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Abstract

The demise of Moore’s Law and Dennard scaling has resulted in diminishing performance gains

for general-purpose processors, and so has prompted a surge in academic and commercial interest

for hardware accelerators. Specialized hardware has already redefined the computing landscape

by enabling the emergence of disruptive, large-scale applications that would otherwise not have

been possible with CPUs alone. RTL simulators play a key role in enabling the accelerated

computing revolution: they are to hardware engineers what debuggers and runtime systems are

to software engineers. Without RTL simulators, no hardware accelerator could be functionally

designed. As accelerators increase in size and complexity, the hardware design industry will

increasingly need faster RTL simulators to permit chip design in reasonable time.

Since the advent of multicore computers, parallelism is the preferred approach to improve

software performance. RTL simulation seems to offer many opportunities to follow such a

path: accelerators are written in hardware description languages that contain parallel constructs

for describing independent hardware components that run in parallel and synchronize only at

clock edges. Unfortunately, there is a mismatch between RTL simulation and today’s multicore

systems: tasks in RTL simulation tend to be very small in size, resulting in fine-grain parallelism.

This fine-grain parallelism contrasts with coarse-grain parallel workloads for which modern

multicore systems are built, which leads to simulator designs that can achieve only weak parallel

performance scaling. This thesis argues that we need computing architectures that can achieve

strong scaling to truly speed up RTL simulation through parallelism. A strong scaling architecture

is one that canmake effective use of additional cores without having to increase the total workload

size. This enables even small or moderate size designs to exploit parallelism to run quickly.

This thesis contributes Manticore, a co-designed manycore architecture and compiler for RTL

simulation that achieves strong parallel performance scaling. Manticore combines a bulk-

synchronous parallel execution model with static scheduling to eliminate the runtime overheads

of synchronization among hundreds of cores, simplify core design, and significantly increase

the parallelism possible on a single chip. Our modest FPGA prototype of Manticore greatly

increases parallel RTL simulation rate compared to a state-of-the-art software simulator running

on top-of-the-line desktop and server x86 processors. The ideas underlying Manticore’s design

present a first step towards fast, scale-out RTL simulation.

Keywords: RTL simulation, parallelism, hardware acceleration, manycore architecture, FPGA
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Résumé

La fin de la loi de Moore et de la mise à l’échelle de Dennard a entraîné une diminution des gains

de performance pour les processeurs à usage général (CPU), ce qui a suscité un regain d’intérêt

académique et commercial pour les accélérateurs matériels. Le matériel spécialisé a déjà redéfini

le paysage informatique en permettant l’émergence d’applications à grande échelle qui n’auraient

pas été possibles avec les CPUs seuls. Les simulateurs RTL jouent un rôle clé dans la révolution de

l’informatique accélérée : ils sont aux ingénieurs matériels ce que les débogueurs et les systèmes

d’exécution sont aux ingénieurs logiciels. Sans simulateurs RTL, aucun accélérateur matériel ne

pourrait être conçu fonctionnellement. Au fur et à mesure que les accélérateurs augmentent en

taille et en complexité, l’industrie de la conception matériel aura besoin de simulateurs RTL plus

rapides pour permettre la conception de puces en un temps raisonnable.

Depuis l’avènement des ordinateurs multicœurs, le parallélisme est l’approche préférée pour

améliorer les performances logicielles. La simulation RTL semble offrir de nombreuses opportuni-

tés pour suivre une telle voie : les accélérateurs sont décrits dans des langages de description

matérielle qui contiennent des constructions parallèles pour décrire des composants matériels

indépendants qui fonctionnent en parallèle et se synchronisent uniquement sur les flancs d’une

horloge. Malheureusement, il existe un décalage entre la simulation RTL et les systèmes mul-

ticœurs d’aujourd’hui : les tâches en simulation RTL ont tendance à être très petites, ce qui

entraîne un parallélisme à grain fin. Ce parallélisme à grain fin contraste avec les tâches parallèles

à grain grossier pour lesquelles les systèmes multicœurs modernes sont construits, ce qui conduit

à des implémentations de simulateurs qui ne peuvent atteindre qu’une mise à l’échelle faible

de leur performance en utilisant du parallélisme. Cette thèse soutient que nous avons besoin

d’architectures informatiques qui peuvent atteindre une mise à l’échelle forte pour accélérer

réellement la simulation RTL à travers du parallélisme. Une architecture à mise à l’échelle forte

est celle qui peut faire un usage efficace de cœurs supplémentaires sans avoir à augmenter la

taille totale de la charge de travail. Cela permet même à des designs de petite ou moyenne taille

d’exploiter le parallélisme pour s’exécuter rapidement.

Cette thèse contribue Manticore, une architecture et un compilateur manycore co-conçus pour

la simulation RTL qui atteint une mise à l’échelle forte de sa performance parallèle. Manticore

combine un modèle d’exécution parallèle synchrone en bloc (bulk-synchronous parallel) avec une

planification statique pour éliminer les surcoûts de synchronisation entre des centaines de cœurs,

simplifier la conception des cœurs, et augmenter considérablement le parallélisme possible sur

une seule puce. Notre modeste prototype FPGA de Manticore augmente considérablement le

ix



Résumé

taux de simulation RTL parallèle par rapport à un simulateur logiciel à la pointe de la techno-

logie fonctionnant sur des processeurs x86 de bureau et de serveur haut de gamme. Les idées

sous-jacentes à la conception de Manticore représentent un premier pas vers une simulation RTL

rapide et extensible.

Mots clefs : Simulateur RTL, parallélisme, accélération matériel, architecture manycore, FPGA
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1 Introduction

CPU performance growth has stagnated; demand for increased computing power has not. The

imbalance between our CPUs’ processing power and the computational requirements of today’s

applications has led to massive demand for specialized hardware. These devices, purpose-built for
specific applications, exploit the inherent parallelism and unique characteristics of their target

workloads to outperform CPUs in terms of speed and efficiency. With increased interest in

specialized hardware comes a strong demand for fast ways to design and validate them.

1.1 The Stagnating Growth of CPU Performance

Driven by Moore’s Law, the number of transistors in computer processors has doubled every

18–24 months since the 1970s, resulting in modern commodity chips containing upwards of

50 billion transistors. This exponential increase in transistors would have been meaningless if

not accompanied by beneficial improvements. Fortunately, a key improvement did occur: CPU

performance has increased by at least five orders of magnitude over this period! This growth

in CPU performance owes much to the favorable circumstances enabled by Moore’s Law and

Dennard scaling.

CPU performance, however, has not increased at a constant rate throughout history. Figure 1.1

plots the annual growth rate of CPU performance since 1978 and shows that growth in CPU per-

formance has decelerated post-2003 with the end of Dennard scaling. CPUs are now power-limited

and clock frequencies increase slowly, signaling that technology scaling no longer contributes

to performance growth to the same extent as before. There also is a limit to the amount of

instruction-level parallelism (ILP) that can be extracted from sequential programs [109]. The net

result is that—as of 2018—CPU performance growth has largely flattened out, sustaining only

3.5% year-on-year improvement.

1.2 The Rise of Hardware Acceleration

Riding the tides of technology scaling is no longer an effective method to increase CPU perfor-

mance, so the computing industry must look for alternatives to sustain growth in computing

1



Chapter 1. Introduction

Figure 1.1 – Improvement in CPU performance over 40 years. The performance of machines in the CISC

era, RISC era, and multicore era experienced different annual growth rates. The text underneath each

era describes the main driver of performance growth during the period. Figure reproduced and adapted

from Hennessy and Patterson [44].
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power. Hardware acceleration appears to be a viable means to this end. An accelerator is a

specialized piece of hardware that is purpose-built to solve a particular task. By eschewing

the one-size-fits-all approach of a general-purpose CPU, an accelerator can instead implement

domain-specific optimizations to improve performance and efficiency.

CPUs are built to exhibit good performance for diverse workloads, at the expense of not excelling

at any specific one. They do so using von Neumann architectures with standard functional

units that operate on memory-level words. CPUs generally attempt to improve performance

by exploiting more ILP. By contrast, accelerators must exhibit exceptional performance and

efficiency for only a specific class of workloads. They do so using an architecture chosen for

their problem domain, typically with custom datapaths and functional units that facilitate data

movement and computation on application-level objects. Accelerators improve performance by

exploiting multiple forms of parallelism (data, memory, stream, pipeline, fine-grained, model,

task, etc.) efficiently.

There exists a diverse set of accelerator architectures. We briefly outline the most common ones:

Dataflow Computing paradigm in which problems are expressed as functional units and the

data flowing between them. Dataflowmachines are typically dynamic: functional units can

execute as soon as data is available (rather than adhering to a fixed instruction sequence).

2



1.3 The Bottleneck of Hardware Simulation

Spatial An accelerator featuring an array of relatively simple ALU-like processing elements (PEs)

capable of direct communication with one another through a Network on a Chip, bus, or

inter-PE connection [29].

Systolic Architectures wherein computation is performed by a 1D or 2D array of arithmetic units

controlled in lockstep. They are a special case of spatial accelerators with two restrictions:

(1) PEs perform a fixed function on the input data, and (2) data flows between PEs in a

fixed direction. Systolic architectures produce partial results in a wave-like fashion [52].

Vector Architectures designed to perform mathematical operations on vectors and matrices in

a highly parallelized manner [94]. Vector processors can load and store data from memory

both in contiguous and strided patterns. A vector architecture is optimized to perform the

same operation on multiple elements of a vector or matrix simultaneously, typically by

using a single instruction.

Manycore Accelerators that feature many hundreds or even thousands of physical cores, often

arranged in groups of ten or more multiprocessors. Manycores can be considered an

evolutionary step beyond their multicore counterparts, exhibiting even greater parallelism.

To achieve such levels of parallelism, individual cores are relatively simple (in-order, etc) to

enable more dense packing onto a single chip [35].

GPU A special case of manycore architecture where each core is a multithreaded vector proces-

sor [71].

Accelerators come in multiple shapes (FPGA, GPU, ASIC) and exist for a variety of applications:

machine learning [6, 29, 51, 52, 77], video processing [3, 86], networking [72], storage [62],

bioinformatics [97], etc. Machine learning (ML), in particular, has aroused massive commercial

interest. Given the exponential increase in the size and complexity of ML models, the computing

industry has poured large sums into the development of hardware accelerators for ML workloads.

Figure 1.2 shows the sheer number of ML accelerators that have been publicly announced as of

2022 and their location in the performance-power design space.

In summary, interest in hardware accelerators has grown as the computing industry seeks

alternative ways to boost computing performance and efficiency in the face of the diminishing

returns of Moore’s Law and Dennard scaling. Hardware accelerators will likely continue to spread

to other fields as they become increasingly dependent on computation.

1.3 The Bottleneck of Hardware Simulation

During the development process, both software and hardware artifacts must undergo various

stages of implementation, debugging, functional verification, and performance validation. While

software artifacts can simply run their code on a machine to do so, hardware artifacts cannot

“run” a workload as they are yet to be physically manufactured. As a result, hardware designs are

simulated on a computer using specialized software tools that model the behavior of the design.

Hardware simulation is necessary to ensure that a design meets its intended functionality and

performance specifications before it is committed to silicon. Unlike software, hardware bugs—

whether functional or performance-related—generally cannot be patched after a system has been
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Figure 1.2 – Publicly announced machine learning accelerators as of 2022. Figure reproduced and

adapted from Reuther et al. [79].

built: Hardware bugs which escape early design stages can be fixed at a certain cost, but those

which are detected only after shipping are prohibitively expensive to address [30].

As demand for faster and more efficient processing continues to grow, hardware accelerators

will become larger and more complex, which entails more involved simulation. Ideally we

want RTL simulators that can achieve a simulation rate of approximately 1 MHz; much slower

than hardware, but fast enough to avoid days worth of simulation time for large designs. Fast

simulators enable engineers to perform more design runs per day, which in turn permits finding

higher-performing designs, increasing coverage for verification, and identifying bugsmore quickly.

Designers, however, face a dilemma. Software RTL simulators offer excellent visibility into

hardware internals and can compile large hardware designs in a few minutes, but are very slow

at runtime: the fastest software RTL simulators can simulate designs at a rate of only 1 kHz

to 1000 kHz, i.e., more than three orders of magnitude slower than the physical hardware. By

contrast, prototyping a hardware design on an FPGA permits simulation rates in the range of

10 MHz to 100 MHz, but offers only limited visibility into design state and takes a very long time

to compile (hours- or days-long place-and-route tools are needed to map hardware to the FPGA).

Slow runtime or compile time is a bottleneck when performing extensive design space exploration

or testing.

Since the advent of multicore computers, parallelism is the preferred approach to improve

software performance. RTL simulation seems to offer many opportunities to follow such a

path: accelerators are written in hardware description languages that contain parallel constructs

for describing independent hardware components that run in parallel and synchronize only at

clock edges. RTL designs therefore comprise many independent tasks, which suggests that RTL
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simulation may be a good fit for execution on multicore machines, built for task-level parallelism.

However, tasks in RTL simulation tend to be very small in size: they consist of the combinational

gates between two flip-flops or memories, and the number of gates is typically no more than a

few tens to a few hundreds. This results in fine-grain parallelism. By contrast, shared-memory

multicore machines are designed for coarse-grain parallelism as the overhead of coordinating

fine-grain tasks across multiple cores can be prohibitively high, resulting in diminishing returns

as more cores are used.

Parallel software RTL simulators work around this mismatch by grouping multiple tasks together

to coarsen the granularity of computation, reducing the overhead of coordination between cores

and resulting in parallel speedup. However, since the cost of coordination among cores increases

as more cores are used, the coarsened tasks must also increase in size to keep coordination

overheads constant, which is only possible if the total workload size increases. This suggests that

multicore machines are capable of speeding up simulation only through weak scaling: they can

use more cores to maintain the same parallel speedup for increasing problem sizes, but cannot

increase the parallel speedup of a fixed-sized problem past some threshold without decreasing

performance.

If we truly want to use increased parallelism to improve RTL simulation performance, we need

computing architectures that can achieve strong scaling. A strong scaling architecture is one

that can make effective use of additional cores without having to increase the total workload

size. In such an architecture, adding more cores reduces each core’s workload, leading to an

increased simulation rate. A strong scaling architecture, with enough cores and balanced per-core

workloads, could enable RTL simulation rates to approach the 1 MHz range.

1.4 Thesis Contributions

This thesis proposes Manticore: a strong scaling, manycore accelerator for efficient, parallel RTL

simulation.

Manticore combines a bulk-synchronous parallel execution model with static scheduling (i.e.,

“static BSP”) to eliminate the runtime overheads of synchronization among hundreds of cores.

Since the scheduled synchronization occurs without overhead, fine-grain interactions among

cores are efficient. Device-wide static scheduling also allows us to simplify the Manticore

processors, significantly increasing the parallelism possible on a single chip.

Like MIT’s Raw machine [108], Manticore relies entirely on its compiler to schedule resources

and communication. Manticore’s compiler accepts single-clock RTL designs and generates binary

code for a Manticore accelerator. Compilation time is comparable to software compilers, offering

software development-like turnaround and fast simulation rate, especially useful for hours- to

days-long simulations.

We prototyped Manticore on an FPGA, and it outperforms Verilator [92], the fastest open-source

RTL simulator, running on top-of-the-line multicore general-purpose processors despite running

at a fraction of their clock speed. Hardware-accelerated simulation offers a way out of the
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dilemma posed above by optimizing time-to-result. Small experiments and tests can run on

a software simulator with rapid turnaround. More extensive experiments and tests can run

on Manticore, with slightly slower compile times, but much faster execution. And hardware

prototypes can be reserved for full-system simulation, operating system bring-up, and software

development.

The main contributions of this thesis are:

• An application of the static BSP execution model to RTL simulation,

• The Manticore architecture that employs fine-grain parallelism to simulate RTL,

• A compiler that finds parallelism in RTL code and statically schedules it to run effectively

on Manticore,

• A high-performance FPGA prototype of Manticore, and

• An evaluation comparing and analyzing the performance of Manticore against state-of-

the-art software RTL simulation.

1.5 Thesis Organization

This thesis is organized in two orthogonal, but related parts.

Part I presents the main contribution of this thesis: the design, implementation, and evaluation

of the Manticore manycore accelerator for RTL simulation. Manticore is based on work to appear

in ASPLOS’24.

• Chapter 2 presents background information on hardware simulation and provides a tax-

onomy for the different granularities at which hardware circuits are simulated. We then

frame the specific class of simulators addressed by this thesis: full-cycle, cycle-accurate

RTL simulators.

• Chapter 3 quantitatively studies the amount and type of parallelism available in RTL

simulation. We then demonstrate that shared-memory multicore machines are fundamen-

tally limited in their ability to effectively exploit the fine-grain parallelism available in

RTL simulation beyond few tens of cores. We also explain why the next most common

parallel architecture available today—the GPU—is not a viable platform for accelerated

single-instance RTL simulation. We end by presenting the key ideas underlying Manticore,

our proposed manycore architecture for scalable parallel RTL simulation.

• Chapter 4 describes Manticore’s microarchitecture and FPGA implementation on a large

Xilinx UltraScale+ device, in particular the design choices we made to permit a dense and

high clock frequency implementation.

• Chapter 5 introduces Manticore’s compiler, which uses the hardware’s determinism to

schedule RTL code to instructions thatManticore’s hundreds of cores can efficiently execute.

Manticore’s deterministic hardware lacks interlocks and buffering, so it relies entirely on its

compiler to parallelize the input netlist, schedule instructions within each core to avoid data

hazards, and schedule messages between cores to avoid structural hazards on Manticore’s

NoC.
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• Chapter 6 evaluates Manticore’s performance, cost, compile time, and design decisions. We

compare Manticore’s performance against Verilator, the fastest full-cycle RTL simulator,

running on three high-end desktop and server x86 processors. We analyze Manticore’s

cost in a cloud environment using the closest comparable FPGA and high-performance

processors. We separately evaluate each of Manticore’s design decisions (communication-

aware partitioning, custom functions, program placement, register capacity) and their

contribution to overall performance.

Part II presents a secondary contribution of this thesis: the Bitfiltrator FPGA bitstream manipu-

lation tool. Bitfiltrator is based on work published in FPL’22.

• Chapter 7 describes how to reverse-engineer parts of a Xilinx FPGA’s bitstream to support

alternative programming workflows. Bitfiltrator was originally conducted in the context of

the Manticore project. The goal was to rapidly program parts of Manticore’s functional

units at the FPGA bitstream-level so we could omit Manticore’s programming circuitry

from its design and simplify timing closure at high clock speeds. However, we did not end

up using Bitfiltrator in the final Manticore prototype, and so we decided to spin it off as

educational material at an FPGA conference to teach others how to reverse-engineer parts

of an FPGA’s bitstream as this information was lacking in the literature. At the time when

this project was conducted, Bitfiltrator was the only tool capable of editing the bitstream

of large, multi-die Xilinx FPGAs.

1.5.1 Bibliographic Notes

This thesis expands upon work conducted during the final two years of my PhD, resulting in the

following two publications:

Manticore: Hardware-Accelerated RTL Simulation with Static Bulk-Synchronous Par-
allelism
Mahyar Emami*, Sahand Kashani* (*equal contribution)
Keisuke Kamahori, Mohammad Sepehr Pourghannad, Ritik Raj, James R. Larus
In Proceedings of the 29

th
ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS’24).

Bitfiltrator: A General Approach for Reverse-Engineering Xilinx Bitstream Formats
Sahand Kashani, Mahyar Emami, James R. Larus
In Proceedings of the 32

nd
International Conference on Field-Programmable Logic and Appli-

cations (FPL’22).

Manticore was a massive project and was largely the result of joint work between myself and my

colleague Mahyar Emami. This thesis presents Manticore as a whole for completeness so that its

description is coherent. However, I will dive into the details of only the parts to which I made

major contributions.
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Hardware credit

I proposed the overarching idea of using static scheduling in a manycore architecture to remove

the overheads of runtime synchronization in RTL simulation. I evaluated the feasibility of using

clock gating as a global stalling mechanism on a large, multi-die FPGA, which would permit a

physical implementation of Manticore. Mahyar and I sketched the high-level details of many of

Manticore’s core modules, which Mahyar then used to implement a first version of Manticore

while focussing on correctness, not on speed. I sketched a detailed implementation of an improved

500 MHz core, which an intern (Keisuke Kamahori) helped implement. I then performed a cross-

sectional redesign of Manticore’s cores, switches, and control structures to permit scaling its

architecture to large grid sizes, while remaining clocked near our desired 500 MHz target.

Compiler credit

I developed a first version of the compiler’s Verilog frontend in Yosys’ experimental Python

bindings, which Mahyar later ported and expanded into Yosys’ C++ codebase. Mahyar developed

the backend compiler’s overarching framework, on top of which we both contributed various

standard optimization passes (constant folding, dead code elimination, etc.). The partitioner,

scheduler, register allocator, and bootloading code are entirely Mahyar’s work. I focused on study-

ing the impact of program placement strategies and custom function synthesis on Manticore’s

performance.
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Part IHardware-Accelerated
RTL Simulation

9





2 Background

Hardware accelerators require multiple iterations of implementation, debugging, functional

verification, performance validation, and design space exploration. Given the high cost of taping

out chips, a significant fraction of an engineer’s time is spent performing detailed hardware

simulation [38, 39]. A simulator’s turnaround time and throughput can directly affect designer

productivity and product quality: faster simulators enable engineers to perform more design runs

per day, which in turn permits identifying bugs more quickly, increasing coverage for verification,

and finding higher-performing designs.

This thesis is about using parallelism to speed up the simulation of hardware accelerators. We

defer a discussion of parallel simulation to Chapter 3. This chapter provides a taxonomy for the

different granularities at which hardware circuits are simulated. We then frame the specific class

of simulators addressed by this thesis.

2.1 Simulation Taxonomy

Hardware circuits can be simulated using a variety of models: (1) un-timed, (2) transaction-level,

(3) cycle-accurate, and (4) timing-accurate models. Each model provides increasing simulation

accuracy and is more costly to run:

• An un-timed model is a functional description of a design and does not contain any

implementation details; it is purely algorithmic.

• A transaction-level model (TLM) is an abstract model suitable for early architecture ex-

ploration and performance analysis, without requiring detailed implementation. This

abstraction reduces the complexity of the design process, and the increased speed of

simulation allows for more extensive design space exploration. The execution time of

a transactionally-modeled hardware design is estimated at the system level. There are

multiple types of TLMs depending on the accuracy with which they model a hardware

design’s compute and communication units.

• A cycle-accurate model contains the implementation details of a synchronous system (i.e., a

system that has at least one clock signal that synchronizes state elements in the circuit). It

allows designers to measure execution time with cycle-level accuracy.
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Chapter 2. Background

Figure 2.1 – Hardware system modeling graph. Thick solid arrows represent the traditional hardware

design flow: designers start from an un-timed specification (A), devise an abstract system architecture (C),

and finally refine computation and communication in the form of a cycle-accurate RTL implementation (F).

If a design contains timing-dependent behavior (e.g., combinational loops), then a finer-grained timing-

accurate RTL model (G) is needed to simulate it. The dashed arrows represent different intermediate

models that can be used to reach those in the traditional design flow. Gray circles represent transaction-

level models (TLMs), i.e., models that approximate some aspect of a system’s implementation. Reproduced

and adapted from Cai and Gajski [20].
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(A) Specification none no HW none variable

(B) Component-assembly approx. abstract none message-passing

(C) Bus-arbitration approx. abstract approx. abstract bus

(D) Bus-functional approx. abstract cycle detailed bus

(E) Cycle-accurate compute cycle pin approx. abstract bus

(F) Implementation (synthesizeable RTL) cycle pin cycle wire

(G) Timing-accurate time pin time wire

• A timing-accurate model contains gate-level delays and allows simulating hardware circuits

that have timing-dependent behavior (e.g., ring oscillators, etc.).

The system modeling graph and the table in Figure 2.1 characterize multiple hardware models

by the accuracy with which they model elapsed time in a hardware design’s compute and

communication units:
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• A specification model (A) contains an un-timed algorithmic description of a system as a

collection of processes that communicate through global variables.

• A component-assembly model (B) describes a system’s architecture as a collection of

components that are individually responsible for either computation or communication.

A compute unit’s execution time is approximated using wait statements, whereas com-

munication is un-timed and is performed through message-passing channels (no specific

bus protocol is implemented; the channels model only data transfers and synchronization

between compute units).

• A bus-arbitration model (C) describes how different components on a shared bus access

the bus and communicate with each other. It includes high-level information about the

arbitration mechanism used to determine which component has access to the bus at any

given time. Arbitration entails knowing the order at which different accesses occur on a

bus, and so both computation and communication are approximately-timed (using wait
statements).

• A bus-functional model (D) describes a communication protocol’s pin-level interface and

control sequences (i.e., computation is approximate, but communication is cycle-accurate).

Control sequences may be described using time delays (e.g., signal write precedes signal

data by 50 ns, etc.), or is directly described using cycle-level behavior (which implies the

existence of a clock signal). If the protocol is described using time delays, then the protocol

needs to be refined into a cycle-level model to be implemented.

• A cycle-accurate computation model (E) is the compute-equivalent of a bus-functional

model: computation is cycle-accurate, but communication is approximate. A cycle-accurate

computation model is useful for obtaining detailed performance metrics for each compute

unit individually.

• An implementation model (F) is a synthesizeable cycle-accurate description of an entire

system (computation and communication). Cycle-accurate simulation captures value

changes only at clock edges; there is no notion of time. A cycle-accurate simulator cannot

model structures like combinational feedback loops as it does not see signal changes

between clock edges. Fortunately most digital systems are synchronous and do not contain

delay-sensitive logic, which greatly simplifies hardware design and testing.

• A timing-accurate model (G) simulates a hardware design by timestamping value changes

to model gate delays accurately. It is required when asynchronous events must be modeled,

i.e., when the notion of a “cycle” is undefined or when what happens in a cycle is unknown

ahead of time. Examples include (1) systemswithout a clock, (2) systemswith combinational

loops (e.g., phase-locked loops, ring oscillators, etc.), and (3) systems that can dynamically

adjust their clock frequency (e.g., with dynamic voltage frequency scaling). Timing-accurate

simulation can be done cycle-accurately if combinational feedback loops are designed such

that they always converge.

We focus on synchronous hardware systems in the rest of this thesis as they encompass the vast

majority of hardware designs (processors, accelerators, etc.). A cycle-accurate simulation (F) of

such systems provides the highest level of accuracy (beyond what a TLM can provide).

Before we dive into how clocked circuits are simulated, we first review how they are represented.
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Chapter 2. Background

Figure 2.2 – An example single-clock netlist. Circles represent gates and rectangles represent registers.
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2.2 Circuit Representation

Circuits are hierarchically described in hardware description languages (HDLs) such as VHDL

or Verilog, i.e., languages that support parallel constructs for describing parallel hardware com-

ponents that run independently and synchronize only at clock edges. Circuit simulation is

performed on HDL sources even if the circuit is generated from a higher-level un-timed language

as HDL is the single common denominator at which multiple hardware systems can be stitched

together.

HDLs represent hardware circuits at a level of abstraction known as register-transfer level (RTL).

RTL is just a fancy name for a set of registers and a set of transfer functions that connect them [82].

The registers represent circuit state and the transfer functions are stateless combinational logic

that operate on registers and wire them together. HDLs therefore represent circuits in the form

of a netlist : a directed graph whose nodes are circuit cells (gates, registers, and memory banks)

and whose edges are the wires connecting them. Figure 2.2 shows an example netlist in which

rectangles represent registers and circles represent gates.

2.3 Simulator Implementation

Simulating an RTL circuit in software is orders of magnitude slower than running the actual

hardware since a CPU needs to use instructions to emulate up to millions of gates at each clock

cycle. This is not an issue for small designs, but can lead to hours-long simulations for large

designs if they must be simulated over billions of clock cycles. So how can we design simulators

for fast execution in software?

2.3.1 Event-driven Simulators

Signals in many digital systems exhibit low activity factors and rarely change between clock

cycles [24, 89]. This suggests that most of the simulation’s results can be reused to save compu-

tation. An event-driven simulator propagates signal updates as events to its consumers, which

are then dynamically scheduled for evaluation.
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In principle event-driven simulators should yield significant savings on a traditional CPU as they

avoid needless re-evaluation of unchanging circuit elements. In practice, monitoring a central-

ized event queue to trigger execution of circuit partitions greatly outweighs its benefits [111].

Designers want circuits that run at high clock frequencies, which constrains the number of

gates between clock edges. A realistic RTL design therefore comprises many tiny, independent
computation tasks which require no more than tens of instructions to emulate in software. Many

more instructions may be required to schedule each task’s computation depending on the event

queue’s implementation.

2.3.2 Full-cycle Simulators

While event-driven simulators evaluate only the signals that have changed in the previous cycle, a

full-cycle simulator evaluates the entire circuit at each clock cycle. A single static schedule is used
to ensure all signals are computed in the correct order, which eliminates the dynamic overheads

of event-driven simulation. As a result, CPUs exhibit significantly higher simulation rates when

running a full-cycle simulator compared to an event-driven one, despite the unnecessary extra

work [11].

Side Note: Hybrid Simulators

Event-driven and full-cycle simulators are two extremes of the simulator implementation

spectrum. A hybrid simulator blends properties of both implementations to reduce the

runtime overheads of event-driven simulation, while retaining its benefit of reducing work

in the presence of low activity factors. Hybrid simulators can improve single-threaded
simulation performance by over an order of magnitude [11].

This thesis is about using parallelism to improve simulation performance, which is or-

thogonal to the techniques devised by hybrid simulators for improving single-thread

simulation performance. The rest of this thesis uses a “pure” full-cycle simulator as the

starting point for parallel simulation as it provides a good basis for understanding the

source of parallelism in RTL simulation and how to effectively exploit it.

2.4 Summary

Simulation is an essential part in the hardware design workflow. The vast majority of real

hardware circuits are synchronous and are described with cycle-level accuracy in hardware

description languages. A full-cycle simulator executes the entire body of a circuit at each cycle to

avoid the overheads of fine-grained event-driven simulation.

This concludes the high-level background on simulation. The next chapter covers how parallelism

can be used to speed up simulation.
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3 Manticore: An Architecture for
Parallel RTL Simulation

Chapter 2 described full-cycle, cycle-accurate simulators as being fast, but they are still orders

of magnitude slower than hardware. We must explore other dimensions in the design space to

speed up RTL simulation. Since the advent of multicore machines, parallelism is the preferred

approach to improve software performance, and so this chapter introduces parallel, full-cycle

RTL simulation.

We start by presenting serial full-cycle RTL simulation. Next, we quantify the amount and

type of parallelism available in RTL simulation. We then demonstrate that shared-memory

multicore machines are fundamentally limited in their ability to effectively exploit the type

of parallelism available in RTL simulation beyond few tens of cores. Finally, we conclude by

presenting Manticore, our proposed architecture for scalable parallel RTL simulation.

3.1 Serial Full-Cycle Simulation

Figure 3.1 shows the two-stage process used to evaluate a netlist graph.

First, the netlist graph (top) is made acyclic by splitting the state nodes (e.g., registers) into a

current and next value. This results in a directed acyclic graph (DAG), where current and next

values are denoted by - and +, respectively (bottom).

Second, the netlist DAG is executed while respecting its precedence relations. A simulated cycle

concludes when all next register values are computed using the current register values. The

current values are then updated from the newly computed ones, and the process repeats.

3.2 Quantifying Parallelism in RTL Simulation

We want to exploit parallelism to speed up RTL simulation, so it is important to start by quanti-

fying how much parallelism exists in real circuits. If there is little parallelism, then parallelism

alone would not lead to good speedups; aggressive sequential execution techniques (speculation,

etc.) would be better.
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Figure 3.1 – Cycle-accurate simulation of a netlist. Circles represent gates and rectangles represent

registers. Simulating a netlist involves splitting registers into a current and next value denoted by - and +,

respectively (top). The resulting split circuit is then represented as a DAG (bottom) where current values
are inputs and next values are outputs. Executing the DAG simulates the operations that occur in one

clock cycle. Colored circles in the DAG represent independent paths that can be computed in parallel.
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Notice that a netlist DAG fully expresses the inherent parallelism of an RTL circuit as an interpreter

can simulate independent paths through the graph in parallel. Figure 3.1 highlights the vertices

along a given path with the same color and shows that even this tiny RTL circuit exhibits 4-way

parallelism.

Table 3.1 extends this analysis to nine small- and medium-sized RTL benchmarks (described in

Section 6.3). It reports three metrics for each benchmark: (1) the total number of vertices in its

netlist DAG, (2) the depth of the DAG, and (3) the width of the DAG. The number of vertices in

the DAG is a measurement of how much total work is needed to simulate the entire circuit at

each clock cycle, while the depth is a measure of the largest serial portion of the circuit (i.e., its

critical path). The available parallelism in the DAG depends on how its vertices are scheduled. We

estimate this parallelism after ASAP scheduling by computing the minimum, average, median,

and maximum DAG widths. We observe that the number of vertices in a netlist DAG greatly

outnumbers its depth: netlist DAGs are shallow and wide, and so have ample parallelism. The

only outlier is jpeg, where the average width of the DAG is at least an order of magnitude lower

than other benchmarks. The jpeg benchmark is therefore likely to benefit little from parallelism.

In summary, RTL simulation offers many opportunities for parallelism as circuits are composed of

exclusively of parallel hardware components that run independently, i.e., they exhibit abundant

task-based parallelism. Furthermore, this parallelism is made explicit by circuit designers directly

in HDLs, so no parallelism needs to be extracted.
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Table 3.1 – Benchmark RTL circuit netlist DAG statistics. A vertex corresponds to an arbitrary-width
operation as specified in the original Verilog. The size of the DAG represents the total amount of work

needed to simulate the entire circuit at each clock cycle. The depth of the DAG quantifies the largest serial

portion of the circuit. We estimate the amount of parallelism in the DAG by computing its minimum,

average, median, and maximum width through ASAP scheduling. Netlist DAGs are shallow and wide:

they consist of a large number of short tasks.

Benchmark Size Depth
Width

min avg med max

jpeg 3837 188 2 20 4 600

blur 7653 23 3 319 197 1332

bc 16612 19 2 831 367 4861

mc 48161 24 32 1926 395 8275

mm 66328 23 225 2764 1956 8488

rv32r 71094 84 16 836 337 6308

noc 99033 71 16 1375 120 11423

cgra 105500 47 49 2198 1078 10125

vta 117062 143 1 812 4 21836

3.3 Parallel Full-Cycle Simulation

Multicore parallelism in general-purpose, shared-memory processors is the most common form of

parallelism in today’s computing platforms. Parallel threads on a shared-memory machine must

synchronize if they wish to exchange data without race conditions. However, synchronization

is costly as it implies communication through the last-level cache (LLC), and so should be kept

to a minimum. We do so by performing synchronization at the coarsest granularity needed for

correct RTL simulation: between clock edges.

We separate each RTL simulation cycle into two distinct phases: computation and communication.
We start by partitioning at compile-time the netlist DAG into multiple independent graphs by

creating a DAG per sink node (next register value or memory). The computation in each graph

consumes multiple current register values and produces exactly one value in a next register. The

DAGs are independent and so can be evaluated in parallel during the computation phase. The

computed values are communicated to the DAGs that will consume them in the communication

phase. A new simulation cycle starts once communication concludes.

This model is inspired by the bulk-synchronous parallel (BSP) execution model [106] shown in

Figure 3.2. Synchronization occurs only twice per cycle with BSP—once after the computation

phase and another after the communication phase.
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Figure 3.2 – Bulk-synchronous parallel RTL simulation. Each simulation cycle is split into a computation

and communication phase. Communication is not all-to-all: producers perform blind writes to only the

consumers who need the updated register values.
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3.4 Bounding Parallel Simulation on General-Purpose CPUs

Given the abundance of task-based parallelism in RTL simulation, it seems reasonable to expect

that the parallel simulation of a circuit exhibits good performance on a multicore machine.

We use a simple model of a simulator to find the relationship between simulation speed, design

size, and computation granularity. In practice, simulator speed depends on the target RTL design

and details of the simulator’s partitioning, optimization, and runtime. A fully accurate model is

unnecessary if a simplified model offers an upper bound on any system, which we achieve with

three simplifications:

• We ignore the data transfer among cores and focus exclusively on the synchronization

necessary to coordinate data movement. BSP requires two synchronization points (barriers)

per RTL cycle: one at the end of computation and another at the end of communication.

These are the minimum synchronization operations needed to simulate an RTL cycle

correctly.

• We assume computation can be perfectly parallelized among threads so that there is no

straggler.

• As in full-cycle simulation, we assume the number of machine instructions required to

simulate one RTL cycle is independent of a design’s state.

Figure 3.3 shows our experimental setup: We study parallel simulation performance scalability

with a strong scaling experiment that increases the number of threads while keeping the total

work constant. We explore two variants of the same simulation model, which we present next.

3.4.1 First Model

The bottom part of Figure 3.3 provides a pseudocode description of the first model. The model

is ideal as we equally divide a total number of instructions T among N threads. The inner
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Figure 3.3 – BSP strong scaling experiment on multicore shared-memory processors. We model how

parallel simulation performance scales as a function of a circuit’s size and the number of cores used. T

denotes the number of instructions needed to simulate one RTL cycle, and N denotes the number of

worker cores used. The bottom part gives a more detailed pseudocode description of the experimental

setup.
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T : total number of instructions
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// T is the total number of instructions per cycle.

// N is the number of parallel threads.

// B is an arrive-await barrier.

// C is the number of RTL cycles to simulate.

for N parallel threads {

localInstr = (T / N) / #instrInWhileLoop

for C iterations {

// mock computation

while (localInstr > 0) {

localInstr -= 1

// unoptimizable sequence of independent instructions

a ^= (a+1)

b ^= (b+1)

c ^= (c+1)

d ^= (d+1)

}

B.wait()

// mock zero-cost communication

B.wait()

}

}

while loop executes a sequence of instructions to approximate the simulator’s computation of

an RTL cycle. The model contains two barriers at the end of this computation to synchronize

the communication of newly computed values. These barriers execute when the model runs and

contribute to its runtime cost.

We implement the model with care to maximize performance:
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• We use multiple unoptimizable, independent instructions in the while loop to provide

sufficient ILP for a modern processor and avoid core stalls.

• The barriers are implemented as atomic variables. We reduce false sharing by aligning

each atomic variable to a 64-byte boundary so they are placed on separate cache lines.

• We pin threads to specific cores to minimize cache migration and interference. We do not

use hyper-threads.

Figure 3.4 reports the results of the strong-scaling experiment. We measure the simulation rate
(top half) and speedup (bottom half) compared to serial execution. We target two classes of x86

processors: (1) a high clock frequency desktop processor (i7-9700K), and (2) a high core count

server processor (EPYC 7V73X). Details on these processors are available in Table 6.1.

The dashed curves in Figure 3.4 represent performance of this first model. We defer a discussion

of the results to Section 3.4.3 after we present the second model.

3.4.2 Second Model

The first model does not fully capture the behavior of a simulator since the while loop has a

small instruction footprint and easily fits in an I-cache. RTL models are typically much larger

and incur I-cache misses, in particular as there is little opportunity for reuse in the body of an

RTL design. The fraction of a model that runs on a processor depends on the number of threads;

hence, the I-cache performance depends on parallelism. We therefore fully unroll the while loop

to capture this effect, which we report with solid curves in Figure 3.4.

The differences between the dashed and solid curves show that simulation speed decreases

significantly because of cache pressure.

3.4.3 Discussion

Looking in detail, Figure 3.4 identifies three regions of parallel operation:

• Small circuits (top graphs) contain at most a few thousand instructions to simulate one

RTL cycle. Each clock cycle is a small computation and serial simulation can reach rates of

a few MHz. Parallel simulation introduces synchronization every 100–1000 instructions

(i.e., very fine-grained parallelism) and its cost causes a steep drop in performance between

1 and 2 threads.

• Medium-sized circuits (center graphs) contain between a few thousand to a few hundred

thousand instructions per RTL cycle. In this region, synchronization occurs every 2,000–

20,000 instructions, so additional threads usually improve performance. However, the

performance benefits are limited as, eventually, the synchronization costs outweigh the

benefits of splitting the computation further and performance decreases. This region

emphasizes the importance of serial performance; the server processor (EPYC) lags behind

the desktop processor (i7), even with its many cores and large caches.
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Figure 3.4 – Idealized simulator performance. We report simulation rates (top half) and simulation

speedup against serial execution (bottom half). We measure performance on a desktop processor (i7-9700K)

and a server processor (EPYC 7V73X). Dashed lines model only synchronization cost (first model). Solid

lines also include I-cache pressure (second model). Each curve is labeled by the number of instructions in

a simulation step.
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• Large circuits (bottom graphs) contain up to a few million instructions per RTL cycle. With

large simulation bodies, parallel execution is beneficial since synchronization is infrequent.
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However, the overall simulation rate is low because each cycle is costly. Many cores are

needed to push the simulation rate into the 100 kHz range, and the simulation benefits

from servers’ higher core counts.

The figures display numerous inflection points where simulation performance decreases with

increasing resources. These inflection points are particularly prominent in fine- and medium-

grain simulation (top and center graphs). They occur because additional processors reduce the

work-to-synchronization ratio and increase the cost of a barrier. Larger designs (bottom graphs)

offer increased opportunities for speedup. The second model’s speedups are better since its

numerator (serial execution) suffers more from I-cache misses than the first model’s smaller

kernels. One data point (i7, 3.5M) shows that relieving cache pressure by increasing the number

of threads can produce super-linear speedup.

Note that the largest design point in our model contains over 3 million instructions in the loop

body. Synchronization among even 30 cores results in synchronization every ≈ 300k instructions,

which is more than enough work to keep a thread busy. Nevertheless, we observe a flattening

of the simulation rate and speedup, which highlights the cost of synchronization—even when

infrequent.

We analytically model the parallel simulation rate to gain insight into the limits of parallelism on

shared-memory machines. We make two assumptions to simplify the model:

• We assume an ideal processor with a CPI
1
of 1, which means the processor retires instruc-

tions at the same rate as its clock frequency F ;

• Since there is no global synchronization primitive in general-purpose processors, we assume

threads must synchronize iteratively. This means the cost of synchronization for N threads

is at least (N −1)×S, where S is the cost of a single synchronization through the LLC.

Together these assumptions produce the following relation for the parallel simulation rate r :

sim. rate︷ ︸︸ ︷
r (T, N ,S,F ) =

instr. rate︷︸︸︷
F

T /N︸ ︷︷ ︸
instrs. per core

+ (N −1)×S︸ ︷︷ ︸
barrier cost

We find the model’s critical point with respect to increased parallelism by differentiating over N

and solving for 0:

∂r

∂N
= 0 ⇐⇒ N =

p
T /S

Parallel simulation on a shared-memory machine will therefore always undergo performance

degradation past N =p
T /S cores. This result suggests that general-purpose machines can exploit

1
Clocks Per Instruction
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parallelism only through weak scaling, i.e., the problem size must increase if one wants to use

more cores without experiencing performance degradation.

If we truly want to speed up RTL simulation through parallelism, we need an architecture that

can achieve strong scaling, i.e., an architecture that can improve performance by using additional

cores without having to increase the problem size.

3.5 Are Other Architectures Suitable?

Given that RTL circuits exhibit extensive parallelism, it seems natural to think that another one

of today’s massively-parallel processors could be a suitable platform for simulation.

GPUs are dedicated accelerators with massively parallel architectures that are backed by high-

bandwidth memory systems. GPU programs are kernels that describe how individual threads

operate on large datasets using explicitly parallel programming models (OpenCL, CUDA, etc.).

A thread represents an independent computation that operates on a subset of the problem’s

dataset. GPUs can support the parallel execution of thousands of threads in batches of 32.

GPUs originally supported global synchronization among threads only through kernel invoca-

tions by the host processor. Kernel invocations require communication over the PCIe bus, an

operation that takes on the order of 1 µs to complete. This call would therefore limit the GPU

to a maximum RTL simulation rate of ≈ 1 MHz. However, modern GPUs support cooperative
groups [43] that allow synchronizing threads within and across GPUs without needing to involve

the host processor. GPUs therefore seem like viable candidates for RTL simulation.

Feeding thousands of threads with independent instruction streams at multi-GHz frequencies

requires massive instruction bandwidth that greatly exceeds the capacity of memory systems.

To make the instruction bandwidth requirements tractable, GPUs share instructions among

threads that execute the same kernel: GPUs have data-parallel functional units where groups of
32 threads execute in lock step using the same code, i.e., GPUs are single instruction multiple

thread (SIMT) machines. RTL simulation, however, is not a data-parallel workload. Each tiny task

can have a different size and, more importantly, require entirely different operations to represent.

It is possible to launch independent instruction streams on a GPU using streams [42], but the

lack of data parallelism in RTL simulation means using only a single vector lane in each stream,

which results in a resource utilization of only 1/32 = 3.125%!

In essence, while RTL simulation exhibits abundant parallelism, it does not have much regularity.

GPUs are perfectly suitable for stimulus-level parallel RTL simulation: simulating a given RTL

circuit with a massive number of input vectors [63], which is very useful for running test suites

in batch. However, GPUs are not a good fit for accelerating the execution time of a single

simulation, which is the most common workflow while debugging a design or during design

space exploration.
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3.6 The Manticore Architecture

We now present Manticore, our proposed architecture for scalable, parallel RTL simulation. RTL

simulation requires an architecture that can support multiple independent instruction streams

that act on independent datasets—a MIMDmachine. Manticore is a MIMDmachine that exploits

parallelism in such a way to achieve strong scaling.

3.6.1 Key Insight

RTL simulation is a workload that requires frequent synchronization among many cores. Manti-

core’s key insight is to make the cost of synchronization constant so it is independent of parallelism.

We model the effect of this design choice on the parallel simulation rate as follows:

r (T, N ,S,F ) = F

T /N + (N −1)×S︸ ︷︷ ︸
C

⇒ F

T /N +C

This function does not have a critical point with respect to N ; it monotonically increases with
respect to the parallelism factor N and the clock frequency F . An architecture with constant

synchronization cost therefore achieves strong scaling.

However, recall that our model of parallel simulation rate assumed we ignore the cost of data

transfers among cores. This assumption is unrealistic: real workloads will always have shared

state that must be communicated among cores at runtime. The cost of this communication

necessarily affects the possible speedup.

Adding the total cost of communication among cores, D , to our model of parallel simulation rate

produces the following relation:

r (T, N ,F ) = F

T /N +C +D

Notice that if D is independent of the parallelism factor N (i.e., it can be bounded by a constant),

then the model of parallel simulation rate retains its strong scaling property as r (T, N ,F ) still

increases monotonically with respect to the parallelism factor N .

The following sections provide a high-level overview of Manticore’s architecture and how it

accomplishes this result.

3.6.2 Architecture

Figure 3.5 outlines Manticore’s manycore architecture. It consists of a grid of simple cores that

communicate over a network-on-chip (NoC).
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Figure 3.5 – Manticore high-level architecture. Manticore is a manycore MIMD machine: it consists of

a grid of cores that are interconnected with a simple network-on-chip. The cores and the NoC execute

in strict lock-step and there is no hardware-enforced consistency: an omniscient compiler is entirely

responsible for scheduling computation and communication to ensure correct execution on Manticore.

The compiler “synchronizes” cores by inserting explicit delay operations (NOP instructions in the sleep

phase) to ensure different processes are in the same phase at all times.
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Use compile-time schedule across all cores to remove runtime synchronization entirely

Manticore uses static BSP as its parallel programming model. Instead of making runtime synchro-
nization more efficient, we use compile-time scheduling to remove synchronization traffic entirely.

This idea is inspired by compile-time scheduling on VLIW processors. The main difference is

that VLIWs apply compile-time scheduling to a single processor to extract more ILP, whereas we

apply it to an entire grid of cores to remove the runtime BSP synchronization points between

them. The compiler essentially replaces runtime barriers with delay operations (e.g., sleep in

Figure 3.5 corresponds to a pre-determined number of NOP instructions) that ensure all processes

start the next BSP phase at the same time.

Beyond scheduling what happens within each core, the compiler also schedules the communi-

cation of values among cores. It does so for two reasons: (1) the NoC can avoid buffering, and

(2) we can overlap BSP’s computation and communication phases to reduce the overall cost of

communication.
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Figure 3.6 – Global stall. Manticore maintains determinism when interacting with the non-deterministic

external world by using a global stalling mechanism. It temporarily halts all cores and the NoC while a

non-deterministic operation is underway, and resumes their operation once a non-deterministic operation

completes.
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Compile-time synchronization requires a co-designed compiler and architecture to permit schedul-

ing. In particular, the hardware must expose a deterministic interface so that a compiler can

accurately track fine-grained computation and communication.

Map circuit state to distributed on-chip SRAM to enforce determinism

Determinism is incompatible with dynamic stalling, which would occur due to contention for

a shared instruction memory and caches. We solve this problem by statically partitioning

instructions across cores and storing them in fixed-latency on-chip memories. Using on-chip

memories for instructions eliminates frontend stalls entirely, but requires each program partition

to fit in a core’s instruction memory.

RTL simulation is a single, long basic block of computation without function calls. We propose

using a large, multi-thousand-entry register file in each core to hold its working set so that we

can avoid loading and storing values from a data memory. ASICs and FPGAs contain MiBs worth

of SRAM, which is enough to hold hundreds of thousands of circuit registers.

Similarly, we use an on-chip scratchpad memory to hold the small (few KiB) RTL memories

commonly used in circuits (e.g., FIFOs, etc.).
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Global stall when going off-chip to maintain determinism

While ASICs and FPGAs today have a few MiB of on-chip memory, it is not enough to hold very

large memory models (e.g., DRAMs, etc.). Large RTL memories therefore cannot be mapped to

on-chip memories and we must fall back to off-chip DRAM for capacity. However, DRAM has

unpredictable access latencies and is incompatible with compile-time scheduling.

We use a global stalling mechanism to ensure all cores and the NoC remain in lock-step when

off-chip access is necessary (see Figure 3.6). The mechanism used for global stalling depends

largely on Manticore’s implementation, so we defer its presentation to Chapter 4.

Simplify core design to increase core count and clock frequency

The RTL simulation rate is proportional toManticore’s core count and clock frequency, so we want

to increase these quantities as much as possible. Following the VLIW philosophy, we simplify

cores by removing interlocks and dynamic scheduling circuitry and delegate their functionality

to the compiler, which resolves dependencies and schedules instructions at compile time for

correct execution. This allows us to design simple, feed-forward, high clock frequency processor

pipelines. RTL simulation has extensive ILP, so the compiler can likely fill empty pipeline slots

with work. Simple pipelines also result in smaller cores, which allows us to fit more cores on a

chip.

3.6.3 Placing Manticore in the System Hierarchy

Manticore is designed as an offload engine for a host processor. Offload engines can either

be located within a host processor in the form of a co-processor, or as a dedicated accelerator

connected to a system’s I/O bus.

A co-processor is a tightly coupled synchronous extension to a host processor: it shares resources

with the main processor, and data movement between the processors is directly controlled

with instructions. However, integrating a co-processor into a processor requires careful design

considerations to ensure that they can work seamlessly together. This may involve significant

modifications to the processor architecture, which can be time-consuming and expensive. The

design space of a co-processor is also limited by its interface: we cannot implement architectural

ideas that cannot fit within the framework established by ISA extensions.

A dedicated hardware accelerator is a compute device that is independent from themain processor

and sits on an I/O bus—typically the PCIe bus on modern computers. It runs asynchronously
from the host and is not coherent with host memory; the host is responsible for coordinating its

operation using a software API and a driver. Since accelerators on an I/O bus are independent

from the main processor, designers have increased flexibility when it comes to implementing

them.

For these reasons we choose to implement Manticore as an I/O device.
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Listing 3.1 – Offloading only the state update computation is expensive. The round trip time from a

host processor to an accelerator that sits on the PCIe bus is on the order of 1 µs, which caps its rate of

invocation to 1 MHz. The accelerator needs to generate inputs and check outputs itself to reach higher

invocation rates, i.e., the entire loop body must run in the accelerator, not just the state evaluation alone

(highlighted call to eval()).

int main() {

// Create design

top = ...

while (!finished) {

// Drive inputs

top->data = ...;

top->clk = !top->clk;

// Evaluate design body

top->eval();

// Retrieve outputs

... = top->out;

}

// Cleanup

...

}

3.6.4 Interacting With Manticore

Software’s sequential execution model has the property that all inputs needed to call a function

are available at call time. A prerequisite to offloading a computational task to an accelerator is

therefore to copy the task’s inputs to the device’s memory. Only then can software call an API to

start the accelerator’s operation.

RTL circuits differ significantly from software as they receive inputs and produce outputs in-
crementally over multiple clock cycles. Listing 3.1 outlines the high-level operation of an RTL

simulation loop: feeding inputs, evaluating the circuit body, and checking outputs. It is natural to

think one can simply offload the parallel part of the simulation—the highlighted call to eval()—

to achieve good acceleration, but this would limit performance. Suppose the main processor

can feed inputs and retrieve outputs with zero cost. The processor’s call to eval() at each cycle

would require communication over the PCIe bus, an operation that takes on the order of 1 µs to

complete. This call alone limits the accelerator to a maximum invocation rate of ≈ 1 MHz. In

summary, invoking an accelerator from the main processor at each simulation cycle is not an

option.

If an accelerator is to achieve true speedups over a CPU, it needs to handle input generation

on-device independently from the main processor. For this reason we assume that Manticore’s

input circuits are closed, i.e., they expose only their clock inputs which Manticore can then “tick”

autonomously. A target circuit can be closed by wrapping it with a testbench which itself is a
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circuit. The testbench attests of the functionality of the DUT by driving its inputs and triggering

assertions if unexpected behavior occurs during simulation. The netlist shown earlier in Figure 3.1

is a closed circuit. Verilog, SystemVerilog, and VHDL all support assertions that can be checked

by a simulator at runtime and stop execution on failures. Having an accelerator that can support

large memories now becomes a key enabler for acceleration as making a testbench into a circuit

requires reading workloads from somewhere. This location can simply be a large Verilog memory

that the accelerator treats like any other circuit memory.

3.7 Summary

RTL simulation is a workload that exhibits abundant fine-grained parallelism, which is incom-

patible with the coarse-grained parallelism for which general-purpose multicore machines were

designed. Multicore machines can effectively use multiple cores for RTL simulation only through

weak scaling as increasing the problem size amortizes the overheads of frequent synchronization.

This chapter presented Manticore, an architecture for scalable, parallel RTL simulation. Manti-

core’s key insight is to make the cost of runtime synchronization among hundreds of cores zero,
which then allows parallel RTL simulation to scale proportionally to the amount of parallelism

used. Manticore achieves strong scaling as it can reduce simulation time through parallelism

without increasing the problem size.

This concludes our overview of parallel RTL simulation and of the Manticore architecture. Chap-

ter 4 presents an implementation of Manticore.
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4 Manticore Microarchitecture and
FPGA Implementation

This chapter describes an implementation of the Manticore architecture. Manticore is a grid of

deterministic cores that communicate through a deterministic network-on-chip (NoC). The cores

collectively evaluate the body of an RTL circuit, then exchange data before starting the next

simulation cycle. Chapter 3 showed that Manticore’s simulation rate (ignoring communication)

is proportional to its core count and to its clock frequency. Our goal is therefore to implement

the largest possible grid of cores that can run at the highest possible clock frequency.

We present an FPGA-based implementation of Manticore on a large Xilinx UltraScale+ device (the

Alveo U200 datacenter FPGA card). Closing timing at high clock frequencies is challenging, in

particular for processor designs because of their control circuitry. However, Manticore’s hardware

is co-designed with its compiler, which enables us to simplify the cores to increase their clock

frequency. Our highest performing Manticore design is a 15×15, 225-core grid that runs at

475 MHz.

We obtained a dense and high-frequency implementation by using low-level FPGA primitives,

and so our Manticore prototype’s microarchitecture is heavily influenced by what is possible to

implement on our FPGA. Section 4.9 discusses alternative FPGAmicroarchitectures we considered,

and Chapter 9 (Future Work) describes possible directions for an ASIC implementation.

4.1 Overview

Figure 4.1 depicts an example, simplified 6-core Manticore grid on the U200 card. Manticore

operates as a PCIe-attached accelerator for a host (e.g., an x86 processor), which interacts with

Manticore through a set of control and status registers (CSRs). The host loads programs on

Manticore, handles exceptions or termination, and has full access to Manticore’s DRAM. The

U200 is partitioned in two areas: the shell and the user design. The shell is automatically loaded at

power-up time. It contains the host PCIe interface logic and auxiliary control structures needed

to program the user design portion of the FPGA.

Figure 4.2 shows the floorplan of the U200’s large, multi-die FPGA. The FPGA is composed of

three super logic regions (SLRs), each containing a grid of clock regions. The shell is provided
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Figure 4.1 – Manticore block diagram. The U200 is a PCIe-attached FPGA accelerator card that is

separated into a shell and a user design. Manticore resides in the user design and separates control

structures from computational ones. The control structures—clock manager, controller, CSR registers,

and cache—reside in the control clock domain, while the computational structures—cores (C) and NoC

switches (s)—reside in the compute clock domain.

One of the cores is privileged (orange) and is connected to a cache that has access to off-chip DRAM. The

privileged core interfaces with a controller that can pause the compute clock when a non-deterministic

operation occurs (e.g., cache miss, exception, etc.) to maintain determinism.
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by the FPGA vendor and is immovable, so Manticore’s implementation must work around it.

The U200 has four 16 GiB DRAM banks: one is contained within the shell, whereas the other

three are contained within the user design region. Interfacing with a DRAM bank requires

instantiating a memory controller, which takes up significant area (highlighted cells within the

shell in Figure 4.2). We choose to use only the DRAM bank located within the shell to maximize

available space in the user design region for cores.

4.2 FPGA Primitives

Before further discussing the implementation, we provide background information on the FPGA

resources that we exploit to achieve a high-performance and dense implementation.

Xilinx FPGAs contain a grid of clock regions. Each clock region contains local and global clock

buffers that can be used for either local or global glitch-free clock gating. A subset of the
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Figure 4.2 – U200 FPGA. The U200 contains a large FPGA composed of three vertically-aligned super

logic regions (SLRs). We rotate the figure for space constraints. Each SLR contains a grid of clock regions

(gray rectangles). Clock regions with the same X coordinate have the same width in each SLR. The FPGA

is separated into a shell and a user design region. We mark the shell in light orange. The rest of the FPGA

is the user design. The device has four DRAM banks. We must instantiate a soft memory controller for

every DRAM bank that is used, which consumes a large area (dark orange cells at the corner of the shell).

We use only DRAM bank 1 as it is located within the shell and its memory controller’s area does not affect

the number of cores we can fit on the device.
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clock regions contain clock generation primitives that can be used to scale an input clock

frequency [100].

Manticore heavily uses on-chip SRAM memories. Xilinx FPGAs contain three types: BRAMs,

URAMs, and LUTRAMs. BRAMs and URAMs are dual-port memories with one read and one

write port, and with a configurable read latency of 1–2 cycles. BRAMs are 4.5 KiB in size and can

be configured using a wide range of data and address widths. For instance, a BRAM can natively

implement a 4096×9 (i.e., 12-bit address and 9-bit data) or 2048×18 memory with 1–2 cycles

of pipelined read-access latency. URAMs offer 8× more capacity (i.e., 36 KiB) than BRAMs, but

support only a 4096×72 configuration.

Lookup tables (LUT) are small, single-bit-wide memories that implement arbitrary logic functions.

Some are configurable only at FPGA-programming time, whereas others can be dynamically re-

programmed at runtime. The latter are called LUTRAMs and they can be assembled to implement

shallow memories [101].

Arithmetic can be implemented either with LUTs (i.e., standard FPGA logic) or with integer digital

signal processing (DSP) units. A DSP can be configured to operate as an adder, bitwise logic

function, a multiplier, or all three if control pins are toggled appropriately at runtime [105]. If

multiple arithmetic operations must be implemented close to each other, a DSP offers a hardened,

area-efficient alternative to using multiple parallel LUTs. A DSP’s clock frequency can be tuned

by configuring its internal pipelining at compile-time.
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4.3 Core Design

We now present the design of our high-frequency processor, which is economical in resources

and can be replicated hundreds of times on a large FPGA.

4.3.1 Datapath Width

We use a uniform datapath width for the cores and the NoC to simplify physical design and the

compiler, so we first determine this datapath width as it influences the rest of the design.

A core’s datapathwidth depends on that of its register file. A small register file can be implemented

using flip-flops, which allows supporting arbitrary data widths. However, each core in the

Manticore architecture uses a large, multi-thousand-entry register file to hold the circuit registers

in its program partition. It is impossible to implement such a register file on an FPGA using

flip-flops as there are not enough flip-flops on the device, so we use an on-chip memory instead.

All RTL circuits contain wires of varying bitwidths. In general, most of these wires are narrow (less

than 10 bits) and are used for control structures (e.g., multiplexers, decoders, etc.). Each circuit

also has another set of wider wires that correspond to the “native” width of the application. For

example a circuit that does IEEE 754 floating-point operations will have a large number of 32-bit

wires, whereas a circuit that does AES 256 may have 256-bit wires, etc. Using a wide register to

implement a narrow wire leads to internal fragmentation in the register file, and consequently to

poor register utilization. Conversely, using a narrow register to implement a wide wire increases

the program size as more instructions are needed to emulate the wide operation.

URAMs have a fixed 72-bit interface and are wasteful to use for the abundant narrow wires

in RTL circuits, so we use BRAMs as they support multiple width configurations. We match

Manticore’s ALU to the native 16-bit width of DSP units in UltraScale+ FPGAs to reduce register

fragmentation for narrow wires and to support a high clock frequency. We then configure BRAMs

to be 18 bits wide—the closest supportable width. This results in a 2048-entry register file.

4.3.2 Allocating Resources to Manticore’s Building Blocks

Manticore’s speed comes from parallelism, so it is important to quantify how many cores we can

fit on the U200. If this number is too small, we cannot expect to get any speedup compared to a

high-end multi-GHz desktop CPU.

A core is a simple load-store register architecture, so its functional units are a register file, an

ALU, an instruction memory, and a data memory (scratchpad). Table 4.1 details the minimum

FPGA resources needed to implement these functional units.

We use a single DSP for the ALU to keep a small footprint and support a high clock frequency

implementation.
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Table 4.1 – Alveo U200 critical resource analysis. We report the minimum number of FPGA resources

needed to implement each functional unit (FU) in a core. Total available resources exclude resources

taken up by the FPGA shell. We report the total BRAM usage according to whether a core’s register file is

implemented using 2 or 4 BRAMs. We omit counting CLB resources per core as CLBs are the primary

resource on FPGAs and are abundant. URAMs are the critical resource and limit the number of cores we

can fit on the U200 to 400 instances.

Core FU
FPGA resource

URAM BRAM DSP

Register file 0 2/4 0

ALU 0 0 1

Instruction memory 1 0 0

Data memory 1 0 0

Total (1 core) 2 2/4 1

Total available 800 1860 5880

Max cores 400 930/465 5880

A URAM offers 8× as much capacity as a BRAM, so we use a URAM as the instruction memory

to support the largest possible program on a single FPGA on-chip memory resource. Manticore’s

simple 64-bit instructions map directly to the URAMs’ 72-bit wide memory interface. This gives

us 4096 instructions per core. Similarly, we use a URAM for the data memory as many RTL

designs use memories of a few KiB, which can easily be mapped to a single scratchpad.

The simplest register machine is one that can perform binary operations. A processor needs a

register file with two read ports and one write port to support stall-free execution in the absence

of read-after-write dependencies. URAMs and BRAMs have only one read and one write port, so

they cannot implement the register file. We must use two write-replicated units to increase the

number of read ports to two. URAMs are our critical resource, so we instead use BRAMs for the

register file.

The minimum number of resources needed per core is therefore 1 DSP, 2 URAMs, and 2 BRAMs.

The FPGA’s scarce URAMs limit the maximum number of cores we can accommodate to 400.

There are 930 unused BRAMs in the FPGA at this stage, which means we can use up to two

additional BRAMs per core without reducing the total number of cores that can fit on the FPGA.

We use the two additional BRAMs to augment the register file into a 4-read, 1 write structure.

Doing so allows us to implement a custom function unit (CFU) alongside the standard ALU. The

CFU is formed of LUTRAMs and supports up to 32 custom functions that can implement any

4-input bitwise combinational function. Manticore’s deep pipeline requires a 10-NOP gap between

dependent instructions. The compiler can fill most of these, but if a pattern is used repetitively

throughout a circuit (e.g., in a random number generator), then a custom function can compactly

capture its behavior in a single instruction. The CFU reads four inputs from the register file
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simultaneously. Section 4.9 discusses alternative architectures we considered to use the extra

BRAM capacity.

4.3.3 Instruction Set

Manticore’s ISA is simple and contains six types of instructions: (1) standard arithmetic, (2) custom

instructions, (3) predication management, (4) local memory access, (5) privileged instructions,

and (6) communication. We briefly describe unconventional aspects of the ISA specific to RTL

simulation.

Arithmetic instructions include standard two-operand operations (addition, subtraction, bitwise

logic, comparison, etc.). They also include a three-operand selector instruction “MUX rd, sel,

rfalse, rtrue” which copies register rfalse to rd if register sel is 0, and register rtrue to rd

if register sel is 1. The standard arithmetic instructions take only register operands, with the

exception of (1) the set-immediate instruction “SET rd, imm” which updates register rd with a

16-bit immediate value imm, and (2) the “SLICE rd, rs, [offset:width]” instruction which

extracts the contiguous width bits at position offset from register rs and writes them into

register rd. Bit slicing is very common in RTL code, so a dedicated instruction reduces instruction

count by avoiding many instances of shift-and-mask instructions needed to emulate its function.

A special ADDCARRY instruction supports efficient simulation of wide additions by reading and

producing an overflow bit. Unlike conventional overflow flags, Manticore exposes an overflow

bit in all 2048 registers, each of which can be independently read and written. These overflow

bits come at no cost as each register in Manticore’s register file is natively 18 bits wide. Having a

large number of overflow bits gives the compiler more scheduling flexibility.

Each core supports 32 programmable functions, which execute chains of bitwise logic operations

with up to four inputs in a single cycle. E.g., consider the expression:

(a & 0xf) | b | (c & 0x3) | (d ^ 0x1)

with a, b, c, and d being operands1. A single custom instruction replaces these six instructions.

Custom functions are programmed into a core during boot.

The “EXPECT rs1, rs2, eid” instruction raises an exception eid if the values of registers

rs1 and rs2 differ. Exceptions can invoke services from the host processor (e.g., $display).

Exceptions, like global memory accesses, stall the execution of all cores and the NoC until they

are resolved. Instructions capable of globally stalling the execution are privileged and reserved

for a single core, which permits an efficient implementation (see Section 4.5).

Each core has a scratchpad memory (up to 128 KiB, limited by the ISA) for local load and store

operations. Loads execute unconditionally, but stores are predicated. Global load and store

instructions are predicated and privileged, and access large, off-chip memories using 48-bit

addresses. From the perspective of a compiler, both global and local memory access have the

1
Taken from picoRV32, a multi-cycle RISC-V processor.
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Figure 4.3 – Core pipeline diagram. We show only the datapath and omit all control signals and pipeline

registers for legibility. The core has a simple, 14-stage pipeline. The instruction memory and scratchpad

are implemented using one URAM each. The register file is implemented using four write-mirrored

BRAMs. The ALU is implemented using a DSP, which performs all non-custom arithmetic instructions

and computes addresses for local memory accesses. Global memory addresses are 48-bit wide and are

concatenated from three registers. The CFU is implemented using standard CLB resources and handles

custom instructions. The NoC egress path is indistinguishable from memory accesses and is located at

the memory stage. We defer details of the NoC ingress path to Section 4.4.
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same predictable latencies since the long off-chip latency is masked by stalling all cores and the

NoC until a memory access completes.

The producer of a value initiates communication with a SEND instruction, which is the only way

cores communicate. The “SEND rt, rs, tid” instruction invoked by a core sid requests target

core tid to update its register rt with the value of register rs from core sid. As Figure 3.5

illustrates, SENDs occur intermixed with computation, but the register updates are delayed until

the end of an RTL cycle.

4.3.4 Pipeline Implementation

Figure 4.3 presents a high-level view of the core datapath, which is a simple 14-stage pipeline.

The pipeline is simple because we remove expensive bookkeeping logic (e.g., interlocks and

scoreboards) and delegate their functionality to the compiler. The pipeline is therefore purely

feed-forward and cannot dynamically stall, i.e., the compiler must schedule instructions to ensure

correct execution.
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The logical pipeline consists of the usual five stages: fetch, decode, execute, memory access, and

writeback. Each stage is internally pipelined to achieve a high clock frequency.

Fetch Instructions are fetched over two cycles from a dedicated instruction memory mapped

to a 4096×64 URAM. All instructions are encoded in 64-bit words. We sacrifice space and

avoid variable-length encoding to keep decoding simple. Most of the instruction space is

used to index four 11-bit register identifiers needed to index the core’s large register file.

Decode Deep pipelines require a large register file to avoid stalls. Manticore’s cores provide

a 2048-entry register file that exposes all registers to the compiler to avoid expensive

hardware renaming logic (similar to the MIT Raw machine [108]). The register file is built

with BRAMs and is 18 bits wide (the most-significant bit is unused). We use the lower

16 bits to contain register values and the 17
th

bit as an overflow bit for wide addition

instructions. Having a large number of overflow bits gives the compiler more scheduling

flexibility. The size of the register file requires additional pipelining for reads. Decoding is

simple with a set of parallel comparators, but is three stages long as a result of the extra

register file pipelining. Custom instructions can read four values from the register file and

write a single result. This requires four read ports and one write port, which BRAMs do not

natively support. We use four identical BRAMs that are write-mirrored to produce four

values simultaneously.

Execute The execute stage consists of two computational units pipelined over five stages. The

ALU handles most standard instructions using a hardened FPGA DSP. It is also responsible

for computing addresses for accesses to the scratchpad. The custom function unit (CFU)

handles custom instructions and is implemented as a small 32×256 memory made of

LUTRAMs (see Section 4.3.4). The execute stage contains a global predicate register (not

shown in Figure 4.3.4), which is set by a previous PRED instruction and is used for predicated

instructions (local stores and all privileged instructions).

Memory Each core has a scratchpad memory for local load and local store operations. The

scratchpad is mapped to a URAM, which needs two cycles to access and one cycle to

reshape. We reshape a 4096×64 URAM into a 16384×16 memory by using byte-strobes on

the write path and multiplexers on the read path. Local loads execute unconditionally, but

local stores are predicated. Global loads and stores are both predicated. Global memory

accesses are privileged and access large, off-chip memories using 48-bit addresses formed

by concatenating three registers. Only the privileged core can access global memory.

Local and global memory accesses are indistinguishable to the compiler as both types of

accesses are performed in the same pipeline stage. Global memory instructions can have

unpredictable access latencies, but this latency is masked by stalling all cores and the NoC

until the access completes (see Section 4.5).

Writeback Finally, the writeback stage propagates the results of the ALU, scratchpad, or global

memory loads to the register file.

Note that the core implementation is excessively deep and could be reduced by at least two

stages, but layout constraints in our FPGA prevented us from doing so. The main issue is the

iMem → RF and dMem → RF distance, which depends on how far URAM columns in the FPGA

are located from BRAM ones. Depending on where the placer puts a core, this URAM → BRAM
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Figure 4.4 – Custom function unit. Each bit of Manticore’s 16-bit datapath supports up to 32 4-input

custom functions, which each require 16-bit truth tables to represent. We store these truth tables in 16

instances of a compact memory primitive (RAM32M16). Each memory holds truth tables for the i
th
bit in

Manticore’s datapath. The functions’ inputs are provided at runtime from the register file.
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distance can either shorten or lengthen. We therefore had to use additional pipelining after the

URAMs to ensure all instances of the cores—no matter where they are placed on the FPGA—can

meet our target clock frequency.

Custom Function Unit

The CFU implements arbitrary bitwise-parallel logic functions. A 1-bit, k-input boolean function

is canonically defined by the 2k
bits of its truth table. Manticore’s datapath is 16 bits wide, so

it uses 16 parallel 2k
-bit truth tables to represent a custom function. Manticore can read four

inputs from its register file, so k = 4 and each truth table needs 16 bits to represent.

Figure 4.4 shows a high-level block diagram of the CFU. The truth tables are loaded into shallow

memories at boot time and are indexed by inputs provided by the register file at runtime. We use

the largest available 16-bit wide LUTRAM-based memory primitive (RAM32M16) available in

UltraScale+ FPGAs to compactly store the truth tables for each of the CFU’s output bits.

4.4 Network-on-Chip Design

NoC designs fall in two categories: direct topologies (ring, mesh, torus) and indirect topologies

(crossbar, butterfly, clos, fat tree). We used a direct topology for simplicity.
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Figure 4.5 – Uni-directional NoC layout. Each rectangle represents a NoC switch (we omit cores for

simplicity). We highlight horizontal links in blue and vertical links in red. A uni-directional torus is most

easily illustrated using the topology on the left. In practice, the torus is folded on itself to ensure logically-

adjacent nodes are placed in a physically-adjacent configuration to achieve a high clock frequency. In this

4×4 configuration, this amounts to swapping the order of the last two columns, and similarly swapping

the order of the last two rows.
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We ruled out a ring-based design as its 1D structure would result in excessive latency in a

multi-hundred-core system. We also ruled out a mesh design: while its 2D structure decreases

inter-core communication latency, the nodes at the boundary of the network would have a lower

degree than those at the center, which would result in higher demand for the center channels [49].

We therefore used a 2D torus design. We decided to use a uni-directional implementation early

in the design process as we predicted there would be extensive routing congestion in the FPGA

when used near its maximum capacity.

Figure 4.5 illustrates the NoC topology. We typically illustrate the torus structure as shown on the

left side of the figure. However, implementing the NoC in this manner causes the wrap-around

links to be significantly longer than inner links, which would yield a low clock frequency. Instead

we physically fold the torus on itself by interleaving its rows and columns to produce the layout

shown on the right side of the figure. Doing so ensures logically-adjacent NoC switches are also

physically adjacent, resulting in a high clock frequency implementation.

The NoC uses buffer-less switching and dimension-order routing [53]: its switches are composed

entirely of stateless pipeline registers and multiplexers to be area-efficient and achieve a high

clock frequency. We chose this design to minimize NoC area and allocate as many resources

possible to computation (i.e., core count). All messages are point-to-point and the NoC does

not support broadcast: messages are first routed in the X dimension, then in the Y dimension.

Dimension-order routing means the switches need not contain a routing table and simply use a
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static routing mechanism. Links carry 27 bits of payload, and a few
2
bits to specify the target

core address.

The consequence of these design choices is that switches do not queue messages and must

immediately route them horizontally, vertically, or to the local core. A switch whose links are

busy simply drops the input message. To avoid data loss, the compiler ensures timely delivery

by scheduling the SEND instructions in each core. Manticore’s deterministic execution makes it

possible to analyze and predict link utilization at each cycle.

4.5 Global Stalling Mechanism

Manticore’s design has remained deterministic until this point, which allows a compiler to sched-

ule computation and communication globally. However, instructions with non-deterministic

latency are unavoidable (off-chip DRAM accesses and exception handling), so Manticore needs a

global stalling mechanism to maintain determinism when they occur. Stalling involves imme-
diately halting all cores and the NoC, processing the non-deterministic operation, and finally

releasing the stalled units.

Note that we must stall both the cores and the NoC. Stalling the cores alone is insufficient as

the NoC switches are buffer-less and will continue to push messages to their target core. A

stalled core is incapable of accepting an incoming message, which would lead to its loss and an

erroneous execution.

We originally envisioned a design where all cores are equal and where instructions with non-

deterministic behavior can be mapped to any core by the compiler. However, stalling hundreds

of cores using a distributed mechanism is challenging, especially if multiple cores execute an

instruction with non-deterministic latency at the same cycle. We therefore simplify the design and

modify the compiler such that it co-locates all RTL processes that can lead to non-determinism

onto one core—the privileged core.

Routing a global enable signal from the privileged core to the rest of the design does not scale

to hundreds of cores: since the stall must occur immediately, the enable signal would need to

be combinational and span the entire FPGA, which would severely limit the maximum clock

frequency of the design.

Instead, we use clock gating as the stalling mechanism, which we implement using the FPGA’s

clock gating primitives (see Figure 4.1). Clock gating provides a single point of control for stalling

and scales to logic that spans the entire FPGA as gated clock buffers are located directly on the

device’s clocking network.

We implement Manticore using two clock domains: all parts that operate in strict lock-step (the

cores and the NoC) reside in the compute clock domain, while the rest of the logic that deals

with non-determinism resides in the control clock domain. The logic in the control domain can

halt or resume the compute clock with a global clock buffer. The control clock never halts.

2
Varies based on the grid size, e.g., 8 bits for a 15×15 grid.
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We configure the clock generator and design the control path of the clock gating circuitry carefully

to minimize its effect on scalability:

1. The two clocks are sourced from the same clock generator, which we configure to generate

two frequency-matched and phase-aligned clocks.

2. There is no logic delay between the controller-driven clock enable signal and the clock

buffer.

3. Clock skew between the control and compute clock domains is inevitable given that we

cannot use clock crossing logic due to its non-zero latency. To minimize skew, we manually

guide Vivado, Xilinx’s place-and-route tool, to select a clock region for routing the global

clock signal.

The result is that clock gating is nearly independent of the number of cores.

With global clock gating, computation is frozen on a global memory access and resumed once it

completes. The same mechanism is used to stall the compute domain when an exception occurs

so that exceptions are precise. Control is then transferred to the host machine and computation

resumes at the host’s command.

Note that the bootloader could interchangeably be in either the compute clock domain or the

control clock domain. We ended up placing it in the compute clock domain (see Figure 4.1) as

the cores and NoC can intercept messages only when the compute clock is active.

4.6 Off-chip Memory Access and Caching

Each core’s local scratchpad can hold RTL memories up to 32 KiB in size. Larger RTL memories

do not fit, in which case Manticore falls back to a 16 GiB off-chip DRAM bank on the U200. The

compiler knows which RTL memories cannot fit in on-chip SRAM and ensures all RTL processes

that utilize such memories are mapped to the privileged core, which is the only core that supports

global memory accesses.

DRAM access is costly and its latency is highly variable depending on the access sequence, so

we use a cache between the privileged core and the DRAM controller to absorb its latency. We

use a simple 128 KiB direct-mapped cache with a write-allocate, write-back policy. The cache is

implemented using 4 URAMs
3
and is clocked by the control clock. Each cache line is 256 bits

wide.

In our current design the cache conservatively halts the clock upon receiving a global memory

access request as it does not yet know if the access is a hit or a miss (the privileged core emits

global memory accesses at the same place as local memory accesses—in the Memory stage). If

the access hits in the cache, then the compute clock is resumed on the next clock cycle. If the

access misses in the cache, then the compute clock remains halted until the DRAM access is

complete. Therefore, from the compiler’s point of view, a global memory access appears to all

cores as a fixed latency operation independent of cache and DRAM latency. We could remove

3
The cache reduces the U200’s theoretical maximum core count in Table 4.1 from 400 cores to 398 cores.
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this conservative stall by emitting the global memory access one cycle earlier in the privileged

core (in the last Execute stage), but we decided to leave it in the Memory stage for simplicity.

The cache is particularly effective at capturing locality exhibited by certain large RTL memories

(e.g., FIFOs). We evaluate this later in Section 6.

4.7 Manticore Runtime, Bootloading, and Processor Execution

Each core’s instruction memory, register file, data memory, and CFU must be programmed

before execution starts. The register file must contain the initial values of RTL wires and various

constants needed to emulate them. The data memory must contain the initial contents of RTL

RAMs and ROMs. The CFU must contain per-bit logic equations for each of its custom functions.

Finally, the instruction memory must contain the actual program to execute. Each of these

memories needs dedicated programming circuitry.

In reality, we use the fact that two of these memories are architecturally exposed to remove their

dedicated programming circuitry:

• The processor can write its register file with set-immediate instructions.

• The processor can write its data memory with local store instructions.

We therefore need programming circuitry for only the CFU and the instruction memory. We

extend the ISA with two additional instructions to program the CFU such that all core internals

can be initialized through instructions. The instruction memory itself, however, requires an

external programming mechanism. The bootloader (see Figure 4.1) is in charge of this task.

The bootloader works in conjunction with Manticore’s runtime, which runs on the host processor.

The runtime takes a sequence of binaries generated by the compiler and copies them into FPGA

DRAM. The runtime then configures Manticore’s control registers with a pointer to the location

in FPGA DRAM where the program binaries are stored. It then launches the bootloader which

copies the programs into the cores’ local instruction memories and starts program execution.

While the code executes, the runtime continuously polls the hardware state registers to handle

exceptions or terminate execution.

Figure 4.6 shows the NoC ingress path, which is used as part of each core’s bootloading process

before simulation starts, and for register updates during program execution. We first present the

bootloading datapath, then the program execution datapath.

4.7.1 Bootloader Execution

The red datapath in Figure 4.6 describes the core’s boot sequence. The bootloader starts with a

soft reset that brings all cores to a boot state. The soft reset is not a full system reset as it just

changes a few state registers in each core (none of the processor’s functional units are reset).
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Figure 4.6 – Core NoC ingress datapath. The cache and bootloader are external to the cores. All other

components are contained within a core. We highlight the bootloading datapath (red) and program

execution datapath (blue). The bootloader streams binaries from DRAM to each core over the NoC

before program execution starts. A local controller in each core intercepts bootloader messages, then

writes the instruction memory and initializes various core-dependent counters (epilogue length, sleep

length, countdown length). During program execution incoming messages are translated to set-immediate

instruction on the fly and are queued at the end of the instruction memory. The register updates are then

executed by the core as any normal instruction when its program counter reaches them.
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Cores are in a “dynamic” state at this stage: they snoop the NoC for instructions and continually

push NOPs through their pipelines.

The bootloader then reads the program binary from FPGA DRAM through the cache and injects

its contents into the NoC at the privileged core’s NoC switch. Messages then flow to their

respective cores. The program binary contains multiple fields, which a controller in each core

intercepts and uses to configure the processor.

The controller starts by receiving a counter which determines the total number of instructions

that the core will receive. Each instruction is received as four 16-bit chunks, which the con-

troller assembles into a single 64-bit instruction and writes to the instruction memory. Once all

instructions are received, the controller then receives three counters.

The first counter is the epilogue length, which is the number of messages the core is expected to

receive from other cores during program execution. The second counter is the sleep length and

corresponds to the number of clock cycles each core must sleep after the computation phase.

At this stage all cores have the information they need to execute the program. The last step is

to start all cores at the same time such that they execute the program in strict lock-step. The
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bootloader ensures this by sending a custom countdown timer to each core in one sweep. The

deterministic execution of the NoC allows these messages to arrive at exactly the right time and

the countdown value is accurate. Each core counts down and starts “static” program execution

once this counter reaches 0.

4.7.2 Program Execution

While BSP technically separates computation and communication, in practice Manticore overlaps

their execution to reduce overall runtime. If a computed next register value is finalized, then the

source core can send it through the NoC to all its consuming cores for use in the next simulation
cycle. It is essential that these updated values not be applied to registers at the consuming cores

until the end of the computation cycle. Each core therefore needs a queue to hold incoming

register updates and delay their application, but we do not want to allocate extra on-chip memory

for it as that would reduce the core count.

Each core’s instruction memory is a URAM and has one read and one write port. The write port

is unused after the bootloading phase in which the instruction memory is programmed by the

host through the bootloader. We can therefore repurpose the now-unused URAM write port as a

queue to save resources. Inbound messages during program execution are translated on the fly

as set-immediate instructions (“SET rd, imm” in Figure 4.6, where rd and imm come from the

NoC interface). The instruction is then pushed to the end of the instruction memory, which the

core then executes like any other at the end of a simulation cycle.

Each core transitions between two states during program execution: active and sleep (blue states

in Figure 4.6).

Cores start the active phase by initializing a total program counter (TPC) to the total number

of instructions in their program body plus the epilogue length (which represents the number

of messages the core is expected to receive at runtime). If the core’s program body is too short,

the compiler pads it with NOPs until the time of the first message’s arrival (which is known at

compile time). This ensures incoming messages are written to the instruction memory before the

core’s program counter reaches them. All subsequent messages from that point are dynamically

inserted through register updates from other cores. The processor’s controller keeps track of the

queue’s tail address, which it auto-increments upon receiving a NoC message. Cores execute

instructions until the TPC is reached, then they enter the sleep phase.

Upon entering the sleep phase, the cores initialize a timer which they decrement at each cycle.

Cores then push NOPs down their pipeline until the timer reaches zero, at which point the cores

transition back to the active phase.

4.8 Floorplanning

A single instance of the core presented in Section 4.3.4 can be implemented at a 500 MHz target

clock frequency on the U200 FPGA using Vivado’s automatic place-and-route (P&R) flow. What
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Table 4.2 –Manticore implementation results. We report achieved clock frequency (MHz) on the U200

with automatic and guided floorplanning. We use guided floorplanning for only large Manticore grids as

automatic floorplanning is good enough for small configurations.

Grid 8×8 10×10 12×12 15×15 16×16
Auto 500 485 480 395 180

Guided – – 500 475 450

remains is to scale the design to as many cores as possible on the FPGA, while attempting to

keep the clock frequency as close as possible to 500 MHz. This is an exercise in floorplanning: a

bad floorplan heavily decreases performance, whereas a good floorplan incorporates more logic

in the same total area at higher performance.

Note that it is likely a single core could be clocked at more than 500 MHz given its deep pipeline

and simple feed-forward structure, but we explicitly chose not to evaluate higher frequencies.

Our past experience with FPGAs taught us that a replicated high-frequency unit spanning an

entire device would generally not maintain its clock frequency due to (1) design limitations in

the connections between individual units, and (2) routing congestion on a packed device.

Our general philosophy during floorplanning is that it is impractical to manually place individual

cells in the design, as making even a single change in the future would be a nightmare. Instead

we perform floorplanning by generating Tcl scripts that constrain the design using information

about the target FPGA. Manticore is developed in Chisel [9], a DSL for hardware description

embedded within the Scala programming language [73]. Manticore’s hardware generator is

aware of cores’ names and those of their internal structures, so we can enumerate cells and emit

constraints in Scala as part of Verilog generation. We add a generic Scala floorplan generator class

after Chisel’s final Verilog emission point, which we subclass to implement various floorplanning

strategies.

4.8.1 The Shell’s Impact on Clock Frequency

The first row in Table 4.2 shows the achieved clock frequency for Manticore grids that are scaled

“as-is” without any floorplanning on the U200’s FPGA. Designs up to 64 cores scale effortlessly to

500 MHz. A slight decrease in clock frequency occurs as the design size increases to 144 cores,

which can run at 480 MHz. Performance decreases sharply after this point as 15×15 designs

drop to 395 MHz, and 16×16 designs drop down to 180 MHz.

This drop in performance is explained by the shell’s placement: With fewer than 160 cores (maxi-

mum capacity of one SLR, limited by its URAM capacity), Vivado automatically fits Manticore

entirely in SLR2, undisturbed by the shell. The achievable clock frequency naturally degrades as

the number of cores approaches the SLR’s capacity due to increased routing pressure. Past 160

cores, the design is forced to spread around the shell, which makes timing closure difficult.
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Vivado cannot automatically find a good floorplan for a rectangular core array in a non-rectangular

user design region, so we must guide it to a satisfactory solution. The second row of Table 4.2

shows the achievable clock frequency for Manticore grids following the floorplanning strategy

that we present later. Performance is consistently improved, especially in large configurations.

4.8.2 High-level Floorplanning

We must take into account three physical constraints imposed upon us by the U200’s design if

we want to approach a 500 MHz clock frequency at scale:

1. The FPGA’s resource columns are not homogeneously spaced across the device: while all

clock regions contain BRAM columns, only a few contain URAM columns.

2. The central SLR in the U200 has fewer resources than its neighbors as the shell takes up

half its available space.

3. Each SLR is essentially a small, independent FPGA inside a larger device. Adjacent SLRs are

stitched together with silicon interposers, which results in inter-SLR links having higher

routing delays than intra-SLR ones.

Given Manticore’s regular design, it is natural to believe that a grid-structured floorplan would

produce the best clock frequencies. We first show why such a regular floorplan cannot do so on

the U200. We then perform a minor design modification that permits an unintuitive, irregular,

split floorplan to achieve significantly higher clock frequencies.

Note that we provide a high-level description of the key ideas in each floorplan, but intentionally

simplify figures and omit full details that are necessary to implement them in practice as the

description would otherwise be unnecessarily long.

Regular Device-wide Grid

Figure 4.7 gives a bird’s-eye view of a regular floorplan that attempts to retain as much of

Manticore’s conceptual 2D grid structure.

We enforce the grid structure by constraining the placement of each core, which we do by

constraining the placement of its primary resources; a core’s remaining resources will then

naturally cluster around them. Manticore’s design is limited by the U200’s available URAMs

and BRAMs (there is an abundance of CLBs and DSPs), so we need constrain the placement of

these memories. Mapping an RTL name to a specific FPGA cell over-constrains the design and

generally yields inferior results as Vivado then has little flexibility. We instead assign a core’s

resources to coarse-grained bounding boxes (BBs) and let Vivado handle detailed placement.

We cannot use the U200’s existing clock region boundaries as BBs since many clock regions do

not contain URAM columns, which would prevent cores from being placed in them. We expand

the BBs to ensure enough resources are available for a symmetric row-based core layout. We do

so by creating a “left” and “right” BB per row of clock regions in the U200 (top of Figure 4.7). We

then iteratively assign cores to each “left” and “right” BB—assigning proportionally fewer cores
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Figure 4.7 – Regular placement of a 25×10 Manticore grid. We identify a “left” and “right” bounding box

(BB) in each of the U200’s clock region rows (top). We assign a set number of cores (green/cyan squares)

per BB given its capacity (center). This allows fitting a large 25×10 Manticore grid on the U200. The cores

naturally cluster around the central columns of the device where URAMs are located (bottom, we color

adjacent cores differently to highlight their position). The thick red line in the center figure is typically

the critical path of the design.

SHELL

SHELL
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LEFT RIGHT
6 BRAM cols
2 URAM cols

10 cores

6 BRAM cols
2 URAM cols

10 cores

4 BRAM cols
1 URAM cols
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1 URAM cols
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to the narrow SLR to account for its reduced resources—to obtain a regular 25×10 Manticore

grid (center of Figure 4.7). The bottom of Figure 4.7 shows the final floorplan, where each color

represents a different core.
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While the design is regular, we observe that cores cluster around the center columns of the

device despite having created BBs that span the full available width in each SLR. This behavior

is explained by the position of scarce URAM columns, of which only four are available in the

device (top of Figure 4.7). The shell’s footprint covers two of the URAM columns in the central

SLR, despite not using them. As a result, the narrow SLR is, in particular, quite cramped as it

contains (1) cores, (2) NoC switches, (3) auxiliary control structures in the control clock domain

(cache, clock manager, etc.), and (4) shell interfacing logic that Vivado auto-generates and which

protrudes past the shell’s boundaries. The resulting increased routing congestion creates long

paths between switches around the shell, further compounded by the increased inter-SLR crossing

(thick red line, center of Figure 4.7), limiting the achievable clock frequency.

Obtaining a design that can be clocked near 500 MHz requires at least relaxing routing pressure

in the narrow SLR. Alas the Xilinx-provided shell is immovable and designing an alternative shell

that does not occupy the center SLR’s URAM columns is beyond the scope of this work. An

alternative is to reduce the number of cores contained in the narrow SLR beyond the proportional

reduction in our current floorplan, but this is not possible with Manticore’s current design: cores

must be adjacent to their NoC switch, so moving cores out of the narrow SLR moves the switches

with them. This further lengthens the distance between switches in the top and bottom SLRs,

resulting in low clock frequencies.

The next section describes aminor change toManticore’s design that decouples a core’s placement

from that of its switch, allowing us to implement a superior floorplan.

Irregular Split Grid

The top part of Figure 4.8 gives a high-level view of our desired floorplan. The key idea is that

links between NoC switches cannot cross an SLR boundary at high clock frequencies
4
, and

so all switches should be placed in a single SLR. We reserve the narrow SLR for this purpose:

since switches use only CLB resources (which are abundant), they will not cluster around the

URAM columns in the narrow SLR, freeing up the cramped space around the shell and enabling

short connections between neighboring switches. We then partition cores equally between the

full-width top and bottom SLRs on the device. One exception is the privileged core, which we

leave in the narrow SLR as it must be close to the DRAM cache and to Manticore’s controller.

Implementing the above floorplan requires decoupling a core’s placement from that of its NoC

switch. Figure 4.9 shows how we modify each core to do so.

Egress We pull the core’s NoC egress path as early as possible in its pipeline (early in the execute

stage). We then push the 7 pipeline registers that were previously inside the core (between
the decode stage and the NoC egress path) to be outside the core. This gives a signal

emitted from a core 7 cycles of latency to traverse the FPGA, cross the SLR boundary, and

reach its NoC switch in the central SLR. Our modifications to the NoC egress path are

4
We explore alternative NoC microarchitectures that would not have this issue in Section 4.9.
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Figure 4.8 – Irregular split grid floorplan. The top part shows an abstract representation of where

cores and switches are placed. The bottom part shows how, in practice, the hard LAGUNA registers are

used to cross SLR boundaries at high speed. A core sends a message through its NoC egress port, which

takes multiple cycles to reach a LAGUNA tile. The LAGUNA tile forwards the message to the adjacent

SLR where standard pipeline registers then continue routing the message to its NoC switch. Note that

LAGUNA tiles are present at regular intervals along the full SLR boundary width, but Manticore can use

only the LAGUNA tiles adjacent to the narrow portion of SLR1 as those in the shell are inaccessible.

cores
(bottom)

cores
(top)

switches

(bottom)

switches

(top)
LAGUNA
tiles

LAGUNA
tiles

Privileged
core

Clock
gate

Corek
NoC
switch

Corek
egress

invisible to the compiler as it still has the same latency—we simply moved existing pipeline

registers around.

Ingress The NoC ingress path must also be pipelined to decouple the placement of the NoC

switch from that of the core. However, changes to the NoC ingress path introduce new

pipeline registers, so we modify the compiler’s scheduler to add 7 cycles of latency to the

arrival time of NoC messages.

We now tackle the issue of longer wire delays in SLR crossings. UltraScale+ FPGAs contain

special hard pipeline registers (called LAGUNA registers) to help cross SLR boundaries at high
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Figure 4.9 – Decoupling core placement from NoC switch placement. We move the core’s NoC egress

port to be earlier in the pipeline and push the intermediate pipeline registers (blue bars) outside the core.

We then add 7 pipeline registers outside a core’s NoC ingress port to ensure a core can be placed far from

its switch.
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clock frequencies (see Figure 4.8). Using LAGUNA registers requires populating two registers

in opposing LAGUNA tiles: one TX register in the source SLR, and one RX register in the

destination SLR. The TX→ RX path is a direct link between two registers, so there must be no logic

between two user registers for them to be mapped to the LAGUNA registers. The now-pipelined

core → switch and switch → core paths are composed entirely of back-to-back pipeline registers,

and so are perfect candidates to use LAGUNA registers to cross SLR boundaries at high speeds.

Note that this floorplan simply constrains cores to either the top or bottom SLRs, not to specific

rows within them. Vivado is therefore free to place cores arbitrarily, which results in a highly

irregular floorplan with unintuitive paths between cores and their NoC switches. For example,

the bottom part of Figure 4.8 shows a case where a core located on the right side of the device

ends up sending messages diagonally through the device to its left-most LAGUNA tile, before

crossing rightwards to its NoC switch. However, the 7-cycle latency between cores and their

NoC switch is long enough for such paths to exist without harming achievable clock frequencies.

In fact, we tried further constraining the design to enforce that cores and their NoC switches be

placed in similar quadrants, but it had little effect on the final clock frequency (we were limited

by issues either inside the cores, or in Manticore’s control domain due to the stochastic nature of

P&R).
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Figure 4.10 – Enforcing relative placement of BRAMs and URAMs in cores. We show the register files

and instruction/data memories of four cores. Cells with the same color belong to the same core. BRAMs

are enforced to be placed in always the same order (RS1, RS2, RS3, RS4; from top to bottom). A similar

strategy is used to enforce that the instruction memory always appear above the data memory (this is

less necessary, but we found it leads to more regular local floorplans if enforced).

This concludes our high-level floorplanning efforts. What remains is to handle lower-level issues

inside the cores.

4.8.3 Low-level Floorplanning

P&R is known to be a noisy process as tiny design changes can lead to large QoR differences

between design runs. In particular, P&R tools do not have a human’s perception of how certain

logic structures in a design should be grouped for good performance, especially when components

that should be physically adjacent are in different hierarchies. In Manticore’s case, Vivado often

places the four URAM banks that comprise Manticore’s cache in different URAM resource

columns. A similar problem occurs for the four BRAMs that comprise a core’s register file, whose

placement in different resource columns causes excessive local routing.

We overcome this issue by using relative location constraints in Vivado to force adjacent placement

of BRAMs and URAMs in the same core and in the cache (see Figure 4.10). A relative location

constraint enforces a local XY displacement between named entities during placement. These

constraints consistently led to better floorplans and, consequently, to better clock frequencies.

Note that we chose not to use any floorplanning for the CFU as it is formed of far too many
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CLBs. Constraints are best applied to individual large structures (e.g., BRAMs and URAMs), not

hundreds of small ones (e.g., CLBs).

4.8.4 Floorplanning Results

Figure 4.11 compares Vivado’s automatic floorplans with our final irregular split floorplans, which

allows large 15×15 designs to run at 475 MHz, and 16×16 designs to run at 450 MHz. We are

confident more floorplanning would bring performance up to 500 MHz, but we decided that

it was not worth the extra effort and we froze the design at this stage to better focus on the

compiler.

4.9 Alternative Microarchitectures

Manticore is an architecture that supports the fine-grain parallelism in RTL simulation. A mi-
croarchitecture demonstrates the strength of an architecture through a specific implementation.

This chapter presented a microarchitecture for Manticore that is suitable for an FPGA-based

implementation. Naturally an ASIC-based implementation does not have the same constraints as

an FPGA-based one, so Manticore’s microarchitecture might look very different in such a setting.

Exploring different microarchitectures is orthogonal to Manticore’s end goal of demonstrating

that, with proper architectural support, we can reach simulation speeds that are unattainable on

a general-purpose architecture irrespective of how optimized its software is. Nevertheless, we

present some alternatives that we considered for our FPGA prototype and discuss why we did

not pursue them.

4.9.1 Core Designs

Our current core uses a simple single-issue design. There is considerable parallelism in RTL

simulation and amulti-issue core would certainly reduce the computational critical path. However,

a multi-issue processor requires a register file with multiple write ports. Multi-ported register

files can be implemented by using additional resources (LVT- or XOR-based), or time-multiplexing

(multi-pumping).

LaForest et al. [61] present an in-depth analysis of multi-ported register file implementations

using logic elements, live value tables (LVT), or XOR-based approaches for different port counts

(2W4R, 4W8R, 8W16R). We ignore logic element-based implementations as they are infeasible

for large register files that support on the order of 1k entries. Table 4.3 reproduces reported

numbers for a 1024-entry register file as it is the closest evaluated configuration to Manticore’s

large register file. The table also reports the theoretical maximum number of cores that we could

fit on the U200 given the BRAM requirements of each configuration. The minimum number of

BRAMs needed to implement a single 1024-entry 2W4R register file is of 8, which severely limits

the number of cores we would be able to fit on our FPGA. Implementing a multi-ported memory

using these methods is feasible for a small number of high performance processors, but it does
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Figure 4.11 – Automatic vs. guided floorplanning. The singular green spot in the narrow SLR with

guided floorplanning is the privileged core; all other cores are equally partitioned between the top and

bottom SLRs. NoC switches (red, center) are entirely placed within the narrow SLR. Red regions in the top

and bottom SLR represent pipeline registers between cores and their switches.
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Table 4.3 – Resources needed to implement 1024-entry multi-ported register file. LVT-based and XOR-

based memories are described in detail by LaForest et al. [61]. All numbers are reported for the Virtex-6

XC6VHX380T device. We estimate the theoretical maximum number of cores than can be implemented on

the U200’s FPGA given the reported BRAM numbers.

Configuration
LVT XOR

Fmax Slice BRAM # cores Fmax Slice BRAM # cores

2W4R 294 1655 8 232 299 60 10 186
4W8R 213 5644 32 58 238 289 44 42

8W16R 104 20882 128 14 136 501 184 10

not scale to the hundreds of processors in the Manticore architecture. We would also need a

more extensive re-design of the core’s pipeline to achieve high clock frequencies when reading

the register file.

Multi-ported memories can also be implemented using multi-pumping. Multi-pumping multiplies

the number of read and write ports on a memory by internally clocking the memory at a multiple

of the external clock and time-multiplexing access to its single native read and write port. Multi-

pumping has the advantage that it does not require any additional memory resources. Assuming

a multi-pumping factor of two (which is the lowest possible), then each 1W1R BRAM turns into a

2W2R memory. We need at least 4 read ports to implement binary arithmetic, so using 2 BRAMs

would yield a 4W4R register file. This is half the number of BRAMs that our current core uses (if

we sacrifice the CFU) and could allow us to double the number of cores on the device. However,

in reality we are still limited by the URAM capacity of the U200, which means no additional

cores can be instantiated. We could have mitigated this issue by making cores heterogeneous

such that some have data memories and other do not, but this would complicate our compiler, so

we ruled it out.

Finally, multi-pumping is suitable only when the external circuit frequency is low compared to

the maximum supported frequency of FPGA primitives. Our current prototype is not in this

region of the design space as our external frequency is already close to the maximum that is

achievable on an FPGA (≈500 MHz). If we were to multi-pump the register file by a factor of two,

we would need to reduce the overall operating frequency of the design to ≈250 MHz. Compiling

for a dual-issue processor that runs at half the frequency of a single-issue processor would not

yield any performance benefit (but it would simplify floorplanning).

We have only performed a high-level analysis at this stage, but more subtle details also need to

be handled: a multi-issue processor needs an even wider instruction memory. Assuming we drop

the CFU in each core, we computed that we would not be able to bundle two instructions in

a 72-bit URAM word given the large number of bits needed to index each core’s large register

file. We considered compressing the instruction space by using a base plus offset-based register

indexing scheme, but it would needlessly complicate the job of the compiler and we decided not

to pursue this option. An alternative solution would be to use a smaller register file. However,

we could not evaluate the performance impact of a smaller register file at the time since the
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compiler was built in parallel to the hardware and was incomplete, so we decided to stick with a

very large register file. We will revisit this choice in the evaluation (Section 6.6.4).

Finally, a multi-issue processor is not very useful if the NoC can send only one message per

cycle, especially towards the end of a simulated cycle when most cores are communicating their

register updates to others. We would therefore need to widen the NoC interface, which would

further complicate floorplanning.

In summary, we considered designing a multiple-issue processor, but ruled it out as it was

unclear whether it would increase performance due to (1) the reduction in number of processors,

(2) the reduction in clock frequency, and (3) the need to re-engineer extensive parts of the

microarchitecture to avoid bottlenecking the core’s pipeline.

4.9.2 NoC Designs

The design space of a NoC is very large and we did not try to explore all options.

NoC topologies with multiple paths between cores (e.g., folded clos) would permit communication

that would otherwise be impossible if only a single link is available and is busy. Such NoC

topologies are more complicated to floorplan than Manticore’s simple 2D torus, but not by a

large margin, and should have been considered more seriously early in the design process.

We considered augmenting the NoC with a broadcast mechanism to reduce the number of

SEND instructions needed when communicating high-fanout wires between program partitions.

Broadcast benefits signals that have very high fanout (e.g., global resets, etc.). Good designs

typically do not have such signals as they result in low clock frequencies and so use either

hierarchical alternatives or reset only what explicitly needs to be reset, greatly reducing fanout.

However, should a design nevertheless contain a high-fanout signal, then broadcast support

would certainly help Manticore’s performance.

Manticore’s switch→ switch links cannot cross SLR boundaries at high clock frequencies as their

design is incompatible with those of LAGUNA tiles, which require user designs to expose two

back-to-back registers without fanout to be mapped to LAGUNA registers. Manticore’s switches

are one hop away from each other, and so there are no back-to-back registers. One solution would

be to pipeline the links between NoC switches such that each link contains at least 2 registers.

However, doing so would double the latency of all NoC traffic and its effect on performance

was unclear. We also did not want to change the compiler’s NoC model given our constraints

at the time, and so preferred a floorplanning-only solution that required adding a constant (7

clock cycles, see Section 4.8.2) in only the compiler’s instruction scheduler. Nevertheless, had we

pipelined the switch → switch paths, it would make sense only if switches remain close to their

core so that the design can remain as regular as possible. Doing so, however, means that cores

would end up in the narrow SLR, which is already congested due to the scarcity of URAMs at the

left-most side of the FPGA.
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4.10 Summary

In summary, the NoC implementation we pursued certainly had limitations, but it fit the con-

straints imposed upon us by our FPGA.

4.10 Summary

We presented an FPGA-based implementation of theManticore architecture on a large, datacenter

FPGA. Cores consist of deep, feed-forward pipelines to achieve a high clock frequency. They

support standard binary arithmetic and 32 custom functions that can implement any 4-input

bitwise logic expression. Cores are interconnected with a simple NoC that is buffer-less and uses

dimension-ordered routing. Cores can perform only blind writes to remote cores over the NoC.

TheManticore architecture provides a deterministic machine to enable device-wide static schedul-

ing. We use clock gating on the FPGA as the mechanism for maintaining determinism when

interacting with logic that has non-deterministic latency (off-chip DRAM access and the host

x86 processor). An on-chip cache intercepts traffic to off-chip DRAM to absorb its high latency

during repeated accesses.

While Manticore’s architecture presents itself as a regular grid, its physical implementation on

our FPGA uses an irregular layout to work around imbalances in resource distribution across

the device and achieve a high clock frequency. Our fastest configuration is a 15×15, 225-core

475 MHz Manticore design.

This concludes our presentation of Manticore’s implementation. Chapter 5 presents Manticore’s

compiler.

59





5 Manticore Compiler

Chapter 4 described Manticore’s hardware, in particular its deterministic behavior that permits

the implementation of a static BSP execution model. This chapter now describes Manticore’s

compiler, which uses the hardware’s determinism to schedule RTL code to instructions that

Manticore’s hundreds of cores can efficiently execute. Manticore’s deterministic hardware lacks

interlocks and buffering, so it relies entirely on its compiler to parallelize the input netlist, schedule

instructions within each core to avoid data hazards, and schedule messages between cores to

avoid structural hazards on Manticore’s NoC.

5.1 Overview

Figure 5.1 presents an overview of the RTL-to-instruction mapping process. Compilation is

decomposed in two stages: a Verilog frontend and Manticore’s backend compiler. The frontend

parses an RTL design expressed in Verilog, converts it into a netlist DAG, then emits a single, large

basic block of code in Manticore assembly language (MASM) that executes the DAG. The backend

operates on two related IRs: (1) netlist assembly, and (2) lower assembly. Netlist assembly is

basically an IR that supports operands of arbitrary bitwidth, whereas lower assembly is closer to

Manticore’s ISA and supports only 16-bit operands. Both IRs use static single-assignment (SSA)

and can be interpreted in software. Lower assembly’s software interpreter is a full-fledged ISA

simulator that is parameterized by Manticore’s hardware configuration. We use the interpreters

extensively to validate the compiler’s passes.

We derived our Verilog frontend from that of Yosys [113], which is an open-source framework for

RTL synthesis. Yosys supports multiple synthesis algorithms which can be combined into flows

using scripts. Custom passes can also be designed by directly extending Yosys’ C++ codebase.

We extended Yosys to support basic system calls, such as $display and $finish, required for

simulation. After parsing the Verilog input, the frontend flattens the design hierarchy, performs a

few optimizations, and emits netlist assembly. Because of the semantics of RTL code, instructions

in netlist assembly are unordered and have arbitrary-width operands.

The backend orders the instructions and applies simple optimizations (dead code elimination,

constant folding, and common subexpression elimination). We then transform the netlist assembly
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Figure 5.1 – Compilation overview. Compiling a Verilog design down to instructions for a Manticore

processor is a two-stage process: (1) A frontend parses and elaborates the Verilog design, performs some

synthesis optimizations, then emits a long basic block of code that executes a netlist DAG. The DAG is

described in netlist assembly, the backend’s high-level IR that supports arbitrary-width operands (similar to

Verilog wires that can be arbitrary-width). (2) The backend then optimizes the netlist assembly and lowers

it to lower assembly, where all operands are 16 bits wide. The backend then parallelizes the code, assigs

each partition to a specific core, synthesizes custom functions in each partition, and globally schedules

instructions across all cores. The output of the compiler is a set of binaries that are loaded onto a Manticore

processor (bottom-right) by a runtime running on a host x86 processor.
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instructions into an equivalent sequence of lower assembly instructions whose operands match

Manticore’s 16-bit data path. Initially, the lower assembly is a monolithic sequence of instructions

(a single process). After further optimizations, the compiler partitions the instructions into

multiple processes and assigns each process to a core in the Manticore grid. The compiler then

optimizes each process by fusing chains of bitwise logic instructions into custom instructions.

The final steps of compilation are scheduling and register allocation. Scheduling ensures that there

are no data hazards in the pipeline by inserting NOP instructions to enforce data dependencies.

In addition, the SEND instructions are scheduled to ensure timely message delivery. The compiler

then maps virtual registers to machine registers and emits binary code.

The Yosys Verilog frontend passes are roughly 2K lines of C++. The Manticore backend compiler

is 18K lines of Scala. The runtime is built on top of the Xilinx runtime library (XRT) with around

800 lines of C++ code.
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5.1.1 Note on Program Optimizations

Manticore’s frontend uses many of Yosys’ built-in synthesis optimization routines. We generally

select the subset of optimizations that reduce circuit area as Manticore’s cores have limited

instruction memory.

Manticore’s backend compiler is written from scratch in Scala and took a significant portion of

our total effort to get correct so it could produce functional Manticore programs. We limited

ourselves to implementing only the most basic optimizations that are available in standard

compilers (alias removal, dead code elimination, constant folding, and a simplified version of

common subexpression elimination).

The backend views input Verilog designs as a black box, i.e., it assumes nothing about the designs

other than the fact that they are single-clocked. Higher-level knowledge of circuit topology

(systolic, etc.) could help develop more sophisticated partitioning and placement strategies; we

chose to focus on automated techniques that work on any circuit. The compiler’s generated code

therefore represents a lower bound on achievable performance as many optimizations are left

unexplored.

5.2 Frontend

5.2.1 Terminology

We first describe some terminology that Yosys uses before expanding on the frontend’s operation.

Yosys represents circuit elements as cells. Cells represent basic logic gates (e.g., $and, $xor,
etc.) or compound gates that encapsulate complex functionality (e.g., $sdffe is a D flip-flop

with synchronous reset and an enable signal). Cells exist for large RTL constructs such as RTL

memories.

Cells are interconnected using signals. A signal represents a concatenation of multiple primary

building blocks into a wide unnamed wire. A signal’s building blocks are (1) a full-width wire,

(2) a subset of a wire, and (3) a constant.

5.2.2 Compiling RTL to Netlist Assembly

Yosys is a synthesis tool that operates on designs described in Verilog-2005. Its parser therefore

understands only the synthesizeable subset of Verilog-2005 and various language features related

to formal verification. However, Manticore is an accelerator for RTL simulation, so we need

support for some non-synthesizeable Verilog keywords that are used to support basic system

calls during simulation (e.g., $display, $finish). We modify Yosys’ frontend to add support for

these keywords, which we hoist out of nested procedural statements and into a custom Yosys

cell at the root of the module in which they are found. This cell is guarded with a compound

logic expression (since it was hoisted out of a nested procedural statement).
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We then elaborate the design hierarchy and call Yosys’ behavioral synthesis script to convert

behavioral Verilog processes (containing if or case statements) into a structural netlist that

consists entirely of registers, memories, andwires that connect them. Note that RTL languages like

Chisel directly generate structural Verilog, but hand-written Verilog designs are often behavioral

and need to undergo behavioral synthesis to become a netlist. Yosys’ ability to perform behavioral

synthesis was one of the original reasons why we chose it as our frontend. A structural netlist

does not contain branch conditions, and so is a good fit for Manticore’s branch-free execution

model. Nevertheless, Manticore does require support for predicated instructions to implement

other functionality (e.g., selectively writing to RTL memories, etc.).

Next we apply several of Yosys’ built-in optimization passes. Manticore’s instructions all have

the same latency, so shorter assembly programs are faster than longer ones. We therefore select

Yosys’ synthesis optimizations that reduce circuit area. A byproduct of Yosys’ optimizations is

the introduction of custom cells to represent registers with a combination of different feature sets

(e.g., sync/async reset, set/clear signal, enable signal, etc.). We revert these registers back into

plain registers and a series of multiplexers to be compatible with Manticore’s simple instruction

set.

Yosys’ internal representation is adequate for a synthesis or a place-and-route tool that handles

bit-level logic, but is at times poorly suited for generating assembly code. The last few stages of

the frontend therefore consist in multiple custom passes to clean up Yosys’ representation into

one more suitable for code generation. Using a simulator’s frontend would have led to much

better sequential code generation, but we decided to stick with Yosys as it allows us to obtain a

structural netlist with ease—something that is not trivial to extract from a software simulator.

• Verilog supports subword assignment semantics (different bits/chunks of a wire can be

assigned in different places), which makes emitting SSA assembly challenging. We develop

custom Yosys passes to group all writes to a signal in a single place to remove subword

assignment operations.

• Yosys’ cells generally require operands to be of equal width, so it automatically pads the

widths of Verilog signals before connecting them to target cells. If a wire represents a signed

Verilog value, Yosys performs the sign extension by a sequence of 1-bit concatenations,

which needlessly increases code size. These patterns appear surprisingly often in Verilog

code, so we detect and replace them with a compact equivalent which is representable by

a much shorter sequence of assembly instructions.

Finally, we emit amonolithic basic block of MASM code in the high-level netlist assembly IR, which

we pass to Manticore’s backend compiler. Because of the semantics of RTL code, instructions in

netlist assembly are unordered and have arbitrary-width operands.

5.3 Backend

The compiler must solve three main problems to produce a functional Manticore program: parti-
tioning (what to compute?), placement (where to compute?), and scheduling (when to compute?).
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Partitioning decomposes a single, monolithic basic block of instructions into independent

program partitions. The goal is to distribute work among logical processes such that each

process is balanced (contains roughly the same number of instructions). The partitioner

produces at most as many processes as there are cores in a Manticore grid.

Placement assigns each logical process to a physical core in a Manticore grid. The goal is to

reduce NoC traffic between cores. Each core is responsible for the execution of at most one
process (i.e., some cores can be unused).

Scheduling globally schedules instructions in all cores. The goal is to avoid data hazards in the

cores’ pipelines and ensure conflict-free use of the shared NoC by all cores.

Unfortunately these problems are co-dependent:

• Two balanced partitionings of the same program may greatly differ in the amount of

inter-process communication they exhibit at runtime over a shared NoC, thereby affecting

performance. It is therefore not enough for the processes to be balanced, but we also want

a partitioning algorithm that reduces inter-process communication. Partitioning therefore

requires an estimate of communication costs between processes, but this cost is known

only after placement when the distance between the cores are known.

• Placement requires knowledge of NoC link traffic to best place processes, but link traffic is

known only after scheduling. However, scheduling cannot occur before placement as the

compiler needs to know the final assignment of processes to cores in order to schedule

NoC traffic.

Partitioning is an instance of a general graph partitioning problem, which is NP-Complete [16]

and cannot be optimally solved in a tractable manner, so we must rely on heuristics instead.

Placement and scheduling in spatial architectures are co-dependent, but have been shown to

be optimally solvable. Nowatzki et al. [70] provide an in-depth analysis of using mixed-integer

linear programming (MILP) to formulate and optimally solve placement and scheduling problems

through five abstractions: placement of computation, routing of data, managing event timing,

managing resource utilization, and forming optimization objectives. The main idea is to map a

compute DAG G onto a hardware graph H , which is demonstrated through a rich collection of

software benchmarks and spatial architectures (TRIPS [18], DySER [41], and PLUG [21]). The

proposed MILP formulations are solved in durations that range between 1 s and 6 min. However,

these benchmarks represent succint, loop-based code that are encoded as a graph G that contains

at most few tens of vertices (max 40). By contrast, Manticore’s program graphs (after partitioning)

and can contain as many vertices as there are cores, which is over 200 in our small-scale prototype.

Given the execution time of the proposed MILP formulation on small programs and the ≈ 5×
larger size of Manticore programs, it is likely that jointly solving placement and scheduling is

intractable, so we choose to solve each step separately.

We use the Verilog snippet in Listing 5.1 as a running example to illustrate partitioning and

placement in the following sections. Note that the circuit does not compute anything meaningful;

it is simply small enough to demonstrate the compiler’s functionality.
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Listing 5.1 – Verilog module used as a running example for partitioning and placement. This is the same

example as the abstract DAG shown in Figure 3.1.

module paper_circuit (

input wire clock

);

reg [15:0] R1, R2, R3, R4, R5;

wire [15:0] L1, L2, L3, L4, L5, L6;

assign L1 = R1 + (R5 & L2);

assign L2 = R1 - R5;

assign L3 = R1 * R2;

assign L4 = R3 == 0;

assign L5 = R3 | R4;

assign L6 = R4 ^ L5;

always @(posedge clock) begin

R1 <= L1;

R2 <= L2;

R3 <= L3;

R4 <= L4;

R5 <= L6;

$display("R1 = %d", R1);

end

endmodule

5.3.1 Partitioning

Partitioning instructions across the cores is the most critical step to achieving good parallel

performance. Despite the absence of runtime synchronization in Manticore, data movement is

still costly and excessive communication will limit scalability. The partitioner’s goal is to reduce

communication between cores, while distributing work as equally as possible to avoid stragglers.

Since partitioning occurs before placement, the compiler has no knowledge of the cores on which

computation is mapped. We therefore use the term process here instead of “core” to refer to a

logical collection of instructions that are executed in a single core.

We perform partitioning in a bottom-up manner (i.e., we disregard information about the RTL

hierarchy). We chose to do so explicitly as RTL hierarchies are virtual: two deeply-nested

combinational gates in different RTL design hierarchies may have direct wires between them,

which a hierarchical representation does not capture. In this case, if we place logic from separate

hierarchies in different processes, then we would have an invalid partition: Manticore’s BSP

model of computation allows communicating only registers between processes, but here we

would need to communicate combinational wire values.

Figure 5.2 outlines the partitioning process. The compiler parallelizes a single, monolithic assembly

process into a process graph (bottom of Figure 5.2) in two steps:

1. Split the monolithic process into a maximal number of tiny processes.
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2. Merge the split processes so that the total number of processes does not exceed the number

of available cores.

Split

The compiler first creates a DAG representing data dependencies in the monolithic process.

It then uses a backward traversal to partition the vertices reachable from each data sink into

independent smaller processes (top of Figure 5.2). All DAG vertices that are used to compute a

register’s next value (<name>+ in Figure 5.2) are duplicated (not shown), maximizing parallelism

at the expense of increased computation. However, the compiler ensures that instructions that

access the same memory region (e.g., an unpacked array in Verilog) end up in the same process

to avoid moving large amounts of data at each RTL cycle. In addition, all privileged instructions

must execute in the same process (instructions in yellow in Figure 5.2).

The example in Figure 5.2 results in 8 maximally-parallel processes after the splitting stage.

Merge

If we view the maximal set of split processes as a graph whose vertices denote processes and

edges denote communication, then merging is a graph partitioning problem. Existing partitioning

tools [55, 85] assume a linear cost function: merging two vertices A and B produces a vertexC with

weight WA +WB . However, optimizations such as data sharing and duplicate code elimination

make merging non-linear in Manticore, so we develop a custom heuristic algorithm instead.

Duplicate code elimination during merging is important in Manticore as each core has limited

instruction space (at most 4096 instructions). Merging can continue even after reaching the

number of available cores because it can reduce execution time. For instance, merging processes

A and B that read a value produced by process C could lower the execution time of C because it

executes one fewer SEND instruction.

Since partitioning is performed before scheduling, the compiler estimates the execution time of a

process as the total number of instructions it executes, including SENDs, but excluding the NOPs

used to schedule data hazards and received messages (NOPs are known only after scheduling).

A vital goal of the merging stage is to avoid forming stragglers by equalizing processes’ their

execution time. The compiler iteratively picks two merge candidates that minimize the increase

in merged execution time. It starts from the process with the shortest execution time and merges

it with another process with which it communicates. Intuitively, by starting from the smallest

processes and constructing larger ones, we can balance the execution time of the processes and

simultaneously reduce communication (hence reducing network contention).

On the example in Figure 5.2, the partitioning algorithm produces a process graph with four

processes at the end of the merging stage.
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Figure 5.2 – Extracting parallelism through partitioning. We start from the netlist DAG of Listing 5.1

(top), where rectangles at the top and bottom represent current and next register values, respectively. We

then split the DAG into 8 individual processes that each compute a single next register value (shaded

surfaces). In doing so, we duplicate (not shown) all shared intermediate DAG vertices (e.g., SUB) that

are used by the generated processes to maximize parallelism at the expense of increased computation.

We then merge the split processes to produce at most as many processes as the number of cores that

are available. This example targets a Manticore grid containing 9 cores, but the partitioner identifies 4

partitions that heuristically result in approximately the same amount of work in each process, including

the work needed to send values to other processes. The final output of the partitioner is the process
graph (bottom) where vertices represent processes and weighted edges represent the number of SEND

instructions that are needed between communicating processes. We use a double-circle to highlight the

privileged process, i.e., the process that contains all privileged instructions.
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Figure 5.3 – Placing processes on cores. Placement maps vertices in the process graph (top) to vertices

in the core graph (bottom). Double-circles correspond to the privileged process and privileged core. We

represent the wrap-around links of the torus NoC with dashed lines, i.e., dashed horizontal lines go from

the right-most core to the left-most core in each row (similarly for dashed vertical lines). We omit showing

links that do not transport any traffic, and gray out cores that are unused. The bottom-left core graph

shows link weights if we minimize the maximum link weight, whereas the bottom-right core graph shows

link weights if we jointly minimize the maximum link weight with total link traffic.
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5.3.2 Placement

Placement is an assignment problem where we map logical processes identified during the

partitioning stage onto physical cores in a Manticore grid (see Figure 5.3 for a 3×3 Manticore

grid). Recall that we solve placement pre-scheduling, so we need a heuristic to rank proposed

placement strategies. Intuitively, our hypothesis is that reducing aggregate traffic on NoC links

would result in a shorter global schedule: if links are less utilized, then the scheduler is less likely

to have to delay processes by inserting NOPs to avoid a busy NoC link. We can reduce traffic by

assigning communicating processes to nearby cores on the torus NoC.
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Mapping processes to cores implies finding a suitable route between cores for each pair of

communicating processes. There are an exponential number of paths between two vertices in a

general graph, which rules out any optimal assignment through a MILP formulation as it would

result in an exponential number of constraints. However, Manticore’s NoC is uni-directional

and uses dimension-ordered routing, so there is only a single path between any two cores and a

MILP formulation entails only a polynomial number of constraints. Given this property, it seems

conceivable that we can obtain an optimal solution to the placement problem.

Optimal Assignment

Figure 5.4 shows the MILP formulation we propose to map processes to cores in a Manticore

grid. We use two graphs to model the assignment problem: a source process graph and a target

core graph.

The process graph represents logical relationships between processes as a weighted graph

G(P,E ,W ). A vertex p ∈ P represents a process and an edge e ∈ E represents directed com-

munication between two processes. Edges are weighted, with W (e) representing the number of

SEND instructions between communicating processes.

The core graph represents physical relationships between adjacent cores as an unweighted graph

G(C ,L). A vertex c ∈C represents a core and an edge l ∈ L represents a physical link between

adjacent cores. The MILP solver’s task is to compute the link weights and optimize an objective

function over them.

The MILP formulation relies on identifying the set R of all possible inter-core routes in the core

graph, i.e., routes can span more than one link. There are exactly |C | ∗ (|C |−1) such routes as

each core can send a message to any other core, excluding itself.

To avoid ambiguity, we use the term “edge” to refer to an edge in the process graph, and “link” to

refer to an edge in the core graph in the rest of this section.

We define three variables in our formulation:

1. A binary variable xp,c for every process and core pair. Variable xp,c = 1 if process p is

mapped to core c .

xp,c ∈ {0,1} ∀(p,c) ∈ P ×C

2. An auxiliary binary variable ye,r for every edge-route pair. Variable ye,r = 1 if edge e in the

process graph is mapped to route r in the core graph.

ye,r ∈ {0,1} ∀(e,r ) ∈ E ×R

3. An auxiliary integer variable wl for every core edge. Variable wl captures the total number

of messages that use physical link l .

wl ∈N0 ∀l ∈ L
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Figure 5.4 – Optimal process-to-core assignment MILP formulation.

minimize
∑
l∈L

wl + z

subject to xp,c ∈ {0,1} ∀(p,c) ∈ P ×C ,

ye,r ∈ {0,1} ∀(e,r ) ∈ E ×R,

wl ∈N0 ∀l ∈ L,

z ∈N0,∑
c∈C

xp,c = 1 ∀p ∈ P,∑
p∈P

xp,c ≤ 1 ∀c ∈C ,

xp,c = 1 p = Pr i v, c = Pr i v,

ye,r = xesr c ,rsr c ∧xed st ,rd st ∀(e,r ) ∈ E ×R,

wl =
∑
e∈E

( ∑
r∈R|l∈r

W (e)∗ ye,r

)
∀l ∈ L,

z ≥ wl ∀l ∈ L

The MILP formulation does not encode scheduling constraints as placement is agnostic of clock

cycles. However, it must encode multiple physical constraints:

1. A process is assigned to exactly 1 core.∑
c∈C

xp,c = 1 ∀p ∈ P

2. A core can be assigned at most 1 process as the partitioning algorithm may produce fewer

processes than there are cores. ∑
p∈P

xp,c ≤ 1 ∀c ∈C

3. The privileged process must be mapped to the privileged core.

xp,c = 1 p = Pr i v, c = Pr i v

4. There is exactly one route between any two cores due to the NoC’s dimension-ordered

routing policy. An edge e in the process graph is mapped to a route r in the core graph if

(1) the source process of edge e is mapped to the source core of route r , and (2) the destina-

tion process of edge e is mapped to the destination core of route r . The ∧ operator in the

constraint below is not linear, but can be linearized following standard transformations [28].

ye,r = xesr c ,rsr c ∧xed st ,rd st ∀(e,r ) ∈ E ×R
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5. The weight of a link l is the sum of the weight of all routes r that include link l , weighted

by the edges e that use route r .

wl =
∑
e∈E

( ∑
r∈R|l∈r

W (e)∗ ye,r

)
∀l ∈ L

Finally, we must decide on the objective function and its supporting variables. Ideally we want

to minimize the maximum link weight as it would ensure that no NoC link dominates all traffic.

However, there are many possible process-to-core assignments that result in the same maximum

link weight, and some of these assignments are objectively worse than others (see bottom-left

of Figure 5.3 where the assignment results in odd detours due results in high total link traffic).

Another possibility is to minimize the total link weights
∑

l∈L wl , but this could yield cases where

some links are underutilized and a small subset of links are overloaded. Instead, what we really

want is to minimize the sum of the total link weights and the maximum link weight. This ensures

the lowest total link weight, while ensuring that no links become dominant (see bottom-right of

Figure 5.3).

1. We introduce an auxiliary integer variable z that captures the maximum link weight wl .

z ∈N0

2. The maximum link weight in the core graph is constrained to be larger than all link weights.

z ≥ wl ∀l ∈ L

3. The objective function minimizes the sum of link weights and the maximum link weight.

minimize

∑
l∈L

wl + z

Optimal Assignment Results

The NoC’s design turned out to be a double-edged sword: On the one hand it enables a

simple, high-frequency physical implementation and a compact MILP encoding that is

polynomial in size. However, on the other hand, the MILP formulation for optimizing link

utilization is intractable for Manticore grids larger than 4×4.

The problem lies in our choice of a uni-directional torus structure as minor changes in the

process-to-core assignment can lead to a large difference in link weights. This phenomenon

is easier to illustrate on a benchmark that uses all cores in a Manticore grid, so in the

rest of this section we use a bitcoin mining benchmark on a 3×3 Manticore grid (see

Figure 5.5). Simply swapping the positions of processes p0 and p2 leads to a significant

change to the weights of all links in the core graph, which the solver is forced to compute

at each step of its search—an expensive process. Minor changes in the assignment can

also lead to large changes in the objective function, which makes the geometry of the

search space challenging for a solver to explore.
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Figure 5.5 – Sensitivity of link weights to minor changes in process-to-core assignment. Minor changes

in process-to-core assignment lead to large differences in link weights. We color links by their weight using

a heatmap to easily identify hot links (minimum is blue, intermediate is green, high is red). Swapping the

core assignments of processes p0 and p2 leads to change of all link weights due to the NoC’s uni-directional
torus structure.
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We did not find any obvious structural property to simplify the constraints in the MILP formula-

tion, so we resorted to heuristics for process-to-core placement instead.

Heuristic Assignment

The top part of Figure 5.5 shows the process graph of a bitcoin mining benchmark when con-

strained to fit on a 3×3 Manticore grid. The process graph has dense connectivity and it is not

immediately obvious how to best assign processes to cores, especially in larger process graphs

with hundreds of vertices, so we decided to adopt a simple top-down partitioning-based heuristic.
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We start with a single cluster containing all processes, which we bi-partition into two equally-

sized clusters with the goal of minimizing total communication across the cut. We then recursively

repeat this bi-partitioning procedure on each sub-cluster until each contains an isolated process.

We solve the bi-partitioning problem at each recursive step with a MILP solver, which generally

finds a solution in less than a second. Each bi-partitioning stage refines a process’ location in a

numbered Manticore grid.

Note that the a process’ placement following the bi-partitioning procedure does not take into

account structural properties of the Manticore grid: processes are simply assigned to one of two

subclusters at each recursive stage without any consideration for the placement of the privileged

process, which could then be mapped to an unprivileged core—an invalid configuration. However,

given the NoC’s torus structure, we can simply rotate the process-to-core assignments until the

privileged process is placed on the privileged core, which then becomes a valid placement.

5.3.3 Custom Function Synthesis

Custom function synthesis is a peephole optimization that collapses long sequences of bitwise
logic instructions into a shallow sequence of 4-input custom functions. It is inspired by logic

synthesis in a standard silicon flow. We motivate how logic synthesis applies to Manticore

programs with the example in Figure 5.6.

The top part of the figure shows a simple Verilog snippet which concatenates four 2-bit wires

into a wider 8-bit wire. The bottom-left part of the figure shows the shortest Manticore assembly

program needed to emulate the Verilog program. The concatenation requires shifting each wire

to the left, masking it with a logical AND to remove high-order bits
1
, then using a logical OR

to perform the actual concatenation with another wire. Note that this Verilog wiring operation

comes for free in silicon as it is performed through routing, but costs 9 instructions to emulate

in software. The bottom-right part of the figure shows the corresponding Manticore assembly

program after custom function synthesis, which collapses the chain of bitwise logic instructions

into a single custom function.

Logic synthesis maps a group of RTL gates to a sequence of primitive gates that are available in

the target technology. Manticore’s CFU is implemented using an array look-up tables (LUTs), the

most common primitive in an FPGA. An LUT is a 1-bit, K-input truth table which can represent

any logic function of up to K inputs. Modern FPGAs typically contain 6-LUTs, but Manticore’s

register file supports at most 4 reads per cycle, so the CFU is limited to using 4-input functions.

The CFU can implement only logic functions, not arithmetic ones, as we do not use the LUTs’

carry chain in our implementation.

We originally envisioned performing logic synthesis in the frontend as Yosys natively supports

it. However, Yosys’ logic synthesis flow maps most gates (including adders, flip-flops, etc.) to

primitive 1-bit gates and breaks the circuit’s structure, which results in very inefficient Manticore

1
Custom function synthesis is performed on lower assembly, i.e., on input programs that consist entirely of 16-bit

operations. The compiler cannot—in general—know that the wire represents a narrower 2-bit value, so it cannot elide

the AND operation as the wire could be non-zero in its high-order bits.
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Figure 5.6 – Synthesizing custom functions from Verilog code. The Verilog design (top) simply concate-

nates four 2-bit wires into a wider 8-bit wire. A minimum of 9 instructions is needed to emulate the circuit

without custom functions (bottom-left). With custom functions, the logic component in the dependence

graph can be fused into a single custom function, reducing the total number of instructions down to 4

(bottom-right).

Verilog

module concat(

input [1:0] a,

input [1:0] b,

input [1:0] c,

input [1:0] d,

output [7:0] res

);

assign res = {d, c, b, a};

endmodule

Manticore Assembly (no CFU)

.wire [15:0] a, b, c, d, res, t0, t1, ...

SLL t0, b, 2

SLL t1, c, 4

SLL t2, d, 6

AND t3, t0, 0b_00001111

AND t4, t1, 0b_00111111

AND t5, t2, 0b_11111111

OR t6, t3, t4

OR t7, t5, t6

OR res, t8, t7

Manticore Assembly (with CFU)

// Loaded at boot time into CFU.

.func func_0 "((%0 & 255) | ((%1 & 63) |

((%2 & 15) | %3)))",→

.wire [15:0] a, b, c, d, res, t0, t1, ...

SLL t0, b, 2

SLL t1, c, 4

SLL t2, d, 6

CUST res, [func_0], t2, t1, t0, a

assembly. We tried to work around this issue by writing custom passes that decompose a circuit

into logic and non-logic regions, mask out the non-logic regions, apply Yosys’ logic synthesis

flow, then unmask the non-logic regions. However, Yosys’s logic synthesis flow is not restricted

to bitwise logic gates and its representation makes it difficult to constrain running logic synthesis

on these operations alone. We therefore decided to implement logic synthesis ourselves in the

backend Manticore compiler.

Implementation

Custom function synthesis is performed on each partitioned process independently. We start

from a process’ dependence graph and mask out all non-logic instructions. The result is a logic
subgraph that contains multiple connected components (unlike the dependence graph which is a

single connected component).
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Figure 5.7 – Cuts and fanout-free cones (FFCs) in a logic subgraph. We show a subset of the 3-cuts of

vertex x6. Vertices p1 and p2 are the primary inputs. The left and center examples show two valid cuts

and their corresponding FFCs. The right example shows an invalid cut as there is a path from x6 to the

primary input p2 that does not cross the cut.
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We exhaustively extract all 4-input cuts in each connected component using cut enumeration [33].

Informally, a cut of root vertex v is a set of vertices that separates v from its primary inputs
2
(see

Figure 5.7). Cut enumeration is exponential-time as there can be an exponential number of cuts

in a general graph. However, we perform cut enumeration on only the connected components of

the logic subgraph (not the full dependence graph), so its runtime is tractable (few ms).

The vertices between the root of a cut and the cut’s vertices form a cone. We keep only fanout-free

cones (FFCs), i.e., cones in which the fanouts of every vertex other than the root are in the cone

(cone vertices converge to the root) [31]. The fanout property of a cone is important as it allows

us to replace the entire cone with a single vertex without having to duplicate internal nodes (i.e.,

there is no consumer for the internal nodes other than the cone’s root vertex). Furthermore, since

a FFC contains only logic instructions and has at most 4 inputs, it can be represented as a single

4-input LUT-based custom function.

An important issue is that two cones can have different representations while still computing the

same 4-input function. Consider, for example, the following two cones where %i is the ith input

of the cone.

• (%0 | %1 | %2) & %3

• (%0 | %2 | %1) & %3

These cones compute the same underlying function: swapping inputs %1 and %2 in the first cone

makes it indistinguishable from the second. Each core supports only 32 custom functions and we

would quickly exhaust them if we did not find equivalent cones and implement them with the

same custom function.

We consider two cones ca and cb as equivalent if a permutation of ca ’s inputs produces the same

LUT equation in the CFU as cb . In theory, checking two functions for equivalence is expensive as

2
The primary inputs of a graph are vertices which have no incoming edge, which are guaranteed to be non-logic

instructions in our connected components.
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it requires enumerating up to k ! input permutations per pair of cores, with k being the maximum

number of cone inputs. In practice, the check is not prohibitively expensive as cones can support

at most only 4 inputs. As a result we did not try to use more advanced logic equivalence checking

techniques.

We cluster cones based on their boolean equivalence before choosing the set of cones to transform

into custom functions. Each cluster contains a representative cone to which all candidate cones

are compared. We initialize a single cluster with the first cone. Each additional cone is then

compared against the representative. If the cone is equivalent to the representative, we add the

cone to the cluster and store the input permutation that transforms it into the representative. If

the cone is not equivalent to the representative of any cluster, then we create a new cluster and

mark the cone as its representative.

Finally, we select the best set of FFCs that maximize instruction savings, under the constraints

that (1) cones cannot overlap, (2) some FFCs are equivalent and can be implemented by the same

function at multiple call sites, and (3) there is a limited number of custom functions available.

This is an instance of the set packing problem and is NP-complete [40]. The main difficulty in this

problem lies in the non-overlapping constraint, which rules out any greedy algorithm: selecting

the best local FFC can rule out many other FFCs which collectively cover more instructions. We

use a MILP formulation to obtain an optimal solution as the search space is small (we search for

FFCs in the much smaller logic subgraph, not the general dependence graph).

Figure 5.8 illustrates the output of the custom function synthesis optimization on aMIPS processor.

Each color represents a different function, one of which is instantiated twice in the graph. Custom

functions that contain many constants are larger than others as constants do not count as inputs

(they are known at compile time) and are folded into a function’s equation (e.g., constants c680,

c682, and c692 in the pink function).

We describe the MILP formulation next.

Optimization formulation

The inputs of the MILP formulation are (1) the logic subgraph G(V, E), (2) the set C of all FFCs

in the process, and (3) the set F of all representative cones. The formulation requires only two

variables:

1. A binary variable xc for every cone. Variable xc = 1 if cone c is selected to cover the graph.

xc ∈ {0,1} ∀c ∈C

2. An auxiliary binary variable y f for every unique function. Variable y f = 1 if function f is

called.

y f ∈ {0,1} ∀ f ∈ F

We encode the physical constraints of the problem:
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Figure 5.8 – Identifying custom functions in a netlist DAG. We show a small portion of the logic subgraph

of a MIPS processor for space constraints. Logic operations are shown with ovals and non-logic operations

(which are outside of the logic subgraph) are shown with rectangles. The goal is to maximize instruction

savings by covering the most logic operations, while using the fewest custom instructions. Each color

represents a different custom function. Two of the functions are called once (pink, green), while one is

called twice (blue).

AND n27, n10, %c692

OR n31, n27, n30

OR n22, n23, n31

OR n24, n25, n22

SEQ n12, n24, %c664

SLL n5, %w620, %c666

AND n14, n5, %c672

OR n17, n14, n15

OR n19, n18, n2

OR n20, n21, n19

OR n26, n29, n20 SEQ n8, n17, %c664

AND n18, n7, %c667

SLL n4, %w267, %c667

AND n29, n4, %c680

SEQ n2, %w57, %c673

OR n15, n16, n2AND n21, n1, %c672

OR n30, n28, n26

AND n16, n3, %c667

AND n28, n11, %c682

SLL n11, %w395, %c668

SLL n10, %w317, %c669

SLL n13, %w620, %c672

AND n25, n13, %c694

SLL n7, %w66, %c665

SLL n9, %w70, %c670

AND n23, n9, %c693

SLL n3, %w317, %c665

SLL n1, %w538, %c666

Figure 5.9 – Custom function synthesis MILP formulation.

maximize
∑
c∈C

xc ∗ (|c|−1)−
∑
f ∈F

y f

subject to xc ∈ {0,1} ∀c ∈C ,

y f ∈ {0,1} ∀ f ∈ F,∑
c∈C |v∈c

xc ≤ 1 ∀v ∈V ,

y f =
∨

c∈C |c∈ f
xc ∀ f ∈ F,∑

f ∈F
y f ≤ M axFunct s ∀ f ∈ F

1. Each vertex in the logic subgraph is covered at most once. A vertex v is covered if it is

covered by a cone c . ∑
c∈C |v∈c

xc ≤ 1 ∀v ∈V

2. A custom function is used if any of the cones that it represents are selected to cover the

graph. The ∨ operator in the constraint below is not linear, but can be linearized following

standard transformations [28].

y f =
∨

c∈C |c∈ f
xc ∀ f ∈ F
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3. The number of custom functions cannot surpass M axFunct s, which is 32 in our design as

each core supports at most 32 custom functions.∑
f ∈F

y f ≤ M axFunct s ∀ f ∈ F

The solver can find an optimal solution in all our benchmarks in less than 1 s.

5.3.4 Scheduling

The scheduler has two main tasks: (1) avoid data hazards in each core, and (2) avoid structural

hazards on the shared NoC. It uses a cycle-accurate model of a core’s pipeline and the NoC to do

so. The model need not contain the details of all system internals. We model only the following

details:

• Read-after-write distance in each core (10 cycles);

• Core → switch delay (7 cycles, see Section 4.8.2);

• Switch → switch NoC delay (statically known after placement, see Section 5.3.2).

• Switch → core delay (7 cycles, see Section 4.8.2).

The compiler uses a simple list-scheduling algorithm to avoid data hazards in each core. An

instruction is scheduled when its predecessors (in the DAG) are scheduled and executed. If the

compiler can choose between scheduling a SEND instruction and an arbitrary other instruction, it

prioritizes scheduling the SEND instruction first to overlap communication with computation.

Structural hazards on the shared NoC cannot be handled through list-scheduling alone. The

compiler performs an abstract cycle-accurate simulation of one RTL cycle using its model of the

core’s pipeline and the NoC. A SEND instruction can be issued only when it will not collide with any

other messages on its path. We assign a static priority to each core (cores with more instructions

have higher priority) to arbitrate between contending SEND instructions from different cores. If

we cannot issue an instruction in a scheduling step, the compiler delays it with a NOP instruction.

In theory the static priority could lead to starvation as some cores may never be allowed to

schedule their SEND instructions, but in practice it does not happen as each core has a bounded

number of instructions.

5.3.5 Register Allocation

The compiler maps virtual registers to physical registers with a simple linear-scan register

allocator. We optimize redundant register moves by allocating the same machine register to both

the current and next values of an RTL register [112]. Manticore’s register files have abundant

capacity
3
, so we do not recycle registers after their lifetime expires for simplicity.

3
We have 2048 registers for at most 4096 instructions, and each instruction generally reads two or more registers, so it

is unlikely that we run out of registers.
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5.4 Summary

Chapter 3 showed that Manticore’s static BSP execution model allows scaling the RTL simulation

rate linearly with respect to the parallelism factor if work is equally distributed among cores. This

is the overarching goal of Manticore’s compiler.

The compiler’s frontend is built on top of Yosys, which we use to perform behavioral synthesis

on a closed
4
input Verilog design. The result of behavioral synthesis is a structural netlist, which

we translate into a straight-line sequence of instructions (described in Manticore’s ISA) and pass

down to the backend.

The compiler’s backend heuristically partitions the monolithic assembly sequence into at most

N approximately equal processes, where N corresponds to the number of cores available in a

Manticore grid. Next, it optimizes each process by fusing long chains of bitwise logic expressions

into compact 4-input custom functions using an exact MILP-based optimization formulation.

The backend then assigns each logical process to a physical core with a heuristic recursive bi-

partitioning algorithm. It continues with a cycle-accurate simulation of execution on Manticore

to co-schedule code on all cores so as to (1) resolve data hazards within each core, and (2) avoid

structural hazards on the shared NoC. Finally, it uses a linear-scan register allocator to map

virtual registers to physical registers in each core.

This concludes our description of Manticore’s compiler. Chapter 6 evaluates Manticore’s perfor-

mance and design decisions.

4
A closed Verilog design exposes only a clock signal (see Chapter 3).
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This chapter evaluates Manticore along several dimensions. We first present our baseline soft-

ware RTL simulator and the benchmarks used in our evaluation. We then report Manticore’s

performance and break down the impact of the compiler’s main optimizations.

6.1 Baseline Simulator

We use Verilator [92] as our baseline RTL simulator. It is a popular open-source full-cycle RTL

simulator widely used by academia and industry. Verilator synthesizes Verilog designs into C++

models, which it then interfaces with C++ testbenches. Verilator’s primary goal is speed and it is

currently faster than other production-grade open-source and commercial simulators [90, 91].

Sources report a ≈ 5–6× speedup [88] compared to VCS (a commercial simulator). Verilator is fast

as it takes a synthesis engine’s view of circuit simulation, which allows it to perform optimizations

that an IEEE Verilog/SystemVerilog-compliant simulator cannotmake (e.g., Verilator supports only

two-state logic instead of four-state logic). Its generated C++ models are also highly optimized

through branch prediction hints, short-circuitable branch conditions, etc.

Verilator supports multithreaded simulation. Figure 6.1 illustrates how it parallelizes RTL sim-

ulation. Verilator starts from a netlist DAG similar to Manticore’s. Initially each DAG node

represents a Verilog statement-level micro-task, i.e., a plain Verilog operator or function call.

Verilator increases the granularity of computation by combining adjacent micro-tasks into a

small number of macro-tasks—the atomic units of work that will run asynchronously across

multiple threads—using Sarkar’s algorithm [84]. Verilator repeatedly merges the micro-tasks that

produce the smallest increase in the critical path of the macro-task. It does so until a heuristic

threshold on the critical path length is reached. Each macro-task is then linearlized using the

same optimizations Verilator uses for single-thread execution. Finally, macro-tasks are statically

assigned to threads using a heuristic concerned with their execution time, and edges between

threads become synchronization primitives (user-space spin-locks). At runtime, a macro-task can

start its execution when its preceding macro-tasks finish.

Verilator’s parallel execution is not BSP since it uses fine-grain synchronization between tasks

within a simulated RTL cycle (compute phase). However, in simulating a clock cycle, Verilator
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Figure 6.1 – Verilator’s multi-threaded compilation flow. The netlist DAG initially contains plain

statement-level Verilog micro-tasks (left). Adjacent micro-tasks are grouped together into larger macro-

tasks, which are then linearlized and linked with edges that represent synchronization primitives (center).

Finally, the macro-tasks are statically assigned to threads and dashed edges marking communication

between macro-tasks on the same thread are elided (right).
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also uses two synchronization points (final macro-tasks) as a rendezvous for all tasks, similar to

the barriers in the model presented in Section 3.4 and in Manticore. Verilator therefore uses more
synchronization than Manticore.

6.2 Test Environment

We use Verilator v5.006 (February 2023) running on Ubuntu 20.04 LTS. Verilator v5 added support

for multiple clock domains and timing. Since Manticore does not yet support these, we disable

timing in Verilator to avoid penalizing its performance. We also disable waveform dumps and

unnecessary printing to report undiluted performance numbers. We enable all optimizations in

both Verilator (i.e., -O3) and Manticore (e.g., custom functions).

We evaluate Verilator’s performance on a high clock frequency desktop processor (i7-9700K) and

two high core count server processors (Xeon 8272CL, EPYC 7V73X). Table 6.1 summarizes the key

characteristics of the hardware platforms. Note that the i7-9700K’s base clock speed is normally

3.6 GHz, but we overclock it to a base frequency of 4.6 GHz to highlight the importance of clock

frequency in RTL simulation. We use numactl on Linux to assign Verilator to physical cores on

the i7 and Xeon machines (hyperthreading degrades performance as hyperthreads compete for

instruction cache space). The EPYC machine does not have hyperthreads.
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Table 6.1 – Hardware platforms. SRAM capacities for x86 processors correspond to their reported cache

size (measured through lscpu). SRAM capacity in Manticore is the sum of its cache size and the total

capacity of all 225 cores’ instruction memories, scratchpad memories, and register files.

Baseline (x86)
Manticore

Desktop Server Server

HW Intel i7-9700K Intel Xeon 8272CL [107] AMD EPYC 7V73X [107] Xilinx Alveo U200

Num. cores 8 32 120 225

Freq. (GHz) 4.6–4.9 2.5–3.4 2.2–3.5 0.475

SRAM (MiB) 14.5 105.5 259.6 18.45

Release date Q4 2018 Q4 2019 Q1 2022 -

6.3 Benchmarks

We evaluate Manticore’s performance using nine RTL workloads (the benchmarks are wrapped

in simple, assertion-based Verilog test drivers). This benchmark suite covers a wide variety of

building blocks: integer, fixed-point, and floating point operations, crypto, pipelined in-order

processors and switches, caches, systolic arrays, state machines, and stencil computation:

• bc is a bitcoin miner [74].

• mm is a 16×16 integer matrix-matrix multiplier. Two matrices are streamed into the

array—one being transposed on the fly—and are multiplied with a systolic architecture.

• cgra is coarse-grained reconfigurable array (CGRA) of 64 floating-point processing ele-

ments. The design is fully latency-insensitive as data flows through the array using small

queues. A separate serial “bitstream” is used to configure the grid.

• vta is a versatile tensor accelerator [66], i.e., a machine learning accelerator. We use a

larger
1
spatial implementation as the default configuration is too small to benefit from

hardware acceleration.

• rv32r consists of 16 in-order pipelined RISC-V processors communicating over a ring

network. The processor implementation is based on that of riscv-mini [58].

• jpeg is a pipelined JPEG decoder [45].

• blur is a stencil computation accelerator that leverages non-uniform partitioning of data

resuse buffers [32].

• mc is a Monte-Carlo simulation stock option price evolution predictor with fixed-point

arithmetic. Price evolution is computed using fixed-function pipelines based on Monte-

Carlo simulation [96].

• noc is a 2D 4×4 uni-directional torus network-on-chip with wormhole routing and four

virtual channels.

The benchmarks were sized to ensure their state fit in the Manticore on-chip scratchpads, so

the compiler can accurately predict performance. We evaluate the global stalling mechanism

separately in Section 6.9.

1blockIn and blockOut are set to 64 instead of 16.
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Table 6.2 – Verilator and Manticore simulation performance. # instr. is the average number of x86

instructions (in thousands) needed to simulate one RTL cycle. # cycles is the number of RTL cycles

simulated to measure the simulation rate. For Verilator, the S andMT rows report the serial and multi-

threaded simulation performance in kHz. ×S is multithreaded speedup w.r.t. serial. For Manticore, we

report simulation rates on a 225-core configuration, along with the speedup relative to the serial (×S)
and multithreaded (×MT) runs of Verilator. We color entries that show speedups in green and entries that

show slowdowns in red. We report geomean speedups with and without the jpeg benchmark.

Benchmark → vta mc noc mm rv32r cgra bc blur jpeg geomean

# instr. (k) → 169 148 88 74 43 38 20 12 3 w/ w/o
# cycles → 1M 1M 1M 1M 1M 1M 2M 5M 1B jpeg jpeg

Ve
ri
la
to
r
(k
H
z)

i7

S 41.3 33.9 41.4 43.9 96.6 152.0 599.0 726.7 4246

MT 160.2 127.2 80.5 83.0 141.8 146.2 354.4 362.0 700.7

×S 3.9 3.8 1.9 1.9 1.5 0.97 0.6 0.5 0.2 1.19 1.48

xe
on

S 32.4 26.6 37.1 34.7 97.3 136.8 462.7 532.6 3233

MT 94.9 68.9 41.5 52.3 73.3 74.3 190.6 186.1 590.6

×S 2.9 2.6 1.1 1.5 0.8 0.5 0.4 0.3 0.2 0.79 0.94

ep
yc

S 32.1 29.7 32.4 31.6 109.2 126.0 550.2 430.5 3627

MT 146.9 120.8 106.0 95.2 162.7 167.8 370.6 406.9 1239

×S 4.6 4.1 3.3 3.0 1.5 1.3 0.7 0.9 0.3 1.60 1.97

M
an

ti
co

re
(k
H
z)

225-core 278.1 423.0 293.6 567.5 221.0 421.5 1562 1015 214.2

i7

×S 6.7 12.5 7.1 12.9 2.3 2.8 2.6 1.4 0.05 2.75 4.54
×MT 1.7 3.3 3.6 6.8 1.6 2.9 4.4 2.8 0.31 2.38 3.07

xe
on ×S 8.6 15.9 7.9 16.3 2.3 3.1 3.4 1.9 0.07 3.37 5.48

×MT 2.9 6.1 7.1 10.8 3.0 5.7 8.2 5.5 0.36 4.16 5.66

ep
yc ×S 8.7 14.2 9.1 18.0 2.0 3.3 2.8 2.4 0.06 3.35 5.55

×MT 1.9 3.5 2.8 6.0 1.4 2.5 4.2 2.5 0.17 2.07 2.83

Section 6.4 compares the simulation rate of Verilator against that of a 475 MHz, 225-core Man-

ticore processor. Section 6.5 continues by comparing Verilator and Manticore’s performance

scaling trends as we increase the number of available cores in each platform. Section 6.6 evaluates

the compiler’s contribution to Manticore’s performance in more detail. Section 6.7 continues

with an evaluation of Manticore’s compile time. Section 6.8 studies Manticore’s cost if run in a

cloud environment. Finally, Section 6.9 evaluates Manticore’s global stalling mechanism and its

performance penalty.

6.4 Performance Comparison

We run each benchmark for millions to billions of cycles to capture steady-state performance.

Table 6.2 reports the simulation rates and speedups achieved byManticore and Verilator. Figure 6.2

plots the simulation rates reported in Table 6.2 for simpler inspection.
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6.4 Performance Comparison

Figure 6.2 – Verilator and Manticore simulation rate. We report the serial and multithreaded simulation

rate for the desktop (i7) and server (xeon, epyc) processors, and for a 225-core Manticore (mnt). The num-

bers underneath the x-axis denote the number of threads/cores used in each platform. For multithreaded

Verilator we report the number of threads used to obtain the best performance (by sweeping the thread

count). We omit multithreaded execution entries when multithreading degrades Verilator’s performance

w.r.t. serial execution. Manticore’s compiler automatically finds a program partitioning which attempts to

maximize the amount of parallelism used (i.e., we need not sweep the core count).
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6.4.1 Verilator

The top half of Table 6.2 and the left columns in Figure 6.2 report Verilator’s serial (S) and
multithreaded (MT) simulation rates separately for each hardware platform. We select the best

multithreaded simulation rate for each benchmark.

Multithreaded Verilator improves performance w.r.t. serial execution by up to 3.9× and 4.6× on

desktop and server processors, respectively. Multithreading could not improve performance on

the smaller benchmarks (bc, blur, and jpeg). All processors reach their scalability limit with

fewer than 8 threads. Given the number of instructions in each step of the benchmarks, these

results agree with the abstract simulation model discussed in Section 3.4.
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6.4.2 Manticore

Our largest Manticore configuration is a 16×16 grid running at 450 MHz. While Manticore

benefits from increased parallelism, most of our medium-sized benchmarks do not scale past 225

cores, and so benefit more from a higher-clocked 15×15 configuration clocked at 475 MHz. The

bottom half of Table 6.2 and the rightmost column in Figure 6.2 therefore report the simulation

rates on a 475 MHz, 225-core Manticore. The table also reports speedups relative to Verilator’s

serial (×S) and multithreaded (×MT) performance. Manticore exploits parallelism to speed up

simulation performance and is faster than Verilator in 8 of the 9 benchmarks.

Manticore obtains a large 2.5–6× speedup over Verilator’s best performance on x86 processors in

benchmarks where the compiler can find enough parallelism to make use of most of Manticore’s

available cores (mc, noc, mm, cgra, and bc use close to 200 of Manticore’s 225 cores). Note

that cgra and bc are ≈2–7× smaller than the other benchmarks, but still exhibit a much higher

simulation rate than Verilator, demonstrating the benefit of exploiting parallelism to speed up

RTL simulation even in smaller designs. Our largest benchmark, vta is a slight outlier here: while

the compiler can find enough parallelism to use 220 cores, these cores suffer from imbalanced

workloads (see Section 6.5) and therefore limit Manticore’s speedup against Verilator’s best

performance on x86 to at most 1.7×.

Manticore obtains a smaller 1.4× speedup over Verilator’s best performance in benchmarks where

the compiler cannot find enough parallelism to use most of Manticore’s cores (rv32r and blur
use only 55 and 109 of Manticore’s 225 cores, respectively).

The jpeg benchmark is the only one where Verilator outperforms Manticore. This benchmark

has the highest simulation rate in Verilator and the lowest in Manticore. The jpeg benchmark

contains sizeable sequential data dependencies that cannot be parallelized (a long chain of Verilog

if-else statements for the Huffman table lookup). Manticore’s slow sequential performance

hurts us on this serial benchmark
2
. Parallelism improves jpeg’s single-core performance by only

≈17%. This marginal improvement cannot compensate for the single-core disparity between

Manticore and x86.

6.5 Scaling Trends

6.5.1 Performance

Figure 6.3 plots each machine’s speedup scaling w.r.t. serial execution. Manticore’s speedup

numbers here are predicted by the compiler instead of actual execution since it can accurately

count cycles in the absence of off-chip memory accesses. The compiler reports a virtual critical-
path length (VCPL), the total number of instructions (including NOPs) in the slowest core. VCPL is

the number of Manticore machine cycles (i.e., FPGA cycles) required to execute one RTL cycle.

We consider the single-core VCPL as the baseline to demonstrate Manticore’s scalability. Note,

however, that single-core execution on our prototype is—for most benchmarks—impossible since

2
Note that the jpeg algorithm is parallelizable, but the hardware implementation we use as a benchmark [45] is serial.
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6.5 Scaling Trends

Figure 6.3 – Verilator and Manticore simulation scaling. The desktop (upper-left) and server (upper-

right, bottom-left) numbers are obtained from Verilator. We use the same y-axis for the general-purpose

processors to highlight the different in each processor’s performance scaling. The Manticore (bottom-right)

numbers are obtained from Manticore’s compiler. The general-purpose processors all exhibit the same

performance trend and speedup eventually decreases as more threads are used. By contrast, Manticore’s

performance—in general—monotonically increases as we use more cores and plateaus when the compiler

can no longer find parallelism.
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there is not enough space in a single core’s instruction memory (only jpeg can fit entirely in a

single core).

The figure best illustrates the stark constrast between the shared-memory processors’ scalability

and Manticore’s: the x86 machines can only marginally increase performance before witnessing a

decrease in performance, whereas Manticore continues to improve performance as the number of

cores increases to 200–300. In particular, notice the order of magnitude difference in scale between

the y-axes of the different machines. Note, however, that Manticore’s performance gain through

parallelism must be weighed against the single-core/thread performance disparity between a

Manticore and an x86. To match the serial performance of a 4.6 GHz to 4.9 GHz desktop processor,

Manticore must overcome a 10× lower clock speed. Furthermore, general-purpose x86 processors

can execute 1–2.5 instructions-per-cycle (IPC). Manticore’s simple processors execute a single

instruction per cycle, have a narrower datapath (16 bits vs. 32 bits), and support only simple

instructions. Manticore can match the desktop processor’s serial performance only if it can

achieve a performance improvement of at least 10–25× by employing parallelism effectively.

In other words, a large fraction of the gain goes into making up for the loss in single-core

performance. However, the measurements demonstrate that, with appropriate architectural and

compiler support for fine-grain parallelism, we can reach simulation speeds that are unattainable
on a general-purpose architecture.

Finally, Manticore is not immune to Amdahl’s law. If there is insufficient parallelism in the

workload, then Manticore’s scaling plateaus. Depending on the RTL design, this may happen

early (jpeg) or late (mc).

6.5.2 Workload Distribution

Achieving good parallel speedup hinges on (1) using as many of Manticore’s available cores

as possible, and (2) ensuring cores have relatively balanced workloads. The partitioner’s main

goal is to produce balanced program partitions, while simultaneously attempting to minimize

communication between partitions.

Figure 6.4 analyzes the workload distribution across cores as we increase Manticore’s total core

count using a violin plot (a box plot which also shows the density of values in each box). We

model cores as having infinite instruction/scratchpad capacity so that the benchmarks fit in even

small Manticore hardware configurations. For each hardware configuration we normalize cores’

program lengths by their average to compare program length deviations in all benchmarks using

the same scale on the y-axis. We consider only the “compute” portion of each core’s workload as

it is the metric that the partitioner attempts to balance. The partitioner runs before placement

and scheduling, and so it uses only the number of instructions (including SENDs) in each partition

as the primary metric while balancing workloads. However, analyzing workload distributions

makes sense only after scheduling when NOPs have been inserted to handle data dependencies

within each core and structural hazards on the shared NoC. We therefore count instructions

in each core only up to the point when the core has finished its final SEND instruction (i.e., we
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6.5 Scaling Trends

Figure 6.4 – Workload imbalance between cores. The x-axis denotes the number of cores in each

Manticore configuration. The y-axis shows a violin plot (box plot with density) of program lengths across

all cores. We normalize program lengths by their average so they are all comparable on the same scale

(i.e., for each benchmark the average program length is represented by the solid black line at y-value 1).

A y-value of 0 denotes program partitions that have 0 instructions. A y-value of 2 denotes a program

partition whose length is equal to 2× that of the average.
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exclude all NOPs inserted afterwards when the core is exclusively waiting for incoming messages

to be received).

As expected, workload distributions are not perfectly balanced: program lengths for different

cores in the same benchmark vary between 0.25–2.2× the average program length. In general,

Manticore can achieve good speedups for benchmarks that use most of its cores, and where

most cores’ program lengths are centered around the average. This accords with the large gap in

simulation rate between Manticore and the x86 processors seen in Figure 6.2 formc, noc,mm,

cgra, and bc.

As we saw in Figure 6.2, the vta benchmark does not achieve as high of a speedup on Manticore

compared to an x86 despite using most of Manticore’s available cores. The top-most sub-plot in

Figure 6.4 shows that the workload distribution among cores in vta is highly unbalanced: most

cores have program lengths around 0.5× or over 2.2× the average program length.

The rv32r and blur benchmarks have similar workload distributions: most cores are centered

around the average program length, with the exception of a small fraction of cores which have

much shorter programs. These benchmarks, however, do not have enough parallelism to use

most of Manticore’s cores, and so achieve a smaller overall speedup (see Figure 6.3).

Finally, jpeg does not have enough parallelism to use more than 5–6 cores, and so is not a suitable

benchmark for execution on Manticore.

6.5.3 Instruction Duplication Overheads

Recall that Manticore’s partitioner duplicates all shared intermediate vertices while doing a

bottom-up traversal of the netlist DAG starting from all next register values. These duplicated
instructions allow partitions to run in parallel independently at the expense of additional compute.

The partitioner accounts for this duplication and attempts to eliminate it when merging two

partitions, but duplicated instructions nevertheless do contribute to each core’s workload.

Figure 6.5 reports the proportion of instructions in all cores that are duplicated instances of an

instruction in the unpartitioned netlist DAG. We report the number of duplicated instructions

during partitioning as this information is lost in the compiler afterwards. The overheads reported

therefore do not account for NOPs that are inserted by the scheduler, and so the proportions will

be lower in the final program.

Higher core counts require more duplication to make partitions independent and fit within

Manticore’s BSP model of execution. The proportion of duplicated instructions in the whole

program increases with maximum core counts. Most benchmarks can benefit from parallelism by

replicating fewer than 20% of the unpartitioned netlist DAG’s instructions with 324 cores. Two

outliers are noc and blur, where duplicated instructions account for 45% of the total program size.

The blur benchmark is very small (our 2
nd

smallest benchmark), and so instruction duplication

makes a larger impact on total program size. The noc is a large benchmark and has many
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6.5 Scaling Trends

Figure 6.5 – Instruction duplication overhead when scaling Manticore designs. The x-axis represents the

total number of cores in a given square Manticore configuration. The y-axis quantifies the proportion

of instructions, across all program partitions, that are duplicated instances of an instruction in the

unpartitioned netlist DAG. The numbers above each bar denote the number of cores that Manticore’s

compiler could effectively use in each configuration. Numbers here are reported by the compiler’s

partitioner, and so do not account for NOPs that are inserted by the scheduler in later stages of the

compilation flow.
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small combinational operations that fan out to multiple registers, and so these combinational

operations end up being duplicated much more than in other benchmarks.

6.5.4 Where Is Time Spent?

Manticore can suffer from two types of compiler-inserted stalls (NOPs): compute stalls and network

stalls. Manticore’s compiler schedules SEND instructions that are ready (operand is available) as

early as possible to avoid congesting the shared NoC. If no SEND instruction can be scheduled,

then the compiler schedules any other ready instruction.

A compute stall occurs when there is no SEND instruction available to schedule (operand is not

ready or the NoC is busy) and when no other instruction can be scheduled (operands are not
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Figure 6.6 –Manticore aggregate stall breakdown. The x-axis denotes the number of cores available in

each Manticore configuration, and the y-axis denotes the aggregate proportion of NOPs of each category

across all cores. The labels above each bar represents the actual number of cores used by the compiler.
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compute stall network stall

ready). A network stall occurs when a SEND instruction is ready to be scheduled, but the network

is busy and there is no other ready instruction to schedule. Since network stalls can occur only

when no other instruction could be scheduled, a high proportion of network stalls would signal

an architectural bottleneck in Manticore’s NoC. By contrast, compute stalls represent bottlenecks

in the design of Manticore’s cores as a better core could shorten read-after-write delays and

make more downstream instructions available for scheduling if the network is busy.

Figure 6.6 breaks down the cause of aggregate compiler-inserted stalls as we scale Manticore

designs. Both compute and network stalls generally increase as more cores are used, with network

stalls far surpassing compute stalls in proportion to the total number of instructions.

The vta, mc, and rv32r benchmarks exhibit at most ≈ 8% aggregate compute or network stalls

w.r.t. the total number of instructions: there is enough work to keep cores busy (compute) when
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the network is busy, and so SEND instructions can be delayed without stalling the cores until the

network is free.

The noc, mm, cgra, bc, and blur benchmarks exhibit at most 5% compute stalls, but suffer from

≈ 40% network stalls: the cores have generally balanced workloads (see Figure 6.4), but need to

communicate a lot, and so end up stalling for access to the network.

The jpeg benchmark is an outlier and suffers from only compute stalls. This benchmark has a long

chain of dependencies which results in an excessively long schedule due to Manticore’s 10-cycle

read-after-write penalty, and so compute stalls account for over 20% of the total runtime. However,

the jpeg benchmark is very small and doesn’t have much parallelism. Larger benchmarks rarely

exhibit compute stalls, which is in accord with our hypothesis that there is ample parallelism in

RTL simulation to fill in empty pipeline slots in each core’s instruction sequence.

Evidently, Manticore’s NoC design is a bottleneck and does not have enough bandwidth. Future

designs should focus on improving this point.

6.6 Compiler Optimizations

This section evaluates the compiler’s contribution to performance.

6.6.1 Communication-Aware Partitioning

The balanced partitioning algorithm (B) described in Section 5.3.1 merges the split processes while

keeping communication costs low. As a baseline, we compare it against communication-oblivious,

longest processing-time first partitioning (L) to observe the benefits of modeling communication.

Both algorithms are heuristic and use the same cost estimation method but differ in their merge

strategy. Furthermore, both algorithms are oblivious to the effects of instruction scheduling (after

partitioning) as neither accounts for the NOPs inserted to avoid data hazards and NoC contention.

Figure 6.7 compares the two approaches for a 15×15Manticore grid, with VPCL normalized to that

of L. We divided the VCPL into the fraction of cycles in the straggler spent computing (compute),

sending messages (send), or doing nothing (NOP). Modeling communication is beneficial as B

significantly reduces the overall number of SENDs (see table in Figure 6.7), reduces the number of

NOPs in the straggler, and generally outperforms (except for vta) the communication-oblivious

algorithm (L) while using fewer cores. The quality of partitioning significantly affects performance,

as evident with bc andmm.

6.6.2 Custom Instructions

We initially proposed custom instructions to compensate for the lack of instruction-level paral-

lelism in Manticore’s simple processors by exploiting bit-level parallelism seemingly abundant

in RTL. This bit-level parallelism is captured by FPGA place-and-route tools and compresses

a circuit’s critical path through high radix LUTs. We sought to create something similar in
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Figure 6.7 – Communication-oblivious vs. communication-aware partitioning. L is a communication-

oblivious, longest processing-time first partitioning algorithm and B is our communication-aware partition-

ing algorithm from Section 5.3.1. We report performance for a 15×15 Manticore grid where we normalize

VCPL to the VCPL of L. The numbers above each bar are the number of cores used by each algorithm.

The table reports the number of SEND instructions (in thousands) produced by longest processing-time

first partitioning (L) and balanced partitioning (B).
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Manticore’s FPGA prototype, though we definitely lose the power of an FPGA’s routing circuitry

as the CFU supports only bit-parallel LUT-based computation.

Figure 6.8 shows the VCPL of each benchmark normalized to the VCPL without custom instruc-

tions. The VCPL is divided among custom instructions, NOPs, and other instructions. The numbers

above each bar show the reduction in the total number of instructions over all cores (excluding
NOPs). This reduction is of 2.9–17.8%, yet the VCPL reduction (i.e., end-to-end reduction) is less

than 10% for all benchmarks. In effect, custom instructions reduce the total instruction count,

but may not reduce the path length of the straggler (e.g., in mm). In summary, custom functions

consistently improve VCPL, but cannot help improve performance if the critical path consists of

non-logic instructions. Their benefit comes with a small cost of one BRAM and a few hundred

LUTs per core. Eliminating the custom instructions would not enable larger Manticore grids

since the URAMs are the limiting resource.

The compiler extracts custom functions after partitioning. We tried moving custom function

synthesis before partitioning to provide the partitioner with better estimates of execution time.

We set the maximum number of functions to be unlimited and revert the excessive ones after

partitioning to fit within the hardware limit. However, moving custom function extraction to

before partitioning did not make any difference in final VCPL.
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6.6 Compiler Optimizations

Figure 6.8 – Custom functions’ contribution to performance. The VCPL is divided into three instruction

types and normalized to not using custom functions. The numbers above each bar represent the reduction

in non-NOP instructions over all cores. Custom functions reduce the total instruction count by up to 17.8%,

but do not specifically target the critical path of the straggler, so end-to-end improvements are less than

10%.
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6.6.3 Placement

Our hypothesis was that reducing aggregate traffic on NoC links would result in a shorter global

schedule as there would be less contention for its shared links during scheduling. We showed

that finding an optimal solution was intractable, so we developed a heuristic instead where we

recursively bi-partition processes to assign them to cores (see Section 5.3.2).

However, our experiments showed no consistent improvement in VCPL between (1) the bi-

partitioning placement algorithm, and (2) simply assigning processes to cores in the order we

receive them from the partitioner. The bi-partitioning heuristic assigns processes to cores in

a coarse way and cannot see how their placement affects NoC contention any better than a

“random” placement.

Placement algorithms can help reduce only communication-related stalls, and so we performed

a control experiment to better understand the effect of program placement on performance.

We augment the compiler with an ideal, fully-connected “atomic” NoC model. In this model,

connections between cores form a complete graph (direct connections between cores) and so

NoC links are never busy and do not stall. However, we do model a receiving core’s single NoC

ingress port to observe port contention. Figure 6.9 reports the normalized reduction in VCPL of

this atomic NoC model (A) against the VCPL of Manticore’s torus NoC (T).

Some benchmarks see no performance benefit with an ideal NoC (mc, rv32r, jpeg). In these

benchmarks, the straggler is either compute-bound (i.e., the straggler has a long chain of non-

SEND instructions), or is port-limited at its NoC interface. Other benchmarks experience a 10–20%

reduction in VCPL (vta, noc,mm, cgra), and bc sees the most benefit with a ≈ 25% reduction.

These benchmarks all have a large amount of overlapping communication—generally at the same

time—and are heavily NoC stalled with Manticore’s torus NoC.
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Figure 6.9 – Ideal NoC performance. T is Manticore’s torus NoC, and A is an ideal “atomic” fully-

connected NoC with infinite bandwidth (i.e., NoC links are never busy, but target cores still have only one

write port at their NoC interface). We report the achieved VCPL of the atomic NoC normalized to that of

Manticore’s torus NoC. The numbers above each bar represent the absolute VCPL of each benchmark.
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In summary placement contributes to overall performance, but its contribution to end-to-end

performance is dwarfed by those of partitioning and scheduling due to Manticore’s simple NoC

and poor port bandwidth at receiving cores. A more sophisticated NoC would be needed to reap

the performance benefits of placement.

6.6.4 Register Usage

Recall that the compiler does not recycle register names past their lifetime for simplicity as we

have abundant register capacity. In practice this results in high register utilization (up to ≈ 80%

in some designs), but never causes any spilling. We analyze register lifetimes during execution to

obtain better insights about register capacity.

Figure 6.10 reports the number of live registers at each clock cycle for all benchmarks on our

best Manticore configuration (15×15). The x-axis represents the number of clock cycles needed

to simulate one RTL cycle. The y-axes depict the global number of live registers in the entire

Manticore grid (left) and the maximum number of live registers in all cores (right). We observe

that the number of live registers at a given instant can reach up to ≈ 30% of a core’s register file

capacity (rv32r). However, aggregate register file capacity in the entire Manticore grid is high,

so we do not observe more than ≈ 8% utilization (noc).

Our goal with using a large register file in the Manticore architecture was to not have to load and

store values from a data memory at each simulated RTL cycle so Manticore’s limited instruction

space is reserved for computation. The analysis above shows that the register file in one core

easily has the capacity to contain the working set of 2–3 cores, but our current register file design

does not have enough port bandwidth to support this.
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6.7 Compile Time

Figure 6.10 – Register file lifetime analysis on a 15×15 Manticore grid. The x-axis represents the number

of clock cycles needed to simulate one RTL cycle (normalized). The left y-axis plots the global number of

live registers in the entire Manticore grid at each clock cycle, whereas the right y-axis plots the maximum

number of live registers in all cores. Manticore’s large register files have abundant capacity as at most

≈ 30% of the available registers in one core are needed to implement our most register-hungry benchmark

(rv32r). Similarly, global register file capacity is highly under-utilized, with at most ≈ 8% use (noc).
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6.7 Compile Time

Table 6.3 reports end-to-end compile times for Manticore, single/multithreaded Verilator com-

pilation. The Manticore compiler is a prototype built in Scala for robustness. Its compile times

can be several minutes (max. 16 min). By contrast, Verilator compilations usually take less than

a minute. Figure 6.11 breaks down the Manticore compiler’s execution time into its various

components.

Despite its compilation time, Manticore offers a software development-like experience for longer

simulations. For example, simulating 10B cycles of the vta takes about 10 h on Manticore and

17 h on the i7. In many cases, the extra compilation times are more than compensated by the

increased speed.
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Table 6.3 – Compile times across all platforms. We report compile times for Manticore, Verilator with

single-threaded compilation, and Verilator with multithreaded compilation. We sort entries in descending

order of Manticore’s compile time. |E | and |V | respectively denote the number of edges and nodes in the

graph obtained by splitting each benchmark into a maximal set of independent processes (see Section 5.3.1).

LoC denotes the Verilog lines of code for each benchmark.

Benchmark |E | |V | LoC
Compile Time

Manticore Verilator Verilator MT

vta 56142 7037 190818 15m29s 2m33 26s

mc 52330 9182 30353 12m57s 1m13s 16s

noc 114364 6927 39363 15m14s 3m23s 36s

mm 89102 6659 64963 8m38s 7m5s 2m55s

rv32r 60430 4497 31761 5m57s 1m56s 29s

cgra 57532 4615 104498 7m48s 2m15s 37s

bc 8135 4630 276 2m23s 40s 27s

blur 9649 751 3869 42s 22s 15s

jpeg 1005 131 6542 16s 7s 3s

Current Manticore compile times are longer than a conventional compiler. This is not an inherent

limitation but a byproduct of building a research compiler that allows us to explore alternatives

rather than a fast compiler. Nevertheless, the current compiler offers a faster time-to-result

than parallel software simulation for even hour-long simulations. Most of the compilation time

is spent in partitioning the netlist DAG. Partitioning is necessary for parallel RTL simulation,

irrespective of the target hardware (e.g., x86 or Manticore). The higher degree of parallelism in

Manticore makes partitioning more expensive. We could close the gap between Manticore’s and

Verilator’s compile times with some engineering effort. In addition, algorithms from research on

high-quality, low-complexity partitioning could help in this step [17, 22, 37, 59, 83, 115].

6.8 Cost Analysis

For completeness, we provide a brief cost analysis using prices fromMicrosoft Azure. We estimate

the cost of running a few billion simulation cycles in the cloud. Table 6.4 shows the Azure

instances used in this analysis. We use the D2 v4 instance with two virtual CPUs (vCPU) for

serial simulation. For multithreaded simulation with Verilator, we use the D16 v4 instance with

sixteen vCPUs. Furthermore, we also consider the HB120rs v3 instance as it lists RTL simulation

as a use case. Renting individual cores on this instance is impossible; therefore, we consider this

instance type for only parallel simulation. Unfortunately, renting an FPGA with a single vCPU in

Azure is also impossible. The smallest instance is the NP10s with one Alveo U250 FPGA board

and ten vCPUs, which makes the FPGA instance disproportionally expensive since we also pay

for the unused cores.
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6.8 Cost Analysis

Figure 6.11 – Breakdown of compilation time. Yosys (yss), assembly parsing (prs), basic optimizations

(opt), parallelization (prl), custom function extraction (cf), scheduling (sch), others (otr).
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Table 6.4 – Hourly cost of Microsoft Azure instances. Prices reported for February 2023 [7].

Instance Resources $/hour Simulation

D2 v3 Xeon 8272CL (2× vCPU) 0.115 serial

D16 v4 Xeon 8272CL (16× vCPU) 0.92 multithreaded

HB120rs v3 EPYC 7V73X (120× vCPU) 4.68 multithreaded

NP10s Xeon 8171M (10× vCPU) + Alveo U250 2.145 Manticore

All simulations finish in less than an hour for runs shorter than one billion RTL cycles (not

shown). With hourly pricing and Verilator’s sublinear speedup, serial execution would be the

least expensive, followed bymultithreadedD16 andManticore, and finally theHB-series. However,

the cost differences are small (few dollars at most). More realistically, we consider 1 and 10-billion

cycle multiple-hour simulations by estimating the execution time using the simulation rates from
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Table 6.5 – Simulation cost using Microsoft Azure prices. We report estimated runtime in hours (h)
and cost ($) for 1B and 10B clock cycles. Bold red hours exceed one workday (8 hours). We frame the

lowest-priced configurations for easy identification. For long-running simulations, Manticore can finish

5/8 of the benchmarks in less than a workday, whereas other machines need 2–4 workdays.

vta mc noc mm rv32r cgra bc blur jpeg

1B

D2
h 8.58 10.45 7.48 8.00 2.85 2.03 0.60 0.52 0.09

$ 1.04 1.27 0.92 0.92 0.35 0.35 0.12 0.12 0.12

D16
h 2.93 4.03 6.70 5.31 2.85 2.03 0.60 0.52 0.09

$ 2.76 4.60 6.44 5.52 2.76 2.76 0.92 0.92 0.92

HB
h 1.89 2.30 2.62 2.92 1.71 1.66 0.50 0.52 0.08

$ 9.36 14.04 14.04 14.04 9.36 9.36 4.68 4.68 4.68

NP
h 1.00 0.66 0.95 0.49 1.26 0.66 0.18 0.27 1.30

$ 2.15 2.15 2.15 2.15 4.29 2.15 2.15 2.15 4.29

10B

D2
h 85.83 104.52 74.77 79.96 28.54 20.30 6.00 5.22 0.86

$ 9.89 12.08 8.62 9.20 3.33 2.42 0.81 0.69 0.12

D16
h 29.27 40.31 66.97 53.08 28.54 20.30 6.00 5.22 0.86

$ 27.60 37.72 61.64 49.68 26.68 19.32 6.44 5.52 0.92

HB
h 18.91 22.99 26.21 29.17 17.07 16.56 5.05 5.22 0.77

$ 88.92 107.64 126.36 140.40 84.24 79.56 28.08 28.08 4.68

NP
h 9.99 6.57 9.46 4.89 12.57 6.59 1.78 2.74 12.97
$ 21.45 15.02 21.45 10.72 27.89 15.02 4.29 6.44 27.89

Table 6.2 and then rounding to the next hour (Table 6.5). With longer runs, Manticore, in some

cases, offers a lower cost than D16, despite its 2–18× higher base cost and unused resources.

Far more important, however, is the vast disparity in run duration. For the ten billion RTL cycle

runs, Manticore finishes all of them in a long workday (13 hours). Multithreaded simulation

requires up to two or more full days, while serial simulation can take most of a week. The

productivity gain from several simulation runs per day dwarfs the minor cost savings (few dollars)

from using a smaller machine: an engineer’s time is much more valuable.

6.9 Global Stall

Manticore’s performance is perfectly deterministic when all RTL state fits in on-chip SRAM. We

now evaluate the impact of going off-chip and the cache’s ability to mask its effect. Note that

off-chip access occurs only if a benchmark contains a large RTL memory that does not fit in

a single core’s local scratchpad (32 KiB). RTL flip-flop state fits entirely within the distributed

cores’ register files and cannot cause off-chip accesses.
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6.9 Global Stall

Figure 6.12 –Manticore’s cache effectiveness. Number of machine cycles (lower is better) simulating a

FIFO (left) and a RAM (right). White (orange) bars represent the number of cycles on which the compute

clock is active (inactive). Numbers are normalized to the cycles needed to run the 1 KiB design. Cache hit

rate is denoted inside each bar.
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We use two RTL microbenchmarks running on a 1×1 Manticore grid at 500 MHz: (1) a FIFO, and

(2) a RAM. The FIFO and RAM are sized at 1 KiB, 64 KiB, and 512 KiB. The FIFO reads/writes its

memory sequentially, whereas the RAM accesses its memory with pseudo-random addresses

(using a simple XOR-shift-128 generator). Each program runs for 16Mi RTL cycles and performs

one load and one store operation per RTL cycle. We use hardware performance counters to log

the total number of cycles, stalled cycles, cache hits, and cache misses. The 1 KiB configuration

is a baseline for each microbenchmark since this memory fits in the scratchpad and incurs no

global stalls. The 64 KiB represents a middle point where the state does not fit in the scratchpad

but is entirely contained in the 128 KiB cache. Finally, the 512 KiB configuration corresponds to

the scenario where the state is spread between the on-chip cache and off-chip DRAM.

Figure 6.12 reports the number of machine cycles needed to simulate the microbenchmarks,

normalized to the number of cycles needed to simulate the 1 KiB designs. The white/orange

region represents the number of active/stalled compute clock cycles. The numbers inside each

bar denote the cache hit rate. Recall that a cache line is 256 bits wide and that global loads and

stores move 16 bits of data. We measured DRAM latency to be ≈ 70 clock cycles (with a 475 MHz

clock).

As expected, the 1 KiB designs are stall-free as the memories fit in a core’s scratchpad and the

cache is unused.

The 64 KiB designs experience an asymptotic cache hit rate of 1 as the RTL memory fits entirely

within the cache. The FIFO populates the cache quickly, whereas the RAM needs more time since

we use a random number generator to index it. As a result, the absolute number of cache misses
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(and clock stalls) is higher for the RAM design and more FPGA cycles are needed to simulate

16Mi RTL cycles. Note that the orange bar on both 64 KiB designs look larger than 0.01% of the

execution time. This is normal as each access to the cache in our prototype, even if the access

hits, conservatively stalls the compute clock for one FPGA clock cycle (time to check if a hit or

miss occurs). We could eliminate this conservative stall by sending out the cache address one

cycle earlier in the pipeline, but decided to leave the core design unchanged to focus more on the

compiler.

The 512 KiB FIFO has a high hit rate due to its spatial locality, so it incurs only a marginal number

of stalls in aggregate. By contrast, large, randomly accessed RAMs run slower as the number of

off-chip accesses increases.

6.10 Summary

We evaluated Manticore’s performance, scalability, compile time, cost, and design decisions.

We compared Manticore’s performance against Verilator, the fastest full-cycle RTL simulator,

running on three high-end desktop and server x86 processors. Manticore is consistently faster

than Verilator (serial and multithreaded) on all benchmarks that contain parallelism, despite

using small slow cores that run at a fraction of the x86 machines’ clock frequency.

While Verilator scales simulation to at most a few cores on our small benchmarks, Manticore

continues to improve performance as the number of cores increases to 200–300. This performance

scalability must be weighed against the single-core performance disparity between an x86 and

Manticore’s simple, low clock frequency cores.

Manticore’s compile time is higher than Verilator’s, but offers a faster time-to-result for hours

long simulations. Its compile time can be improved through more extensive engineering.

We analyzed Manticore’s cost in a cloud environment using the closest comparable FPGA and

high-performance processors. While the hourly rate for renting an FPGA on the cloud is expensive,

Manticore’s speedup against high-performance x86 machines allows simulating a design in a

fraction of the time. The end-to-end cost difference between Manticore and an x86 amounts

to just a few dollars, an insignificant amount compared to the cost of an engineer who would

otherwise need to wait a few more days for a simulation to run.

We separately evaluated each of Manticore’s design decisions and their contribution to its

performance. Manticore’s BSP execution model requires duplicating instructions across cores to

increase parallelism at the cost of more computation. The overhead of duplication increases with

more cores, but is generally below 20–40% depending on the benchmark. Communication-aware

partitioning is the most important step to achieve good parallel speedup on Manticore. While

cores in most benchmarks exhibit relatively balanced workloads, some benchmarks do not and

more work is needed to allow good parallel speedups for these on Manticore. Custom functions

consistently improve performance, but do not specifically target a reduction in the critical path,

and so are less useful than expected. Surprisingly, placement of code has little impact on end
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performance as some cores are always compute-bound or port-limited at their NoC ingress port.

A better NoC and a core with higher bandwidth at its ingress port are needed to better reap

the benefits of placement algorithms. Manticore has abundant register capacity: its register

files are highly underutilized and a smaller register file design would have been enough. This

suggests that a re-design of the cores to increase core count would perhaps be beneficial to boost

simulation capacity.

Finally, Manticore’s current prototype allows at most 4096 machine cycles between synchroniza-

tion points (the instruction memory size in each core). This clearly puts Manticore in the “small

circuit” region of Figure 3.4, where performance scalability is infeasible on a general-purpose

computer. If we are to improve simulation performance through parallelism, adding more cores

to general-purpose processors will result in partitioned workloads that also fall in the “small

circuit” region, so we need an architecture that can scale simulation when each processor has a

small workload. Manticore’s unconventional architecture avoids synchronization challenges and

allows it to scale simulation over hundreds of cores irrespective of the workload size.
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7 A General Approach for
Reverse-Engineering Xilinx
Bitstream Formats
This chapter is about Bitfiltrator [56], a tool that allows modifying the bitstream of modern

Xilinx FPGAs at the binary level. This work was originally conducted in the context of the

Manticore project (see Part I). The goal was to program Manticore’s instruction memories, data

memories, register files, and custom function units at the bitstream-level so we could omit the

bootloader from its design and simplify timing closure at high clock speeds. Unfortunately the

FPGA primitives we used for the instruction and data memories (URAMs) cannot be programmed

through the bitstream, and so we did not end up using Bitfiltrator to edit the bitstream of the

final Manticore prototype.

We decided to spin off Bitfiltrator as educational material to teach others how to reverse-engineer

parts of an FPGA’s bitstream as this information was lacking in the literature. At the time when

this project was conducted, Bitfiltrator was the only tool capable of editing the bitstream of large,

multi-die Xilinx FPGAs, especially the specific device used in the Manticore project. Other tools

have since added support for these devices [65], and so Bitfiltrator’s differentiator remains its

pedagogical contribution to the topic of bitstream manipulation.

7.1 Motivation

A bitstream is a binary file that contains the full or partial configuration of an FPGA. Xilinx’s

Vivado toolchain is currently the only way to generate a bitstream for the company’s high-

performance UltraScale and UltraScale+ devices. Unfortunately, bitstream generation is time-

consuming as Vivado must load a placed and routed design checkpoint, then run design rule

checks (DRC) to verify a design’s legality before producing its bitstream. Designs that fail DRCs

will not be generated to avoid damaging a device. Though Vivado allows selective disabling of

DRCs before bitstream generation, the process can still take tens of minutes to load a design

checkpoint for a large project before generating the bitstream. In short, bitstream generation is

slow if Vivado is necessary. This raises the question of whether Vivado can be bypassed entirely

in some circumstances?

Modifying an existing bitstream is one way to this end, and numerous projects have taken this

path. Indeed, prior work has reverse-engineered parts of Xilinx’s bitstream format to enable new
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types of applications. For example, StateMover [5] demonstrated that a design running on an

FPGA could be stopped, its bitstream read from the device, its user-visible state extracted from
the bitstream, and this state then passed to a software simulator. This simulator continues the

execution and exposes complete visibility into a design’s state. After the software simulation,

StateMover retrieves the design’s state from the simulator and embeds it back into the bitstream.

The FPGA is programmed with the new bitstream and continues executing the design at native

speed. In addition, StateMover [5] manipulated a partial bitstream to disable LUTRAM mask-

ing during readback. Similarly, XBERT [46] employed knowledge of BRAM bits’ locations in a

bitstream to support APIs for zero-cost access to BRAMs on Xilinx FPGAs using partial reconfig-

uration. BitMan [75] reverse-engineered the bitstream format of parts of the interconnect and

clocking network to re-reroute signal connections without using Vivado. Other work conducts

fault injection experiments using FPGAs to study designs used in harsh environments [104].

Faults are emulated by directly modifying an FPGA’s bitstream rather than re-generating it, to

save time when studying numerous faults.

Applications clearly could benefit from the ability to modify an FPGA’s bitstream directly, but

how does one actually do this? While an FPGA’s high-level configuration sequence may be

documented [99], the binary format of the configuration data is not. It is unlikely a manufacturer

will make this format public since a bitstream’s binary format is tightly coupled to the proprietary

physical layout of the underlying device [87]. Users who wish to manipulate a bitstream directly

must then reverse-engineer its format.

The papers on prior applications of bitstream modification did not, however, explain how they

reverse-engineered the bitstreams. This is understandable as space constraints limit a paper’s

ability to explain details. Some projects have made their source code available, which offers an

executable description of how they modify a target bitstream. Unfortunately, this code contains

device-specific constants of unclear origin. Using these codebases for other devices is further

complicated by embedded assumptions that do not hold for other devices. To the best of our

knowledge, BitMan [75] is the most advanced tool for bitstream manipulation as it can even

convert FPGA bitstreams into a netlist [60]. However, BitMan is only distributed in binary form,

and the publicly-available version does not support new, large multi-SLR devices
1
. In summary,

much of the knowledge gained from past reverse-engineering projects is unavailable to learn

from and apply to other devices.

Our work bridges this gap by focussing on the methods necessary to derive the fundamental

parameters needed to implement a bitstream manipulation tool for Xilinx FPGAs. We explain

why these parameters are needed, where they come from, and how to infer them. We also

describe various pitfalls and erroneous device modeling assumptions to avoid. We implement an

automated tool, Bitfiltrator, that uses a systematic algorithm to locate the precise position of

a resource’s initial configuration bits in a bitstream. We used Bitfiltrator on 40 UltraScale and

UltraScale+ FPGAs to locate the configuration bits of initial LUT equations, LUTRAM and BRAM

contents, and flip-flop (FF) values. Bitfiltrator does not require access to a physical FPGA to

extract its device-specific parameters, and its source code is available [57]. Bitfiltrator is written

1
Byteman [65] is the successor to BitMan and was released after Bitfiltrator. Byteman is open-source and supports

more functionality than Bitfiltrator, but does not explain how the bitstream was reverse-engineered.
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Figure 7.1 – Floorplan of an Alveo U50 datacenter FPGA. The left side of the figure shows the device’s

full floorplan with its two SLRs. We highlight three clock regions in magenta, and the LUT named

SLICE_X136Y247/A6LUT in green. Frame addresses (see Section 7.3.1) start from 0 at the bottom-left clock

region of each SLR and increase in the direction of the white arrow [75]. A zoomed-in image of the cyan

region is shown in Figure 7.6 and will be explained in Pitfall 5. The right side of the figure zooms into clock

region X6Y5. Clock regions have a columnar structure. We hightlight one BRAM column (orange), one

DSP column (purple), and one CLB column (green). We further zoom into one CLB (called a SLICE) and

show a subset of its BELs (LUTs and FFs).
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entirely in Python and was developed and tested on x86-based processors. It can also run on

ARM-based processors typically found in heterogeneous SoC-FPGA devices, and can therefore

be used in autonomous or self-healing systems that rely on bitstream manipulation to correct

errors.

The rest of this chapter is organized as follows: Section 7.2 presents background material on

Xilinx FPGAs and their physical structure. Section 7.3 continues with a high-level description

of a bitstream’s organization. Section 7.4 describes how to locate a configuration frame in the

bitstream using its addresss. Section 7.5 explains how to derive device-specific parameters needed

to form a partial frame address for a major resource column in the FPGA. Section 7.6 shows how

to (a) derive the architecture-specific parameters needed to expand the partial frame address

into a complete one, and (b) map an individual resource in a major resource column to a specific

bit in the target frame. Section 7.8 analyzes the derived parameters and draws insights into

the physical implementation of Xilinx FPGAs. Section 7.7 experimentally verifies the derived

parameters. Finally, Section 7.9 concludes.
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7.2 Device Structure

Figure 7.1 shows an annotated floorplan of a Xilinx Alveo U50 datacenter FPGA, which we will

refer to in the following sections. Xilinx FPGAs are hierarchical and consist of multiple super

logic regions (SLR), each containing a grid of clock regions (e.g., X4Y5 in Figure 7.1). A clock

region has a columnar structure where each column contains a homogeneous resource (CLBs,

DSPs, BRAMs, etc.) and its associated clocking. Clock regions that differ in only their Y-offset

(e.g., X6Y5 and X6Y6 in Figure 7.1) have the same width, but clock regions in a given row can have

different widths (e.g., X4Y5 and X6Y5 in Figure 7.1). All clock regions have the same height. The

height of a clock region in UltraScale and UltraScale+ devices is 60 CLBs, 24 DSPs, and 24 18Kb

BRAMs [101].

Vivado identifies cells in a design by a basic element (BEL) name. BELs are named using a resource-
specific prefix and XY coordinate system (e.g., SLICE_X136Y247/A6LUT in Figure 7.1). BELs have

properties that Vivado uses to set specific configuration bits when generating a bitstream. For

example, LUTs have a 64-bit INIT property that configures their equation.

Our goal is to map the INIT-related properties of a specific BEL (LUT, LUTRAM, FF, or BRAM)

to bit offsets within the bitstream. Pitfall 1 explains a naive, unstructured method to approach

this task and its consequences. It then outlines a principled, structured way of obtaining the bit

offsets of interest, which the rest of the chapter explains in detail.

Pitfall 1: An unstructured reverse-engineering approach is impractical

The apparently most straightforward way to reverse-engineer the format of BELs in the

bitstream is to use binary analysis: Compare the bitstream obtained from an empty design

checkpoint against that obtained from a minimally-edited one (e.g., by individually setting

a BEL’s properties using Vivado Tcl commands). One might expect that the differing bits

are related to the resource of interest.

However, this naive approach has two significant shortcomings. First, toggling even a single
bit in a BEL property may cause multiple changes to the bitstream. These changes are often

at distant—seemingly unrelated—locations, whichmakes it difficult to identify the bits that

are actually influenced by the BEL property being studied. Second, bitstream generation is

controlled bymultiple configuration options. These options directly influence the offsets at

which bits are located in the bitstream. Any absolute bit offsets found in a given bitstream

are therefore unusable for bitstreams generated with different configuration options (e.g.,

partial bitstreams).

A better way to tackle the reverse-engineering task is to employ a structured approach

that relies on understanding how the bitstream configures the FPGA. Two key questions

need to be answered: First, what is the smallest granularity at which configuration is

performed? Second, how are BELs related to this granularity? Answering these two

questions allows us to locate an atomic unit of configuration, and then study its contents
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to extract relative bit offsets to device-specific features. This allows transfering common

bit offsets learnt from one device to another.

7.3 Bitstream Structure

Xilinx bitstreams are composed of two parts: a text header and a binary section. The header

is a key-value store of metadata about the bitstream [69], and the binary section contains the

bitstream data. The binary section is parsed by first locating a unique byte pattern called the

SYNC_WORD [99]. Data after the SYNC_WORD consists of a sequence of packets that write to the

internal registers of a configuration processor. Packets are composed of operations until a write

to the CMD register occurs with a payload of DESYNC [99]. The process repeats until all packets

are consumed.

7.3.1 Single-SLR Configuration

The FPGA’s configuration processor has 32 registers, but the configuration-related packets in the

bitstream write to only two relevant registers: FAR, and FDRI.

FAR register

The smallest configurable unit in Xilinx FPGAs is called a frame. Every frame has a unique

SLR-local address composed of a 4-tuple: a block type
2
(CLB_IO_CLK or BRAM_CONTENT), a major

row, a major column, and a minor column (see Figure 7.2). In the bitstream, the Frame Address

Register (FAR) stores the current frame’s address. Frames with a block type of BRAM_CONTENT

contain the initial contents of BRAMs in the device. All other device resources (CLBs, DSPs, IOs,

interconnect, etc.) are configured by frames with a block type of CLB_IO_CLK. All frames in an

architecture have the same size and span one element (CLB, BRAM, DSP, etc.) horizontally with

a height of one clock region [103].

FDRI register

A frame at address FAR is configured by writing a frame-sized payload to the Frame Data Input

Register (FDRI). Multiple consecutive frames can be configured with a single, large write to FDRI.

The configuration processor auto-increments the contents of FAR at every frame-sized interval.

Frame addresses in every SLR start from 0 and increase following the order defined by the white

arrow in Figure 7.1: minor column, major column, major row, and block type [75].

A typical full bitstream contains a single write to FAR followed by a device-sized write to FDRI

with all configuration frames. In contrast, a typical partial bitstream contains multiple small,

scattered writes to these registers and covers a subset of the device’s frames.

2
The block type field is 3 bits wide, but only two values are legal: (1) 0b000 for CLB_IO_CLK, and (2) 0b001 for

BRAM_CONTENT.
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Figure 7.2 – The frame address format in UltraScale and UltraScale+ devices. The address is composed

of a 4-tuple: block type, major row, major column, and minor column [99]. The block type is either

CLB_IO_CLK or BRAM_CONTENT. The number above/below each field marks its start/end offset in the 32-bit

FAR word. UltraScale+ devices have an expanded minor column field compared to UltraScale devices.
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7.3.2 Multi-SLR Configuration

Large FPGAs, like the U50 shown in Figure 7.1, are not monolithic chips. Such devices are

instead composed of multiple SLRs. Each SLR is essentially a small, independent FPGA inside a

larger device. As a result, each SLR is configured separately by the bitstream. The configuration

processor’s IDCODE register is used for this task.

IDCODE register

Writes to the IDCODE register identify the target device to be configured. Writes to the FDRI

register must be preceded by a write to IDCODE. The bitstream of a small, single-SLR device

contains one write to the IDCODE register, whereas the bitstream of a large multi-SLR device

writes a value to IDCODE to configure a specific SLR.

The architecture configuration manual [99] lists the idcodes for a subset of the UltraScale and

UltraScale+ FPGAs. However, only one idcode is provided per FPGA, i.e., the idcodes of individual

SLRs are not reported. The SLR idcodes therefore need to be extracted from a bitstream.

Listing 7.1 details the high-level configuration-related packets in the full bitstream of an Alveo

U200 datacenter accelerator card. The U200 is a large device with three identically-sized SLRs

configured independently by changing IDCODE. Pitfall 2 continues with a description of how SLRs

are ordered in the bitstream.

Pitfall 2: SLR ordering in the bitstream

The order of writes to the IDCODE register do not match the bottom-to-top order of SLRs

(i.e., SLR0, SLR1, SLR2) shown in the Vivado GUI! The U200 above, for example, configures

SLR1 before it configures SLR0 and SLR2.

We use an SLR object’s CONFIG_ORDER_INDEX property (not to be confusedwith SLR_INDEX)

from Vivado to recover the order in which SLRs must be configured in a multi-SLR device.
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Listing 7.1 – Alveo U200 bitstream dump. We omit non-configuration-related packets for brevity. The

U200 is a large FPGA with three SLRs. Note that the SLRs are not configured in order.

# SLR 1

PKT_TYPE = TYPE1, OP = WR, REG = IDCODE, WORD_COUNT = 1), PAYLOAD = { 0x04b37093 }

PKT_TYPE = TYPE1, OP = WR, REG = FAR , WORD_COUNT = 1), PAYLOAD = { 0x00000000 }

PKT_TYPE = TYPE1, OP = WR, REG = CMD , WORD_COUNT = 1), PAYLOAD = { WCFG }

PKT_TYPE = TYPE1, OP = WR, REG = FDRI , WORD_COUNT = 0), PAYLOAD = { }

PKT_TYPE = TYPE2, OP = WR, REG = FDRI , WORD_COUNT = 6679260), PAYLOAD = { ... }

# SLR 0

PKT_TYPE = TYPE1, OP = WR, REG = IDCODE, WORD_COUNT = 1), PAYLOAD = { 0x04b22093 }

PKT_TYPE = TYPE1, OP = WR, REG = FAR , WORD_COUNT = 1), PAYLOAD = { 0x00000000 }

PKT_TYPE = TYPE1, OP = WR, REG = CMD , WORD_COUNT = 1), PAYLOAD = { WCFG }

PKT_TYPE = TYPE1, OP = WR, REG = FDRI , WORD_COUNT = 0), PAYLOAD = { }

PKT_TYPE = TYPE2, OP = WR, REG = FDRI , WORD_COUNT = 6679260), PAYLOAD = { ... }

# SLR 2

PKT_TYPE = TYPE1, OP = WR, REG = IDCODE, WORD_COUNT = 1), PAYLOAD = { 0x04b24093 }

PKT_TYPE = TYPE1, OP = WR, REG = FAR , WORD_COUNT = 1), PAYLOAD = { 0x00000000 }

PKT_TYPE = TYPE1, OP = WR, REG = CMD , WORD_COUNT = 1), PAYLOAD = { WCFG }

PKT_TYPE = TYPE1, OP = WR, REG = FDRI , WORD_COUNT = 0), PAYLOAD = { }

PKT_TYPE = TYPE2, OP = WR, REG = FDRI , WORD_COUNT = 6679260), PAYLOAD = { ... }

Matching the sequence of idcodes in a complete bitstream against the SLR configuration

indices associates the SLRs with their idcodes.

7.4 Locating a Frame by Address

Frames are identified by SLR-local addresses (see Section 7.3) and we know how to locate the

configuration frames of a given SLR in the bitstream (see Pitfall 2). What remains is to locate a

frame, using its address, among the configuration frames of a given SLR.

7.4.1 Frame Addressing Scheme

Frames in a full bitstream are written as a single SLR-sized array to the FDRI register with a

base frame address of 0. In contrast, frames in a partial bitstream are written as multiple smaller

arrays to the FDRI register with different base frame addresses. In both cases, similar to the

FPGA’s configuration processor, a frame can be associated with its address by keeping track of

the base frame address seen when parsing a write to FAR in the bitstream, and incrementing this

base address at frame-sized intervals until the array is consumed.

Since a frame address consists of multiple fields (see Figure 7.2), we need to know the boundaries

of each field to increment the address correctly. We first describe some constraints that allow

us to map the various fields in the frame address to physical characteristics of the target FPGA.

This will then allow us to infer the fields’ boundaries. The constraints are the following:
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Figure 7.3 – The SLR frame indexing scheme. Every color represents a homogeneous resource such as a

CLB column, DSP column, etc. Frames of each block type (CLB_IO_CLK or BRAM_CONTENT) with the same

major column index have the same number of minor columns, otherwise the column would not contain a

homogeneous resource. The number of minors in each major column are for illustration purposes only and

do not reflect the quantity in a device. The two empty frames at the end of each major row are discussed

in Pitfall 4.

(a) Frame address field boundaries. Major row

indices [0, . . . , MR) are shown on the left, major

column indices [0, . . . , MC ) indices are shown at

the top and bottom, and minor column indices are

shown in each rectangle.
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(b) The device-specific bitstream parameters

needed to locate a frame by its address: (1) the

number of major rows, (2) the number of major

columns per row, and (3) the number of minors per

major column.
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• Every frame spans one clock region vertically [103], so the major row field in the frame

address must correspond to the Y-offset of the clock region in which the BEL is located.

The Y-offset is relative to the lowest row of the SLR as frame addresses start from 0 in each

SLR.

• The frame address structure reveals that every major column contains multiple minor

columns. Any two major columns that contain the same resource (CLBs, DSPs, BRAMs,

etc.) must have the same number of minor columns; otherwise, the resources would not

be homogeneous. The major column field in the frame address therefore must identify a

resource column.

• The block type field is located in the upper bits of the frame address and its legal values are

0b000 for CLB_IO_CLK and 0b001 for BRAM_CONTENT. As a result, though BRAM columns

in a device may be physically adjacent to those of CLBs, DSPs, etc., the frame address

structure shows that their contents are stored after CLB_IO_CLK frames.

• The number of major columns with block type BRAM_CONTENT must match the number of

BRAM columns in the device. This number is necessarily smaller than the number of major

columns with block type CLB_IO_CLK as there are significantly fewer BRAM columns in a

device than the total resource columns.
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Given these properties, the left side of Figure 7.3 illustrates how frames of an SLR are ordered in

the bitstream. The right side of Figure 7.3 highlights the device-specific parameters needed to

locate a configuration frame from its address: (1) the number of major rows, (2) the number of

major columns per row, and (3) the number of minors per major column. These three values must

be derived for both the CLB_IO_CLK and BRAM_CONTENT block types. We tackle these points next.

7.4.2 Enumerating Frame Addresses

Enumerating all valid frame addresses in a device is the simplest way of inferring the device-

specific parameters introduced in Section 7.4.1. All valid frame addresses in a device exist only in

a full bitstream. Therefore, our discussion below assumes a full bitstream, not a partial one, is

being analyzed.

In general, the bitstream does not contain the valid addresses as the operations write the FAR

register only once with a base frame address of 0 and then perform a single, large write to the FDRI

register. The configuration processor auto-increments the frame address at frame boundaries

without subsequent inputs.

Devices, fortunately, often have additional features that can help with reverse engineering. In

particular, Vivado is capable of generating bitstreams with per-frame CRCs [102]. Such bitstreams

have two desirable properties: First, each frame is loaded individually. Second, every write to

FDRI is followed by a write to the CRC register. The address of the next frame is then explicitly
written to the FAR register. We can therefore obtain all valid frame addresses for each SLR with

the following procedure:

1. Generate a bitstream with per-frame CRCs for a target FPGA.

2. Parse the bitstream’s binary section and extract packets that write to the FAR register.

3. Filter out frame addresses with a reserved block type
3
.

With this list of valid frame addresses, we sort the addresses in increasing order and identify

the points at which each field (see Figure 7.2) in the frame address wraps around. This provides

a basis for computing the number of major rows, major columns per row, and minor columns

per major column for both CLB_IO_CLK and BRAM_CONTENT block types. We can now locate a

frame in the bitstream by its address, as we can correctly increment the frame address at every

frame-sized write to the FDRI register in the bitstream.

Enumerating all valid frame addresses uncovers two further bitstream navigation pitfalls, which

we discuss in Pitfall 3 and Pitfall 4.

3
This step is needed as, once all frame configurations are written to FDRI, the bitstream launches the FPGA startup

sequence by writing to the CMD register. This write to CMD is followed by a write to FAR with a reserved block type of

0b111. This write to FAR is irrelevant to the configuration of the FPGA as it comes after all writes to FDRI, hence we
filter it out.
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Pitfall 3: Hidden major rows in devices

The number of clock regions visible vertically in the Vivado GUI is not always equal to
the number of major rows in the device! For example, the smallest member of the Kintex

UltraScale family (xcku025) has three rows of clock regions, but extracting its frame

addresses using the method in Section 7.4.2 reveals it is, in fact, composed of five rows.

The next larger member of the Kintex UltraScale family (xcku035) also has five rows of

clock regions, and the frame addresses of both devices are identical (at least at the binary

level). It is likely that the smaller device is simply a restricted version of the larger one.

This observation may hold for other devices.

Pitfall 4: Empty frames at the end of a major row

In addition to bitstreams with per-frame CRCs, Vivado also supports generating a de-
bugging bitstream. A debugging bitstream also loads each frame individually, and every

write to the FDRI register is followed by a write of the current frame address to the LOUT

register. Writing to the LOUT register drives data to the DOUT pin of the FPGA in a serial

daisy-chain configuration and is useful for debugging how far the device has advanced

into its configuration.

Interestingly, the number of frames in a debugging bitstream is less than the number of

frames in a standard bitstream. Creating a design where a majority of BELs on an FPGA is

populated, emitting both a full and debugging bitstream from the same design checkpoint,

and comparing the frames reveals that there are always two empty frames at the end of a

major row in a full bitstream.

One therefore must take these two empty frames into account when incrementing frame

addresses at row boundaries. We believe the frame addresses emitted by the debugging

bitstream are the “real” ones used in a design and the two empty frames at the end of

each major row are likely an implementation detail.

Note that debugging bitstreams exist only for standard FPGAs [102], not SoC-FPGA

devices. Nevertheless, we experimentally confirmed that the latter also exhibit these two

empty frames at the end of each major row.

7.5 Extracting Device Parameters

We can locate any frame in a bitstream with a valid frame address. We now discuss our systematic

approach to map a BEL to an SLR idcode and a partial frame address using device-specific

parameters. Section 7.6 further develops this approach and will explain how to obtain and use

architecture-specific parameters to get the full frame address and frame offset for each bit in a

BEL’s INIT property.

116



7.5 Extracting Device Parameters

Figure 7.4 – The process for mapping a bit in a LUT’s INIT property to a bit in the bitstream. We use the

frame size of UltraScale+ devices.
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Our method is hierarchical and is outlined in Figure 7.4. We first explain a shortcut for obtaining

the major column numbers of CLBs and BRAMs. We then explain a general approch for mapping

any resource to a major column number. Finally, we detail how to compute the SLR idcode, block

type and major row of a BEL to form the partial frame address.

It is essential to disable bitstream encryption and compression in Vivado [102] to permit binary

analysis before undertaking any of the following steps.

7.5.1 Mapping Resource Columns to Major Column numbers

Shortcut (for CLB and BRAM columns)

Xilinx devices support readback capture [95], a mechanism to extract a bitstream from a pro-

grammed FPGA and identify the user-state bits of the underlying design. A user-state bit is

a user-configured memory (flip-flop, LUTRAM, BRAM, or BRAM output register). Note that

standard LUTs are not user-state bits as the user cannot change their value at runtime. As the
bitstream format is undocumented, Vivado generates a logic location file alongside the bitstream,

which provides the bit position of all user-state bits in the design. Figure 7.5 shows a short excerpt

from a logic location file. In addition to the bit positions, the file conveniently contains the frame

address of instantiated state bits. We then extract the major column numbers from the frame

addresses reported in the file.

We therefore obtain the major column numbers of CLBs and BRAMs with the following procedure:

1. Iterate over all clock regions (see Pitfall 5);

2. Iterate over all resource columns of the clock region;

3. Place one instance of a resource in every column that has the resource of interest;

4. Generate a bitstream and its accompanying logic location file;
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Figure 7.5 – Logic location file excerpt. The design is that of a small UltraScale+ FPGA (xazu1eg). The

logic location file details two flip-flop bits, two LUTRAM bits, and two BRAM data bits. The details

reported for each entry include: (1) the target SLR, (2) the frame address, and (3) the frame offset (see

Section 7.6). The major column of a resource can be extracted from its frame address.

frame address frame offset

SLICE_X1Y0/AFF.INIT

RAMB18_X0Y0.INIT_00[0]

SLICE_X1Y0/C6LUT.INIT[63]

major
row

block
type

major
col

minor
col

0b 000_000000_0000000011_00001100

5. Parse the logic location file and extract major column numbers from the reported frame

addresses.

Extracting CLB major column numbers is done with a design that contains a flip-flop in every

CLB column as LUTs, LUTRAMs, and flip-flops are all contained in CLBs and therefore share

the same major column [103]. Similarly, BRAM major column numbers can be determined by

instantiating any block-based memory implemented using BRAMs (FIFO, etc.) in every BRAM

column.

Pitfall 5: Virtual device-high CLB columns are not all fully populated

Single-SLR devices have homogeneous resource columns in each major row. Determining

the resource columns in one row is therefore sufficient to know the resource columns in

all other rows. However, this property does not hold for multi-SLR devices.

In multi-SLR devices, major rows at the boundary of two SLRs contain special LAGUNA

tiles that enable signals to cross between SLRs. The LAGUNA tiles take up space previously

occupied by a virtual device-high CLB column (see Figure 7.6). In other words, SLR-

boundary rows contain fewer CLB resources than SLR-internal rows.

Care must be taken when looking up a CLB’s major column number in SLR-boundary

rows to avoid erroneous frame indexing. The method described in Section 7.5.1 yields the

exact major column number for all CLBs in a device, regardless of the clock region row in

which they are located, as we place a resource by iterating over the resource columns of

all clock regions.
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Figure 7.6 – Zoomed-in region in cyan from Figure 7.1. We see a small section of the last major row

in SLR0 before the SLR0–SLR1 boundary. The LAGUNA tiles in SLR-boundary rows enable inter-SLR

connections and take up space previously occupied by CLB column SLICE_X50Y* in SLR-internal rows.

As a result, the CLB range SLICE_X50Y180–SLICE_X50Y239 does not exist in the device and major row 3

in SLR0 has physically fewer CLB columns than the other major rows.
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General approach (illustrated with DSP columns)

One way to obtain the major column number of any resource is to use binary analysis: By

comparing the bitstream of a carefully-crafted design against an empty
4
one, we can identify

frames that differ and extract the major column numbers from their addresses.

It is important to create a minimal design to reduce the use of auxiliary structures in the FPGA

that will influence the generated bitstream. We use a similar design process as in Section 7.5.1

to achieve this: (1) Iterate over all clock regions, (2) place one instance of a resource in every

column that has the resource of interest, and (3) generate a bitstream. Comparing the generated

bitstream against the an empty one will reveal multiple differing frames. In theory, the major

columns of the differing frames are those containing the resource of interest. In practice, some

auxiliary FPGA structures are inevitably used, so we must filter out the frames they influence in

the bitstream to avoid inferring major column numbers from frame address that do not contain

the target resource. This is detailed in Pitfall 6.

Pitfall 6: Filtering out CLB and interconnect noise when isolating a
resource

Crafting a minimal design to reduce differences when comparing bitstreams is challenging

as a design must satisfy multiple constraints for a bitstream to be generated. One such

constraint is that BEL input pins must be driven (BEL output pins can be left unconnected

though). In practice, this means using constants (usually 0) to drive the BEL’s input pins.

4
Note that Vivado will not generate a bitstream for an entirely empty design. A near-empty proxy is a single register

with its inputs connected to 0.
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Figure 7.7 – CLB and interconnect noise in a bitstream. The design contains an isolated DSP whose

inputs are tied to 0 and whose outputs are unconnected. A CLB is used to generate the constant and the

interconnect is used to route it to the DSP’s input pins.

DSPCLB INTERCONNECT

However, arbitrary resource columns may not be able to generate these constant inputs. In

such cases, the constants are driven by CLBs and are routed to the target BEL. Figure 7.7

illustrates this case with an isolated DSP whose inputs are tied to 0 and whose outputs

are unconnected.

Since the FPGA’s CLBs and interconnect are used, their configuration affects the bitstream.

Naively comparing the bitstream crafted in Section 7.5.1 against an empty bitstreamwould

reveal that frames differ in major columns of multiple resources, not just in the major

columns that contain DSP resources. We must therefore filter out unwanted columns.

Filtering out CLB columns is simple as we derived the device-specific major column

numbers of CLBs following the procedure described in Section 7.5.1. We can therefore

remove any differing frame whose major column number matches a CLB column.

We use an assumption to filter out interconnect columns: An FPGA’s highly-flexible

interconnect columns require significantly more frames to configure than a DSP. We know

the number of frames needed to configure different major columns since we derived the

number of minor columns they each contain (see Section 7.4.2). We can therefore easily

differentiate interconnect columns from DSP ones. For example, in UltraScale+ devices,

we see that differing frames are in major columns that contain either 8 or 76 minors. We

infer that DSP major columns are those with 8 minors.

7.5.2 Putting it Together: Forming a Partial Frame Address

We now illustrate how to construct the idcode and partial frame address for a specific BEL. We

use the 6-LUT from Figure 7.1 (SLICE_X136Y247/A6LUT) as an example.

We start by determining the idcode whose frames we must search. We know the SLRs in the U50

are 4 clock regions high (see Section 7.4.2) and that the height of each clock region is 60 CLBs (see

Section 7.2). We therefore infer that SLICE_X136Y247 is located in SLR1 (i.e., ⌊247/(4×60)⌋ = 1).

We now know its idcode (see Pitfall 2).
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Next, we identify the block type of the CLB. We know CLBs are not initial BRAM contents, so

the block type must be CLB_IO_CLK.

Then we compute the major row of the CLB. We again use our knowledge of a clock region’s

height to infer that the CLB is located in absolute rowmajor 4 (i.e., ⌊247/60⌋ = 4). This corresponds

to major row 0 when indexing is relative to SLR1.

Finally, we obtain the major column. We know the major column indices for a given resource in

every row (see Section 7.5.1). Looking up the 137
th
entry of the CLB major column indices in

major row 0 yields the major column number of the CLB, which is major column 262 in the U50.

7.6 Extracting Architecture Parameters

The work to this point derives the device-specific parameters needed to isolate a BEL to a subset

of the configuration frames. This subset is formed from three of the four elements in a frame

address: (1) block type, (2) major row, and (3) major column.

The remaining parameter is the minor column and frame offset of each bit in a BEL’s INIT

property within a major resource column. The minor column and frame offset are architectural
parameters since the structure of a specific resource column is identical among all devices that

share a common architecture.

7.6.1 BRAM Format

We start by selecting a BRAM column and create a design that populates all its BELs. A clock

region is 24 18Kb BRAMs high, which amounts to a total of 422368 bits. Given the long time to

generate a bitstream, no fuzzing-based approach can practically enumerate every bit’s minor

and frame offset in any reasonable amount of time.

Fortunately, BRAM contents are user-state bits, so we again use the logic location file shortcut

presented in Section 7.5.1 here to make Vivado do the work and describe the frame addresses and

offsets of all 422368 bits in one step. Parsing the logic location file reveals the minor columns

and frame offsets.

7.6.2 CLB Format

Resource columns are formed of tiles. CLBs are found in four types of tiles
5
: CLEL_L, CLEL_R,

CLEM, CLEM_R. In theory, the BELs in each type of tile could have a different format in the

bitstream, so the experiments below need to be run for all four types of tile columns
6
. Like

BRAMs, the experimental setup here consists of an entire column of a single tile type populated

with LUTRAMs (if applicable for the subset of CLBs containing LUTRAMs), LUTs, and flip-flops.

5
Their names differ slightly between UltraScale and UltraScale+ architectures, but they serve the purpose.

6
All tiles that contain BRAMs are of the same type; hence we need not try multiple tile types to extract a BRAM’s

format in Section 7.6.1.
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Flip-flops and LUTRAMs

Discovering the minor columns and frame offsets of flip-flops and LUTRAMs is simple as the

tools consider these BELs to be user-state bits. We again use the logic location file to determine

their format in a column quickly.

Standard LUTs

Determining the minor columns and frame offsets of standard LUTs is more complicated as

these BELs are not user-state bits, so no logic location file is available. We want to discover the

format of the 64-bit LUT equation for each LUT in a column. There are 480 6-LUTs in a column,

which amounts to a total of 30720 configuration bits. Though an order of magnitude smaller

than the number of BRAM bits in a column, this number is large enough to make a column-high

fuzzing-based approach impractical, so another approach is needed.

We use the assumption that hardware is highly regular to reduce the search space: It is reasonable

to expect all tiles of the same type to have the same format in the bitstream, with different offsets.

We, therefore, only need to fuzz an individual tile in the CLB column. Each tile contains eight

6-LUTs and thus 8×64 = 512 configuration bits, a tractable number to fuzz. Fuzzing requires

generating 512 bitstreams that try all one-hot INIT configuration bits in a tile. Comparing the

fuzzed bitstream against a baseline will reveal the minor column and frame offset of the tile’s

configuration bits.

Fuzzing the INIT property of a CLB tile requires creating a baseline bitstream against which

we can compare fuzzed variants. It is essential to create the design checkpoint post-place and

route to ensure all future modifications of a LUT’s INIT property do not modify routing and

create additional noise when comparing the fuzzed bitstream against the baseline. The baseline

bitstream is created as follows:

1. Select a CLB with the target tile type of interest;

2. Populate all 8 LUTs in the CLB (set their INIT property to 0, mark them as DONT_TOUCH,

set their inputs to 0, and disconnect their outputs);

3. Place and route the design;

4. Generate a baseline design checkpoint and bitstream.

The fuzzed bitstreams are then obtained by loading the baseline design checkpoint and setting

a single bit to 1 in the 8 LUT equations by manipulating the LUT’s INIT property in Vivado.

Comparing these bitstreams against the baseline will yield the minor columns and frame offsets

of all 512 LUT configuration bits in a tile. Translating the minor column and frame offsets of the

LUTs from the fuzzed tile to the other tiles in the column requires only locating an anchor bit in

each tile. A simple anchor bit to use is the same flip-flop (e.g., AFF) in every tile as we already

determined all their minor columns and frame offsets (see Section 7.6.2).
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Table 7.1 – Frame addresses and offsets of SLICE_X136Y247/A6LUT on a U50 FPGA. The minor column

and frame offset of the configuration bits follow well-defined patterns.

INIT [i] SLR

Block

Type

Major

Row

Major

Column

Minor

Column

Frame

Offset

0 SLR1 CLB_IO_CLK 0 262 11 351

1 SLR1 CLB_IO_CLK 0 262 10 351

2 SLR1 CLB_IO_CLK 0 262 9 351

3 SLR1 CLB_IO_CLK 0 262 8 351

4 SLR1 CLB_IO_CLK 0 262 11 350

5 SLR1 CLB_IO_CLK 0 262 10 350

6 SLR1 CLB_IO_CLK 0 262 9 350

7 SLR1 CLB_IO_CLK 0 262 8 350

. . . . . . . . . . . . . . . . . . . . .

60 SLR1 CLB_IO_CLK 0 262 11 336

61 SLR1 CLB_IO_CLK 0 262 10 336

62 SLR1 CLB_IO_CLK 0 262 9 336

63 SLR1 CLB_IO_CLK 0 262 8 336

7.6.3 Putting it Together: Forming a Full Frame Address

Having discovered the minor and frame offset of each bit in the INIT property of LUTs, LUTRAMs,

BRAMs, and flip-flops, we are now able to form a complete frame address for any such BEL and

locate it in the bitstream. We continue the 6-LUT example we partially formed in Section 7.5.2 and

seek to form a frame address for bit 0 in its LUT equation (i.e., SLICE_X136Y247/A6LUT.INIT[0]).

We already know this LUT has block type CLB_IO_CLK, and is in SLR1’s major row 0 and major

column 262. What remains is to determine the minor column and frame offset. The procedure

detailed in Section 7.6.2 reveals that SLICE_X<>Y247/A6LUT.INIT[0]7 is in minor column 11, at

frame offset 351.

Table 7.1 extends our systematic approach to subsequent bits of the BEL’s INIT property. Well-

defined patterns can be seen for the minor column and frame offset of the configuration bits.

One can then construct formulas to directly index a bit in the bitstream given its name. The same

technique can be used for other resources of interest (BRAMs, LUTRAMs, flip-flops, etc.).

Knowledge of the SLR, full frame address, and frame offset for a given bit allows a bitstream

manipulation tool to read or write it.

7
The CLB’s X-coordinate does not influence the minor column and frame offset, so we omit it here.
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Table 7.2 – Summary of devices on which Bitfiltrator was tested. Devices are enumerated in Vivado

and categorized by their architecture and family name. Bitfiltrator was only tested on devices for which

bitstreams can be generated using the free Vivado “WebPack” license. No Virtex UltraScale or Zynq

UltraScale+ RFSOC devices are available in the free version of Vivado.

Architecture Vivado Name Count

UltraScale

Kintex UltraScale 2 / 12

Virtex UltraScale 0 / 7

UltraScale+

Kintex UltraScale+ 6 / 10

Virtex UltraScale+ 8 / 31

Zynq UltraScale+ 24 / 38

Zynq UltraScale+ RFSOC 0 / 16

7.7 Evaluation

We implement the techniques described in Section 7.4, Section 7.5, and Section 7.6 in Python

(for bitstream parsing and analysis) and Tcl (for replicating and configuring BELs in Vivado).

Bitfiltrator only takes as input a target FPGA part number. No XDC constraint file is needed as

none of the experimental setups use I/O pins. All experiments are conducted on a machine with

an Intel Xeon E5-2680 v3 processor running Vivado 2022.1.

We use Vivado to enumerate all UltraScale/UltraScale+ part numbers and apply our automated

flow to devices which do not require a full Vivado implementation license (devices included with

the free “WebPack” license). Table 7.2 categorizes the devices by their architecture name
8
. Note

that the Virtex UltraScale+ devices are all members of the Alveo datacenter-grade device family.

The device-specific parameters extracted are: (1) the number of visible and “hidden” major rows

(see Pitfall 3), (2) the number of major columns in every row, (3) the number of minor columns in

every major column, and (4) the major columns of CLBs, BRAMs, and DSPs. We use the smallest

member of each device family as a proxy to extract the architecture-specific parameters (minor

columns and frame offsets) of LUT, LUTRAM, BRAM, and flip-flop INIT properties to reduce

bitstream sizes while fuzzing. Device-specific parameters are extracted in parallel using 12 cores.

Similarly, the INIT property of the 8 LUTs in a CLB tile are fuzzed in parallel with 12 cores, then

translated to all other LUTs in a CLB column. The total end-to-end runtime for extracting the

device- and architecture-specific parameters for all 40 devices is approximatively 3 hours.

We compared the discovered architectural parameters against those from project U-Ray [4],

a project that reverse-engineers the bitstream format of UltraScale and UltraScale+ FPGAs to

support the development of open-source FPGA toolchains. Project U-Ray provides databases

that contain the minor column and frame offset of the configuration bits of tiles in UltraScale+

8
The architecture names are obtained from Vivado, not marketing materials, as devices’ categorization differs between

both sources. The following Tcl command is used to extract the full architecture name:

get_property ARCHITECTURE_FULL_NAME ${part}.
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FPGAs. Our minor columns and frame offsets for LUT equations, LUTRAM and BRAM contents,

and register values match those from U-Ray.

However, project U-Ray only provides a per-tile database of minors and frame offsets, and

does not offer translated versions of these numbers for the other tiles of a resource column.

Additionally, the databases only cover UltraScale+ devices, not UltraScale ones.

We, therefore, conduct an additional experiment to validate all of our device-specific and ar-

chitectural parameters. We first populate all LUT, register, and BRAM BELs in a device. Then,

we use a Tcl script to set the INIT property
9
of every BEL to a random value and generate a

bitstream. Using a random value is essential as fixed or predictable patterns could hide subtle

frame address indexing bugs. Finally, we use our device and architectural parameters to read

the bitstream and extract the value used as the startup configuration for each BEL. If we can

successfully recreate every initial value, we can assume that the derived parameters are correct.

We perform this experiment for both UltraScale and UltraScale+ devices and confirm that all

reconstructed configurations match those provided to Vivado. This confirmation, in turn, sup-

ports our hypothesis that all tiles of the same type have the same format in the bitstream and

are translated versions of one another.

In summary, the techniques described in this chapter can correctly locate and modify specific

configuration bits in Xilinx’s UltraScale and UltraScale+ FPGA bitstreams. We believe the same

techniques will work for other product lines with minor adaptations. For example, Xilinx’s

7-series FPGAs have a similar frame address format to that of UltraScale devices as the minor

column, major column, and block type fields are identically-placed and sized to their UltraScale

counterparts [98]. The only difference is that the major row field in 7-series FPGAs is one bit

narrower than UltraScale devices, and that a “top/bottom” bit is used to select between the top

and bottom halves of the device’s rows. As a result, it is likely the techniques presented in this

chapter are directly applicable to 7-series devices. We leave this to future work.

7.8 Discussion

This section presents a more in-depth view into the format of different BELs in the bitstream

and relates some aspects of their format to the physical layout of the FPGA. We also discuss

additional pitfalls to avoid when attempting to understand the bitstream.

7.8.1 Minor Counts per Major Resource Column

Table 7.3 reports the number of minor columns needed to configure CLB, BRAM, and DSP

columns in UltraScale and UltraScale+ FPGAs (using the frame enumeration method described

in Section 7.4.2).

9
For LUTs and registers we set the INIT property. For BRAM contents we set the INIT_xx property. For BRAM parity

we set the INITP_xx property. For BRAM output registers we set the INIT_A and INIT_B properties.
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Table 7.3 – Bitstream configuration word breakdown. We report the number of frames required to

configure different major resource columns in UltraScale and UltraScale+ FPGAs. We also list the number

of 32-bit words needed to configure each major resource. Frames are composed of 123 words in UltraScale

devices, and 93 words in UltraScale+ devices [99].

Resource

UltraScale UltraScale+

#frames #words #frames #words

CLB 12 1476 16 1488

BRAM 128 15744 256 23808

DSP 4 (6) 492 (738) 8 744

UltraScale+ devices require more minors to configure each resource. However, the frame size

in the two architectures is different: frames are composed of 123 words
10
in UltraScale devices,

whereas they comprise 93 words in UltraScale+ devices [99]. The number of 32-bit words needed

to configure a column of CLBs is roughly equivalent between both architectures. However, the

number of words needed to configure BRAM columns and DSP columns is significantly higher in

UltraScale+ devices.

Pitfall 7 explains the peculiar case of DSP columns in UltraScale devices.

Pitfall 7: DSP columns in UltraScale devices have heterogeneous minor
counts

A hypothesis for forming the SLR frame indexing scheme in Figure 7.3 was that any two

major columns that contain the same resource must have the same number of minor

columns, otherwise the resources in the column would not be homogeneous. While this is

true in general, there seem to be device-specific deviations.

BitMan [75] reported that DSP major columns in UltraScale devices contain 4 minors.

The frame enumeration scheme presented in Section 7.4.2 confirms this number, but not

for all DSP columns. We found that DSP columns that are adjacent to a clock region

boundary are configured with 6 frames. It is unclear why extra configuration frames would

be necessary for these clock region boundary columns. It is possible this requirement is

device-specific as only two devices form our UltraScale device lineup (see Section 7.7), one

of which is likely a restricted version of the other (see Pitfall 3).

In contrast, UltraScale+ devices use 8 frames to configure DSP columns irrespective of

where they are located. This was confirmed on the 38 UltraScale+ devices used in our

evaluation.
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Figure 7.8 – LUT and flip-flop INIT bits in UltraScale and UltraScale+ devices. The figure lists the INIT

bits of tile CLEL_L, but we found the INIT bits of all other CLB tiles to be at identical minors and frame

offsets.

(a) The architecture-specific minor columns and frame offsets of the

BELs in the bottom-most CLB in a clock region. The LUTs each have

a 64-bit INIT property. We highlight the first and last bits to identify

the order in which the INIT bits are placed. The flip-flops each have a

1-bit INIT property. Each LUT is associated to two flip-flops. The trian-

gles whose tips face downwards correspond to flip-flops [A-H]FF. The

triangles whose tips face upwards correspond to flip-flops [A-H]FF2.
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(b) Zoomed-in image of a sin-

gle CLB from the Vivado device

viewer. The 8 colored rectan-

gles on the left each represent

a LUT. The 16 colored triangles

on the right each represent one

flip-flop. The legend matches

that of the figure to the left.

7.8.2 CLB Format

Each CLB column in UltraScale and UltraScale+ devices contains 60 CLBs [101]. CLBs in the

same column are necessarily of the same tile type and share a common format in the bitstream

10
A word is a 32-bit value in Xilinx terminology.
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(i.e., they are translated versions of each other; see Section 7.6.2). It is therefore sufficient to

detail the format of a single CLB.

The left side of Figure 7.8 compares the format (minors and frame offsets) of the 8 LUTs and

16 flip-flops contained in the bottom-most CLB of a clock region in UltraScale and UltraScale+

devices. We highlight each LUT and its two flip-flops with the same color. We mark the first and

last bit of each LUT’s 64-bit INIT property. Each flip-flop has a 1-bit INIT property and therefore

does not require special marking.

The UltraScale and UltraScale+ architectures share the same CLB datasheet [101] and CLB block

diagram in the Vivado device viewer (right side of Figure 7.8), yet the left side of Figure 7.8 shows

that the configuration bits of LUTs and flip-flops follow different placement patterns.

The number of frames that are needed to configure the LUTs and flip-flops also differ. The LUTs

and flip-flops in UltraScale devices are configured by writing to 9 minors (8 minors for the LUTs

and 1 minor for the flip-flops) with a total of 1107 words. However, the same BELs in UltraScale+

devices are configured by writing to 13 minors (12 minors for the LUTs and 1 minor for the

flip-flops) with a total of 1209 words.

While Table 7.3 shows that UltraScale+ devices use 16 minors for their configuration, our experi-

ments show that only minors 0–12 are used for LUTs and flip-flops. Minors 13–15 are likely used

to configure the other BELs in a CLB (e.g., F-MUXes or carry logic), or the routing between CLB

columns.

Figure 7.8 shows the format of INIT bits in a CLB tile of type CLEL_L. However, plotting the same

figure for all other CLB tiles reveals that they all share the same format for INIT bits. LUTRAM

tiles (CLEM and CLEM_R) physically support more functionality that standard LUT tiles (CLEL_L

and CLEL_R), yet the extra programmability of LUTRAMs does not change the position of INIT

bits. It is likely standard LUT tiles are simply LUTRAM tiles with the extra circuitry removed,

but with the same programming circuitry layout.

Finally, flip-flop values are stored in an inverted state in the bitstream at the designated minor

and frame offset [95].

7.8.3 BRAM Format

BRAMs are 18Kb in size, with 16K data bits and 2K parity bits. Vivado uses different properties to

specify the initial contents of data and parity bits. The 16K data configuration bits are specified in

256-bit properties INIT_00–INIT_3F. The 2K parity configuration bits are specified in additional

256-bit properties INITP_00–INITP_07. To simplify identifying a given bit, we linearize the

individual 256-bit INIT_xx properties into single 16K data and 2K parity properties.

Figure 7.9 compares the format of initial configuration bits in the bottom-most BRAM in a clock

region in UltraScale and UltraScale+ devices. Linking the bits individually (as in Figure 7.8 for a

LUT) does not easily show the stride between each point as the configuration bits increment
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Figure 7.9 – BRAM INIT bits in UltraScale and UltraScale+ devices. The minor columns and frame offsets

are reported for the bottom-most BRAM in a clock region. Each BRAM contains 18Kb divided into a 16Kb

data array (blue) and 2Kb parity array (orange). The two internal figures shown in each architecture are

zoomed-in versions of the larger plot centered around bit 0 of the data and parity bits.
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in the same minor before passing to the next one, resulting in a vertical line if linked together.

Instead we plot the first 16 data bits and 4 parity bits in a zoomed-out figure to show the high-level

stride, then zoom into the region around data bit 0 and parity bit 0 to reveal more details.

Table 7.3 shows that UltraScale devices use 128 minors to configure a column containing 24 18Kb

BRAM, whereas UltraScale+ devices use 256 minors to achieve the same. As a result, UltraScale

devices use a denser bit pattern compared to UltraScale+ ones, with UltraScale+ devices skipping

odd and even frame offsets in an interleaved fashion. Full data tables are available in the

Bitfiltrator repository [57].
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Each 18Kb BRAM contains two 18-bit hard output registers (not shown), i.e., they are contained

within the BRAMs themselves and are not CLB flip-flops. While the output registers are inside

BRAMs, their initial contents are specified in the CLB_IO_CLK region of the bitstream (i.e.,

BRAM_CONTENT is reserved for BRAM memory contents).

7.8.4 Frame Offsets and Physical Placement

We know frames all have the same size and span one clock region vertically (see Section 7.3.1),

so we suspect there is a relationship between the vertical physical placement of a BEL and its

architecture-specific frame offset.

The left side of Figure 7.10 plots the frame offset of A6LUT.INIT[0] across all CLBs in a clock

region column
11
. We observe a regular frame offset increment until the 30

th
CLB, a sharp rise

between the 30
th
and 31

st
CLBs (themiddle two CLBs in a column), and finally a regular increment

until the last CLB in a column. Similar plots for the BRAMs show the same gap between the

middle two BRAMs of a column.

The right side of Figure 7.10 explains this gap by zooming into the area where the frame offset

gap occurs. We observe a physical gap between the middle two tiles of all resource columns.

Zooming in further reveals this space is taken up by each column’s clocking resources.

We conclude that a BEL’s frame offset does correlate with its vertical physical placement in a

clock region, and is a viable proxy to locate resources in the device when reverse-engineering.

Pitfall 8 cautions that a generalization of this approach cannot be made for minor columns

without more information.

Pitfall 8: Minor columns are not proxies for physical placement

While a configuration bit’s frame offset is a proxy for its vertical physical placement in

a clock region (see Section 7.8.4), we cannot conclude that the same configuration bit’s

minor column is a proxy for its horizontal physical placement inside the resource column.

Indeed, the left side of Figure 7.8 shows that flip-flops in UltraScale devices are located at

minor column 4, i.e., to the left of half of the LUTs. However, the right side of the same

figure shows that flip-flops are to the right of the other BELs in the CLB.

7.8.5 SLR Similarities

One way to determine whether two devices have identical resources is to compare their frame

addresses. If all their frame addresses match, then it is likely the two devices share the same

column mix. Frame addresses must be compared at the SLR level as each SLR is an independent

FPGA and is the smallest unit at which we can differentiate two devices.

11
We do not need to plot the frame offsets of other BELs in the CLBs as we know all BELs have a fixed relative position

from each other.
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Figure 7.10 – Relationship between BEL frame offsets and vertical placement in a clock region.

(a) Frame offset of A6LUT.INIT[0] for the 60 CLBs in a resource col-

umn. The jump in frame offsets between the 30
th
and 31st CLBsmatches

the physical gap between the CLBs taken up by clocking resources.

BELs in other resources exhibit similar frame offset jumps at the same

location.
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(b) Zoomed-in figure of the

vertically centered area in

a clock region. CLB tiles

(green), BRAM tiles (orange),

and DSP tiles (magenta) are

all densely packed around

a central area that contains

clocking resources (red) for

each column.

Table 7.4 groups the 40 devices from our evaluation (see Section 7.7) by their SLRs’ frame addresses.

Any two devices in the same row are indistinguishable at the binary level. Pitfall 9 then cautions

against making quick physical conclusions if two SLRs share the same frame addresses.

Pitfall 9: SLRs with common frame addresses may be physically different

Surprisingly, many devices that are indistinguishable at the binary level may look physi-

cally different.

For example, Table 7.4 shows that the xcu250 and xcu280 share the same frame addresses.

Both devices do indeed share the same resource columns, including the order in which they

appear. However, Figure 7.11 shows that clock region X0Y0 in the Vivado device viewer

is physically narrower in the xcu250. The horizontal spacing between resource columns

also differ. Finally, we see that DSP columns in the xcu250 are full-height, whereas those

in the xcu280 are truncated at the bottom of the clock region, with the remaining space

taken up by HBM-related tiles.

The horizontal placement of resource columns in a device is therefore independent from

its bitstream. This further emphasizes the conclusion from Pitfall 8.
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Table 7.4 – Devices grouped by SLR frame addresses. Any two devices in the same row have the same

frame addresses and are indistinguishable at the binary level.

Family Type Devices

UltraScale FPGA xcku025, xcku035

UltraScale+

SoC

xazu1eg, xczu1cg, xczu1eg

xazu2eg, xazu3eg, xczu2cg, xczu2eg, xczu3cg, xczu3eg

xazu4ev, xazu5ev, xck26, xczu4cg, xczu4eg, xczu4ev,

xczu5cg, xczu5eg, xczu5ev

xazu7ev, xcu30, xczu7cg, xczu7eg, xczu7ev

FPGA

xcau10p, xcau15p

xcau20p, xcau25p, xcku3p, xcku5p

xcu25

xcu50, xcu55c, xcu55n, xcu250, xcu280

xcu26, xcux35

xcu200

Figure 7.11 – Clock region X0Y0 in the Alveo U250 and U280 datacenter-grade FPGAs. Each SLR in the

U250 and U280 are indistinguishable at the binary level, yet the two devices have a different physical

layout. We highlight CLBs in green, BRAMs in orange, and DSPs in magenta. DSP columns in the U280

are shorter than on the U250 and HBM tiles (in red) take up the remaining space. Finally, the horizontal

spacing between resource columns is not the same between devices.

(a) U250 (b) U280

7.8.6 Device Capacity

The frame addresses in a bitstream revealed that many devices share similar SLRs, yet it is

interesting to note that Vivado reports different resource counts for them.
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Figure 7.12 – Floorplan of a xcau10p device. We highlight BRAMs in orange and all other resources in

teal. Vivado reports that this device contains 100 BRAMs, but the device physically contains 288 BRAMs.

All BRAMs are functional as placing BRAMs at non-overlapping regions of the device both result in a

generated bitstream.

(a) Placing 100 BRAMs in the bottom region of the

device.

(b) Placing 100 BRAMs in the top region of the

device.

For example, Table 7.4 shows that the xcau10p and xcau15p devices have identical SLRs, but

Vivado reports that the xcau10p contains 100 BRAMs and that the xcau15p contains 144 BRAMs.

However, counting the number of BRAMs physically available in each device reveals there are, in

fact, 288 BRAMs in each! One can craft different designs for the xcau10p where all 100 BRAMs

are used in non-overlapping positions (see Figure 7.12). The design is legal and a bitstream is

generated, which shows that all 288 BRAM are functional. Similar observations hold for the

remaining resources in the device. Even the largest datacenter-grade FPGA, the Alveo U250,

exposes fewer BRAM resources in software than are available on the device.

The bitstream format therefore reveals that more resources are available than those shown in

Vivado. The resource limits are likely just a software restriction.

7.9 Summary

Bitstream manipulation is a necessary step to use an FPGA in novel ways, but is currently

unsupported by vendor tools. The undocumented FPGA bitstream file format requires reverse
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engineering to find the information to support this step. We detailed a systematic, top-down

approach to reverse-engineer the format and location of specific cells in Xilinx FPGAs. We also

link various observations of a bitstream’s properties to physical aspects of the device it programs.

To the best of our knowledge, this is the first work to explain the foundational techniques for

bitstream reverse-engineering. We believe these techniques will be valuable in reverse engineering

other FPGAs and improve open FPGA design flows.
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8 Related Work

8.1 Software Simulators, FPGA Prototypes, and Emulators

There are multiple ways to perform functional verification depending on one’s constraints and

goals.

Simulation consists of running a hardware design in software, typically on a single machine.

Software simulators excel at hardware debug as they provide excellent visibility into design

state. They also allow HW/SW integration testing in small- to medium-sized designs. However,

software simulators are generally too slow to perform software validation. Many open-source and

commercial software RTL simulators exist, each with various design choices and corresponding

simulation rates: iVerilog, Verilator, QuestaSim, VCS, etc.

Prototyping implies running a design on programmable hardware, generally in the form of an

FPGA. Prototypes are very fast and achieve interactive simulation speeds by mapping RTL circuits

directly into gates on one or more FPGAs [114]. Prototypes provide the necessary speed for

software validation as they can run full software stacks on top of a simulated circuit over trillions

of clock cycles. However, FPGA prototypes are long to compile for as they require placing and

routing a design. Prototypes also offer only limited visibility into a design’s state, and so are

unsuitable for hardware debug or HW/SW integration. A single FPGA is often not large enough

to prototype an ASIC, so multiple devices are often needed. MIT’s Virtual Wires [8] project

attempts to streamline partitioning a single RTL design over multiple FPGAs by virtualizing

FPGA pins through multi-pumping. Similarly, modern industrial solutions such as Cadence’s

Protium X2 support mapping ≈ 2.4B gates to 60 FPGAs [34]. FireSim [54] is an open-source FPGA

prototyping platform, widely used as an architectural simulator for exploring RISC-V designs at

datacenter-scale using cloud FPGAs.

Emulation platforms are RTL simulators for very large designs. They greatly increase simulation

capacity by running across racks of custom processors or commercial/custom FPGAs [81, 114].

Emulators represent the peak of what the EDA industry provides for functional verification and

are suitable for all levels of the design cycle (hardware debug, HW/SW integration, and software

validation). They also provide rich debugging environments that are designed to find design
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bugs in the hardware or software of a complex system (e.g., in a GPU [19]). Emulators remain

functional verification tools, so FPGA-based implementations typically omit various aspects of

synthesis related to physical optimization to enable faster compilation [81]. Though pricing for

large EDA companies’ emulators are not public, estimates from industry experts hover around

$1M+ [47, 80].

Although Manticore is implemented on an FPGA, its simulation runs in software (a program

running onManticore) rather than being mapped to an FPGA. Consequently, Manticore’s compile

times are a few minutes, whereas FPGA prototypes take hours to days to compile. Manticore’s

design is much closer to that of an emulator and is a first step towards an open-source alternative

to commercial emulation platforms.

8.2 Custom Functions

Manticore is not the first work to propose using custom functions in RTL simulation. IBM’s

Yorktown Simulation Engine (YSE) [36] did something similar 40 years ago! YSE implements

special purpose logic processors capable of computing arbitrary 2-bit wide logic functions using

table lookups.

More recently, Nexus [13] proposed an FPGA-accelerated emulation platform for small designs

using a mesh of statically-scheduled processors linked with a dynamically-scheduled NoC. Nexus’

processors support only truth tables.

Manticore uses 4-input functions to compress bitwise-parallel logic operations. We found custom

functions cannot provide more than ≈ 10% improvement in simulation speed with its current

implementation. Relaxing the constraint that a function’s inputs must be bitwise-parallel will

likely improve performance, but at the cost of increased physical implementation complexity in

each core.

8.3 Sequential RTL Simulation

Most efforts in improving RTL simulation on CPUs focused on reducing the runtime overhead of

event-driven simulation.

ESSENT [10, 11] is a hybrid cycle-accurate simulator that employs a coarsened, conditional,

singular, static (CCSS) execution model. CCSS is a novel, hybrid approach that minimizes the

overhead of runtime checks in event-driven simulation, especially in the presence of low activity

factors. ESSENT is single-threaded and accelerates simulation of RISC-V cores (CPUs have low

activity factors) by 1.5–11.5× over Verilator. However, it is not clear how ESSENT performs with

spatial designs that exhibit high activity factors. Manticore’s performance is independent of a

design’s activity factor.

Cuttlesim [76] is a cycle-accurate simulator for Kôika [14], a rule-based HDL derived from

Bluespec Verilog [68]. Cuttlesim uses the high-level semantics of Kôika to generate C++ code
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optimized for sequential performance. It reports 2–3× faster simulation than the equivalent RTL

code running serial Verilator.

8.4 Parallel RTL Simulation Using CPUs

RepCut [110] is a full-cycle, cycle-accurate RTL simulator that targets execution on shared-

memory machines. RepCut and Manticore independently and simultaneously proposed the same

idea: using a BSP simulation algorithm to batch synchronization and inter-thread communication

between cores to a single point. Like Manticore, RepCut also uses replication-aided partitioning

to split RTL simulation between multiple cores. RepCut reports a superlinear parallel speedup

of ≈27× using 24 threads compared to single-threaded Verilator. This superlinear speedup

is explained by the code footprint of an RTL model, which is far too large to fit in a single

core’s instruction cache, leading to frequent cache misses and low IPC. Relieving cache pressure

by partitioning the design significantly increases cache locality and IPC, hence per-thread

performance increases. Coupled with actual parallel execution, this leads to a superlinear speedup.

Manticore is insensitive to cache effects by design as it contains only deterministic hardware

datapaths. The main difference between RepCut and Manticore is their scaling properties:

our model of parallel simulation on a shared-memory machine (see Section 3.4.3) showed that

the simulation rate drops past few tens of cores, which both our experiments and RepCut’s

results confirm. A shared-memory machine can achieve only weak scaling as more cores can

be effectively used only by increasing the workload size. By contrast, Manticore’s architecture

removes the cost of synchronization and achieves strong scaling.

Metro-MPI [64] is a cycle-accurate RTL simulator for very large SoC designs (e.g., 10B transistors).

Its key insight is to partition a modern SoC along its natural boundaries (e.g., NoCs) to turn RTL

simulation into a distributed high-performance computing (HPC) problem. It reports speedups

of 136× against serial Verilator and 9.3× against multithreaded Verilator when simulating a

1024-core OpenPiton SoC across 22 machines. Metro-MPI requires that developers manually

partition the design and replace its boundary interfaces with MPI calls. It can be applied to

arbitrary hardware designs, provided that its interfaces are understood, and so requires expert

knowledge of the design to enable high-speed simulation. Metro-MPI is based on distributed

execution on shared-memory machines and can achieve only weak scaling; Manticore achieves

strong scaling.

DyVe [93] is an event-based, cycle-accurate RTL simulator running on a custom array of many-

core SoCs linked with a central FPGA. DyVe partitions the circuit graph by its primary outputs,

then incrementally merges program regions that share the largest number of inputs. DyVe’s

performance numbers are based on whether a target’s simulation code fits its processors’ L1, L2,

or SDRAM memories, so direct comparisons are impossible.
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8.5 Parallel RTL Simulation Using GPUs

There is considerable research on accelerating RTL simulation using GPUs. Most of this work

focused on reducing the runtime overhead of monitoring value changes and demonstrate sig-

nificant speedups relative to commercial event-driven simulators. By contrast, Manticore is a

full-cycle simulator, so it is not comparable to these systems. We nevertheless provide a short

survey of the most relevant (and recent) work for completeness.

GCS [25–27] is a hybrid GPU-accelerated event-driven simulator that levelizes logic gates in

coarser macro-gates for decreased runtime overhead associated with monitoring nets. It re-

ports orders of magnitude faster runtime (5 kHz simulation rate) compared to single-threaded

commercial simulators.

Qian and Deng [78] propose a GPU-accelerated event-driven RTL simulation based on the

Chandy-Misra-Bryant [15, 23] distributed simulation algorithm. They show up to 50× faster

simulation versus a single-threaded commercial simulator and report simulation rates of 37 kHz.

However, their evaluation compares against a low-end desktop CPU.

SCGPSim [67] accelerates SystemC [48] simulation on GPUs. SystemC is a C++ library for

event-driven simulation of circuit models which conventionally relies on userspace cooperative

threads (mapped to a single kernel thread) for modeling concurrent processes. They propose a

new thread model for GPU execution and report up to 100× faster simulation time compared to

a laptop CPU with microbenchmarks.

RTLFlow [63] is a GPU-accelerated cycle-accurate RTL simulator that exploits stimulus-level

parallelism to speed up simulation by running many independent simulations on a GPU. RTLFlow

improves execution speed by up to 40× over Verilator for many stimuli, but it runs an order

magnitude slower than Verilator with a single stimulus. Manticore is faster than Verilator with a

single stimulus.

Zhang, Ren, and Khailany [116] called for a renewal in GPU-accelerated RTL simulation research

by leveraging recent advances in GPU-compute APIs designed for machine learning.

8.6 Deterministic Acceleration

Manticore’s design philosophy is similar to VLIW processors and other Raw machines [108].

A more recent example is the Groq’s tensor streaming processor (TSP), a machine learning

accelerator [1, 2]. Like Manticore, the TSP has deterministic hardware datapaths that enable

precise reasoning and control by software. The TSP achieves determinism by eliminating all

reactive elements in its design (e.g., arbiters, caches, etc.) [1, 2]. Like RTL simulation, machine

learning exhibits rare long-lived divergent code paths, which makes static scheduling feasible.
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Manticore explores providing architectural support to accelerate RTL simulation by using fine-

grain parallelism. This work focused on the technical aspects of our approach, which is still a

prototype, not a complete “tool”. Nevertheless, our results show a clear performance advantage

of the Manticore prototype over a highly optimized software simulator for many examples. At

this level of maturity, Manticore is not a replacement for Verilator or other simulators. Much

work is needed to bring Manticore to the same level of usability as Verilator, which has enjoyed

more than a decade of active development.

We outline short-term engineering improvements and longer-term architectural improvements

that would greatly improve Manticore’s usability and scalability.

9.1 Language Support

Manticore does not support most of SystemVerilog. Some language features can be solved

with a more sophisticated frontend (Yosys’ support for SystemVerilog is incomplete). Advanced

language features (e.g., event control) are necessary for a complete simulator, especially for writing

complicated test benches. However, language features for accurate timing control (i.e., not cycle-

accurate) are incompatible with our static scheduling approach and would be challenging to

retrofit.

9.2 Multiple Clock Domains

Large RTL designs generally contain multiple clock domains, which Manticore’s current imple-

mentation does not support: each core automatically jumps back to the start of its instruction

memory at the end of compiler-scheduled synchronization and executes instructions uncondi-

tionally.

Adding support for multiple clock domains entails compiling the logic driven by each clock

separately and placing them in distinct memory regions, which can easily be performed by

multiple invocations of the Manticore compiler. Cores must then choose which memory region to
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Figure 9.1 – Scheduling clock activation in a full-cycle simulator. We show two cases where logic driven

by multiple clock domains can be statically scheduled by a full-cycle simulator. When different clocks

are perfect multiples of each other (left), we invoke the logic driven by the slow clock, then follow with

multiple invocations of the logic driven by the fast clock. When clocks are not perfect multiples of each

other (right), then we invoke both clocks multiple times in a pre-determined pattern, after which the

clocks will forcefully align (dashed lines) and the pattern repeats (if the clocks have only integer periods).
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jump to at runtime, but Manticore does not support branches. The jump can instead be handled

with an architectural change to each core’s controller. A simple state machine in each core can

choose which clock to activate at each cycle.

If the clocks have a fixed phase relationship—informally, the clock edges do not “drift” eternally—

then we can encode a static schedule for toggling the clocks (see Figure 9.1). All clocks with an

integer period satisfy this property, but clocks with irrational periods (e.g., 3.33 MHz) do not. If

the clocks do not have a fixed phase relationship, then the state machine would need to look up

the next times at which each of the clocks toggle and dynamically select the closest one.

9.3 Waveform Debugging

Digital hardware is fully parallel, and so is debugged using waveforms: a cycle-by-cycle record
of all signals in an RTL design. Waveform debugging is an essential tool in a digital designer’s

arsenal, which Manticore does not yet support.

It is possible to use Manticore’s global store instructions to record values, but it would incur

excessive overhead. More realistically we need dedicated hardware support for out-of-band

waveform collection. One way is to assign some cores entirely to waveform collection and for

other cores to send register updates to them. These cores could then buffer updates and DMA

them to off-chip DRAM. These special cores would need to be driven by the control clock and

designed with care as they may need to temporarily halt the compute clock if their internal

buffers fill up.
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9.4 Physical Implementation

Early in the project, we decided to build an FPGA prototype since fabricating an ASIC was

not affordable, and simply simulating a Manticore processor would yield less information than

constructing an implementation. The FPGA implementation, however, is limited in its clock

frequency, number of cores, and simulation capacity.

Manticore’s current design is clocked at 475 MHz, which is near the realistic maximum clock

frequency of 500 MHz to 600 MHz that an FPGA can achieve. Further increasing the clock

frequency is unlikely and the only way to do so would be with an ASIC implementation, which

has its own challenges at high clock frequencies. More realistically the improved delays made

possible by an ASIC implementation should be used to significantly decrease Manticore’s pipeline

depth, which is excessively long due to reach ill-placed FPGA resources (URAMs). In any case,

a detailed study of the tradeoff between pipeline depth, clock frequency, and their impact on

partitioning imbalance between cores (due to excessive NOPs needed to handle data hazards) is

needed in future core designs.

Manticore’s core count is limited by the FPGA’s scarce URAM resources, which are used for dense

instruction memories. Our prototype can simulate up to ≈ 900k instructions (4096 instructions in

each of 225 cores) with about 14.4 MiB SRAM for data and instruction. ASICs can easily provision

hundreds of MiB of SRAM [2, 50].

We can increase simulation capacity by (1) shrinking instruction widths, and (2) decreasing the

number of instructions needed to emulate an RTL design. We can easily divide the instruction

width by two
1
so we can put more instructions in a given instruction memory, but this just allows

doing more work in each core and does not enable more parallelism. We could further increase

simulation capacity by reducing the number of instructions needed to emulate an RTL design.

One avenue is to consider a wider 32-bit datapath (vs. Manticore’s current 16-bit datapath) as

most accelerators have 32-bit interfaces, and so would require fewer instructions—on average—to

simulate. An alternative to increase simulation capacity on FPGAs is to use a device with more

URAMs. Unfortunately larger FPGAs do not contain significantly more URAMs, and so increasing

the core count on a single FPGA is unlikely. Multiple devices are needed to scale simulation to

larger RTL designs.

9.5 Multi-FPGA Simulation

Pushing Manticore’s strong scaling beyond a single FPGA is not trivial, but is not impossible

either. The main challenge in scaling out Manticore’s design resides in its static schedule: while

it is simple to maintain determinism in a single system, it is unclear how to do so in a distributed

system as clocks do not originate from the same source. This is further compounded by the fact

that distinct FPGAs can “drift” from one another as dynamic events like off-chip DRAM accesses

cause dynamic clock gating in Manticore’s design.

1
We can replace Manticore’s large 2W4R register files with smaller 1W2R register files.
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One solution would be to add a global counter to each FPGA and to augment Manticore with

logic to ensure counters on different devices stay aligned to within a certain interval, which the

compiler then uses to correctly schedule code on all devices. This can be performed by continually

exchanging global counters between pairs of FPGAs and periodically clock-gating devices until

they converge back to a the target interval. Similar hardware-aligned counters are used by Groq’s

TSP chip to link multiple devices together within and across a rack [1].

9.6 Timing-Accurate Simulation

In principle timing-accurate simulation is unnecessary if designs are constrained correctly and

static timing analysis (STA) is successful. However, informal discussions with engineers at a chip

vendor revealed that timing-accurate simulation is nonetheless always used to ensure correctness;

the economic impact of taping-out a potentially buggy chip due to invalid STA is far too high to

skip simulation.

Unfortunately timing-accurate simulators are orders of magnitude slower than cycle-accurate

simulators and run at just a few Hz for large designs—not kHz! Furthermore, timing-accurate

simulation is performed late in the design process and extensively before tape-out, a period when

design teams are already under extreme time pressure. Speeding up timing-accurate simulation

would likely provide a significant impact to all players in the chip industry.

An open question is whether timing-accurate simulation can be parallelized effectively and

whether Manticore-like architectures would be suitable platforms to do so.

9.7 Using Accelerators Designed for Other Problem Domains

Considering the economic constraints of chip design, designing dedicated chips will continue to

be economically viable for only high-volume applications. Low-volume applications will always

be relegated to FPGA-based implementations, which—while powerful—will always lag behind

ASICs. The question is whether we can use silicon investments in other problem domains to

accelerate RTL simulation?

RTL simulation is not the only workload that benefits from having access to a large amount of

SRAM. Given the massive commercial interest in machine learning, the computing industry has

poured a huge amount of money into designing hardware accelerators to apply machine learning

at scale. Most machine learning accelerators appear to be promising platforms for research in

accelerated RTL simulation: they (1) contain hundreds of MiB of SRAM to store the abundant

weights needed to run machine learning models, (2) are often manycore MIMD designs, and

(3) contain efficient interconnects for communication within and beyond a single chip. Some

of these devices also support constant-time synchronization, the key design trait needed to

enable fast RTL simulation. Future research should evaluate whether these massively-parallel

architectures can be repurposed for scalable RTL simulation.
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10 Conclusion

The demise of Moore’s Law and Dennard scaling has resulted in diminishing performance gains

for general-purpose processors, and so has prompted a surge in academic and commercial interest

for hardware accelerators. Specialized hardware has already redefined the computing landscape

by enabling the emergence of disruptive, large-scale applications that would otherwise not have

been possible with CPUs alone.

RTL simulators play a key role in enabling the accelerated computing revolution: they are to

hardware engineers what debuggers and runtime systems are to software engineers. Without

RTL simulators, no hardware accelerator could be functionally designed, let alone its performance

validated. As accelerators increase in size and complexity, the hardware design industry will

increasingly need faster RTL simulators to permit chip design in tractable time frames.

Parallelism is the preferred approach to improve software performance. This thesis argues that

systems for RTL simulation should be designed with architectures that permit strong parallel

performance scaling—which permits effective use of increased parallelism without the need to

increase workload sizes—to reduce simulation turnaround time.

This thesis contributes ideas and techniques that led to the design and implementation of

Manticore: a strong scaling manycore architecture purpose-built for accelerated RTL simulation.

Manticore combines a bulk-synchronous parallel execution model with static scheduling to

eliminate the runtime overheads of synchronization among hundreds of cores, simplify core

design, and significantly increase the parallelism possible on a single chip. Manticore’smodest 225-

core FPGA prototype consistently achieves better performance than a state-of-the-art software

RTL simulator running on top-of-the-line desktop and server x86 processors. The Manticore

system demonstrates the actual performance benefits of exploiting fine-grained parallelism in

RTL code to accelerate simulation. Its higher speed allows several long simulations per day, as

opposed to several per week on a conventional computer, leading to a clear improvement in

developer productivity. Manticore presents a first step towards fast, open-source, scale-out RTL

simulation.
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