

2.5.1 IQ-learn

Formally, the inverse problem is solved by maximizing [Garg et al., 2021]:

max
Qr∈Ω

L∗(Qr) = EµE

[
ϕ
(
Qr(s, a)− γEs∼P(·|s,a)V

π
r (s)

)]
− (1− γ)Eµ0 [V

π
r (s0)]

(2.25)

where Vπ
r (s) is defined as,

Vπ
r (s) = ∑

a′
Qr(s, a′)π(a′|s)− β logπ(a′|s). (2.26)

The objective forms a variant of soft-Q learning, where we try to learn
the optimal Q-function given an expert distribution and where the optimal
policy is given by equation (2.5). In practice, for discrete cases, Garg et al.

[2021] found that using a Chi2 divergence ϕ(x) = x +
1

4α
x2 gave the best

results and that instead of directly estimating Eµ0 [V
π
r (s0)] getting a sample

estimate E(s,a,s′)∼µE [V
π
r (s)− γVπ

r (s′)] from the expert replay buffer improves
stability for convergence. The objective can then be re-written as:

max
Qr∈Ω

E(s,a,s′)∼µE

[
Qr(s, a)−Vπ

r (s) +
1

4α

(
Qr(s, a)− γVπ

r (s′)
)2
]

, (2.27)

which can be optimised with SGD using Monte Carlo sampling,

∇̂Qr
LQr

(s, a) =
1− γ

N

N

∑
i=1

T

∑
t=0

γt
(

1−Vπ
r (si

t)

+
1

2α

(
Qr(si

t, ai
t)− γVπ

r (s′it)
))

1(s = si
t, a = ai

t).

(2.28)
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Note that for this gradient derivation V∗r are considered as targets and there-
fore kept constant with respect to Qr as for discrete cases it speeds up the
training while it has no visible impact on the results [Garg et al., 2021].

2.5.2 Constraint update

The constrained problem is solved exactly as in the previous algorithm and
the Q-function associated to the constraint cost Ψ is approximated using
classical Q-learning where the objective to minimize is given by [Sutton
and Barto, 2018],

L(QΨ) =E(s,a,s′)∼µE

1
2

(
QΨ(s, a)−Ψ(s, a)− γ ∑

a′
QΨ(s′, a′)π(a′|s′)

)2


(2.29)

which can also be optimised with SGD using Monte Carlo sampling,

∇̂QΨ
LQΨ

(s, a) =
1− γ

N

N

∑
i=1

T

∑
t=0

γt
(

QΨ(st
t, at

t)−Ψ(st
t, at

t)

− γ ∑
a′

QΨ(s′, a′)π(a′|s′)
)
1(s = si

t, a = ai
t).

(2.30)
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2.5.3 Algorithm

Finally, we can put all of this together and we obtain Algorithm 3,

Algorithm 3 CIRL with SGDA and IQ-learn
Input: Expert data DE, learning rate η, max_iter
Output: Learned reward r, learned policy π
Initialize: π ∈ Π, ξ = 0, Qr = 0, Qψ = 0

for step in {1, · · · , N} do
Sample a batch of transition from DE.
Reset environment to a random initial state s0 ∼ µ0.
for trajectory in {1, · · · , T} do

while not done do
Observe state s and take random action a ∼ π
Observe next state s’ and done signal d.
Store (s, a, s′, d) in replay buffer Bπ .

end while
end for
Update QΨ by one step of Q-learning using (2.30).

QΨ(s, a) = QΨ(s, a)− ηQΨ
∇̂QΨ

LQΨ
(s, a) (2.31)

Update dual variable ξ by one step SGD as in (2.18).

ξ ← P[0,∞)(ξ− ηξ∇̂ξLD(π,w, ξ)) (2.32)

Update Qr by one step of IQ-learn using (2.28):

Qr(s, a) = Qr(s, a)− ηQr
∇̂Qr

LQr
(s, a) (2.33)

end for
Recover r using (2.23) and π with (2.5) and (2.24).
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Chapter 3

Implementation

The implementation part of this master thesis holds a pivotal role in real-
izing the practical application of CIRL in real-world scenarios. By imple-
menting the theoretical concepts discussed in earlier sections into software,
this phase not only demonstrates the feasibility of CIRL but also provides a
tool for future research and practical implementations.

The primary objective of this implementation is to develop a comprehensive
Python package that enables users to effortlessly develop and train rein-
forcement learning algorithms and more specifically CIRL algorithms with
a strong emphasis on providing a well-documented and intuitive codebase.
Moreover, the package facilitates algorithmic implementation in discrete
state-action spaces and was developed to be easily extendable to contin-
uous settings in the future. Additionally, this implementation serves as a
showcase of the algorithms presented in the previous section to assess their,
validity strengths, weaknesses and effectiveness.

3.1 Hardware

In order to showcase the results of CIRL training in a real-world setting,
we employed Jetbots, which are robust wheeled robots powered by Nvidia
Jetson Nano. To facilitate tracking and localization, we utilized an Optitrack
system along with Motive software, simulating a global localization system.
The lab environment, as shown in Figure 3.1, consists of a maze with known
obstacles positions. Additionally, a video projector is used to display more
information on the floor, such as policy, reward or states.
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Figure 3.1: Picture of the lab. The maze is defined by the black bands.

3.2 Methodology for software development

The implementation relied on several key libraries and frameworks, each
serving a specific purpose in the development process with a strong em-
phasis on minimizing unnecessary dependencies and maintaining a stream-
lined architecture. The principal libraries and frameworks are:

1. NumPy: The NumPy library [Harris et al., 2020] played a role in per-
forming efficient array and vector operations. It provided essential
mathematical functionalities required for data manipulation and cal-
culations. This library allowed for optimized numerical computations,
enhancing the overall performance of the software.

2. SciPy: The SciPy library [Virtanen et al., 2020] was employed for spe-
cialized mathematical operations. It offered a wide range of math-
ematical functions, including advanced operations like softmax and
logsumexp. These functions were instrumental in implementing com-
plex algorithms and computations required for reinforcement learn-
ing and optimization tasks.

3. JSON: The JSON library and format was utilized for writing config-
uration files. This allowed users to easily customize and adjust the
behavior of the software package. JSON provided a lightweight and
human-readable format for storing configuration data, ensuring flexi-
bility and ease of use.

4. PyTorch: The PyTorch [Paszke et al., 2019] library offers extensive
support for automatic differentiation, enabling efficient gradient com-
putation for optimization algorithms. For continuous states actions
spaces, it can also be used for the implementation of deep neural net-
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works as it provides a powerful platform for building and training
neural network models.

5. Gymnasium: Gymnasium [Towers et al.] served as the base class for
defining the environment and conducting deep reinforcement learn-
ing trainings within a simulated environment. It provided a stan-
dardized interface for interacting with the environment, enabling the
software to work seamlessly with the various reinforcement learning
algorithms. Gymnasium facilitated rapid prototyping, development
of environments and experimentation with different agents.

6. WandB: The WandB [Biewald, 2020] library, short for "Weights & Bi-
ases," was used for experiment tracking and visualization. It provided
a suite of tools for logging experiment metrics and visualizing model
or algorithm performances. Wandb allowed for efficient experiment
management, enabling the tracking and comparison of different train-
ing runs, and aiding in the analysis of results.

7. ROS2: ROS2 [Macenski et al., 2022] provides a robust and flexible in-
frastructure for managing the exchange of messages, controlling robot
behavior, and interacting with sensor data. It offered a standardized
and scalable approach for developing and deploying the framework
on the Jetbots.

In terms of design principles and architecture patterns, the implementation
followed the principles of object-oriented programming (OOP). Emphasis
was placed on key OOP principles, including abstraction, encapsulation,
inheritance, and selective use of polymorphism for some functions. These
principles were leveraged to enhance maintainability, modularity, and per-
formance of the codebase. Additionally, the following design rules were
followed to ensure a well-structured and robust architecture:

1. Each package was designed as an independent unit with a specific
purpose, allowing for potential replacement or rewriting of a package
without impacting the rest of the system.

2. The implementation aimed to minimize dependencies, utilizing only
the necessary libraries and frameworks required for the project.

3. Circular dependencies between packages are avoided as much as pos-
sible. To ensure a clean and efficient structure where each package
only relies on the necessary dependencies.

Furthermore, an important aspect of the methodology was the development
of the Python package to be independent of ROS2. This decoupling was
undertaken to enhance the reusability and accessibility of the software, en-
abling any user, regardless of their access to a proper ROS2 installation, to
utilize the package effectively. A separate Python layer was built on top of
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the package to integrate it with ROS2, enabling seamless integration within
the Sycabot framework while preserving the package’s independence from
it. This approach directly aligns with the objectives stated in the intro-
duction, where the aim was to create a user-friendly Python package that
allows easy development and training of constrained inverse reinforcement
learning algorithms. Furthermore, it provides notable benefits for code test-
ing purposes. By separating the package from ROS2, it becomes simpler to
isolate and test specific functionalities and components of the CIRL imple-
mentation in a controlled environment. Meanwhile, the ROS2 components
can be tested separately in their own environment. This approach ensures
the dependability and precision of the package’s implementation.

By following these methodology and design approaches, the implementa-
tion achieved a well-structured and modular software package. The chosen
libraries and frameworks supported the necessary functionalities, while ad-
hering to OOP principles and design rules ensured a maintainable, extensi-
ble, and efficient codebase. The integration with ROS2 further expanded the
software’s capabilities, allowing for seamless communication with robots
and real world demonstrations, while maintaining the package’s reusabil-
ity and independence.

3.3 System Overview

This section provides a detailed exploration of the various components com-
prising our system and their interconnectedness. Similar to any Python
package, our system is structured into main modules, each containing sub-
modules that implement different classes or functions. Each module is
dedicated to a specific task, and its submodules or subclasses handle the
associated subtasks. For instance, the Agents module encompasses the im-
plementation of all available agents, with each agent being a submodule
responsible for its own learning methods. Figure 3.2 offers a simplified
overview of each system component and their dependencies, where the
ROS2 overlay was omitted as it is more independent of the entire system.

3.3.1 Config module

The Config module is responsible for loading and storing the configuration
and hyperparameters of the reinforcement learning problem. It handles
the creation of a Config object that stores all the necessary settings and
is automatically generated from a JSON file. The Config module ensures
that the entire system is configured correctly and consistently while pro-
viding a centralized location to manage and modify the hyperparameters
and settings of the problem, making it easier to experiment with different
configurations. By separating the configuration management from the rest
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of the framework, the Config module promotes modularity and reusabil-
ity. It enables the user to easily customize training’s hyperparameters or
modify other settings such as noise or obstacles.

3.3.2 Logger module

The Logger module plays a crucial role in capturing and recording valuable
information during the training process of agents. It offers a range of logger
classes, each serving as an interface for different types of discrete agents.
These loggers enable the collection and storage of important metrics, statis-
tics, and other relevant data points that provide insights into the agent’s
performance and learning progress. By integrating the appropriate logger
into the agent training pipeline, developers can easily monitor and analyze
crucial training metrics such as rewards, episode lengths, and exploration
rates. The Logger module serves as a valuable tool for assessing agent per-
formance, diagnosing issues, and facilitating iterative improvements to the
reinforcement learning process.

3.3.3 Expert

It is responsible for loading pre-trained optimal agents along with their
training configurations. These Experts are utilized to generate trajectories
using the learned policy. During the training phase, the Expert module pro-
vides access to its buffer, which contains high-quality trajectories obtained
from the learned policy or expert demonstrations. This module offers flexi-
bility and efficiency in integrating prior knowledge and expert demonstra-
tions into the training pipeline. The module also contains all the methods to
generate rollouts from an agent policy by interacting with the environment.

3.3.4 Environments module

The Environment module plays a role in the creation and management
of environments where agents interact and learn. It accomplishes this by
providing a base class called DiscreteEnv, which inherits from the gymna-
sium.Env class to ensure compatibility with the Gymnasium library. This
class establishes essential methods for interacting with environments and
can be easily specialized. Within the Environment module, the gridworld
class is also present, it specializes the DiscreteEnv class specifically for cre-
ating Constrained Discrete grid-based environments. This gridworld class
serves as the fundamental environment for all training activities in this
project. In summary, the Environment module forms a solid foundation
for creating and managing environments within the framework. It guar-
antees compatibility with Gymnasium, facilitates the creation of custom
environments, and relies on the Config module for efficient configuration
management.
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3.3.5 Methods module

The Method module encompasses a collection of static functions to imple-
ment various algorithms of reinforcement learning (RL), including inverse
RL, constrained RL, and entropy-regularized RL. By design, the Method
module is independent and self-contained, allowing the functions to be eas-
ily utilized across different projects and codebases simply by importing the
module. This modularity and reusability enable seamless integration of
new functions and the utilization of existing ones, empowering researchers
and developers to extend the capabilities of the framework effortlessly. The
Method module serves as a versatile toolbox, providing a wide range of al-
gorithms and techniques to address diverse RL scenarios while promoting
code efficiency.

3.3.6 Agents module

The Agents module provides essential tools for agent creation and train-
ing. It offers developers the flexibility to design and implement discrete
agents by extending the DiscreteAgent base class and utilizing the method
modules. The DiscreteAgent class establishes the core methods and func-
tionalities that are expected from any discrete agent. Within the Agents
module, there are agent classes corresponding to the algorithms discussed
in the previous section. Each agent relies on its associated method mod-
ules and the logger to implement specific learning algorithms and record
crucial training information. Additionally, every agent is aware of its en-
vironment and interacts with it. This interaction allows agents to acquire
relevant details during training.

3.3.7 Training module

The training module has two main functionalities: saving the agent’s data
and training configuration. It provides the capability to easily and effi-
ciently load a pre-trained agent and its training environment and configu-
ration for further training or to demonstrate its learning in real-world sce-
narios.

3.3.8 ROS2 overlay

The ROS2 Overlay module plays a role in interfacing the CIRL framework
and the Sycabot framework, enabling seamless communication between
the two and facilitating the interaction between them. Through the ROS2
Overlay module, users gain the ability to communicate with the robots via
the Sycabot framework, allowing for real-time trajectory harvesting during
training or showcasing the results of a training session. This online training
capability empowers users to continuously adapt and refine their models
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based on real-world robot demonstrations. Additionally, the module of-
fers a convenient means of displaying essential information using a video
projector, enhancing the visual feedback and facilitating demonstration and
comprehensive understanding of the training process.
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3.4 Implementation details

3.4.1 Training of an agent

The functions responsible for training an agent are all located in the root
directory of the Python package and all start with the prefix "train_*.py".
Their purpose is to orchestrate the various steps involved in the training
process. A simplified version of Python code for such function is given
below. Its workflow can be broken down as follow:

1. [Line 1] Loading Settings: The Config module is used to load the
settings from the specified JSON file in the settings folder. These set-
tings contain various configuration parameters required for the train-
ing process, such as environment specifications, batch size, maximum
number of iterations, etc...

2. [2] Environment creation: The environment is immediately created
using gymnasium make command after that.

3. [4-6] Sanity Check: A sanity check is performed using linear pro-
gramming (LP) to solve the constrained problem and verify the feasi-
bility of the problem. This check ensures that the specified environ-
ment and settings are valid and can be solved. If the sanity check fails,
a warning is raised and the training is stopped.

4. [8-12] Expert Creation: An expert is created using the provided envi-
ronment and expert data. The expert is responsible for generating a
buffer of trajectories and eventually sampling transitions from it dur-
ing the training process.1

5. [14-20] Training: The logger and agent objects are initialized and the
training loop starts, it iterates until convergence or the maximum
number of iterations is reached. Depending on the agent which is
being trained, a buffer of experiences is generated using the agent
policy and passed to it.

6. [22,23] Saving: If logging is enabled, the relevant information from
the training (e.g. learned reward) are saved in the training module.

7. [25] Visualization

1It is important to "humanly" check that the expert was trained in the same environment
as the one that will be used for the training. Nothing was made to check this as it was hard
to determine which feature to use.
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3.4.2 Model Based GDA

The implementation of the model-based GDA approach as seen in section
2.3 is relatively straightforward and does not require extensive discussion.
The use of the gradient descent algorithm for updating the dual variables
is a well-established and widely used optimization technique, and no spe-
cific methods were employed to optimize the gradient descent process in
this context. The formula for the natural policy gradient update, as de-
scribed in the NPG Cen et al. [2020] paper, is also straightforward, and the
pseudo-code provided in the paper offers a clear and informative outline
of the implementation process. Nevertheless, the algorithm’s structure will
serve as a fundamental architecture for model-free implementations, as it
consistently involves two distinct updates for the inverse and constrained
problems, followed by a policy update using the combined recovered Q-
values from both problems.

3.4.3 Sampling

To move towards model-free implementations, the sampling method for ex-
pert trajectories and agent replay buffer during training needs to be im-
plemented. This is achieved through the use of a Buffer object, which
is returned when using the generate_until_done() method from the re-
play_buffer module. For this work, the sampling is only done in simulation
using a noisy Gridworld environment, however it can easily be extended to
sample trajectories with the jetbots using the ROS2 overlay module.
The purpose of the Buffer object is to generate rollouts and store transi-
tion data. Where each transition is represented by a numpy array of shape
[N_transitions, 6 + n_constraints], where buffer[i, :] contains the
current state s, action taken a, next state s_next, termination and truncated
signals d2 and t, reward r, and constraint violation indicators psi_j for each
constraint j. During training, the Buffer object is utilized to extract data
as index -numpy or torch- arrays of shape [N_transitions, 1] (except for
psi, which has shape [N_transitions, n_constraints]). This allows to
then easily index arrays to perform operations over all states and actions in
the buffer.
Additionally, the Buffer object allows for sampling random trajectories or
transitions from the buffer, it can also be used as is with Numpy functions
thanks to the implementation of the __array__ class method. The Buffer
can also calculate and returns the vector of gammas Γ corresponding to
each transition in its buffer, to account for discounting -when estimating
an expectation with samples- until a fixed horizon T and this even if we
truncated the episode when the agent reached a terminal state at T_d < T.

2Note that the done signal which terminates the episode is raised when we are on the
terminal state, otherwise we would never collect rewards when they are defined on terminal
states. If we never reach a terminal state, the truncated signal is raised.
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This vector is defined as follows:

Eµ[r] =
1
|B|

Ntraj

∑
i=0

T

∑
t=0

γtr(si
t, ai

t) =
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r⊤i Γ (3.1)

Where:
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]
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Tf
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Tf
)
]

with Tf = Td if terminal state else Tf = T

Examples of using the Buffer object in Python code can be found in Ap-
pendix A.2.
The generate_until_done function, which is part of the replay_buffer mod-
ule, is responsible for generating the buffer object with trajectories that com-
plete once the agent reaches a terminal state. It takes the environment env,
the agent, the number of trajectories n_traj, and the maximum number of
steps max_steps as input. During each iteration, the function collects the
current state, selects an action, advances the environment, and records the
next state, reward, termination signal, and constraint violations. Finally, the
buffer is converted into a Buffer object and returned for further use.

3.4.4 Model Free GDA

With the Buffer object, the implementation of Model Free GDA is straight-
forward. Compared to Model Based GDA we want to remove the depen-
dency on the model by approximating the gradients with the trajectories in
the replay buffer and from the expert while performing soft Q learning to
recover the Q values for the NPG update step. This is done in ∼ 15 lines of
code without any problems:

1 def gda_model_free_update(policy_buffer):
2 s, a, s_next, d, _, _ = policy_buffer.extract_datas()
3

4 ## Primal update
5 # soft Q learning step
6 _q_grad = np.zeros_like(self._q)
7 next_v = soft.pi_values(self._q, self._policy,

self._beta)[s_next]↪→

8 targets = self.r[(s, a)] + (1 - d) * self._gamma * next_v
9 np.add.at(_q_grad, (s, a), self._q[(s, a)] - targets)

10 self._q = self._q - self._cfg.eta_q * _q_grad /
policy_buffer.size↪→

11

12 # NPG udpate

26



13 self._policy = npg_step(self._q, self.policy, self._beta,
self._gamma, self._cfg.eta_pi)↪→

14

15 ## Dual update
16 # Gradient descent
17 grad_w = np.mean(self._Phi[s, a], axis=(0, 1)) -

self._sigma_E↪→

18 self._w = self._w - self._cfg.eta_w * grad_w
19

20 grad_xi = self._env.b - np.mean(self._env.Psi[s, a],
axis=(0, 1))↪→

21 self._xi = self._xi + self._cfg.eta_xi * grad_xi
22

23 # Project onto ball
24 self._w = project(self._w, ball="l2-ball")
25 self._xi = project(self._xi, ball="linf-ball")
26

27 # soft Q learning step
28 _q_grad = np.zeros_like(self._q)
29

30 next_v = soft.pi_values(self._q, self._policy,
self._beta)[s_next]↪→

31 targets = self.r[(s, a)] + (1 - d) * self._gamma * next_v
32

33 np.add.at(_q_grad, (s, a), self._q[(s, a)] - targets)
34 self._q = self._q - self._cfg.eta_q * _q_grad /

policy_buffer.size↪→

35

36 # NPG udpate
37 self._policy = npg_step(self._q, self.policy, self._beta,

self._gamma, self._cfg.eta_pi)↪→

Where sigma_E corresponds to ϕTµ̂E
D where µ̂E

D is calculated as in (2.9).

3.4.5 IQ-learning

The implementation of IQ-learn update presented challenges, primarily due
to the limited explanations provided in the original papers [Garg et al.,
2021] and the absence of code to replicate their gridworld experiments. Var-
ious aspects, including gradient calculations, convergence problems, and
sampling methods, were either not addressed or only partially discussed,
particularly for the discrete case. Nonetheless, by adapting the implementa-
tion to leverage the automatic differentiation capabilities of PyTorch, it was
possible to achieve comparable results, at least for the imitation learning
task as we will see in the next chapter.
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The main reason for this is that initially, the gradient calculations for the
objective were performed explicitly. However, due to the complexity in-
volved, such as the presence of the logsumexp function, softmax operations,
and handling discrete values, the calculation process became error-prone.
It became challenging to determine whether observed discrepancies or is-
sues stemmed from the implementation itself or the lack of information
in the paper. Consequently, after weeks of implementation efforts and en-
countering numerous difficulties, it was decided to utilize the capabilities
of PyTorch for gradient calculations. Additionally, attempts were made to
replicate the code workflow provided in the paper as closely as possible,
aiming to reduce the likelihood of implementation errors. This adaptation,
as well as the willingness to replicate the results presented in their papers,
made this part of the code the longest and hardest part of this work. On the
other hand, it really contributed to enhance the capabilities of the frame-
work as many parts of the code had to be re-designed, re-thought and/or
fixed when they were suspected to be causing issues.
All the methods to perform one step of the IQ_learn algorithm are available
as static methods in the IQ_learning module inside the methods module of
the framework. Here is a brief explanation of the workflow of the code to
perform one step of the q_update for the IQ_learn algorithm:

1. Line 10-11: In order to use torch’s gradient calculation, it is neces-
sary to convert all the NumPy arrays that will be used as torch ten-
sors. The requires_grad should be set to True for the loss as well as
the q_values since we want to propagate the backward pass through
them. By performing the necessary transformations using torch op-
erations and calling the backward() method on the loss, we can then
obtain the grad attribute of q_values, which contains the gradient
computation.

2. Line 14-24: If the user requires using the policy buffer for the ap-
proximation of the second term of the IQ loss, the policy buffer is
appended to the expert buffer. The index arrays are then extracted
from the resulting buffer.

3. Line 35-62: The loss is computed, following the same workflow as in
Garg et al. [2021].

4. Line 63-64: The gradient is obtained using torch’s autograd, and the
gradient ascent is performed to update the q_values. Note that the
losses are saved during the calculations and returned for logging pur-
poses.

The full implementation of the update function with PyTorch is available in
Appendix A.3.
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3.4.6 Gymnasium environment

Gymnasium based its implementation on the classic "agent-environment
loop" depicted in Figure 3.3. While it is a simplified representation of re-
inforcement learning it allows to set a standard for RL’s interaction imple-
mentation. This loop can be easily implemented using the following code:

1 import gymnasium as gym
2 env = gym.make("<registered_env>")
3 observation, info = env.reset()
4 is_done = False
5

6 # Generate one trajectory
7 while not is_done:
8 action = agent.sample_action(observation) # Agent policy

that uses the observation↪→

9 observation, reward, is_done, _, _ = env.step(action)
10

11 if is_done:
12 observation, _ = env.reset()
13

14 env.close()

Figure 3.3: Schema of the "agent-environment loop". Source: https://gymnasium.
farama.org/content/basic_usage/

In order to register a user-defined environment to be able to call it with
Gymnasium’s make function, two requirements must be met. First, the en-
vironment class should inherit from the base class gymnasium.Env and im-
plement the main API methods: step(), reset(), render(), and close().
The step() method updates the environment state based on the provided
action and returns the next observation, the reward received, a boolean flag
indicating if the episode is done, a boolean flag which is not used in this
implementation and any additional information. The reset() method re-
sets the environment to its initial state and returns the initial observation.
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The render() method can be implemented to visually represent the envi-
ronment state, although it is not available in the current implementation.
The close() method can be used to release any resources associated with
the environment.
The second requirement is to register the user-defined environment using
the gymnasium.register function, which allows the environment to be ac-
cessed using the gymnasium.make function by providing the registered en-
vironment ID.
Here’s an example of registering a user-defined environment:

1 from gym.envs.registration import register
2

3 register("<env_name>",
entry_point="<entry_point_of_user_defined_env>")↪→

3.4.7 DiscreteEnv and Gridworld

The DiscreteEnv class is responsible for creating discrete environments that
are compatible with gymnasium. It requires three arguments: the initial
state distribution ν0, the transition dynamics P, and the state-action reward
r. With this information, it automatically infers the state and action spaces
and implements the necessary methods for compatibility with Gymnasium.
One specific environment created using DiscreteEnv is the gridworld en-
vironment, registered in gymnasium as gridworld-v0. This environment
represents a constrained discrete environment where the world is struc-
tured as a grid of cells. Fig. 3.5 below depicts the lab’s maze represented as
a gridworld environment.

Figure 3.4: Schema of the model of the noise with probability written in the cells, n
corresponds to the noise of the environment. GREEN: Anticipated final state. RED: Noisy
final state.
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Figure 3.5: View of the lab represented as a gridworld. Arrows represent a policy, cells’
color the reward, hatched cells represent the obstacles.

In this environment the noise adds a probability that the agent ends up in
the wrong terminal state. It allows to model a bit finer what could really
happen in reality. The model of the noise is depicted in the Fig. 3.4.
The Gridworld class, built as a specialization of the DiscreteEnv, is responsi-
ble for handling the creation of this gridworld environment. It offers great
flexibility in creating constrained environments, allowing users to specify
various parameters in the settings file. Some of the key parameters that can
be specified include:

• A dictionary of obstacles, where each obstacle is defined as a list of
lines’ endpoints.

• A list of exit states, where each exit is represented as a the two end-
points of a line.

• The dimensions (width and height) in meters, which can be specified
or automatically inferred based on the obstacles and exits.
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• The grid size in meters, corresponding to the length of one side of the
square grid.

• The noise level, which represents the probability of ending up in a
non-desired state.

• The list of possible actions that agents can take in the environment.

• The way the rewards must defined in this world among the predefined
reward classes.

3.4.8 Sweeps and hyperparameters search

WandB offers a powerful feature called sweeps, which allows for automated
hyperparameter search and exploration of the model space. Sweeps can be
performed using different methods, including random search, grid search,
and Bayesian tuning. Grid search involves defining a grid of hyperparam-
eters along with lists of acceptable values to try for each hyperparameter,
and the algorithm exhaustively tries every combination on the grid. On the
other hand, random search involves sampling hyperparameter values from
specified distributions, instead of trying all possible combinations.
Grid search can be computationally expensive as it requires trying all com-
binations, while random search provides a good overview with fewer runs
by sampling hyperparameter configurations independently. However, both
approaches treat hyperparameter configurations as independent, which may
not always be optimal. Bayesian hyperparameter tuning addresses this limi-
tation by building a probabilistic model for the objective function and using
it to find the best hyperparameters for model training3.
After many different tries the grid search was finally employed for the
sweeps as it was hard to define a cost function for the Bayesian hyper-
parameter search and the grid search gave a good overview of parameters
importance.

3.4.9 Config and settings files

To facilitate experimentation, tuning, and variation, it is possible to specify
settings before training, as described in Section 3.3. These settings can be
defined in a JSON file following and encompass various objects and their
corresponding parameters. They are declared as shown in the code below.
The main objects that can be specified include gridworld, cirl, safe_rl,
inverse_rl, and logger. Each of these objects has its own set of parameters,
an inclusive list under the form of JSON file of these parameters along with
a brief description of their respective functions can be found in Appendix
A.4.

3Further details on these methods can be found in the WandB sweeps documentation
https://docs.wandb.ai/guides/sweeps
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1 "object":{
2 "parameter1": value,
3 "parameter2": value
4 }

3.4.10 ROS2 interface

The integration of the CIRL framework with the Sycabot ROS2 framework
was a straightforward process. The ROS2 framework can be treated as a
blackbox that advertises the position of the jetbots and awaits commands
for the MPC or the jetbot’s wheels from external sources via ROS2 topics.
The simplified diagram below illustrates the interconnection between the
ROS2 framework, the ROS2 interface, and the CIRL framework:

Figure 3.6: Simplified overview of the interconnections between the frameworks.

The ROS2 interface acts as a bridge, facilitating the communication and data
exchange between the CIRL framework and the Sycabot ROS2 framework.
It allows the CIRL framework to access the pose information of the jetbots
and send commands to the MPC controller or directly control the jetbot’s
wheels through the ROS2 topics provided by the ROS2 framework.
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Chapter 4

Experiments and discussion

The following section presents the results and comparisons of the three
algorithms - GDA-CIRL, SGDA-CIRL, Q-CIRL - developed in the method-
ology section. To ensure clarity and consistency, all experiments are con-
ducted and compared in the 6x6 gridworld environment shown in Figure
4.1. The optimization results in the laboratory environment are showcased
in Appendix B.2 for the model-free algorithm but not discussed further as
the 6x6 gridworld setting allows for quick and fast testing and analysing
while the discussions and observations made in this settings should remain
valid for the laboratory settings (16x31 gridworld).

Figure 4.1: 6x6 gridworld environment used for the trainings. Cells’ color represents the
reward and red hatched cells represent the constrained states.

34



4.1 Training setup

4.1.1 Environment

The gridworld environment was initialised with 4 actions UP, DOWN, LEFT,
RIGHT, with noise of 0.05, gamma of 0.9 and beta of 0.1. The constraint
threshold was set to 5e-3 for every constraint and the reward to be +1 on
every exit.

4.1.2 Expert demonstrations

We obtained expert demonstrations by training a regularized model based
constrained agent in the environment. The convergence criterion was cho-
sen as the l1-norm between the unregularized cost (2.3) of the previous it-
eration and the current one. The optimisation was stopped if the norm was
below the tolerance threshold, set to tol = 1e− 5. The policy obtained after
training is shown in Figure 4.2. For training in the 6x6 setup, the expert
buffer is filled with 1000 trajectories, with a different seed, at the beginning
of each run.

Figure 4.2: 6x6 gridworld environment where the arrows correspond to the expert policy.
Cells’ color represents the reward and red hatched cells represent the constrained states.
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4.1.3 Hyperparameters

The optimal hyperparameters were found using random search sweeps
from WandB and empirical search. For the sweeps β1, as well as the learning
rates η were considered as a tuning parameter, all other parameters were
fixed empirically. Tables B.1 in Appendix B.1 shows the hyperparameters
used for each agent training.

4.1.4 Testing

Every agent are tested every 500 iterations by comparing the expected re-
ward of the expert and the agent, the constraints violation, the l1-norm to
the expert occupancy measure and the l2-norm to the expert reward up to
a constant. These metrics are calculated using the exact occupancy mea-
sure2 of the agent’s policy and the Monte Carlo estimate of the expert one
as defined in (2.9).

4.1.5 Other comments

The feature class of the GDA and SGDA-CIRL algorithms has been de-
signed to not account for constrained state and enforce the reward to zero
at these states. This adjustment had no apparent effect on the training pro-
cess and results. It is reasonable to assume that since the reward cannot
be determined within the constraints, assigning it a value of zero is a fair
choice. By implementing this approach, it is possible to enhance the gener-
alizability of rewards by avoiding abnormal values for the reward in these
states as they are almost never visited.

4.2 Results

In this section, we will showcase the training results of the three agents on
the 6x6 gridworld. Each algorithm is trained 10 times for 200.000 iterations,
the results are then averaged and given along with their standard deviation.

4.2.1 Optimisation time and convergence time

Table 4.1 presents the algorithmic performances of the three algorithms. The
convergence time is defined as the point at which the l1-norm to the expert
occupancy measure, stabilizes within a range of ±5% of its final value. Also
note that the average time per iteration takes into account the total training
time, including the generation of any required buffers and logging, which
occurs every 500 iterations.

1Here beta is considered a tunable parameter as it can be viewed as a way to control the
randomness of the learned policy and therefore drastically impact the training results.

2The occupancy measure is calculated using the environment’s dynamics during logging.
This is the only time the dynamics are used for the model free agents.
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Agent Average time per
iteration (s)

Convergence time
(#iterations)

GDA-CIRL
l1 ball 0.00186± 0.0001 51.328± 37.518

GDA-CIRL
l2 ball 0.00186± 0.0001 6.328± 1.951

SGDA-CIRL 0.00337± 0.00017 9.217± 2.106

Q-CIRL 0.00204± 0.00005 48.843± 10.761

Table 4.1: Comparison of algorithmic performances of the three algorithms.

Among the three algorithms, the SGDA-CIRL algorithm shows slightly
lower performance in term of time per iteration. This can be attributed to
the fact that SGDA-CIRL needs to generate a policy buffer at each iteration
and perform four different gradient steps over the buffer elements. In con-
trast, the GDA-CIRL algorithm does not require any buffer for training and
mainly involves quick array operations. Moreover, the Q-CIRL algorithm
also generates a buffer, but only performs three gradient steps and utilizes
the optimized gradient calculations provided by PyTorch. Moreover, it is
important to note that the focus of this study was not on optimizing time
complexities, so these differences could also be attributed to that aspect.
Additionally, the SGDA-CIRL and GDA-CIRL agents converges approxi-
mately five times faster in average compared to the other two algorithms.

4.2.2 Training

The primary focus of this section will be to compare the SGDA-CIRL and
Q-CIRL algorithms, as they represent the novel contributions in this study.
Additionally, the GDA-CIRL algorithm will be utilized as a benchmark to
assess the performance of the other two algorithms.
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Figure 4.3: Result of the training of the GDA-CIRL algorithm with reward featured pro-
jected onto the l2 ball. The color of the cells represents the reward value for the specified
action, the red hatched cells the constrained states and the arrows the learned policy. The
learned reward is state dependent only.

Fig. (4.3, 4.6, 4.4), display the results of the training for each agent. Results
for the l1-ball projection of the SGDA and GDA algorithms are shown in
Appendix B.3. Table 4.2 show the comparison of the performances of the
three agent.

Agent Eµπ [r]−EµE [r] ∥µπ − µE∥1 ∥r− (rE + k) · n̂∥2

GDA-CIRL
l1 ball 0.0171± 0.0003 5.769± 0.83 0.1857± 0.004

GDA-CIRL
l2 ball 0.092± 0.005 0.144± 0.025 0.427± 0.083

SGDA-CIRL
l2 ball 0.119± 0.008 0.112± 0.036 0.4048± 0.097

Q-CIRL −3.172± 0.008 0.058± 0.013 2.687± 0.001

Table 4.2: Averaged training results.

It appears that while the Q-CIRL algorithm outperforms the other in imi-
tating the expert policy, its efficiency in recovering rewards that are close to
the expert one is lower than what was claimed in the original paper. This
behavior has a direct impact on the generalizability of the reward to new
sets of constraints, which is the main motivation behind CIRL. However,
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the original paper proposes a modification to the optimization function that
aims to learn state-only rewards. Unfortunately, all attempts to implement
this modification successfully have failed thus far, this remains open for
further investigation.

Figure 4.4: Result of the training of the Q-CIRL algorithm. The color of the cells represents
the reward value for the specified action, the red hatched cells the constrained states and the
arrows the learned policy.

In contrast, the SGDA-CIRL algorithm demonstrates impressive performance
in recovering both the reward and policy of the expert, producing results
that are close to optimal compared to the GDA-CIRL algorithm. Although
the recovered reward may exhibit some slight imbalance, it appears to pos-
sess effective generalizability to a new set of constraints. This intuition is
supported by the visualization in Figure 4.5, which displays the policies ob-
tained by training a new agent using the learned reward for both the SGDA
and Q-CIRL agents3. Notably, for states (2,2), (3,2), and (4,2), the policy
obtained for the Q-CIRL reward continues to avoid the previous obstacles,
while the one for the SGDA-CIRL reward directly heads towards the exits.

3In this case, the CMDP problem was solved using an LP solver.
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Figure 4.5: Comparison of the policy obtained after training a new agent with the reward
obtained for the Q-CIRL (LEFT) and for the SGDA-CIRL (RIGHT) algorithms. An LP
solver was used to solve the unregularized CMPD, that is why policies are deterministic.
Policy on the terminal state (5,1) and (3,5) should be ignored as the agent will stay there
anyway.

Figure 4.6: Result of the training of the SGDA-CIRL algorithm. The color of the cells
represents the reward value for the specified action, the red hatched cells the constrained
states and the arrows the learned policy. The learned reward is state dependant only.

4.3 Going further

In the previous section, we assessed the performance of three algorithms in
a noisy gridworld. However, we did not explore how well the robot would
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perform if it followed the learned policy in a real-world scenario, as every-
thing was conducted in simulation. In our experiments, the robot adhered
to the policy precisely due to the use of a highly reliable MPC controller, en-
suring it moved to the next cell accurately. Nevertheless, we recognize that
this approach could be perceived as somewhat biased, as the agent’s noise
is notably diminished when using the controller. Nonetheless, incorporat-
ing a controller in conjunction with a discrete algorithm could offer a viable
real-world solution, especially considering the ease of training algorithms
in discrete settings. However, it is important to note that implementing this
approach for complex tasks with thousands of cells would demand sub-
stantial memory and computational capacity to store the necessary arrays.
An alternative approach, which we did not investigate in this study, in-
volves operating in a continuous action space, where actions are repre-
sented as velocity commands provided to the robot’s wheels. To achieve
this, the algorithms would need to undergo some modifications, incorpo-
rating deep neural networks and soft actor-critic methods to approximate
policy and value functions. In such cases, relying solely on simulations for
learning may not suffice, as accurately modeling the robot’s dynamics be-
comes challenging. Fine-tuning the algorithms using real-world trajectories
might become necessary to achieve optimal performance in these scenarios.
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Chapter 5

Conclusion

In conclusion, this scientific report presented the successful implementa-
tion, design, and evaluation of two novel algorithms for Constrained Inverse
Reinforcement Learning (CIRL), one based on stochastic gradient descent
ascent (SGDA-CIRL) and the other based on IQ-Learn, a recent state-of-the-
art imitation learning algorithm.
Our findings have shown promising results for the Q-CIRL algorithm, but
it also revealed certain limitations that may pose challenges for its further
exploitation in CIRL. Notably, the algorithm struggled to recover easily gen-
eralizable rewards and faced difficulties in enforcing reward classes. De-
spite these limitations, there are still unanswered questions regarding its
implementation, particularly in recovering state-only rewards. On the other
hand, the SGDA-CIRL algorithm surpassed expectations, delivering results
that approached the model-based approach and demonstrating rapid con-
vergence compared to Q-CIRL.
The development of an open-source framework for CIRL was a significant
contribution of this study, offering a versatile platform for implementing
and extending CIRL algorithms and other reinforcement learning (RL) tech-
niques. The availability of this framework as open-source software encour-
ages collaborative contributions and paves the way for future advancements
in the field.
To further advance the research in this area, additional experiments could
be conducted by exploring new sets of hyperparameters and creating novel
gridworld configurations. The framework’s emphasis on code reusability
and adaptability makes such experiments easy to conduct. Moreover, new
algorithms based on various CIRL and RL methods implemented in the
framework could be proposed and tested, providing valuable insights into
the effectiveness of different approaches.
However, practical considerations and limitations need to be acknowledged.
Model-based algorithms, while successful in controlled environments, is
not really realistic in real-world implementations and sampling based meth-
ods seems more appropriate. While discrete implementation is well suited
to quickly experiment and validate theoretical results in a lab settings, the
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memory and computation requirements of this method limit its applica-
bility to complex real-world problems. For continuous state-action space
applications, methods like soft actor-critic would be necessary for policy
estimation. Addressing noise in system dynamics through regularization
is essential for any real-world application, and careful consideration of the
link between a CMDP and the real world is vital, which can be facilitated
using practical frameworks like ROS2, as utilized in this study.
In conclusion, this research contributes significantly to the advancement
of CIRL algorithms, shedding light on their strengths, limitations, and po-
tential avenues for future research. By addressing the outlined considera-
tions and limitations and conducting further experiments, the field of Con-
strained Inverse Reinforcement Learning can continue to progress and offer
solutions to complex real-world problems
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Appendix A

A.1 Simplified implementation of the training process

1 def training():
2 cfg = Config.load_config("settings_filename")
3 env = make("gridworld-v0", cfg=cfg.env)
4

5 success, message, _ = LP.solve(env, cfg)
6 if not success:
7 raise RuntimeWarning("some error message")
8

9 expert = Expert(
10 env,
11 datas_path="expert_datas_filename",
12 n_expert_trajectories=cfg.n_expert_trajectories,
13 )
14

15 logger = AgentLogger(args, cfg.Logger)
16 agent = AgentClass(args, [expert], cfg.AgentCfg, logger)
17

18 it = 0
19 while it < cfg.max_iter or convergence_criterion:
20 buffer = replay_buffer.generate(env, agent,

cfg.batch_size, cfg.max_steps)↪→

21 agent.update([expert.buffer.get_batch(cfg.batch_size),
buffer], n_iter=it)↪→

22 it += 1
23

24 if logging:
25 save(relevant_information)
26

27 visualize(env, infos)
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A.2 Buffer code examples

Here are some code examples using the Buffer object:

1 # Generate a new Buffer
2 buffer = replay_buffer.generate_until_done(env, agent,

cfg.batch_size, cfg.max_steps)↪→

3

4 # Returns index arrays as numpy arrays.
5 s, a, s_next, d, r, psi = buffer.extract_datas(as_torch=False)
6 # Useful to index array easily.
7 q[(s,a)] = r[(s,a)] + gamma*values[(s,a)]
8

9 # Transform the Buffer object into a numpy array of shape
[N_transitions, 5 + n_constraints].↪→

10 buffer_arr = np.array(buffer)
11

12 # Get a batch of random transitions or traj, also a Buffer.
13 batch_transitions: Buffer =

buffer.get_batch_random_tranisitions(batch_size)↪→

14 batch_traj = buffer.get_batch_random_traj(batch_size)
15

16 # Get vector Gamma
17 gammas = buffer.get_gamma_vec(gamma)

A.3 iQ learn implementation

The following code shows the implementation of one update step of the
iQ-learn algorithm.

1 def q_update_torch_grad(
2 expert_buffer: np.ndarray,
3 q_r: np.ndarray,
4 gamma: float,
5 beta: float,
6 cfg: DiscreteConfig.inverseRlConfig,
7 policy_buffer: np.ndarray = None,
8 ):
9 # Cast numpy array to tensor and create loss

10 q_values = torch.tensor(q_r, requires_grad=True)
11 loss = torch.tensor(0.0, requires_grad=True)
12

13 # Add the policy buffer to the expert buffer only if the
calculations of the second term use policy states↪→
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14 if iQLossType(cfg.loss_type) == iQLossType.VALUE:
15 buffer = Buffer(np.append(expert_buffer, policy_buffer,

axis=0))↪→

16 is_expert = np.append(
17 np.ones(np.array(expert_buffer).shape[0],

dtype=bool), np.zeros(policy_buffer.shape[0],
dtype=bool)

↪→

↪→

18 )
19 else:
20 buffer = expert_buffer
21 is_expert = np.ones(np.array(expert_buffer).shape[0],

dtype=bool)↪→

22

23 # Get index array from the buffer
24 s, a, s_next, d, _, _ = buffer.extract_datas(as_torch=True)
25

26 # Compute optimal values
27 values = beta * torch.logsumexp(q_values / beta, axis=1)
28

29 current_q = q_values[s, a]
30 next_v = values[s_next]
31 current_v = values[s]
32

33 # calculate 1st term for IQ loss
34 # -E_(mu_E)[Q(s, a) - gamma*V(s')]
35 y = (1 - d) * gamma * next_v
36 if cfg.use_targets:
37 with torch.no_grad():
38 y = (1 - d) * gamma * next_v
39

40 r = (current_q - y)[is_expert]
41 with torch.no_grad():
42 grad_phi = get_grad_phi(r, cfg.div_method,

cfg.alpha_chi2)↪→

43

44 loss = (grad_phi * r).mean()
45 loss_dict = {"softq_loss": loss.item()}
46

47 # calculate 2nd term for IQ loss, we show different
sampling strategies↪→

48 if iQLossType(cfg.loss_type) == iQLossType.VALUE:
49 # sample using expert and policy states (works online)
50 # E_(mu)[V(s) - gamma*V(s')]
51 value_loss = (current_v - y).mean()
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52 elif iQLossType(cfg.loss_type) == iQLossType.VALUE_EXP:
53 # sample using only expert states (works offline)
54 # E_(mu_E)[V(s) - gamma*V(s')]
55 value_loss = (current_v - y)[is_expert].mean()
56 elif iQLossType(cfg.loss_type) == iQLossType.V0:
57 # alternate sampling using only initial states (works

offline but usually suboptimal than `value_expert`
startegy)

↪→

↪→

58 # (1-gamma)E_(mu0)[V(s0)]
59 value_loss = (1 - gamma) * current_v[is_expert].mean()
60 loss -= value_loss
61 loss_dict["value_loss"] = value_loss.item()
62 loss_dict["total_loss"] = loss.item()
63 loss.backward()
64 q_r -= cfg.eta_qr * np.array(-q_values.grad)
65 return q_r, loss_dict

A.4 Config object declaration

The following shows the different objects which can be declared in a JSON
setting file as well as their respective parameters. Note that each cirl agent
defined by its class_type parameter has its own mandatory attributes, that
is why three different versions of the object are shown.

1 {
2 "gamma": 0.9,
3 "beta": 0.001,
4 "batch_size": 5,
5 "n_expert_trajectories": 1000,
6 "max_steps": 10,
7 "expert_filename": "safe_rl_exp_6x6",
8

9 "cirl":{
10 "class_type": "gda_model_based",
11 "eta_w":1e-2,
12 "eta_xi":0.01,
13 "eta_policy":0,
14 "proj_type": "l1_ball",
15 "ball_radius": 8,
16 "feature_class": 1,
17 "max_iter":20000,
18 "tol": 1e-9,
19 "q_threshold": 100000,
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20 "xi_threshold": 100000
21 },
22

23 "cirl":{
24 "class_type": "gda_model_free",
25 "eta_w":1e-5,
26 "eta_xi":0.01,
27 "eta_q":0.5,
28 "eta_policy":1e-4,
29 "proj_type": "",
30 "ball_radius": 8,
31 "feature_class": 1,
32 "max_iter":150000,
33 "tol": 1e-9,
34 "q_threshold": 100000,
35 "xi_threshold": 100000
36 },
37

38 "cirl":{
39 "class_type": "iq_learn",
40 "eta_qr":1e-4,
41 "eta_qc":1e-4,
42 "eta_xi": 1e-2,
43 "div_method": "chi2",
44 "alpha_chi2": 0.5,
45 "loss_type":"value_expert",
46 "use_targets": true,
47 "state_only_reward":false,
48 "torch_grad": false,
49 "max_iter":200000,
50 "tol": 1e-9,
51 "q_threshold": 100000,
52 "xi_threshold": 100000
53 },
54

55 "inverse_rl":{
56 "eta_w": 0.9,
57 "eta_qr":0.001,
58 "eta_policy":0,
59 "lambda_w": 0,
60 "feature_class": 0,
61 "n_traj_feature_exp":10000,
62 "proj_type": "l1_ball",
63 "ball_radius": 2,
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64 "div_method": "chi2",
65 "alpha_chi2":0.5,
66 "max_iter": 200000,
67 "tol": 1e-16,
68 "q_threshold": 200000,
69 "use_targets": true,
70 "loss_type": "value_expert",
71 "state_only_reward":false,
72 "torch_grad": true
73 },
74

75 "safe_rl":{
76 "eta_xi":0.001,
77 "eta_qc": 0,
78 "eta_policy": 0,
79 "max_iter": 100000,
80 "tol":1e-5,
81 "xi_threshold": 999999999999
82 },
83

84

85 "logger":{
86 "project_name": "cirl_gda_model_free",
87 "configs_to_log":["cirl"],
88 "hyperparam_to_log": ["beta", "gamma",

"gridworld.noise", "batch_size", "max_steps"],↪→

89 "log_freq": 500,
90 "logging": true
91 },
92

93 "gridworld":{
94 "noise":0.05,
95 "actions":[[0,-1],[1,0],[0,1],[-1,0]],
96 "gridsize":1,
97 "dimensions":[5,5],
98 "infer_dimensions":false,
99 "reward_class":0,

100 "offset": [2.5,2.5],
101 "b_values":{
102 "default":5e-3
103 "1": 0.1
104 },
105 "exits":[
106 [[3,5],[3,5]],
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107 [[5,0],[5,0]]
108 ],
109 "obstacles":{
110 "1":[
111 [[1,1],[4,1]],
112 [[2,3],[3,3]]
113 ]
114 }
115 }
116 }
117

Parameter Description

gamma The discounting factor.

beta The temperature parameter.

batch_size Number of batches to generate for training.

n_expert_trajectories Number of expert trajectories to generate and store
in the expert buffer.

max_steps Maximum number of steps per episode.

expert_filename Filename of the pre-trained expert to use for training.

class_type Agent to use for CIRL (options: "iq_learn",
"gda_model_based", "gda_model_free").

eta_<var> Learning rate for the gradient algorithm correspond-
ing to <var>.

proj_type Projection to use for projecting the feature vector w.

ball_radius Radius of the L1_ball.

feature_class Feature class for the reward.

max_iter Maximum number of iterations for training.

tol Tolerance for convergence.

q_threshold [DEPRECATED]

xi_threshold [DEPRECATED]

use_targets Whether to take targets into account in the gradient
update for iQ learning.

loss_type Method to estimate the second term of the loss in iQ
learning.

52



state_only_reward Whether to recover state-only rewards in iQ learning.

torch_grad Whether to compute gradients using torch or the ex-
plicit method.

project_name Project name for logging in WandB.

configs_to_log Configurations of the object to log as config for the
WandB run.

hyperparam_to_log Specific hyperparameters to log from the configura-
tion file.

log_freq Frequency of logging.

logging Whether to enable logging or not.

noise Noise level of the environment.

actions List of available actions in the environment.

gridsize Length of one side of the squares in the grid.

dimensions Dimensions of the world in meters.

infer_dimensions Whether to infer dimensions from obstacles and exits
or not.

reward_class Predefined reward class to use.

offset Offset to change the centering of the gridworld.

b_values Dict defining the constraint cost for each constraint.

exits List defining the endpoints of the exit lines in real-
world coordinates.

obstacles Dict specifying the obstacles as lists of line end-
points.

Table A.1: Settings parameters and their usage
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Appendix B

B.1 Hyperparameters used

Table B.1 shows the hyperparameter configuration used for the trainings.
Note that for the GDA-CIRL agent, there are two sets of parameters, one
set for each of the projection used.
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Agent Hyperparameter Value

Q-CIRL

beta 1e-2

eta_qr 1e-3

eta_qc 1e-6

eta_xi 1e-2

batch_size 20

max_steps 10

loss_type "value_expert"

div_method "chi2"

alpha_chi2 0.5

use_targets True

SGDA-CIRL

beta 1e-2

eta_q 5e-2

eta_w 1e-3

eta_xi 1e-2

eta_pi 5e-4

ball_radius
√

2

batch_size 20

max_steps 10

feature_class Everywhere

proj_type "l2_ball"

GDA-CIRL

beta 1 | 1e-1

eta_w 1e-3 | 1e-3

eta_xi 10 | 1e-2

ball_radius 2 |
√

2

proj_type "l1_ball" | "l2_ball"

eta_pi 0 (soft policy iter) | 5e-4

feature_class Everywhere

Table B.1: Hyperparameters used for the training of the agents.
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B.2 Training in the lab settings

Figure B.1 illustrates the training results of the SGDA-CIRL algorithm in the
lab settings. The obtained rewards demonstrate satisfactory performance,
indicating potential for generalization. However, a drop in performance is
observed in this settings. It is important to note that the hyperparameters
utilized in this training phase were suboptimal, suggesting that alternative
parameter configurations may yield improved results. Moreover, the infre-
quent visitation of certain states by the expert, such as (5,1), (5,2), (5,3), or
exits (4,0) and (5,0), presents challenges for the agent to recover their asso-
ciated rewards. Consequently, the agent may assign higher significance to
more frequently visited states. However, addressing this issue remains an
open question for future research.

Figure B.1: Result of the training of the SGDA-CIRL algorithm (RIGHT) in the lab
environment. The expert used is depicted in Fig.B.2. The reward features are projected
onto the l2 ball.
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Figure B.2: Expert used for the training in the lab settings.

B.3 l1-ball feature projection

The suboptimal results observed for the SGDA-CIRL agent on Fig. B.4
when using the projection onto the l1-ball raise an open question for future
investigation as the underlying reasons for this outcome warrant further
exploration and analysis.
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Figure B.3: Result of the training of the GDA-CIRL algorithm with reward features pro-
jected onto the l1 ball.

Figure B.4: Result of the training of the SGDA-CIRL algorithm with reward features
projected onto the l1 ball.
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