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Abstract

By incorporating known constraints into the inverse reinforcement learning (IRL) framework, con-
strained inverse reinforcement learning (CIRL) can learn behaviors from expert demonstration while
satisfying a set of pre-defined constraints. This makes CIRL relevant in safety-critical domains, as
it provides a direct way to devise AI systems that enforce safety requirements. This master the-
sis proposes and analyzes an algorithm, termed NPG-CIRL, that solves the problem of CIRL. Our
algorithm implements a primal-dual scheme that extends the natural policy gradient (NPG) algo-
rithm to the CIRL setting. We provide a finite-time analysis of the algorithm’s global convergence
in the idealized exact gradient setting and the more practical stochastic gradient setting. We show
that the algorithm requires O(1/ϵ2) gradient evaluations to reach an ϵ-approximate solution and to
satisfy the imposed constraints. Our analysis also quantifies the sample complexity, showing that
the algorithm requires O(1/ϵ4) samples to achieve convergence when using Monte Carlo gradient
estimation techniques.
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Notation

In the following text, we use the following conventions for notation. We denote all of our vectors x
in bold, our scalars x in regular weight and our matricesX are capitalized. When used between two
vectorsx > y, the comparison is element-wise. The transpose operation is denotedX⊤. The scalar
product ⟨x,y⟩ between two vectors x, y is denoted using angled brackets. When a single-variable
function f : R→ R is applied to a vector f(x), it is applied element-wise.

We write ∥x∥p to denote the p norm of a vector x. The notation ∥X∥ denotes the spectral norm of a
matrix. The ∥X∥p notation denotes the operator norm of amatrix induced by the vector norm p. The
∥X∥F notation denotes the Frobenius norm over the matrixX .

We write |S| for the cardinality (the number of elements) of a discrete set S. When considering a
discrete function f : S → R, we write f(s) for a specific element s ∈ S. We also use the following
shorthand to think of discrete functions, we let the vector f = [f(s1), ..., f(x|X|)]

⊤ ∈ R|X| contain
all of the values taken by the function f : S → R over the finite set S. When using that notation of
discrete functions as vectors, we write the function f in bold.

We write ∆S for the probability simplex over the set S. When considering functions over sets (for
instance, a set of simplices), we write∆S

U ; here, this is a mapping from a set S to a set of probability
simplices over the discrete set U .

Quantities that evolve with time, such as algorithm parameters or the current state in a stochastic
process, are expressed as x(t) for the t-th iteration (where x is the quantity).
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1
Introduction

Reinforcement learning (RL) has emerged as a prominent field of artificial intelligence, enabling
great success in various applications and industries, such as robotics [Peng et al. 2020; Lee et al.
2020], autonomous vehicle control [Kiran et al. 2022], software engineering [Mankowitz et al. 2023]
and bioinformatics [Wang et al. 2022]. By allowing agents to learn optimal behaviours from trial and
error, RL has the potential to enhance efficiency in many industries and address complex decision-
making problems that were previously unsolvable.

However, RL is often called a ”black box method” because of its inherent complexity and lack of
transparency. The decision-making processes and learned policies of RL agents are not easily ex-
plainable by humans, and most RL methods do not allow for explicit constraints to be specified.
Thich has led to concerns regarding safety and explainability in RL agents.

Safe RL describes the research area aiming to develop algorithms and methodologies that ensure
agents learn and act tominimise the risk of harmful outcomes, preventing potentially dangerous sit-
uations. This aspect is particularly crucial in domains such as healthcare and autonomous vehicles,
where the impact of a wrong decision can be disastrous. As RL algorithms become more com-
plex, their lack of interpretability hinders their adoption in critical domains. Explainable RL aims to
bridge this gap by enabling humans to better understand an agent’s decisions, facilitating trust, ac-
countability, and better integration of RL systems into real-world applications. Research in safe and
explainableRL is crucial to ensure AI agents’ safe and effective deployment in real-world scenarios.

The following thesis proposes an algorithm called NPG-CIRL to solve the problem of constrained
inverse reinforcement learning (CIRL) and provides convergence guarantees. The CIRL problem is
an extension of the inverse reinforcement learning problem (IRL) [A. Ng, Harada, and Russell 1999],
which is concerned with recovering a reward function explaining the behaviour of an expert agent.
IRLmethods are generally consideredpart of the broader class of imitation learningmethods, which
aim to enable agents to learn behaviours from demonstrations. This approach has seen great suc-
cess in the field of robotics and has, for instance, been used to train locomotive policies in robotic
dogs, using expert data acquired by motion capture on real canines [Peng et al. 2020]. Rewards
recovered through IRL methods can, in turn, be used to clone the behaviour of that expert. Com-
pared to alternative methods, such as behavioural cloning that directly tries to reproduce an expert
policy with supervised learning, IRL presents the advantage of recovering a representation of the
underlying goal of the expert. Depending on the problem structure, especially inMDPs with sparse
rewards, the reward may provide a more compressed representation of the goal of an agent than
the expert policy. Furthermore, this representation describes a goal independent of the underlying
MDP dynamics. That makes IRL better suited to learn policies that are transferable across different
dynamics, making IRLmethods particularly adapted to learning behaviours that generalize across
different settings. With the ability to learn transferable policies, a robotic arm could, for instance, be
trained to perform a task demonstrated by a human expert, even if the kinematics of the robot are
fundamentally different from those of the human demonstrator.
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1.1. Prior work 2

CIRL differs from the more extensively studied IRL problem by introducing known constraints into
the problem formulation. The introduction of constraints guarantees that the recovered reward in-
duces a policy that meets explicitly specified requirements. This property is crucial in safety-critical
domains, such as autonomous vehicles, robotics, or medical applications. Another advantage pre-
sented when introducing known constraints into IRL is that CIRL recovers a reward that does not
implicitly represent the constraints. That property implies, for instance, that a self-driving model
trained on a dataset of Swiss roads could be used to learn a reward function which does not repre-
sent known constraints such as speed limits and that, when specified different restrictions, it could
still meet them. For instance, the model would not require a new training dataset to learn to drive
faster than the Swiss speed limitations when on the German autobahn. This would not be achiev-
able with an unconstrained IRL algorithm.

These propertiesmakeCIRL a particularly relevant problem to study in the search for safer andmore
explainable AI systems. CIRL offers a promising approach to developingmore reliable and account-
able AI systems by addressing safety concerns and facilitating interpretability. These qualities are
pivotal for the widespread adoption and acceptance of AI technologies in real-world applications.

1.1. Prior work
Reinforcement learning (RL) is a machine learning problem concerned with training agents to make
sequential decisions to maximize a reward function. The problem has its roots in planning algo-
rithms forMarkovDecisionprocesses [Bellman 1957] and in thestudyof reinforcement inbehavioural
psychology [Skinner and Ferster 1957]. RL methods have recently seen great success in solving
complex sequential optimal decision-making problems such as the game of Go [Silver et al. 2016].

Policy gradient (PG) methods tackle the RL problem by gradient-based optimization on parameter-
ized policies [R. J. Williams 1992; Sutton et al. 1999]. Recent works solving real-world problems
such as robotic locomotion [Lee et al. 2020] or learning to play atari games [Schulman, Levine, et al.
2015; Haarnoja et al. 2018] have shown the efficiency of policy gradient algorithms, when they are
used in conjunction with deep neural networks to parameterize the policies. Various modifications
to the original policy gradient formulation have been proposed [Kakade 2001; Schulman, Levine,
et al. 2015; Schulman, Wolski, et al. 2017]. In particular, the so-called natural policy gradient (NPG)
method [Kakade 2001] preconditions the gradient steps with theMoore-Penrose pseudoinverse of
the Fisher Informationmatrix, which enables the algorithm to adapt to the geometry of the problem.
Trust-region policy optimization (TRPO), a method very closely related to NPG, is one of the most
successful deep reinforcement learning method in practice [Schulman, Levine, et al. 2015].

It is only fairly recently that PGmethods have been shown to converge globally. [Agarwal et al. 2020]
have shown that directly parameterized, projected policy gradient ascent converges at anO(1/

√
T )

rate and that it asymptotically converges globally with policy parameterization when given access
to exact gradient Oracle. Under relative entropy regularization [Agarwal et al. 2020] also show that
policy gradient and natural policy gradient converge at anO(/

√
T ) rate andO(1/T ) rate, respectively

(also with exact gradients).

A particularly relevant area of study in the context of this work is that of regularization in RL. Regular-
ization has been investigated because of its ability to accelerate convergence [Mei et al. 2020] and
as a way of inciting exploration when learning [Haarnoja et al. 2018]. The impact of regularization on
PG methods with softmax parameterization has been studied by [Mei et al. 2020], who show that
entropy regularization can lead to a O(e−T ) global convergence rate (with exact gradients). [Cen
et al. 2021] show that theNPG algorithm converges at anO(e−T ) rate when entropy regularization is
introduced, with exact gradients as well in a setting with bounded gradient perturbations. In the set-
ting where gradients can only be accessed through stochastic estimators PGmethods are proved
to converge globally at a O(1/

√
T ) [Y. Ding, Zhang, and Lavaei 2021].
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Safety in Markov Decision Processes (MDPs), and more specifically, the setting where constraints
are introduced into MDPs has been extensively studied [Altman 1999]. This foundational work has
in turn been used to design reinforcement learning algorithms which are able to learn policies that
are subject to safety constraints [Achiam et al. 2017]. Such algorithms are termed constrained re-
inforcement learning (CRL) algorithms. The first algorithm with provable convergence guarantees
of O(1/

√
T ) rate for CRL was proposed in [D. Ding et al. 2020] which relaxes the constraints and

solves a Lagrangian problem with primal-dual updates. The authors propose to use natural policy
gradient ascent in the primal problem while relying on projected gradient descent on the dual. A
more recent contribution [Ying, Y. Ding, and Lavaei 2022] considers a dual-descent variation on the
primal-dual formulation of [D. Ding et al. 2020], in which multiple primal steps are run for each dual
step. This approach guarantees a faster convergence rate of Õ(1/T ) (where Õ hides logarithmic
factors) at the cost of a more complex implementation.

The problem of learning a reward function from a dataset of expert demonstrations, inverse rein-
forcement learning, was first introduced by [Russell 1998]. The main challenge faced when solving
the IRL problem is degeneracy. Specifically, the set of optimal policies can be shown to be invariant
under a specific class of transformations [A. Ng, Harada, and Russell 1999]. This degeneracy dra-
matically complicates the search for ameaningful reward. Several approaches havebeenproposed
to overcome this limitation; this includesBayesian approaches [Ramachandran andAmir 2007] and
margin-maximization techniques [Abbeel and A. Y. Ng 2004]. In this thesis, we address the degen-
eracy problemof IRL viamaximumcausal entropy IRL (MCE-IRL) [Ziebart, Bagnell, andDey 2010]. In
MCE-IRL, entropy regularization is introduced into the objective function to ensure that the solution
is unique and overcome the degeneracy of the problem. The maximum likelihood IRL ML-IRL prob-
lem, an alternative, equivalent formulation ofMCE-IRL, can be solved through a primal-dual update
scheme analogue to the one proposed for CMDPs by [D. Ding et al. 2020]. This approach has been
shown to converge globally at an O(1

√
T ) rate [Zeng et al. 2022].

While the research community has extensively studied the subjects of safe RL and IRL, constrained
inverse reinforcement learning has received limited attention. [F. Ding and Xue 2022] discusses
the enforcement of combinatorial constraints in the IRL problem. The question of identifiability of
the reward function and generalization to different dynamics and constraints has been studied in
[Schlaginhaufen and Kamgarpour 2023]. To the best of our knowledge, there has not been any
published research concerning the convergence of an algorithm for solving CIRL.

1.2. This thesis

Work Primal Step Dual Step Problem Regularization Gradient Rate (iterations)

Agarwal et al. 2020 PPG // RL no exact O(1/
√
T )

Agarwal et al. 2020 NPG // RL no exact O(1/T )
Cen et al. 2021 NPG // RL Shannon exact O(e−T )
Cen et al. 2021 NPG // RL Shannon perturbed O(e−T )
Paternain, Chamon, et al. 2019 Oracle PGD CRL no exact O(1/T )
Paternain, Calvo-Fullana, et al. 2023 PG PGD CRL no exact //
D. Ding et al. 2020 NPG PGD CRL no exact O(1/

√
T )

D. Ding et al. 2020 NPG PGD CRL no stochastic O(1/
√
T )

Ziebart, Bagnell, and Dey 2010 DP GD IRL Shannon exact //
Zeng et al. 2022 SPI GD IRL Shannon exact O(1/

√
T )

Chapter 4 of this work NPG PGD CIRL Shannon exact O(1/
√
T )

Chapter 5 of this work NPG PGD CIRL Shannon stochastic (oracle FIM) O(1/
√
T )

Table 1.1: Comparison of our result with similar works for RL, IRL and CRL (no results exist yet for CIRL).NPG denotes natural
policy gradients, PGD projected gradient descent, PPG projected policy gradient, DP denotes dynamic programming

(requires the dynamics to be known) and SPI soft policy iteration (which is described in the background section).

The work presented in this thesis focuses on establishing provable global converge guarantees
for an algorithm that solves the CIRL problem. The method we introduce, NPG-CIRL, implements
a primal dual scheme which extends the well-studied natural policy gradient (NPG) algorithm and
is similar to methods presented to solve the IRL [Zeng et al. 2022] and CRL [D. Ding et al. 2020].
NPG-CIRL differs from the CRL algorithm of [D. Ding et al. 2020] by the introduction of entropy reg-
ularization and by the fact that two dual variables are studied, with one of them being parametrized
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(in this work, we consider linearly parametrized rewards). Our work differs from the IRL algorithm of
[Zeng et al. 2022] on two main aspects; we consider projected descent steps on reward, whereas
they assume that reward is parametrized in some way that doesn’t require projection and unlike
them, we analyze convergence in the stochastic setting.

The main contribution of this thesis lies in providing a detailed analysis of the NPG-CIRLmethod.

1. We prove that in the exact gradient setting, under softmax policy parameterization, and linear
reward parameterization, our method globally converges at a O(1/

√
T ) rate.

2. We study the convergence of our algorithm in the stochastic setting, where gradients are es-
timated using Monte Carlo estimators. We show that the global convergence rate ofO(1/

√
T )

still holds, even when the gradient estimators are biased.
3. We show that the overall algorithm has a sample complexity of O(1/ 4

√
S). To the best of our

knowledge, we provide the first provable global convergence result for an IRL algorithm in the
stochastic gradient setting.

Finally, we investigate additional structural assumptions on the MDP and the reward and constraint
parameterizationmatrices that lead to aO(e−T ) convergence ratewhen satisfied. Wehavenot been
able to show that these assumptions are easy to ensure to be true, but these investigations suggest
that inquiry in that direction might be interesting.

The results that we present are put into perspective with other state-of-the-art algorithms for similar
problems (RL, CRL and IRL) in table 1.1.



2
Background

This chapter introduces themain object we will be studying in this work, Markov decision processes
(MDPs). In the context of constrained inverse reinforcement learning, we will always be dealing with
regularized constrained MDPs, but for completeness and for greater clarity we will first introduce
unregularized MDPs (Section 2.1), then regularization (Section 2.2) and finally constraints (Section
2.3).

Once MDPs are properly introduced we will discuss the approaches to solving them that we will
make use of in this work, policy gradient methods (Section 2.4) and natural policy gradient methods
(Section 2.4.1). Finally, we will introduce and discuss the inverse problem toMDPs: inverse reinforce-
ment learning (Section 2.5).

2.1. An introduction toMarkov Decision Processes (MDPs)
Markov decision processes (MDPs) provide a mathematical framework for modelling and studying
sequential decision-making in situations with randomness. They have been known and studied
since the 1950s originally in the field of Operations Research, notably at the RAND corporation in
the United States [Bellman 1957], in parallel they have also appeared in the field of game theory,
as a restriction of Stochastic Games [Shapley 1953]. Another obvious parallel is thatMDPs can be
thought of as an extension of Markov Chains, which is where they inherit their name from.

We now formally state the definition of MDPs as well as the definition of a Trajectory generated by
an MDP. We then illustrate the definition with a simple example. In the following section we will
explicitly state that all the results we state are concerning unregularized MDPs, the reason we take
such care in highlighting that they are not regularized is because we will then completely abandon
them in favor of their regularized counterparts (Section 2.2), in our convergence analysis.

Definition 2.1.1 (UnregularizedMarkov Decision Processes). A (unregularized) Markov decision pro-
cess (MDP) is a tupleM = (S,A, P, r, γ,ν)made up of

1. a set of discrete states S := {s1, s2, ..., sn} (which we call the state-space) of cardinality |S| = n,
2. a set of discrete actionsA := {a1, a2, ..., am} (whichwe call the action-space) of cardinality |A| =

m,
3. a Markovian transition kernel P ∈ ∆S×A

S (which describes the probability P (s′|a(t), s(t)) of tran-
sitioning to the state s′ when action a(t) is picked while in the state s(t)),

4. a reward function r ∈ R ⊆ RS×A,
5. a discount factor γ ∈ (0, 1],
6. an initial state distribution ν ∈ ∆S .

Definition 2.1.2 (Trajectory). We call a sequence of states and actions generated on an MDP M =
(S,A, P, r, γ,ν) a trajectory, which we denote as:

τ = {s(0), a(0), s(1), a(2), ...} = {s(i), a(i}+∞
i=0 . (2.1)

5



2.1. An introduction toMarkov Decision Processes (MDPs) 6

A simpleMDP example: the lake cleaning robot In order to clarify howMDPs behave and gen-
erate trajectories, we will provide a simple example of MDP the lake cleaning robot example. In our
example we will consider a battery powered robot which has for single goal to clean a lake from
waste. In the language ofMDPs we call our robot, the agent. Our agent can be in any of 5 states:

State Situation of the robot
s1 docked to its charging station,
s2 offshore with full battery,
s3 offshore with half-full battery,
s4 offshore with low battery,
s5 offshore with an empty battery, lost on the lake.

which together constitute the state-space of ourMDP, we write the state space

S = {s1, s2, s3, s4, s5}. (2.2)

At any time step the robot has the possibility to choose one of two actions:

Action Effect
a1 navigate in search of waste,
a2 head to the charging station.

Together actions a1 and a2 constitute the action spaceA = {a1, a2} of ourMDP. In anMDPwemodel
time by discrete time-steps, as time progresses, our agent ”moves”, it changes from one state to
another. Furthermore, our agent has a goal (cleaning the lake), in theMDP formalism that goal takes
the form of a reward attributed to the agent at each time step depending on the state and action
that the agent is in.

Figure 2.1: A graph representation of possible transitions in the lake cleaning robotMDP.

In the case of our lake cleaning robot example, the following transitions are possible, when the robot
is docked, the navigate action brings it offshore, on the lake with a fully charged battery. When on
the lake the robot has the choice to navigate and thus clean the lake or to come back to its docking
state, in which our robot recharges its batteries. Navigating the lake may or may not consume a lot
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of energy depending on the environmental conditions. Thus taking the navigate action on the lake
lowers the charge of the battery in a stochastic fashion. This is also the goal of our agent, it is when
navigating the lake that it cleans it. Therefore, our agent gets a reward of 1 when it picks action a1
while offshore. It is not known when taking the action whether the battery will lower or not, specif-
ically, there is a probability of 0.5 that taking the navigate action will lower the charge. If the robot
ends up in a state where the battery is fully emptied, then all actions have no effects; the robot is
lost on the lake and will never be able to charge back up. These possible transitions are pictured in
Figure 2.1.

TheMDP’s Markovian transition kernel P provides a formal way of describing the stochastic evolu-
tion from the state of our robot as we move from the time step t to the time step t + 1. Specifically,
it describes how our robot transitions from one state to another by giving the conditional probabil-
ity P (s′|s(t), a(t)) that the agent transitions to state s′ assuming that it currently is in state s(t). For
instance, we could write the probability that the robot moves from state s2 (offshore, full battery) to
state s3 (offshore, half-full battery) when it chooses the action a1 (navigate) as follows:

P (s3|s2, a1) = 0.5. (2.3)

The Markovian transition kernel can be thought of as a function P : S × A → ∆S , but since we
only care about discrete state and action spaces, i.e. a discrete domain for that function, we can
equivalently write it down as a matrix P ∈ Rnm×n. In our lake-cleaning robot example, the transition
kernel P takes the following value:

P =



s1 s2 s3 s4 s5
0 1 0 0 0 (s1, a1)
0 0.5 0.5 0 0 (s2, a1)
0 0 0.5 0.5 0 (s3, a1)
0 0 0 0.5 0.5 (s4, a1)
0 0 0 0 1 (s5, a1)
1 0 0 0 0 (s1, a2)
1 0 0 0 0 (s2, a2)
1 0 0 0 0 (s3, a2)
1 0 0 0 0 (s4, a2)
0 0 0 0 1 (s5, a2)


. (2.4)

Here we note that in our formalism, what equation (2.3) refers to is actually just an element of thema-
trix in equation (2.4), specifically the seventh row, third column of P . This way of indexing elements
of a matrix is a bit unusual, but it is arguably the most readable when dealing withMDPs, and is the
convention that we will follow in this work.

Recall that our agent gets rewarded by a reward of 1, whenever it chooses to navigate, while already
on the lake, any other action brings ”no reward” i.e. a reward of 0. This brings us to the reward
function r : S × A → R. HereR just denotes the set of admissible rewards in our specificMDP, in
our case the agent only ever gets rewards of 1 or of 0 we have thatR = {0, 1}. Similarly to what we
did for the Markovian transition kernel, we will represent that discrete function as a vector r ∈ Rnm.
In our lake cleaning example, the reward vector is the following:

r =



0 (s1, a1)
1 (s2, a1)
1 (s3, a1)
1 (s4, a1)
0 (s5, a1)
0 (s1, a2)
0 (s2, a2)
0 (s3, a2)
0 (s4, a2)
0 (s5, a2)


. (2.5)
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Again, we will write elements of these vector as if they were instances of a reward function, so for
example here we could index the third element of the vector as follows:

r(s3, a1) = 1, (2.6)

note that we write the reward vector r in bold and the function r(s, a) in a regular weight, this allows
for more clearly differentiating between scalar and vector quantities.

Up until now we have been discussing some key quantities of Definition 2.1.1. We will now conclude
this first set of illustrations by considering trajectories (Definition 2.1.2). A trajectory, denoted τ is
just a sequence generated by the MDP, for instance consider this example of the beginning of a
trajectory τ (Figure 2.2). Our agent starts from its docking station in state s1, and it chooses to pick
action a1 andmoves offshore. It then navigates the lake waters and picks actions a1 three times, the
first time it doesn’t affect its battery level, but the two next ones it reduces its battery level, it thus
reaches low-battery state. At this point it picks action a2 and sails back to its dock. Note that this is
only the beginning of a trajectory since by definition we only consider infinite length trajectories.

Figure 2.2: Beginning of a trajectory τ over our lake cleaning robot exampleMDP.

The short sequence of state and actions that we described above would be described mathemati-
cally in the following notation:

τ = {s1, a1, s2, a1, s2, a1, s3, a1, s4, a2, s1, ...} (2.7)

= {s(0), a(0), s(1), a(1), s(2), a(2), s(3), a(3), s(4), a(4), s(5), ...}. (2.8)

In (2.8) we introduce the notation □(i) which denotes any quantity in the trajectory (reward, state or
action) at time step i.

So far we have only discussed how the MDP steps forward with actions picked arbitrarily, we leave
our example aside for amoment to formalize the way in which this is done. Policies are function that
specify a way of making decisions on some MDP we define them more rigorously in the definition
below.

Definition 2.1.3 (Policy). Given a Markov decision process, a policy π ∈ ∆S
A is a function that asso-

ciates an action distribution with each state of an MDP,

∆S
A :=

{
π(·|s) ∈ ∆A, ∀s ∈ S

}
, (2.9)

where we call ∆S
A is the policy-set. In plain English, in means the value π(a|s) of a policy gives the

probability with which an agent using the policy π will pick action a when currently in state s.

Implementing a policy in the lake cleaning robot example Back to our example we will now
introduce how policies (which are also sometimes referred to as strategies) and we will show how
one can implement a simple decision procedure such as Algorithm 1 with a policy function.
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Algorithm 1: A simple policy for the lake cleaning robot
At any time step i
switch s(i) do

case s(i) = s1 (at the dock) do
pick action a1 (move to the lake)

case s(i) = s2 or s(i) = s3 (offshore, battery not low) do
pick action a1 (keep navigating)

case s(i) = s4 (offshore, low battery) do
pick action a2 (head back to dock)

case s(i) = s5 (offshore, empty battery) do
pick between actions a1 and a2 uniformly at random

We now consider a policyπ, since the policy is a discrete function, in the sameway the reward is, we
will also think about is a vector π ∈ Rnm, for instance suppose we want our agent to make decisions
according to Algorithm 1 we would select the following policy vector:

πclean lake =



1 (s1, a1)
1 (s2, a1)
1 (s3, a1)
0 (s4, a1)
0.5 (s5, a1)
0 (s1, a2)
0 (s2, a2)
0 (s3, a2)
1 (s4, a2)
0.5 (s5, a2)


. (2.10)

Wewhen indexing elements from the policy vector, we use a notation very similar to the one adopted
for the reward, supposewewant to index the third element of thepolicy given in (2.37), wewouldwrite
it down as:

π(a1|s3)clean lake = 1, (2.11)

where the use of the center bar relates to the probabilistic interpretation of the policy, π(a|s) is the
conditional probability that the agent picks action a, given that it is in state s .

Here we must highlight a key observation about the behavior of agents inMDPs when they are run-
ning a fixed policy. The policy fixes the distribution of actions picked by the agent at any given step.
This means that when in state s′ we can exactly compute the probability that the agent transitions
to any other state as follows:

Pπ(s′|s) =
∑
a∈A

π(a|s)P (s′|a, s). (2.12)

The interpretation of this is quite straightforward: when a policy π is fixed for some MDP M , the
MDP becomes a Markov Chain and we can compute its transition kernel from the policy π and the
transition kernel P of the MDP, as we show in equation (2.12). We call the transition kernel obtained
this way the closed loop transition kernel and we formally define it in Definition 2.1.4.

Definition 2.1.4 (Closed-loop transition kernel). Consider an MDP M = (S,A, P, r, γ,ν) as well as
a policy π ∈ ∆A

S , the closed-loop transition kernel Pπ ∈ ∆S
S associated with the policy π gives the

probability

Pπ(s′|s) =
∑
a∈A

π(a|s)P (s′|a, s), (2.13)

with which theMDPwill transition from state s to state s′, assuming that actions are picked according
to policy π. It is the transition kernel of the Markov chain created by applying the policy on the MDP.
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Rewards and discounted rewards We will now turn our attention to how the goal of the agent is
deduced from the reward. First we introduce the notion of a discounted reward (Definition 2.1.5).

Definition2.1.5 ((Unregularized) discounted reward). Consider someMDPM = (S,A, P, r, γ,ν), and
a trajectory τ we define its (unregularized) discounted reward as follows:

Rr(τ) = (1− γ)

+∞∑
t=0

γtr(s(t), a(t)), (s(t), a(t)) ∈ τ. (2.14)

We abuse notation and write (s(t), a(t)) ∈ τ to specify that the elements in the sum are the ones
given in the trajectory τ .

The discounted reward provides a way to compute something akin to a weighted average of the re-
wards obtained by the agent which favors immediate rewards compared to rewards far in the future.
If we consider the beginning the example trajectory (2.7) that we previously defined, it would receive
the following discounted reward:

Rr(τ) = Rr

(
{s1, a1, s2, a1, s2, a1, s3, a1, s4, a2, s1, ...}

)
(2.15)

= (1− γ)
(
r(s1, a1) + γr(s2, a1) + γ2r(s2, a1) + γ2r(s3, a1) + γ2r(s4, a2) + ...

)
(2.16)

= (1− γ)
(
0 + γ · 1 + γ2 · 1 + γ2 · 1 + γ2 · 0 + ...

)
. (2.17)

The choice of γ here is key, picking γ close to 1 will increase the importance of rewards further in
the future, incentivizing long term planning while a small γ will favor choosing immediate rewards.

Now remember that we are studying stochastic processes, hence the quantityRr(τ)will change for
different trajectories sampled from theMDP. We will thus need to study not only the computation of
the discounted reward for some trajectory τ but also of the expectation of the quantity Rr(τ). We
call that value the return.

Definition 2.1.6 ((Unregularized) return). Given an MDPM = (S,A, P, r, γ,ν) as well as a policy π ∈
∆A

S , wecall (unregularized) return theexpected (unregularized) discounted rewardunder policyπ (and
reward r):

J(π, r) = Eτ∼π

[
Rr(τ)

]
= (1− γ)Eτ∼π

[
+∞∑
t=0

γtr(s(t), a(t))

]
(2.18)

The return (Definition 2.1.6) is the quantity that defines the goal of an MPD (Definition 2.1.7)

Definition 2.1.7 (Goal of an MDP and solution map). Given some reward r ∈ R, the goal of an MDP
is to find policy π∗

r that maximizes return:

π∗
r := RL(r) := arg max

π∈∆S
A

J(π, r). (2.19)

We say that a policy π∗
r solves the MDP for reward r. We denote define the solution map to be the

mapping RL : R→ ∆S
A that given the reward returns the optimal policy.

Because this work will be focused on IRL we write J as a function of both π, r. The notation Eτ∼π

denotes an expectation taken over the probability that the trajectory τ occurs assuming the agent
acts according to the policy π. We can explicitly write out this expectation as:

Eτ∼π

[
Rr(τ)

]
= (1− γ)

∑
τ∈{τ}

Pπ(τ)Rτ (τ) (2.20)

Pπ(τ) = ν(s)

+∞∏
t=0

π(a(t), s(t))P (s(t+1)|s(t), a(t)), (s(t), a(t)) ∈ τ, (2.21)

where {τ} denotes the set of all possible trajectories.
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We will now introduce a key quantity in the analysis of algorithms running onMDPs called the occu-
pancy measure. To see how it takes importance we go back to the equation for return that we just
defined:

J(π, r) = Eτ∼π

[
Rr(τ)

]
= (1− γ)Eτ∼π

[
+∞∑
t=0

∑
s,a

γtr(s(t), a(t))

]
(2.22)

(i)
= (1− γ)Eτ∼π

[
+∞∑
t=0

∑
s,a

γtr(s, a)1(s(t) = s, a(t) = a)

]
(2.23)

(ii)
= (1− γ)Eτ∼π

[∑
s,a

+∞∑
t=0

γtr(s, a)1(s(t) = s, a(t) = a)

]
(2.24)

=
∑
s,a

r(s, a)(1− γ)

+∞∑
t=0

γtP (s = s(t), a = a(t)) (2.25)

=
∑
s,a

r(s, a)µ(s, a). (2.26)

Where (i) holds by linearity of expectation an (ii) holds by Lebesgue’s dominated convergence.
What we have done is we have isolated a term µ(s, a) which measures the ”contribution” of a state
action pair (s, a) to the return. This measure of ”contribution” is what we call the occupancy mea-
sure.

Definition 2.1.8 (Occupancy measure). Given an MDP M = (S,A, P, r, γ,ν) and a policy function
π ∈ ∆S

A, we define the occupancy measure µπ ∈ ∆S×A induced by policy on the MDP as follows,
∀(s, a) ∈ S ×A:

µπ(s, a) = (1− γ)

+∞∑
t=0

γtP (s = s(t), a = a(t)). (2.27)

Aswe previously did for the policy and for the reward, we think of the occupancymeasure as a vector
µ ∈ Rnm, andweuse the notationµ(s, a) to index the element of this vector associatedwith the state
action pair (s, a). Here we must underline a key observation, the return is the scalar product of the
occupancy measure and the reward vectors, this can easily be seen when writing the equation for
the return down:

J(π, r) = Eτ∼π

[
Rr(τ)

]
=
∑
s,a

µπ(s, a)r(s, a) = ⟨µπ, r⟩. (2.28)

We also define the state occupancy measure.

Definition 2.1.9 (State occupancy measure). Given an MDPM = (S,A, P, r, γ,ν) and a policy func-
tion π ∈ ∆S

A, we define the state occupancy measure µπ ∈ ∆S induced by policy on the MDP as
follows, ∀(s, a) ∈ S ×A:

µπ
S (s) = (1− γ)

+∞∑
t=0

γtP (s = s(t)) =
∑
a′

µπ(s, a′). (2.29)

We call states with state occupancymeasure µπ
S (s) > 0 visited, in the sense that there is a non-zero

probability that the agent reaches them in a trajectory. Any state with µπ
S (s) = 0 is called unvisited

and will never be reached by the agent in any trajectory.

We now turn our attention to the study of the properties of the occupancymeasure. We first discuss
the set of values that can be taken by the occupancy measure. We call this set the occupancy mea-
sure set (Definition 2.1.11) and note that although the occupancymeasure is contained in the simplex
∆S×A, the exact set of admissible values it can take must also satisfy what we call the bellman flow
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constraints (Definition 2.1.10). Before formally stating the bellman flow constraints, let us introduce
the matrix E ∈ Rnm×n:

E = [

m times︷ ︸︸ ︷
In, ..., In]

⊤. (2.30)

Definition 2.1.10 (Bellman flow constraints). Consider a MDP with Markovian transition kernel P ∈
∆S×A

S , initial state distribution ν ∈ ∆S and discount factor γ ∈ [0, 1), then any occupancy measure
induced by a policy π ∈ ∆S

A must satisfy:

(E − γP )Tµ = (1− γ)ν.

A proof of this result can be found in [Puterman 1994].

The set of feasible occupancy measures is naturally given by Definition 2.1.10.

Definition 2.1.11 (Occupancymeasure set). Given anMDPM = (S,A, P, r, γ,ν) and a policy function
π ∈ ∆A

S , we writeM the set of meaningful the occupancy measures (meaningful in the sense that
∃ some policy π that could result in that specific distribution over the state space, i.e. a distribution
satisfying the Bellman flow constraints). The setM is characterized as:

M :=
{
µ ∈ ∆S×A : (E − γP )Tµ = (1− γ)ν

}
. (2.31)

We have already mentioned that the occupancy measure µπ is induced by a policy. What we mean
by that is that for any policy π one can compute an occupancymeasureµ. Specifically themapping
can be computed from the closed loop transition kernel Pπ and the policy as follows:

µπ
S = (1− γ)

+∞∑
t=0

(γPπ)tν = (1− γ)(1− γPπ)−1ν (2.32)

µπ(s, a) = µπ
S (s)π(a|s). (2.33)

This suggests that themapping from policy to occupancymeasure is surjective over the occupancy
measure set asdefinedabove. There alsoexists aone toonemapping in theother direction (altough
the mappingi is not injective). Specifically we can recover a policy πµ that induces the occupancy
measure as follows:

πµ(a|s) :=

{
µ(s, a)/µs if µs > 0.

1/m otherwise.
(2.34)

Note that the policy picked in an unvisited state has no impact on the occupancy measure, and
hence we can just arbitrarily choose any policy for unvisited states. In this work we choose to always
associate unvisited stateswith apolicywherewechooseactionsuniformly at random. This iswhywe
call the mapping almost injective. It is ill-defined for unvisited states, but does not affect our ability,
given some occupancy measure µ to recover a policy πµ that induces µ. This leads to Proposition
2.1.1.

Proposition 2.1.1 (There exists a one-to-one mapping between occupancy measures and policies).
Anypolicyπ ∈ ∆S

A induces anoccupancymeasureµπ ∈M. Furthermore, wecanuseequation (2.34)
to compute a policy that induces occupancy measure µπ.

This is discussedmore rigorously in [Puterman 1994].

Later on in this work will often make use of this one to one mapping, and we will use the following
convention: πµ is the policy inducing some occupancy measure µ, computed through (2.34), and
µπ is the occupancy measure induced by some policy π, computed as in (2.32).
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Return and occupancy measure in our lake cleaning robot example We come back to our
example, to get an intuition we will compute the state occupancy measure for the lake cleaning
robot MDP under policy πclean lake, which we previously defined in (2.37). Assuming that the robot
always starts from its dock, i.e. that the initial state distribution is:

ν =


1 (s1)
0 (s2)
0 (s3)
0 (s4)
0 (s5)

 . (2.35)

we can compute the state occupancy measure using equation (2.32):

µπclean lake
S = (1− γ)(I − γPπclean lake)−1ν =


0.21846 (s1)
0.35746 (s2)
0.29247 (s3)
0.13161 (s4)

0 (s5)

 . (2.36)

Note that the policy we picked never visits the empty battery state and so state s5 is unvisited. The
occupancy measure can then be computed as in (2.33) an we find:

µπclean lake =



0.21846 (s1, a1)
0.35746 (s2, a1)
0.29247 (s3, a1)

0 (s4, a1)
0 (s5, a1)
0 (s1, a2)
0 (s2, a2)
0 (s3, a2)

0.13161 (s4, a2)
0 (s5, a2)


. (2.37)

It nowbecomesquite easy to compute the return associatedwith policyπ on the lake cleaning robot
MDP, recall that we can just compute it through the scalar product ⟨µπclean lake , r⟩, we find:

J(π, r) = ⟨µπclean lake , r⟩ = 0.64993. (2.38)

Now note that because of Proposition 2.1.1 we know we can equivalently consider policies or occu-
pancy measures and to solve MDPs, we also know that the return can be expressed as the scalar
product of the occupancy measure µ and the reward vector r. This provides is with a simple way to
compute the solution of the MDP (in the sense of Definition 2.1.7). It is easily seen that we can find
optimal occupancy measures (and therefore policies) through the following linear program:

max
µ∈M

⟨µ, r⟩. (2.39)

To complete our overview to MDPs, we will introduce two essential quantities which are extremely
relevant in the design of algorithms that solve these problems: Q-values and V -values.

Definition 2.1.12 ((Unregularized) value). Given an MDP M = (S,A, P, r, γ,ν) as well as a policy
π ∈ ∆A

S and some state s ∈ S we call (unregularized) value the conditional expectation of the (un-
regularized) discounted reward under policy π (and reward r), conditioned on the first state in the
trajectory being the state s:

V π
r (s) = Eτ∼π

[
Rr(τ)

∣∣∣s0 = s
]
= (1− γ)Eτ∼π

[+∞∑
t=0

γtr(s(t), a(t))
∣∣∣s0 = s

]
. (2.40)

Definition 2.1.13 ((Unregularized) Q-value). Given an MDP M = (S,A, P, r, γ,ν) as well as a policy
π ∈ ∆A

S and some state s ∈ S we call (unregularized) Q-value the conditional expectation of the
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(unregularized) discounted reward under policy π (and reward r), conditioned on the first state in the
trajectory being the state s and on the first action picked being a:

Qπ
r (s, a) = Eτ∼π

[
Rr(τ)

∣∣∣s0 = s, a0 = a
]
= (1− γ)Eτ∼π

[+∞∑
t=0

γtr(s(t), a(t))
∣∣∣s0 = s, a0 = a

]
. (2.41)

Here we must underline a key relationship between V -value and Q-value: the Q-value can be
computed form the V value as follows:

Qπ
r (s, a) = (1− γ)r(s, a) + γEs′|s,a

[
V π
r (s′)

]
. (2.42)

The bellman optimality operator Finally, we introduce a way of solving MDPs (in the sense of
Definition 2.1.7), the Bellman optimality operator.

Definition 2.1.14 (Bellman optimality operator). We let T : Rnm → Rnm be the operator defined as :(
TQπ

r

)
(s, a) = (1− γ)r(s, a) + γ max

π(·|s)∈∆A

(
⟨π(·|s),Qπ

r (·, a)⟩
)
, (2.43)

where
(
⟨π(·|s),V π

r (s)⟩
)
denotes a vector of n in which each element associated with state s is com-

puted by the scalar product ⟨π(·|s),V π
r (s)⟩.

The bellman optimality operator has two few key properties that make it useful for solvingMDPs:

1. the vector Q∗
r values associated with the optimal policy (in the sense of Definition 2.1.7) is a

fixed point of the operator:

T (Q∗
r) = Q

∗
r, (2.44)

2. the operator is a γ-contraction in the ∥ · ∥∞ norm. For any two Q-value vectors Q and Q̄, we
have:

∥TQ− T Q̄∥∞ ≤ γ∥Q− Q̄∥∞. (2.45)

These two properties (which are discussed and analyzed in details in [Puterman 1994]) allow, in
MDPs with known dynamics, to use the bellman optimality operator for solving the MDPs. Itera-
tively running the operator T on some arbitrarily initial Q converges at a linear rate to the optimal
Q-valuesQ∗. This method is known as value iteration.

2.2. Regularization inMDPs
We now consider regularizedMDPs, an extension ofMDPs in which we introduce a convex regular-
izer function Ω : ∆A → R. The topic of regularizedMDPs is of interest to us because (as we will later
discuss) regularization ensures that the optimal solution to anMDP is unique. Regualrization is also
required to make the IRL problem non-degenerate.

What differentiates a regularized MDP from an unregularized one is the introduction of a convex
regularization function Ω which is weighted by regularization factor β. The regularizer affects the
computation of the return, of the Q-value and of the V -value function and thus changes what con-
stitutes an optimal solution to theMDP. On the other hand the introduction of regularizer does not
affect the dynamics of theMDP, so for instance the occupancy measure setM is exactly the same
whether theMDP is regularized or not.

Return, Q and V -values in regularized MDPs The regularization is applied to the discounted
reward and thus affects the return, Q and V -values as well as the optimal policies. We now define
the discounted reward and return, in the context of regularizedMDPs.
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Definition 2.2.1 (Discounted reward (regularized)). Given a trajectory τ , generated by some policy
π ∈ ∆A

S on a regularized MDP M = (S,A, P, r, γ,ν,Ω, β), we define its (regularized) discounted re-
ward as follows:

Rr(τ) = (1− γ)

+∞∑
t=0

γt(r(s(t), a(t))− βΩ(π(·|st))), (s(t), a(t)) ∼ τ. (2.46)

This way of regularizing the MDP penalizes policies that are ”too deterministic” and can thus be
though of as a way to incentivize exploration.

Definition 2.2.2 (Return (regularized)). Given an MDPM = (S,A, P, r, γ,ν,Ω, β) as well as a policy
π ∈ ∆A

S , we call (regularized) return the expected discounted reward under policy π (and reward r):

J(π, r) = Eτ∼π

[
Rr(τ)

]
= (1− γ)Eτ∼π

[+∞∑
t=0

γt(r(s(t), a(t))− βΩ(π(·|st))
]

(2.47)

= E(s,a)∼µπ

[
r(s(t), a(t))

]
− βE(s,a)∼µπ

[
Ω(π(·|st))

]
(2.48)

In equation 2.48 the linearity of expectation, we are able to isolate:

E(s,a)∼µπ

[
Ω(π(·|st))

]
, (2.49)

this quantity will appear in the computation of all reward-related quantities, we will thus name it
expected regularizer (Definition 2.2.3) and we will characterize some of its properties.

Definition 2.2.3 (Expected regularizer). Given an MDPM = (S,A, P, r, γ,ν,Ω, β) as well as an oc-
cupancy measure µ, we let the function Ω̃ : µS×A denote the expectation:

Ω̃(µ) = Es∼µS

[
Ω(π(·|s))

]
= (1− γ)Eτ∼π

[+∞∑
t=0

γtΩ(π(·|st))
]
. (2.50)

of its regularizer under occupancy measure and policy π.

Proposition 2.2.1 (Strict convexity is preserved in the expected regularizer). Assuming that the reg-
ularizer function Ω : ∆A → R is strictly convex, the expected regularizer also is strictly convex.

This result is proven in [Schlaginhaufen and Kamgarpour 2023].

With the expected regularizer defined, we can express the return function in the more concise,
scalar product form:

J(π, r) = E(s,a)∼µπ

[
r(s(t), a(t))

]
− βE(s,a)∼µπ

[
Ω(π(·|st))

]
= ⟨r,µπ⟩ − Ω̃(µ). (2.51)

We now formally state the definition of the Q and V -values in the regularized setting.

Definition 2.2.4 (V -value (regularized)). Given an MDPM = (S,A, P, r, γ,ν,Ω, β) as well as a policy
π ∈ ∆A

S and some state s ∈ S we call (regularized) V -value the conditional expectation of the (regular-
ized) discounted reward under policy π (and reward r), conditioned on the first state in the trajectory
being the state s:

V π
r (s) = Eτ∼π

[
Rr(τ)

∣∣∣s0 = s
]
= (1− γ)Eτ∼π

[+∞∑
t=0

γtr(s(t), a(t))− βΩ(π(·|st))
∣∣∣s0 = s

]
. (2.52)

Definition 2.2.5 (Q-value (regularized)). Given an MDPM = (S,A, P, r, γ,ν,Ω, β) as well as a policy
π ∈ ∆A

S and some state s ∈ S we call (regularized)Q-value the conditional expectation of the (regular-
ized) discounted reward under policy π (and reward r), conditioned on the first state in the trajectory
being the state s and on the first action picked being a:

Qπ
r (s, a) = Eτ∼π

[
Rr(τ)

∣∣∣s0 = s, a0 = a
]

(2.53)

= (1− γ)Eτ∼π

[+∞∑
t=0

γtr(s(t), a(t))−−βΩ(π(·|st))
∣∣∣s0 = s, a0 = a

]
. (2.54)
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The soft bellman optimality operator We will now discuss the counterpart to the bellman op-
timality operator in the regularized setting: the soft bellman optimality operator. Recall that in the
unregularized setting, we defined the bellman optimality operator as:(

TQπ
r

)
(s, a) = (1− γ)r(s, a) + γ max

π(·|s)∈∆A

(
⟨π(·|s),Qπ

r (·, a)⟩
)
. (2.55)

When working within the regularized MDP setting, our operator takes the form of the soft bellman
optimality operator.

Definition 2.2.6 (Soft-bellman optimality operator). We let Tβ : Rnm → Rnm be the operator defined
as : (

TβQπ
r

)
(s, a) = (1− γ)r(s, a) + γ max

π(·|s)∈∆A

(
⟨π(·|s),Qπ

r (·, a)⟩ − βΩ̃(π(·|s))
)
. (2.56)

Similarly to its unregularized counterpart, the soft-bellman optimality operator satisfies properties
that make it an efficient tool for solvingMDPs. We formalize these properties in Proposition 2.2.2.

Proposition 2.2.2 (Properties of the soft bellman optimality operator). The operator Tβ : Rnm →
Rnm as defined in Definition 2.2.6, satisfies the following properties:

1. the vectorQ∗
r values associatedwith the optimal policy (in the sense of Definition 2.1.7) is a fixed

point of the operator:

T (Q∗
r) = Q

∗
r, (2.57)

2. the operator is a γ-contraction in the ∥ · ∥∞ norm. For any two Q-value vectors Q and Q̄, we
have:

∥TQ− T Q̄∥∞ ≤ γ∥Q− Q̄∥∞. (2.58)

These properties are proven in [Geist, Scherrer, and Pietquin 2019].

2.2.1. Entropy regularizedMDPs
Next, we discuss one very specific example of regularizer Ω : ∆A → R that is particularly well-
studied is that of the negative Shannon Entropy. Which we first formally define.

Definition 2.2.7 (Shannon Entropy). Consider some distribution p ∈ ∆X over the discrete random
variableX , we define the Shannon entropyH : ∆X → R as follows:

H(X) = −
|X|∑
i=0

pi log(pi). (2.59)

One key property we will make use of is that the soft bellman operator can be computed in closed
form when using the negative Shannon entropy as a regularizer.

Proposition 2.2.3 (Closed-form of the soft bellman optimality operator when Ω = −H ). When con-
sidering aShannon-regularizedMDP, theoperator Tβ : Rnm → Rnm admits the following closed-form
solution:

T (Q∗
r) = (1− γ)r(s, a) + γRs′|s,a

[
β∥expQr(s

′|·)∥1
]
. (2.60)

This result is proved in [Cen et al. 2021].

When using the Shannon entropy as a regularizer the following relationships between V -value and
Q-value hold:

Qπ
r (s, a) = (1− γ)r(s, a) + γEs′|s,a[V (s′)], (2.61)

V π
r (s) = Ea∼π[Q

π
r (s, a)− β logπ(a|s)]. (2.62)

These equalities were first derived in [Nachum et al. 2017].

And we also have a direct way of computing the optimal policy π∗
r from the optimal Q-values, we

formalize it in the proposition below.
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Proposition2.2.4 (Optimal policy is softmaxof the optimalQ-values). WhenconsideringaShannon
entropy regularized MDP the optimal policy is directly computable as a function of the Q-values as
follows:

π∗
r(s, a) =

exp(Q)∗r(s, a)∑
a∈A exp(Q)∗r(s, a)

. (2.63)

This is proved in [Nachum et al. 2017].

2.3. Constraints inMDPs : CMDPs
Next, we introduce how constraints can be introduced inMarkov decision processes. We define the
Constrained Markov Decision Process (CMPD) setting (Definition 2.3.1).

Definition 2.3.1 (Constrained Markov Decision Process). A Constrained Markov decision process
(CMDP) is a tupleM = (S,A, P, r, γ,ν,Ω, β)made up of

1. a set of discrete states S := {s1, s2, ..., sn} (which we call the state-space) of cardinality |S| = n,
2. a set of discrete actionsA := {a1, a2, ..., am} (whichwe call the action-space) of cardinality |A| =

m,
3. a Markovian transition kernel P ∈ ∆S×A

S (which describes the probability P (s′|a, s) of transition-
ing to the state s′ when action a is picked while in the state s),

4. a reward function r ∈ R ⊆ RS×A,
5. a discount factor γ ∈ (0, 1],
6. an initial state distribution ν ∈ ∆S ,
7. a cost matrixΨ ∈ Rnm×d,
8. a constraint vector b ∈ Rd,
9. a convex regularizer function Ω : ∆A → R,
10. a regularization parameter β ∈ R+.

The distinction between anMDP and a CMPD lies in the introduction of a set of d constraints, repre-
sented by a vector b ∈ Rd and of d cost functions that we represent through a costmatrixΨ ∈ Rnm×d.
The constraints are considered satisfied when all costs are lower than the constraints, i.e. when:

Ψ⊤µ ≤ b. (2.64)

The constraint matrix Ψ can be though of a block matrix made up d cost columns [ψ1, ...ψd]. Once
written out in this form it is easy to see that the cost expressionΨ⊤µ is equivalent to the computation
multiple return (Definition 2.1.6) functions:

Ψ⊤µ =

ψ1

...
ψd

µ =

⟨ψ1,µ⟩
...

⟨ψd,µ⟩

 ≤
 b1...
bm

 . (2.65)

We have chosen to introduce the cost as a matrix-vector product of matrix Ψ and the occupancy
measureµ. But the costmatrix defines a cost vectorΨ)(s, a) for each state-action pair (s, a) ∈ S×A
and we can alternatively think of the cost vectors in this way. The two formulations are equivalent:

Ψ⊤µ =

⟨ψ1,µ⟩
...

⟨ψd,µ⟩

 =


(1− γ)Eτ∼π

[∑∞
i=0 γ

iψ1(s
(i), a(i))

]
...

(1− γ)Eτ∼π

[∑∞
i=0 γ

iψd(s
(i), a(i))

]
 = (1− γ)Eτ∼π

[ ∞∑
i=0

γiΨ(s(i), a(i))

]
.

(2.66)

Recall that for unconstrained MDPs we defined the solution map (Definition 2.1.7) as:

π∗
r := RL(r) := arg max

π∈∆S
A

J(π, r), (2.67)

in the CMPD setting we will re-define our solution map to that enforce that the constraints are sat-
isfied.
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Definition 2.3.2 (CRL solution map). In constrainedMarkov decision processes (CMDPs) we define
the solution map to be the mapping CRL : R → ∆S

A that given the reward returns the optimal policy.
That mapping is given by:

CRL(r) := arg max
π∈∆S

A

J(π, r),

s.t. Ψ⊤µπ ≤ b.
(2.68)

We are now done characterizing the types ofMDPs that we will consider in this work. We will move
on to the description of possible methods to solve them.

2.4. Policy Gradientmethods
From an optimization standpoint, the problem of finding the solution toMDPs can be thought of as
an optimization problem that solves:

arg max
π∈∆S

A

J(π, r). (2.69)

Policies gradient methods approach this problem by running gradient ascent schemes on the re-
turn function J either directly on policy vectors π [Ronald J. Williams 1988] or, when the policy is
parameterized, by some parameter vector θ ∈ Rnm:

π(t+1) ← π(t) + ηθ∇πJ(π, r), θ(t+1) ← θ(t) + ηθ∇θJ(πθ, r). (2.70)

We denote the policy parameterized by the parameter vector θ ∈ Rnm as πθ . The most common
policy parameterization used in for RL is the tabular softmax parameterization, which is simply given
by:

πθ(a|s) =
exp

(
θ(s, a)

)∑
a′∈A exp

(
θ(s, a′)

) . (2.71)

There are multiple algorithms that work with the general idea of policy gradient, but in the context
of this work, we will focus on the natural policy gradient (NPG) algorithm.

2.4.1. Natural Policy Gradients
NPG was first introduced in [Kakade 2001] and thoroughly analyzed for the entropy regularized set-
ting1 in [Cen et al. 2021] and [Mei et al. 2020]. In the following section, we introduce the algorithm
and discuss a few key results that we will require for the analysis of our own algorithm. The main in-
sight for the originalNPG paper [Kakade 2001] is to precondition the gradient steps with the moore
penrose inverse of the Fisher information matrix of the policy parametrization.

Definition 2.4.1 (NPG policy step). The natural policy gradient step is given by:

θ(t+1) ← θ(t) + ηθ
(
Fθ
)†∇θJ(θ, r) (2.72)

The idea behind the preconditioning is to ensure that gradient direction is taken on themanifold that
the policy parameter θ parameterizes. This hinges on the fact that the Fisher information matrix
is up to scale, an invariant metric on the space of parameterized probability (in our case policy)
distributions.

Definition 2.4.2 (The Fisher information matrix). The Fisher information matrix (FIM) is given by:[
Fθ
]
(s, a) = E(s,a)∼µθ

[
∇θ logπ(a|s)(∇θ logπ(a|s))⊤

]
. (2.73)

One of the results concerning NPG is that when the algorithm is run on a softmax parameterized
policy in an entropy-regularized setting, the updates in the policy take an exponentiated gradient
form.

1Note that for the setting without entropy regularization, an analysis was developed in [Agarwal et al. 2020].
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Lemma2.4.1 (The softmaxNPGstepwith entropy regularization yieldsMWU in the policy). Consider
theNPGpolicy step (as specified inDefinition 2.4.1) applied ona tabular softmaxparameterizedpolicy
in a Shannon entropy regularized MDP. Assuming that 0 < ηθ ≤ 1/β we have that the policy updates
take the form, for any (s, a) ∈ S ×A:

πθ(t+1)(a|s)(t+1) ← 1

Z(t)(s)
(πθ(t)(a|s)(t))1−ηθβ exp

(
ηθQθ(t)

r (s, a)
)
, (2.74)

where Z(s)(s) ensures that
∑

a π
(t+1)(a|s) = 1, this update rule resembles multiplicative weight up-

date (abbreviated MWU).

This result is proved in [Cen et al. 2021].

When the learning rate ηθ = 1/β is picked, it is easily seen that update of equation (2.75) reduces
to a simpler form, which is independent of the previous policy πθ(t) . We call this special instance of
NPG soft policy iteration.

Proposition2.4.1 (Soft Policy Iteration). Weconsider theNPGstep in theentropy-regularizedsetting
with tabular softmax parameterized policies. When the special learning rate ηθ = 1

β is picked, then
the policy-updates take the form:

πθ(t+1)(a|s)(t+1) ← 1

Z(t)(s)
exp

(
ηθQθ(t)

r (s, a)
)
, (2.75)

where Z(s)(s) ensures that
∑

a pi
(t+1)(a|s) = 1, we call iterations of this form soft policy iterations.

The reason we give special care to the soft policy iteration case is because the soft iterates imple-
ment the bellman optimality operator (Definition 2.2.6).

Proposition 2.4.2 (Soft Policy Iteration implements the soft Bellman optimality operator). We con-
sider the Q-valuesQ(t)

r andQ(t+1)
r associated with policies πθ(t) and πθ(t+1) generated through one

step of soft policy iteration. It holds that:

T (Q(t)
r ) = Q(t+1)

r (2.76)

So running soft policy iterations is equivalent to using the soft bellman optimality operator on the Q-
values.
This result is proved in [Cen et al. 2021].

Proposition 2.4.1 allows for easily verifying that in the soft policy iteration setting, NPG converges
linearly fast. This is the main driver behind most of the analysis developed in [Cen et al. 2021], and
will be a workhorse of our own analysis. Another key result that we will make use of in some of our
derivations it that NPG, regardless of the learning rates, ensures monotonous improvement in the
Q-values.

Lemma2.4.2 (Monotonous improvement of exactNPG). Consider theNPGpolicy step (as specified
inDefinition2.4.1) appliedona tabular softmaxparameterizedpolicy, in aShannonentropy regularized
MDP. Assuming that 0 < ηθ ≤ 1/β we have that for any (s, a) ∈ S ×A, the following inequality holds:

Q(t+1)
r (s, a) ≥ Q(t)

r (s, a). (2.77)

This result is proved in [Cen et al. 2021].

The last result concerning NPG that we will make use of in our analysis is the so-called soft subop-
timality lemma.

Lemma 2.4.3 (Soft suboptimality). Consider an entropy-regularized MPC and let π∗ ∈ ∆S
A be an

optimal policy on that MDP, then the following bound on the suboptimality of any other policy holds:

J(π∗, r)− J(π, r) = βEs∼µπ
S

[
DKL

(
π(·|s)||π∗(·|s)

)]
. (2.78)
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2.4.2. Extending Policy Gradientmethods to Constrained RL
The objective of a CMDP can be thought of as an optimization problem of the form:

arg max
π∈∆S

A

J(π, r), (2.79)

s.t. Ψ⊤µπ ≤ b. (2.80)

Solving Constrained Reinforcement Learning (CRL) problems is performed with no direct access to
theCMDP dynamics, hence constraint satisfaction cannot be enforced throughprojectionmethods.
For that reason, the most common approach has been to use the method of lagrangian multipliers
on the CRL problem. The CRL lagrangian takes the form [Paternain, Chamon, et al. 2019]:

arg max
π∈∆S

A

min
λ∈Λ

J(π, r) + ⟨λ, b−Ψ⊤µπθ ⟩. (2.81)

This marks a fundamental difference between RL and CRL methods: while RL problems are max-
imization problems, CRL problems are saddle point problems. Assuming access to Oracle solu-
tion for the policy optimization side of the min-max problem, [Paternain, Chamon, et al. 2019] have
shown that the problem (2.81) reduces to gradient descent on the dual and by dual convexity, global
convergence. Furthermore, [Paternain, Calvo-Fullana, et al. 2023] haveproposedusingpolicy gradi-
entmethods in the primal, as a way of approximating the primal solution Oracle, but have not shown
global convergence. Global convergence for a practical algorithm has been shown by [D. Ding et al.
2020] who proposes the use Natural Policy Gradient (without entropy regularization) in the primal
and show a global convergence rate of O(1/

√
T ).

2.5. Inverse Reinforcement Learning
To conclude this background chapter, we introduce the inverse problem inMDPs, inverse reinforce-
ment learning (IRL). The IRL problem addresses the question of recovering the reward given either
directly an expert policy or some dataset providing information about this policy. We define IRL as
the search of a right-inverse solution map to the RL solution map (Definition 2.1.7).

Definition 2.5.1 (CIRL solution map). The exact solution map of the IRL problem is a mapping IRL :
∆S

A →R which satisfies:

(RL ◦ IRL)(πE) = πE . (2.82)

A key observation to be made about the IRL problem is that is ill-defined. Many choices of reward
can lead to the same optimal policy. One trivial example is that any policy π is optimal with respect
to constant rewards.

Different approacheshavebeenproposed toovercome this challenge in IRL, oneof themostpromis-
ing one is that of maximum causal entropy IRL (MCE-IRL), first proposed by [Ziebart, Bagnell, and
Dey 2010], which ensures the uniqueness of the solution to the IRL problem by introducing entropy
regularization.



3
Problem Setting

We now circle back to the main problem at hand, in the following chapter we formally introduce the
Constrained Inverse Reinforcement Learning Problem (CIRL), discuss how it can be reduced to an
optimization problem and what quantities we will use to measure the quality of approximate solu-
tions.

3.1. Constrained Inverse Reinforcement Learning
The CIRL problem is the extension of the IRL problem to CMDPS. IRL, which we previously intro-
duced in Section 2.5, is the problem of, given expert data, inferring a reward for which the expert
that produced the data is optimal. In CMDPs, we extend MDPs with constraints, as discussed in
Section 2.3. The CIRL problem can be defined in two ways, either in an idealized fashion, where
direct access to the expert policy πE is assumed. Alternatively, we can define CIRL as a problem
where the expert policy πE is only accessible through a dataset of example trajectories D. We first
define the simplest direct policy access setting.

ProblemDefinition3.1.1 (CIRLwith direct expert policy access). In the direct expert policies access
CIRL problem, we have access to: a regularized ConstrainedMarkov Decision Processes (CMDP) for
which we do not know the reward

CMDP \ r = (S,A, P,ν,Ψ, b, γ,Ω), (3.1)

and to an expert policyπE ∈ ∆S
A. The aim of CIRL is to recover a reward r∗ for which the expert policy

πE is optimal. A key observation is that such a reward may not be unique.

The CIRL problem with direct expert policy access (definition 3.1.1) makes assumptions that are not
verified formost practical applications of IRL. Themainmotivation behind IRL is behavioural cloning,
for example, from human demonstrations, a setting in which the expert policy is not directly acces-
sible. This motivates a more practical definition of the CIRL in which the expert policy is accessed
indirectly through a dataset of demonstrations sampled from the expert.

Problem Definition 3.1.2 (CIRL with expert dataset). In the CIRL problem we have access to: a
regularized Constrained Markov Decision Processes (abbreviated CMDP) to which we have access
through sampling only and for which we do not know the reward

CMDP \ r = (S,A, P,ν,Ψ, b, γ,Ω), (3.2)

a datasetD of trajectories produced by an expert policy πE , which we aim to clone:

D = {τ1, τ2, ..., τN}. (3.3)

Each of these trajectories is a list of state-action pairs of lengthH :

D = {τ0, τ1, ..., τN} =
{
{(s(k)i , a

(k)
i )}H−1

k=0

}N
i=0

, (3.4)

21
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where the pair (s(k)i , a
(k)
i ) ∈ S ×A denotes the state and actions at the k-th step of the i-th trajectory.

The aim of CIRL is to recover a reward r∗ for which the expert policyπE is optimal. Such a rewardmay
not be unique.

Note that the sampledexpert policy settingof definition3.1.2 indirectly providesaccess to theexpert
policy. To see this consider this simple estimator for the policy:

π̂E(a|s) =
∑N

i=0

∑H−1
k=0 1(s

(k)
i = s, a

(k)
i = a)∑N

i=0

∑H−1
k=0 1(s

(k)
i = s)

. (3.5)

Where 1 denotes the indicator function. This observation allows us to reduce CIRL from expert
dataset toCIRLwith direct policy access. We can formalize our problem definition as finding a right-
inverse solution map to the CRL solution map (definition 2.3.2).

Definition3.1.1 (CIRL solutionmap). Thesolutionmapof theCIRLproblem isamappingCIRL : ∆S
A →

R which satisfies:

(CRL ◦ CIRL)(πE) = πE . (3.6)

A policy that satisfies (3.6) may not always exist. To ensure that it does, we introduce a key assump-
tion, realizability.

Assumption3.1.1 (Realizability). Weassume that theexpert policyπE is optimalwith respect to some
reward rE ∈ R:

πE = CRL(rE). (3.7)

3.2. Reformulation as an optimization problem
Having formalized exactly what problem we aim to solve, we will now discuss reducing the problem
described in Section 3.1 into an optimization problem. In Proposition 3.2.1, we write out a minimax
program that we claim solves the CIRL problem (in the sense that it satisfies definition 3.1.1).

Proposition 3.2.1 (Minmax program to solve CIRL). The optimal solution π∗, r∗ returned by themin-
imax program:

min
r∈R

max
π∈∆S

A

J(π, r)− J(πE , r)

s.t. Ψ⊤µπ ≤ b
, (P1)

satisfies πθ∗
= πE . Hence, the solutions of the program (P1) provide a mapping that satisfies the

definition 3.1.1.

Proof. In the context of this proof, we introduce the feasible set:

F =
{
µ ∈M

∣∣∣Ψ⊤µ ≤ b
}
, (3.8)

which is the set of all valid occupancymeasures that satisfy the Bellman flow constraints (Definition
2.1.10) and the CMDP constraints.

The first step of our proof is to make use of the one-to-one mapping between the occupancy mea-
sure and the policy (proposition 2.1.1) and to write the return functions J(π, r) and J(πE , r) in their
scalar product form, as a function of the occupancy µ rather than policy-parameters θ:

J(π, r) = ⟨r,µ⟩,−βΩ̃(µ) (3.9)

J(πE , r) = ⟨r,µE⟩ − βΩ̃(µE). (3.10)

Using the occupancy measure form of J enables us to rewrite the program (P1) as follows:

min
r∈R

max
µπ∈F

⟨r,µ⟩ − βΩ̃(µ)− ⟨r,µE⟩+ βΩ̃(µE) , (P1.1)
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where the decision variable µπ is constrained to the feasible set F of the CMDP. For convenience,
we choose to write our objective function as

f(µ, r) = ⟨r,µ⟩ − βΩ̃(µ)− ⟨r,µE⟩+ βΩ̃(µE). (3.11)

Observe that for any fixed r ∈ R we have that:

max
µ∈F

f(µ, r) ≥ 0. (3.12)

This holds because:

1. either µE maximizes the return for that reward, in which case maxµ∈F f(µ, r) = 0,
2. or µE doesn’t, in which case maxµ∈F f(µ, r) > 0.

Now completing the proof is done by observing that the lower-bound (3.12) is only ever achieved
when µE maximizes the return with respect to the reward r, hence that minima are only achieved
when CIRL is solved in the sense of definition 3.1.1.

Proposition 3.2.1 provides a way to solve CIRL but is not implementable in practice, precisely the
feasibility constraint Ψ⊤µπθ ≤ b explicitly makes use of the occupancy measure (which we most
often do not have easy access to). One way to get around this is to relax the feasibility constraints
out of the program (P1). This motivates working with a Lagrangian form such as:

min
r∈R
λ∈Λ

max
θ∈Rp

J(θ, r)− J(θE , r) + ⟨λ, b−Ψ⊤µπθ ⟩
, (P2)

wherewe introduce apenalty term ⟨λ, b−Ψ⊤µ⟩ that penalizes the constraint violation b−Ψ⊤µ up to a
coefficient set by a Lagrangianmultiplier vectorλ ∈ Λ. The set of admissible Lagrangianmultipliers
is given by:

Λ :=
{
λ ∈ Rd|λ ≥ 0

}
. (3.13)

The optimization problem (P2) will be the main problem we will practically consider to solve CIRL.
We name its objective function L since it is a Lagrangian:

L(θ, r,λ) = J(θ, r)− J(θE , r) + ⟨λ, b−Ψ⊤µπθ ⟩. (3.14)

We abuse notation and equivalently write the objective in terms of policy parameters θ, of policy π,
or of occupancy measure µ. The occupancy measure form is especially useful as it is a concave-
convex program with properties that we will exploit in our analysis:

L(µ, r,λ) = ⟨r,µ⟩ − βΩ̃(µ)− ⟨r,µE⟩+ βΩ̃(µE) + ⟨λ, b−Ψ⊤µ⟩. (3.15)

We now define a useful function, the diminished reward r̃, which in the light of strong duality, will be
a key component for our analysis.

Definition 3.2.1 (Diminished reward). The function r̃ : S ×A→ R defined as:

r̃λ = r −Ψλ, (3.16)

r̃(s, a) = r(s, a)− ⟨Ψ(s, a),λ⟩, (3.17)

is called diminished reward.

Proposition 3.2.2 (Strong duality). Assuming that ∃µ ∈ M s.t. Ψ⊤µE ≤ b and that µ > 0 (Slater’s
condition), and that the regularizer Ω associated with our CMDP is strictly convex, then the optimum
of the Lagrangian dual (P2) is attained for some vector λ∗ > 0 and the optimal values found for θ and
rmatch the ones found by the primal. Furthermore, the solution of the program (P1) can be attained
by solving an unconstrained program with diminished reward r̃ = r −Ψλ∗:

CRL(r) = RL(r −Ψλ∗) = RL(r̃λ∗). (3.18)

This is a classical convex optimization result. A proof can be found in Boyd and Vandenberghe 2004.
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3.3. Performancemetrics
To complete our setting Section, we discuss a few ways of relating the convergence of the opti-
mization to the approximation error in CIRL. In an effort to provide a quantifiable measurement for
safety, we introduce a metric that quantifies the extent to which the constraints are violated and
thus provides a way to measure the safety of any policy CIRL solution.

Definition 3.3.1 (Constraint-violation). We measure constraint violation in the infinity norm, recall
from Section 2.3 that the constraints are satisfied when b ≥ Ψ⊤µθ, constraint-violation is thus natu-
rally given as

max
i∈d

[
bi − [Ψ⊤]iµθ

]
+
= ∥[b−Ψ⊤µθ]+∥∞, (3.19)

Where [x]+ := max{x, 0} is applied element wise and [Ψ⊤]i denotes the i-th collumn of the matrixΨ.
In other words this means that a bounded constraint violation ∥[b − Ψ⊤(θ)]+∥∞ ≤ ϵ implies that no
constraint is violated by more than ϵ.

Assuming we have a policy with bounded constraint violation, it is, easy to ensure that an approxi-
mate algorithm with bounded constraint violation always exactly satisfies the constraints by adding
a safety margin on the constraint vector:

bmargin = b+ 1ϵ, (3.20)

where 1 denotes the all-ones vector.

The algorithm that we will consider requires learning a policy; it therefore makes sense to provide a
way of quantifying the quality of a policy with respect to the optimal solution for a given reward. We
now study the suboptimality of policies for fixed reward function.

Definition3.3.2 (MaximumQ-valuesuboptimality). Considera reinforcement-learningproblemwith
fixed reward r andQ∗ theQ-function associatedwith any optimal solution to the problem, for any pol-
icy π we call the quantity

∥Qπ −Q∗∥∞ = max
(s,a)∈S×A

|Qπ(s, a)−Q∗(s, a)|, (3.21)

the maximum Q-value suboptimality, and we use it as a measure of the suboptimality of the policy.
Any optimal policy π∗ satisfies ∥Qπ∗ −Q∗∥∞ = 0.

Finally, we highlight that the way we will measure the quality of the discovered reward is directly
through the suboptimality of the Lagrangian associated with a set of learned parameters (π, r,λ):∣∣L(π, r,λ)− L∗∣∣, (3.22)

where L∗ = L(π, r,λ) is the value taken by the Lagrangian upon convergence. We argue that this
measurement is sensible because, by Proposition 3.2.1, we know that the Lagrangian suboptimal-
ity goes 0 when CIRL is solved. To see why this measurement makes sense, we first observe that
assuming that we have exact access to the expert policy parameters L∗ = 0 we thus have:∣∣L(π, r,λ)− L∗∣∣ = ∣∣L(π, r,λ)∣∣ (3.23)

= J(θ, r)− J(θE , r) + ⟨λ, b−Ψ⊤µπθ ⟩ (3.24)

= J(θ, r)− J(θ∗r , r) + J(θ∗r , r)− J(θE , r) + ⟨λ, b−Ψ⊤µπθ ⟩ (3.25)

≥ J(θ, r)− J(θ∗r , r) + J(θ∗r , r)− J(θE , r), (3.26)

Where the last line uses that constraint violation is positive. Rearranging we get:∣∣L(π, r,λ)∣∣+ J(θ∗r , r)− J(θ, r) ≥ J(θ∗r , r)− J(θE , r) (3.27)

= βE
s∼µπE

S

[
DKL

(
πE(·|s)||π∗

r(·|s)
)]
, (3.28)

where the last equality holds by Lemma 2.4.3 (soft-suboptimality). So in plain English, if the La-
grangian is bounded and the learned policy’s suboptimality with respect to the reward r is bounded,
then optimal policy associated with the learned r is close to the expert policy.



4
An algorithm to solve CIRL in the

exact gradient setting

In the following Chapter, we introduce the main algorithm studied in the thesis and prove that it
converges globally in a finite iteration count (in O(1/ϵ2) time) under the assumption that we have
access to an exact-gradient oracle. Except when specified otherwise, results in this section are
new contributions.

4.1. Designing an algorithm to solve CIRL
Recall that one way of solvingCIRL in the sense of Definition 3.1.1 is by solving theminimax problem:

min
r∈R
λ∈Λ

max
θ∈Rnm

L(θ, r,λ), (P2)

this can equivalently be solved by running gradient ascent on the occupancy measure µ or on the
policy π. The occupancy-measure Lagrangian L(µ, r,λ) has arguably more appealing properties
than its policy/parameters counterpart L(θ, r,λ) as L is concave with respect to µ but not with re-
spect to θ and π). Regardless, we will not devise an algorithm that runs gradient ascent on the
occupancy measure vector µ, but rather on the policy parameters θ. This is for several reasons:

1. algorithms directly optimizing with the occupancy measure as a decision variable are quite
impractical. The main reason for this is that the set of valid occupancy measuresM can only
be computed when the MDP dynamics are known.

2. If we explicitly run the algorithm on the occupancymeasure itself, then the algorithm needs to
work with vectors µ ∈ Rnm as big as the state-action space. This defeats one of the main pur-
poses of reinforcement learning, which is learning policies in very large state-action spaces.

Furthermore, recent successes in proving global convergence of policy gradient algorithms [Cen
et al. 2021; Mei et al. 2020; Agarwal et al. 2020] motivate the choice of devising such an algorithm.
Specifically, [Cen et al. 2021] has shown that Natural Policy Gradients display a linear convergence
rate when regularized with Shannon’s entropy.

Therefore we propose solving the CIRL problem with gradient descent on the variables λ and r
and with natural policy gradient ascent (NPG) on the parameters θ of the policy π. This formulation
closely matches primal-dual methods proposed for CRL by [D. Ding et al. 2020] (but differs in the
sense that it makes use of entropy regularization, which modifies the convergence dynamics in the
primal) and for [Zeng et al. 2022] but differs in the sense that we propose using projected gradient
descent on the reward class.

For any practical implementation, we will have to devise an algorithm that works by sampling the
MDP under consideration. But we will first restrict our analysis to the ”exact-gradients” setting, i.e.

25
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wewill assume access to exact gradient oracles for our algorithm. Wewill also assumedirect expert
policy access, as specified in Problem Definition 3.1.1.

In the following section, we introduce the algorithm more formally.

4.2. The algorithm, NPG-CIRL
We describe our algorithm in a setting where both the reward and the policy are set by parameter
vectors. We let w ∈ Rf be the parameter vector of the reward r ∈ R ⊂ Rnm and θ ∈ Rnm be the
parameter vector of the policy π ∈ ∆S

A. From now on, we will use notations rw and πθ to denote the
reward and policies parameterized by their respective parameter vectors. This allows the specifica-
tion of our algorithm to be more general in the sense that our algorithm description encompasses
everything from direct parameterization to neural network parameterization. Later, when analyzing
our algorithm, we will explicitly specify which parameterization we consider.

Algorithm 2: NPG-CIRL

Set the learning rates ηθ = 1
β , ηz = 1√

T

Initialize the algorithm at some point (w(0),λ(0),θ(0))
foreach iteration t = 0, 1, ..., T − 1 do

θ(t+1) ← θ(t) + ηθ(F
θ)†∇θL(w

(t),λ(t),θ(t))
w(t+1) ← Pdom(w)

(
rw(t − ηz∇wL(w(t),λ(t),θ(t))

)
λ(t+1) ← Pλ∈Λ

(
λ(t) − ηz∇λL(w

(t),λ(t),θ(t))
)

end
return (w(T ),λ(T ),θ(T )).

The algorithm, whichwe callNPG-CIRLworks by running simultaneous gradient descent and ascent
steps on all three variables it optimizes. Note that the learning rate choice is actually quite practical
to pick as β is a regularization factor which is set arbitrarily, and the learning rate in ηz is a function
of the total number of algorithm steps T . It also requires the use of a projection operator to ensure
the Lagrangian multiplier stays in its allowed domain Λ, but this projection is trivial as it is given in
closed form by:

[PΛ(λ)]i = max{[λ]i, 0}, ∀i ∈ [d]. (4.1)

Finally, wemust underline that the computation of the policy stepmakes use of the Moore-Penrose
Inverse of the Fisher information matrix (FIM) (Fθ)† which is a computationally expansive quantity
to compute. This drawback can be mitigated in practice by only computing matrix-vector products
and by using the conjugate gradient method (as is most notably done in TRPO [Schulman, Levine,
et al. 2015]). In this work, we will always assume that we have direct access to the FIM.

We will specifically analyze Algorithm 2 in a setting where the policy is tabular and softmax param-
eterized, where the reward is restricted to linear reward class RΦ

L1
and we use negative Shannon

entropy (Definition 2.2.7) as our regularizer. We formalize these three facts with three assumptions.

Assumption 4.2.1 (Tabular softmax policy parameterization). Our policyπθ is parameterized by the
parameter vectorθ ∈ Rnm. Theparameterization is softmax, i.e. for any stateactionpair (s, a) ∈ S×A,
we have:

πθ(a|s) = exp(θ(s, a))∑
a′∈A exp θ(s, a′)

, ∀(s, a) ∈ S ×A. (4.2)

Assumption 4.2.2 (Linear reward class). Our reward classRΦ
L1

is given by:

RΦ
L1

:=
{
rw = Φw

∣∣w ∈ Rk, Φ ∈ Rnm×k, ∥w∥1 ≤ 1
}
. (4.3)

Assumption 4.2.3 (Negative shannon regularizer). We let our regularizer Ω : ∆A → R be the nega-
tive Shannon entropy (Definition 2.2.7):

Ω(π(·|s)) = −H(π(·|s)). (4.4)
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To ensure that strong duality holds (Proposition 3.2.2), we will also require that the occupancy mea-
sure is always bounded away from 0. We also formalize this as an assumption.

Assumption 4.2.4 (Non-vanishing occupancy measure). For any (s, a) ∈ S ×A, it holds that:

µ(s, a) > 0. (4.5)

4.3. Analysis
In the following Section, we analyze Algorithm2 in the tabular setting with softmax policy parameter-
ization and a linear reward class on a discrete, infinite horizon CMDP. We show that with access to
exact gradient oracles, Algorithm2 solves Problem3.1.1 and converges globally at a rate ofO(1/

√
T ).

This is equivalent to showing that we can get to an arbitrarily small ϵ error in O(1/ϵ2) iterations. This
result is formalized in Theorem 4.3.1, in which we express convergence in terms of suboptimality of
the Lagrangian.

4.3.1. Setting for the analysis, and formal statement of main results
Before introducing any new assumption to our setting we re-state the Lagrangian that we will opti-
mize on:

L(θ, r,λ) = J(θ, r)− J(θE , r) + ⟨λ, b−Ψ⊤µπθ ⟩. (4.6)

= ⟨r,µπθ ⟩ − βΩ̃(µπθ )− ⟨r,µE⟩+ βΩ̃(µE) + ⟨λ, b−Ψ⊤µπθ ⟩. (4.7)

Because of the one-to-one mapping between policy and occupancy measures (Proposition 2.1.1),
the two forms (4.6) and (4.7) are completely equivalent. Writing the Lagrangian in form (4.7) allows
for an easier derivation of the gradient of the dual variablesw and λ.

We use the notation πθ ∈ ∆S
A to denote the policy parameterized by the parameter vector θ ∈ Rnm.

The notation θ(s, a) refers to the element of the vector θ associated with the state action pair (s, a)
in the same way we would write π(a|s) for the element of the policy-vector associated with said
state-action pair. Similarly, we denote the reward parameterized by reward-parameterization vec-
torw ∈ Rk as rw ∈ RL1

Φ . We write θ(t),w(t) and λ(t) to denote the decision variables of Algorithm 2
after t iterations, and θ(T ),w(T ) and λ(T ) to denote their value at the last iteration. For convenience,
we use π(t) = πθ(t) to denote the policy at the t-th iteration and µ(t) = µπ

θ(t) to denote the occu-
pancymeasure at that iteration. We useπE to denote the expert policy,µE the occupancymeasure
that it induces, θE is a parameterization that induces it. We write π∗

r = CRL(r) to denote the opti-
mal policy for some reward r ∈ R. The scalar L∗ is the value that the Lagrangian takes when it has
reached a saddle point.

Under Assumption 4.2.2, the gradients used for the descent steps of Algorithm 21 are given by:

∇wL(θ,w,λ) = Φ⊤(µπθ − µE), (4.8)

∇λL(θ,w,λ) = b−Ψ⊤µπθ . (4.9)

The projected gradient descent steps on variables w and λ are essentially identical. We thus con-
catenate w and λ together in a variable z = [w⊤,λ⊤]⊤ for the purpose of the analysis. This allows
only to consider two simultaneous steps:

z(t+1) ← Pz∈dom(z)

(
z(t) − ηz∇zL(z

(t),θ(t))
)

(4.10)

θ(t+1) ← θ(t) + ηθ(F
θ)†∇θL(z

(t),θ(t)), (4.11)

and when considering projected steps, we use the following notation convention for the analysis:

z(t+1) ← Pz∈dom(z)

(
z(t+1/2)

)
(4.12)

z(t+1/2) = z(t) − ηz∇zL(z
(t),θ(t)). (4.13)

Where dom(z) = dom(w)× Λ. We now formally state our global convergence result.

1These gradients are derived from equation (4.7).
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Theorem 4.3.1 (Global convergence of NPG-CIRL). Consider the sequence of policy parameters
{θ(t)}Tt=1, of reward parameters {w(t)}Tt=1, and of Lagrangian multipliers {λ(t)}Tt=1 generated by run-
ning T steps of Algorithm 2 with policy-learning rate ηθ = 1/β, learning rate ηz = 1√

T
and when

assumptions 4.2.1 (tabular softmax policy), 4.2.2 (linear reward class), 4.2.3 (negative shanon regu-
larized) and 4.2.4 (non vanishing occupancy measure) are satisfied. The minimum Lagrangian sub-
optimality attained in the sequence satisfies:

min
1≤i≤T

∣∣L(θ(i),w(i),λ(i))− L∗∣∣ = O
( 1√

T

)
. (4.14)

Another key result wemust state is that the reward parameterizationw(T ) returned after T iterations
is associated with a policy that satisfies bounded constraint violation, specifically we have that con-
straint violation goes down at a rate O(1/

√
T ). We formalize that result through Lemma 4.3.2.

Lemma 4.3.2 (Constraint violation upper bound). Consider the iteration (θ(T ),w(T ),λ(T )), returned
by Algorithm2, andwhen assumptions 4.2.1 (tabular softmax policy), 4.2.2 (linear reward class), 4.2.3
(negative shanon regularized) and 4.2.4 (non vanishing occupancy measure) are satisfied. Then we
have that constraint violation satisfies:

∥[b−Ψ⊤µ(T )]+∥∞ = O
( 1√

T

)
. (4.15)

The proof requires results that we will show during the analysis of the algorithm and is thus deferred
to the appendix, section B.4.

4.3.2. The big picture, intuition for the analysis of the algorithm
The main idea behind the analysis of the algorithm is to look at it through the lens of dual-descent.
We will study the dual of the minimax optimization problem (P2),

min
r∈R
λ∈Λ

max
θ∈Rnm

L(θ, r,λ), (P2)

which we will denote (D) and which we define as:

D(w,λ) = sup
θ∈Rnm

L(θ,w,λ), (4.16)

Observe that solving the minimization problem

min
rw∈R
λ∈Λ

D(w,λ), (D1)

is completely equivalent to solving the minimax problem (P2). The main idea of our analysis (Fig-
ure 4.1) is to use the fast convergence properties of NPG to ensure that Algorithm 2 converges
quickly to (and then stays contained within) a neighbourhood around a locally optimal θ(t). We for-
mally show that this is true in Lemma 4.3.3. That notion of local optimality means that the iterations
(θ(t),w(t),λ(t)) generated by Algorithm 2 provide an approximation of the dual functionD(r(t),λ(t)).
This, in turn, facilitates our analysis as it enables us to analyze the convergence of gradient descent
on the simpler problem (D1). We then show the convergence of the Algorithm by checking that its
iterations provide an approximation of gradient descent on the dual function D. This is the main
idea behind the proof of Theorem 4.3.1. Analyzing the convergence of gradient descent on prob-
lem D1 is made easy because convexity is ensured in the dual, which we formalize in the following
proposition.

Proposition 4.3.1 (Dual convexity). [Boyd and Vandenberghe 2004] Consider the function f : X ×
Y → R which is convex inX and concave in Y , its dual d : X → R, which is defined for any x ∈ X as:

d(x) = sup
y∈Y

f(x,y). (4.17)

is convex.
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Figure 4.1: A representation of the process behind the convergence of Algorithm 2. The algorithm maximizes the
Lagrangian L with respect to θ while minimizing it with respect to z. Our analysis relies on the observation that the

algorithm converges fast (at a linear rate) to a neighborhood of the dual functionD which is convex in z.

We now formally state that the dualD is convex.

Proposition 4.3.2 (The dualD is convex.). Assuming that the reward parameterization is linear, the
dual function

D(w,λ) = sup
θ∈Rnm

L(θ,w,λ), (4.18)

is convex with respect to the variablesw and λ.

Proof. Dual convexity holds because the Lagrangian is convex in the variablesw and λ. This can be
seen by explicitly writing it out,

L(θ, r,λ) = ⟨r,µπθ ⟩ − βΩ̃(µπθ )− ⟨r,µE⟩+ βΩ̃(µE) + ⟨λ, b−Ψ⊤µ⟩ (4.19)

= ⟨Φw,µπθ − µE⟩ − βΩ̃(µπθ ) + βΩ̃(µE) + ⟨λ, b−Ψ⊤µ⟩, (4.20)

andobserving that it is a sumof convex functions. TheLagrangianL(µ, r,λ), beingconcave-convex,
we can apply Proposition 4.3.1 and see that:

Dµ(w,λ) =max
µ∈M

. (4.21)

Observing that:

1. there exists a one-to-onemapping between policy and occupancymeasure (Proposition 2.1.1),
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2. there exists a one-to-one mapping between the softmax policy and the policy parameter vec-
tor θ,

we see that there exists a one-to-onemappingbetweenpolicy parameters andoccupancy. And thus
we have

sup
µ∈M

L(µ,w,λ) = sup
θ∈Rnm

L(θ,w,λ), (4.22)

and the proposition is verified.

4.3.3. Convergence to a local optimum
We now get to the core of our analysis. We prove that our algorithm converges to a locally optimal
policy π∗

r̃(t) . By locally optimal, we mean optimal with respect to the reward parameterized by w(t)

and the cost induced by the Lagrange multiplier λ(t), set at time t by the iterations produced by
Algorithm 2. In order to spare ourselves the complexity of dealing with separate terms for reward
and cost, we will study the convergence of our algorithm using diminished rewards (see Definition
3.2.1):

r̃λ = r −Ψλ. (4.23)

Essentially our approachwill be to followananalysis similar to theusual analysis of entropy-regularized
NPG (see [Cen et al. 2021]). As in [Cen et al. 2021] we will use γ-contraction property of the operator
Tβ . Where analysis differs from that of [Cen et al. 2021] is in showing that even if the diminished
reward and Lagrange multiplier are regularly updated, the policy is guaranteed to converge to a
neighbourhood of the locally optimal policy π∗

r̃(t) . In other words, the policy converges ”faster” than
the reward and cost terms ”move”. Showing that small reward changes yield small perturbations in
the policy updates be achieved by showing that two key propositions which establish thatQ-values
are Lipschitz with respect to the reward parameters λ and Lagrange multiplier λ.

Proposition 4.3.3 (Q-values are Lipschitz w.r.t diminished reward for fixed policy). Consider two
diminished rewards r̃1 and r̃2 induced by two reward parameters and Lagrange multipliers w1, λ1

andw2, λ2. Assume that the gradient of the reward with respect to the parameters is upper bounded
by ∥Φ∥2. We have, in the setting of a regularized, constrained MDP, that the following bound on the
differencebetweenQ-values inducedby the samepolicyπ ∈ ∆S

A on thedifferent diminished rewards
r̃1 and r̃2 holds:

∥Qπ
r̃1 −Qπ

r̃2∥∞ ≤ ∥Ψ∥∥w1 −w2∥2 + ∥Ψ∥∥λ1 − λ2∥2 (4.24)

≤ Cz∥z1 − z2∥, (4.25)

where Cz = 2(∥Φ∥+ ∥Ψ∥) and z = [w⊤,λ⊤]⊤. The proof of this proposition is deferred to Appendix
B.2.

Proposition 4.3.4 (Optimal Q-values are Lipschitz w.r.t diminished reward). Consider two dimin-
ished rewards r̃1 and r̃2 induced by two reward parameters and Lagrange multipliersw1, λ1 andw2,
λ2. Assume that the gradient of the reward with respect to the parameters is upper bounded by ∥Φ∥3.
We have, in the setting of a regularized, constrained MDP, that the following bound on the difference
between the optimalQ-values induced by both diminished rewards holds:

∥Q∗
r̃2 −Q∗

r̃2∥∞ ≤ ∥Ψ∥∥w1 −w2∥2 + ∥Ψ∥∥λ1 − λ2∥2 (4.26)

≤ Cz∥z1 − z2∥, (4.27)

where Cz = 2(∥Φ∥⊤ + ∥Ψ∥⊤) and z = [w,λ]⊤, the second line provides amore convenient, less tight
bound which doesn’t distinguish between both parameter vectorsw and λ. This result is a corollary
of Proposition 4.3.3, and its proof is deferred to Appendix B.2.

2Same remark as in Proposition 4.3.4.
3This is an abuse of notation, when considering a linear reward-parameterization, the gradients of the reward w.r.t the

reward-parameters are upper bounded in ∥ · ∥2 norm by the spectral norm of the reward feature matrix, which we indeed
denote ∥Φ∥ but we might pick another parameterization for the rewards. In which case, the result we show still applies, but
∥Φ∥ just denotes the upper bound on the ∥ · ∥2 norm of the gradient of the reward parameterization.
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Next, let us state a useful proposition that relates convergence in the Q-values to convergence
in the policy.

Proposition 4.3.5 (Log policy-error is upper bounded bymaximumQ-value suboptimality). [Cen et
al. 2021] Consider the sequence of policies {π(t)}Tt=1 and ofQ-values {Q

(t)

r̃(t)} generated by running T

steps of NPG-CIRL (with policy-learning rate ηθ = 1/β and dual learning rate ηz = 1
Tu ). Then we have

that:

∥ logπ(t+1) − logπ∗
r̃(t)∥∞ ≤ 2∥Q(t)

r̃(t) −Q∗
r̃(t)∥∞, (4.28)

where r̃(t) denotes the diminished reward (Definition 3.2.1) associated with reward parameters w(t)

and Lagrange multipler λ(t). On the other hand π∗
r̃(t) denotes the policy optimal with respect to the

reward r(t) that satisfies the constraints Ψ⊤µπθ ≤ b. In other words, π∗
r̃(t) = CRL(r̃(t)) is the policy

optimal with respect to the diminished reward r̃(t) at time t. The proof of this proposition is deferred
to appendix B.1.

Equippedwith these threepropositions, weare ready to stateandproveourmain local-convergence
result (Lemma 4.3.3).

Lemma 4.3.3 (Local convergence of NPG-CIRL with exact gradients). We consider the sequences
{r̃(t)}Tt=0 and {π(t)}Tt=0 of diminished rewards and policies generated byAlgorithm2, with tabular soft-
max policy parameterization (as in (4.2)) and a linear reward class (as in (4.3)) the policy converges to
a local optimum (to a policy optimal w.r.t. r̃(t)) at rate:

∥Q(T )

r̃(T ) −Q∗
r̃(T )∥∞ ≤ 2∥Φ∥1γT + 2C ′

z

1− γT

1− γ

1

Tu
, (4.29)

∥ logπ(T+1) − logπ∗
r̃(T )∥∞ ≤ 4∥Φ∥1γT + 4C ′

z

1− γT

1− γ

1

Tu
, (4.30)

where Cz = 2(∥Φ∥+ ∥Ψ∥)(∥Φ∥+ ∥Ψ∥+ ∥b∥2), ∥Φ∥1 is the maximum column summatrix norm of the
feature matrix Φ and π∗

r̃(T ) is the policy optimal with respect to the diminished reward r̃(t).

Proof. Leveraging Proposition 4.3.5 we restrict our study of policy convergence to that of Q-value
convergence. To do so we start by decomposing our Q-value error as follows:

∥Q(t)

r̃(t)
−Q∗

r̃(t)∥∞ = ∥Q(t)

r̃(t)
−Q∗

r̃(t)

=0︷ ︸︸ ︷
+Q∗

r̃(t−1) −Q∗
r̃(t−1) +

=0︷ ︸︸ ︷
Q

(t)

r̃(t−1) −Q
(t)

r̃(t−1) ∥∞ (4.31)

(i)

≤

(A)︷ ︸︸ ︷
∥Q(t)

r̃(t−1) −Q∗
r̃(t−1)∥∞ +

(B)︷ ︸︸ ︷
∥Q∗

r̃(t) −Q
∗
r̃(t−1)∥∞ +

(C)︷ ︸︸ ︷
∥Q(t)

r̃(t)
−Q(t)

r̃(t−1)∥∞ . (4.32)

In (i) we just rearrange the terms and take a triangle inequality. This leaves us with three terms (A),
(B) and (C) that we need to bound to show convergence. Observe that (A)matches the error term
on the left hand side of the inequality but at iteration (t − 1), this suggests a recursion. Terms (B)
and (C) are similar in that in both case they are a function of the diminished reward-step, but not
the policy step. We start by bounding terms (B) and (C). To upper-bound the term (B) we use that
the optimal Q-function is Lipschitz with respect to the diminished reward (Proposition 4.3.4):

∥Q∗
r̃(t) −Q

∗
r̃(t−1)∥∞ ≤ Cz∥z(t) − z(t+1)∥2, (4.33)

where we consider Lipschitzness with respect to the vector z⊤ = [w⊤,λ⊤]. For term (C) we use a
very similar property, for fixed policy, Q-values are Lipschitz with respect to the diminished reward
(Proposition 4.3.3):

∥Q(t)

r̃(t)
−Q(t)

r̃(t−1)∥∞ ≤ Cz∥z(t) − z(t+1)∥2, (4.34)

where we consider Lipschitzness w.r.t the vector z⊤ = [w⊤,λ⊤]. This only leaves us with term (A),

∥Q(t)

r̃(t−1) −Q∗
r̃(t−1)∥∞

(i)
= ∥TβQ(t−1)

r̃(t−1) −Q∗
r̃(t−1)∥∞ (4.35)
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(ii)
= ∥TβQ(t−1)

r̃(t−1) − TβQ∗
r̃(t−1)∥∞ (4.36)

(iii)

≤ γ∥Q(t−1)

r̃(t−1) −Q∗
r̃(t−1)∥∞. (4.37)

We use the properties of the soft bellman operator (Definition 2.2.6), specifically in (i) we use that
since the policy learning rate ηθ in Algorithm 2 is set to 1/β the Q-value iterations are given by the
soft bellman operator (Proposition 2.4.2), in (ii)we use that the optimalQ is a fixed-point of the soft-
bellman optimality operator (Proposition 2.2.2) finally in (iii) we use that the soft-bellman optimality
operator is a γ-contraction in the ∥·∥∞ norm (Proposition 2.2.2). Bringing together the bounds (4.32),
(4.34) and (4.37) we reach the following upper bound on the Q-value error:

∥Q(t)

r̃(t)
−Q∗

r̃(t)∥∞ ≤ γ∥Q(t−1)

r̃(t−1) −Q∗
r̃(t−1)∥∞ + ∥Q∗

r̃(t) −Q
∗
r̃(t−1)∥∞ + ∥Q(t)

r̃(t)
−Q(t)

r̃(t−1)∥∞. (4.38)

Now using (4.33) and (4.34) together with the fact that gradient steps in w and λ are bounded in
norm (by the gradient norm and by the gradient descent step size ηz ) we have that:

∥Q∗
r̃(t) −Q

∗
r̃(t−1)∥∞ + ∥Q(t)

r̃(t)
−Q(t)

r̃(t−1)∥∞ ≤2Cz∥z(t) − z(t+1)∥2 (4.39)

≤2Czηz∥∇zL(θ, ˙z)∥2 (4.40)

≤2Czηz(∥Φ∥+ ∥Ψ∥+ ∥b∥2), (4.41)

which is all we need to analyze the local convergence of our algorithm. For conciseness, we let:

H(t) := ∥Q(t)

r̃(t)
−Q∗

r̃(t)∥∞, (4.42)

C ′
z := Czηz(∥Φ∥+ ∥Ψ∥+ ∥b∥2). (4.43)

Plugging (4.39) into (4.38) (and using H(t) for conciseness) we end up with the following descent
inequality:

H(t) ≤ γH(t−1) + 2C ′
zηz, (4.44)

unrolling the recursion we get:

H(t) ≤ γH(t−1) + 2C ′
zηz (4.45)

H(t) ≤ γ
(
γH(t−2) + 2C ′

zηz
)
+ 2C ′

zηz = γ2H(t−2) + 2C ′
zηz(γ + 1) (4.46)

...

H(t) ≤ γTH(0) + 2C ′
zηz

T∑
t=0

γt = γTH(0) + 2C ′
zηz

1− γT

1− γ
. (4.47)

Picking ηz = 1
Tu (as specified in alg 2) where u ∈ (0, 1) we get the following convergence rate in

terms of Q-values:

∥Q(T )

r̃(T ) −Q∗
r̃(T )∥∞ ≤ ∥Q(0)

r̃(0)
−Q∗

r̃(0)∥∞γT + 2C ′
z

1− γT

1− γ

1

Tu
. (4.48)

Observing that under Assumption 4.2.2:

∥Q(0)

r̃(0)
−Q∗

r̃(0)∥∞ ≤ (1− γ)

+∞∑
t=0

γt2∥Φ∥1 = 2∥Φ∥1, (4.49)

we find:

∥Q(T )

r̃(T ) −Q∗
r̃(T )∥∞ ≤ 2∥Φ∥1γT + 2C ′

z

1− γT

1− γ

1

Tu
. (4.50)

Finally, using Proposition 4.3.5 we get a bound of the log-policy error:

∥ logπ(T+1) − logπ∗
r̃(T )∥∞ ≤ 2∥Q(T )

r̃(T ) −Q∗
r̃(T )∥∞ (4.51)

≤ 4∥Φ∥1γT + 4C ′
z

1− γT

1− γ

1

Tu
. (4.52)

Note that C ′
z = 2(∥Φ∥+ ∥Ψ∥)(∥Φ∥+ ∥Ψ∥+ ∥b∥2). The proof is complete.
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4.3.4. Global Convergence
Local convergence is established (in Lemma 4.3.3), so we are left with showing global convergence.
To this end we will require a way to relate local convergence in the policy to a tight approximation of
the dual. Since the quantities over which we optimize can be thought of as scalar products of the
occupancymeasure and the reward, we formalize this idea by showing that the occupancymeasure
as a function of the policy is Lipschitz in the ∥ · ∥∞ norm.

Proposition 4.3.6 (Occupancy is lipschitz w.r.t to the policy in the ∥ · ∥∞ norm). We consider any
MDP setting, let µ and µ̄ be two occupancy measures induced by two policies π and π̄, the following
upper-bound holds:

∥µ− µ̄∥∞ ≤
1 + γ

√
nm

1− γ
∥π − π̄∥∞. (4.53)

The proof is deferred to section B.3.

We are now ready tackle proving the main convergence result: Theorem 4.3.1.

Proof. We allow ourselves to write our Lagrangian as L(θ, z) and our dual as D(z). Let us consider
the sub-optimality of our function L(θ, z) − L(θ∗, z∗) = L(θ, z) − L∗ in terms of the dual and of a
perturbation term:

L(θ, z)− L∗ =

(a)︷ ︸︸ ︷
D(z)− L∗ +

(b)︷ ︸︸ ︷
L(θ, z)−D(z) . (4.54)

So we have a ”dual-suboptimality” term (a) and an ”dual-approximation error” term (b). To convince
ourselves that indeed our dual-descent analysis is sensible and that the approximation error be-
comes small (i.e. that our algorithm quickly approximates the dual (D)) we will first study term (b).
We can bound it using the soft sub-optimality lemma (Lemma 2.4.3) as follows:

∣∣L(θ(T ), z(T ))−D(z(T ))
∣∣ (i)= ∣∣ =L(θ(T ),z(T ))︷ ︸︸ ︷

J(θ(T ), r̃)− J(θE , r̃)−

=D(z(T ))︷ ︸︸ ︷
J(θ∗, r̃) + J(θE , r̃)

∣∣ (4.55)

=
∣∣J(θ(T ), r̃)− J(θ∗, r̃)

∣∣ (4.56)
(ii)
=

1

ηθ
Es∼µθ∗

s

[
DKL(π

(t)(·|s)||π∗
r̃(t)(·|s))

]
(4.57)

≤ 1

ηθ
max
s∈S

[
DKL(π

(t)(·|s)||π∗
r̃(t)(·|s))

]
(4.58)

(iii)

≤ 1

ηθ
max
s∈S

[
|⟨π(t)

r̃ (·|s), logπ(t)
r̃ (·|s)− logπ∗

r̃(·|s)⟩|
]

(4.59)

(iv)

≤ 1

ηθ

[ =1︷ ︸︸ ︷
∥π(t)

r̃ ∥1 ·∥ logπ
(t)
r̃ − logπ∗

r̃∥∞
]

(4.60)

≤ 1

ηθ
∥ logπ(t)

r̃ − logπ∗
r̃∥∞. (4.61)

we use strong duality (Proposition 3.2.2) and diminished rewards (Definition 3.2.1). In (i) we just plug
in the definitions of L and D, in (ii) we use the soft suboptimality lemma (Lemma 2.4.3). In (iii) we
explicitly write out the Kullback-Leibler divergence and then in (iv)we use Hölder’s inequality to get
to a ∥ · ∥∞ norm form of our inequality. We can then plug the local optimality result of Lemma 4.3.3
into (4.61) to show that the perturbation terms indeed becomes small as the algorithm progresses:∣∣L(θ(T ), z)−D(z)

∣∣ ≤ 2

ηθ
∥ logπ∗

r̃ − logπ(t+1)
r̃ ∥∞ ≤

4∥Φ∥1
ηθ

γT +
4C ′

z

ηθ

1− γT

1− γ

1

Tu
. (4.62)

Note that what happens is that the algorithm converges fast (linearly) to a neighborhood of the op-
timum, the size of that neighborhood is controlled by the term 4C′

z

ηθ

1−γT

1−γ
1
Tu , which can be made

arbitrarily small with the choice of an appropriate learning rate ηz = 1
Tu .
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Now that we have bounded our ”dual-approximation error” term (b) let’s move on to studying our
”dual-suboptimality” term (a) (recall that we get both of these from equation (4.54)), the term (a) has
form:

D(z)− L∗ = D(z)−D∗, (4.63)

since the dual optimum and the minimax optimum coincide. We start our analysis by looking at the
gradients used by descent steps of Algorithm 2, i.e. the gradients of the Lagrangian L(θ,w,λ):

∇wL(θ,w,λ) = Φ⊤(µθ(t)

− µE) = Φ⊤(µ∗
r̃(t) − µE) + Φ⊤(µθ(t)

− µ∗
r̃(t)), (4.64)

∇λL(θ,w,λ) = b−Ψ⊤µθ(t)

= b−Ψ⊤µ∗
r̃(t) +Ψ⊤(µ∗

r̃(t) − µθ(t)

). (4.65)

What we are doing here is rearranging the gradients in such a way that we have two components,
the gradient of the dual (D1) and a perturbation term:

∇wL(θ,w,λ) = ∇wD(w,λ) + σ(t)
w , (4.66)

∇λL(θ,w,λ) = ∇wD(w,λ) + σ
(t)
λ . (4.67)

We write the gradients used by our gradient descent algorithm at iteration t as g(t), specifically, we
have:

g(t) =

[
∇wD(w,λ)
∇wD(w,λ)

]
+

[
σ

(t)
w

σ
(t)
λ

]
= ∇zD(z(t)) + σ(t)

z . (4.68)

Using dual convexity (Proposition 4.3.2) and strong-duality (Proposition 3.2.2) we have that:

D(z(t))−D∗ = D(z(t))− L∗ ≤ ⟨∇zD(z(t)), z(t) − z∗⟩ (4.69)
(i)
= ⟨g(t) − σ(t)

z , z(t) − z∗⟩ (4.70)

= ⟨g(t), z(t) − z∗⟩ − ⟨σ(t)
z , z(t) − z∗⟩, (4.71)

where (i) holds by plugging (4.68) into the gradient expression. We thus have two terms, a main
gradient step term ⟨g(t), z(t)−z∗⟩which describes the iterations of our algorithm and a perturbation
term ⟨σz(t) , z(t) − z∗⟩. First, we will show that the perturbations are sufficiently small, since we do
not know the sign of the scalar product we will bound it in absolute values:

|⟨σ(t)
z , z(t) − z∗⟩|

(i)

≤ ∥σ(t)
z ∥∞ · ∥z(t) − z∗∥1 (4.72)

(ii)

≤ D1,z∥σ(t)
z ∥∞. (4.73)

Where we just use Hölder’s inequality in (i) and in (ii) plug in the diameter D1,z of the domain of z
(in the ∥ · ∥1 norm). Let us now concentrate on upper bounding the ∥ · ∥∞ norm of the perturbation
term σ

(t)
z :

∥σ(t)
z ∥∞ =

∥∥∥∥[σw

σλ

]∥∥∥∥
∞

=

∥∥∥∥[Φ⊤

Ψ⊤

]
(µθ(t)

− µ∗
r̃)

∥∥∥∥
∞

(4.74)

(i)

≤
∥∥∥∥[Φ⊤

Ψ⊤

]∥∥∥∥
∞

∥∥µθ(t)

− µ∗
r̃

∥∥
∞ ≤

(
∥Φ⊤∥∞ + ∥Ψ⊤∥∞

)∥∥µθ(t)

− µ∗
r̃

∥∥
∞ (4.75)

(ii)

≤
√
k + d

(
∥Φ∥+ ∥Ψ∥

)∥∥µθ(t)

− µ∗
r̃

∥∥
∞ =

Cz

√
k + d

2

∥∥µθ(t)

− µ∗
r̃

∥∥
∞ (4.76)

(iii)

≤ Cz

√
k + d(1 + γ

√
nm)

2(1− γ)

∥∥πθ(t) − π∗
r̃

∥∥
∞ (4.77)

(iv)

≤ Cz

√
k + d(1 + γ

√
nm)

2(1− γ)

∥∥ logπθ(t) − logπ∗
r̃

∥∥
∞. (4.78)
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Where in (i) we take the maximum row sum norm on our matrix (which we write ∥ · ∥∞ as it is the
operator norm associated with the ∥ · ∥∞ norm on vectors). In (ii) we upper-bound the maximum
row sum norm by with the spectral norm, in (iii) we make use of Proposition 4.3.6 (lipschitzness
of the occupancy measure as a function of the policy in the ∥ · ∥∞ norm) to bound the distance in
occupancy measure by the distance in policy. Finally, in (iv) we use that on the relevant domain
(
∥∥πθ(t) −π∗

r̃

∥∥
∞ < 1) the ∥ · ∥∞ norm of the difference of the logs upper bounds the ∥ · ∥∞ norm of the

difference. Putting together (4.78), (4.73) and using Lemma 4.3.3 we show:

|⟨σ(t)
z , z(t) − z∗⟩| ≤ Cz

√
k + d(1 + γ

√
nm)D1,z

2(1− γ)

(
4∥Φ∥1γt + 4C ′

z

1− γt

1− γ

1

tu
)
. (4.79)

Now confident that gradient perturbations indeed decrease fast with iterations of our algorith we
get back to (4.71) we now consider the gradient step term ⟨g(t), z(t) − z∗⟩ note that the steps taken
by gradient descent are given by g(t) = 1

ηθ
z(t) − z(t+1/2):

⟨g(t), z(t) − z∗⟩ = 1

ηz
⟨z(t) − z(t+1/2), z(t) − z∗⟩ (4.80)

(i)
=

1

2ηz

(
∥z(t+1/2) − z(t)∥22 + ∥z(t) − z∗∥22 − ∥z(t+1/2) − z∗∥22

)
(4.81)

(ii)

≤ 1

2ηz

(
η2z∥g(t)∥22 + ∥z(t) − z∗∥22 − ∥z(t+1) − z∗∥22

)
. (4.82)

Where (i) uses the parallelogram law and (ii) the non-expansiveness of the projection operator.
Plugging the bounds (4.82) and (4.79) into the descent inequality (4.71) we have:

D(z(t))− L∗ ≤ 1

2ηz

(
η2z∥g(t)∥22 + ∥z(t) − z∗∥22 − ∥z(t+1) − z∗∥22

)
(4.83)

+
Cz

√
k + d(1 + γ

√
nm)D1,z

2(1− γ)

(
4∥Φ∥1γT + 4C ′

z

1− γT

1− γ

1

Tu

)
.

For readability we let Cp =
Cz

√
k+d(1+γ

√
nm)D1,z

2(1−γ) . Taking empirical means on both sides we get:

1

T

T−1∑
t=0

(D(z(t))− L∗) ≤ 1

2ηzT

T−1∑
t=0

(
η2z∥g(t)∥22 + ∥z(t) − z∗∥22 − ∥z(t+1) − z∗∥22

)
(4.84)

+
Cp

T

(
4∥Φ∥1

T−1∑
t=0

γt + 4C ′
z

T−1∑
t=0

1− γt

1− γ

1

Tu

)

≤ 1

2ηzT

T−1∑
t=0

(
η2z∥g(t)∥22 + ∥z(t) − z∗∥22 − ∥z(t+1) − z∗∥22

)
(4.85)

+
4∥Φ∥1Cp

T

1− γT

1− γ
+

4C ′
zCp

Tu

=
1

2ηzT

T−1∑
t=0

(
η2z∥g(t)∥22

)
+
∥z(0) − z∗∥22 − ∥z(T ) − z∗∥22

2ηzT
(4.86)

+
4∥Φ∥1Cp

T

1− γT

1− γ
+

4C ′
zCp

Tu

≤ (∥Ψ∥2 + ∥Φ∥2 + ∥b∥22)
2Tu

+
∥z(0) − z∗∥22Tu

2T
(4.87)

+
4∥Φ∥1Cp

T

1− γT

1− γ
+

4C ′
zCp

Tu
.

Rearranging, and introducingback theupper-bound (4.62) on theperturbation term (b) (L(z(t),θ)(t)−
L∗ = D(z(t))− L∗ + L(z(t),θ)(t) −D(z(t))) we have:

1

T

T−1∑
t=0

(L(z(t))− L∗) ≤

(
(∥Ψ∥2 + ∥Φ∥2 + ∥b∥22)

2
+ 4C ′

zCp + 4βC ′
z

1− γT

1− γ

)
T−u +

∥z(0) − z∗∥22
2

Tu−1

(4.88)
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+
4∥Φ∥1Cp

T

1− γT

1− γ
+ 4β∥Φ∥1γT .

convergence is fastest when we pick u∗:

u∗ = argmin
u
{−u, u− 1}, (4.89)

i.e. the optimal learning rate is ηz = 1√
T
, explicitly introducing both learning rates (ηθ = 1/β) we have

the following convergence rate:

1

T

T−1∑
t=0

(L(θ(t), z(t))− L∗) ≤

(
(∥Ψ∥2 + ∥Φ∥2 + ∥b∥22 + ∥z(0) − z∗∥22)

2
+ 4C ′

zCp + 4βC ′
z

1− γT

1− γ

)
1√
T

(4.90)

+
4∥Φ∥1Cp

T

1− γT

1− γ
+ 4β∥Φ∥1γT

= CG
1√
T

+ Cpert
1− γT

1− γ

1

T
.+ 4β∥Φ∥1γT . (4.91)

We complete the proof by observing that since theminimumelement in the sequence (D(z(t))−L∗)
over which we take the empirical mean, theremust be some iteration (t) for which the left-hand side
upper-bounds the suboptimality.



5
Convergence with stochastic
gradients, sample complexity

In the following chapter, we discuss and analyzeNPG-CIRL usingMonte-Carlo sampling to estimate
the gradients.

5.1. The algorithm, gradient estimators
Recall that in order to solve CIRL, NPG-CIRL (Algorithm 2) runs T simultaneous gradient descent-
ascent iterations of the form:

θ(t+1) ← θ(t) + ηθ(F
θ)†∇θL(w

(t),λ(t),θ(t)), (5.1)

w(t+1) ← Pdom(w)

(
w(t) − ηz∇wL(w(t),λ(t),θ(t))

)
, (5.2)

λ(t+1) ← Pλ∈Λ

(
λ(t) − ηz∇λL(w

(t),λ(t),θ(t))
)
. (5.3)

In Chapter 4, we assumed oracle access to exact gradients ∇θL, ∇wL and ∇λL. Such access is,
however, only possible when the dynamics of the MDP are exactly known. In order to make our
algorithm practical, we suggest a stochastic implementation in which gradients are estimated in a
Monte-Carlo fashion from a batch of samples. We denote our gradient estimators as:

g
(t)
θ = ∇̂θL(w

(t),λ(t),θ(t)), (5.4)

g(t)w = ∇̂wL(w(t),λ(t),θ(t)), (5.5)

g
(t)
λ = ∇̂λL(w

(t),λ(t),θ(t)). (5.6)

In the analysis of Chapter 4, we also have assumed direct access to the expert policy (equivalently,
to its occupancy measure). This is the setting of Problem 3.1.1. Again this assumption is not reason-
able. When learning from a real dataset, the expert policy can only be accessed through the expert
dataset D, which consists in a set of BD truncated trajectories of lengthH :

D(t) :=
{
{s(h)i , a

(h)
i , r

(h)
i ,Ψ

(h)
i }

H−1
h=0

}BD

i=1
. (5.7)

This is the setting of Problem 3.1.2. Estimating the expert policy by samplingD introduces an impre-
cision. We will thus also discuss how the number of samples in the dataset D, affects the quality
of the recovered solution. Although one could, with enough samples, compute an arbitrarily good
estimator of πE ∈ ∆S

A ⊂ Rnm (or equivalently of µE ∈ M ⊂ Rnm), the number of samples might
become very high when nm increases. For that reason, when considering linear reward classes that
allow for parameterizing the reward with a lower dimensional vector w ∈ Rk (k < nm), estimating
the πE or µE vector is inefficient1. This motivates the introduction of the feature expectation.

1It is inefficient in the sense that it involves estimating a vectorµ ∈ Rnm in order to later multiply it with the reward feature
matrix Φ to compute a lower-dimensionality gradient gw ∈ Rk .
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Definition 5.1.1 (Feature expectation). Consider some linear reward classRΦ with feature matrix Φ,
and some policy π that induces an occupancy measure µπ . We call the vector:

φπ = Φ⊤µπ, (5.8)

the feature expectation associated with the policy π.

Note that computing the feature expectation of a policy provides a way of computing the return as
follows:

J(θ,w) = Eτ∼πθ

[ ∞∑
t=0

γtrw(st, at)
]
= ⟨rw,µπθ ⟩ (5.9)

= ⟨Φw,µπθ ⟩ = ⟨w,Φ⊤µπθ ⟩ (5.10)

= ⟨w,φθ⟩. (5.11)

Similarly, the feature expectation appears in the computation of the gradient∇wL(θ,w,λ), we have:

∇wL(θ,w,λ) = Φ⊤(µπθ − µE), (5.12)

= φθ −φE . (5.13)

Practically our stochastic implementation of NPG-CIRL takes the form of Algorithm 3. It starts by
running an estimation subroutine on the expert datasetD and computes an estimate φ̂E ofφE , the
feature expectation of the expert policy πE . Then, Algorithm 3 runs iterations analogue to the ones
of Algorithm 2, except instead of directly accessing gradient oracles, it samples a batch

B(t) :=
{
{s(h)i , a

(h)
i , r

(h)
i ,Ψ

(h)
i }

H−1
h=0

}B
i=1

(5.14)

of trajectories generated with the current policy π(t) and uses it to compute gradient estimates
g
(t)
θ , g

(t)
w , g

(t)
λ via Monte-Carlo sampling.

Algorithm 3: NPG-CIRL (Sampled Gradients)
Set the learning rates 0 < ηθ < 1

β
, ηz = 1√

T

Estimate the feature expectation φ̂E from the expert datasetDE .
Initialize the algorithm at some point (θ(0),w(0),λ(0))
for iteration t = 1, 2, ..., T do

Sample a batch of trajectories.
for batch i = 1, 2, ..., B do

draw s
(i)
0 ∼ ν0

for step h = 1, ...H do
pick a(h−1)

i ∼ π(t)(·|s(h−1)
i ,θt)

draw s
(h)
i ∼ P (s

(h)
i |s

(h−1)
i , a

(h−1)
i )

r
(i)
h ← r(s

(h)
i , a

(h)
i )

Ψ
(i)
h ← Ψ(s

(h)
i , a

(h)
i )

end
end

Compute the gradient estimates g(t)
θ , g

(t)
w , g

(t)
λ using the trajectories{

{s(h)i , a
(h)
i , r

(h)
i ,Ψ

(i)
h }

H−1
h=0

}B

i=1
.

θ(t+1) ← θ(t) + ηθ(F
θ)†ĝθ

w(t+1) ← Pdom(w)

(
w(t) − ηzĝw

)
λ(t+1) ← Pλ∈Λ

(
λ(t) − ηzĝλ

)
end
return (w(T ),λ(T ),θ(T )).

Algorithm 3 heavily depends on the choice of the gradient estimators. In the following subsection
(SubSection 5.2.2) we propose estimators for gθ , gw and gλ. We draw the reader’s attention to the
fact that the choice of gradient estimators we suggest is not the only option. It might be relevant
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when implementing to consider different approaches2. We use a trajectory-based Monte Carlo es-
timator for the policy-gradient estimation.

Assumption 5.1.1 (GPOMDP estimator). We estimate policy gradients using the GPOMDP estima-
tor3 [Baxter and Bartlett 2001], which approaches computing the gradient as:

g
(t)
θ =

1

B

B∑
i=1

(
H−1∑
h=0

γh

(
h∑

j=0

∇θ logπθ(t)(aij |sij)

)
(r̃λ(t) − β logπθ(t))

)
. (5.15)

As we already hinted with equation (5.13), the computation of the reward gradient will rely on the
feature expectation. We thus first describe a generic estimator for the feature expectation (which
we will both use for reward gradients and for estimating the feature expectation of the expert policy
from the dataset D). That estimator is the following:

φ̂ =
1− γ

B

B∑
i=1

(H−1∑
h=0

γhΦ(s
(h)
i , a

(h)
i )
)
, (5.16)

whereΦ(s
(h)
i , a

(h)
i ) ∈ Rf is the column of the feature matrix Φ associated with the state-action pair

(s
(h)
i , a

(h)
i ).

Assumption 5.1.2 (Reward gradient estimator). We use estimator (5.16) to compute the reward gra-
dient g(t)w as follows:

g(t)w = φ̂θ − φ̂E , (5.17)

where φ̂θ is computed from the last batch B(t) while φ̂E is computed only once using the expert
datasetD.

Finally, we discuss an estimator for the Lagrangian multiplier gradients g(t)λ .

Assumption 5.1.3 (Lagrange multiplier gradient estimator). We estimate the Lagrange multiplier
gradient by:

g
(t)
λ = b− 1− γ

B

B∑
i=1

(H−1∑
h=0

γhΨ(s
(h)
i , a

(h)
i )
)
, (5.18)

whereΨ(s, a) ∈ Rd is the cost encountered in state-action pair (s, a).

We note that all three gradient estimators that we previously defined are biased. We discuss this
in more detail later, but it is a key design choice of our algorithm to choose to use biased gradient
estimators. It would alternatively be possible to work with unbiased gradient estimators (using geo-
metric sampling, as in [Y. Ding, Zhang, and Lavaei 2021], Section 3.2). We leverage the fact that our
gradient descent method is robust to small biases in gradients and use biased gradient estimators.
This presents the advantage of greatly simplifying implementation.

5.2. Analysis
5.2.1. Analysis sketch, big picture
Our analysis builds upon two main pillars; first (Section 5.2.2), we discuss the properties of the es-
timators. We show that the mean Euclidian distance error (MEDE) of the estimators that we use is
non-zero but is bounded and can be scaled down arbitrarily with the number of samples. Once our
estimators are characterized, we abstract them away and analyze the convergence of Algorithm 3

2One such technique which we do not analyze but which might actually be quite efficient in practice is an actor-critic
approach to gradient computation for the policy.

3TheGPOMDP estimator inherits its name from the algorithm for which it was originally derived [Baxter and Bartlett 2001],
which described a policy algorithm for partially observable MDPs. The acronym GPOMDP stands for ”gradient of a partially
observable Markov decision process”. It has since become a very commonly used estimator for policy gradient, including in
non-partially observable settings.
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with stochastic oracles for the gradient and for the expert policy. Similarly, as what we did in Chapter
4, we first show fast convergence to a neighbourhood of the locally optimal policy (Section 5.2.4),
and then, we consider global convergence (Section 5.2.5). Finally equipped with our convergence
results as well as with well-established properties for our gradient and expert policy estimators and
compute bounds for sample complexity (Section 5.2.6).

5.2.2. Properties of the estimators
We now analyze the properties of all three gradient estimators as well as of the feature expectation
estimator. We focus on characterizing mean euclidean distance error (MEDE) and start with the
GPOMDP estimator.

Proposition 5.2.1 (GPOMDP has bounded MEDE). The gradient estimator g(t)θ as defined in (5.15)
satisfies:

E
[
∥g(t)θ −∇θL(θ

(t),w(t),λ(t))∥2
]
≤
√
2bmax

γ2(2− γ)

(1− γ)2
HγH−1 +

2
√
6
√
∥Φ∥1 + λmax + 24β2(logm)2

B(1− γ)2
,

(5.19)

where bmax := ∥Φ∥+ λmax + β logπmin. The proof is deferred to appendix C.2.1.

Next, we characterize the properties of the reward and Lagrangian multiplier gradient estimator.

Proposition 5.2.2 (Reward gradient estimator has boundedMEDE). The gradient estimator g(t)w as
defined in (5.17) satisfies:

E
[
∥g(t)w −∇wL(θ(t),w(t),λ(t))∥2

]
≤ Φmax

(
2
√
1− γ

B
+ γH

)
, (5.20)

where Φmax denotes the maximum ∥ · ∥2 norm of any column of the constraint matrixΨ. The proof is
deferred to appendix C.2.2.

Lastly, we study the error of the Lagrangian multiplier gradient estimator, which has the exact same
form as the feature expectation gradient estimator. Thus, we omit the derivation and simply state
the result.

Proposition 5.2.3 (The Lagrangian gradient estimator). The gradient estimator g(t)w as defined in
(5.18) satisfies:

E
[
∥g(t)λ −∇λL(θ

(t),w(t),λ(t))∥2
]
≤ Ψmax

(
2
√
1− γ

B
+ γH

)
, (5.21)

whereΨmax denotes the maximum ∥ · ∥2 norm of any column of the constraint matrixΨ.

5.2.3. Setting for the stochastic convergence analysis
We formally state the additional assumptions that are required for proving the convergence in the
stochastic setting. As we did in our exact gradient analysis, we will use the optimization variable z(t

that concatenates the dual variablesw(t) and λ(t):

z =

[
w
λ

]
. (5.22)

Whenever taking expectations over a step of the stochastic gradient algorithms, we will make use
of the notation E(t+1) to denote that the expectation is taken over the randomness induced by the
stochastic gradient estimates from iteration (t). To keep our analysis clearer, we will - in this sub-
section and the next one - abstract away the gradient estimators and rather consider bounded-bias
gradient oracles.
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Assumption 5.2.1 (Bounded PGMEDE). We assume that themean Euclidian distance error (MEDE)
in the policy-gradient estimators is bounded:

E
[
∥gθ −∇θL(θ

(t),w(t),λ(t))∥∞
]
≤ δ. (5.23)

Assumption5.2.2 (Bounded z-MEDE). Weassume that themean Euclidian distance errorMEDE in
the z gradient estimators is bounded:

E
[
∥gz −∇zL(θ

(t),w(t),λ(t))∥∞
]
≤ δz. (5.24)

The result our analysis builds towards takes the form of Theorem 5.2.1, which relates average La-
grangian suboptimality of Algorithm 3 to the number of iterations and to the quality of the gradient
estimates (which is measured in terms of Assumptions 5.2.1 and 5.2.2).

Theorem5.2.1 (Global convergence of stochastic NPG-CIRL). Consider the sequence of policy pa-
rameters {θ(t)}Tt=1, of reward parameters {w(t)} and of Lagrangian multipliers {λ(t)} generated by
runningT stepsof Algorithm3with policy-learning rate ηθ = 1/β, learning rate ηz = 1√

T
. Furthermore,

assume Assumptions 4.2.1 (softmax policy), 4.2.2 (linear reward class), 4.2.3 (negative Shanon regu-
larizer), 4.2.4 (non-vanishing occupancymeasure), 5.2.1 (policy gradient oracle) and 5.2.2 (z-gradient
oracle) are satisfied. The average Lagrangian suboptimality attained by the sequence satisfies:

E

[
1

T

T∑
t=1

L(z(t),θ(t))

]
− L∗ = O

( 1√
T

+ δ + δz

)
. (5.25)

Where δ is the upper bound on the MEDE of the GPOMDP estimator (Assumption 5.2.1) and δz is the
upper bound on the MEDE of the z-gradient estimator (Assumption 5.2.2).

Wenowproceedwith the convergence analysis of the algorithm. We first provide a result equivalent
to Lemma 4.3.3, namely a local optimality lemma, and then we move on to global convergence (in
the next subsection). What we will show is that Algorithm 3 converges in expectation.

5.2.4. Convergence to a local optimum
Lemma5.2.2 (BoundedQ-value bias in the policy update expression). Under Assumption 5.2.1 (pol-
icy gradient oracle) and 4.2.4 (non-vanishing occupancy measure), we have policy updates that for
any (s, a) ∈ S ×A satisfy:

E(t+1)[π
(t+1)(a|s)] =

(
π(t)(a|s)

)1−ηθβ exp
(
ηθQ̂

(t)
r̃ (s, a)

)
, (5.26)

where Q̂
(t)
r satisfies: ∥∥Q̂(t)

r̃ −Q
(t)
r̃

∥∥
∞ ≤

δ

µmin
= δ̆. (5.27)

Where µmin = mins∈S

∑
a∈A µ(s, a). The proof is deferred to appendix C.1

Lemma 5.2.3 (Approximate performance difference for entropy-regularized NPG). Suppose that
we run NPG with step-size 0 < ηθ ≤ 1/β, for any state s0 ∈ S we have that:

V (t)
r (s0)− V (t+1)

r (s0) ≤ 2∥Q̂(t)
r −Q(t)

r ∥∞.

This is a result derived in [Cen et al. 2021]. We refer the reader to appendix C.4 of the aforementioned
work for proof.

Corollary5.2.3.1 (Nearmonotone improvementof approximateNPG). Under theAssumption∥Q̂(t)
r −

Q
(t)
r ∥∞ ≤ δ̆ we have that, for any (s, a) ∈ S ×A:

Q(t)
r (s, a)−Q(t+1)

r (s, a) =γEs′|s,a
[
V (t)
r (s′)− V (t+1)

r (s′)
]

(5.28)

≤2γδ̆ (5.29)



5.2. Analysis 42

Lemma 5.2.4 (Stochastic NPG converges linearly to a neighborhood of the local optimum). We
consider two sequences {r̃(t)}Tt=0 and {π(t)}Tt=0 of diminished rewards and policies generated by Al-
gorithm 3, with tabular softmax policy parameterization (Assumption (4.2.1)) and a linear reward class
(Assumption (4.2.2)) using boundedmean euclidean distance error stochastic oracles (Assumptions
5.2.1 and 5.2.2) the policy converges to a local optimum (to a policy optimal w.r.t. r̃(t)) at rate:

E
[
∥Q∗

r̃(t) −Q
(t)

r̃(t)
∥∞
]
≤ C1λ

t
1 + ηzCηz

+ δ̆Cδ̆, (5.30)

where:

λ1 = 1− (1− γ)ηθβ, (5.31)

C1 =
γ(4Cλ + 2β log(mCλ))

(1− ηθβ)(1 + γ)− γ
, (5.32)

Cλ = ∥Φ∥1 + ∥Ψ∥λmax (5.33)

Cηz =
2C2

zγ

ηθβ(1− γ)
, (5.34)

Cδ̆ =
γ(1− ηθ2(γ + 1))

ηθβ(1− γ)
. (5.35)

Proof. Set up for the local convergence analysis
Our analysis for the local convergence ofNPG-CIRL is similar to the global convergence analysis of
entropy-regularizedNPGwithperturbedgradientsdevelopedby [Cenet al. 2021]. It will rely on show-
ing that themaximumQ-value error converges linearly to a small value, not directly by γ-contraction
of an operator (as we did for Lemma 4.3.3) but through an affine system made up of three interde-
pendent error quantities that all converge to small values.

Let us first define a few quantities relevant to our analysis, we let

α = 1− ηθβ (5.36)

and define the auxiliary sequence
{
ξ(t)
}T−1

t=0
, ξ(t) ∈ Rnm recursively as follows:

ξ(0)(s, a) := ∥Q∗
r̃(0)(s, ·)/β∥1 · π

0(a|s) (5.37)

ξ(t+1)(s, a) :=
(
ξ(t)(s, a)

)α
exp

(
1− α

β
Q̂

(t)

r̃(t)
(s, a)

)
. (5.38)

Note that by definition this auxiliary sequence satisfies

π(t)(a|s) = ξ(t)(s, a)∑
a′∈A ξ(t)(s, a′)

, (5.39)

for any iteration (t). The motivation for the definition of the sequence
{
ξ(t)
}T−1

t=0
might not be obvi-

ous, but it should becomeclear in the light of proposition 5.2.4 (contraction of themaximumQ-value
error).

Now that we have defined the relevant quantities for our derivation, let us explicitly write our the
quantities we will build our affine error system out of. We will consider three scalars x

(t)
1 , x

(t)
2 , x

(t)
3

that are defined for each iteration t ∈ {0, . . . , T} of Algorithm 3:

x
(t)
1 := ∥Q∗

r̃(t) −Q
(t)

r̃(t)
∥∞, (5.40)

x
(t)
2 := ∥Q∗

r̃(t) − β log ξ(t)∥∞, (5.41)

x
(t)
3 := −min

s,a
(Q∗

r̃(t)(s, a)− β log ξ(t)(s, a)). (5.42)
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The key idea here is that we will compute a ”contraction-bound” for each term at iteration t+1which
will be a linear combination of all three terms at iteration t. For clarity, we organize those contraction
rates intro three separate propositions (Propositions 5.2.4, 5.2.5 and 5.2.6) which we will then sepa-
rately prove. Once this is done, we will move on to studying the affine system that naturally emerges
from the propositions.

Proposition 5.2.4 (Contraction bound of the x
(t)
1 term). Under Assumptions 4.2.1, 4.2.2, 5.2.1 and

5.2.2, iterations of Algorithm 3 lead to the following contraction bound for error term x
(t+1)
1 :

γE(t+1)[x
(t+1)
1 ] ≤ γ(1− α)x

(t)
1 + γαx

(t)
2 + γαx

(t)
3 + γ(δ̆(2 + 2γ − α) + 2ηzC

2
z ). (5.43)

The proof of this result is deferred to Appendix C.3.3.

Proposition 5.2.5 (Contraction bound of the x
(t)
2 term). Under Assumptions 4.2.1, 4.2.2, 5.2.1 and

5.2.2, iterations of Algorithm 2 lead to the following contraction bound for error term x
(t+1)
2 :

E(t+1)

[
x
(t+1)
2

]
≤ (1− α)x

(t)
1 + αx

(t)
2 + (1− α)δ̆ + ηz(C

′
z + Czδz). (5.44)

The proof of this result is deferred to Appendix C.3.1.

Proposition 5.2.6 (Contraction bound of the x
(t)
3 term). Under Assumptions 4.2.1, 4.2.2, 5.2.1 and

5.2.2, iterations of Algorithm 2 lead to the following contraction bound for error term x
(t+1)
3 :

E(t+1)[x
(t+1)
3 ] ≤ αx

(t)
3 + (δ̆(1 + 2γ) + ηz(C

′
z + Czδz). (5.45)

The proof of this result is deferred to Appendix C.3.2.

Propositions 5.2.4, 5.2.5 and 5.2.6 naturally are grouped together as:

:=E[x(t+1)]︷ ︸︸ ︷
E


x

(t+1)
1

x
(t+1)
2

x
(t+1)
3


 ≤

:=A︷ ︸︸ ︷γ(1− α) γα γα
(1− α) α 0

0 0 α


:=x(t)︷ ︸︸ ︷x

(t)
1

x
(t)
2

x
(t)
3

+

:=b︷ ︸︸ ︷γ(δ̆(2 + 2γ − α) + 2ηz(C
′
z + Czδz))

(1− α)δ̆ + ηz(C
′
z + Czδz)

δ̆(1 + 2γ) + ηz(C
′
z + Czδz)

 . (5.46)

The eigenvalues of the matrix A are the following:

λ1 = α+ γ(1− α) = 1− (1− γ)ηθβ, λ2 = α = 1− ηθβ, λ3 = 0, (5.47)

and they are associated with the following eigenvectors:

v1 =

γ1
0

 , v2 =

 0
−1
1

 , v3 =

 α
1−α

1
0

 . (5.48)

Assume that our system starts at some point x(0), and consider its representation into the basis
formed by the eigenvectors v1,v2,v3:

x(0) =
∑
i∈[3]

viai. (5.49)

The iterations of the affine system (5.46) can thus be bounded by:

E[x(t)] = AE[x(t−1)] + b = (A)tx(0) +

t−1∑
t=0

(At)b (5.50)

=
∑
i∈[3]

λt
iviai +

t−1∑
t=0

(At)b (5.51)
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(i)

≤
∑
i∈[3]

λt
iviai +

+∞∑
t=0

(At)b (5.52)

(ii)
=
∑
i∈[3]

λt
iviai + (I −A)−1b (5.53)

(iii)
= λt

1

γ1
0

 a1 + λt
2

 0
−1
1

 a2 + (I −A)−1b (5.54)

where the inequality in (i) is element-wise true all eigenvalues of A are positive, equality (ii) is just
a matrix geometric series. Note that in (iii), we omit the third eigenvector as its eigenvalues is 0.
Explicit computation tells us that the coefficients a1, a2, a3 are given by:

a1 =
1

α+ αγ − γ

(
(α− 1)x

(0)
1 + x

(0)
2 + x

(0)
3

)
, (5.55)

a2 = x
(0)
3 , (5.56)

a3 =
1− α

α+ αγ − γ
(x

(0)
1 − γx

(0)
2 − γx

(0)
3 ). (5.57)

We mostly care about terms x(t)
1 and x

(t)
2 , direct computation yields, for the term x

(t)
1 :

E[x(t)
1 ] ≤ γ

α+ αγ − γ

(
(α− 1)x

(0)
1 + x

(0)
2 + x

(0)
3

)
λt
1 + ηz

2(C ′
z + Czδz)γ

(1− α)(1− γ)
+ δ̆

γ(α+ 2γ + 2)

(1− α)(1− γ)
(5.58)

=
γ(−ηθβx(0)

1 + x
(0)
2 + x

(0)
3 )

α+ αγ − γ
(1− (1− γ)ηθβ)

t + ηz
2(C ′

z + Czδz)γ

ηθβ(1− γ)
+ δ̆

γ(1− ηθ2(γ + 1))

ηθβ(1− γ)
, (5.59)

≤γ(4Cλ + 2β log(mCλ))

(1− ηθβ)(1 + γ)− γ
(1− (1− γ)ηθβ)

t + ηz
2(C ′

z + Czδz)γ

ηθβ(1− γ)
+ δ̆

γ(1− ηθ2(γ + 1))

ηθβ(1− γ)
, (5.60)

where Cλ = ∥Φ∥1 + ∥Ψ∥λmax. This thus gives a convergence rate forQ-value suboptimality as x(t)
1 =

∥Q∗
r̃(t+1) −Q

(t+1)

r̃(t+1)∥∞:

∥Q∗
r̃(t+1) −Q(t+1)

r̃(t+1)∥∞ ≤ C1λ
t
1 + ηzCηz,1 + δ̆Cδ̆,1. (5.61)

On the other hand, the term x
(t)
2 converges at rate:

E[x(t)
2 ] ≤ (α− 1)x

(0)
1 + x

(0)
2 + x

(0)
3

α+ αγ − γ

(
1− (1− γ)ηθβ

)t − x
(0)
3

(
1− ηθβ

)t
(5.62)

+ ηz
(C ′

z + Czδz)(1 + γ)

(1− α)(1− γ)
+ δ̆

2γ2 + 1 + γ − α

(1− α)(1− γ)

≤γ(4Cλ + 2β log(mCλ))

(1− ηθβ)(1 + γ)− γ

(
1− (1− γ)ηθβ

)t − x
(0)
3

(
1− ηθβ

)t
(5.63)

+ ηz
(C ′

z + Czδz)(1 + γ)

ηθβ(1− γ)
+ δ̆

2γ2 + γ + ηθβ

ηθβ(1− γ)

The convergence rate of the term x
(t)
2 provides a convergence rate for the log-difference of the

policies since:

∥ logπ∗
r̃(t) − logπ(t)∥∞ ≤ 2∥ logQr̃(t)/β − log ξ(t)∥∞ =

2

β
x
(t)
2 , (5.64)

we thus have:

∥ logπ∗
r̃(t) − logπ(t)∥∞ ≤C1λ

t
1 + C2λ

t
2 + ηzCηz,2 + δ̆Cδ̆,2. (5.65)

We are done with the proof of Lemma 5.2.4
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5.2.5. Global convergence
With local convergence established, we turn our attention to showing global convergence of Algo-
rithm 3 (Theorem 5.2.1). To do so we follow a similar approach to the one used to prove Theorem
4.3.1. Concretely, we use that the local convergence provides an approximation of the dual D to
problem (P2).

Proof. We start by decomposing the suboptimality of the function L:

L(θ, z)− L∗ =

(a)︷ ︸︸ ︷
D(z)− L∗ +

(b)︷ ︸︸ ︷
L(θ, z)−D(z) . (5.66)

We will first consider term (b) which implies that L approximates the dual and then we consider
term (a) which implies that gradient descent on the approximate dual converges. Using the soft
suboptimally (Lemma 2.4.3) we have:∣∣L(θ(T ), z(T ))−D(z(T ))

∣∣ ≤ 2

ηθ
∥ logπ∗

r̃ − logπ(t+1)
r̃ ∥∞. (5.67)

We already have shown this result when proving global with exact gradients4, so we omit the details
of the bound. Equation (5.67) provides a way to show that Lemma 5.2.4 implies that we reach an
approximation of the dual:

E
[∣∣L(θ(T ), z(T ))−D(z(T ))

∣∣] ≤ 2

ηθ

(
C1λ

t
1 + C2λ

t
2 + ηzCηz,2 + δ̆Cδ̆,2

)
. (5.68)

We thus move on to studying the dual suboptimally term (a), where we will follow the same general
steps as in the exact gradient setting: First we separate our gradient gz into three terms:

g(t)z = ∇zL(θ
(t), z(t)) + b(t)z = ∇zD(θ(t), z(t)) + σ(t)

z + b(t)z , (5.69)

whereσ(t)
z = ∇zD(θ(t), z(t))−∇zL(θ

(t), z(t)) is thedual-approximationerror and b(t)z = ∇zL(θ
(t), z(t))−

g
(t)
z is the error of the gradient orcales. Using Assumption 5.2.2, we know that ∥b(t)z ∥2 ≤ δz . Rear-
ranging (5.69) and using convexity of the dual functionD we get:

D(z(t))−D∗ ≤⟨∇zD(z(t)), z(t) − z∗⟩ = E
[
⟨g(t)z − σ(t)

z − b(t)z , z(t) − z∗⟩
]

(5.70)

≤

(A)︷ ︸︸ ︷
E
[
⟨g(t)z z

(t) − z∗⟩
]
+

(B)︷ ︸︸ ︷∣∣∣E[⟨σ(t)
z , z(t) − z∗⟩

]∣∣∣+
(C)︷ ︸︸ ︷∣∣∣E[⟨b(t)z , z(t) − z∗⟩

]∣∣∣ . (5.71)

We thus have three terms: (A) the algorithm step term, (B) the dual-approximation error term and
(C) the orcale error term. We will show that (B) and (C) are sufficiently small and then study the
convergence of the perturbed algorithm by looking at (A). We start by considering term (B):∣∣∣E[⟨σ(t)

z , z(t) − z∗⟩
]∣∣∣ (i)≤ D1,zE[∥σ(t)

z ∥∞] (5.72)

(ii)

≤ CzD1,z

√
f + d(1 + γ

√
nm)

2

∥∥ logπ(t) − logπ∗
r̃

∥∥
∞ (5.73)

(iii)

≤ CzD1,z

√
f + d(1 + γ

√
nm)

2

(
C1λ

t
1 + C2λ

t
2 + ηzCηz,2 + δ̆Cδ̆,2

)
, (5.74)

where (i) is obtained by applying Hölder’s inequality and plugging in the diameter of the z variables
in the ∥ · ∥1 norm C1,z . Furthermore, we obtain (ii) through the same exact derivation as (4.78) and
(iii) fromplugging thepolicy convergenceboundof Lemma5.2.4. Term (C)of (5.71) canbebounded
as follows: ∣∣∣E[⟨b(t)z , z(t) − z∗⟩

]∣∣∣ (i)≤D1,zE[∥b(t)z ∥∞]
(ii)

≤ D1,zE[∥b(t)z ∥2]
(iii)

≤ D1,zδz, (5.75)

4See equation (4.54).
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where (i) is obtained by applying Hölder’s inequality and by plugging in C1,z , the diameter of the z
variables in the ∥ ·∥1 norm). Using in (ii) that the ∥ ·∥2 norm upper-bounds the ∥ ·∥∞ norm and in (iii)
that Assumption 5.2.2 holds gives us our result. We are now ready to consider term (A) and study
global convergence:

E
[
⟨g(t)z z

(t) − z∗⟩
]
≤ 1

2ηz

(
E
[
η2z∥g(t)∥22

]
+ E

[
∥z(t) − z∗∥22

]
− E

[
∥z(t+1) − z∗∥22

])
. (5.76)

Inserting (5.74), (5.75) and (5.76) into (5.71) we get:

E
[
D(z(t))−D∗] ≤ 1

2ηz

(
E
[
η2z∥g(t)∥22

]
+ E

[
∥z(t) − z∗∥22

]
− E

[
∥z(t+1) − z∗∥22

])
(5.77)

+
CzD1,z

√
f + d(1 + γ

√
nm)

2

(
C1λ

t
1 + C2λ

t
2 + ηzCηz,2 + δ̆Cδ̆,2

)
+D1,zδz

=
1

2ηz

(
E
[
η2z∥g(t)∥22

]
+ E

[
∥z(t) − z∗∥22

]
− E

[
∥z(t+1) − z∗∥22

])
(5.78)

+ ClC1λ
t
1 + ClC2λ

t
2 + ClCηz,2ηz + CLCδ̆,2δ̆ +D1,zδz.

Taking an empirical average across T algorithm steps we get:

E
1

T

[
T∑

t=1

D(z(t))

]
−D∗ ≤ 1

T

T−1∑
t=0

1

2ηz

(
E
[
η2z∥g(t)∥22

]
+ E

[
∥z(t) − z∗∥22

]
− E

[
∥z(t+1) − z∗∥22

])
(5.79)

+
1

T

T−1∑
t=0

(
ClC1λ

t
1 + ClC2λ

t
2 + ClCηz,2ηz + CLCδ̆,2δ̆D1,zδz

)
=

ηz
2T

T−1∑
t=0

E
[
∥g(t)∥22

]
+

1

2ηzT

(
+ E

[
∥z(0) − z∗∥22

]
− E

[
∥z(T ) − z∗∥22

])
(5.80)

+
Cl

T

(
C1

T−1∑
t=0

λt
1 + C2

T−1∑
t=0

λt
2

)
+

1

T

T−1∑
t=0

(ClCηz,2ηz + CLCδ̆,2δ̆ +D1,zδz)

≤ ηz
2T

T−1∑
t=0

E
[
∥g(t)∥22

]
+
∥z(0) − z∗∥22

2ηzT
(5.81)

+
Cl

T

(
C1

1− λ1
+

C2

1− λ2

)
+
(
ClCηz,2ηz + CLCδ̆,2δ̆ +D1,zδz

)
≤ηz(∥Ψ∥2 + ∥Φ∥2 + ∥b∥22 + δ2z)

2
+
∥z(0) − z∗∥22

2ηzT
(5.82)

+
Cl

T

(
C1

1− λ1
+

C2

1− λ2

)
+
(
ClCηz,2ηz + CLCδ̆,2δ̆ +D1,zδz

)
≤∥Ψ∥

2 + ∥Φ∥2 + ∥b∥22 + δ2z
2Tu

+
∥z(0) − z∗∥22

2T 1−u
(5.83)

+
Cl

T

(
C1

1− λ1
+

C2

1− λ2

)
+
(ClCηz,2

Tu
+ CLCδ̆,2δ̆ +D1,zδz

)
Choosing the optimal u = 1/2 as in (4.89) and bringing back the upper bound on the dual approxi-
mation term |L(θ(t), z(t))−D(z(t))| from (5.68) we reach the expression of our optimal convergence
rate:

E

[
1

T

T∑
t=1

L(z(t),θ(t))

]
− L∗ ≤

(
∥Ψ∥2 + ∥Φ∥2 + ∥b∥22 + δ2z + ∥z(0) − z∗∥22

2
+ ClCηz,2 + Cηz,2

)
1√
T

(5.84)

+ Cl

(
C1

1− λ1
+

C2

1− λ2

)
1

T
+

2

ηθ

(
C1λ

t
1 + C2λ

t
2

)
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+ (CL + 1)Cδ,2δ +D1,zδz

= Csg,1
1√
T

+ Csg,2
1

T
+

2

ηθ

(
C1λ

t
1 + C2λ

t
2

)
+ (CL + 1)Cδ,2δ +D1,zδz.

(5.85)

5.2.6. Sample complexity
The sample complexity result is a corollary of Theorem 5.2.1. Recall that the theorem states that the
global convergence rate of Algorithm 3 is:

E

[
1

T

T∑
t=1

L(z(t),θ(t))

]
− L∗ = O

( 1√
T

+ δ + δz

)
. (5.86)

Reachingan ϵ-approximationof theoptimal solution thus requires ensuring that δ < ϵand that δz < ϵ.
We will thus need to upper bound the quantities δ and δz explicitly. We have already done so with
Propositions 5.2.1, 5.2.2 and 5.2.3. Specifically, when using the GPOMDP estimator (assumptions
5.1.1), by Proposition 5.2.1, the mean euclidean distance error decreases at rate:

δ = E
[
∥g(t)θ −∇θL(θ,w,λ)∥2

]
= O

(
HγH +

1

B

)
. (5.87)

This implies that we can ensure Assumption 5.2.1 (bounded mean Euclidean distance error for the
policy gradient oracle) is satisfied by sampling batches of size and horizon:

H = O(log(ϵ−1)) B = O(ϵ−1). (5.88)

Similarly, Proposition 5.2.2 implies that the bounded mean Euclidean distance error of the reward
gradient estimator decreases at rate:

E
[
∥g(t)r −∇rL(θ,w,λ)∥2

]
= O

(
γH +

1

B

)
, (5.89)

the same result can be stated about the Lagrangian multiplier gradient estimator by proposition
5.2.3:

E
[
∥g(t)λ −∇λL(θ,w,λ)∥2

]
= O

(
γH +

1

B

)
. (5.90)

Bringing together (5.89) and (5.2.3) allows us to get a sample complexity result for the z gradient
estimator. We can therefore ensure that Assumption 5.2.2 is satisfied with sample complexity:

H = O(log(ϵ−1)) B = O(ϵ−1). (5.91)

This leads us to the same sample complexity result as the one concerning the policy gradient esti-
mator. For convergence to an ϵ error, we need to run O(ϵ−2) iterations of the algorithm with O(ϵ−2)
samples per iteration. The complete algorithm thus has the following sample complexity:

T = O

(
1

ϵ4

)
. (5.92)

One aspect that we do not consider in our analysis and that might be worth studying is the cost the
computational of estimating the Fisher information matrix.



6
Conditions for convergence of

NPG-CIRL

In the following Chapter, we discuss structural assumptions on the NPG problem that might allow
for faster convergence rates of the algorithm. We then describe a condition that, when satisfied,
ensures that the problem converges linearly fast.

6.1. Structure of the NPG-CIRL problem, dual strong convexity
The core idea of our analysis is to leverage linear convergence of gradient descent over strongly
convex, smooth functions to show linear convergence of the gradient descent-ascent scheme of
Algorithm 2. We observe that when the right conditions are met (strong convexity and smoothness
of the dual problem), we can construct a single affine error system to showglobal convergence. This
analysis, similar to the one establishing the local convergence lemma of Chapter 5 (Lemma 4.3.3)
immediately shows that the convergence rate is linear.

6.1.1. Assumptions
We rely on the same assumptions as the results from Sections 4 and 5: we assume tabular softmax
parametrization (Assumption 4.2.1), a linear reward class (Assumption 4.2.2), negative Shannon en-
tropy regularization (Assumption4.2.3) andanon-vanishingoccupancymeasure (Assumption4.2.4).
Furthermore, we introduce two assumptions on the dual function D required for fast convergence:
dual smoothness and dual strong convexity.

Assumption 6.1.1 (Strong convexity of the dual). The dual function of the Lagrangian L defined in
(3.15) is strongly-convex with constant CSC.

Assumption 6.1.2 (Dual smoothness). The dual function D of the Lagrangian (P2) is differentiable
and smooth with parameter Lz .

These two assumptions may seem arbitrary, but we argue they are reasonable on MDPs that meet
specific properties. We discuss this in detail in Appendix D.1.

6.2. Fast-convergence dynamics
We now discuss the gradient descent dynamics at play. When Assumptions 6.1.1 and 6.1.2 are met.
It is possible to build an affine error system that directly describes the global convergence of the
algorithm. Consider the three following scalars that quantify error:

x
(t)
1 =∥z(t) − z∗∥2 (6.1)

x
(t)
2 =∥Q(t)

˜r(t)
−Q∗

˜r(t)
∥∞ (6.2)

x
(t)
3 =∥Q∗

˜r(t)
− β log ξ(t)∥∞ (6.3)

48
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Let us define a few relevant quantities relevant to our analysis. First, we let the constant C be given
by:

C = max

{
γCzLz

2b
,
CzLz

4b
, Cσ

}
. (6.4)

Where Cz = 2(∥Ψ∥ + ∥Ψ∥), Lz is the smoothness constant from Assumption D.1.2, is some real
number b > 0 and Cσ is a constant related to the properties of the MDP (see Appendix D.2.3). We
introduce the normalized learning rates:

η̃z =
ηz
CSC

∈ (0, 1], η̃θ =
ηθ
β
∈ (0, 1]. (6.5)

As well as the systemmatrix:

K =

(1− η̃z) 0 Cη̃z
Cη̃z γ 2γ(1− η̃θ)
Cη̃z η̃θ (1− η̃θ)

 . (6.6)

Lemma 6.2.1 (Affine error system for fast convergence). When Assumptions 4.2.1 (softmax policy),
4.2.2 (linear reward class), 6.1.1 (dual strong convexity) and 6.1.2 (dual smoothness) are satisfied, then,
for any b > 0, iterations of Algorithm 2 satisfy:

x(t+1) ≤ Kx(t) + b. (6.7)

WhereK is the system matrix as defined in equation (6.6), x(t) = [x
(t)
1 , x

(t)
2 , x

(t)
3 ]⊤ is the error vector

(which is defined for any iteration t of Algorithm 2) and b = [0, 2γb, b]⊤. The proof of this result is
deferred to Appendix D.2

Lemma 6.2.1 naturally allows for the identification of a condition for fast convergence of our algo-
rithm.

Condition 6.2.1. ∥K∥ < 1 (the systemmatrix has a spectral norm strictly inferior to 1).

Theorem 6.2.2 (Linear convergence when condition 6.2.1 is met). When Assumptions 4.2.1 (soft-
max policy), 4.2.2 (linear reward class), 6.1.1 (dual strong convexity) and 6.1.2 (dual smoothness) are
satisfied, and when Condition 6.2.1 is met, then Algorithm 2 to reaches an error:∣∣L(θ(T ),w(T ),λ(T ))− L∗∣∣ ≤ ϵ, (6.8)

in: T = O(log(1/ϵ)), iterations.
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6.3. Discussion
Next, we discuss when Condition 6.2.1 is met.

Figure 6.1: Spectral norms of theK matrix as a function of both learning rates (η̃θ on the x-axis and η̃z on the y axis) for
different values of γ and of C. The red-line denote the values of η̃θ and η̃z for which ∥A∥ is exactly 1. The plot shows‚ the

importance of the constants γ and C. Note that the plots show the domain η̃z ∈ [0, 0.1], η̃θ ∈ [0.9, 1].

Condition 6.2.1 provides away to describe situations inwhich algorithm2 converges linearly fast, but
it is hard to establish whether this condition is a reasonable assumption tomake about the structure
of the optimization problem.

The spectral norm ∥K∥ can be thought of as a function of the primal and dual normalized learning
rates η̃θ and η̃z as well as of the system dependant constant C and the discount factor γ. One way
to think about the condition ∥K∥ is as a way of specifying which combinations of learning rates η̃θ,
η̃z lead to linear convergence assuming that C and γ are given. To provide some intuition and in-
vestigate whether linear convergence can practically happen when running iterations of Algorithm
2, we produced plots of the value of ∥K∥ as functions of both learning rates η̃θ, η̃z (Figure 6.1).

Figure 6.2: Spectral norms of theK matrix as a function of both learning rates (η̃θ on the x-axis and η̃z on the y axis) low
values of C. The red-line denote the values of η̃θ and η̃z for which ∥A∥ is exactly 1. The plot shows‚ the importance of the

constants γ and C. Note that the plots show the domain η̃z ∈ [0, 1], η̃θ ∈ [0, 1].

What the resulting plots highlight (Figure 6.1) is that when the constants C and γ are sufficiently
small, then a region of the η̃θ, η̃z space indeed satisfies the condition. Specifically the condition is
met when η̃θ is close to 1 and when η̃z is close 0. This suggests that what happens is akin to dual
descent, where the optimizer moves faster to a locally optimal policy with respect to θ than it does
to the global optimum. This behaviour is similar to what we analyzed in Chapters 4 and 5.
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On the other hand, when the constant C is sufficiently smaller than 1, we observe that we might
reach a situation where linear convergence happens with a learning rate η̃z close to 1 (Figure 6.2).
This is the ideal setting for fast convergence. Devising a way to reach lower the constant might
be critical to the design of a fast converging algorithm. Our derivation suggests that this can be
reached through the choice of the right feature matrices, i.e. when the quantity ∥Φ∥ + ∥Ψ∥ is suffi-
ciently small. Whether this is attainable in practice remains to be verified.



7
Conclusion

In conclusion, three main results are obtained in this work.

First, weproposeamethod for solving theCIRLproblem, termedNPG-CIRL.Wemotivate thechoices
made in the design of the NPG-CIRL algorithm and discuss possible tradeoffs in implementation.
We first discuss an idealized version of the algorithm, where Oracle access to exact gradients is
available (we call that setting the exact gradient setting). We then move away from that idealized
setting and show how our algorithm can be more practically implemented using Monte-Carlo gra-
dient estimation techniques (we call that setting the stochastic gradient setting).

Secondly, we provide a finite-time analysis of the global convergence of our algorithm in the exact
gradient setting. We show that the algorithm requires O(1/ϵ2) gradient evaluations to reach an ϵ
approximate solution (this is the iteration complexity of our algorithm). We also show that the recov-
ered policy provably satisfies the imposed constraints and, thus, that our algorithm is safe.

Thirdly we show that the convergence rate obtained in the idealized exact gradient setting still holds
when using biased, stochastic gradient estimators. The stochastic algorithm still requires O(1/ϵ2)
gradient evaluations to converge. We extend our analysis and quantify the total required number of
samples (MDP steps) needed to reach convergence to an ϵ-approximate solution and show that our
algorithm requires O(1/ϵ4) samples (this is the sample complexity of our algorithm).

7.0.1. Future work
While this work succeeds in proposing and analysing a globally converging algorithm to tackle the
CIRL problem, several important questions remain unanswered.

Firstly we believe running a set of experiments using the stochastic formulation of our algorithm
in a practical application would be of the most significant interest. We only theoretically analysed
our algorithm in the discrete, tabular softmax setting. However, it resembles other policy-gradient
algorithms that performwell when using deep neural networks to parametrise the policies. Running
a set of experiments using neural networks to estimate the policies and rewards would thus be of
great interest.

Running a set of experiments would also help build a better qualitative understanding of the algo-
rithm’s behaviour. It would showcase the safety guarantees provided by the algorithm, highlight the
explainability benefits of CIRL, and maybe emphasise certain aspects that were overlooked when
studying it from a theoretical viewpoint.

Secondly, we believe that further theoretical investigation into the conditions for linear convergence
of NPG-CIRLmay yield significant results. The fast convergence dynamics described in Chapter 6
suggest that there may be a way of modifying NPG-CIRL to ensure that it converges fast reliably. If
so, it would be of great interest to study this algorithm in the stochastic setting. The investigation
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of linear convergence would also benefit from running a set of experiments to investigate if this
behaviour can realistically be achieved in real-world problems.
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A
Useful results

This appendix chapter summarizesa fewuseful generic results thatweuse inourderivations through-
out this document.

A.1. Properties of the log-sum-exp operation
In the following section we discuss the properties of the log-sum-exp function log ∥expv∥1 which
we very often encounter when deviating expressions related to entropy-regularized MDPs.

Observation A.1.1 (Gradient of log-sum-exp is softmax). The gradient of the log-sum-exp function
is the softmax function, indeed:

[softmax(v)]i =
[expv]i∑
j [expv]j

=
[v]i

∥expv∥1
, (A.1)

is exactly:

∇(log ∥expv∥1) =
1

∥expv∥1
expv. (A.2)

Proposition A.1.1 (Upper-bound on the difference between two log-sum-exp operations). For any
two vectors v1 and v2 ∈ Rn we have that:

| log ∥expv1∥1 − log ∥expv2∥1| ≤ ∥v1 − v2∥∞. (A.3)

Proof. From the mean-value theorem, we know that there exists a vector vc, which is some convex
combination of v1 and v2 s.t. the following equality is verified:

| log ∥expv1∥1 − log ∥expv2∥1| = |⟨v1 − v2,∇ log ∥v∥1|v=vc⟩|, (A.4)

and then cleverly using Hölder’s inequality we have that:

| log ∥expv1∥1 − log ∥expv2∥1| (A.5)

= |⟨v1 − v2,∇ log ∥v∥1|v=vc
⟩| mean value theorem (A.6)

≤ ∥⟨v1 − v2∥∞ · ∥∇ log ∥v∥1|v=vc
∥1 Hölder’s (A.7)

= ∥⟨v1 − v2∥∞ ∥∇ log ∥v∥1|v=vc∥1 =

∥∥∥∥∥expvc∥vc∥1

∥∥∥∥∥ = 1. (A.8)

Where the last line is a common observation on log-sum-exp forms.
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B
Omitted proofs and derivations from

Chapters 4

This appendix chapter details the results, proofs and derivations omitted from chapter 4.

B.1. Proof of proposition 4.3.5 (Policy-error is upper bounded by
Q-value suboptimality)

Proof. To prove the result, we consider some state-action pair s, a ∈ S ×A and get:

| logπ(t+1)(a|s)− logπ∗
r̃(t)(a|s)|

(i)
=

∣∣∣∣∣ log
(

expQ
(t)

r̃(t)(s, a)∑
a′∈A expQ

(t)

r̃(t)(s, a′)

)
− log

(
expQ∗

r̃(t)(s, a)∑
a′∈A expQ∗

r̃(t)(s, a′)

)∣∣∣∣∣
(B.1)

(ii)

≤

∣∣∣∣∣ log expQ
(t)

r̃(t)(s, a)− log expQ∗
r̃(t)(s, a)

∣∣∣∣∣ (B.2)

+

∣∣∣∣∣ log ∑
a′∈A

expQ
(t)

r̃(t)(s, a
′)− log

∑
a′∈A

expQ∗
r̃(t)(s, a

′),

∣∣∣∣∣
where (i) holds for the π(t+1) termby proposition 2.4.2 (soft-policy iteration) and for term π∗

r̃ by propo-
sition 2.2.4 (form of the optimal policy), (ii) is just a triangle inequality. Next, using proposition A.1.1
(| log ∥expv1∥1 − log ∥expv2∥1| ≤ ∥v1 − v2∥∞) we get:∣∣∣∣∣ log ∑

a′∈A

expQ
(t)

r̃(t)(s, a
′)− log

∑
a′∈A

expQ∗
r̃(t)(s, a

′)

∣∣∣∣∣ ≤ max
a′∈A

∣∣∣∣∣Q(t)

r̃(t)(s, a
′)−Q∗

r̃(t)(s, a
′)

∣∣∣∣∣. (B.3)

Plugging (B.3) into (B.2), and observing that since these relations hold for any s, a ∈ S × A they also
hold for the s, a pair where policy error is maximum we have:

∥ logπ(t+1) − logπ∗
r̃(t)∥∞ ≤ 2∥Q(t)

r̃(t) −Q∗
r̃(t)∥∞. (B.4)

This completes the proof.

B.2. Proofs of Propositions 4.3.3 and 4.3.4 (Lipschitzness of the
Q-function)

We show that Proposition 4.3.3 holds.

Proof. Recall the definition of the Q-value in a regularized MDP:

Qπ
r̃ (s, a) = (1− γ)Eτ∼π

[ ∞∑
t=0

γt
(
r̃(st, at) +H(π(·|st))

)∣∣∣s0 = s, a0 = a
]
. (B.5)
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Taking the difference between the Q values for different diminished rewards and identical policies,
we get:

∣∣Qπ
r̃1
(s, a)−Qπ

r̃2
(s, a)

∣∣ (i)= (1− γ)

∣∣∣∣∣Eτ∼π

[ ∞∑
t=0

γt
(
r̃1(st, at) +H(π(·|st)) (B.6)

− r̃2(st, at)−H(π(·|st))
)∣∣∣s0 = s, a0 = a

]∣∣∣∣∣
(ii)

≤ (1− γ)Eτ∼π

[ ∞∑
t=0

γt
(
|r̃1(st, at)− r̃2(st, at)|

)∣∣∣s0 = s, a0 = a
]

(B.7)

(iii)

≤ (1− γ)

∞∑
t=0

γt
(
∥Φ∥ · ∥w1 −w2∥2 + ∥Ψ∥ · ∥λ1 − λ2∥2

)
(B.8)

(ib)
= ∥Φ∥∥w1 −w2∥2 + ∥Ψ∥∥λ1 − λ2∥2. (B.9)

In (i) we plug in the definition of the regularized Q-values, in (ii) we use Jensen’s inequality and
finally in (iii) we use that the diminished reward function itself is Lipschitz, finally in (iv) we just use
a geometric sum.

Next, we move on to the proof of Proposition 4.3.4.

Proof. The proposition holds as a corollary of Proposition 4.3.3, to see why observe that:

∥Q∗
r̃2 −Q∗

r̃2∥∞ = ∥ max
π1∈∆S

A

Qπ1

r̃2 − max
π2∈∆S

A

Qπ2

r̃2 ∥∞ (B.10)

≤ max
π∈∆S

A

∥Qπ
r̃2 −Qπ

r̃2∥∞ (B.11)

(i

≤ ∥Ψ∥∥w1 −w2∥2 + ∥Ψ∥∥λ1 − λ2∥2 (B.12)

≤ Cz∥z1 − z2∥, (B.13)

where (i) wholds by Proposition 4.3.3.

B.3. Proof of proposition 4.3.6 (Occupancymeasure is Lipschitz
with respect to the policies)

Proof. We start by writing out the left-hand-side explicitly:

∥µ− µ̄∥∞ = max
s,a∈S×A

|µ(s, a)− µ̄(s, a)| (B.14)

(i)
= max

s,a∈S×A
|µS(s)π(a|s)− µ̄S(s)π̄(a|s)| (B.15)

(ii)
= max

s,a∈S×A
|µS(s)(π(a|s)− π̄(a|s)) + π̄(a|s)(µS(s)− µ̄S(s))| (B.16)

(iii)

≤ max
s,a∈S×A

µS(s)|(π(a|s)− π̄(a|s))|+ max
s,a∈S×A

π̄(a|s)|(µS(s)− µ̄S(s))| (B.17)

(iv)

≤ ∥π − π̄∥∞ + ∥µS(s)− µ̄S∥∞. (B.18)

In (i) we plug in the definition of the state-occupancy measure, in (ii) we rearrange and isolate
two difference terms (which are respectively function of the state-occupancy measures and of the
policies), in (iii) we just use a triangle inequality which leads us in (iv) to identify ∥ · ∥∞ norms. Next
we thus carry about upper-bounding the ∥µS(s)− µ̄S∥∞ term, to do so we will make use of a useful
bound on the spectral norm of the sum of two inverse matrices:

∥A−1 +B−1∥ (i)
= ∥A−1(A+B)B−1∥ (B.19)
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(ii)

≤ ∥A−1∥ · ∥(A+B)∥ · ∥B−1∥ (B.20)

(iii)
=

∥(A+B)∥
σmin(A) · σmin(B)

. (B.21)

Where (i) holds by the equality A−1 + B−1 = A−1(A + B)B−1 which holds for any two invertible
matrices, (ii) holds by submultiplicativity of the spectral norm and (iii) uses the definition of the
spectral norm (σmin(A) denotes the minimum eigenvalue of the matrix A). Back to upper-bounding
the ∥µS(s)− µ̄S∥∞ term, we have:

∥µS(s)− µ̄S∥∞
(i)

≤ ∥µS(s)− µ̄S∥2 (B.22)

(ii)
= (1− γ)

∥∥∥∥∥[(I − γPπ
)−1 −

(
I − γP π̄

)−1
]
ν

∥∥∥∥∥
2

(B.23)

(iii)

≤ (1− γ)

∥∥∥∥∥[(I − γPπ
)−1 −

(
I − γP π̄

)−1
]∥∥∥∥∥ · ∥ν∥2 (B.24)

(iv)

≤ (1− γ)

∥∥∥∥∥[(I − γPπ
)−1 −

(
I − γP π̄

)−1
]∥∥∥∥∥ (B.25)

(v)

≤ (1− γ)−1

∥∥∥∥∥[(I − γPπ
)
−
(
I − γP π̄

)]∥∥∥∥∥ (B.26)

=
γ

1− γ

∥∥Pπ − P π̄
∥∥. (B.27)

In (i)we just use that the ∥ ·∥2 norm upper-bounds the ∥ ·∥∞ norm, in (ii)we plug in the closed-form
computation of the occupancy measure (which uses the close-loop transition kernel associated
with both policies). In (iii)we use the definition of the spectral norm to pull-out the initial distribution
term ν which (iv) we know is less than 1 because it is the ∥ · ∥2 norm of a distribution. Finally in (v)
we use the relation (B.21). We are left with the spectral norms of the difference between close-loop
transition kernels of both policies. To complete our proof we have to show that this scales linearly
with ∥π − π̄∥∞. Now we just need to bound

∥∥Pπ − P π̄
∥∥ which we do as follows:

∥∥Pπ − P π̄
∥∥ (i)

≤
∥∥Pπ − P π̄

∥∥
F

(ii)
=

√ ∑
s,s′∈S×S

(
Pπ(s′|s)− P π̄(s′|s)

)2
(iii)
=

√ ∑
s,s′∈S×S

(∑
a∈A

P (s′|s, a)(π(a|s)− π̄(a|s))
)2

=

√ ∑
s,a,s′∈S×A×S

P (s′|s, a)2(π(a|s)− π̄(a|s))2

=

√ ∑
s,a∈S×A

(∑
s′∈S

P (s′|s, a)2
)
(π(a|s)− π̄(a|s))2

≤
√ ∑

s,a∈S×A

(π(a|s)− π̄(a|s))2 = ∥π − π̄∥2 ≤
√
nm∥π − π̄∥∞.

Where (i) comes from the fact that the Frobenius norm upper bounds the spectral norm, (ii) is by
the definition of the Frobenius norm, and (iii) just plugs in the definition of the closed loop transi-
tion kernel from there we can just rearange and isolate the

(∑
s′∈S P (s′|s, a)2

)
term, which since

P (·, s, a) ∈ ∆S we know is less than 1. From there we just observe that we have gotten to the defini-
tion of the l2 norm. Finally we upper-bound the ∥ · ∥2 norm with the ∥ · ∥∞ norm.
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Putting everything back together we have:

∥µπ − µπ̄∥2 ≤ ∥π − π̄∥2 + ∥µs − µ̄s∥∞

≤ ∥π − π̄∥2 +
γ

1− γ

∥∥Pπ − P π̄
∥∥

≤ ∥π − π̄∥2 +
√
nmγ

1− γ
∥π − π̄∥2

=
1 + (

√
nm− 1)γ

1− γ
∥π − π̄∥∞.

B.4. Proof of lemma 4.3.2 (Constraint violation)
Proof. We start by considering the constraint violation directly, we have:

∥[b−K(θ(∗))]+∥∞ = ∥[b−K∗ +K∗ −K(θ(∗))]+∥∞ (B.28)
(i)

≤ ∥[b−K∗]+∥∞ + ∥[K∗ −K(θ(∗))]+∥∞ (B.29)
(ii)

≤ ∥[K∗ −K(θ(∗))]+∥∞. (B.30)

Where in (i) we use that max{a + b, 0} < max{a, 0} +max{b, 0} and a triangle inequality and in (2)
we use that b−K∗ is the 0 vector (all constraints are satisfied in the optimal solution). Next we look
at the difference of cost vector:

∥[K∗ −K(θ(∗))]+∥∞ = ∥K∗ −K(θ(∗))∥∞ = ∥Ψ⊤(µ(∗) − µ∗)∥∞ (B.31)
(i)

≤ ∥Ψ⊤∥∞ · ∥(µ(∗) − µ∗)∥∞ (B.32)
(ii)

≤
√
d∥Ψ∥1 + γ

√
nm

1− γ
∥π − π∗∥∞ (B.33)

(iii)

≤
√
d∥Ψ∥1 + γ

√
nm

1− γ
∥ logπ − logπ∗∥∞ (B.34)

(iv)

≤
√
d∥Ψ∥1 + γ

√
nm

1− γ

(
4∥ϕ∥1γT + 4C ′

z

1− γT

1− γ

1

Tu

)
. (B.35)

In (i) we use the ∥ · ∥∞ operator norm on the matrix Ψ⊤ and then in (ii) we upper bound the ∥ · ∥∞
operator norm by the spectral norm, and use proposition 4.3.6, in (iii) we use that |x− y| < | logx−
log y|when x, y ∈ (0, 1) and finally in (iv)weplug in the convergence rate fromour local convergence
Lemma (Lemma 4.3.3). The proof is complete.



C
Omitted proofs and derivations from

Chapters 5

This appendix chapter details the results, proofs and derivations omitted from chapter 5.

C.1. Proof of Proposition 5.2.2 (Pertubed policy step)
Proof. This proof is very similar to the one provided in Appendix C.6 of [Cen et al. 2021], with a few
key differences that we highlight. Before we start we state the definition of the advantage function:

Aπθ
r (s, a) = Qπθ

r (s, a)− β logπθ(a|s)−Qπθ
r (s). (C.1)

The gradient∇θL(θ, r,λ) is given by:

∇θL(θ, r,λ) = ∇θ

[
J(πθ, r)− J(πE , r) + ⟨λ, b−Ψ⊤µπθ ⟩

]
(C.2)

= ∇θJ(πθ, r)−∇θJ(π
E , r) +∇θ⟨λ, b−Ψ⊤µπθ ⟩ (C.3)

= ∇θJ(πθ, r̃)−∇θJ(π
E , r̃) (C.4)

= ∇θJ(πθ, r̃). (C.5)

In the entropy regularized setting, the gradient of the return is given by:

∂J(πθ, r̃)

∂θ(s, a)
= µπθ (s, a)Aπθ

˜̃r
(s, a), (C.6)

for a detailed derivation of (C.6) we refer to [Cen et al. 2021]. Recall that the NPG step is given by (in
the exact gradient setting):

θ(t+1) ← θ(t) + ηθ
(
Fθ
)†∇θL(θ, r,λ) = θ

(t) + ηθ
(
Fθ
)†∇θJ(πθ, r̃), (C.7)

introducing the stochastic oracle gradients we have:

θ(t+1) ← θ(t) + ηθ
(
Fθ
)†
gθ. (C.8)

One key observation is that the stepwθ =
(
Fθ
)†
gθ is given by:

wθ = arg min
w∈Rnm

∥∥Fθw − gθ
∥∥2
2
. (C.9)

Consider the matrix vector product of the decision variable w with the Fisher information matrix
(Definition 2.4.2):

Fθw = Es,a∼µπθ

[
(∇θ logπ(a|s))(∇θ logπ(a|s))⊤w

]
(C.10)
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(i)
=
∑
s,a

µπθ
(s, a)

(
w(s, a)− c(s)

)
. (C.11)

Where c(s) =
∑

s,a πθ(s, a)w(s, a) again we refer the reader to [Cen et al. 2021] for a detailed deriva-
tion of step (i). Now we are recall Assumption 5.2.1:

E
[
∥gθ −∇θL∥

]
≤ δ. (C.12)

We define σθ = gθ − ∇θL and note that by the ∥ · ∥∞ ≤ ∥ · ∥2 the assumption implies that for any
(s, a) ∈ S ×A:

E

[∣∣∣gθ(s, a)− ∂J(πθ, r̃)

∂θ(s, a)

∣∣∣] ≤ E
[∥∥σθ

∥∥
∞

]
= E

[
∥gθ −∇θL∥∞

]
≤ δ. (C.13)

Using expression (C.11) and observation (C.9) we are now equipped to compute the NPG step:∥∥Fθw − gθ
∥∥2
2
=
∑
s,a

(
µπθ

(s, a)
(
w(s, a)− c(s)

)
− gθ(s,a)

)2
(C.14)

=
∑
s,a

(
µπθ

(s, a)
(
w(s, a)− c(s)

)
− µππ (s, a)Aπθ

˜̃r
(s, a) + σσ(s, a)

)2
(C.15)

=
∑
s,a

(
µπθ

(s, a)
(
w(s, a)− c(s)−Aπθ

˜̃r
(s, a) +

σσ(s, a)

µπθ
(s, a)

))2

. (C.16)

It is easy to see that the solutionwθ is given by:

w(s, a) = c(s) +Aπθ

˜̃r
(s, a)− σσ(s, a)

µπθ
(s, a)

, (C.17)

and that by Assumption 5.2.1 the approximate gradient step in a neighborhood of the exact gradient
step (which is just given by the ∥σθ∥2 = 0):

E

[∥∥∥wθ −
(
Fθ
)†∇θJ(πθ, r̃)

∥∥∥
∞

]
= E

[∥∥∥(Fθ
)†
gθ −

(
Fθ
)†∇θJ(πθ, r̃)

∥∥∥
∞

]
(C.18)

≤
∣∣∣ δ

µmin

∣∣∣. (C.19)

So far, we have established that:[(
Fθ
)†
gθ

]
(s, a) = Aπθ

˜̃r
(s, a) + c(s)− σσ(s, a)

µπθ
(s, a)

, (C.20)

we will now show how this translates to the policy step. We will abuse notation and write π(t) = πθ(t)

have that:

π(t+1)(a|s)
(i)
∝ exp

(
θ(t+1)(s, a)

)
= exp

(
θ(t)(s, a) + ηθ

[(
Fθ
)†
gθ

]
(s, a)

)
(C.21)

(ii)
∝ exp

(
θ(t)(s, a) + ηθA

πθ

˜̃r
(s, a)− σσ(s, a)

µπθ
(s, a)

)
(C.22)

(iii)
∝ π(t)(a|s)exp

(
ηθQ

πθ

˜̃r
(s, a)− β logπ(t)(a|s)− σσ(s, a)

µπθ
(s, a)

)
(C.23)

(iv)
∝ (π(t)(a|s))1−ηθβ exp

(
ηθQ

πθ

˜̃r
(s, a)− σσ(s, a)

µπθ
(s, a)

)
(C.24)

= (π(t)(a|s))1−ηθβ exp
(
ηθQ̂

πθ

˜̃r
(s, a)

)
. (C.25)

Where (i) is obtained from the softmax parameterization (Assumption 4.2.1) and (ii) from the NPG
step, we neglect c(s) because the softmax normalizes away all terms which have the same value
for all elements across s. In (iii) we plug in the definition of the advantage (again the V term gets
normalized away by softmax). Finally in step (iv) we factor all policy-related terms in from of the
exponential. Finally, we identify Q̂ which satisfies

∥∥Q̂(t)
r −Q(t)

r

∥∥
∞ ≤ δ̆ by definition of σ.
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C.2. Characterization of the estimators
C.2.1. Proof of Proposition 5.2.1 (Policy gradient estimator)
Proof. Toget to theboundedmeaneuclideandistanceerror fromProposition5.2.1westart bywriting
out explicitly our exact gradients and our gradient estimator:

g
(t)
θ =

1

B

B∑
i=1

(
H−1∑
h=0

γh
(
Σh

j=0∇θ logπθ(t)(aij |sij)
)
bh

)
, (C.26)

∇θL(θ,w,λ) = E

[
+∞∑
h=0

γh
(
Σh

j=0∇θ logπθ(t)(aij |sij)
)
bh

]
, (C.27)

where we write bh = (r̃λ(t)(sh, ah)− β logπθ(t)) for conciseness. From (C.26) and (C.27) we get:

E
[
∥g(t)θ −∇θL(θ,w,λ)∥2

]
= E

[∥∥∥∥∥ 1

B

B∑
i=1

(
H−1∑
h=0

γh
(
Σh

j=0∇θ logπθ(t)(aij |sij)
)
bh

)
(C.28)

− E

[
+∞∑
h=0

γh
(
Σh

j=0∇θ logπθ(t)(aij |sij)
)
bh

]∥∥∥∥∥
2

]
(i)
= E

[∥∥∥∥∥ 1

B

B∑
i=1

(
H−1∑
h=0

γh
(
Σh

j=0∇θ logπθ(t)(aij |sij)
)
bh

)
(C.29)

− E

[
H−1∑
h=0

γh
(
Σh

j=0∇θ logπθ(t)(aij |sij)
)
bh

]

− E

[
+∞∑
h=H

γh
(
Σh

j=0∇θ logπθ(t)(aij |sij)
)
bh

]∥∥∥∥∥
2

]
(ii)

≤ E

[∥∥∥∥∥ 1

B

B∑
i=1

(
H−1∑
h=0

γh
(
Σh

j=0∇θ logπθ(t)(aij |sij)
)
bh

)
(C.30)

− E

[
H−1∑
h=0

γh
(
Σh

j=0∇θ logπθ(t)(aij |sij)
)
bh

]∥∥∥∥∥
2

]

+

∥∥∥∥∥E[
+∞∑
h=H

γh
(
Σh

j=0∇θ logπθ(t)(aij |sij)
)
bh

]∥∥∥∥∥
2

= E

[∥∥∥∥∥g(t)θ − E[g(t)θ ]

∥∥∥∥∥
2

]
(C.31)

+

∥∥∥∥∥E[
+∞∑
h=H

γh
(
Σh

j=0∇θ logπθ(t)(aij |sij)
)
bh

]∥∥∥∥∥
2

In where (i) comes from splitting the infinite sum in two ”sections” (terms 0 toH − 1 and termsH to
∞) and (ii) is a simple triangle inequality. We are left with two terms, a term inducedby the truncation
anda termakin to varianceof thegradient estimator. Wewill consider both termsseparately, starting
with the truncation term:∥∥∥∥∥E[

+∞∑
h=H

γhbh

(
Σh

j=0∇θ logπθ(t)(aij |sij)
)]∥∥∥∥∥

2

(i)

≤ E

[∥∥∥ +∞∑
h=H

γhbh

(
Σh

j=0∇θ logπθ(t)(aij |sij)
)∥∥∥

2

]
(C.32)

(ii)

≤ E

[
+∞∑
h=H

γhbhΣ
h
j=0

∥∥∥∇θ logπθ(t)(aij |sij)
∥∥∥
2

]
(iii)

≤ E

[
+∞∑
h=H

γhbmaxΣ
h
j=0

∥∥∥∇θ logπθ(t)(aij |sij)
∥∥∥
2

]
(C.33)

(iv)

≤
√
2bmax

+∞∑
h=H

hγh ≤
√
2bmaxHγH−1

+∞∑
j=0

(j)γj =
√
2bmax

γ2(2− γ)

(1− γ)2
HγH−1 (C.34)
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Where (i) is an application of Jensen’s inequality, (ii) is a simple triangle inequality and (iii) in-
troduces bmax, the maximum value that can be taken by bh. Finally, inequality (iv) uses that when
π is softmax parameterized, for any (s, a) we have that ∥∇θ logπθ(t)(aij |sij)∥22 ≤ 1 + ∥πθ(·|s)∥2 −
2π(θ)(s, a) ≤ 1 + ∥πθ(·|s)∥1 ≤ 2. We are left with explicitly computing the upper-bound of bh:

bh ≤ bmax = ∥ϕ∥+ λmax + β logπmin. (C.35)

Now onto the remaining term, first we note that it is upper-bounded by the variance of the GPOMDP
estimator,

E
[∥∥g(t)θ − E[g(t)θ ]

∥∥
2

]
=

√√√√(E[∥∥g(t)θ − E[g(t)θ ]
∥∥
2

])2
(i)

≤
√
E
[∥∥g(t)θ − E[g(t)θ ]

∥∥2
2

]
=

√
Var(g(t)θ ), (C.36)

where (i) holds by Jensen’s inequality and concavity of the square root function. Next we just use
Lemma 3.7 from [Y. Ding, Zhang, and Lavaei 2021] which quantifies said variance:

E
[∥∥g(t)θ − E[g(t)θ ]

∥∥
2

]
≤ 24(∥ϕ∥1 + λmax + β2(logm)2)

B2(1− γ)4
. (C.37)

Bringing (C.34) and (C.37) together into (C.32) we find our result:

E
[
∥g(t)θ −∇θL(θ,w,λ)∥2

]
≤
√
2bmax

γ2(2− γ)

(1− γ)2
HγH−1 +

2
√
6
√
∥ϕ∥1 + λmax + 24β2(logm)2

B(1− γ)2
, (C.38)

C.2.2. Proof of Proposition 5.2.2 (Reward gradient estimator)
Proof. Our proof will be quite similar to the one of Proposition 5.2.1 in the sense that we will isolate a
truncation term and variance term and then bound both of them, recall that our gradient estimator
is given by:

φ̂− φ̂E =
1− γ

B

B∑
i=1

(H−1∑
h=0

γhϕ(sih, a
i
h)
)
− φ̂E , (C.39)

while the exact gradient is given by:

φ−φE = E

[
(1− γ)

(+∞∑
h=0

γhϕ(sih, a
i
h)
)
− φ̂E

]
. (C.40)

Inserting these expressions into the left-hand side of (5.20), we get:

E

[∥∥∥∥∥1− γ

B

B∑
i=1

(H−1∑
h=0

γhϕ(sih, a
i
h)
)
− E

[
(1− γ)

+∞∑
h=0

γhϕ(sih, a
i
h)
]∥∥∥∥∥

2

]
(C.41)

(i)

≤ E

[∥∥∥∥∥1− γ

B

B∑
i=1

(H−1∑
h=0

γhϕ(sih, a
i
h)
)
− E

[
(1− γ)

H−1∑
h=0

γhϕ(sih, a
i
h)
]∥∥∥∥∥

2

]
+ (C.42)∥∥∥∥∥E[(1− γ)

∞∑
h=H

γhϕ(sih, a
i
h)
]∥∥∥∥∥

2

= E
[∥∥∥g(t)w − E[g(t)w ]

∥∥∥
2

]
+

∥∥∥∥∥E[(1− γ)

∞∑
h=H

γhϕ(sih, a
i
h)
]∥∥∥∥∥

2

(C.43)

In step (i)wesimply split the termsof the infinite of (C.40) into the firstT termsand the tail of the sum.
Taking a triangle inequality we are left two terms one associated with truncation and one associated
with variance, we start by considering the truncation term:∥∥∥∥∥E[(1− γ)

∞∑
h=H

γhϕ(sih, a
i
h)
]∥∥∥∥∥

2

≤ E
[
(1− γ)

∥∥ ∞∑
h=H

γhϕ(sih, a
i
h)
∥∥
2

]
(C.44)
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≤ E
[
(1− γ)

∞∑
h=H

∥∥γhϕ(sih, a
i
h)
∥∥
2
≤ E

[
(1− γ)

∞∑
h=H

γhϕmax

]
(C.45)

≤ ϕmaxγ
H(1− γ)

∞∑
i=0

γi = γHϕmax. (C.46)

Where ϕmax is the maximum ∥ · ∥2 norm of any column of the feature matrix ϕ. We are now ready to
move on to the variance term, we have:

E
[∥∥∥g(t)w − E[g(t)w ]

∥∥∥
2

]
= E

[√∥∥∥g(t)w − E[g(t)w ]
∥∥∥2
2

]
(i)

≤

√√√√E

[∥∥∥g(t)w − E[g(t)w ]
∥∥∥2
2

]
=

√
Var(g(t)w ). (C.47)

Here (i) holds by Jensen’s inequality. We are just left with finding a bound for the variance of our
estimator, which we do by considering the single element batch first, we have:

E
[∥∥gw − E

[
gw
]∥∥2

2

]
= (1− γ)2E

[∥∥∥∥∥
H−1∑
h=0

γhϕ(sih, a
i
h)− E

[H−1∑
h=0

γhϕ(sih, a
i
h)
]∥∥∥∥∥

2

2

]
(C.48)

= (1− γ)2E

[∥∥∥∥∥
H−1∑
h=0

γh
[
ϕ(sih, a

i
h)− E

[
ϕ(sih, a

i
h)
]]∥∥∥∥∥

2

2

]
(C.49)

≤ (1− γ)2E

[
H−1∑
h=0

γh
∥∥ϕ(sih, aih)− E

[
ϕ(sih, a

i
h)
]∥∥2

2

]
(C.50)

≤ (1− γ)2
H−1∑
h=0

γh4ϕ2
max = (1− γ)24ϕ2

max

H−1∑
h=0

= 4(1− γ)ϕ2
max. (C.51)

Now since we take batches with B independent samples this gives a variance of 4(1−γ)ϕ2
max

B2 hence
putting everything back together we get:

E
[
∥g(t)w −∇wL(θ,w,λ)∥2

]
≤ ϕmax

(
2
√
1− γ

B
+ γH

)
. (C.52)

C.3. Local convergence bounds
C.3.1. Proof of Proposition 5.2.5 (First auxiliary sequence term)
Proof. We first consider Proposition 5.2.5, to do so, we start with the recursion defined in 5.38. Con-
sider the vectorQ∗

r̃(t+1) − β log ξ(t+1):

Q∗
r̃(t+1) − β log ξ(t+1) (i)

=Q∗
r̃(t+1) − αβ log ξ(t) − (1− α)Q̂

(t)

r̃(t)
(C.53)

(ii)
= α

(
Q∗

r̃(t) − β log ξ(t)
)
+ (1− α)

(
Q∗

r̃(t) −Q
(t)

r̃(t)

)
(C.54)

+ (1− α)
(
Q

(t)

r̃(t)
− Q̂(t)

r̃(t)

)
−
(
Q∗

r̃(t+1) −Q∗
r̃(t)

)
.

Where in (i) we plug in the update rule for the auxiliary sequence as defined in (5.38), and in (ii) we
reorganize the equation to isolate quantities that are relevant to our study1. Taking ∥ · ∥∞ norm and
using the triangle inequality we get:

x
(t+1)
2 = ∥Q∗

r̃(t+1) − β log ξ(t+1)∥∞ ≤α∥Q∗
r̃(t) − β log ξ(t)∥∞ + (1− α)∥Q∗

r̃(t) −Q
(t)

r̃(t)
∥∞ (C.55)

+ (1− α)∥Q(t)

r̃(t)
− Q̂(t)

r̃(t)
∥∞ + ∥Q∗

r̃(t+1) −Q∗
r̃(t)∥∞

(i)

≤αx(t)
2 + (1− α)x

(t)
1 (C.56)

1It is easily verified that line (C.66) simplifies back into (C.65)
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+ (1− α)∥Q(t)

r̃(t)
− Q̂(t)

r̃(t)
∥∞ + ∥Q∗

r̃(t+1) −Q∗
r̃(t)∥∞.

In (i) we just plug in the scalar error terms from their definitions (5.40) and (5.41). We now take
expectations (over the algorithm step) on both sides to get:

E(t+1)

[
x
(t+1)
2

]
≤ (1− α)E(t+1)

[
x
(t)
1

]
+ αE(t+1)

[
x
(t)
2

]
+ (1− α)E(t+1)

[
∥Q(t)

r̃(t)
− Q̂(t)

r̃(t)
∥∞
]

(C.57)

+ E(t+1)

[
∥Q∗

r̃(t+1) −Q∗
r̃(t)∥∞

]
(i)
= (1− α)x

(t)
1 + αx

(t)
2 + (1− α)E(t+1)

[
∥Q(t)

r̃(t)
− Q̂(t)

r̃(t)
∥∞
]

(C.58)

+ E(t+1)

[
∥Q∗

r̃(t+1) −Q∗
r̃(t)∥∞

]
.

In (i)weobserve that the expectationover thegradient stepof quantities that are independent of the
gradient step is those quantities themselves. We are left with two separate expected ”perturbation”
terms which we will need to bound. First, recall that E(t+1)

[
∥Q(t)

r̃(t)
− Q̂(t)

r̃(t)
∥∞
]
is a quantity we already

know is bounded, indeed under Assumption 5.2.1, Lemma 5.2.2 states:

E(t+1)

[
∥Q(t)

r̃(t)
− Q̂(t)

r̃(t)
∥∞ ≤ δ̆. (C.59)

Now onto the quantity E(t+1)

[
∥Q∗

r̃(t+1) −Q∗
r̃(t)
∥∞
]
, we have already discussed (in Chapter 4) that it is

Lipschitz with respect to the descent step in the variablesw and λ (Proposition 4.3.4), we thus have:

E(t+1)

[
∥Q∗

r̃(t+1) −Q∗
r̃(t)∥∞

] (i)

≤ 2(∥Φ∥+ ∥Ψ∥)E(t+1)

[
∥z(t+1) − z(t)∥2

]
(C.60)

= ηzCzE(t+1)

[
∥g(t)z ∥2

]
(C.61)

(ii)

≤ ηzCz

(
E(t+1)

[
∥∇zL(θ

(t), z(t))∥∞ + ∥g(t)z −∇zL(θ
(t), z(t))∥∞

])
(C.62)

(iii)

≤ ηzCz(∥Φ∥+ ∥Ψ∥+ ∥b∥2 + δz) = ηz(C
′
z + Czδz). (C.63)

Where in (i) we use Proposition 4.3.4, in (ii) we take a triangle inequality to isolate a deterministic
exact gradient term from the error term. Finally, in (iii) we introduce Assumption 5.2.2 to bound the
expected gradient. We then introduce C ′

z = 2(∥Φ∥+ ∥Ψ∥)(∥Φ∥+ ∥Ψ∥+ ∥b∥2). Plugging the bounds
we just established back into (C.70) we get to the following result:

E(t+1)

[
x
(t+1)
2

]
≤ (1− α)x

(t)
1 + αx

(t)
2 + (1− α)δ̆ + ηz(C

′
z + Czδz), (C.64)

which completes the proof.

Proof. We first consider Proposition 5.2.5, to do so, we start with the recursion defined in 5.38. Con-
sider the vectorQ∗

r̃(t+1) − β log ξ(t+1):

Q∗
r̃(t+1) − β log ξ(t+1) (i)

=Q∗
r̃(t+1) − αβ log ξ(t) − (1− α)Q̂

(t)

r̃(t)
(C.65)

(ii)
= α

(
Q∗

r̃(t) − β log ξ(t)
)
+ (1− α)

(
Q∗

r̃(t) −Q
(t)

r̃(t)

)
(C.66)

+ (1− α)
(
Q

(t)

r̃(t)
− Q̂(t)

r̃(t)

)
−
(
Q∗

r̃(t+1) −Q∗
r̃(t)

)
.

Where in (i) we plug in the update rule for the auxiliary sequence as defined in (5.38), and in (ii) we
reorganize the equation to isolate quantities that are relevant to our study2. Taking ∥ · ∥∞ norm and
using the triangle inequality we get:

x
(t+1)
2 = ∥Q∗

r̃(t+1) − β log ξ(t+1)∥∞ ≤α∥Q∗
r̃(t) − β log ξ(t)∥∞ + (1− α)∥Q∗

r̃(t) −Q
(t)

r̃(t)
∥∞ (C.67)

+ (1− α)∥Q(t)

r̃(t)
− Q̂(t)

r̃(t)
∥∞ + ∥Q∗

r̃(t+1) −Q∗
r̃(t)∥∞

(i)

≤αx(t)
2 + (1− α)x

(t)
1 (C.68)

+ (1− α)∥Q(t)

r̃(t)
− Q̂(t)

r̃(t)
∥∞ + ∥Q∗

r̃(t+1) −Q∗
r̃(t)∥∞.

2It is easily verified that line (C.66) simplifies back into (C.65)
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In (i) we just plug in the scalar error terms from their definitions (5.40) and (5.41). We now take
expectations (over the algorithm step) on both sides to get:

E(t+1)

[
x
(t+1)
2

]
≤ (1− α)E(t+1)

[
x
(t)
1

]
+ αE(t+1)

[
x
(t)
2

]
+ (1− α)E(t+1)

[
∥Q(t)

r̃(t)
− Q̂(t)

r̃(t)
∥∞
]

(C.69)

+ E(t+1)

[
∥Q∗

r̃(t+1) −Q∗
r̃(t)∥∞

]
(i)
= (1− α)x

(t)
1 + αx

(t)
2 + (1− α)E(t+1)

[
∥Q(t)

r̃(t)
− Q̂(t)

r̃(t)
∥∞
]

(C.70)

+ E(t+1)

[
∥Q∗

r̃(t+1) −Q∗
r̃(t)∥∞

]
.

In (i) we observe that the expectation over the gradient step of quantities that are independent of
the gradient step is those quantities themedelves. We are left with two separate expected ”pertur-
bation” terms which we will need to bound. First recall that E(t+1)

[
∥Q(t)

r̃(t)
− Q̂(t)

r̃(t)
∥∞
]
is a quantity we

already know is bounded, indeed under Assumption 5.2.1, Lemma 5.2.2 states:

E(t+1)

[
∥Q(t)

r̃(t)
− Q̂(t)

r̃(t)
∥∞ ≤ δ̆. (C.71)

Now onto the quantity E(t+1)

[
∥Q∗

r̃(t+1) −Q∗
r̃(t)
∥∞
]
, we have already discussed (in Chapter 4) that it is

Lipschitz with respect to the descent step in the variablesw and λ (Proposition 4.3.4), we thus have:

E(t+1)

[
∥Q∗

r̃(t+1) −Q∗
r̃(t)∥∞

] (i)

≤ 2(∥Φ∥+ ∥Ψ∥)E(t+1)

[
∥z(t+1) − z(t)∥2

]
(C.72)

= ηzCzE(t+1)

[
∥g(t)z ∥2

]
(C.73)

(ii)

≤ ηzCz

(
E(t+1)

[
∥∇zL(θ

(t), z(t))∥∞ + ∥g(t)z −∇zL(θ
(t), z(t))∥∞

])
(C.74)

(iii)

≤ ηzCz(∥Φ∥+ ∥Ψ∥+ ∥b∥2 + δz) = ηz(C
′
z + Czδz). (C.75)

Where in (i) we use Proposition 4.3.4, in (ii) we take a triangle inequality to isolate a deterministic
exact gradient term from the error term. Finally, in (iii) we introduce Assumption 5.2.2 to bound the
expected gradient. We then introduce C ′

z = 2(∥Φ∥+ ∥Ψ∥)(∥Φ∥+ ∥Ψ∥+ ∥b∥2). Plugging the bounds
we just established back into (C.70) we get to the following result:

E(t+1)

[
x
(t+1)
2

]
≤ (1− α)x

(t)
1 + αx

(t)
2 + (1− α)δ̆ + ηz(C

′
z + Czδz), (C.76)

which completes the proof.

C.3.2. Proof of Proposition 5.2.6 (Second auxiliary sequence term)
We now move on to Proposition 5.2.6.

Proof. Our derivation starts by considering the vector−
(
Q∗

r̃(t+1)(s, a)− β log ξ(t+1)(s, a)
)
, and as we

did in the contraction bound of x(t+1)
2 by plugging in the auxiliary sequence step (5.38):

−
(
Q

(t+1)

r̃(t+1) − β log ξ(t+1)
)
=−Q∗

r̃(t+1) + αβ log ξ(t) + (1− α)Q̂
(t)

r̃(t+1) (C.77)
(i)
= − α(Q

(t)

r̃(t)
− β log ξ(t)) + (1− α)(Q̂

(t)

r̃(t)
−Q(t)

r̃(t)
) (C.78)

+ (Q
(t)

r̃(t)
−Q(t+1)

r̃(t)
) + (Q

(t+1)

r̃(t)
−Q(t+1)

r̃(t+1)).

Where (i) is just a rearranging step and matches the previous line exactly. Next, we take expecta-
tions on both sides:

E(t+1)

[
−
(
Q

(t+1)

r̃(t+1) − β log ξ(t+1)
)]

=− αE(t+1)

[
Q

(t)

r̃(t)
− β log ξ(t)

]
+ (1− α)E(t+1)

[
Q̂

(t)

r̃(t)
−Q(t)

r̃(t)

]
(C.79)

+ E(t+1)

[
Q

(t)

r̃(t)
−Q(t+1)

r̃(t)

]
+ E(t+1)

[
Q

(t+1)

r̃(t)
−Q(t+1)

r̃(t+1)

]
=− α(Q

(t)

r̃(t)
− β log ξ(t)) + (1− α)E(t+1)

[
Q̂

(t)

r̃(t)
−Q(t)

r̃(t)

]
(C.80)

+ E(t+1)

[
Q

(t)

r̃(t)
−Q(t+1)

r̃(t)

]
+ E(t+1)

[
Q

(t+1)

r̃(t)
−Q(t+1)

r̃(t+1)

]
.
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Where in (i), we just drop expectations from the terms that are deterministic over the randomness
of the algorithm step. Picking out the maximal (s, a) ∈ S ×A pair on both sides of the inequality, we
reach the expression of x(t+1)

3 on the left hand side:

E(t+1)[x
(t+1)
3 ] = E(t+1)

[
−min

s,a

(
Q

(t+1)

r̃(t+1)(s, a)− β log ξ(t+1)(s, a)
)]

(C.81)

= min
s,a

[
− α(Q

(t)

r̃(t)
(s, a)− β log ξ(t)(s, a)) + (1− α)E(t+1)

[
Q̂

(t)

r̃(t)
(s, a)−Q

(t)

r̃(t)
(s, a)

]
(C.82)

+ E(t+1)

[
Q

(t)

r̃(t)
(s, a)−Q

(t+1)

r̃(t)
(s, a)

]
+ E(t+1)

[
Q

(t+1)

r̃(t)
(s, a)−Q

(t+1)

r̃(t+1)(s, a)
]]

≤ −αmin
s,a

(Q
(t)

r̃(t)
(s, a)− β log ξ(t)(s, a)) + (1− α)E(t+1)

[
∥Q̂(t)

r̃(t)
−Q(t)

r̃(t)
∥∞
]

(C.83)

+ E(t+1)

[
∥Q(t)

r̃(t)
−Q(t+1)

r̃(t)
∥∞
]
+ E(t+1)

[
∥Q(t+1)

r̃(t)
−Q(t+1)

r̃(t+1)∥∞
]

We have four terms which we will all bound with results that we already have established:

−αmin
s,a

(Q
(t)

r̃(t)
(s, a)− β log ξ(t)(s, a)) = αx

(t)
3 by Definition of x(t)

3 , (C.84)

E(t+1)

[
∥Q̂(t)

r̃(t)
−Q(t)

r̃(t)
∥∞
]
≤ δ̆ by Lemma 5.2.2, (C.85)

E(t+1)

[
∥Q(t)

r̃(t)
−Q(t+1)

r̃(t)
∥∞
]
≤ 2γδ̆ by Lemma 5.2.2 and Corollary 5.2.3.1, (C.86)

E(t+1)

[
∥Q(t+1)

r̃(t)
−Q(t+1)

r̃(t+1)∥∞
]
≤ ηz(C

′
z + Czδz) by Proposition 4.3.3 and then as (C.75).

(C.87)

Putting everything back together completes the proof:

E(t+1)[x
(t+1)
3 ] ≤ αx

(t)
3 + (δ̆(1 + 2γ) + ηz(C

′
z + Czδz). (C.88)

C.3.3. Proof of Proposition 5.2.4 (Q-value term)
Proof. Here our approach will be different from what we did for the last two contraction-bounds, we
first look at any (s, a) ∈ S ×A, and we have that:

Q∗
r̃(t+1)(s, a)−Q

(t+1)

r̃(t+1)(s, a) =
(
(1− γ)r̃(s, a) + γEs′|s,a[V

∗
r̃(t+1)(s

′)]
)

(C.89)

−
(
(1− γ)r̃(s, a) + γEs′|s,a[V

(t+1)

r̃(t+1) (s
′)]
)

(i)
=γEs′|s,a[V

∗
r̃(t+1)(s

′)]− γEs′|s,a[V
(t+1)

r̃(t+1) (s
′)] (C.90)

(ii)
= γEs′|s,a[β log ∥exp(Q∗

r̃(t+1)(s
′, ·)/β)∥1] (C.91)

− γEs′,a′|s,a,π(t+1)

[
Q

(t+1)

r̃(t+1)(s, a
′)− β logπ(t+1)(a′|s′)

]
=γEs′|s,a

[
β log ∥exp(Q∗

r̃(t+1)(s
′, ·)/β)∥1 − β log ∥ξ(t+1)(s, ·)∥1

]
(C.92)

− γEs′,a′|s,a,π(t+1)

[
Q

(t+1)

r̃(t+1)(s, a
′)− β(α log ξ(t)(s′, a′)

+ (1− α)/βQ̂
(t)

r̃(t)
(s′, a′))

]
.

In (i) we plug in the expression of the optimal V -value from the optimal Q-values (equation (2.62))
and the expression of the V -value from the Q-value of some policies π(t+1) (as in (2.62)). In (ii),
we use the expression of the optimal policy in entropy-regularizedMDPs 2.2.4 and the expression
of the V -value as a function of the Q-value (equation (2.61)). Which, together with Proposition A.1.1,
gives a bound in terms of ∥ · ∥∞ norms:

x
(t+1)
1 =γ∥Q∗

r̃(t+1) −Q(t+1)

r̃(t+1)∥∞ (C.93)
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≤γ∥Q∗
r̃(t+1) − β log ξ(t+1)∥∞ − γmin

s,a

(
Q

(t+1)

r̃(t+1)(s, a
′)− β log ξ(t+1)(s′, a′)

)
(C.94)

=γ
(
x
(t+1)
2 + x

(t+1)
3

)
. (C.95)

Here we thus clearly identify the terms x
(t+1)
2 and x

(t+1)
3 . This is why we only tackle the contraction

bound after having bounded the contraction rate of those two terms, and also what motivates the
definition of the auxiliary sequence. Taking expectations with respect to the algorithm step on both
sides we get:

E(t+1)[x
(t+1)
1 ] ≤γ

(
E(t+1)[x

(t+1)
2 ] + E(t+1)[x

(t+1)
3 ]

)
(C.96)

(i)

≤γ((1− α)x
(t)
1 + αx

(t)
2 + αx

(t)
3 + (δ̆(2 + 2γ − α) + 2ηz(C

′
z + Czδz)), (C.97)

where (i) comes fromplugging the contraction bounds frompropositions 5.2.5 and 5.2.6. The proof
is complete.



D
Omitted proofs and derivations from

Chapters 6

This appendix chapter details the results, proofs and derivations omitted from chapter 6.

D.1. Adiscussionondual smoothnessanddual strongconvexity
In this additional section to the main body of text, we provide a proof that - if the right assumptions
are met - the dualD:

D(r,λ) = sup
θ

(
J(θ, r)− J(θE , r) + ⟨λ, b−Ψ⊤µπθ ⟩

)
, (D.1)

of our Lagrangian L:

L(θ, r,λ) = J(θ, r)− J(θE , r) + ⟨λ, b−Ψ⊤µπθ ⟩, (D.2)

is a strongly convex function. We then discuss conditions for smoothness of the dual.

D.1.1. Dual strong convexity
We introduce a proof of dual strong-convexity that builds upon conditions for strong convexity of
the Legendre-Fenchel conjugate (LFC). Recall the definition of the Legendre-Fenchel conjugate.

Definition D.1.1 (Legendre-Fenchel conjugate). Consider a strongly convex function Ω̃ : X → R. We
call the function Ω̃∗ : A→ R defined as, for a ∈ A:

Ω̃∗(a) = sup
x∈X

[
⟨a,x⟩ − Ω̃(x)

]
, (D.3)

the Legendre-Fenchel conjugate of Ω̃.

A key property that we will need concerns conditions for the strong convexity of the LFC.

PropositionD.1.1 (Strong convexity of the Legendre Fenchel Conjugate). Consider the strongly con-
vex function Ω̃ : X → R, its Legendre-Fenchel conjugate (DefinitionD.1.1) is strongly convexwith some
strong-convexity constant CSD > 0 ⇐⇒ the function Ω̃ : X → R is:

1. differentiable,
2. smooth with constant 1/CSC.

This is a classical convex optimization result, a proof can be found in [Rockafellar and Wets 1998],
proposition 12.60.

We also introduce a proposition about the composition of strongly convex functions and linear op-
erators.

70
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PropositionD.1.2 (Strongconvexity is preservedby full-rank linear operators). Consideraα-strongly
convex function f : Y → R and a linear map A : X → Y . If the linear map satisfies ker(A⊤A) = 0 (is
full-rank)⇒ the composition g = f ◦A : X → R is strongly convex with constant αλmin(A

⊤A).

A proof can be found in proposition 2.5 of [Guigues 2020a]

We are now ready to introduce the assumptions required to establish strong dual convexity. We
require that the regularizer of ourMDPbe smooth and that the linear operator defined by our reward
feature matrix and by our cost matrix be full-rank.

Assumption D.1.1 (Smooth regularizer). Assume that Ω̃ is 1/υ-smooth, i.e.

∥∇Ω̃(µ)∥2 ≤
1

υ
, (D.4)

for any µ ∈ dom(µ).

Assumption D.1.2 (Full rank linear operator). Assume that the linear operatorA which we define as

A =
[
Φ −Ψ⊤] , (D.5)

is full-rank (ker(ATA) = 0).

We are now ready to show if our assumptions are satisfied, the dual is a strongly convex function.

Proposition D.1.3 (Strong convexity of the dual). Assuming assumptions D.1.1 and D.1.2 are satis-
fied, the dual function of the Lagrangian L defined in (3.15) is strongly-convex with constant CSC :=
υλmin(ATA).

Proof. This analysis follows reasoning similar to the onedescribed in [Guigues 2020b]. Startingwith
the of the Lagrangian we have:

L(µ,w,λ) := ⟨λ, b⟩ − ⟨Φw,µE⟩+ ⟨µ,Φw − λΨ⟩ − Ω̃(µ). (D.6)

Taking the dual we isolate the expression of the Legendre Fenchel Conjugate:

D(w,λ) = ⟨λ, b⟩ − ⟨Φw,µE⟩+ sup
µ∈M

[
⟨µ,Φw − λΨ⟩ − Ω̃(µ)

]
(D.7)

= ⟨λ, b⟩ − ⟨Φw,µE⟩+ Ω̃∗(Φw − λΨ). (D.8)

By Assumption 6.1.1 we know that Ω̃∗ : Rnm → R is υ-strongly convex ⇐⇒ Ω̃ is smoothwith constant
1/υ (which we impose with Assumption D.1.1). So in order to ensure that our dual indeed is strongly
convex we just need to check that the linear map:

Φw − λΨ =
[
Φ −Ψ⊤] [w

λT

]
= A

[
w
λT

]
is full rank, i.e. that ker(ATA) = 0. We ensure that this is the case by Assumption D.1.2. By Proposi-
tion D.1.2 we have thatD is strongly convex with constant υλmin(ATA).

D.1.2. Dual smoothness
We state a result about dual smoothness, which is borrowed from [Ying, Y. Ding, and Lavaei 2022].
Assuming that no state in theMDP is unvisited (which is generally considered a reasonable assump-
tion), then dual smoothness follows.

Proposition D.1.4 (Dual smoothness). Given that Assumption 4.2.4, the dual function D of the La-
grangian (P2) is differentiable and smooth with parameter Lz = 2 ln(2)(nd+(1−γ)2

√
nd)

β(1−γ)3cv
.

This result is proved in [Ying, Y. Ding, and Lavaei 2022] for RL in the CMDP setting, it is equivalently
true in the CIRL.
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D.2. Affine error system for fast convergence
In the following appendix, we work our way towards proving Lemma 6.2.1. To do so, we decompose
the lemma into 3 distinct propositions that we then bring together into the main result.

Let us first define a few quantities relevant to our analysis, as in the analysis of Lemma 5.2.4 we let:

α = 1− ηθβ (D.9)

and define the auxiliary sequence
{
ξ(t)
}T−1

t=0
, ξ(t) ∈ Rnm recursively as follows:

ξ(0)(s, a) := ∥Q∗
r̃(0)(s, ·)/β∥1 · π

0(a|s) (D.10)

ξ(t+1)(s, a) :=
(
ξ(t)(s, a)

)α
exp

(
1− α

β
Q

(t)

r̃(t)
(s, a)

)
. (D.11)

Recall that by definition, this auxiliary sequence satisfies

π(t)(a|s) = ξ(t)(s, a)∑
a′∈A ξ(t)(s, a′)

. (D.12)

We will consider three scalar error terms:

x
(t)
1 =∥z(t) − z∗∥2 (D.13)

x
(t)
2 =∥Q(t)

˜r(t)
−Q∗

˜r(t)
∥∞ (D.14)

x
(t)
3 =∥Q∗

˜r(t)
− β log ξ(t)∥∞ (D.15)

We will prove three propositions, each describing the evolution of the error terms as for one step of
Algorithm 2.

PropositionD.2.1. Under assumptions4.2.1 and4.2.2, NPGsteps yield the followingerror-reduction
bound:

x
(t+1)
1 ≤

(
1− CSCηz

)
x
(t)
1 + Cσηzx

(t)
3 (D.16)

PropositionD.2.2. Underassumptions4.2.1 and4.2.2,NPGstepsyield the followingerror-reduction
bound:

x
(t+1)
2 ≤ ηz

γCzLz

2b
x
(t)
1 + γx

(t)
2 + 2αγx

(t)
3 + 2γb (D.17)

Proposition D.2.3. Under assumptions 4.2.1, 4.2.2, 6.1.1 and 6.1.2, NPG steps yield the following
error-reduction bound:

x
(t+1)
3 ≤ ηz

CzLz

4b
x
(t)
1 + (1− α)x

(t)
2 + αx

(t)
3 + b (D.18)

We prove that the statements of Proposition D.2.1, D.2.2 and D.2.3 in the next three subsections to
this one, but we first show how they lead to the result of Lemma 6.2.1.

Proof. Recall that Lemma 6.2.1 makes use of a constant C defined as:

C = max

{
γCzLz

2b
,
CzLz

4b
, Cσ

}
. (D.19)

This constant should be understood as an upper bound on the influence of perturbations on both
gradient ascent and gradient descent. It is determined by factors related to the CMDP properties
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and the reward and constraint matrices. Furthermore since, 0 < ηz ≤ 1/CSC and 0 < ηθ ≤ 1/β we
will renormalize our learning rates as follows:

η̃z =
ηz
CSC

∈ (0, 1] η̃θ =
ηθ
β
∈ (0, 1]. (D.20)

Using C as an upper bound for all problem-related constants and using η̃z and η̃θ instead of their
unnormalized forms, we can write Propositions D.2.1, D.2.2 and D.2.3 in a matrix form:x

(t+1)
1

x
(t+1)
2

x
(t+1)
3

 ≤
(1− η̃z) 0 Cη̃z

Cη̃z γ 2γ(1− η̃θ)
Cη̃z η̃θ (1− η̃θ)


x

(t)
1

x
(t)
2

x
(t)
3

+

 0
2γb
b

 . (D.21)

Which completes the proof of lemma 6.2.1.

D.2.1. Proof of proposition D.2.3 (Auxiliary sequence term)
Proof. We first prove Proposition D.2.3, to do so we consider, for any (s, a) ∈ S ×A:

Q∗
r̃(t+1)(s, a)− β log ξ(t+1)(s, a)

(i)
= Q∗

r̃(t+1)(s, a)− αβ log ξ(t)(s, a)− (1− α)Q
(t)
r̃ (s, a) (D.22)

(ii)
= Q∗

r̃(t)(s, a)− αβ log ξ(t)(s, a)− (1− α)Q
(t)
r̃ (s, a) (D.23)

−Q∗
r̃(t)(s, a) +Q∗

r̃(t+1)(s, a)

(ii)
= α

(
Q∗

r̃(t)(s, a)− β log ξ(t)(s, a)
)

(D.24)

− (1− α)
(
Q∗

r̃(t)(s, a)−Q
(t)
r̃ (s, a)

)
−
(
Q∗

r̃(t)(s, a) +Q∗
r̃(t+1)(s, a)

)
.

Where (i) is obtained by plugging the expression (D.11) of the auxiliary sequence step into ξ(t+1)(s, a)
and (ii) is simply obtained by adding Q∗

r̃(t)(s, a) − Q∗
r̃(t)(s, a) and rearranging. Taking infinity norms

and applying the triangle inequality we have:

∥Q∗
r̃(t+1) − β log ξ(t+1)∥∞ ≤α∥Q∗

r̃(t) − β log ξ(t)∥∞ + (1− α)∥Q∗
r̃(t) −Q(t)

r̃ ∥∞ (D.25)

+ ∥Q∗
r̃(t) −Q∗

r̃(t+1)∥∞
(i)

≤α∥Q∗
r̃(t) − β log ξ(t)∥∞ + (1− α)∥Q∗

r̃(t) −Q(t)
r̃ ∥∞ (D.26)

+
CzLzηz

4b
∥z(t) − z∗∥22 + b.

Where in (i) we upper bound ∥Q∗
r̃(t) −Q∗

r̃(t+1)∥∞ using Proposition 4.3.4 as follows:

∥Q∗
r̃(t) −Q∗

r̃(t+1)∥∞
(i)

≤Cz∥z(t+1) − z(t)∥2 = Czηz∥∇zL(θ
(t), z(t))∥2 (D.27)

(ii)

≤CzLzηz∥z(t) − z∗∥2
(iii)

≤ CzLzηz
4b

∥z(t) − z∗∥22 + b, (D.28)

(i) is the statement from Proposition 4.3.4 and (ii) holds as a result of Lipschitzness of the La-
grangian in z. Finally, in (iii) we use that x ≤ b+x2/(4b) for any b > 0. Identifying the error terms x(t)

1 ,
x
(t)
2 , x(t)

3 and x
(t+1)
2 we in (D.26) we reach the desired inequality.

D.2.2. Proof of proposition D.2.2 (Q-value term)
Proof. Consider, for any (s, a) ∈ S ×A:

Q∗
r̃(t+1)(s, a)−Q

(t+1)

r̃(t+1)(s, a)
(i)
=(1− γ)r̃(t+1)(s, a) + γEs′|s,a

[
V ∗
r̃(t+1)(s

′)
]

(D.29)

− (1− γ)r̃(t+1)(s, a)− γE s′|s,a
a′∼π(·|s′)

[
V

(t+1)

r̃(t+1)(s
′)
]
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(ii)
= γEs′|s,a

[
V ∗
r̃(t+1)(s

′)
]
− γE s′|s,a

a′∼π(t+1)(·|s′)

[
V

(t+1)

r̃(t+1)(s
′)
]

(D.30)

=γEs′|s,a

[
β log

∥∥∥∥∥exp
(
Qr̃(t+1)(s′|·)

β

)∥∥∥∥∥
1

]
(D.31)

− γE s′|s,a
a′∼π(t+1)(·|s′)

[
Q

(t+1)

r̃(t+1)(s
′, a′)− β logπ(t+1)(a′|s′)

]
.

Where we obtain (i) obtained from (2.61) and (ii) from using equation (2.62) on the term V ∗
r̃(t+1)(s, a)

and (2.62) on the term V
(t+1)

r̃(t+1)(s, a). We now focus on:

Q
(t+1)

r̃(t+1)(s, a)− β logπ(t+1)(a|s), (D.32)

using the relationship (D.12) between the policy and the auxiliary sequence it naturally expands into:

Q
(t+1)

r̃(t+1)(s, a)− β
(
log ξ(t+1)(a|s)− log ∥ξ(t+1)(·|s)∥1

)
. (D.33)

Introducing the auxiliary sequence step formulation reach:

Q
(t+1)

r̃(t+1)(s, a)− αβ log
(
ξ(t)(s, a)

)
− (1− α)Q

(t)

r̃(t)
(s, a) + β log ∥ξ(t+1)(·|s)∥1. (D.34)

Inserting (D.34) into (D.31) and using that β log ∥ξ(t)(·|s)∥1 is independent of the action choice we
have:

Q∗
r̃(t+1)(s, a)−Q(t+1)

r̃(t+1)(s, a)

=γEs′|s,a

[
β log

∥∥∥∥∥exp
(
Qr̃(t+1)(s′|·)

β

)∥∥∥∥∥
1

− β log ∥ξ(t+1)(·|s)∥1

]
(D.35)

− γE s′|s,a
a′∼π(t+1)(·|s′)

[
Q

(t+1)

r̃(t+1)(s
′, a′)− αβ log

(
ξ(t)(s′, a′)

)
− (1− α)Q

(t)

r̃(t)
(s′, a′)

]
(i)

≤γ∥Q∗
r̃(t+1) − βξ(t+1)∥∞ (D.36)

− γE s′|s,a
a′∼π(t+1)(·|s′)

[
Q

(t+1)

r̃(t+1)(s
′, a′)− αβ log

(
ξ(t)(s′, a′)

)
− (1− α)Q

(t)

r̃(t)
(s′, a′)

]
=γ∥Q∗

r̃(t+1) − βξ(t+1)∥∞ + γE s′|s,a
a′∼π(t+1)(·|s′)

[
Q

(t+1)

r̃(t) (s′, a′)−Q
(t+1)

r̃(t+1)(s
′, a′)

]
(D.37)

− γE s′|s,a
a′∼π(t+1)(·|s′)

[
Q

(t+1)

r̃(t) (s′, a′)− αβ log
(
ξ(t)(s′, a′)

)
− (1− α)Q

(t)

r̃(t)
(s′, a′)

]
=γ∥Q∗

r̃(t+1) − βξ(t+1)∥∞ + γ∥Q(t+1)

r̃(t) −Q
(t+1)

r̃(t+1)∥∞ (D.38)

− γE s′|s,a
a′∼π(t+1)(·|s′)

[
Q

(t+1)

r̃(t) (s′, a′)− αβ log
(
ξ(t)(s′, a′)

)
− (1− α)Q

(t)

r̃(t)
(s′, a′)

]
Where (i) holds from Proposition A.1.1. We now turn our attention to:

Q
(t+1)

r̃(t) (s, a)− αβ log
(
ξ(t)(s, a)

)
− (1− α)Q

(t)

r̃(t)
(s, a). (D.39)

Using that the Q-values are monotonously improving (Proposition 2.4.2) we have that:

Q
(t+1)

r̃(t) (s, a)− αβ log
(
ξ(t)(s, a)

)
− (1− α)Q

(t)

r̃(t)
(s, a) (D.40)

≥ Q
(t)

r̃(t)(s, a)− αβ log
(
ξ(t)(s, a)

)
− (1− α)Q

(t)

r̃(t)
(s, a) (D.41)

= α
(
Q

(t)

r̃(t)
(s, a)− β log ξ(t)(s, a)

)
(D.42)

= α
(
Q∗

r̃(t)(s, a)− β log ξ(t)(s, a)
)
+ α

(
Q

(t)

r̃(t)
(s, a)−Q∗

r̃(t)(s, a)
)

(D.43)

≥ −α
∥∥Q∗

r̃(t) − β log ξ(t)
∥∥
∞ − α

∥∥Q(t)

r̃(t)
−Q∗

r̃(t)

∥∥
∞. (D.44)
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Inserting (D.44) into (D.39) we reach the form:

∥Q∗
r̃(t+1) −Q(t+1)

r̃(t+1)∥∞ ≤γ∥Q∗
r̃(t+1) − βξ(t+1)∥∞ + γ∥Q(t+1)

r̃(t) −Q
(t+1)

r̃(t+1)∥∞ (D.45)

+ γ
(
α
∥∥Q∗

r̃(t) − β log ξ(t)
∥∥
∞ + α

∥∥Q(t)

r̃(t)
−Q∗

r̃(t)

∥∥
∞

)
(i)

≤γ∥Q∗
r̃(t+1) − βξ(t+1)∥∞ + γ

CzLzηz
4b

∥z(t) − z∗∥2 + γb (D.46)

+ γ
(
α
∥∥Q∗

r̃(t) − β log ξ(t)
∥∥
∞ + α

∥∥Q(t)

r̃(t)
−Q∗

r̃(t)

∥∥
∞

)
.

We obtain the inequality (i) as follows:

∥Q(t+1)

r̃(t) −Q
(t+1)

r̃(t+1)∥∞
(i)

≤Cz∥z(t+1) − z(t)∥2 = Czηz∥∇zL(θ
(t), z(t))∥2 (D.47)

(ii)

≤CzLzηz∥z(t) − z∗∥2
(iii)

≤ CzLzηz
4b

∥z(t) − z∗∥2 + b, (D.48)

where (i) holds by Proposition 4.3.3 and (ii) by Lipschitzness of the Lagrangian with respect to z.
We complete the verification of the inequality by using in (iii) that for any b > 0, x < b + x2/(4b).
Equation (D.46) can now be expressed solely as a function of the error terms, which makes it more
readable:

x
(t+1)
2 ≤γηzCzLzx

(t)
1 + αγx

(t)
2 + αγx

(t)
3 + γx

(t+1)
3

(i)

≤ γ
CzLzηz

2b
x
(t)
1 + γx

(t)
2 + 2αγx

(t)
3 + 2γb, (D.49)

where (i) holds by upper bounding the term x
(t+1)
3 with Proposition D.2.3. The inequality is verified.

D.2.3. Proof of proposition D.2.1 (Dual term)
Finally, we consider proposition D.2.1. Before diving into the analysis, we state two useful proposi-
tions about smooth convex functions and about MDPs that we will require for our derivations.

PropositionD.2.4 (Sufficient decrease). Considera functionD : Rk+d → Rbeconvex, differentiable
and Lz-smooth, projected gradient descent steps with learning rate ηz ≤ 1

Lz
satisfies:

D(z∗)−D(z(t)) ≤ D(z(t+1))−D(z(t)) ≤ − 1

2L
∥∇xD(z(t))∥22 +

Lz

2
∥z(t+1/2) − z(t+1)∥22. (D.50)

The proof is a very common result from convex optimization we include it for completeness in Ap-
pendix D.4.

Proposition D.2.5 (Occupancy measure is Lipschitz with respect to the policies). The occupancy
measures µπ and µπ̄ respectively induced by policies π and π̄ on MDPs with identical state space,
action space and Markovian transition kernel satisfy the following inequality:

∥µπ − µπ̄∥2 ≤ Bµ∥π − π̄∥2,

whereBµ = 1
1−γ . Proof in Appendix D.3.

We are now ready to dive into the proof of Proposition D.2.1.

Proof. First recall that we do not have access to the gradients of the dual function so using dual
smoothness will not be trivial. We consider the decomposition of the gradients into the gradient of
the dual∇zD(z(t)) and a perturbation term σ

(t)
z :

∇zL(θ
(t), z(t)) = g(t)z = ∇zD(z(t)) + σ(t)

z . (D.51)

Now start our analysis from strong convexity of the dual function (Proposition D.1.1):

D(z(t))−D∗ +
CSC

2
∥z(t) − z∗∥22

(i)

≤ ⟨∇zD(z(t)), z(t) − z∗⟩ (D.52)
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(ii)

≤ ⟨g(t)z , z(t) − z∗⟩ − ⟨σ(t)
z , z(t) − z∗⟩ (D.53)

=
1

2ηz

(
∥g(t)z ∥22 + ∥z(t) − z∗∥22 − ∥z(t+1/2) − z∗∥22

)
− ⟨σ(t)

z , z(t) − z∗⟩ (D.54)

(iii)

≤ 1

2ηz

(
η2z∥g(t)z ∥22 + ∥z(t) − z∗∥22 − ∥z(t+1) − z∗∥22 − ∥z(t+1) − z(t+1/2)∥22

)
− ⟨σ(t)

z , z(t) − z∗⟩. (D.55)

Where (i) holds by the strong convexity of the dual, (ii) is obtained from the gradient decomposition
(D.51) and (iii) is true because projection is non-expansive. Rearranging (D.55) yields:

∥z(t+1) − z∗∥22 ≤ η2z∥g(t)z ∥22 + 2ηz
(
D∗ −D(z(t))

)
− ∥z(t+1) − z(t+1/2)∥22 (D.56)

+ (1− ηzCSC)∥z(t) − z∗∥22 − 2ηz⟨σ(t)
z , z(t) − z∗⟩.

Paying specific attention to the term η2z∥g
(t)
z ∥22 + 2ηz

(
D∗ −D(z(t))

)
− ∥z(t+1) − z(t+1/2)∥22 we reach:

η2z∥g(t)z ∥22 + 2ηz
(
D∗ −D(z(t))

)
− ∥z(t+1) − z(t+1/2)∥22 (D.57)

(i)
=η2z∥∇zD(z(t)) + σ(t)

z ∥22 − ∥z(t+1) − z(t+1/2)∥22 + 2ηz
(
D∗ −D(z(t))

)
(D.58)

=η2z∥∇zD(z(t))∥22 + 2ηz
(
D∗ −D(z(t))

)
− ∥z(t+1) − z(t+1/2)∥22 (D.59)

+ η2z∥σ(t)
z ∥22 + 2η2z⟨∇zD(z(t)),σ(t)

z ⟩
(ii)

≥ η2z∥σ(t)
z ∥22 + 2η2z⟨∇zD(z(t)),σ(t)

z ⟩. (D.60)

Where (i) holds by the gradient decomposition (D.51) and (ii) holds by sufficient decrease (Proposi-
tion D.2.4), specifically it can be verified by:

η2z∥∇zD(z(t))∥22 + 2ηz
(
D∗ −D(z(t))

)
− ∥z(t+1) − z(t+1/2)∥22 (D.61)

(i)

≤ 1

L2
z

∥∇zD(z(t))∥22 +
2

Lz

(
D∗ −D(z(t))

)
− ∥z(t+1) − z(t+1/2)∥22 (D.62)

(ii)

≤ 1

L2
z

∥∇zD(z(t))∥22 +
2

Lz

(
− ∥∇zD(z(t))∥22

2Lz
+

Lz

2
∥z(t+1) − z(t+1/2)∥22

)
− ∥z(t+1) − z(t+1/2)∥22 (D.63)

=0. (D.64)

Here (i) is obtained by plugging learning rate upper-bound ηz ≤ 1
Lz

and (ii) is sufficient decrease
(Proposition D.2.4). Inserting (D.60) into (D.56) we reach:

∥z(t+1) − z∗∥22 ≤ (1− ηzCSC)∥z(t) − z∗∥22 − 2ηz⟨σ(t)
z , z(t) − z∗⟩+ η2z∥σ(t)

z ∥22 + 2η2z⟨∇zD(z(t)),σ(t)
z ⟩
(D.65)

We will separately consider terms (a), (b) and (c), starting with the term (a):

|⟨σ(t)
z , z(t) − z∗⟩|

(i)

≤ Cz

√
k + d(1 + γ

√
nm)D1,z

2(1− γ)

∥∥ logπθ(t) − logπ∗
r̃

∥∥
∞ (D.66)

(ii)

≤ Cz

√
k + d(1 + γ

√
nm)D1,z

β(1− γ)
∥ logQr̃(t) − β log ξ(t)∥∞. (D.67)

Where (i)holdsby theexact same reasoningas (4.78), and (ii)holdsbecause ∥ logπ∗
r̃(t)−logπ(t)∥∞ ≤

2∥ logQr̃(t)/β − log ξ(t)∥∞ = 2
β ∥ logQr̃(t) − β log ξ(t)∥∞. Now moving on to term (b) we consider:

∥σ(t)
z ∥22

(i)

≤

(
Cz

2
∥µ(t) − µ∗

r̃(t)∥2

)2

(D.68)

(ii)

≤

(
Cz

2(1− γ)
∥π(t) − π∗

r̃(t)∥2

)2

(D.69)
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(iii)

≤

(√
nmCz

2(1− γ)
∥π(t) − π∗

r̃(t)∥∞

)2

(D.70)

(iv)

≤ C2
z (nm)

4(1− γ)2
∥ logπ(t) − logπ∗

r̃(t)∥2∞ (D.71)

(v)

≤ C2
z (nm)

(1− γ)2
∥ logπ(t) − logπ∗

r̃(t)∥∞ (D.72)

≤ 2C2
z (nm)

β(1− γ)2
∥Qr̃(t) − β log ξ(t)∥∞. (D.73)

Where (i) holds by relating the perturbation term to the difference of occupancy measures by its
definition (4.68) σ(t)

z = [Ψ,Φ]T (µ(t) − µ∗
r̃(t)) and then upper bounding that by the sum of spectral

norms Cz = 2(∥Ψ∥ + ∥Φ∥). Step (ii) leverages the Lipschitzness of the occupancy measure with
respect to the policy (Proposition D.2.5). Then (iii) holds by ∥ · ∥2 ≤

√
nm∥ · ∥∞, (iv) is obtained by

observing that the difference of logs upper bounds the difference of values on the relevant domain.
Finally, (iv) uses that the (x)2 function is Lipschitz with constants 2xmax since the maximum value
and that the difference between two logs on that domain is upper bounded by 2. The last step holds
by ∥ logπ∗

r̃(t) − logπ(t)∥∞ ≤ 2∥ logQr̃(t)/β − log ξ(t)∥∞ = 2
β ∥ logQr̃(t) − β log ξ(t)∥∞.

We are now ready to consider (c), the last term. The derivation is very similar to (a):

|⟨σ(t)
z ,∆zD(z(t))⟩|

(i)

≤ Cz

√
k + d(1 + γ

√
nm)

2(1− γ)

∥∥ logπθ(t) − logπ∗
r̃

∥∥
∞∥∇zD(z(t))∥1 (D.74)

(ii)

≤ Cz

√
k + d(1 + γ

√
nm)
√
nmBz

β(1− γ)
∥ logQr̃(t) − β log ξ(t)∥∞. (D.75)

Where (i) holds by the same reasoning as (4.78), (ii) holds because

∥ logπ∗
r̃(t) − logπ(t)∥∞ ≤

2

β
∥ logQr̃(t) − β log ξ(t)∥∞, (D.76)

and because the dual is Lipschitz with constants Bz . Bringing (a), (b) and (c) together we reach:

2ηz

(a)︷ ︸︸ ︷
⟨σ(t)

z , z(t) − z∗⟩+η2z

(b)︷ ︸︸ ︷
∥σ(t)

z ∥22 +2η2z

(c)︷ ︸︸ ︷
⟨∇zD(z(t)),σ(t)

z ⟩ (D.77)

(i)

≤ηz

(
4C2

z (nm)

βLz(1− γ)2
+
(
2D1,z +

4
√
nmBz

Lz

)Cz

√
k + d(1 + γ

√
nm)

β(1− γ)

)
∥ logQr̃(t) − β log ξ(t)∥∞ (D.78)

= Cσx
(t)
3 . (D.79)

Where (i) holds because since ηz ≤ 1
Lz

we have η2z ≤
2ηz

Lz
. Inserting (D.79) into (D.65) we reach the

inequality of proposition D.2.1 and our proof is complete.

∥z(t+1) − z∗∥22 ≤
(
1− CSCηz

)
∥z(t) − z∗∥22 + Cσηzx

(t)
3 (D.80)

=
(
1− CSCηz

)
x
(t)
1 + Cσηzx

(t)
3 . (D.81)

D.3. ProofofpropositionD.2.5 (Occupancymeasure isLipschitz
with respect to the policies)

We start by expanding the expression from the lefthand side of the inequality we are trying to prove:

∥µπ − µπ̄∥2 =

√ ∑
s,a∈S×A

(
µπ(s, a)− µπ̄(s, a)

)2
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(i)
=

√ ∑
s,a∈S×A

(
µπ(s)π(a|s)− µπ̄(s)π̄(a|s)

)2
(ii)
=

√ ∑
s,a∈S×A

(
µπ(s)

(
π(a|s)− π̄(a|s)

)
+ π̄(a|s)

(
µπ(s)− µπ̄(s)

))2

(iii)

≤

≤∥π−π̄∥2︷ ︸︸ ︷√ ∑
s,a∈S×A

(
µπ(s)

(
π(a|s)− π̄(a|s)

))2

+

≤∥µs−µ̄s∥2︷ ︸︸ ︷√ ∑
s,a∈S×A

(
π̄(a|s)

(
µπ(s)− µπ̄(s)

))2
(iv)

≤ ∥π − π̄∥2 + ∥µs − µ̄s∥2.

Where in (i) we just plug in the defintion of the state-occupancy measure (def 2.1.9), in (ii) we just
add 0 = µπ(s)π̄(a|s) − µπ(s)π̄(a|s) and rearrang. Next, we just use a triangle inequality (iii) and ob-
serving that both sides are upper bounded by l2 norms we are done with the first step.

We will now be concerned with bounding ∥µs− µ̄s∥2 by ∥π− π̄∥2 (mutliplied by some constant term).

To do so we first show a useful result on the spectral norm of the difference between the inverse of
two matrices:

∥A−1 +B−1∥ (i)
= ∥A−1(A+B)B−1∥
(ii)

≤ ∥A−1∥ · ∥(A+B)∥ · ∥B−1∥
(iii)
=

∥(A+B)∥
σmin(A) · σmin(B)

. (l)

Where (i) holds by the equalityA−1+B−1 = A−1(A+B)B−1 which holds for any two invertiblematri-
ces (a proof can be found in the solution handbook to Searle 1982), (ii) holds by submultiplicativity
of the spectral norm and (iii) uses the definition of the spectal norm (σmin(A) denotes theminimum
eigenvalue of the matrix A).

We now get back to bounding ∥µs − µ̄s∥2:

∥µs − µ̄s∥2
(i)
= (1− γ)

∥∥∥∥∥[(I − γPπ
)−1 −

(
I − γP π̄

)−1
]
ν

∥∥∥∥∥
2

(ii)

≤ (1− γ)

∥∥∥∥∥[(I − γPπ
)−1 −

(
I − γP π̄

)−1
]∥∥∥∥∥ · ∥ν∥2

(iii)

≤ (1− γ)

∥∥∥∥∥[(I − γPπ
)−1 −

(
I − γP π̄

)−1
]∥∥∥∥∥

(iv)

≤ (1− γ)−1

∥∥∥∥∥[(I − γPπ
)
−
(
I − γP π̄

)]∥∥∥∥∥
=

γ

1− γ

∥∥Pπ − P π̄
∥∥.

Where in (i)we just use the closed form computation of the state-occupancymeasure from the pol-
icy (as shown in equation (2.32)), in (ii) we just use the definition of the spectral norm with pulls out
the ∥ν∥2 term, which we know is smaller or equal to 1 (since it is the l2 norm of a probability distribu-
tion) which gives us inequality (iii). Now plugging in the result from (l) and using that the smallest
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eigenvalue of
(
I − γPπ

)−1
is greater or equal to 1− γ we get inequality (iv) which simplifies into the

last line.

Now we just need to bound
∥∥Pπ − P π̄

∥∥ which we do as follows:
∥∥Pπ − P π̄

∥∥ (i)

≤
∥∥Pπ − P π̄

∥∥
F

(ii)
=

√ ∑
s,s′∈S×S

(
Pπ(s′|s)− P π̄(s′|s)

)2
(iii)
=

√ ∑
s,s′∈S×S

(∑
a∈A

P (s′|s, a)(π(a|s)− π̄(a|s))
)2

=

√ ∑
s,a,s′∈S×A×S

P (s′|s, a)2(π(a|s)− π̄(a|s))2

=

√ ∑
s,a∈S×A

(∑
s′∈S

P (s′|s, a)2
)
(π(a|s)− π̄(a|s))2

≤
√ ∑

s,s′∈S×S

(π(a|s)− π̄(a|s))2 = ∥π − π̄∥2.

Where (i) comes from the fact that the Frobenius norm upper bounds the spectral norm, (ii) is by
the definition of the Frobenius norm, and (iii) just plugs in the definition of the closed loop transi-
tion kernel (def 2.1.4) from there we can just rearange and isolate the

(∑
s′∈S P (s′|s, a)2

)
term, which

since P (·, s, a) ∈ ∆S we know is less than 1. From there we just observe that we have gotten to the
definition of the l2 norm.

Putting everything back together we have:

∥µπ − µπ̄∥2 ≤ ∥π − π̄∥2 + ∥µs − µ̄s∥2

≤ ∥π − π̄∥2 +
γ

1− γ

∥∥Pπ − P π̄
∥∥

≤ ∥π − π̄∥2 +
γ

1− γ
∥π − π̄∥2

=
1

1− γ
∥π − π̄∥2

D.4. Proof of proposition D.2.4 (Sufficient decrease)
Proof. Bubeck 2015 Starting from the definition of smoothness the proof follows naturally:

D(z(t+1)) ≤ D(z(t)) + ⟨∇z(z
(t)), z(t+1) − z(t)⟩ − Lz

2
∥z(t+1) − z(t)∥22 (D.82)

= D(z(t))− 1

ηz
⟨z(t+1/2) − z(t), z(t) − z(t+1)⟩ − Lz

2
∥z(t+1) − z(t)∥22 (D.83)

(i)

≤ D(z(t))− Lz

2

(
∥z(t+1/2) − z(t)∥22 + ∥z(t) − z(t+1)∥22 − ∥z(t+1) − z(t+1/2)∥22

)
(D.84)

− Lz

2
∥z(t+1) − z(t)∥22

= D(z(t))− Lz

2
∥z(t) − z(t+1)∥22 +

Lz

2
∥z(t+1) − z(t+1/2)∥22 (D.85)

= D(z(t))− Lz

2η2z
∥∇zD(z(t))∥22 +

Lz

2
∥z(t+1) − z(t+1/2)∥22

)
(D.86)

(ii)

≤ D(z(t))− 1

2Lz
∥∇zD(z(t))∥22 +

Lz

2
∥z(t+1) − z(t+1/2)∥22

)
. (D.87)
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Where (i) and (i) hold because ηz ≤ 1
Lz
. The proof is completed by rearranging and observing that

the minizerD(z∗) is by definition smaller or equal to any other point z(t) ∈ dom(z).
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