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Abstract

Hydraulic fractures are driven by an internal fluid pressure exceeding the minimum compres-

sive stress, propagating in a direction perpendicular to the latter. This class of tensile fractures

has gained interest over the last fifty years due to the development of multiple engineering

applications. The most-known industrial applications are well-stimulation treatments by

hydraulic fracturing used in the petroleum industry to enhance the permeability of tight

reservoirs. Other industrial applications include in-situ stress measurement techniques and

stimulations of geothermal systems. Natural occurrences include magmatic intrusions and

the ascent of geothermal fluids in subduction zones.

In sedimentary basins, the minimum compressive stress is usually horizontal and increases

with depth, such that hydraulic fractures grow along vertical planes. A buoyant force emerges

as the fracturing fluid is subjected to a hydrostatic pressure gradient different from the stress

gradient in the solid. This buoyant force elongates the fracture in the direction of gravitational

acceleration, and the propagation can become self-sustained without additional fluid released.

For fluids lighter than the surrounding material, this favors an upward growth towards possibly

environmentally sensitive upper aquifers. When and how such a buoyancy effect impacts

three-dimensional hydraulic fracture growth remains quantitatively unexplored. It is notably

unclear how the dominant energy dissipation mechanism (viscous flow or fracture creation)

will affect the partition between horizontal and vertical growth.

This thesis investigates the impact of gravitational effects on the emergence, propagation,

and arrest of planar three-dimensional hydraulic fractures using scaling, semi-analytical, and

numerical methods. We study the process using linear elastic hydraulic fracture mechanics

and consider continuous and finite volume releases from a point source. First, we analyze the

behavior of finite-volume axisymmetric hydraulic fractures in the absence of buoyant forces.

In impermeable media, we show that the arrested shape is independent of the release history.

For a permeable solid, the arrested fracture characteristics are a function of fluid leak-off,

fracture toughness, and release history. Second, we investigate buoyant hydraulic fracture

propagation under continuous fluid releases in impermeable media. A family of solutions that

depends on a single dimensionless number emerges. This dimensionless number combines

the properties of the solid (density, elasticity, fracture resistance), the fracturing fluid (density,

viscosity), and the fluid release rate. Third, we confirm that the emergence of self-sustained

buoyant hydraulic fractures in impermeable media is independent of the release history. The

release history governs, however, to the first order how the fracture propagation evolves (the

partition between horizontal and vertical growth, ascent rate). We further demonstrate that
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Abstract

fluid mass loss and stress barriers are the most efficient mechanisms to arrest buoyant frac-

tures at depth. We additionally argue why a pulsating behavior may occur even if the fluid

release is continuous.

Keywords: Hydraulic fracture, buoyant hydraulic fractures, self-sustained buoyant growth,

fracture arrest, fluid leak-off, solidification of magmatic intrusion, stress barriers, fracture

toughness variations, dike intrusions
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Résumé

Les fractures hydrauliques sont des fractures par tension actionnées par une pression de fluide

interne supérieure à la contrainte minimale de compression. Elles ont fait l’objet d’un intérêt

croissant au cours des cinquante dernières années en raison du développement de multiples

applications en ingénierie. Les applications industrielles les plus connues sont les traitements

de stimulation de puits par fracturation hydraulique utilisés dans l’industrie pétrolière afin

d’augmenter la perméabilité des réservoirs compacts. D’autres applications industrielles

comprennent les techniques de mesure des contraintes in-situ et la stimulation des systèmes

géothermiques. Les intrusions magmatiques et la remontée des fluides géothermiques dans

les zones de subduction sont des exemples de fracturation hydraulique naturelle.

Dans le cas des bassins sédimentaires, la contrainte minimale de compression est générale-

ment horizontale et augmente avec la profondeur, de sorte que les fractures hydrauliques

se développent dans des plans verticaux. Une poussée d’Archimède émerge car le fluide de

fracturation est soumis à un gradient de pression hydrostatique différent du gradient des

contraintes. Cette poussée étend la fracture dans la direction de l’accélération gravitaire ce

qui peut engendrer une propagation auto-entretenue sans injection supplémentaire de fluide.

Pour les fluides avec une densité inférieure à la roche, la poussée d’Archimède favorise la

remontée des fluides vers des aquifères supérieures, potentiellement vulnérables. La question

de quand et commente les effets gravitaires influencent quantitativement la propagation

des fracture hydrauliques tridimensionnelles reste ouverte. Notamment, le rôle de l’effet de

dissipation d’énergie dominant (flux visqueuse ou création des surfaces) sur la partition entre

la croissance verticale et horizontale n’est pas encore clarifié.

Cette thèse explore les effets gravitaires pour comprendre la création, la propagation et l’arrêt

des fractures hydrauliques tridimensionnelles planaires. Nous étudions le processus à l’aide

de la mécanique élastique linéaire des fractures hydrauliques et en considérant des injec-

tions continues et à volume fini à partir d’une source ponctuelle. En premier, nous clarifions

le comportement des fractures hydrauliques axisymmétriques d’un volume fini injecté en

négligeant les effets gravitaires. Pour les milieux imperméables, nous démontrons que la

géométrie à l’arrêt est indépendante de l’historique d’injection. Si le solide est perméable, les

caractéristiques de la fracture à l’arrêt dépendent de la perte de fluide dans l’environnement,

de la ténacité, et du taux d’injections. En deuxième, nous étudiant la propagation des fractures

hydrauliques gouvernées par la poussée d’Archimède dans le cas d’une injection continue

dans un milieu imperméable. La solution est une famille de solutions dépendant d’un seul

nombre adimensionnel. Ce nombre adimensionnel combine les propriétés du solide (densité,

ix



Résumé

élasticité, ténacité), du fluide injecté (densité, viscosité), et le taux d’injections. En troisième,

nous confirmons que la formation de fractures hydrauliques auto-entretenues gouvernées

par la poussée d’Archimède dans des milieux imperméables est indépendante de l’historique

d’injection. Ce dernier affecte toutefois la partition entre la croissance verticale et horizontale

en première ordre. Nous démontrons également que la perte de fluide dans le milieu enviro-

nant, la solidification du fluide, et les barrières de contraintes sont les mécanismes les plus

efficaces permettant d’arrêter les fractures gouvernées par la poussée d’Archimède et qu’un

comportement pulsant peut se produire même à taux d’injection constant.

Mots-clés : Fracture hydraulique, fractures hydrauliques gouvernées par la poussée d’Ar-

chimède, propagation auto-entretenue des fractures hydrauliques gouvernées par la poussée

d’Archimède, arrêt de fracture, échange de fluide avec l’environnement, solidification d’une

intrusion magmatique, barrières de contraintes, variations de ténacité, intrusions de dykes
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Zusammenfassung

Hydraulische Risse werden durch einen inneren Flüssigkeitsdruck, welcher die Mindestdruck-

spannung übersteigt, angetrieben und wachsen rechtwinklig dazu. Diese Klasse von Zugrissen

hat durch die Entwicklung zahlreicher technischer Anwendungen in den letzten fünfzig Jahren

kontinuierlich an Aufmerksamkeit gewonnen. Die bekannteste industrielle Anwendung ist

das Einpressen von Flüssigkeiten in Bohrlöchern zur Erzeugung von hydraulischen Rissen.

Diese Technik wird in der Erdölindustrie eingesetzt, um die Durchlässigkeit von dichten Lager-

stätten zu erhöhen. Weitere industrielle Anwendungen sind Verfahren zur Bestimmung des

Spannungsfeldes in geologischen Formationen und das Weiten und Erzeugen von Rissen zur

Förderung des Wärmetransports in geothermischen Systemen. Zu den natürlichen Beispielen

hydraulischer Risse gehören magmatische Intrusionen und das Aufsteigen geothermischer

Flüssigkeiten in Subduktionszonen.

In Sedimentbecken ist die minimale Druckspannung in der Regel horizontal und nimmt mit

der Tiefe zu, so dass sich die hydraulischen Risse in vertikalen Ebenen ausbilden. Dadurch

entsteht eine Auftriebskraft, da die risstreibende Flüssigkeit einem hydrostatischen Druck

ausgesetzt ist, welcher sich vom Spannungsgradienten des umschliessenden Gesteins unter-

scheidet. Diese Auftriebskraft zieht den Riss entlang des Gravitationsfeldes in die Länge und es

kann ein selbsterhaltendes Wachstum entstehen, welches keine zusätzliche Flüssigkeitszufuhr

erfordert. Bei Flüssigkeiten mit einer geringeren Dichte als die des umgebenden Materials ist

dieses Wachstum aufwärtsgerichtet, so dass der Riss möglicherweise ökologisch empfindli-

che, höhergelegene Grundwasserleiter erreicht. Ob überhaupt und, falls ja, in wie fern, die

Auftriebskraft die Ausbreitung von dreidimensionalen planaren Rissen beeinflusst, konnte

bisher nicht quantitativ erörtert werden. Unter anderem ist unklar, wie der dominierende

Mechanismus zur Energieumwandlung (viskose Strömung oder Rissflächenbildung) sich auf

die Trennung zwischen horizontalem und vertikalem Wachstum auswirkt.

Diese Dissertation untersucht mittels dimensionaler und semi-analytischer Methoden und nu-

merischen Simulationen die Effekte der Schwerkraft, um die Entstehung, Ausbreitung und das

Anhalten von dreidimensionalen, planaren, hydraulischen Rissen zu verstehen. Wir untersu-

chen den Prozess mithilfe der Mechanik linear-elastischer hydraulischer Risse und betrachten

dabei fortlaufende und endliche Einpressungen von Flüssigkeiten aus einer Punktquelle.

Erstens klären wir das Verhalten von axialsymmetrischen hydraulischen Rissen endlichen

Volumens und vernachlässigen dabei die Schwerkraft. Für undurchlässige Gesteine zeigen wir,

dass die Geometrie des angehaltenen Risses nicht vom Ablauf der Einpressung abhängt. Wenn

der Feststoff durchlässig ist, werden die Eigenschaften des gestoppten Risses durch den Flüssig-
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Zusammenfassung

keitsabfluss in die Umgebung und die Rissfestigkeit definiert. Die genau Form hängt dabei vom

Ablauf der Einpressung ab. Zweitens analysieren wir die Ausbreitung von auftriebsgetriebenen

hydraulischen Rissen für ein fortlaufendes Einpressen in ein undurchlässiges Medium. Wir

zeigen dabei, dass eine Lösungsfamilie in Abhängigkeit einer einzigen dimensionslosen Zahl

existiert. Diese dimensionslose Zahl kombiniert die Eigenschaften des Festkörpers (Dichte,

elastische Parameter, Rissfestigkeit), der Flüssigkeit (Dichte und Viskosität), und die Injekti-

onsrate der Einpressung. Wir bestätigen drittens, dass die Entstehung von selbsterhaltenden

auftriebskraftgetriebenen hydraulischen Rissen in undurchlässigem Material unabhängig

vom Ablauf der Einpressung ist. Dieser dominiert jedoch das Verhalten während der auf-

triebsgetriebenen Ausbreitung (Teilung zwischen horizontalem und vertikalem Wachstum,

Aufstiegsgeschwindigkeit). Wir zeigen weiter, dass Masseverluste der treibenden Flüssigkeit

und Spannungsbarrieren die wirksamsten Mechanismen sind, um auftriebsgetriebenen Risse

anzuhalten. Zusätzlich legen wir Argumente dar, weshalb ein pulsierendes Wachstum auch

bei einer konstanten Injektionsrate auftreten kann.

Stichworte: Hydraulische Risse, auftriebskraftgetriebene hydraulische Risse, selbsterhaltendes

Wachstum von auftriebskraftgetriebene hydraulische Rissen, Anhalten von Rissen, Flüssig-

keitsabfluss, Flüssigkeitsverfestigung von magmatischen Intrusionen, Spannungsbarrieren,

veränderliche Rissfestigkeit, magmatische Intrusionen

xii



Zämäfassig

Hydroulischi Risse wärde dürne innere Flüssigkeitsdruck überem Niveau vor Mindestdruck-

spannig atrybe u breitesech sänkrächt zu dere Mindestdruckspannig us. Die Art vo Zugrisse

het dürt Entwicklig vo viune technische Awändige i dä letste füfzg Jahr geng meh Ufmerk-

samkeit becho. Ds Ipresse vo Flüssigkeite dürnes Bohrloch zum Erzüge vo hydraulische Risse

isch di bekanntischti industrielli Awändig. Settegi Ipressige wärde vor Minerauöuindustri

gmacht zum d Durchlässigkeit vo dichte, minerauöltragende Gschteisformation z erhöe. An-

geri Awändige ir Industrie si o z mässe vom Spannigszuestand im Ungergrund oder z Wyte u

Ibringe vo Risse zur Förderig vor Wärmeleitig i geothermische Syschtem. Ir Natur gsehtme das

Phänomen bispiuswis ir Form vo magmatische Ilagerige oder bim Ufstige vo geothermische

Flüssigkeite i Subduktionszonäne.

Ds Spannigsfäud i Sedimentbecki isch i dr Regu so, das d Mindestdruckspannig horizontau

isch u grösser wird, je töifer me geit. Hydraulischi Risse biudesech drum ir Vertikale. So entsteit

e Uftrybschraft, wüu di trybendi Flüssigkeit e hydrostatische Druck generiert wo angersch isch

aus dä vom Schpannigsfäud. D Uftrybschraft zieht dr Riss i dr Richtig vom Gravitationsfäud

id Längi. So chasech es säubschterhautends Wachstum ischteue wo kes derzuetue vo meh

Flüssigkeit brucht. Faus di trybendi Flüssigkeit liechter isch aus ds Gschtei rundume, wachst

dr Riss gäge ufe u chönnt ökologisch sensybli Grundwasservorkomme erreiche. Öb u wie die

gravitäre Effekte ds Wachstum vo so drüdimensionale Risse beiflusse, hetme noni quantitativ

beschtimmt. Es isch vorauem unklar, wie dasech d Ufteilig vor Energieumwandlig (dür zäh-

flüssig fliessendi Flüssigkeite oder für ds Kreiere vo Oberflächine) ufts Verhäutnis zwüsche

horizontalem u vertikalem Wachstum uswürkt.

I dere Dokterarbeit ungersueche mir dr Ifluss vor Schwärchraft ufts Entschtah, Wachse, u

Stoppe vo setigne äbenewegs wachsende, drüdimensionale hydroulischä Risse. Für ds Stu-

dierä vo dene Ablöif bruchemer d Mechanik vo linear-elastische hydroulische Risse, u luege,

wisech fortloufendi und ändlechi Ipressige vo Flüssigkeite vomne Punkt us verhaute. Zersch

vernachlässige mir d Schwärchraft u kläre, wi sech es ändlechs Volume vo ipresster Flüssigkeit

verhautet. We ds Gschtei wo dripresst wird undurchlässig isch, chöimer zeige, dass d Form

vom gstoppte Riss nüüt mitem Ablouf for Ipressig z tüe het. Angerersits schpiut genau dä

Ablouf aber e grossi Roue faus ds Gschtei durchlässig isch. I däm Fau sis d Eigeschafte vom

Materiau, vor trybende Flüssigkeit, u ihre Abfluss ids Gschtei wo di aghautnegi Form bestimme.

Aus zwöits ungersueche mir Risse wo dürne stetigi Ipressig imne undurchlässige Materiau

entstöh u uftrybschrafttrybe si. Daderbi chöimer zeige, dases e ganzi Familie vo Lösige git wo

dank ere Zau ohni Einheitä chöi bestimmt wärde. Die Zau setztsech us de Eigeschafte vom
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Zämäfassig

Gschtei (sini Dychti, elastische Parameter, sini Rissfeschtigkeit), vor trybende Flüssigkeit (sini

Dychti und Viskosität), u dr Ipressrate zämä. Imne nächste Schritt chöimer bestätige, dass ds

Entschtah vo seubschterhautende hydroulische Risse, tribe vo ihrer eigete Uftrybschraft, nid

vom Ablouf for Ipressig abhängig isch. Weme aber wot wüsse, wisech di Risse gnau bewege,

de het dä Ablouf e grosse Ifluss. Mir zeige wyter, dass dr Abfluss oder ds Gfriere vor tribende

Flüssigkeit oder aber Gümp im Spannigsfäud di effizientischte Mechanisme si zum so Risse

ufhautä. Usserdäm chöi so uftrybschraftrybeni Risse pulsierend wachse, sogar we d’Ipressig

konstant Flüssigkeit abgit.

Stichwörter: Hydroulische Riss, uftribschrafttrybene hydroulische Riss, Stoppe vo Risse, Flüs-

sigkeitsabfluss i ds Materiau, Gfriere vo magmatische Ilagerige, Gümp im Spannigsfäud,

Veränderige vor Rissfeschtigkeit, magmatischi Ilagerige, säubschterhautends Wachstum vo

uftribschrafttrybene hydroulische Riss
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Part IMechanics of Hydraulic Fractures
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1 Introduction

The propagation of hydraulic fractures through the lithosphere is observed in various an-

thropogenic activities: geothermal, carbon storage, energy storage, hydrogen production,

brine mining, oil and gas production, soil remediation, mining stabilization, and in-situ stress

measurements. In most industrial applications, so-called hydraulic fracturing stimulations

are performed. During such a stimulation, a pressurized fluid is injected into the targeted rock

formation. The injection is either very localized (at a point only) or conducted over a large

section of the wellbore. The pressurized fluid creates tensile fractures, propagating into the

rock mass. Dependent on the industrial application, the purpose of these fractures differs.

In various energy-related applications, the goal is to increase the in-situ permeability of the

target formation, achieved through preferential flow paths (fractures) for fluids. The effective

increase in permeability of the rock mass then serves as the primary variable to check for the

effectiveness of the hydraulic stimulation (Economides and Nolte, 2000). So-called mini-frac

tests are performed to measure the in-situ stress. During these tests, a small quantity of fluid is

injected, and the pressure when the fracture initiates is reported. The injection is subsequently

stopped, and the liquid flows back into the borehole. When fluid flow back is completed, the

fracture closes at a given fluid pressure. From these two pressure measurements, the mini-

mum in-situ compressive stress can be estimated (Haimson and Fairhurst, 1969; Haimson

and Cornet, 2003).

Hydraulic fractures not only appear due to human activities. Horizontal and vertical magmatic

intrusions in the Earth’s crust also form through hydraulic fracturing. Such processes are

suggested to be the main mechanisms of large-scale mass transport through the lithosphere

(Rivalta et al., 2015). Other natural occurrences of hydraulic fractures include base ruptures

of glaciers, the calving of ice sheets in arctic regions due to buoyant hydraulic fractures, or

hydrocarbon generation creating a significant increase in pore pressure (Tsai and Rice, 2010;

Pattyn, 2018; Vernik, 1994).

This thesis focuses on the macro-scale propagation of tensile hydraulic fractures in an initially

intact rock mass. Even though the industry has used the technique of hydraulic stimulation for

decades, some key aspects, like the finiteness of the volume of fluid released and the effects of
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Chapter 1. Introduction

Figure 1.1: Example of outcrops of magmatic intrusions: a) Ship Rock in New Mexico (USA)
(picture taken by James St. John on 02.09.2007, downloaded on 17.03.2023). b) Fissure erup-
tion on the north flank of Piton de la Fournaise starting on 9th March of 1998 (La Réunion
Island, France) (picture taken by Luc Souvet on the 09.03.1998, downloaded on 17.03.2023). c)
Makthesh Crater in the Negev Desert (Israel) (picture taken by Andrew Shiva on 24.07.2016,
downloaded on 17.03.2023).

gravitational forces on large fractures, have obtained little attention. Even without considering

these effects, three-dimensional planar fractures show complicated behavior depending on

in-situ and injection conditions and the host rock and fluid properties. When characterizing

these effects and the possible outcomes, we extensively use scaling arguments, which we

validate through numerical simulations. Notably, these scalings enable us to cover all possible

parameter combinations and hence allow dealing with the inherent uncertainty regarding

reservoir properties and in-situ conditions. A particular emphasis is put on validating our

simulation results against scaling predictions, approximate and lower dimensional solutions,

and analytical solutions.

1.1 Motivation and background

1.1.1 Magmatic intrusions / Diking

The term hydraulic fractures (HF) describes a tensile (Mode I) fracture driven by the flow of a

pressurized internal fluid in a solid medium under compressive stresses. This fracture type is

genuinely observed in various circumstances in geomaterials (soils and rocks) (Detournay,

2016). The most impressive natural occurrences are geological formations called dikes (Spence

et al., 1987; Rivalta et al., 2015). These magmatic intrusions form due to the release of magma

at a deep, overpressurized source. The path such intrusions follow may be very complex,

occasionally depositing horizontally (so-called sills). Their ascent rate is usually unsteady

(Peltier et al., 2007; Sigmundsson et al., 2015) caused by possibly non-constant source condi-

tions or other mechanisms, making it difficult to estimate if the intrusion will become trapped

within the subsurface or form a fissure opening at a volcanic flank (Pedersen et al., 2007; Roult

et al., 2012). Well-known examples of trapped magmatic intrusions exposed after cooling

thanks to erosion include the Shiprock Mountain in New Mexiko (Larson and Strangway, 1969;

Lister and Kerr, 1991) and formations in the Negev desert in Israel. An example of a fissure
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1.1 Motivation and background

Figure 1.2: Setup of a typical hydraulic fracturing treatment. (picture taken by Evolution Well
Services in 08.2019, downloaded on 11.05.2023).

eruption is presented by the 1998 intrusion at Piton de la Fournaise on La Réunion Island (see

figure 1.1).

1.1.2 Hydraulic fracturing treatments

The most known appearance of hydraulic fractures is the industrial placement in the oil and

gas industry to enhance the permeability of hydrocarbon-bearing formations. Hydrofracturing

jobs are performed in low to very-low permeability reservoirs (Smith and Montgomery, 2015)

and intend to initiate and propagate one (or multiple) hydraulic fracture(s). This goal is

achieved by injecting a fracturing fluid at a controlled pumping rate into the previously drilled

wellbore. The fracturing fluid is enriched by a proppant (solid particles, like sand) during the

hydrofracturing treatment emplacing the fracture. The filling of the fracture with proppant

keeps the fracture open and creates a preferential flow path for fluids due to the increased

permeability of the proppant-filled fracture compared to the host rock.

The hydraulic fracturing industry and associated services revenue amounts to about 22.5

Billion USD in the United States alone (see the data of IBISWorld last updated on 26.04.2021

and consulted on 18.03.2023). Hydraulic fracturing treatments generally require a significant

amount of installations. Notably, achieving the potentially large downhole pressures necessary

to fracture the rock need high-pressure pumps installed on so-called pump trucks, capable of

generating up to 100 MPa (see figure 1.2). Note that the downhole pressure is not equivalent
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to the pressure at the injection pump. The downhole pressure accounts for the hydrostatic

pressure of the fluid column in the wellbore and is reduced through the pressure drop caused

by the fluid flow inside the wellbore (frictional pressure drop). For typical single fracture

treatments, the injection rate of the fracturing fluid into the wellbore falls in the range of

0.5 m3/min to 6.0 m3/min (Wan, 2011). When the treatment aims to initiate multiple fractures,

the injection rates of a single fracture can be multiplied by the number of fractures (Lecampion

and Desroches, 2015).

Designing hydraulic fracture treatments aims to ensure that the fracture created fulfills a

desired geometry and uniform fill by the injected proppant. After fracture initiation, the

volume injected is balanced between losses by leak-off to the host rock and the fracture

volume. The goal of the design is thus to maximize the fluid volume remaining in the fracture.

This goal is supplemented by the aim of uniformly distributing the proppant. Combining the

two will increase the permeability and productivity of the well efficiently. A measurement

of this design is the "fracturing efficiency", which is the ratio of the fracture volume and the

injected fluid volume. This quantity directly relates to the final propped fracture shape (width

and surface area). The process is history-dependent such that these final parameters depend

on the injection schedule (rate, volume, fluid composition), the fracturing fluid characteristics

(rheology, density), the proppant, and the host rock characteristics (stiffness, permeability,

toughness). Consequently, designing hydraulic fracturing treatments at a given location with

a known geological formation involves not only the correct choice of the fracturing fluid

and proppants but also the injection schedule. Finally, one must include considerations of

operation safety in the design. A notable concern might be the emergence of a self-sustained

buoyant propagation directed to the surface. Such fracture ascent might reach higher laying,

potentially ground-water-bearing formations. The fracturing fluid is harmless. Only the

natural gas or oil it carries is potentially hazardous. Ensuring a safe operation thus involves

additional considerations of buoyancy to exclude such forms of pollution.

1.1.3 Other industrial applications

Many other applications of hydraulic fracturing stimulations exist in various industrial branches

like conventional mining (Jeffrey et al., 2013), civil engineering (Lancellotta et al., 2017), in-situ

stress measurements (Detournay et al., 1989; Boone and Ingraffea, 1990; Haimson and Cornet,

2003), geothermal energy production, mining of brine, orange hydrogen production, fracture

thermal/elastic energy storage, and CO2-sequestration programs. An application that aims

to connect existing fractures rather than create new ones is enhancing water production

from rock aquifers. In this application, low-pressure injections are sufficient because there

is no need for newly created fractures. In this thesis, we are mainly interested in the last five

industrial applications mentioned because only these fields are prone to generate sufficiently

large fractures, such that gravitational effects will become of the first order.
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Geothermal energy production

The application of hydraulic fracturing in geothermal energy production is more recent. The

geothermal energy sector still comprises only about 0.5 % of the renewable energy production

in the world despite its potential (Lebedys et al., 2022; Kiruja et al., 2023; Huttrer, 2021). An

increase in the installed power by about 50 % since 2013 could not increase the market overall

market share. The hydraulic fracturing treatment in the enhanced geothermal system (where

the enhanced indicates stimulations to raise the permeability/production of the system) in a

project near the Newbury volcano in Oregon in 2013 was the first large-scale implementation

of this technique (Adams and Rowe, 2013).

An interesting by-product of geothermal systems is geothermal brines. A geothermal brine is a

hot salty fluid. Such brines, with potentially precious dissolved salts/minerals (like lithium),

can occur naturally at various places in the subsurface. They can be mined independently

of a geothermal site or in combination. A 2020 technical report of the United States Office of

Energy Efficiency & Renewable Energy (Stringfellow and Dobson, 2020) indicates that Lithium

production from brines will increase significantly in the upcoming years (see figures 2 and 3 of

Stringfellow and Dobson (2021)), easily possible to cover the current demands of the United

States.

Orange hydrogen

A recent development in the energy industry is the production of so-called "orange hydrogen".

The color of hydrogen refers to the way it is produced. In 2021, about 96 % of the world’s hydro-

gen production was "grey" or "black" (Osselin et al., 2022). For those types of hydrogen, the

required energy input comes from natural gas (grey) or coal (black). Regarding CO2 emissions,

those two are no options to create a more sustainable energy future and need to be replaced by

different types of hydrogen. So far, the commonly used alternative for grey and black hydrogen

is "green" hydrogen. The label "green" states that the energy required for electrolysis comes

from renewable energy sources. The fact that the electrolysis requires abundant energy and

the cost of renewable energy is still large makes green hydrogen expensive. A similar approach

to green hydrogen is blue hydrogen. In blue hydrogen production, the reaction to obtain the

hydrogen is not electrolysis but either a Steam Methane Reforming (SMR) or Auto Thermal

Reforming (ATR). These reactions split natural gas into hydrogen and CO2, requiring capturing

the produced CO2 and ensuring that methane losses remain minimal for blue hydrogen to be

environmentally friendly (Howarth and Jacobson, 2021). A possible solution to these problems

presents "orange" and "white" hydrogen. White hydrogen is naturally produced hydrogen

through serpentinization, escaping the Earth’s crust mainly on the seafloor but also on land (a

long-known example is Mount Chimaera in Yanartaş (Turkey) (Etiope et al., 2011)) (Zgonnik,

2020; Osselin et al., 2022). Skipping the necessary transformations, which require energy and

produce unwished greenhouse gases as a by-product, is an exciting energy source (see an

example in Bourakebougou (Mali) (Prinzhofer et al., 2018)). Orange hydrogen is an anthro-

pogenic acceleration of serpentinization. Much like in an Enhanced Geothermal System (EGS),

7



Chapter 1. Introduction

the idea is to inject water into the many formations on Earth (Kelemen et al., 2011) susceptible

to producing hydrogen. The injected water is collected within other wells, and the hydrogen it

bears is extracted at the surface. Much like in enhanced Geothermal Systems, respectively, in

the oil and gas industry, this process requires engineering the permeability and flow paths

within the formation. The goals of the possible hydraulic fracturing treatments in this context

are the same as for the production of oil and gas (Osselin et al., 2022).

Carbon capture and sequestration (CCS)

With the production of orange hydrogen goes our last application of hydraulic fracturing

treatments, Carbon Capture and Sequestration (CCS). The link between the two is that the

same formations are optimal for CCS and producing orange hydrogen (Kelemen et al., 2018).

Producing orange hydrogen can thus be an environmentally friendly energy source while

capturing additionally already emitted CO2. The large-scale CCS projects of Carbfix in Iceland

and a pilot project in the Columbia River basalts (Wallula, USA) have demonstrated that the

mineralization of the CO2 works, even after the injection of up to 73000 t (McGrail et al., 2017;

Gíslason et al., 2018; Snæbjörnsdóttir et al., 2020). The design challenges of such large-scale

injections remain unchanged from the challenges of increased productivity and safe operation

presented for hydraulic fracturing treatments in the oil and gas industry.

Fracture thermal energy storage (FTES)

Finally, hydraulic fracturing techniques can not only be used to generate electricity but also

to store energy. For example, fractured thermal energy storage (FTES) aims to store thermal

energy through parallel employed hydraulic fractures in crystalline rocks. FTES was first

proposed within the HYDROCK project (Larsson and Haag, 1985) in 1985. A test site was

established at the turn of the century in Norway (Hellström and Larson, 2001; Ramstad et al.,

2007), and the principle gained interest again in the recent energy transition discussion due

to its capabilities of seasonal energy storage (Janiszewski et al., 2016). The design of such

fractures maximizes their surface to maximize the heat exchange with the surrounding rock.

Enhancing the formation’s permeability is not wished here, as the fluid flows only in the

horizontal fractures, and the exchange with the rock is limited to heat only. Another approach

uses a single hydraulic fracture as elastic energy storage. This principle requires a horizontal

hydraulic fracture placed in surface proximity. The fractures fluid is pressurized when excess

energy is present. After the pressurization of the fluid lens, the borehole is shut-in. When

demand for the excess energy arises, the pressurized fluid is released from the borehole and

used to operate a turbine at the borehole, converting it back into electricity. The challenges

of the design of such a fracture differ slightly. Notably, the plugging at the wellbore must be

avoided at all expenses (Bunger et al., 2023; Schmidt et al., 2023).
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1.1 Motivation and background

Figure 1.3: The three most often studied geometries of hydraulic fracture. a) The finite two-
dimensional plane strain fracture called KGD-Fracture after Geertsma and De Klerk (1969). b)
PKN-fractures using a local two-dimensional plane strain approximation named after Perkins
and Kern (1961) and Nordgren (1972). c) The penny-shaped/radial planar three-dimensional
fracture, observed for point sources fluid releases in a homogeneous media.
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1.2 A review of hydraulic fracture growth

The need for understanding the initiation and propagation of hydraulic fractures arose in

the 1950s with its development in the oil and gas industry. A first leap in understanding the

hydraulic fracturing process recognized the importance of the coupling between the elastic

deformation of the surrounding media and the fluid flow within the fracture (Barenblatt, 1962;

Khristianovic and Zheltov, 1955). The identified system reveals a complex multi-physical

and multi-scale behavior, such that early developments of the 1960/70s were restricted to

simplified models. Most models used simplifying assumptions to reduce the fluid flow to one

dimension only. One of these simplifying models, still widely used and investigated today, was

developed by Perkins and Kern (1961). Their so-called PKN model (named after Perkin, Kerns,

and Nordgreen (Nordgren, 1972)) assumes a fracture of a constant height (see figure 1.3b).

Along the fracture length in the horizontal direction, each cross-section is supposed to obey

a plane-strain deformation law, which results in a one-dimensional flow. Different from

the PKN model, the KGD (named after Khristianovic, Geertsma, and De Klerk (Geertsma

and De Klerk, 1969)) assumes a two-dimensional plane-strain fracture with a cusp shape

(see figure 1.3a). The last of the genuinely considered geometries is axisymmetric. The first

axis-symmetric model solved the problem of a fracture placed in an impermeable medium

with a high fracturing toughness (Abé et al., 1976) (see figure 1.3c). Based on the original

PKN model, Simonson et al. (1978) developed the first pseudo-three-dimensional model for

fracture propagation. Their approach divided the fracture laterally into multiple adjacent cells,

allowing the fracture height and width to be calculated from the local fluid pressure (Adachi

et al. (2010) present a more detailed discussion). At about the same time, the first models

considering fracture arrest and closure emerged. Nolte (1979) used the assumption of a PKN-

Fracture to derive characteristics of the final fracture from the pressure decline at the wellbore

after the end of the injection. One of the main hypotheses of Nolte (1979) was that fracture

propagation immediately stops upon the end of the injection. The restriction of immediate

arrest was lifted by the work of Settari and Cleary (1984), which developed a pseudo-3D

simulator capable of modeling two-phase flow, closure, and production of hydraulic fractures.

Efficient numerical simulation of PKN fractures was made accessible by implementing a

moving mesh-based explicit finite difference scheme by Detournay et al. (1990). Adachi et al.

(2001) then developed a solver for KGD fractures propagating in a zero fracture toughness,

elastic media. Other researchers started to investigate axis-symmetric fractures. Desroches

and Thiercelin (1993) used a fully coupled numerical tool to this end, including lubrication

flow and fluid leak-off, and Gu and Leung (1993) extended the analysis of the closure of a finite

fluid volume fracture started by Nolte (1979); Settari and Cleary (1984) to 3D planar hydraulic

fractures in heterogeneous stress and leak-off conditions.

1.2.1 Energy dissipation mechanisms

The discussion about the competing mechanisms of energy dissipation by viscous flow and

energy dissipation to create new surfaces started in parallel. This debate originated from the
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observations of several researchers (Spence and Sharp, 1985; Lister, 1990b) that viscous flow

in the fracture may dominate the growth of the hydraulic fractures. The observations revealed

that when the fracture resistance of the solid becomes negligible, the fracture behavior close

to the propagating edge (the fracture tip) behaves no longer akin to linear elastic fracture

mechanics (LEFM). The solution to this limiting, the zero-toughness case, was derived in

Desroches et al. (1994) for an impermeable medium and in Lenoach (1995) when accounting

for fluid leak-off. These developments and observations formed the basis of an efficient

approach to characterize the competition between the two energy dissipation mechanisms.

The technique consists of zooming into the near-tip region of a hydraulic fracture, where

asymptotic solutions can be derived. From this near-tip behavior, it is possible to deduce

the effects of the multi-physical behavior on the macroscale growth of the hydraulic fracture.

Unfortunately, the lack of universal near-tip solutions prevented the development of reliable

numerical tools for this multi-scale, multi-physical problem for decades (Adachi et al., 2007;

Lecampion et al., 2018). Apart from the solutions of Desroches et al. (1994); Lenoach (1995),

Garagash and Detournay (2000, 1998) studied the near-tip behavior in an elastic impermeable

medium where a fluid lag appears. A fluid lag is a cavity separating the front of the fracturing

fluid from the fracture front, where the rock is breaking. In their approach, the fracture

toughness can take an arbitrary value, and the cavity is traction free, allowing them to solve

for the cavity length as the unknown. The approach can, however, be extended to account for

in-flowing fluid from the host rock, allowing studying the circulation of pore fluid between

the lag and the surrounding media (Detournay and Garagash, 2003). In this configuration,

cavitation of the fluid in the lag is possible, and its limits are discussed. A complete solution

accounting for the effects of fluid leak-off, viscosity, and toughness was only developed by

Garagash et al. (2011) and approximated with a numerically efficient function by Dontsov and

Peirce (2015a); Dontsov (2017).

1.2.2 Hydraulic fracture tip asymptotics

A different line of research, necessary to validate the relationship between the tip behavior

and the macroscopic growth of the fracture, studied finite hydraulic fractures. The methods

used therein are scaling and dimensional analysis to clarify the interplay between the physical

phenomenons of viscous flow of the fracturing fluid, creation of new fracture surfaces, leakage

of the fracturing fluid to the surrounding medium, and the elastic deformation of the host rock

(Detournay, 2016, 2004). These analyses revealed that a finite set of dimensionless numbers is

sufficient to quantify the various possible propagation regimes by separating the governing

mechanisms. Furthermore, setting one or several of these dimensionless numbers to unity

will allow the development of solutions for finite fracture propagation (Madyarova, 2003;

Bunger et al., 2005c). During the propagation history of such fractures, the hydraulic fracture

often transitions from one limiting regime to another. It is possible to characterize these

transitions with well-defined transition lengths and time scales (Garagash, 2009; Madyarova,

2003; Savitski and Detournay, 2002; Lecampion et al., 2017). These limiting solutions serve as

a benchmark for numerical solvers and have been validated by laboratory experiments.
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1.2.3 Scaling and semi-analytical approaches

With the insights obtained of the behavior at the fracture tip and the expectations of frac-

ture behavior from the finite fracture scaling analysis, sophisticated planar 3D solvers have

emerged. Notably, Peirce and Detournay (2008) introduced the implicit level-set algorithm

(ILSA) in a scheme for hydraulic fracture propagation in a homogeneous media (Dontsov

and Peirce, 2017). The main characteristic of the ILSA scheme is its usage of the near-tip

asymptotics at the propagating edges. Thanks to a volume conservation scheme, this local

behavior is linked to the coupled hydro-mechanical problem of the system composed of the

fracture and the fracturing fluid. The fully implicit scheme proved extraordinarily robust and

enabled the solution for finite fractures in plane-strain and axis-symmetric configurations

(Garagash, 2000; Savitski and Detournay, 2002; Bunger et al., 2005a; Madyarova, 2003). Their

versatility allows them to account for various phenomena like non-Newtonian fluids, buoyant

forces, heterogeneities of the host media, and others. A comparison between explicit, implicit,

and predictor-corrector schemes was shown to be accurate by Zia and Lecampion (2019)

using a Python implementation of the ILSA scheme (Zia and Lecampion, 2020). Several other

numerical solvers exist, and we refer the reader to Lecampion et al. (2018) for a review of

current trends in the numerical modeling of hydraulic fractures.

1.2.4 Buoyant hydraulic fractures

Simultaneously to these developments, the domain of buoyant hydraulic fractures signifi-

cantly advanced. The first analogy to buoyant propagation originated from the theory of

a two-dimensional (2D), plane strain, hydrostatically loaded fracture developed by Weert-

man (1971). The so-called Weertman’s pulse derives a static equilibrium solution but cannot

explain the propagation velocity of the crack. The findings of Weertman (1971) inspired a

series of numerical modeling approaches to buoyant hydraulic fractures (Rivalta et al., 2015).

These uncoupled models are not suitable to describe vertical crack velocities but underwent

considerable extensions accounting for lateral extensions (Heimisson et al., 2015), hetero-

geneities (Maccaferri et al., 2010), and complex fracture shapes where the fracture propagation

direction must be estimated (Dahm, 2000a; Maccaferri et al., 2011; Davis et al., 2020, 2021). A

second approach to vertically propagating hydraulic fractures assumed that the resistance to

fracture of the rock is negligible and only elastic forces and viscous fluid flow matter (Lister

and Kerr, 1991; Spence and Turcotte, 1985; Spence et al., 1987). Modeling buoyant hydraulic

fractures assuming a zero-fracture toughness allows for deriving the fracture propagation

velocity but fails to include complex propagation paths or heterogeneities. Both modeling

approaches and their respective solutions indicate a separation of the propagating fracture

in two regions characterized by different energy dissipation mechanisms. A head, where

the balance between buoyancy and fracture toughness dominates, and a tail, dominated

by viscous fluid flow. Dahm (2000b) tried to combine the two in 2D and inspired a recent

extension using an energy approach (Furst et al., 2023). These theories remained within the

2D limits, although Lister (1990a) already proposed a pseudo-3D solution for fractures within
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the limit of negligible fracture toughness. Only recently, (Garagash and Germanovich, 2022)

were the first to present a full three-dimensional (3D) description. The fundamental features

in the 3D planar solution of Garagash and Germanovich (2022) remain the same as for the 2D

approximations (toughness-dominated head and viscosity-dominated tail) and assume that

the buoyant hydraulic fracture is well established with a vertical height far beyond the lateral

extend. Finally, Davis et al. (2021) proposed an extension of the 2D approaches neglecting

viscous flow in the fracture to non-planar 3D fracture propagation.

1.2.5 Experimental investigation of hydraulic fractures

Experimental measurements of hydraulic fracture characteristics are a delicate task. Labora-

tory fractures have tiny openings (on the order of µm), and their planar propagation needs

to be monitored in real-time to provide valuable data for propagation models. Nonetheless,

laboratory experiments significantly enhanced the understanding of the hydraulic fracturing

process. The experimental observation that fractures grow perpendicular to the minimum

in-situ stress by Hubbert and Willis (1957) proved that hydraulic fractures grow vertically in

the field, where the minimum in-situ stress is usually horizontal. Other examples include the

experiments of Daneshy (1978) in layered sand- and limestones, which showed that upon

interaction with the bedding plane, the fracture deviates at or breaks through the heterogene-

ity dependent on the conditions. Comparison of experiments with numerical simulations

and theoretical approaches required the development of sophisticated acoustic measurement

techniques. Pioneering work in this approach was performed by Medlin and Masse (1984),

who used transmitted compressional P-waves to measure fracture length. Their measure-

ments already revealed that two distinct fronts exist, a fluid and a fractured front, confirming

the existence of a fluid lag at the fracture tip under given conditions. Observing the fracture

front is also possible using diffracted waves from the fracture tip (Savic, 1995). Bunger and

Detournay (2008) developed a photometry technique to track hydraulic fracture growth in

transparent media, featuring direct observation of the fracture growth dynamics. Thanks to

these experimental developments, experiments reproduced the theoretical and numerical pre-

dictions of fracture propagation (length scale, radius, net pressure, and tip asymptotics). Most

experiments were performed on artificial materials such as PMMA, hydrogels, and cement

(Bunger and Detournay, 2008; Wu et al., 2008; Jeffrey et al., 2009; Lai et al., 2015; Lecampion

et al., 2017; O’Keeffe et al., 2018; Tanikella and Dressaire, 2022; Tanikella et al., 2023). There

exists limited experimental data on geomaterials representative of in-situ conditions (tight

mudstone (Lecampion et al., 2015) and sandstone (Lhomme, 2005), gabbro (Liu et al., 2020;

Liu and Lecampion, 2022b,a)). The gabbro experiments (Liu et al., 2020; Liu and Lecampion,

2022a) showed that cohesive zone effects, the roughness of the fracture surface, and solid

bridges significantly affect hydraulic fracture propagation. They also report that the appar-

ent fracture toughness to explain the propagation velocity and fracture opening seems to

increase with the size of the fracture. In addition to these studies of planar fractures in various

materials and under various conditions, Bunger et al. (2004, 2005b) studied near-surface

effects, Bunger et al. (2011); Kear et al. (2013) stress shadowing mechanisms between multiple
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hydraulic fractures, and Bunger et al. (2013, 2008) fracture curving. The influence of a vari-

ation in in-situ stress was studied by Wu et al. (2008), aiming to validate the results of a 3D

hydraulic fracture solver. The strong influence of the fluid compressibility effect at fracture

initiation was demonstrated experimentally and numerically by Lecampion et al. (2017). They

observed a transient regime from the compressibility dominated to the steady propagation

regime. This transition susceptibly dominates laboratory-scale experiments if not properly

designed. It is worth noting that in the experiments of Liu et al. (2020); Liu and Lecampion

(2022a), the authors ensured that they are outside of this transition. The scarcity of data in

geomaterials led to some experiments on an intermediate (decameter) to large (kilometer)

scale. The experiments in the Northparks Mines (Jeffrey et al., 2009) (dry fractured crystalline

rock) and overpressurized sedimentary formations (Warpinski et al., 1993) are particular as

they differ from typical evaluations thanks to the direct fracture characterization (mine-back

or coring) and the supplementary data from geophysical measurements (tiltmeters, active,

and micro-seismicity). The field experiment at the intermediate scale of Jeffrey et al. (2009)

highlighted that, despite the complexity of fracture initiation at a small scale, the large-scale

(late time) behavior follows the planar approximations of a single propagating fracture. In

contradiction, the retrieved core from the M-site (Warpinski et al., 1993) shows numerous

small micro-cracks around the fracture. These parallel sub-cracks lack the fracturing fluid

indicating that the injection process does not create them. They are induced by stress changes

caused by fracture propagation. Note that all laboratory experiments support single fracture

advancement, showing little to no parallel micro-cracking. In contradiction, recent findings in

the west Permian basin (Ciezboka, Jordan. and Courtier, James. and Wicker, Joe., 2018) and

numerous observations of sites containing magmatic dikes strengthen the latter assumption of

sub-parallel cracking (Weinberger et al., 2000; Delaney et al., 1986). This discrepancy between

many laboratory experiments in purely brittle materials and field observation reveals that

multiple questions remain to be answered. It is notably unclear how plastic or cohesive zone

effects affect apparent fracture toughness and which contributions come from sub-parallel

micro-cracks. Concerning sub-parallel micro-cracking, the role of the initial pore pressure

remains unclear.

1.3 Research questions addressed

In the absence of heterogeneities and considering a linear elastic isotropic medium, the orien-

tation of a propagating hydraulic fracture is solely governed by the in-situ stress orientation

in the rock mass. For such a well-defined case, the fracture will grow perpendicular to the

minimum in-situ stressσo (see figure 1.3). For fractures at depth, the weight of the overburden

usually leads to a stress state with a horizontal minimum in-situ stress. For such a fracture

orientation, the confining minimum in-situ stress over the fracture plane generally increases

linearly with depth, proportional to the increase in the overburden. If the fracturing fluid and

the host rock show a density difference (as is often the case), this configuration gives rise to a

uni-directional buoyant force. We investigate the influence of this buoyant uni-directional
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1.4 Organisation of this manuscript

force on the propagation of initially radial hydraulic fractures. Notably, we are interested in

defining if and when the uni-directional buoyancy force will become dominant, such that

the fracture transitions from a radial to an elongated shape due to buoyant forces. We can

formulate the first research question we try to answer as

When does the release of a finite volume of fluid from a point source in a linear isotropic elastic

medium lead to the emergence of a self-sustained buoyancy-driven hydraulic fracture?

If buoyancy-driven fractures emerge, it is of interest to characterize how these buoyant hy-

draulic fractures ultimately propagate. We want notably to investigate if previously developed

limiting regimes for their late-time propagation apply to real-world cases. For this comparison,

a second research question arises.

What characteristic ascent rates, shapes, and opening distributions have buoyant hydraulic

fractures?

Finally, once these two things are known, we can address a final question regarding the arrest

of buoyant hydraulic fractures.

Which mechanisms can efficiently arrest/stop buoyant hydraulic fractures?

1.4 Organisation of this manuscript

The remainder of this thesis is organized as follows.

Chapter 2 provides the theoretical bases and the numerical tools applied within this thesis

and can be skipped by the informed reader.

Chapter 3 investigates the arrest of planar three-dimensional axis-symmetric fractures. The

study is the first main contribution of this thesis and a required basis for the following chapters.

The chapter investigates the evolution and final extent of hydraulic fractures created by a

finite fluid volume block release from a point source. The host rock formation is considered

homogeneous, and we assume Newtonian fluid rheology. We simultaneously treat im- and

permeable media, using the Carter leak-off model for the latter. The study uses an open-source

hydraulic fracture solver for planar three-dimensional fractures. Using such a simulator for

an axis-symmetric problem is justified by the need for such a solver for this thesis’s research

conducted in Part III. Part III of this manuscript consists of chapters 4 to 6 and treats planar

three-dimensional buoyant hydraulic fractures. Chapters 4 and 5 treat buoyant hydraulic

fractures at depth in a homogeneous, impermeable medium and form a substantial part

of the main contribution of this thesis. More particularly, the entire propagation history

from a radially propagating hydraulic fracture up to the late-time, fully buoyant behavior is
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Chapter 1. Introduction

investigated. The case of a continuous release at a constant rate is described in Chapter 4 and

extended to a block release of a finite volume of fluid in Chapter 5. An extension to account for

fluid leak-off modeled by Carter’s leak-off model is provided in Chapter 6. Buoyant hydraulic

fractures from industrial treatments or natural occurrences can theoretically reach the surface

or contaminate shallow resources (drinking water reservoirs). Such behavior is rarely observed

in the field, so we investigate in Chapter 7 a set of possible arresting mechanisms of buoyant

hydraulic fractures.

To conclude, Chapter 8 discusses the performed work and provides perspectives for further

research in the field.
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2 Mechanics of hydraulic fractures

This chapter summarizes the fundamental mechanics of hydraulic fracture propagation. It

further discusses fluid exchange between the fracture and the surrounding media (so-called

fluid leak-off). We provide an order of magnitude estimation for the governing material, fluid,

and solid properties on various scales for illustrative purposes. The chapter concludes by

introducing the numerical tool used in the remainder of this thesis, the planar 3D hydraulic

fracture solver PyFrac (Zia and Lecampion, 2020).

2.1 Fundamentals of hydraulic fracture mechanics

The propagation of hydraulic fractures has an inherent complexity caused by the moving

boundary problem in combination with degenerative non-linear equations at the propagating

edge. A lack of understanding of this complexity in the early attempts of the study and

modeling of hydraulic fractures led to the employment of ad-hoc assumptions based on linear

elastic fracture mechanics (LEFM) based on the theory of dry cracks (Vandamme and Curran,

1989; Advani et al., 1990). Despite this, under some conditions inaccurate, analogy with dry

cracks, these numerical models fostered the understanding of the inherent multiscale behavior.

The origin of this intricacy is deeply rooted in the competition between the physical processes

controlling fracture propagation. The problem mainly depends on the relative importance

of elastic deformation, buoyant forces, fluid leak-off to the surrounding media, creation of

a fluid lag at the fracture tip and of new surfaces, and the viscous fluid flow in the fracture.

All these parameters interact at the macroscopic scale of the finite fracture and compete in

the development of asymptotic solutions at the propagating edge. The resulting two-scale

competition relates the asymptotic tip behavior to the global fracture propagation velocity.

This connection indicates that distinct solutions dependent on a given near-tip behavior can

be obtained for simple geometries. As such, these can represent limiting solutions embedded

in a global propagation history of hydraulic fractures (Detournay, 2016).
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Chapter 2. Mechanics of hydraulic fractures

2.1.1 Elasticity

The relation between stress and strain of linear elasticity in its most general form can be

written at any material point as (Ting, 1996)

σi j = ci j klϵkl (2.1)

withσi j and ϵk j the stress and deformation tensors and ci j kl the symmetric 4th order stiffness

tensor. Note that we use the rule of summation of repeated indices. The stresses, as well as the

strains, are symmetric, ensuring that the stiffness tensor must satisfy the minor symmetries

ci j kl = c j i kl = ci j lk . It can additionally be shown that an interchange between i j and kl should

not change the strain energy density ψ= 1
2ϵi j ci j klϵkl . A result of this argument is that ci j kl

must adhere to the major symmetries ci j kl = ckl i j . When applying these symmetries, the

number of independent stresses reduces to six values only. When we additionally consider

that the considered media is isotropically linear elastic (its properties are independent of the

direction), we can re-write (2.1) as

σi j = Eν

(1+ν) (1−2ν)
ϵi j + E

1+νϵkkδi j (2.2)

with δi k the Kronecker delta defined as:

δi j =
1, i = j

0, i ̸= j
(2.3)

In this particular case, the stiffness tensor ci j kl depends on only two elastic parameters: the

material’s Elastic or Young’s modulus E and Poisson’s ratio ν. Instead of the Elastic Modulus,

the geomechanical community also uses the material’s Shear Modulus G = E/(2(1+ν)) to

express (2.2). Note that the inverse relation uses the so-called compliance matrix Si j kl . A

collection of values for E and ν of rocks and typical materials of laboratory experiments is

given in table 2.1.

Assuming small deformations and removing the rigid body motion, the displacements ui are

related to the strains ϵi j through the small-strain-tensor

ϵi j = 1

2

(
ui , j +u j ,i

)
. (2.4)

The notation ·, j represents a partial derivative in direction j (e.g. ·, j = ∂ ·/∂ j ).
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2.1 Fundamentals of hydraulic fracture mechanics

Material ρ kg/m3 E GPa ν

Charcoal Granitea 2.60×103 48.3 0.27
Long Valley Caldera Graniteb 2.6×103 44.0 0.10
Stripa Granitec 2.60×103 65.0 0.21
Westerly Granitea 2.60×103 37.5 0.25
Berea Sandstonea 2.30×103 14.4 0.20
Boise Sandstonea 2.30×103 9.66 0.31
Ohio Sandstonea 2.30×103 16.0 0.28
Pecos Sandstonea 2.30×103 13.7 0.31
Ruhr Sandstonea 2.30×103 29.1 0.12
Weber Sandstonea 2.30×103 27.6 0.29
Tennesse Marblea,k 2.60×103–2.70×103 60.0 0.25
Cleveland Diked 2.60×103–3.00×103 7.50 0.25
Eagle Ford Shalee,i 2.30×103–2.60×103 7.30–15.0 0.14
Marcellus Shalee, j 2.60×103 5.70–17.0 0.18
Gelatine (1.4 % Air) f 1.00×103 5.70×10−7 0.50
Gelatine (4.0 % Air) f 1.00×103 6.45×10−6 0.50
Gelatineg 1.00×103 9.86×10−7–6.95×10−6 0.50
PMMAh 1.17×103–1.20×103 3.30–3.45 0.35–0.40
Glassh 2.40×103 68.5–72.3 0.20–0.30

Table 2.1: Elastic values of rocks and materials used in laboratory experiments. The references
are: a (Jaeger et al., 2007), b (Reches and Fink, 1988), c (Alm et al., 1985), d (MacDonald et al.,
1988), e (Dobson and Houseworth, 2013), f (Heimpel and Olson, 1994) (note that gelatines
with Air contents between 1.4 % to 4.0 % have values in between the limits), g (Taisne and
Tait, 2009), h (Bunger and Detournay, 2008) (the plain strain modulus E ′ = E/

(
1−ν2

)
only is

reported, we estimate E using the generic values of ν provided in this table), i (Jiang et al.,
2018) for the density, j (Schwartz et al., 2019) for the density, k (Byerly and Knowles, 2017) for
the density.
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Chapter 2. Mechanics of hydraulic fractures

Figure 2.1: Schematic of a crack boundary value problem in an infinite elastic media under
compressive stresses.

2.1.2 Boundary element method for planar fractures

The boundary element method (BEM) intends to solve boundary value problems (BVP). For

the case of the elastic media, the corresponding BVP expresses the effects on a regionΩ by

constraints on its boundary ∂Ω. When dealing with crack problems in an infinite media,Ω

encloses the crack, which forms an enclosed boundary Γ= Γ+∪Γ− (see figure 2.1). Boundary

element methods are tailored to solve elastostatic and similar problems of dynamic elasticity,

linear viscoelasticity, and heat flow. Crouch and Starfield (1983); Massonnet (1965) expressed

the elastic field through a combination of surface potentials, representing density functions.

For such indirect methods, the physical meaning of the unknown density is generally unclear.

When dealing with crack problems, like the one presented in figure 2.1, the unknown is a

displacement jump [[u]] = u+−u− (Mogilevskaya, 2014). A second approach to the problem

are direct methods described in Cruse (1996); Green (1854), which we shortly outline hereafter.

Direct approaches represent the potentials using Green functions based on the reciprocal

theorem of Maxwell-Betti and allow us to solve for the boundary stresses or displacements

under specified boundary conditions.

Crack boundary value problem

We consider the boundary value problem sketched in figure 2.1 of an infinite three-dimensional

mediumΩ subjected to a compressive far-field stress σ∞
i j . In this configuration, the fracture

is introduced as a displacement discontinuity [[u]] = u+−u− generating the internal two-

dimensional boundary Γ. The equilibrium of the problem enforces that, unlike the displace-

ments, the tractions over Γ remain continuous, such that the elastostatic equilibrium of a

loaded crack is reduced to the following field equations
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2.1 Fundamentals of hydraulic fracture mechanics

σi j , j
(
y
)= 0, y ∈Ω (2.5)

σi j
(
y
)

n j = Ti , y ∈ Γ (2.6)

σi j
(|y|→∞)=σ∞

i j (2.7)

In equation (2.5), we have neglected the presence of body forces. n j in equation (2.6) is

the unit normal vector to the boundary surface Γ and T is the loading vector on the crack.

Note that we will hereafter neglect any induced shear force. This assumption is equivalent

to considering a pure opening mode (Mode I) tensile fracture (see Wrobel et al. (2017) for a

discussion of the effects of tangential forces in hydraulic fracturing).

Reciprocity theorem

When assuming small deformations, quasi-static loading, and linear isotropic elasticity, the

principle of elastic superposition is valid. Elastic superposition states that stresses and strains

created from a set of concurrently applied tractions or displacements are identical to the sum

of stresses and strains obtained when each component is applied individually. The principle

of elastic superposition is the first main ingredient of the Maxwell-Betti1 reciprocity theorem.

The second fundamental component consists of the link between equilibrium equations and

elastic compatibility through the principle of virtual work. It postulates that for a statically

admissible stress field 1 (e.g., a stress field validating equations (2.5) and (2.6)) and a different

independent kinematically admissible displacement field 2, the work done by external forces

is balanced by its internal counterpart.

∫
Ω

f 1
i u2

i dΩ+
∫
∂Ω

t 1
i u2

i dΩ︸ ︷︷ ︸
external work

=
∫
Ω
σ1

i j ϵ
2
i j︸ ︷︷ ︸

internal work

. (2.8)

In equation (2.8), ui is the deformation at point i . The principle of virtual work is universally

valid independent of the actual material constituting the bodyΩ. Considering now two states

of stresses and strains (e.g. σ(1)
i j ,ϵ(1)

i j andσ(2)
i j ,ϵ(2)

i j ) of the identical elastic bodyΩ, the reciprocity

theorem states that

σ(1)
i j ϵ

(2)
i j =σ(2)

i j ϵ
(1)
i j , (2.9)

which means that the work of stresses of the first state on the strains of the second state is

equal to the work of stresses of the second state done on the strains of the first state. Applying

the divergence theorem and the principle of virtual work to equation (2.9), one obtains

1The Maxwell-Betti theorem was proven by Enrico Bettin in 1872.
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Chapter 2. Mechanics of hydraulic fractures

∫
∂Ω
σ(1)

i j u(2)
j ni dS +

∫
Ω

f (1)
i u(2)

i dΩ=
∫
∂Ω
σ(2)

i j u(1)
j ni dS +

∫
Ω

f (2)
i u(1)

i dΩ (2.10)

Thanks to the validity of the principle of elastic superposition, one and only one solution to

an elastic boundary value problem with a specific set of boundary conditions exists. The fact

that a solution exists does not imply that it can be obtained analytically, which is the case only

for particular configurations. For most boundary value problems in continuum mechanics,

only numerical solutions exist. An exception is the so-called Kelvin fundamental solution,

describing the induced stresses and strains of a point force.

Kelvin / Point force solution

The Kelvin point force solution is a Green’s function defining the influence of a unit point force

at the application point x, in the direction k of a cartesian coordinate system k = 1,2,3, in

a homogeneous isotropic infinite linear elastic mediumΩ. This functional derived by Lord

Kelvin2 is the solution to the well-posed boundary value problem

σi j , j +δi kδ
(
y−x

)= 0 (2.11)

σi j = ci j klϵkl = ci j kl uk,l (2.12)

Including (2.4) and (2.2) in (2.11), we obtain the corresponding Navier equations

E

(1+ν) (1−2ν)
U k

l ,l i +
E

2(1+ν)
U k

i ,l l +δi kδ
(
y−x

)= 0. (2.13)

In equation (2.13), we used the notation U k
i denoting the deformation in direction i at the

observation point y caused by a unitary point force applied in direction k at the source point x.

Equation (2.13) has a solution of the form

U k
i = 2(1−ν) g k

i , j j − g k
j , j i (2.14)

with g k
i the Galerkin tensor found by the solution of the bi-harmonic equation

g k
i , j j l l =− (1+ν)

E (1−ν)
δi kδ

(
y−x

)
(2.15)

subjected to the boundary conditions

2Lord Kelvin, 16 June 1824 - December 1907
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2.1 Fundamentals of hydraulic fracture mechanics

lim
|y|→∞

σi j = 0, lim
|y|→∞

ui = 0. (2.16)

Solving equation (2.15) for a linear elastic isotropic infinite medium and introducing it into

equation (2.14) yields the analytical expression

U k
i

(
x,y

)= 1

8π

1+ν
E (1−ν)

1

r

[ xi xk

r 2 + (3−4ν)δi k

]
(2.17)

with r = |x−y| the distance between the observer and force application point. Equation (2.17)

is valid for any observation point y different than x because of its singularity at the applica-

tion point. The resulting stresses of the point force solution can be obtained through the

constitutive law

Sk
i j

(
x,y

)= ci j mnU k
m,n

(
x,y

)
=− 1

8π

1

(1−ν)

1

r 2

[
3

xi x j xk

r 3 + (1−2ν)
(
δi k

x j

r
+δ j k

xi

r
−δi j

xk

r

)]
. (2.18)

which can be written as a traction vector

T k
i = Sk

i j

(
x,y

)
n j

(
y
)

(2.19)

The point force solution possesses several interesting properties. Notably, thanks to the validity

of the Maxwell-Betti theorem (2.9), the Greens function has the symmetry

U k
i

(
x,y

)=U i
k

(
y,x

)
. (2.20)

A direct consequence of the symmetry (2.20) is that the introduction of small perturbations of

x and y does not change it. If one uses the perturbed symmetry (2.20) and matches the first

and second-order terms of the perturbations, it is possible to obtain

U k
i , j

(
x,y

)=U i
k, j

(
y,x

)
(2.21)

U k
i ,m j

(
x,y

)=U i
k,m j

(
y,x

)
(2.22)

where · j denotes a derivative with respect to the j -th component of the source x.
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Chapter 2. Mechanics of hydraulic fractures

Boundary integral representation

To develop the boundary integral representation, one is looking for Somigliana’s identities

obtained using the Maxwell-Betti theorem (2.9) to compare an elastic state of a point force

solution ((1), see section 2.1.2) and an unknown elastostatic state (2) (Bonnet, 1999)

∫
Γ

[
σi j

(
y
)
U k

j

(
x,y

)−Sk
i j

(
x,y

)
u j

(
y
)]

ni
(
y
)

dS =
uk (x) , if x ∈Ω

0, if x ∉Ω.
(2.23)

Equation (2.23) describes that the displacement, stresses, and strains at any point inside a

deformable elastic Ω can be obtained directly from the distribution of displacements and

tractions on the boundary Γ. This boundary integral representation of the displacement uk

inherently generates a compatible deformation field, satisfying the conservation of momen-

tum of the elastostatic state. Because the fundamental point force solution (equations (2.14)

and (2.18)) tends to infinity when x ∈ Γ, equation (2.23) becomes undefined and singular on Γ.

This unphysical condition can be lifted using regularization techniques (we refer the reader to

Bonnet (1999); Mogilevskaya (2014); Mogilevskaya and Nikolskiy (2014) for details).

When restricting the problem to cases where x ∈ Ω and x ∉ Γ and introducing a universal

traction vector ti = σi j n j , one obtains after differentiation the strain representation of the

boundary integral equation

uk,l (x) =
∫
Γ

[
σi j

(
y
)
U k

j ,l

(
x,y

)−Sk
i j ,l

(
x,y

)
u j

(
y
)]

ni
(
y
)

dS (2.24)

where we have used the notation · j to represent the derivative in direction j at the observation

point x. Finally, one can also obtain the inverse relation for the stress tensor

σi j (x) =
∫
Γ

[
σab

(
y
)

Ci j klU
k
b,l

(
x,y

)− ci j kl Sk
ab,l

(
x,y

)
ua (x)

]
nb

(
y
)

dS (2.25)

Planar mode I fracture

Based on the derivations of the BIE representation (2.25), we focus hereafter on the case of a

tensile planar fracture. Expanding equation 2.1 by the normal ni = n+
i we find the expression

of the surface traction as

σi j (x)n j (x) = Ti (x) =−n j (x)
∫
Γ

ci j kl Sk
ab,l

(
x,y

)(
u+

a (x)−u−
a (x)

)
nbdS. (2.26)

We particularize now equation 2.26 for one or more co-planar fractures in an infinite medium,

using the particular case where the fracture propagates in the (e1,e3) plane
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2.2 Fluid flow and leak-off

σ+
i j n+

j +σ−
i j n−

j =0 (2.27)

nn (x) =nn
(
y
)= e2 (2.28)

x2 =y2 = 0 (2.29)

[[u (x)]]2 = [[u2 (x1, x3)]]e2 = u+
2 −u−

2 = w
(
y
)

. (2.30)

we obtain (Hills et al., 1996; Crouch and Starfield, 1983)

p f (x)−σo (x) =− E ′

8π

∫
Γ

w
(
y, t

)[(
x1 − y1

)2 + (
x2 − y2

)2
]3/2

dS (2.31)

where E ′ = E/
(
1−ν2

)
is the plane strain modulus and w

(
y
)

the fracture opening. We further

adopted the common praxis of expressing geomechanical problems as the difference from an

initial state, given by the initial compressive stress state σo (x), and performed a sign change

such that compressional stresses are positive. Finally, we substitute the surface traction T2 (x)

by the negative of the fluid pressure p f (x) as the contact pressure on the fracture surface is

given by the pressure of the fluid.

The distributed dislocation technique exploits the superposition principle, calculating the

global solution of the problem from distributed opening (or pressure/point force) solutions

along the fracture plane(s). These include the required boundary conditions of an infinite

medium. One can express this statement as follows: It is possible to solve for a distribution of

displacements (or point forces) along the boundary of an arbitrary elastic body, approximately

validating its boundary conditions if the problem is well-posed. One can calculate the fields

within the body from the resulting distribution of displacements.

2.2 Fluid flow and leak-off

Once a Mode I planar fracture is created, it consists of an open channel for fluid flow. In the

case of hydraulic fractures considered herein, the pressurized fluid inside the fracture is the

mechanism enabling the fracture to grow. If the media containing the fracture is permeable,

an exchange of fluid between the fracture and the surrounding solid occurs. This fluid loss

from the fracture to the solid is commonly called leak-off. Theoretically, it is also possible for

formation fluids to flow into the fracture. The specifics of the leak-off type will be discussed

later in this section.
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Chapter 2. Mechanics of hydraulic fractures

2.2.1 Fluid flow

To accurately study the combined problem of hydraulic fracturing, we require a model for

fluid flow in the created fracture. In this section, we discuss and derive the lubrication flow

model used in the remainder of this thesis.

Governing equations

We assume an incompressible fluid such that the thermodynamics conservation of energy can

be neglected, and the system becomes isothermal. The remaining governing equations are

limited to the conservation of momentum and mass.

Conservation of mass: This physical principle states that the rate of change of mass in a fixed

volume must match up with the rate of mass flux out of this volume. Considering a volume V

of fluid constrained into the limits of a surface S on the fracture plane, one obtains

d

dt

∫
V
ρ f (x, t )dV = ∂ρ f (x, t )

∂t
+ ∂

(
ρ f (x, t ) vi (x, t )

)
∂xi

(2.32)

with ρ f (x, t ) kg/m3 the fluid density.

Conservation of momentum: Newton’s second law enforces that the same volume V m3 on

the same surface S m2, moving in the direction of fluid flow must conserve its momentum

ρ f (x, t )

(
∂vi

∂t
+ v j

∂vi

∂x j

)
= ρ f (x, t ) gi −

∂p f

∂x j
δi j +µ ∂

∂x j

(
∂vi

∂x j
+ ∂v j

∂xi

)
. (2.33)

In equation (2.33) gi represents the components of the gravity vector g = (
0,0,−g

)
, p f is

the fluid pressure, and µ the dynamic viscosity of the solid (to obtain equation (2.33) the

incompressible fluid assumption was used).

Width averaging and lubrication approximation

In the context of hydraulic fractures at depth, the fracture can be seen as a long, thin channel

(the extension ℓ of the fracture is much larger than the fracture opening w , e.g., ℓ≪ w).

This configuration is typical of so-called thin-film lubrication flow (see figure 2.2). In this

type of flow, inertial terms can be neglected because of low Reynolds numbers (the Reynolds

number measures the ratio between inertial and shear forces), such that the conservation of

momentum (2.33) (respectively the Navier-Stokes equations describing it) becomes

26



2.2 Fluid flow and leak-off

 σo

x
1

x
2

 σo

w(x)

p
o

p
o

p
f
(x

1
)

v
l
(t)

p
f
(x

1
)

v
l
(t)v

l
(t)

v
l
(t) v

l
(t)

v
l
(t)

v
1
(x

2
)

Figure 2.2: Sketch of parallel plates flow with the flow profile and the definition of the leak-off
velocity.

−∂p f

∂x1
+µ ∂

∂x2

(
∂v1

∂x2

)
= 0 (2.34)

ρ f (x, t ) g − ∂p f

∂x3
+µ ∂

∂x2

(
∂v3

∂x2

)
= 0. (2.35)

When integrating equations (2.34) and (2.35) with a no-slip condition between the fluid and

the wall (e.g., vi ×nw
i = v w

i ×nw
i ), it is possible to obtain the classical parabolic fluid-flow

profiles in x1 and x3. We show the example of the formulation in x1 as

v1 (x2) =−w2

8µ

[
1−4

( x2

w

)2
]
∂p f

∂x1
, (2.36)

noting that for a constant density ρ f (x, t ) = ρ f and uniform value of gravity the profile in x3

contains an additional term related to gravity.

We use the commonly applied approach of averaging the fluid velocity over the fracture

opening, assuming plane strain conditions and a thin channel. No restrictions on the time

dependence are taken, such that the width averaged velocity in x1 and x3 becomes

〈vi 〉 = 1

w

∫ w/2

−w/2
vi (x2)dx2 =− w2

12µ

∂p f

∂xi
=−w2

µ′
∂p f

∂xi
for: i = 1,3 (2.37)

where we used the parallel plates’ dynamic viscosity µ′ = 12µ. From the opening and the fluid

velocity, one can derive the total fluid flux between two parallel plates as
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Chapter 2. Mechanics of hydraulic fractures

qx1 = w〈v1〉 =−w3

µ′
∂p f

∂x1
. (2.38)

Due to the cubic relation between the opening and the fluid flux, equation (2.38) is often

referred to as the cubic law. Another widespread definition is Poiseuille law because of its

experimental derivation by Poiseuille (1838) and Hagen (1839) for pipe flow.

Integrating now the mass conservation equation (2.32) over x2 in the absence of any source/sink

term, we obtain

∂ρ f w

∂t
+ ∂ρ f w〈vi 〉

∂xi
+2ρ f vl = 0, (2.39)

where we have made use of the no-slip condition at the boundaries and denoted the fluid

velocity perpendicular to the boundary as the leak-off rate vl (e.g., v2 (x1,±w (x1, x3, t ) , x3, t ) =
±vl (x1, x3, t ), see figure 2.2). Considering now a slightly compressible isothermal fluid with a

linearized equation of state

ρ f = ρo
f

[
1+ c f

(
p f −po

f

)]
, (2.40)

where c f 1/Pa is the fluid compressibility, equation (2.39) becomes

c f w
∂p f

∂t
+ ∂w

∂t
+ ∂qxi

∂xi
+2vl = 0 for: i = 1,3 (2.41)

In equation (2.41), we have kept only the linear terms. Note that the presence of a volumetric

source/sink in (2.41) would add a term proportional to Qs (t )δ (x−xs) on the right-hand side,

where Qs m3/s denotes the volumetric source/sink term and xs the source location of Qs . Note

that the substitution of qxi (see equation (2.38)) gives a cubic dependence on the fracture

opening, which is the reason for the highly non-linear behavior.

In table 2.2, we list the characteristic values of some important fracturing fluids, laboratory

fluids, and magmas to grasp the order of the wide range of possible applications of hydraulic

fracturing procedures.

2.2.2 Leak-off

In equation (2.41), we have modeled leak-off through a leak-off velocity vL without specifying

its magnitude. Considering again the fracture located in the x1x3-plane such that the fracture

is on x2 = 0 and assuming the validity of Darcy Flow in the surrounding matrix, we model the

leak-off velocity as

28



2.2 Fluid flow and leak-off

Fluid µ Pas ρ f kg/m3

Water at 0◦–20◦ f 8.91×10−4–1.79×10−3 1.00×103

Hydroxypropyl guar at 15◦–70◦a,∗ 0.10–0.40 1.00×103

Slickwaterg ,∗ 5.00×10−3–50.0 1.00×103

Cross-Link Gelb 1.72×10−3–3.75×10−3 1.00×103

Viscoelastic Surfactant (VES) at 24◦c,∗ 10.0 -
Basaltic Magmad 10.0–100 2.70×103

Rhyolitic Magmah 2.00×104–1.58×107 2.30×103

Air at 0◦–20◦ f 1.71×10−5–1.85×10−3 1.20×10−3–1.29×10−3

Table 2.2: Properties of fluids used in laboratory and field hydraulic fracturing applications. a

(Guillot and Dunand, 1985), b (Dai and Zhao, 2019), c (Kefi et al., 2004), d (Huppert and Sparks,
1981), f (Batchelor, 1967), g (Chen et al., 2020; Luo et al., 2014), h (Spera et al., 1988), ∗ we only
consider the Newtonian plateau observed at low shear rates.

vL =−k

µ

∂

∂x2

(
pp −po

) |x2=0 (2.42)

where k m2 is the permeability of the solid, pp the pore pressure in the solid and po the initial

far-field pore pressure. We adopt again the practice of solving in a difference to an initial state

and solve for ∆pp = pp −po . The evolution of ∆pp assuming Darcy flow is according to the

diffusion equation

∂∆pp (x, t )

∂t
= k

Sµ
∇2∆pp (2.43)

where S is storage coefficient of the formation and formation fluid and ∇2· = ∂2 · /∂x2
1 +∂2 ·

/∂x2
2 +∂2 · /∂x2

3 denotes the Laplacian operator. The diffusion equation (2.43) forms a BVP

subjected to the boundary conditions

∆pp (x1,0, x3, t ) = pp (x1, x3, t )−po , x1, x3 ∈A (t ) (2.44)

lim
x2→∞∆pp (x, t ) = 0 (2.45)

∆pp (x,0) = 0. (2.46)

where we have denoted the fracture plane as A (t ). The system of equations (2.43) - (2.46)

is a three-dimensional diffusion equation with time-dependent boundary conditions. An

additional computational challenge is that the pressure boundary condition is part of the

solution to the coupled hydraulic fracture problem. Historically, the most commonly used

simplifications were originally proposed by Carter (Carter, 1957). The so-called Carter’s
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Chapter 2. Mechanics of hydraulic fractures

leak-off is based on two major simplifications: First, the hydraulic fracture is assumed to

propagate much faster than the characteristic diffusion velocity. This assumption often holds

for applications in the petroleum industry but was shown to be violated when the permeability

of the formation is high (Kovalyshen, 2010). Second, the far-field effective stressσ′
o =σo −po is

significantly larger than the net pressure of the fracturing fluid p = p f −σo . The combination

of these two assumptions allows for a reduction of the system of equations (2.43) - (2.46) to

a one-dimensional diffusion equation (first assumption) uncoupled from the transient net

pressure (second assumption, ∆pp = p+σ′
o ≈σ′

o). The diffusion equation (2.43) in its reduced

form becomes

∂∆pp (x, t )

∂t
= k

Sµ

∂2∆pp (x, t )

∂x2
2

, (2.47)

and its first boundary condition (2.48) simplifies to

∆pp (x1,0, x3, t ) =σ′
o , x1, x3 ∈A (t ) . (2.48)

The partial differential equation built by the system of (2.47) and boundary conditions (2.48),

(2.45), and (2.46) is solved analytically to obtain the pressure evolution

∆pp (x2, t ) =σ′
oErfc

{(
Sµ

k

)1/2 x2

2
p

t

}
. (2.49)

Taking the derivative of equation (2.49), evaluating it at x2 = 0 and inserting it into equa-

tion (2.42) one obtains

vL =
√

kS

πµ

σ′
op
t

. (2.50)

The time dependence of this solution is typical for Carter’s leak-off model. However, two

additional assumptions are required to complete the model. The first assumption is related

to the start and end of fluid leak-off. Leak-off can only start once the planar fracture has

propagated up to a point x. One denotes the time t when the condition x in A (t ) is validated

for the first time as to . The so-called exposure time to leak-off becomes t−to (x), and the actual

time t in equation (2.50) is replaced by the exposure time. A second assumption is related to

different mechanisms influencing the rate of fluid loss. The two considered mechanisms are

usually the build-up of a filter cake of fracturing fluid at the fracture wall and the difference

between fracturing and formation fluid. The latter means that the leaking fracturing fluid

must displace the formation fluid. Investigation of both processes reveals that they similarly

show a square root dependence of time (Carter, 1957; Entov et al., 2007; Kovalyshen, 2010).
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2.2 Fluid flow and leak-off

Fluid k m2 S Pa−1

Basaltsa 1×10−19–1×10−13 -
Clays, Shalesa,b,c 1×10−23–1×10−16 2.00×10−3–2.40×10−2

Dolomitesb 1×10−12–1×10−10 -
Granits, Gneissa,b 1×10−20–1×10−16 -
Limestonesa,b,d 1×10−22–1×10−12 2.76×10−4–8.14×10−3

Sandstonesa,b,d 1×10−17–1×10−11 3.58×10−4–4.96×10−3

Charcoal Granitee 9.87×10−20 0.02
Westerly Granitee 3.95×10−19 0.01
Berea Sandstonee 1.88×10−13 0.19
Boise Sandstonee 7.90×10−13 0.26
Ohio Sandstonee 5.53×10−15 0.19
Pecos Sandstonee 7.90×10−16 0.20
Ruhr Sandstonee 1.97×10−16 0.02
Weber Sandstonee 9.87×10−16 0.06
Tennesse Marblee 9.87×10−20 0.02
Eagle Ford Shale f ,g 8.0×10−22–1.7×10−21 4.87×10−4

Marcellus Shale f ,g 1.5×10−21–4.5×10−21 6.96×10−4

Valhall Fieldh - 0.08–0.27
Slochteren Sandstonei - 0.01–0.95

Table 2.3: Permeabilities and storage coefficients of various rock formations. a (Guéguen and
Palciauskas, 1994), b (De Marsily, 1986), c (Chang and Firoozabadi, 2000), d (Hall, 1953), e

(Jaeger et al., 2007), f (Dobson and Houseworth, 2013), g (Ripepi et al., 2023), h (Ruddy et al.,
1989), i (van Eijs and van der Wal, 2017).

This observation emphasizes that lumping the contribution of every mechanism into a single

leak-off coefficient CL m/s1/2 is possible. The value of this coefficient is usually backtracked

from model predictions and fracture geometries (Wang and Dempsey, 2011) and obtained

with calibration experiments (Nolte, 1979; Castillo, 1987; Barree and Mukherjee, 1996). The

final expression of the leak-off velocity when assuming carters leak-off velocity reads

vL (x, t ) = CLp
t − to (x)

(2.51)

where the simplest expression of CL without considering any filter cake build-up is given by

CL =
√

S

πµ
σ′

o . (2.52)

We list in table 2.3 typical values of permeability and storage coefficients. Combined with the

knowledge of the effective stress in the formation and the viscosity of the formation fluid, the

leak-off coefficient can be calculated with equation (2.52). All these parameters are highly
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Chapter 2. Mechanics of hydraulic fractures

variable, and the effective stress and the formation fluid viscosity are rarely constrainable.

For this reason, the common practice is, as stated before, to perform experiments on the

formation using a given fracturing fluid to estimate the value of CL .

2.3 Propagation condition

In his seminal work, Griffith (1921) investigated a crack of no specific mode with a constant

load propagating quasi-statically in increments of da and performed an energy balance

of the problem and observed that the work of external forces ∂Wext is split between two

components, the work done to create new surfaces Gda and the work necessary to deform the

body elastically

∂Wext = dW +Gda. (2.53)

Generally, it is common to re-arrange equation (2.53) to obtain the driving force G as a function

of the difference between the work done by external forces, and the elastic work performed on

the body

Gda = ∂Wext −dW. (2.54)

It is possible to express equation (2.54) in terms of stresses and strains for temporal variations

in loading and crack length during an increment of fracture propagation da. As by the principle

of virtual work, the components of the right-hand-side of equation (2.54) related to a non-

propagating crack (e.g., changes in time at a constant crack size) cancel out such that the

driving force Gda of crack growth in a linear elastic media can be reduced to

Gda =
[∫

∂Ω

(
σi j n j

∂ui

∂a

)
dS − ∂

∂a

∫
Ω

1

2
σi j ϵi j dV

]
da

G = 1

2

∫
∂Ω

(
σi j n j

∂ui

∂a
−ui

∂σi j n j

∂a

)
dS, (2.55)

where we have considered an infinite elastic bodyΩwith a crack boundary ∂Ω (see figure 2.1).

To obtain equation (2.55) we have used the principle of virtual work. Note that G is usually

called the energy release rate, even though it does not refer to a variation in time. The energy

release rate is the quantity of energy necessary consumed by the propagation of the crack. If

the crack would not propagate, the same amount of energy would be stored elastically in the

body. It is possible to describe the driving force for cracking as the negative of the derivative of

the elastic potential energy with respect to the crack increment under a constant load.
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2.3 Propagation condition

Material Source K I c MPam1/2

Kumamoto Andesite Nara et al. (2012) 1.66–1.91
Basalts Guha Roy et al. (2017) 3.14–3.19
Granitic Gneiss Guha Roy et al. (2017) 0.88–1.15∗

Oshima Granite Nara et al. (2012) 2.06–2.14
Mudstone Senseny and Pfeifle (1984) 0.75–2.25
Sandstone Senseny and Pfeifle (1984) 0.60–2.00
Adamsweiler Sandstone Noël et al. (2021) 0.33–0.49
Bentheim Sandstone Noël et al. (2021) 0.52–0.55
Berea Sandstone Nara et al. (2012) 0.30–0.36
Darley Dale Sandstone Noël et al. (2021) 0.51–0.79
Dholpur Sandstone Guha Roy et al. (2017) 0.36
Fontainbleau Sandstone Noël et al. (2021) 1.45–1.60
Jabalpur Sandstone Guha Roy et al. (2017) 0.78–1.10
Kushiro Sandstone Nara et al. (2012) 0.60–0.89
Rothbach Sandstone Noël et al. (2021) 0.65–0.81
Shirahama Sandstone Nara et al. (2012) 0.39–0.73
Shale Senseny and Pfeifle (1984) 0.25–2.00
Jharia Shale Guha Roy et al. (2017) 0.30
Siltstone Senseny and Pfeifle (1984) 0.50–2.50
Gelatine (1.4 % - 4.0 % Air) Heimpel and Olson (1994) 1.5×10−2–1.14×10−1

Gelatine Taisne and Tait (2009) 2.98×10−5–7.92×10−5

PMMA Bunger and Detournay (2008) 0.29–0.38
Glass Bunger and Detournay (2008) 1.25

Table 2.4: Characteristic values of Mode I fracturing toughness K I c from different studies and
formations. The conditions and methods used in each study are not comparable, such that
comparisons between studies are difficult.∗ the minimum measured parallel to the foliation,
whereas the maximum occurs perpendicular to the foliation.
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Chapter 2. Mechanics of hydraulic fractures

From these energy considerations, it is possible to derive the fracture growth criteria in linear

elastic fracture mechanics as

G <Gc →V = 0

G =Gc →V > 0 (2.56)

(G −Gc )V = 0.

In equation (2.56), we have defined the critical energy release rate Gc as a material property

(similar to Poisson’s ratio or Young’s modulus). It simply states that the fracture is not growing

if the energy released is below a critical threshold. The definition of the critical energy release

rate has been provided by Irwin (1957) for plane elasticity. To derive the formulation of Irwin

(1957), we have to acknowledge that for flat fracture fronts and co-planar fracture growth, it is

possible to derive asymptotic expressions for displacements and stresses in the vicinity of the

fracture tip. We omit a detailed explanation of the procedure and refer to textbooks such as

Kanninen and Popelar (1985); Anderson (2017) for a more detailed description. In the case

considered here of a semi-infinite plane-strain fracture, the first-order contributions to the

stress field around the propagating edge, in the polar coordinate system centered on the tip

(r,θ), restricted to modes I and II, are

σr r (r,θ) = K Ip
32πr

(
5cos

θ

2
−cos

3θ

2

)
+ K I Ip

32πr

(
−5sin

θ

2
+3sin

3θ

2

)
+O

(
r 1/2) (2.57)

σθθ (r,θ) = K Ip
32πr

(
3cos

θ

2
+cos

3θ

2

)
+ K I Ip

32πr

(
−3sin

θ

2
− sin

3θ

2

)
+O

(
r 1/2) (2.58)

σrθ (r,θ) = K Ip
32πr

(
sin

θ

2
+ sin

3θ

2

)
+ K I Ip

32πr

(
−3sin

θ

2
− sin

3θ

2

)
+O

(
r 1/2) (2.59)

where the corresponding crack opening displacements are given by

[[u1]] =
√

32

π

K I I

E ′
p

r +O
(
r 3/2) (2.60)

[[u2]] =
√

32

π

K I

E ′
p

r +O
(
r 3/2) . (2.61)

In equations (2.57) to (2.61) Ki are the stress-intensity factors of the respective modes of

fracturing. For a 2D plane strain semi-infinite fracture propagating in its plane, Irwin (1957)

has proven through a crack-closure analysis that the energy release rate for the co-planar

growth of fractures with a flat front can be related to these stress-intensity factors as
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2.4 Numerical solution of hydraulic fracture problems

G = K 2
I +K 2

I I

E ′ + K 2
I I I

E ′ (1−ν)
. (2.62)

In the case of planar opening mode (mode I) fracturing considered in this thesis, the Irwin

relation (2.62) reduces to G = K 2
I /E ′. It is thus possible to define a so-called fracture toughness

K I c , used equivalently to Gc in the fracture criterion (2.56). We list some characteristic values

of fracture toughness in table 2.4.

2.3.1 Tip-Asymptotes in hydraulic fracturing

The propagation condition of equation (2.56) in numerical models is often introduced through

the asymptotic behavior of fracture opening at the propagating edge. This so-called tip asymp-

tote is given by equation (2.61) for purely mechanically loaded fractures. It has, however,

been demonstrated that in hydraulic fracturing problems, another asymptotic solution domi-

nated by the energy dissipation through viscous flow (Desroches et al., 1994) emerges. This

asymptote represents a far-field solution to the hydraulic fracturing problem (Garagash and

Detournay, 2000). The transition from the near-field, toughness-dominated classical LEFM

asymptotic behavior to the far-field viscosity-dominated asymptote has been validated ex-

perimentally by Bunger and Detournay (2008). Until here, we have neglected the effects of

fluid leak-off and the possible presence of a so-called fluid lag at the fracture tip (note that

(Garagash and Detournay, 2000) discussed the appearance of the fluid lag). The problem

of fluid leak-off for a solid with negligible fracturing toughness has been solved by Lenoach

(1995), who showed that in the vicinity of the tip, a leak-off dominated asymptote exists for

highlight leak-off dominated fractures in a medium with negligible fracturing toughness K I c .

Later Garagash et al. (2011) have combined all three approaches and shown that the leak-off

asymptote can appear under specific conditions between the near-tip toughness and far-field

viscous asymptotes (see figure 2.3). The combination of all three asymptotes is termed the

universal tip asymptote and was numerically approximated by (Dontsov and Peirce, 2015a).

An additional asymptotic behavior is observed in the near-field when a fluid lag is considered.

2.4 Numerical solution of hydraulic fracture problems

The problems investigated in this thesis are formed by the fully coupled problem of elastic

deformation of the solid (see section 2.1.1), fluid flow in the fracture (see section 2.2.1), leak-off

of the fluid into the surrounding media (see section 2.2.2), as well as the fracturing of the rock

(see section 2.3). The main focus of this thesis is on planar, three-dimensional fractures, whose

numerical simulation remains a challenging task. The difficulty is embedded in the moving

boundary problem of the fracture front and the highly non-linear coupling between elastic

deformations and fluid flow in the fracture enforced by the non-locality of the former. For

the particular case presented in this thesis where the material is linearly elastic and isotropic

and fluid flow in the fracture is subjected to the lubrication approximation, the cubic strength
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Figure 2.3: Sketched evolution of fracture opening as a function of distance to the fracture tip
for a hydraulic fracture without fluid lag. Dashed lines show the respective limiting asymptotes:
Red = near-field toughness dominated limit (Rice, 1968a), green = intermediate leak-off domi-
nated asymptote (Lenoach, 1995), and blue = far-field viscosity-dominated limit (Desroches
et al., 1994). The black line is a numerical evaluation of the combined asymptote developed
by Garagash et al. (2011) using the approximation of Dontsov and Peirce (2015a).
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2.4 Numerical solution of hydraulic fracture problems

of the non-linearity of the hydro-mechanical problem comes from the Poiseuille Law (see

equation (2.38)). The problem becomes a multiscale problem because of its non-local elastic

behavior at the fracture tip coupled to the lubrication equation and the volume conservation

over the entire fracture. The complexity of the non-local elastic problem at the fracture tip

is particularly increased because the classical square-root singularity of fracture opening

observed for Mode I cracks (Rice, 1968b) is only valid over a limited extent (see the derivations

in section 2.3.1). No matter the level of complexity of the near-tip behavior chosen, the

region of validity of the classical toughness-asymptote (either in the first or second dominant

term) evolves during the propagation of the fracture and has the potential to reduce to a thin

boundary layer at the propagating edge. For accurate modeling of fracturing problems, the

resolution of this zone related to the moving boundary is of utmost importance. Because of its

changing size in combination with the moving boundary, accurate tracking of the tip would

require a constant adaption of the discretization, which represents a significant challenge for

numerical tools.

2.4.1 PyFrac: A python implementation of the implicit level set algorithm (ILSA)

Peirce and Detournay (2008) developed a numerically efficient way of resolving the multiscale

nature of the problem using the asymptotic solution of a steadily moving hydraulic fracture

(see section 2.3.1) at the propagation edge. The backbone of this approximation consists

of reducing the 3D problem locally to a 2D plane strain problem. The previously discussed

tip-asymptotes are used to obtain opening and pressure at a given distance from the fracturing

front as a function of the local velocity and the material, fluid, and injection properties. The

solution strategy of Peirce and Detournay (2008) tracks the position of the fracture front with

a level set function on a relatively coarse and constant grid and is capable of deriving the

fracture velocity as part of the solution (in an implicit way, hence the name of Implicit Level

Set Algorithm (ILSA)).

The numerical hydraulic fracture solver PyFrac (Zia and Lecampion, 2020) developed at the

Geo-Energy Laboratory - Gaznat Chair of Geo-Energy at EPFL is an open-source, Python-based

implementation of the ILSA scheme to solve for the propagation of three-dimensional planar

hydraulic fractures. PyFrac solves the combined set of equations (2.31), (2.41), and (2.56),

where the fluid flow follows the lubrication approximation leading to Poiseuille Flow (2.38),

and leak-off is approximated by Carter’s Leak-Off model (2.51). The unknowns of the problem

at any time are the position of the moving boundary of the fracture front, its local velocity,

the fracture opening, and the fluid pressure inside the fracture. We approach this problem

using a regular, rectangular grid discretizing fracture opening and internal fluid pressure at the

cell centers and fracture front velocities perpendicular to front segments in so-called tip-cells

(see figure 2.4). Before describing the model in more detail, we highlight several additional

assumptions adopted in the code:

• Fracture propagation is planar and perpendicular to the minimum in-situ stress denoted
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Figure 2.4: Graphical representation of the main components of the numerical HF Solver
PyFrac (Zia and Lecampion, 2020). Top left: Discretization of the fracture plane into a regular
rectangular grid with different element types. Top Right: Two-dimensional plane stress
asymptotic solutions used at the fracture tip. Bottom: Schematic of finite different five-point
stencil used to calculate the fluid flow in the fracture. Adapted figure 2.3 of Peruzzo (2023).
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2.4 Numerical solution of hydraulic fracture problems

as σo . As a result, the shear tractions on the plane are zero, and the fracture propagates

in a pure opening mode (Mode I).

• The propagation of hydraulic fractures is a volume-controlled process, leading to a

stable propagation with maximum velocities of almost a few meters per second. Inertial

effects can thus be safely neglected.

• Only fractures without a fluid lag are considered. This assumption is valid whenever

the condition µV E ′2/σ3
o ≪ 1 is ensured (Garagash and Detournay, 1998) with, µ the

viscosity of the fracturing fluid, E ′ the plane strain modulus as defined in section 2.3,

and σo the minimum in-situ stress perpendicular to the fracture plane. Thanks to the

cubic dependence on the confining stress, which typically increases with depth, this

condition is generally satisfied when studying fractures at depth (see Lecampion and

Detournay, 2007, for more details).

• The linear elastic isotropic medium in which the fracture propagates is considered

infinite. There are no boundaries nor free surface effects.

In this numerical solver, the elastic deformation of the medium (2.31) is solved for using the

displacement discontinuity method relating the surface traction (internal fluid pressure) to

the displacements on the regular rectangular grid (see figure 2.4). Combining this method

with a five-point stencil finite difference scheme (see figure 2.4) in space to model the fluid

flow in the fracture, the so-called elastohydrodynamic lubrication (EHL) system is obtained

at a given instance of time. The principle of the numerical scheme then includes a double

loop, where we describe here the classical time-implicit solution strategy for the position of

the fracture front and refer the reader to the work of Zia and Lecampion (2019) for the two

other possible approaches of an explicit and predictor-corrector stepping (see also figure 2.5).

Note that the naming of the solution scheme solely refers to the calculation/estimation of the

front position, whereas the non-linear EHL is solved implicitly in all approaches.

In the fully implicit scheme, the level set is taken from the previous solution, and the non-linear

EHL is solved in terms of incremental fracture opening increment in all the cells. Figure 2.5

describes the details of this step in the orange box to the right. Note that this step mentions

a width constraint. In the solver, the fracture is allowed to reduce its opening. However, a

complete "healing" of the fracture is not permitted. Instead of this full closure, we impose

a residual fracture opening wa . Because surfaces of fractures are usually rough, a physical

interpretation of this residual opening could be that fractures cannot close back completely

but instead remain open at a minimum width denoted as wmi n . We thus define the residual

opening as the minimum between the maximum opening the fracture has ever had at each

position and the minimum width prescribed

wa (x) = min{max
t

[w (x, t )] , wmi n}. (2.63)
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Figure 2.5: Flow Chart of PyFac. Figure reproduced from Zia and Lecampion (2020).
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2.4 Numerical solution of hydraulic fracture problems

Numerically, the residual opening of a fracture becomes the minimum between the maximum

opening achieved during the history of the fracture and this minimum width. This approach

results in a contact condition of the form

(w −wa) ≥ 0,
(
σy y −p f

)
(w −wa) = 0 (2.64)

stating notably that the fluid pressure p f is equal to the normal traction σy y when the fracture

is mechanically open (e.g. w > wa).

Once a solution of the EHL system, including cells with a width constraint, is found, the tip

asymptotes are used at the survey (also called ribbon) cells to invert for the position of the new

front (see figure 2.4). This inversion gives the value of the level set at the survey cells. Using a

Fast Marching Method (Sethian, 1999) to solve the eikonal equation of the distance to the front,

the level set is propagated over the domain, and its zero value is used to reconstruct the new

position of the front. This new position is constructed from a piece-wise linear approximation

within the tip cells and forms the internal loop represented by the purple box in figure 2.5.

The coupling between the front loop and the EHL is ensured by imposing that the tip cell

volume corresponds to the asymptotic tip solution. Thanks to the knowledge of the level set

at every cell, we obtain the tip cell volumes necessary to re-generate the EHL system for the

new footprint. In this adapted EHL, we solve for fracture opening increment in all channel

cells while imposing the opening in the tip cells, where we solve for the fluid pressure (see

figure 2.4).

The convergence of a time step is ultimately related to the convergence of the fracture front

position. In other words, a time step is accepted when the changes of the fracture front fall

below a certain threshold. The measuring parameters are the level sets at the survey cells

which ensures a local convergence of the fracture front.

More details on the resolution of the various sub-problems and the solver PyFrac can be found

in the code release article Zia and Lecampion (2020). The discussion of various extensions,

notably a "smooth" fracture front implementation, can be found in Peruzzo (2023). Note that

we use the smooth" fracture front according to chapter 2.6 of Peruzzo (2023) in the simulations

reported herein.
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3 Arrest of a radial hydraulic fracture
upon shut-in of the injection

This chapter is a modified version of an article published in the International Journal of Solids

and Structures (IJSS).

Möri, A. and Lecampion, B. (2021). Arrest of a radial hydraulic fracture upon shut-in of the

injection. Int. J. Solids Struct., 219-220:151–165, DOI: 10.1016/j.ijsolstr.2021.02.022, ©Elsevier.
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Chapter 3. Arrest of a radial hydraulic fracture upon shut-in of the injection

3.1 Abstract

We investigate the propagation and arrest of a radial hydraulic fracture upon the end of the

injection. Excess elastic energy may be stored in the surrounding medium depending on the

propagation regime at the time of shut-in of the injection. Once the injection has stopped,

the hydraulic fracture will arrest when the energy release rate falls under the material fracture

energy. Fluid leaking-off to the surrounding medium acts as an energy sink such that the

available excess energy for fracture growth decreases faster and, as a result, impacts the arrest

(actually controls it in the zero toughness limit). Under the assumption of a homogeneous

elastic medium and the Carter’s leak-off model, we show that the post-shut-in propagation of

the hydraulic fracture depends on the dimensionless toughness Ks and leak-off Cs coefficient

at the time of shut-in. Our investigation highlights that the arrest radius is independent of

the dimensionless toughness at shut-in for an impermeable rock. In the limit of a permeable

rock with zero fracture toughness, the arrest radius is independent of the dimensionless

leak-off coefficient only for Cs < 0.25. For larger values of Cs , the radius of arrest reduces

with increasing Cs . We delineate the limit above which the arrest is immediate upon shut-

in. This limit is given by a critical leak-off coefficient at shut-in Cs,c ≈ 0.53 for the large

leak-off/small toughness cases and by the relation Cs,c
(
Ks,c

) ≈ 0.78−0.313 ·Ks,c for small

leak-off/large toughness (where Ks,c is equivalently the critical dimensionless toughness at

shut-in). Immediate arrest in the impermeable limit is observed for Ks,c ≈ 2.5. If both (Ks and

Cs) are smaller than their critical value for immediate arrest, post shut-in propagation occurs,

and a self-similar pulse viscosity storage solution emerges. Scaling arguments combined with

numerical simulations show that the propagation post-shut-in scales as 1.23K −2/5
s in the

impermeable and small leak-off cases, and as 0.75C −2/13
s in the zero toughness limit. The

growth post-shut-in can be significant in impermeable rocks - with a final radius up to twice

larger than the radius at shut-in for realistic material and injection parameters.

Keywords: fracture arrest, shut-in, post-injection propagation, numerical methods

3.2 Introduction

Hydraulic fractures (HF) are tensile fractures created by the injection of a fluid at pressure larger

than the minimum in-situ compressive stress (Detournay, 2016). The hydraulic fracturing

technique is used in a broad range of engineering applications, from block caving mining

(Jeffrey et al., 2013) to soil remediation (Germanovich and Murdoch, 2010), and is a cornerstone

of hydrocarbon production from low permeability shales (Smith and Montgomery, 2015). Such

tensile fluid-driven fractures also propagate naturally in the form of magmatic intrusion in

the upper earth crust, forming volcanic dikes and sills (Rivalta et al., 2015; Spence et al., 1987;

Lister and Kerr, 1991). A strong coupling between linear elastic fracture mechanics governs

the growth of HFs (LEFM), lubrication flow in the propagating fracture and leak-off of the fluid

into the surrounding medium. The competition between these different physical processes

is now well understood for a growing fracture under a constant injection rate and results in
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3.2 Introduction

various growth regimes (Detournay, 2004, 2016). The propagation of an HF is dependent

on the relative importance of two storage and two dissipative mechanisms. The bulk of the

injected fluid either remains in the propagating fracture or leaked-off in the surrounding

medium (storage vs. leak-off dominated regimes) while the energy is either dissipated in

the creation of new fracture surfaces or the viscous flow within the fracture (toughness vs

viscosity dominated regimes). For simple geometries (plane-strain and radial), solutions

for hydraulic fracture growth have been obtained in these limiting regimes, leveraging the

multiscale asymptotic solution of a steadily moving semi-infinite hydraulic fracture (Garagash

et al., 2011). These theoretical predictions compare well with experiments performed in

impermeable materials, notably for radial fractures (Bunger and Detournay, 2008; Lecampion

et al., 2017). The evolution of a radial hydraulic fracture after the end of the injection (often

referred to as shut-in in industrial applications) is the topic of this paper. In particular, we aim

to quantitatively answer two important questions: under what conditions does the fracture

immediately arrest? And if it does not arrest immediately, how far does it propagate before

finally arresting?

Interestingly, these questions have seldom been examined in detail despite fracture closure’s

importance in industrial applications. A large body of work has indeed investigated the closure

problem but generally treated the arrest in an ad-hoc manner and/or did not quantitatively

investigate the parameters controlling post-shut-in propagation and arrest. Modeling fracture

closure aims to interpret better the pressure decline curve measured after shut-in. These

measurements are used to estimate relevant parameters (in-situ stress, pore-pressure among

others) for the design of well-stimulation treatments by hydraulic fracturing (Economides and

Nolte, 2000). One of the first models of fracture closure (Nolte, 1979) assumed a constant area

upon the end of the injection (and, as such, an immediate arrest) for a fracture of constant

height (Perkins-Kern-Nordgren (PKN) geometry). Settari and Cleary (1984) implemented a

pseudo-3D model to address the problem in a more general way and additionally allowed for

post-injection propagation. They observed a slight post-shut-in propagation in some of their

investigated cases without going into details. Gu and Leung (1993) extended the analysis to

three-dimensional planar fractures accounting for non-uniform in-situ stresses and leak-off

parameters but did not account for any post-injection growth. Desroches and Thiercelin (1993)

model fracture growth and closure for simple geometries (plane-strain and axisymmetric

fractures) in a fully coupled manner based on the now classical hypothesis of LEFM, lubrication

flow, and Carter’s leak-off. They observe a small amount of propagation after shut-in in some of

the cases investigated: the complete analysis of this post-shut-in propagation is, however, not

treated. Papanastasiou (2000) numerically investigated propagation and closure (accounting

also for bulk plasticity). The effect of poroelasticity on fracture closure is mentioned in the work

of Boone and Ingraffea (1990) and Detournay et al. (1989) on the modeling of small hydraulic

fracturing tests. Recently, the 2D plane-strain problem has been revisited numerically using

an extended finite element method (Mohammadnejad and Andrade, 2016). These different

modelling works and experimental observations (De Pater et al., 1996; van Dam et al., 2000;

Zanganeh et al., 2017) agree with the conclusion that propagation after shut-in can occur in
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some cases. The problem of fracture arrest was quantified in detail only in the large toughness

limit for a plane strain hydraulic fracture propagating in an impermeable medium by Garagash

(2006a). In that large toughness limit (limit of small dimensionless viscosity M ), the additional

propagation post-shut-in (with respect to the length at shut-in) scales as 2.9M for (M ≪ 1)

(Garagash, 2006a).

We focus here in detail on the case of a radial fracture and quantify the final HF’s arrest radius

as a function of rock, fluid properties, and injection duration, accounting for both fluid leak-off

and fracture toughness. We combine scaling analysis and numerical simulations to do so. One

can easily anticipate a series of different behavior as a function of the amount of elastic energy

stored in the medium still available upon shut-in (see Appendix 3.8.1 for the complete energy

budget). When viscous flow dissipation dominates at shut-in, and thus some excess elastic

energy is still available, the fracture will keep growing for a while. On the other hand, it will

likely immediately arrest if fracture energy dominates the overall energy dissipation at shut-in.

Similarly, a larger leak-off intensity acts as an energy sink reducing the energy available for

growth and thus will lead to an earlier arrest after the end of the injection.

We first present the mathematical formulation of the problem and its scaling and outline the

numerical solver used. We then treat first the impermeable case before moving to the case of a

permeable medium with zero and finally finite fracture toughness.

3.3 Problem formulation

We focus on a radial hydraulic fracture propagating in a linear isotropic homogeneous elastic

medium driven by a Newtonian fluid. Similarly to previous contributions (Savitski and De-

tournay, 2002; Madyarova, 2003), we neglect the size of the injected wellbore compared to the

fracture size and model the injection as a point source. The fluid leak-off in the surrounding

medium is modeled using Carter’s leak-off model (Carter, 1957), which amounts to an early

time 1D approximation of fluid diffusion valid when the net pressure is small compared to the

far-field in-situ effective stress (see, for example Lecampion et al. (2018); Kanin et al. (2019) for

further discussion). We also neglect the presence of a fluid lag - an assumption which is valid

as soon as the shut-in time is larger than the characteristic time-scale tom = µ′E ′2

σ3
o

controlling

the coalescence of the fluid and fracture fronts (Garagash, 2006b; Lecampion and Detournay,

2007; Bunger and Detournay, 2007). We briefly recall the governing equations of the coupled

moving boundary hydro-mechanical fracture problem. In line with previous contributions,

we use the following material constants for clarity

E ′ = E

1−ν2 , K ′ = 4

√
2

π
K I c , µ′ = 12µ, C ′ = 2CL (3.1)

where CL is the Carter leak-off coefficient, K I c the fracture toughness, µ the fluid viscosity, E

and ν the material elastic Young’s modulus and Poisson’s ratio, respectively.

48



3.3 Problem formulation

Figure 3.1: a) Sketch of a radial hydraulic fracture with a zoom on the HF tip viewed as a
steadily moving plane-strain case. b) Evolution of the fracture propagation regime for a radial
fracture in a linear elastic permeable medium with Carter’s leak-off - adapted from Detournay
(2016).
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Quasi-static elasticity relates the fracture width w to the net pressure loading at the fracture

faces p = p f −σo (the fluid pressure in excess of the in-situ compressive stress). For such a

purely tensile axisymmetric fracture, the elastic problem reduces to the following integral

representation (Sneddon, 1951)

w(ρ) = 8

π

R (t )

E ′

∫ 1

ρ

ξ√
ξ2 −ρ2

∫ 1

0

xp(xξR, t )p
1−x2

dxdξ (3.2)

or alternatively its inverse (Gordeliy and Detournay, 2011) . Under the assumption of quasi-

static linear elastic fracture mechanics, the fracture propagation conditions for fracturing

under pure mode I read:

(K I −K I c )
dR (t )

dt
= 0

dR (t )

dt
≥ 0 (3.3)

where the stress intensity factor K I can be estimated via the Bueckner-Rice integral (Rice,

1972)

K I = 2p
πR (t )

∫ R(t )

0

p (t ,r )p
R2 − r 2

r dr (3.4)

Fluid flow in the fracture is modeled under the lubrication approximation (Batchelor, 1967).

The fluid continuity equation combined with Poiseuille’s law for a Newtonian fluid yields the

following Reynolds equation

∂w (t ,r )

∂t
− 1

µ′
1

r

∂

∂r

(
r w (t ,r )3 ∂p (t ,r )

∂r

)
+ C ′
p

t − to(r )
= 0 (3.5)

which states that the change of fracture aperture (first term) is balanced by the in/out fluid

fluxes (second term) and the rate of fluid leaking out of the fracture into the rock following

Carter’s law (third term). Integration in space and time gives the global fluid volume balance

which relates the injected volume V (t ) to the fracture and fluid leak-off volumes:

V (t ) = 2π
∫ R

0
w (t ,r )r dr +2π

∫ t

0

∫ R

0

2CLp
τ−τo(r )

r dr dτ (3.6)

where the boundary condition of zero fracture width and zero fluid flux at the fracture tip has

been used. We assume a simple history for the injection: a constant injection at a rate Qo up

to a time ts when the pump is “shut-in” such that

V (t ) =Qo t , for: t < tsV (t ) =Qo ts =Vo , for: t ≥ ts (3.7)

3.3.1 Growth during constant injection (t < ts)

Hydraulic fracture growth during the injection period (t < ts) is well understood for such a ra-

dial geometry (Savitski and Detournay, 2002; Detournay, 2004, 2016) and can be summarised

in a rectangular propagation diagram (see Figure 3.1b adapted from Detournay (2016)). No-
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tably, the HF growth evolves from a regime initially dominated by viscous dissipation and

fluid storage inside the fracture (M-vertex in figure 3.1b) to a regime dominated by fracture

toughness and fluid leak-off at large-time (K̃ -vertex in figure 3.1b). The complete evolution of

the fracture is governed by a time-dependent dimensionless fracture toughness Km (or alter-

natively dimensionless viscosity Mk ) and a time-dependent dimensionless leak-off coefficient

C (or alternatively dimensionless storage S ). The dimensionless parameters Km and Cm can

be expressed as a function of two time-scales tmk and tmm̃ governing the transition from the

viscous/storage-dominated regime to, respectively the toughness/storage and viscous/leak-off

regimes:

Km = (t/tmk )1/9 Cm = (t/tmm̃)7/18

tmk = E ′13/2µ′5/2Q3/2
o

K ′9 tmm̃ = µ′4/7Q6/7
o

C ′18/7E ′4/7
(3.8)

The complete evolutionof the solution from the viscosity/storage dominated to the toughness/leak-

off regime within the propagation diagram of figure 3.1b can be grasped by a trajectory param-

eter

φ=
(

tmk

tmm̃

)14/9

= C ′4E ′11µ′3Qo

K ′14 =C 4
m/K 14

m (3.9)

and the dimensionless time t/tmk . The growth solution can be adequately expressed using

specific scalings for different propagation regimes, writing the fracture radius, width, and net

pressure as

R(t ) = L(t )γ(P1,P2) w(r, t ) =W (t )Ω(r /R,P1,P2) p(r, t ) = P (t )Π(r /R,P1,P2)

where P (t ) = E ′W (t )/L(t ) is the characteristic pressure scale, L(t ) and W (t ) the characteristics

fracture length and width scales while P1,P2 denote the corresponding two dimensionless

parameters (e.g., dimensionless toughness and leak-off in the viscosity scaling). We refer to

Detournay (2016) for the details of the constant injection case (ts →∞).

3.3.2 Evolution post-shut-in (t > ts)

For the case of a finite injection/pulse injection, after the shut-in time (t > ts), the growth

of the hydraulic fracture can be grasped using similar scaling arguments by substituting

the finite injected volume Vo = Qo ts in place of the rate-dependent volume Qo t . In other

words, by replacing Qo with Vo/t in the constant injection scalings. The scales and evolution

parameters for the four different regimes (viscosity/toughness, leak-off/storage) in this case,

are presented in table 3.1. Whenever we refer to the constant injection scaling, the superscript

will be omitted (for example, Lm denotes the characteristic length scale of the viscosity storage

constant injection scaling). On the other hand, the constant volume/pulse injection scaling is

indicated by the superscript [V ] (for example, L[V ]
m denotes the characteristic length scale of

the viscosity storage pulse injection scaling).
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Scaling M [V ] K [V ] M̃ [V ] K̃ [V ]

L[V ] E ′1/9t 1/9V 1/3
o

µ′1/9
E ′2/5V 2/5

o

K ′2/5
V 1/2

o

C ′1/2t 1/4
V 1/2

o

C ′1/2t 1/4

P [V ] E ′2/3µ′1/3

t 1/3
K ′6/5

E ′1/5V 1/5
o

µ′1/4C ′3/8E ′3/4

V 1/8
o t 1/16

K ′C ′1/4t 1/8

V 1/4
o

W [V ] V 1/3
o µ′2/9

E ′2/9t 2/9
V 1/5

o K ′4/5

E ′4/5
µ′1/4V 3/8

o

E ′1/4C ′1/8t 5/16
K ′V 1/4

o

E ′C ′1/4t 1/8

K [V ] K ′ t 5/18

E ′13/18µ′5/18V 3/18
o

1 K ′ t 3/16

µ′1/4C ′1/8E ′3/4V 1/8
o

1

M [V ] 1 µ′ E ′13/5V 3/5
o

K ′18/5t 1 µ′ V 1/2
o E ′3C ′1/2

K ′4t 3/4

C [V ] C ′ E ′2/9t 13/18

V 1/3
o µ′2/9 C ′ E ′4/5t 1/2

V 1/5
o K ′4/5 1 1

S [V ] 1 1 E ′1/4C ′9/8t 13/16

µ′1/4V 3/8
o

E ′C ′5/4t 5/8

K ′V 1/4
o

Table 3.1: Characteristic scales and evolution parameters in the four propagation regimes for
post-shut-in evolution (pulse injection case).

It is interesting to note that the lengthscales L[V ] in both leak-off dominated scalings (M̃ [V ] and

K̃ [V ]) listed in table 3.1 are decaying with time. This indicates that for a finite volume injection,

if dominated by leak-off, the fracture recesses. Hinting toward an immediate arrest after

shut-in in those cases. Similarly, we observe that the fracture length scale is time-independent

in the toughness/storage scaling (K [V ] in table 3.1). The fracture length scale increases with

time only in the viscosity/storage-dominated regime (M [V ] in table 3.1). We already get a grasp

at the structure of the solution after shut-in from those observations and anticipate that if the

shut-in occurs when the fracture is already propagating in the leak-off dominated regime, it

will immediately arrest and actually recess. If leak-off is negligible at shut-in, the fracture will

continue growing if viscosity dominates. At the same time, it will tend to a constant size if

dominated by fracture toughness and, as such, arrest in a finite time.

Our aim in what follows is to investigate the post-shut-in stages thoroughly and delineate when

and how further growth after shut-in occurs. To do so, we will combine scaling arguments

and semi-analytical solutions in some limiting regimes with full numerical solutions. This

evolution post-shut-in will be dependent on the dimensionless toughness and dimensionless

leak-off coefficients at shut-in

Ks =Km (t = ts) =K [V ]
m (t = ts) = K ′ t 1/9

s

E ′13/18µ′5/18Q1/6
o

Cs =Cm (t = ts) =C [V ]
m (t = ts) =C ′ E ′2/9t 7/18

s

Q1/3
o µ′2/9

. (3.10)

where Vo =Qo ts has been used. Alternatively, the evolution can be grasped as a function of

one of the two shut-in parameters (Ks or Cs) and the trajectory parameter φ= (tmk /tmm̃)14/9

=C 4
m/K 14

m =C 4
s /K 14

s .
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3.3.3 Numerical solver used

We will use the open source-planar 3D hydraulic fracture simulator PyFrac (Zia and Lecampion,

2020) extensively. The code is a Python implementation of the implicit level set algorithm

(ILSA) (Peirce and Detournay, 2008) for three-dimensional planar HF. The scheme notably

combines a finite discretization of the fracture with the use of the near tip HF asymptotic

solution (see for example Garagash et al. (2011)), valid close to the moving boundary of the

HF (at the tip, see figure 3.1a). We briefly outline the numerical techniques used to solve the

governing equations presented in section 3.3 and refer to Zia and Lecampion (2020) for more

details.

The fracture propagation plane is discretized using a rectangular Cartesian mesh with constant

cell size. The fracture front is defined via a level set evaluated at the center of each cell. The

algorithm marches in time such that the solution at time t n+1 is obtained from the known

solution at t n . The solution at a given time consists of the level set field (closest distance

to the front from a cell center), the fracture front (location of intersections with cell edges),

fracture opening, and fluid pressure inside the fracture (defined at the center of the cells).

Quasi-static elasticity is discretized using a displacement discontinuity method with piece-

wise constant rectangular elements, and the Reynolds equation (3.5) is spatially discretized

via a finite volume method. The fluid fluxes are notably obtained at the cell edges via a central

finite difference scheme. After accounting for the injected volume during ∆t n+1 = t n+1 − t n ,

using a fully implicit time-integration scheme, one obtains a non-linear (elastohydrodynamic)

system of equations for a given trial fracture front position. This non-linear system is solved

via Anderson acceleration of fixed-point iterations (Anderson, 1965; Walker and Ni, 2011).

Once the elastohydrodynamic system is solved, a new fracture front position is found using the

ILSA scheme. This scheme updates the values of the level set function according to the widths

in the ribbon elements close to the tip obtained from the elastohydrodynamic system. An

iteration procedure between the front location and the resolution of the elastohydrodynamic

system (for a given fracture front position) is performed until the fracture front converges

between subsequent iterations. We use the approximation of the universal tip asymptote

provided by Dontsov and Peirce (2017). For computational efficiency and robustness, we use

a predictor-corrector scheme for the fracture front advancing scheme where the starting point

of the iteration on the fracture front is obtained with an explicit time step using the velocity

obtained in the previous time step (see (Zia and Lecampion, 2019) for more details). The

scheme has been extensively tested against known solutions and proved robust and accurate

(Peirce, 2015, 2016; Zia et al., 2018; Zia and Lecampion, 2020; Moukhtari et al., 2020). In what

follows, all the reported simulations use a grid size of 61x61 elements, and a re-meshing

(coarsening of the element size by a factor 2) is performed when the fracture reaches the end

of the grid, such that at most, the fracture contains approximately 61x61 elements and at

minimum 30x30 elements (for details on numerical accuracy see Appendix 3.8.2).

53



Chapter 3. Arrest of a radial hydraulic fracture upon shut-in of the injection

3.4 Impermeable Medium

In the case of an impermeable medium, the fracture will arrest when the excess elastic energy

present at shut-in falls below the energy required for subsequent fracture growth.

3.4.1 Arrest radius in the finite toughness case

If the fracture toughness is finite, the arrest will occur when the stored elastic energy present

at shut-in has been entirely consumed by viscous flow. When the fluid velocity vanishes,

the fluid pressure is uniform inside the fracture (as per Poiseuille law’s v =−w2/µ′∂p/∂z = 0

→ ∂p/∂z = 0). The radius of arrest is simply obtained as the solution of the quasi-static

equilibrium of a crack under uniform net loading p with a prescribed volume Vo for which the

stress intensity factor is strictly equal to K I c . For a uniform net pressure p, the elasticity (3.2)

reduces to (Sneddon, 1946)

w(r ) = 8

π

p

E ′
√

R2 − r 2 (3.11)

and the fracture volume V f and mode I stress intensity factor are given as

V f =
16

3

pR3

E ′ (3.12)

K I = 2p
π

pR1/2 (3.13)

In the absence of leak-off (impermeable case), imposing a fracture volume equal to the injected

volume Vo and a stress intensity factor K I equal to the fracture toughness, one can easily solve

for the corresponding radius, net pressure, and width:

Rk,a =
(

3

π
p

2

)2/5 (
E ′Vo

K ′

)2/5

, (3.14a)

pk,a =
(

π6

3×217

)1/5 (
K ′6

E ′Vo

)1/5

, (3.14b)

wk,a(r ) =
(

3

8π

)1/5
√

1−
(

r

Rk,a

)2 (
VoK ′4

E ′4

)1/5

. (3.14c)

We shall denote this solution as the toughness arrest solution (with subscript k, a). It only

depends on the rock properties (elasticity and toughness) and the total volume injected.

This solution (equations (3.14a)-(3.14c)) corresponds to the K [V ]-Vertex characteristic scales

multiplied by prefactors of order one. It is also worth noting that the solution for a toughness-

dominated growth under a constant injection rate (see Abé et al. (1976); Savitski and Detournay

(2002)) is merely obtained by replacing Vo by Qo t in this solution.
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3.4 Impermeable Medium

3.4.2 Viscosity-storage pulse solution in the zero toughness limit - case of no arrest

In the limit of zero toughness (for example, when re-opening a pre-existing fracture), we see

from (3.14a) that the arrest radius becomes infinite. In other words, in that limit, the hydraulic

fracture will continue to grow ad vitam æternam. Given the scaling of table 3.1 in this regime of

zero toughness and zero leak-off, the growth of an HF with a finite volume Vo does not depend

on any dimensionless parameter (K [V ]
m =C [V ]

m = 0). As a result, the growth is self-similar, and

a solution can be derived using the viscosity/storage M [V ] scaling. Equations (3.2) to (3.6) in

the M [V ] scaling can be re-written as:

Ω̄[V ]
m0(ρ) = 8

π

∫ 1

ρ

ξ

ξ2 −ρ2

∫ 1

0

xΠ[V ]
m0(ρ)p

1−x2
dxdξ (3.15a)

1

9
ρ+

(
Ω̄[V ]

m0(ρ)
)2 dΠ[V ]

m0(ρ)

dρ
= 0 (3.15b)

∫ 1

0

Π[V ]
m0(ρ)√
1−ρ2

ρdρ = 0 (3.15c)

γ[V ]
m0 =

(
2π

∫ 1

0
Ω̄[V ]

m0(ρ)ρdρ

)−1/3

(3.15d)

subjected to the boundary conditions of zero dimensionless opening and fluid flux at the

tip. The dimensionless solution F [V ]
m0 (where the subscript m0 refer to the zero toughness

/ leak-off limit) consists of the dimensionless fracture radius γ[V ]
m0, net pressure Π[V ]

m0, and

reduced opening Ω̄[V ]
m0(ρ) =Ω[V ]

m0(ρ)/γ[V ]
m0.

This set of equations can be solved numerically using Gauss-Chebyshev quadrature and

barycentric Lagrange differentiation and interpolation. Such a numerical method follows

previous work (Viesca and Garagash, 2018; Liu et al., 2019) and is described in Appendix

3.8.2. The dimensionless opening and pressure profiles are shown in figure 3.10 of Appendix

3.8.2. The dimensionless fracture length obtained numerically is γ[V ]
m0 ≈ 0.8360. We also note

that the numerical results obtained using PyFrac matches very well the one obtained via this

Gauss-Chebyshev-based scheme (see table 3.6 in Appendix 3.8.2).

3.4.3 Propagation and arrest post-shut-in

We now turn to investigate the propagation after shut-in in the impermeable case and the

subsequent arrest due to a finite toughness numerically.

In the case of growth after shut-in (pulse injection) for a finite toughness in an impermeable

medium, the final radius of arrest is given by equation (3.14a), and the growth solution toward

55



Chapter 3. Arrest of a radial hydraulic fracture upon shut-in of the injection

10
-6 0.01 100.00 10

6
10
10

10
14

0.005

0.010

0.050

0.100

0.500

1

1.00

0.5 1 2 5

0.7

0.8

0.9

1.0

Figure 3.2: Normalized fracture radius as function of the dimensionless shut-in time t/ts .
Numerical (and semi-analytical) predictions of fracture radius scaled by the arrest radius Rk,a

(3.14a) for various values of shut-in toughness Ks (3.10) (from 10−4 to 102).

this arrest only depends on a dimensionless toughness K [V ]
m (t ) (see table 3.1) which can be

expressed as a function of the dimensionless toughness at shut-in Ks =Km (ts):

K [V ]
m (t ) =

(
t

ts

)5/18

Ks . (3.16)

The evolution of the fracture radius as a function of t/ts for a series of simulations with

different values of Ks (equivalent to different shut-in time) is displayed in figure 3.2. The

radius is scaled by the final arrest radius Rk,a (3.14a). We note that during the injection phase

(t/ts < 1), we retrieve the semi-analytical solutions for growth under a constant injection

rate derived in Savitski and Detournay (2002) (red (toughness dominated) and blue (viscosity

dominated) dashed lines in figure 3.2). Upon shut-in, the behaviour of the fracture changes

depending on the dimensionless toughness at shut-in Ks . However, the arrest radius is

uniquely defined (it does not depend on Ks) and equals, up to numerical precision (between 1

to 3.5% relative error), to the theoretical value given by equation (3.14a). For small values of Ks

(where the shut-in happens when the HF is in the viscosity-dominated regime), one observes

the transition from the constant injection rate viscosity solution (Savitski and Detournay,

2002) to the pulse viscosity-dominated solution discussed in section 3.4.2 (dashed magenta

line on figure 3.2). This self-similar propagation appears at intermediate times before the

fracture finally arrests at a radius equal to Rk,a (3.14a). Larger values of Ks ≳ 3 result in an

56



3.4 Impermeable Medium

immediate arrest as the stored elastic energy is already balanced by fracture energy at shut-in:

the radius at shut-in is equal to the arrest radius.

We post-process these results to estimate the limiting value of Ks,c (c for critical) above which

immediate arrest occurs after shut-in. We define immediate arrest at shut-in when the radius

at shut-in Rs = R (t = ts) is equal or larger to 97.5% of the final arrest radius
(
Rs/Rk,a ≥ 0.975

)
.

In other words, when the radius at shut-in is within 2.5% of the toughness/arrest dominated

solution (3.14a). We obtain Ks,c ≈ 2.75±0.2 from our series of numerical simulations. Such an

estimate is in line with the one that can be derived from the first-order propagation solution

for large toughness (dimensionless radius γm ≈ 0.8546K −2/5 −0.7349K −4 expressed in the

viscosity scaling - see Savitski and Detournay (2002)). Savitski and Detournay (2002) estimate

K ≈ 3.5 for a fully toughness dominated growth assuming a 1% relative difference between

the zero 0.8546K −2/5 and first-order
(
0.8546K −2/5 −0.7349K −4

)
solutions. One obtains

K ≈ 2.67, respectively K ≈ 2.5 when taking 2.5% respectively 3% relative difference. These

values are consistent with the estimate directly derived from our numerical simulations. We

take Ks,c ≈ 2.5 for simplicity in the following - in line with the upper bound of the relative error

of our numerical solution (between 1 to 3.5% relative accuracy with respect to self-similar

growth solutions for the mesh resolution used here, see Appendix 3.8.2).

For the case of dimensionless shut-in toughness lower than Ks,c , the fracture continues to

grow after shut-in up to the arrest radius Rk,a . When the fracture propagates in the viscosity

dominated regime at shut-in (K s ≪ 1 cases), the distance propagated after shut-in can be

estimated by simply comparing the final arrest radius Rk,a (see equation (3.14a)) with the

radius of the fracture at shut-in (t = ts) from the constant injection viscosity dominated

solution (Savitski and Detournay, 2002):

Rm(t = ts) = Rs = 0.6978
E ′1/9Q1/3

o t 4/9
s

µ′1/9
(3.17)

We thus obtain the following relation between the arrest and shut-in radius and the dimen-

sionless toughness at shut-in:

Rk,a

Rs
=

(
3

π
p

2

)2/5 (
E ′Vo

K ′

)2/5

0.6978
(

E ′1/9Q1/3
o t 4/9

s

µ′1/9

) ≈ 1.23K −2/5
s (3.18)

Figure 3.3 shows that this semi-analytical approximation falls exactly on our numerical results

for values of Ks below 1. It slightly underestimates the ratio Ra/Rs for values of the dimen-

sionless shut-in toughness between 1 and the value for immediate arrest Ks,c ≈ 2.5. This is

simply because, for values of Ks larger than one, the estimate of the radius at shut-in provided

by the constant injection viscosity dominated (zero toughness) solution is no longer a valid

approximation as the fracture toughness impacts the solution.

From equation (3.16), we can similarly estimate the following relation between the shut-in

time (t = ts) and the time of arrest (t = ta):
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ta

ts
∝K −18/5

s . (3.19)

We use our numerical simulations to capture the corresponding prefactor leading to the

relation ta/ts ≈ 5.0K −18/5
s , again valid for Ks smaller than 1. Figure 3.3 illustrates that the

time of arrest can be significantly larger than the shut-in time for values of Ks smaller than

the critical value for immediate arrest Ks,c ≈ 2.5.

3.5 Permeable medium

We now switch to the case of a permeable medium. The loss of fluid in the surrounding rock

is an additional arresting mechanism after shut-in as it acts as an energy sink for the excess

elastic energy available for subsequent growth. We, therefore, anticipate that the arrest radius

may significantly differ from the impermeable estimate given by equation (3.14a).

3.5.1 Zero toughness case

In the zero toughness case, the arrest is solely governed by the loss of fluid, and no analytical or

semi-analytical expressions are currently available for the post-shut-in phase. As mentioned

previously, the scaling for a pulse HF indicates an immediate recession in the viscosity/leak-

off regime
(
M̃ [V ]

)
. We can thus anticipate an immediate arrest if the shut-in occurs when

the HF already propagates in the so-called viscosity/leak-off dominated regime
(
M̃

)
. In the

constant injection case (prior to shut-in), the transition from the viscosity/storage (M) to

the viscosity/leak-off
(
M̃

)
regime is governed by a dimensionless leak-off coefficient Cm(t ) =

(t/tmm̃)7/18 (see equation (3.8)). The leak-off /viscosity-dominated solution is fully reached

within 1% for Cm ≈ 13, and within 3% for Cm ≈ 4 (Madyarova, 2003; Dontsov, 2016).

In the zero toughness case, the growth after shut-in is governed solely by the dimensionless

leak-off coefficient

C [V ]
m (t ) =

(
t

ts

)13/18

Cs .

Similar to the impermeable case, the dimensionless leak-off coefficient at shut-in Cs (3.10)

will govern the arrest of the fracture. We can hypothesize that fracture arrest will occur when

the HF enters the viscosity/leak-off regime
(
M̃ [V ]

)
. This is equivalent to stating that C [V ]

m ∼ 1

such that we can estimate the time of arrest as

tm̃,a ∼ tsC
−18/13
s . (3.20)
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Figure 3.3: Characteristical values of post-injection propagation as a function of the dimen-
sionless toughness at shut-in Ks (impermeable case). a) Ratio between arrest and shut-in
radius for a radial fracture in an impermeable medium. b) Time of arrest over shut-in time.
Numerical simulations (Black dots ) and analytical estimate for small Ks (dashed purple line).

59



Chapter 3. Arrest of a radial hydraulic fracture upon shut-in of the injection

10
-5 0.001 0.100 10

0.1

0.2

0.3

0.4

0.5

0.53 1000.01010
-4

10
-6

Figure 3.4: Numerical evaluation of the arrest radius for different values of Cs in the zero
toughness case. The early shut-in approximation is given in equation (3.21) with its prefactor
obtained by regression of these numerical results. The late shut-in solution corresponds to the
radius at shut-in given by the viscosity/leak-off propagation solution of Madyarova (2003).

The estimation of the arrest radius then emerges from the scaling (table 3.1) as

Rm̃,a = γm̃,aL[V ]
m

(
t = tm̃,a

)= γm̃,a ×
E ′1/13V 5/13

o

C ′2/13µ′1/13
(3.21)

where γm̃,a is an unknown constant of order 1.

We perform a series of simulations for different values of Cs ranging from 10−15 to 102. The

arrest radius as a function of Cs is displayed in figure 3.4. We confirm that indeed the arrest

radius scales with L[V ]
m

(
t = tm̃,a

)
. In addition, two regimes can be observed. For Cs ≲ 0.25, the

arrest radius scaled by L[V ]
m

(
t = tm̃,a

)
is indeed strictly constant, while for large values of Cs

the arrest is immediate such that the arrest radius corresponds to the radius at shut-in given

by the large leak-off propagation solution (M̃-solution).

More precisely, for Cs ≲ 0.25, we can estimate the pre-factor of the exact arrest radius which

scales with L[V ]
m

(
t = tm̃,a

)
. We obtain γm̃,a ≈ 0.5218 from a linear regression of our numerical

results, such that the arrest radius can be approximated as

Rm̃,a ≈ 0.5218
E ′1/13V 5/13

o

C ′2/13µ′1/13
for Cs ≲ 0.25. (3.22)

We will refer to this estimate of the arrest radius as the “early shut-in” approximation (where

early refers to small Cs). On the other hand, for values of Cs larger than 2.5, the arrest radius
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3.5 Permeable medium

is the radius at shut-in, which follows the viscosity/leak-off regime
(
M̃

)
constant injection

solution (Madyarova, 2003; Detournay, 2016; Dontsov, 2016), as can be seen in figure 3.4.

We refer to this limit as the “late shut-in” (large Cs) solution hereafter. We can infer that the

fracture will immediately stop its propagation somewhat for Cs between 0.25 and 2.5. We

estimate the critical dimensionless leak-off coefficient at shut-in Cs,c for immediate arrest

from our simulations as Cs,c ≈ 0.53±0.05 by again using the criterion Rs/Ra (Cs) ≥ 0.975 for

immediate arrest (red dashed line in figure 3.4). It is important to note that contrary to the

impermeable case, the arrest radius is not uniquely defined for all Cs . For small Cs (below

0.25), the arrest radius is constant but not for larger values. Immediate arrest occurs for

Cs,c ≈ 0.53 and the arrest radius for Cs larger than Cs,c coincides with the shut-in radius,

which can be well approximated by the viscosity/leak-off dominated injection solution (within

a few percent for Cs > 4).

We now turn to quantify the amount of propagation after the end of the injection. As expected,

the propagation in the zero toughness case follows the known solutions during injection

(Savitski and Detournay, 2002; Madyarova, 2003; Dontsov, 2016) (t/ts < 1 in figure 3.5 left,

blue (storage), and light blue (leak-off) dashed lines). One can observe from figure 3.5a that

the propagation after shut-in (t/ts > 1) for the “early shut-in” cases
(
Cs ≲ 0.25

)
follows the

viscosity/storage pulse solution (developed in section 3.4.2) at intermediate times before

the final arrest. We can thus estimate the amount of propagation after shut-in for values of

Cs ≲ 0.25 by comparing the radius at shut-in (evaluated from the viscosity storage injection

solution (Madyarova, 2003; Dontsov, 2016)) with the “early shut-in” arrest radius (3.22):

Rm̃,a

Rs
≈

0.5218
(

E ′1/13V 5/13
o

C ′2/13µ′1/13

)
0.6978

(
E ′1/9Q1/3

o t 4/9
s

µ′1/9

) ≈ 0.75C −2/13
s . (3.23)

We recall that the prefactor of 0.5218 is obtained by fitting our numerical results such that

equation (3.23) is also an approximation. Such an approximation compares very well with our

numerical results up to Cs ≲ 0.25 as can be seen in Figure 3.6a. The power-law dependence of

the ratio between the time of arrest and the shut-in time can be similarly derived from (3.20)

as ta/ts ∝C −18/13
s . Such a dependence captures well our numerical results as displayed in

Figure 3.6b where a linear regression was performed to obtain a prefactor of 0.044 (Figure 3.6b).

The time of arrest can thus be estimated for small Cs as:

ta

ts
≈ 0.044C −18/13

s for Cs ≲ 0.25.

The effect of leak-off on arrest can also be grasped by looking at the evolution of fracturing

efficiency η, defined as the ratio between the fracture volume V f and the injected volume Vi n j :
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Figure 3.5: a) Normalised fracture radius as a function of characteristic shut-in time t/ts .
Numerical (and semi-analytical) predictions of fracture radius scaled by the arrest radius
Ra (Cs) for various values of shut-in leak-off coefficient Cs (from 10−6 to 102). b) Fracturing
efficiency as a function of dimensionless leak-off coefficient Cm (t ) = Cs × (t/ts)7/18. Black
dashed lines correspond to numerical simulations with different values of shut-in leak-off
coefficient Cs . Blue dots mark the moment of shut-in, and red dots mark the fracture arrest.
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η= V f

Vi n j
, with: Vi n j =

 Qo t

Vo

for t < ts

for t ≥ ts

(3.24)

For example, an efficiency of η= 0.5 indicates that half of the fluid injected remains inside

the fracture, while the rest has leaked to the surrounding rock. The dimensionless leak-off

coefficient is linked in a non-linear way to fracturing efficiency, and both help to characterize

the propagation and arrest of the fracture after shut-in. From Figure 3.5b, we can relate the

critical value of dimensionless leak-off coefficient at shut-in Cs,c ≈ 0.53, to a unique critical

value of fracturing efficiency of ηc = η
(
Cm (ts) =Cs,c

)≈ 0.44. This allows us to estimate the

loss of fluid necessary to stop instantaneously the fracture from propagating at shut-in. In

other words, from the moment on that a bit more than half of the total amount of fluid

injected is lost due to leak-off, the fracture will stop immediately upon shut-in. Finally, we

can assess the possibility of post-injection propagation via the fracturing efficiency η, by

observing Figure 3.5b. One can see that for Cs smaller than 0.25 (for which the “early shut-in”

approximation is valid), the arrest seems to occur when the fracturing efficiency falls to a

common value of 0.68 irrespective of Cs . From this, we infer that the fracturing efficiency at

shut-in ηs = η (Cs) indicates the potential of post-injection propagation, as follows:

ηs > ηa = 0.68 post-shut-in propagation,

ηc ≤ ηs < ηa negligible post-shut-in propagation,

ηs < ηc = 0.44 immediate arrest.

(3.25)

3.5.2 General case

When accounting for both finite toughness and leak-off, the solution now depends on the

corresponding dimensionless parameters at shut-in (Ks and Cs). The two are directly related

by the trajectory parameterφ=C 4
s /K 14

s . We alternatively use Ks (or Cs) andφ to characterize

the arrest radius and post-shut-in propagation.

We numerically evaluate the radius of arrest by performing a large number of simulations

(≈ 450 simulations) for various values of the trajectory parameter φ=C 4
s /K 14

s ranging from

10−12 to 1020. The results are displayed in figure 3.7 together with limiting solutions in the

impermeable and zero toughness cases. First of all, we observe that for Cs > 2.5, the arrest

radius is immediate independent of the value of Ks (i.e., independent of φ): one retrieves

the “late shut-in” arrest radius (viscosity / leak-off regime injection solution (Madyarova,

2003; Dontsov, 2016)). For φ > 1, the arrest radius follows the early shut-in approximation

(equation (3.22)) for intermediate values of Cs . For a given value of φ, the arrest radius

tends to the impermeable arrest radius Rk,a (equation (3.14a)) when Cs vanishes. Finally,

the impermeable arrest radius Rk,a (equation (3.14a)) is already a good estimate for values of

Cs ≤ 10−2 when Ks ≲ 0.8 (i.e when φ≤ 10−6).
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Figure 3.6: Characteristic values of post-injection propagation as a function of the shut-in
leak-off coefficient Cs . a) Overshoot of a radial fracture in the case of zero toughness. b)
Square root of time of persistent propagation of a radial fracture in the case of zero toughness.
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Figure 3.7: Normalized arrest radius Ra/Rk,a as a function of the dimensionless leak-off
coefficient at shut-in Cs for different values of the trajectory parameter φ=C 4

s /K 14
s . Black

dots are simulation results; red dots correspond to the critical value above which the arrest is
immediately upon shut-in. The red dashed line is the zero leak-off arrest radius; the green
dashed lines are the “early shut-in” arrest radius approximation, and light blue lines the late
shut-in solution.

From this series of simulations as well as the limits for arrest obtained in the impermeable(
Ks,c ≈ 2.5

)
and zero-toughness case

(
Cs,c ≈ 0.53

)
, we can delineate in the (Ks ,Cs) phase

space, the regions where post-shut-in growth does or does not occur. Figure 3.8a displays

the ratio between the final arrest radius and the shut-in radius, and red dots correspond to

the boundary for immediate arrest (estimated numerically following the same threshold of

2.5% then in the limiting zero-toughness and impermeable cases). From these results, we can

further provide the following approximation for this boundary for immediate arrest:

Cs,c ≈ 0.53 Ks,c < 0.8

Cs,c
(
Ks,c

)≈ 0.78−0.313 ·Ks,c for Ks,c ∈ [0.8,2.5]. (3.26)

where the limit of Ks,c = 2.5 is retrieved for Cs = 0. Such a boundary is approximate with a

resolution of about 3 to 5 percent, accounting for our numerical errors and our sampling of

the (Ks ,Cs) phase space.

Using figure 3.5b the value of Ks,c can be used to get an equivalent value of the fracturing

efficiency ηc = ηs
(
Ks,c

)
. As expected, the critical efficiency tends towards the zero toughness

limit of ηc = 0.44 when Ks,c gets below 0.8. A critical fracturing efficiency of 1 is reached for

Ks,c = 2.5 which corresponds to the critical shut-in toughness in the impermeable case. The

evolution of the critical fracturing efficiency (upon which arrest is immediate at shut-in) as a
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function of Ks,c can be approximated in a piece-wise linear manner as follow:

ηc ≈ 0.44 Ks,c < 0.8

ηc ≈ 0.190+0.317 ·Ks,c for Ks,c ∈ [0.8,2.5)

ηc = 1.00 Ks,c = 2.5.

(3.27)

Similarly, for the limiting impermeable and zero-toughness cases, we quantity the post-shut-in

propagation in terms of propagated distance and time of arrest. Figures 3.9 (a) and (b) display

respectively the ratio of the final arrest radius over the shut-in radius and the time of final

arrest over the shut-in time. We observe that as the trajectory parameter φ / leak-off increases

(Cs increases at constant Ks), the arrest time and corresponding radius decrease. They depart

from the impermeable solution (3.14a) and switch to the early shut-in approximation (3.22)

for intermediate values of Ks . The limit of immediate arrest is clearly visible in those plots:

it corresponds to the lowest value of Ks for which Ra/Rs = ta/ts = 1 and is highlighted by a

red dot for a given φ. From figures 3.9 (a) and (b), we can see that the impermeable solution

provides a good estimate of the post-injection propagation and time of arrest for values of

φ≤ 10−6 for all Ks . For values of φ> 10−6, the impermeable solution is valid up to a given

value of Ks , which decreases as φ increases. For a given φ, the zero-toughness estimate is

valid in the intermediate range of Ks , nearly up to Ks,c (Cs,c ). These plots provide a simple

and efficient way to estimate quickly the amount of propagation post-shut-in as a function of

Ks and Cs
(
φ=C 4

s /K 14
s

)
.

3.6 Discussions

3.6.1 Orders of magnitude for industrial applications

The results of the previous sections are notably applicable to industrial applications related

to well stimulation (Economides and Nolte, 2000; Detournay, 2016). Hydraulic fracturing

treatments usually consist of a series of injections under a constant rate propagating fluid-

driven fractures in a rock formation. These fractures are then filled by a proppant-bearing

fluid (keeping the fracture open /propped) to enhance the permeability of such sand- and

mudstone reservoirs. We focus on the case of a single-entry treatment where a single hydraulic

fracture is propagated. A broad range of fluids have been designed for these treatments, linear

or cross-linked gels, as well as slickwater, are commonly used (Barbati et al., 2016; Lecampion

and Zia, 2019). To assess the order of magnitude of post-injection propagation, we illustrate

our findings with the two examples listed in table 3.2.

We assume two values for the leak-off parameter, C ′ = 10−6[m·s−1/2] and C ′ = 10−10[m·s−1/2]

(see discussion in Lecampion et al. (2018) for an estimation of the range of leak-off properties).

The large leak-off coefficient is likely to occur in porous sandstones, whereas the small value is

more likely for tight mudstones (although the coefficient also depends on the fracturing fluid

type). However, we will apply both coefficients to cases (1) and (2) to assess the entire range of

66



3.6 Discussions

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1.025

1.050

1.075

1.100

1.200

1.300

1.500

2.000

0.05 0.10 0.50 1

0.5

0.6

0.7

0.8

0.9

1.0

2 2.5

Figure 3.8: a) Contour plot of propagation after shut-in. Red dots are the numerically evaluated
values of immediate arrest at shut-in, the light blue dashed line gives the critical dimensionless
leak-off coefficient in the zero-toughness case

(
Cs,c ≈ 0.53±0.05

)
and the black dashed line is

a numerical fit for intermediate values. b) Critical fracturing efficiency as a function of the
critical dimensionless toughness at shut-in.
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Figure 3.9: Propagation post-shut-in (final arrest radius divided by the radius at shut-in) in the
general case as a function of the dimensionless toughness at shut-in Ks for different values of
the trajectory parameter φ=C 4

s /K 14
s . The red dashed line corresponds to the impermeable

medium case, while the green dashed lines represent the early shut-in leak-off approximation.
Red dots indicate the limit of immediate arrest, and black dots are numerical simulations.
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Cases µ[Pa · s] Qo[m3/s] ts[s] Vo[m3] E [GPa] ν[-] K I c [MPa ·pm]

(1) Gel injection
into a sandstone

5×10−3 0.05 2700 135 20 0.25 1.50

(2) Slickwater
injection into a
mudstone

1.00 0.01 2700 27 30 0.25 1.0

Table 3.2: Characteristic values of industrial HF applications for a so-called single entry
treatment (propagation of a single hydraulic fracture).

possible propagation after shut-in.

The four possible combinations (cases (1) and (2) of table 3.2 with the two values of C ′) result

in a large range of trajectory parameters φ ∈ [
10−25,5 ·101

]
. The value of the dimensionless

shut-in toughness in these cases varies within one order of magnitude (K (1)
s = 1.44 and

K (2)
s = 0.21) and the dimensionless shut-in leak-off coefficient from Cs = 10−6 to Cs = 0.022.

We discuss case (1) combined with the higher leak-off parameter (minimum propagation after

shut-in) and case (2) with the low leak-off coefficient (maximum propagation after shut-in).

The results of all four combinations are listed in table 3.3.

The slickwater injection into sandstone with a large leak-off coefficient
(
C ′ = 10−6[m · s−1/2]

)
results in a dimensionless shut-in toughness of Ks = 1.44, a shut-in leak-off parameter of Cs =
0.022 and a trajectory parameter φ= 1.5 ·10−9. Following figure 3.7, we estimate the radius of

arrest as approximately 0.95·Rk,a ≈ 166[m] (where Rk,a is given by equation (3.14a)). We derive

the ratio between arrest and shut-in radius from Figure 3.9a as Ra/Rs ≈ 1.10 corresponding to

a propagation after shut-in of about 10%. From figure 3.7, we estimate that ta/ts ≈ 2.5 leading

to an elapsed time between shut-in and arrest of about ta − ts ≈ 1.5 ts ≈ 4050[s].

For the second case with a small leak-off coefficient
(
C ′ = 10−10[m · s−1/2]

)
, the dimensionless

parameters at shut-in are now Ks = 0.21, Cs = 1.2 ·10−6, corresponding to φ = 5.5 ·10−15.

This allows us to estimate the arrest radius using equation (3.14a) yielding a value of Ra =
127[m]. It is further possible to estimate the radius at shut-in with the viscous propagation

solution of Savitski and Detournay (2002) Rs = 56[m] giving us a precise estimation of the

propagation after shut-in of Ra/Rs ≈ 2.27. The arrest radius is thus more than twice the radius

at shut-in, and growth after shut-in accounts for another 127 % of the growth during the

injection (Ra −Rs ≈ 1.27Rs). The ratio between the arrest and the shut-in time is substantial

and estimated as ta/ts ≈ 5.0K −18/5
s ≈ 1272, leading to an arrest time of ta ≈ 3.43·106[s] ≈ 40[d].

3.6.2 Orders of magnitude for a magmatic pulse release

Natural hydraulic fractures can occur via magmatic intrusion through the lithosphere. We

illustrate the impact of the post-injection propagation of a dike assuming a strictly imper-

meable medium. We neglect buoyant forces for simplicity and assume Newtonian rheology
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Cases φ[-] Cs[-] Ks[-] Ra[m] Rs[m] Ra/Rs ta/ts

(1) Gel injection into
a sandstone with
C ′ = 10−6[m·s−1/2]

O
(
10−9

)
0.022 1.44 ≈ 166 ≈ 151 ≈ 1.10 ≈ 2.5

(1) Gel injection into
a sandstone with
C ′ = 10−10[m·s−1/2]

O
(
10−25

)
O

(
10−6

)
1.44 175 ≈ 159 ≈ 1.10 ≈ 2.5

(2) Slickwater injection
into a mudstone with
C ′ = 10−6[m·s−1/2]

54.7 0.012 0.21 ≈ 82 56 ≈ 1.47 ≈ 50

(2) Slickwater injection
into a mudstone with
C ′ = 10−10[m·s−1/2]

O
(
10−15

)
O

(
10−6

)
0.21 127 56 2.27 ≈ 1272

Table 3.3: Resulting dimensionless parameters, arrest, and shut-in radius as well as post-
injection propagation and elapsed time between shut-in and arrest.

for the magma. We use the material parameters specified in table 3.4, where we estimate

the volume Vo as a mean volume for dike intrusions at the Piton de la Fournaise volcano on

La Réunion between 1998 and 2016 (Froger et al., 2004; Fukushima et al., 2010; Smittarello

et al., 2019). Estimation of the injection time is difficult, but measurements of mean magma

flow rates and injection durations allow to define a range from 0.1 to 10[m3s−1] (Fukushima

et al., 2005, 2010), which allows us to approximate the injection duration. The viscosity of the

basaltic magma at Piton de la Fournaise is evaluated by Villeneuve et al. (2008) and expected to

range between 300[Pa·s] and 100[Pa·s] at around 1100−1150[°] Celsius (temperature observed

by Fukushima et al. (2010)). We use an average value of 200[Pa · s] here. This leads to values

of the shut-in toughness of K (3)
s ≈ 0.044, and K (4)

s ≈ 0.16 allowing to estimate the shut-in

radius via the storage/viscosity dominated M-solution (Savitski and Detournay, 2002) and

the arrest radius from equation (3.14a). The results are summarised in table 3.5 and indicate

a significant propagation after shut-in ranging from 156% to 327% of the shut-in radius. We

observe that the propagation time post-shut-in is very long such that cooling of the magma

will likely reduce the post-release propagation significantly. Such an effect of cooling could

be, at first order, modeled in a similar manner than fluid-leak-off as it is dominated by ther-

mal conduction between the dike and the surrounding rock. Another crucial point is that

buoyant forces can not be neglected in this case, such that the fracture will likely deviate from

the radial shape and elongate to form a three-dimensional buoyancy-driven dike (Rivalta

et al., 2015). The characteristic length scale for buoyancy-driven propagation is given as

Lb = (
K ′/∆ρg

)2/3(Lister and Kerr, 1991). Taking an average rock density of ρs = 2900[kg/m3]

and the density of the basaltic magma at Piton de la Fournaise from (Villeneuve et al., 2008)

as ρ f ≈ 2800[kg/m3], the characteristic length scale for buoyant propagation is Lb ≈ 288[m],

which is significantly smaller than the arrest radius Rk,a = 4.64[km]. This clearly indicates that

buoyancy forces are of first-order in that particular case such that, most likely, they take over

and elongate the fracture before it reaches the radial arrest radius. The further investigation of
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Cases µ[Pa · s] Vo[m3] Q[m3/s] ts E [GPa] ν[-] K I c [MPa ·pm]

(3) Short injec-
tion with high
rate

200 5 ·105 10 ≈ 14[h] 20 0.2 1.5

(4) Long injec-
tion with low
rate

200 5 ·105 0.1 60[d] 20 0.2 1.5

Table 3.4: Estimated values for magma injections neglecting buoyant forces.

Cases Rk,a[km] Rs[km] Ra/Rs ta/ts

(3) Short injection with high rate 4.64 1.09 ≈ 4.27 ≈ 3.8106

(4) Longer injection with low rate 4.64 1.81 ≈ 2.56 ≈ 3.8103

Table 3.5: Resulting fracture dimensions and propagation post-injection for a magmatic
release (not accounting for buoyancy forces).

the conditions for the transition from a radial to a buoyant dike after a given volume release is

out of the scope of this contribution, one can nevertheless anticipate that such a transition

will be grasped by the ratio between the arrest radius and the buoyancy lengthscale.

3.6.3 Importance of subcritical crack growth

Stable crack propagation can occur even when K I ,mi n < K I < K I c (where K I ,mi n is a material-

dependent limit below which no growth is observed), albeit at small velocities (Atkinson, 1984,

1987). An empirical relation between fracture velocity dR/dt and the ratio K I /K I c is known to

reproduce well experimental observations in this sub-critical regime (Charles, 1958a,b)

dR

dt
= A

(
K I

K I c

)n

(3.28)

where A and n are experimentally determined parameters. Subcritical crack growth has been

observed in laboratory HF experiments (Lu et al., 2017; Winner et al., 2018) when a constant

fluid pressure below the critical value required for toughness-dominated crack growth is

applied. We briefly discuss the implications of additional sub-critical growth even after the

arrest radius estimated from linear elastic fracture mechanics has been reached. We restrict

ourselves to the impermeable case for simplicity. The effect will be maximal for that case as

toughness is the sole arresting mechanism.

For a toughness-dominated case, the fluid pressure is spatially uniform in the fracture, fracture

width is given by (3.12), the mode I stress intensity factor K I remains given by (3.13) while the

fracture volume is equal to Vo . Replacing the classical LEFM propagation condition K I = K I c by

the sub-critical crack law (3.28) in this set of equations, one obtains the following differential
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equation for the radius evolution

dR

dt
= A′

(
E ′Vo

K I c

)n

R−5n/2 (3.29)

with A′ = A(3/8
p
π)n . We are interested in gauging sub-critical crack growth beyond the arrest

provided by linear elastic fracture mechanics. We thus use the LEFM radius of arrest given by

equation 3.14a as the initial condition to solve (3.29). We obtain the following crack radius

evolution

R
(
t − tk,a

)= (
AR5n/2

k,a ×
(
1+ 5n

2

)
× (

t − tk,a
)) 2

2+5n

(3.30)

Equation (3.30) is valid when t − tk,a > 2Rk,a/(2A+5An). Assuming common orders of magni-

tudes for Rk,a =O
(
101 −103

)
[m], A =O

(
103

)
[m/s], and n =O

(
101 −102

)
(Lu et al., 2017), this

temporal limit is of the order t − tk,a >=O
(
10−4 −10−1

)
[s].

The criterion for complete fracture arrest is reached when K I drops below the minimum

value K I ,mi n which is in the order of K I ,mi n = K I c /10 (Lu et al., 2017). This lower limit allows

us to estimate the time when the stress intensity factor drops below K I ,mi n and sub-critical

propagation comes to a halt:

tsc,a − tk,a =
2Rk,a

(
10

2
5+n −1

)
A (2+5n)

(3.31)

where tsc,a is the arrest time of sub-critical propagation. The radius (3.30) at that time corre-

sponds to the final arresting radius, including sub-critical growth:

Rsc,a =
(
10

2
5+n −1

) 2
2+5n

Rk,a ≈ 102/5Rk,a ≈ 2.51Rk,a (3.32)

For the range of n typical for rocks (n ∈ [10,200], Lu et al. (2017)), this subcritical arrest radius

is interestingly reduced to a constant amount of the arrest radius Rk,a . We thus see that

sub-critical crack growth adds a significant amount of propagation, about 2.5 times the LEFM

arrest radius. Subcritical fracture propagation is thus likely an important mechanism in

the impermeable case. It needs to be pointed out that the time during which the fracture

grows subcritical is considerable (the minimum arrest time is min
(
tsc,a − tk,a

)=O
(
107

)
[s] for

common values of Rk,a ,n and A). The influence of leak-off will decrease the impact of sub-

critical crack growth as arrest will likely occur first due to leak-off. The case of an impermeable

medium corresponds thus to the maximum upper bound for the post shut-in sub-critical

growth. We leave the quantitative details of the competition between a small amount of

leak-off and sub-critical crack growth to additional studies.
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3.7 Conclusions

We have numerically quantified the propagation of a hydraulic fracture after the end of the

injection in an isotropic, homogeneous, elastic medium, driven by a Newtonian fluid under

the assumption of Carter leak-off.

For an impermeable medium, the arrest radius Ra corresponds to the solution of a quasi-

static crack at equilibrium (K I = K I c ) under a uniform net loading with a volume equal to

the injected one. The arrest radius does not depend on any dimensionless number and is

independent of the injection history in that case. For a permeable medium, the arrest radius

is independent of the injection history only for small values of the dimensionless leak-off

coefficient at shut-in Cs ≲ 0.25 and reduces for increasing values of Cs . Based on scaling

arguments and numerical simulations, we obtain an approximation (3.22) of the arrest radius

in the zero-toughness case valid for Cs ≲ 0.25. The arrest radius for Cs > 2.5 and Ks = 0 (“late

shut-in” solution) corresponds to the viscosity/leak-off dominated solution for a constant

injection rate (Madyarova, 2003). In the general case of finite toughness and leak-off, the

solution of the arrest radius for an impermeable rock is a good estimate for small φ=C 4
s /K 14

s

/ leak-off, while the “early shut-in” approximation is valid for large φ / leak-off. In any case, for

Cs > 2.5, the arrest radius follows the “late shut-in” solution.

The arrest is immediate upon shut-in if the dimensionless toughness Ks at shut-in is larger

than a critical value Ks,c = 2.5 in the impermeable case. Leak-off reduces the value of this

critical dimensionless toughness for immediate arrest. In the zero-toughness case, the arrest

is immediate for Cs ≥Cs,c ≈ 0.53, where Cs,c is the critical value of a dimensionless coefficient

at shut-in. The immediate arrest for finite toughness and leak-off can be approximated as

Cs,c ≈ 0.53 for Ks,c < 0.8 and Cs,c
(
Ks,c

)≈ 0.78−0.313 ·Ks,c for Ks,c > 0.8.

When Ks < Ks,c and Cs < Cs,c (Ks,c ), post-injection propagation does occur. For φ < 10−2

and Ks < 1, the ratio between the arrest and shut-in radius is given by Ra/Rs ≈ 1.23K −2/5
s

(equation (3.18)) which corresponds to the impermeable limit. For φ > 1, we still observe

Ra/Rs ≈ 1.23K −2/5
s for small values of Ks while the early shut-in approximation Ra/Rs ≈

0.75K −7/13
s φ−1/26 is valid for intermediate values of Ks smaller than the critical value given

by Ks,c (Cs,c ). For small values of dimensionless toughness and leak-off coefficient at shut-

in (Ks ≤ 0.1 and Cs < 10−2), the post-shut-in growth is well captured by an intermediate

self-similar viscosity-storage pulse solution. This self-similar solution can be accurately

obtained numerically using a collocation method based on Gauss-Chebyshev quadrature and

barycentric differentiation and interpolation (see Appendix 3.8.2 for details). The fracture

radius evolves as R(t ) ≈ 0.836E ′1/9V 1/3
o t 1/9

µ′1/9 in that viscosity-storage pulse regime where the fracture

velocity decreases much faster ( dR
dt ∝ t−8/9) than during continuous injection ( dR

dt ∝ t−5/9).

For realistic parameters, fracture propagation after shut-in may be of the same order as the

propagation during the injection. Sub-critical crack growth can further extend this post-

injection propagation (we provide an upper limit for this mechanism). The time of arrest
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can be orders of magnitude larger than the shut-in time. As shown, post-shut-in growth is

very sensitive to the amount of leak-off. It is clear that the estimate obtained here under the

assumption of Carter leak-off has to be taken with caution. Indeed, Carter’s leak-off is, by

essence, pressure independent: it assumes a constant over-pressure in the fracture, resulting

in the 1/
p

t behavior. This assumption is clearly questionable at large time after the end of

the injection. Accounting for pressure-dependent leak-off (Kanin et al., 2019) would certainly

modify the estimation of arrest in large leak-off cases. Similarly, poroelastic effects will promote

an earlier arrest due to the back stress associated with the increased pore pressure around the

fracture (Detournay and Cheng, 1991). Another factor possibly reducing the fracture extent in

industrial applications is the presence of proppant. The fracture may close on the proppant,

thus modifying the arrest. We thus see that the estimates we have derived here provide an

upper bound for the post-injection growth of hydraulic fractures. The impact of the previously

mentioned effects (pressure-dependent leak-off, poroelasticity, proppant) favoring an earlier

fracture arrest after the end of the injection remains to be quantified in detail.
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3.8 Appendix of the article

3.8.1 Energy budget of a radial hydraulic fracture

We briefly recall the energy budget of a radial hydraulic fracture to highlight the energy split

after shut-in. The energy balance for the elastic material under the assumption of linear elastic

fracture mechanics and a propagating radial fracture read (Rice, 1968a):

2πRGc
dR

dt
=

∫ R

0

1

2

(
p (r, t )

∂w (r, t )

∂t
−w (r, t )

∂p (r, t )

∂t

)
2πr dr (3.33)

while the energy budget of the lubrication flow in a radial hydraulic fracture is given by

(Lecampion and Detournay, 2007):∫ R

0
p (r, t )

∂w (r, t )

∂t
2πr dr +

∫ R

0

µ′

w (r, t )
V 2

f (r, t )2πr dr +
∫ R

0
υL (r, t ) p (r, t )2πr dr =Qo(t )p (0, t ) .

(3.34)

where V f = q/w is the width-average fluid velocity inside the fracture and vL is the leak off

rate υL =C ′/
p

t − to (r ). Summing up the two previous equations and integrating in time from

the shut-in time ts to the current time t ≥ ts , one obtains the following global energy balance

after shut-in (where Qo = 0 and such is the input energy):

Gcπ
(
R2 (t )−R2 (ts)

)︸ ︷︷ ︸
creation of new surfaces

+
∫ t

ts

∫ R

0

1

2

(
p (r, t )

∂w (r, t )

∂t
+w (r, t )

∂p (r, t )

∂t

)
2πr dr︸ ︷︷ ︸

stored elastic energy

+

∫ t

ts

∫ R

0

µ′

w (r, t )
V 2

f (r, t )2πr dr︸ ︷︷ ︸
viscous flow

+
∫ t

ts

∫ R

0
υL (r, t ) p (r, t )2πr dr︸ ︷︷ ︸

leak-off

= 0. (3.35)

We clearly see that the terms associated with viscous flow inside the fracture and leak-off

(under the assumption of Carter’s leak-off) are always positive. Similarly, the energy spent in

the creation of new fracture surfaces is always positive as R(t ) ≥ R(ts). On the contrary, after

shut-in, the width and pressure decreases: ∂w (r, t )/∂t < 0 and ∂p (r, t )/∂t < 0. The available

elastic stored energy term decreases with time, thus ultimately leading to arrest. The fracture

arrests when an equilibrium is reached between fracture energy, leak-off, and viscous flow

when the available stored energy goes to zero as ∂w (r, t )/∂t = ∂p (r, t )/∂t = 0.

3.8.2 Viscous pulse solution

The self-similar solution of a viscosity-dominated radial hydraulic fracture after shut-in (after

a pulse injection) is solved numerically. Following the techniques described in Liu et al. (2019)

and Viesca and Garagash (2018), we combined Gauss-Chebyshev quadrature with Barycentric

Lagrange interpolation and differentiation. The problem is thus reduced to a system of non-

linear equations that can be solved by root finding. We recall here the most important points
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and refer to Viesca and Garagash (2018) for a detailed description of this spatial discretization

method and to Liu et al. (2019) for its application to finite hydraulic fractures under constant

injection.

Gauss-Chebyshev quadrature

Gauss-Chebyshev quadrature is a well-known technique for solving elastic boundary integral

equations arising in fracture problems (Erdogan et al., 1973). The quadrature uses two sets of

nodes, a primary one s = {s j } with j = 1, ...,n and a complementary set z = {zi } with i = 1, ...,m.

These nodes discretize the normalized fracture within the interval (−1,1). The Chebyshev

polynomials (φ(s) and ψ(z)) have their roots at these same points. It is due to the density

dislocation singularity appearing at the tips, that the choice of the Chebyshev polynomials has

been made. It is easy to include the singularity known from linear elastic fracture mechanics

(LEFM) within these polynomials by the weight functions. Expressing the singularity with the

weight function ω(s) gives

ds w =ω(s)F (s), ω(s) = 1p
1− s2

(3.36)

where F (s) is an unknown, non-singular function. For such a square-root singularity, as

observed in equation (3.36), the corresponding polynomials are the first φn(s) = Tn(s) and sec-

ond ψm(z) =Um(z) kind of Chebyshev polynomials (with m = n −1). For optimal distribution

of nodes, their set is given by (following Viesca and Garagash (2018))

s j = cos

(
π( j −1/2)

n

)
, j = 1, ..,n; zi = cos

(
πi

n

)
, i = 1, ...,n −1 (3.37)

Elasticity for an axisymmetric fracture

The elastic boundary integral equation (3.2) can be inverted to work with the following integral

equation relating net pressure and the dislocation density

p (x) =
∫ R

0
G (x,ξ)

∂w

∂ξ
dξ

where the kernel G is obtained from the ring dislocation solution (Hills et al., 1996):

G
(
ξ,ξ′

)=


sign(ξξ′)
[

1

ξ−ξ′ E(k)− 1

ξ
K(k)

]
, |ξ′| < |ξ|

1

ξ−ξ′ E(1/k), |ξ′| > |ξ|

For an axisymmetric fracture, the kernel is in the leading order of the Cauchy type like for
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plane-strain fracture, but it also contains a weaker logarithm singularity. Similarly to Liu et al.

(2019), we write it as:

G(z, s) = 1

z − s
+ ln |z − s|

2z
+∆G(z, s) (3.38)

where∆G(z, s) corresponds to the non-singular part of G(z, s). To maintain the accuracy of the

quadrature in this case, we represent the logarithm term as an integral of the Cauchy-like term,

ln|z − s| = ∫ z
0

dz

z − s
+ lns, where the latter term is inconsequential (it gives zero contribution

to the elasticity integral). Using integration on the z−grid for the logarithm term, the final

elasticity matrix for axisymmetric fracture can be written as:

G=H+ 1

2z
T ·H+∆G (3.39)

where T = {Ti i ′} is the z−grid integration matrix and ∆G = {
1

n
∆G(zi , s j )}, and H is the dis-

cretized form of the Hilbert transform

Hi j = 1

n

1

zi − s j
(3.40)

Discretised form of the set of equations

The dimensionless form of the system of equations for this zero-toughness solution given by

equations (3.15b)-(3.15d) can be discretized using a collocation method on the z-points of

the chosen Gauss-Chebyshev quadrature. The primary unknowns are the value of F at the n

s-points and the dimensionless fracture length γ[V ]
m0.

• Using the discretized Hilbert transformation on equation (3.15b), one obtains after

integration from zi to the tip, the following system of n −1 equations

1

9
z+ 1

4
(S ·F)2D ·G ·F = 0 (3.41)

where z = (z1, ..., zi , ...zn−1) is the vector of the coordinates of the z-points, and F =
(F1,...Fi , ...,Fn) the vector of unknowns value of F at the s-points. D represents the

Barycentric differentiation matrix on the z-grid and S the integration matrix from z to

the fracture tip (see Viesca and Garagash (2018) for details).

• The propagation criterion (zero stress intensity factor) reduces to the following scalar

equation

Q ·F = 0 (3.42)

where Q is the Barycentric interpolation vector allowing to obtain the value of F at the

fracture tip (and thus the stress intensity factor).
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• The global volume balance (3.15d) becomes after discretization:

SH · (s2F
)+ 1

π
(
γ[V ]

m0

)3 = 0 (3.43)

where SH is the integration matrix (from 0 to 1).

These n +1 discretized non-linear equations allow solving for the n unknown values of F on

the s-grid and the dimensionless fracture length γ[V ]
m0 .

Results

We use the built-in Newton scheme of Mathematica (version 12) to solve the non-linear system

(3.41)-(3.43) using n = 500 points. We notably obtain the following value for the dimensionless

fracture length: γ[V ]
m0 ≈ 0.8360.

The obtained solution has been verified against the numerical 3D planar HF simulator PyFrac

Zia and Lecampion (2019) and the 1D HF simulator developed in Lecampion and Desroches

(2015). Figure 3.10 shows the opening (a) and pressure profiles (b) from the numerical sim-

ulations compared to the semi-analytical Gauss-Chebyshev solution obtained in 3.8.2. We

evaluate the relative difference between the numerical solutions with the Gauss-Chebyshev

collocation scheme for the dimensionless radius, dimensionless inlet opening, and net pres-

sure. All these relative differences are reported in table 3.6, for two PyFrac simulations with two

different grids (61x61, respectively 121x121, elements for PVP_003, respectively PVP_005) and

a simulation (using a grid with 80 elements) with the 1D code of Lecampion and Desroches

(2015).

The relative difference of the PyFrac simulation reduces with finer mesh. For the coarse mesh

used, the relative difference in fracture radius is at most 3.5 %. We use such a mesh resolution

for all the ∼ 450 simulations reported in the main text. We use thresholds of 2.5% throughout

the paper and then adapt the obtained values to account for the slightly larger uncertainty

induced by the numerical error. The 1D numerical results (using a grid with 80 elements) are

closer to the one obtained with the Gauss-Chebyshev quadrature, consistent with the fact that

the axisymmetric geometry is built-in. The geometrical error on the fracture circular shape is

null, like for the Gauss-Chebyshev quadrature, contrary to a planar 3D scheme.
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Figure 3.10: Dimensionless opening (a) and dimensionless pressure (b). Black dashed lines
correspond to the semi-analytical viscosity solution (i.e. M[V]-solution) obtained by the
use of Gauss-Chebyshev polynomials (n = 500). Black markers show numerical solutions of
simulations with PyFrac, and the grey line is the solution of the 1D planar HF Mathematica
code described in Lecampion and Desroches (2015).
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4 Three-dimensional buoyant hydraulic
fractures: constant release from a
point source

This chapter is a modified version of an article published in the Journal of Fluid Mechanics

(JFM).

Möri, A. and Lecampion, B. (2022). Three-dimensional buoyant hydraulic fractures: con-

stant release from a point source. J. Fluid Mech., 950, A12, DOI: 10.1017/jfm.2022.800.

Contributions

Andreas Möri has conceptualized the problem, performed a formal and scaling analysis,

decided on the methodology, adapted the numerical solver, committed validation against

known results, generated the visualizations, and wrote the original draft. Brice Lecampion

acted as supervisor, supported the conceptualization and methodology, supervised the formal

and scaling analysis, acquired the funding, and reviewed and edited the text in iterations with

Andreas Möri.
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Chapter 4. Three-dimensional buoyant hydraulic fractures: constant release from a point
source

4.1 Abstract

Hydraulic fractures propagating at depth are subjected to buoyant forces caused by the density

contrast between fluid and solid. This paper is concerned with the analysis of the transition

from an initially radial towards an elongated buoyant growth – a critical topic for understand-

ing the extent of vertical hydraulic fractures in the upper Earth crust. Using fully coupled

numerical simulations and scaling arguments, we show that a single dimensionless number

governs buoyant hydraulic fracture growth: the dimensionless viscosity of a radial hydraulic

fracture at the time when buoyancy becomes of order one. It quantifies if the transition to

buoyancy occurs when the growth of the radial hydraulic fracture is either still in the regime

dominated by viscous flow dissipation or is already in the regime where fracture energy dissi-

pation dominates. A family of fracture shapes emerges at late time from finger-like (toughness

regime) to inverted elongated cudgel-like (viscous regime). 3D toughness dominated buoyant

fractures exhibit a finger-like shape with a constant volume toughness dominated head and

a viscous tail having a constant uniform horizontal breadth: There is no further horizontal

growth past the onset of buoyancy. However, if the transition to buoyancy occurs while in the

viscosity-dominated regime, both vertical and horizontal growths continue to match scaling

arguments. As soon as the fracture toughness is not strictly zero, horizontal growth stops when

the dimensionless horizontal toughness becomes of order one. The horizontal breadth follows

the predicted scaling.

4.2 Introduction

We investigate the propagation of three-dimensional hydraulic fractures emerging from a

point source accounting for buoyancy forces. Hydraulic fractures (HF) are tensile fluid-filled

fractures propagating under internal fluid pressure which exceeds the minimum compressive

in-situ stress of the surrounding media (Detournay, 2016). HFs are encountered in various

engineering applications (Smith and Montgomery, 2015; Jeffrey et al., 2013; Germanovich

and Murdoch, 2010) but also occur in nature due to fluid over-pressure at depth, for example

during the formation of magmatic intrusions (Rivalta et al., 2015; Spence et al., 1987; Lister

and Kerr, 1991). The minimum physical ingredients to model HF growth are lubrication flow

within the elastically deformable fracture coupled to quasi-static fracture propagation under

the assumption of linear elastic fracture mechanics (LEFM) (Detournay, 2016). In the absence

of buoyancy, theoretical predictions reproduce well experiments in brittle and impermeable

materials (Bunger and Detournay, 2008; Lecampion et al., 2017; Xing et al., 2017).

HFs propagate radially from a point source and remain so in the absence of buoyancy. For

such a geometry, the growth is initially dominated by energy dissipation in viscous flow and

transitions to a regime dominated by fracture energy dissipation at late time (in association

with the increase of the fracture perimeter). Growth solutions in both regimes are well known

(Abé et al., 1976; Spence and Sharp, 1985; Savitski and Detournay, 2002). The presence of

buoyant forces necessarily elongates the fracture. A large body of work investigated the impact
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of buoyant forces on two-dimensional plane strain fractures (Weertman, 1971; Spence and

Turcotte, 1990; Spence et al., 1987; Lister, 1990b; Roper and Lister, 2007; Spence and Turcotte,

1985). The early work of Weertman (1971) focused on a toughness-dominated fracture with a

linear pressure gradient and did not consider any fluid flow. These considerations lead to a

fluid-filled pocket with a stress intensity factor equal to the material resistance at the upper

tip, respectively zero at the lower tip of such a bubble crack. A two-dimensional pulse is hence

created. Owing to the lack of coupling with lubrication flow, a description of the dynamics

of its ascent is missing. A first attempt to include viscous effects was made by Spence et al.

(1987) and Spence and Turcotte (1990). Lister (1990b) has obtained solutions as a function of a

dimensionless fracture toughness focusing on small fracture toughness / large viscosity cases.

These 2D buoyant HFs exhibit a distinct head region close to the propagating edge, where a

hydrostatic gradient develops, and a tail region where viscous flow occurs within a conduit of

constant width. The solution in the so-called toughness-dominated regime was obtained by

Roper and Lister (2007) complementing earlier work (Lister, 1990b; Lister and Kerr, 1991).

A pseudo-three-dimensional solution for viscosity-dominated buoyant fractures was devel-

oped by Lister (1990a) in conjunction with a scaling analysis. Assuming a large aspect ratio for

the fracture allows for a partial uncoupling of elasticity and lubrication flow. The boundary

conditions of his model are such that the fracture has an unprescribed open upper end, such

that this approximate solution is deemed to be valid in the near-source region. It predicts

an ever-increasing horizontal extent of the fracture, which must be limited in the case of a

finite, non-zero fracture toughness. A planar three-dimensional solution has been derived by

Garagash and Germanovich (2022) (see also Garagash and Germanovich, 2014; Germanovich

et al., 2014) in the limit of large material toughness. This approximate solution is constructed

by matching a constant breadth (blade-like) viscosity-dominated tail with a 3D toughness-

dominated head under a hydrostatic gradient. This approximate toughness solution shows

a propagating head akin to a constant 3D Weertmann pulse (Weertman, 1971), propagating

upward due to the linear extension of a fixed breadth in a viscosity-dominated tail. Recently

the problem of a finite volume release has been investigated in the limit of zero fluid viscosity

numerically by Davis et al. (2020), focusing on the minimal volume required for the start of

buoyant propagation. Similar simulations are reported in Salimzadeh et al. (2020), where lubri-

cation flow is included, but only small volume releases are investigated without an extensive

study of the late-time growth of buoyant 3D HF.

In this contribution, we investigate the transition of initially radial expansion HFs to the late-

time fully three-dimensional buoyant regimes accounting for the complete coupling between

elastohydrodynamic lubrication flow and linear elastic fracture mechanics. We notably aim

to clarify the domain of validity of previous contributions in the viscosity and toughness

dominated limits and to fully understand the solution space of three-dimensional buoyant

fractures under constant volume release.

85



Chapter 4. Three-dimensional buoyant hydraulic fractures: constant release from a point
source

Figure 4.1: Schematic of a buoyancy-driven hydraulic fracture (head → red, tail → green,
source region → grey). The tail length is reduced for illustration, indicated by dashed lines and
a shaded area. The fracture propagates in the x|z plane with a gravity vector g oriented in −z.
The fracture front C (t ), fracture surface A (t ) (dark gray area), opening w (x, z, t ), net pressure
p (x, z, t ), the local normal velocity of the fracture vc (xc , zc ) with (xc , zc ) ∈C (t ) characterize
fracture growth under a constant release rate Qo in a medium with a linear confining stress
with depth σo (z). ℓhead (t ) and bhead (t ) denote the length and breadth of the head, ℓ (t ) is the
total fracture length, and b (z, t ) is the local breadth of the fracture.

4.3 Formulation and methods

4.3.1 Mathematical formulation

We consider a pure opening mode (mode I) hydraulic fracture propagating from a point source

located at depth in the x|z plane as sketched in figure 4.1. This x|z plane is perpendicular

to the minimum in-situ stress σo(z) (taken positive in compression). We assume that the

minimum in-situ stress acts in the y-direction and is thus perpendicular to the gravity vector

g = (
0,0,−g

)
(with g the earth’s gravitational acceleration). Owing to the possibly large fracture

dimensions, we account for a linear vertical gradient of the in-situ stress (resulting from the

initial solid equilibrium). Assuming a linear elastic medium with uniform properties, the

quasi-static balance of momentum for a planar tensile hydraulic fracture reduces to a hyper-

singular boundary integral equation over the fracture surface A (t). This integral equation

relates the fracture width w (x, z, t ) to the net loading, which is equivalent to the difference
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between the fluid pressure inside the fracture p f (x, z, t ) and the minimum compressive in-situ

stress σo (x, z) (Crouch and Starfield, 1983; Hills et al., 1996)

p (x, z, t ) = p f (x, z, t )−σo (x, z) =− E ′

8π

∫
A (t )

w
(
x ′, z ′, t

)[
(x ′−x)2 + (z ′− z)2]3/2

dx ′dz ′ (4.1)

where E ′ = E/
(
1−ν2

)
is the plane-strain modulus with E the material Young’s modulus and

ν its Poisson’s ratio. As typically observed in the Earth’s crust (Heidbach et al., 2018; Cornet,

2015; Jaeger et al., 2007), the minimum confining stress σo (z) increases linearly with depth

proportional to the solid weight γs = ρs g multiplied by a dimensionless lateral earth pressure

coefficient α. Accounting for the downward orientation of the gravitational vector in the

chosen coordinate system (see figure 4.1), the vertical gradient for σo (z) is linear over the

entire medium

dσo (z)/dz =−αρs g →∇σo =αρs g. (4.2)

Fluid flow within the thin deforming fracture is governed by lubrication theory (Batchelor,

1967). Neglecting any fluid exchange between the rock and the fracture (a reasonable assump-

tion for tight formations and high-viscosity fluids), the width-averaged continuity equation

for an incompressible fluid reduces to

∂w (x, z, t )

∂t
+∇· (w (x, z, t )v f (x, z, t )

)= δ(x)δ(z)Qo(t ) (4.3)

where v f (x, z) is the width averaged fluid velocity, and Qo is the volumetric flow rate at the

point source located at the origin (x, z) = (0,0). Additionally, the assumption of no fluid

exchange with the surrounding medium dictates that the total volume of the fracture is

equal to the total volume released. Assuming a constant release rate Qo , the global volume

conservation is chiefly:

V (t ) =
∫
A (t )

w (x, z)dxdz =Qo t . (4.4)

Assuming laminar flow and Newtonian rheology, the fluid flux q (x, z, t ) = w (x, z, t )v f (x, z, t )

reduces to Poiseuille’s law accounting for buoyancy forces:

q (x, z, t ) = w (x, z, t )v f (x, z, t ) =−w (x, z, t )3

µ′
(∇p f (x, z, t )−ρ f g

)
(4.5)

where µ′ = 12µ f is the equivalent parallel plates fluid viscosity, µ f is the fluid viscosity, and

ρ f is the fluid density. Introducing the net pressure p (x, z, t ) = p f (x, z, t )−σo (z) and using

equation (4.2), (4.5) is rewritten as

q (x, z, t ) =−w (x, z, t )3

µ′

(
∇p (x, z, t )+∆γ g∣∣g∣∣

)
(4.6)

where ∆γ=∆ρg = (
αρs −ρ f

)
g is the effective buoyancy contrast of the system. For a value of

α= 1, it equals the buoyancy contrast between the solid and the fluid. Values of the lateral

earth pressure coefficientα different than one have no other influence than affecting the value
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of the effective buoyancy contrast ∆γ of the system. We consider hydraulic fractures at depth

such that the confining stress is assumed to be sufficiently large for the presence of a fluid lag

to be negligible (see discussion in Garagash and Detournay (2000); Lecampion and Detournay

(2007); Detournay (2016)). In this limit, the boundary conditions at the fracture front reduce

to a zero fluid flux normal to the front
(
q (xc , zc ) = 0

)
and zero fracture width (w (xc , zc ) = 0)

(see Detournay and Peirce (2014) for a detailed discussion).

Finally, the fracture is assumed to propagate in a quasi-static equilibrium under the assump-

tion of linear elastic fracture mechanics (LEFM). For a pure opening mode fracture, the

propagation criterion reduces to

(K I (xc , zc )−K I c ) vc (xc , zc ) = 0 vc (xc , zc ) ≥ 0 K I (xc , zc ) ≤ K I c (4.7)

for all (xc , zc ) ∈C (t ). In this equation, K I is the stress intensity factor, K I c the material fracture

toughness, and vc (xc , zc ) the local fracture velocity normal to the front (see figure 4.1). When

the fracture is propagating at a point (xc , zc ), the velocity is positive, and the stress intensity

factor equals the material toughness (vc (xc , zc ) > 0, K I (xc , zc ) = K I c ).

4.3.2 Numerical solver

For the numerical solution of the moving boundary problem presented in section 4.3.1, we

use the open-source 3D-planar hydraulic fracture solver PyFrac (Zia and Lecampion, 2020).

This solver is based on the implicit level set algorithm (ILSA) originally developed by Peirce

and Detournay (2008) for three-dimensional planar hydraulic fractures (see also Dontsov

and Peirce (2017) for more details). The numerical scheme combines the discretization of a

finite domain with the steadily moving plane-strain hydraulic fracture asymptotic solution

(Garagash et al., 2011) near the fracture front. Even with a coarse discretization of the finite

domain, the coupling between these two scales allows for an accurate estimation of the

fracture front velocity vc (xc , zc ). We use the improvement of Peruzzo et al. (2021), which

imposes strict continuity of the fracture front during its reconstruction from the level set

values at the cell center. The discretization of the elasticity equation (4.1) is performed using

piece-wise constant rectangular displacement discontinuity elements, while an implicit finite

volume scheme is used for elastohydrodynamic lubrication flow. In various implementations,

this numerical scheme has proved to be both accurate and robust when tested against known

hydraulic fracture growth solutions (Peirce, 2015, 2016; Zia et al., 2018; Zia and Lecampion,

2020; Moukhtari et al., 2020).

We use a minimal initial discretization of 61x61 elements and add elements as the fracture

elongates for all simulations presented herein. Our simulations must run over several orders of

magnitude in time and space to capture the transition and the late-time buoyant propagation

stage. We thus adopt two different re-meshing techniques to ensure that the smaller spatial

dimension (horizontal in our case) always satisfies a minimum discretization of 61 elements.

A second condition of the discretization is that the original element-aspect-ratio is ensured
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during the entire simulation, even when the aspect ratio of the mesh domain is changing.

This discretization constrains the maximum relative error on the fracture radius to 2 %–3 % for

radial fractures, as demonstrated in section 3.8.2 and Zia and Lecampion (2020). The fracture

is initialized as a radial hydraulic fracture in the viscosity-dominated regime (Savitski and

Detournay, 2002), which corresponds to the early time solution of this type of fracture. We use

this technique to ensure that we consistently capture the entire propagation in all the different

regimes.

4.3.3 Scaling analysis

In the configuration studied herein, the hydraulic fracture initially propagates radially out-

wards from a point source. It remains radial as long as the fracture is sufficiently small that

buoyancy forces remain negligible. At late time, the fracture elongates in the direction of the

buoyant force. A head and tail structure similar to the plane-strain (2D) case is expected to

develop. This head-tail structure has either a horizontal breadth stabilizing in space at late

times or an ever-growing one (Lister, 1990a; Garagash and Germanovich, 2014). We capture

the evolution of the fracture shape by introducing ℓ (t ) as the vertical extent (to which we will

alternatively refer to as the fracture length) and b (z, t ) as the horizontal breadth (see figure 4.1).

We recognize that the horizontal breadth may not be uniform in space and will thus refer to

b (t ) as the maximum horizontal breadth of the fracture. We scale these fracture dimensions as

ℓ(t ) = ℓ∗(t )γ(P i ), b(t ) = b∗(t )β(P i ) (4.8)

where ℓ∗ (t ) and b∗ (t ) are a characteristic fracture length and (maximum) breadth, respectively,

and γ, and β the corresponding dimensionless extent. Following the notation of previous

contributions (Detournay, 2004), we scale the fracture width and net pressure as

w (x, z, t ) = w∗ (t )Ω (x/b∗, z/ℓ∗,P i ) p (x, z, t ) = p∗ (t )Π (x/b∗, z/ℓ∗,P i ) (4.9)

with w∗ (t ) and p∗ (t ) the characteristic width and net pressure scales,Ω andΠ are the dimen-

sionless width and pressure. In the previous expressions, we recognized that the characteristic

scales may depend on time and that the dimensionless solution is a function of a finite set of

dimensionless numbers P i .

Introducing such a scaling into the governing equations provides a set of dimensionless groups

denoted by G . In particular, the scaling of the elasticity equation (4.1) provides, besides the

characteristic aspect ratio of the fracture

Gs = b∗/ℓ∗,
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a dimensionless group defined as the ratio between the characteristic elastic pressure w∗E ′/b∗

and the characteristic net pressure p∗

Ge = w∗E ′

p∗b∗
. (4.10)

Elasticity is always of first order for a fracture problem (i.e., Ge = 1), such that this equation

yields a direct relation between the characteristic net pressure, fracture opening, and a fracture

dimension. Scaling wise, the global volume conservation (4.4) provides a ratio between the

released volume Qo t and the characteristic fracture volume w∗b∗ℓ∗

Gv = Qo t

w∗b∗ℓ∗
. (4.11)

A dimensionless fracture toughness Gk emerges from the linear fracture propagation criteria

K I = K I c as a ratio between the characteristic linear elastic fracture mechanics pressure for the

material K I c /
√

b∗ and the characteristic net pressure p∗

Gk = K I c

p∗
√

b∗
. (4.12)

Poiseuille’s viscous drop (4.6) inside the fracture provides a dimensionless group akin to

a dimensionless viscosity defined as the ratio between the characteristic viscous pressure

µ′Qo/w3∗ and the characteristic pressure p∗

Gm = µ′Qo

w3∗p∗
. (4.13)

Finally, a last dimensionless group relates the characteristic buoyancy pressure ∆γℓ∗ to the

characteristic pressure p∗

Gb = ∆γℓ∗
p∗

. (4.14)

Using these dimensionless groups to emphasize the relative importance of the underlying

physical mechanism, one obtains different scalings associated with varying regimes of propa-

gation.
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4.4 Onset of the buoyant regime

The contribution of buoyant forces is negligible for a small enough fracture: from (4.14),

Gb ≪ 1. In the absence of buoyancy, the HF propagates with a radial penny-shaped geometry.

In an impermeable medium, Savitski and Detournay (2002) have shown that the HF transitions

from a viscosity-dominated regime at early time towards a toughness-dominated regime at

late time. The increase in fracture energy dissipation is directly related to the increase in the

fracture perimeter. Self-similar solutions have been obtained in both the M/viscous scaling

and the K/toughness scaling. Following Savitski and Detournay (2002), the characteristic scales

are denoted with a subscript m for the M/viscous scaling, and k for the K/toughness scaling

(see table 4.3 in appendix 4.10.1). The transition from the early time viscosity-dominated

to the toughness-dominated regime is entirely captured by a dimensionless toughness Km

increasing with time as (Savitski and Detournay, 2002)

Km = K I c
t 1/9

E ′13/18Q1/6
o µ′5/18

. (4.15)

This dimensionless toughness (defined in the M-scaling) is directly related to a dimensionless

viscosity defined in the K-scaling

Mk =K −18/5
m = (tmk /t )2/5 . (4.16)

In the absence of buoyancy, the toughness-dominated regime is reached when Km ∼Mk ∼ 1

(Savitski and Detournay, 2002) (note our use of the fracture toughness K I c instead of the

reduced fracture toughness used in some previous work K ′ =p
32/πK I c ), or alternatively for

times greater than a characteristic time tmk defined as the time when Km =Mk = 1

tmk = E ′13/2µ′5/2Q3/2
o

K 9
I c

. (4.17)

The corresponding characteristic fracture radius at this time of transition between viscous

and toughness growth is, according to Savitski and Detournay (2002)

ℓmk = E ′3Qoµ
′

K 4
I c

. (4.18)

To estimate when the buoyancy forces will start to play a role, still assuming that b∗ ∼ ℓ∗, a

hypothesis valid at the onset of the buoyant regime, it is worth computing the dimensionless

buoyancy Gb (4.14):
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Bm =∆γ Q1/3
o t 7/9

E ′5/9µ′4/9
, Bk =∆γE ′3/5Q3/5

o t 3/5

K 8/5
I c

(4.19)

in the viscous (subscript m) and toughness (subscript k) scaling respectively. As expected,

the effect of buoyancy increases with time as the fracture grows. For each limiting regime,

we deduce a transition time scale where buoyancy becomes dominant as the time when Bm

(respectively Bk ) equals one:

tmm̂ = E ′5/7µ′4/7

∆γ9/7Q3/7
o

, tkk̂ = K 8/3
I c

E ′Qo∆γ5/3
. (4.20)

In the following, we use a ·̂ to highlight scalings where buoyancy plays a dominant role. Similar

to the previous viscosity to toughness transition, it is practical to obtain the corresponding

transition length scales (see table 4.4 in appendix 4.10.1 for details)

ℓmm̂ = E ′3/7Q1/7
o µ′1/7

∆γ4/7
, ℓkk̂ = K 2/3

I c

∆γ2/3
≡ ℓb . (4.21)

It is worth noting that the toughness-buoyancy length scale ℓkk̂ - that we will alternatively

refer to as ℓb - can be directly obtained by assuming b∗ ∼ ℓ∗ and balancing the toughness

pressure K I c /
√
ℓ∗ with the buoyancy pressure∆γℓ∗. Such a buoyancy length scale ℓb is strictly

equal to the one obtained in the 2D plane-strain case (Weertman, 1971; Lister, 1990b; Lister

and Kerr, 1991; Roper and Lister, 2007; Heimpel and Olson, 1994) as well as for a finger-like

three-dimensional geometry (Garagash and Germanovich, 2014).

The buoyancy effect becomes of order one either when the initially radial hydraulic fracture is

still propagating in the viscous (which implies Km(t = tmm̂) < 1 (4.15)) or when it is already in

the toughness-dominated regime (for which Mk (t = tkk̂ ) < 1 (4.16)). The interplay between the

radial transition from viscosity- to toughness-dominated and the one from radial to buoyant

can thus be captured by either

Km̂ =Km (t = tmm̂) = K I c

E ′9/14Q3/14
o ∆γ1/7µ′3/14

=
(
ℓmm̂

ℓmk

)1/4

=
(

tmm̂

tmk

)1/9

(4.22)

or

Mk̂ =Mk
(
t = tkk̂

)=µ′QoE ′3∆γ2/3

K 14/3
I c

= ℓmk

ℓkk̂

=
(

tmk

tkk̂

)2/5

. (4.23)

These two dimensionless numbers are related as M−3/14
k̂

=Km̂ . In fact, the different transi-

tion time-scales (4.20), and (4.17) are related as tmm̂/tmk = (tkk̂ /tmk )27/35. The transition to
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buoyancy can therefore be grasped by any ratio of these transition time scales, such that only

one of the two parameters of equations (4.22) and (4.23) is required to define the transition.

In the following, we choose Mk̂ to quantify the transition from a radial to a buoyant hy-

draulic fracture. Physically, Mk̂ quantifies if the fracture is viscosity-
(
Mk̂ > 1

)
or toughness-

dominated
(
Mk̂ < 1

)
at the onset of the buoyant regimes. Interestingly, Mk̂ is directly the

ratio of the characteristic viscous-toughness transition length scale ℓmk (without buoyancy)

with the buoyant toughness transition scale ℓb = ℓkk̂ . This confirms that Mk̂ (4.23) properly

captures the competition between the transition from viscous to toughness growth and the

transition to the buoyant regime.

4.5 Toughness-dominated buoyant fractures Mk̂ ≪ 1

We first focus on toughness-dominated buoyant fractures
(
Mk̂ ≪ 1

)
, for which the transition

to the buoyant regime occurs when the initially radial fracture is already propagating in the

toughness dominated regime
(
tkk̂ ≫ tmk

)
. Figures 4.2e-i show the complete fracture evolution

for a value of Mk̂ ≈ 1.0×10−3. The fracture is initially radial (figure 4.2e), elongates as buoyancy

commences to act (figures 4.2f and g), and ends-up being akin to a finger-like fracture (figures

4.2h and i). It is worth noting that for t > tkk̂ , the breadth is uniform such that the creation

of new fracture surfaces only occurs in the head region. This buoyant fracture exhibits a

head-tail structure qualitatively similar to the plane-strain 2D case (Lister, 1990b; Roper and

Lister, 2007). The breadth is constant in the tail, and no new fracture surfaces are created

in the horizontal direction. This can be clearly observed from figure 4.2 (footprints i-h and

the evolution of the breadth). In other words, the head is toughness-dominated, while only a

viscous vertical flow dissipates energy in the tail.

4.5.1 Toughness-Dominated Head

The characteristic scales of the toughness-dominated head are such that bhead∗ ∼ ℓhead∗ and

can be obtained assuming that toughness, buoyancy, and elasticity are all of first-order in the

head. One obtains the following head scales:

bhead
k̂

= ℓhead
k̂

= ℓb = K 2/3
I c

∆γ2/3
, whead

k̂
= K 4/3

I c

E ′∆γ1/3
, (4.24)

phead
k̂

= K 2/3
I c ∆γ

1/3, V head
k̂

=Qo tkk̂ = K 8/3
I c

E ′∆γ5/3
.

which correspond precisely to the characteristic scales for a radial hydraulic fracture at the

transition to buoyancy t = tkk̂ . This scaling is similar (up to numerical factors) to those

previously obtained for 3D and 2D buoyant fractures (Lister, 1990b; Roper and Lister, 2007;
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Figure 4.2: Toughness-dominated buoyant fracture. Green dashed lines in all figures indicate
the 3D K̂ GG, (2014) solution. a) Opening along the centerline w (0, z, t )/whead

k̂
for a simulation

with Mk̂ = 1.×10−2. b) Net pressure along the centerline p (0, z, t )/phead
k̂

for the same simula-

tion. c) Fracture length ℓ (t )/ℓb for three simulations with large toughness Mk̂ ∈ [
10−3,10−1

]
.

Dashed-dotted green lines highlight the late-time linear term of the K̂ solution. d) Fracture
breadth b (t )/ℓb (continuous) and head breadth bhead (t )/ℓb (dashed). Grey lines an error
margin of 5 %. e - i) Evolution of the fracture footprint from radial (e) towards the final finger-
like shape (h and i) for a fracture with Mk̂ = 1.×10−3. For the fracture shape in i), the vertical
extent is cropped between ℓ (t )/ℓb = 6 and ℓ (t )/ℓb = 30. Thick red dashed lines indicate the
head shape according to the 3D K̂ GG, (2014) solution. Note that the final stage i) has not
reached the constant terminal velocity (see inset c).
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4.5 Toughness-dominated buoyant fractures Mk̂ ≪ 1

Garagash and Germanovich, 2022).

4.5.2 Viscosity-Dominated Tail

The tail has a constant breadth equal to the characteristic breadth scale of the head. In the

tail, the viscous flow dissipation in the vertical direction is quantified by the ratio of viscous

pressure µ′vz∗ℓ∗/w2∗ to the characteristic buoyancy pressure ∆γℓ∗ (with ∂p/∂z ≪∆γ in the

tail):

Gmz = µ′vz∗
w2∗∆γ

, (4.25)

and is clearly dominant over any horizontal viscous dissipation. G mz = 1 sets the characteristic

vertical velocity as a function of the characteristic tail opening. The elongated form of this

buoyant fracture is such that its aspect ratio is directly related to the ratio of characteristic

horizontal vx∗ to vertical vz∗ fluid velocities,

b∗
ℓ∗

∼ vx∗
vz∗

. (4.26)

and the characteristic vertical fracture velocity is of the same order of magnitude as the vertical

fluid velocity:

∂ℓ

∂t
∼ ℓ∗

t
= vz∗. (4.27)

Assuming a viscosity-dominated tail of constant breadth b∗ = ℓb set by buoyancy (G mz = 1),

global volume conservation, elasticity (Gv =Ge = 1), and equations (4.26)-(4.27) provide the

following characteristic tail scales:

ℓk̂ = Q2/3
o ∆γ7/9 t

K 4/9
I c µ′1/3

bk̂ = ℓb

wk̂ = Q1/3
o µ′1/3

K 2/9
I c ∆γ1/9

=M 1/3
k̂

whead
k̂

pk̂ = E ′∆γ
5/9Q1/3

o µ′1/3

K 8/9
I c

=M 1/3
k̂

phead
k̂

The corresponding horizontal characteristic fluid velocity decreases in inverse proportion to

time as vx∗ = ℓb/t .
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Mk̂ 10−3 10−2 10−1

t/tkk̂ 1.0 2.0 2.5 3.0 1.0 2.5 5.0 6.0 1.0 2.5 5.0 10.0

ℓhead (t )/ℓb 1.85 1.84 1.85 1.84 2.07 1.92 1.92 1.92 1.66 2.06 2.07 2.07

mismatch with GG (%) 4.52 4.30 4.44 3.79 17.3 8.59 8.76 8.52 6.24 16.7 17.2 17.3

bhead (t )/ℓb 0.68 0.68 0.68 0.68 0.72 0.72 0.72 0.72 0.78 0.84 0.84 0.84

mismatch with GG (%) 0.52 0.60 0.56 0.54 5.19 5.32 5.29 5.36 13.9 23.1 23.3 23.3

V head (t )/V head
k̂

0.76 0.76 0.76 0.76 0.91 0.90 0.90 0.90 0.96 1.35 1.35 1.35

mismatch with GG (%) 8.36 8.21 8.25 8.15 29.3 28.7 28.7 28.6 37.0 92.3 93.1 93.2

ℓtail (t )/ℓb 3.60 17.5 24.4 31.3 0.89 10.2 25.7 31.9 0.271 3.43 9.86 22.8

mismatch with GG (%) 12.3 2.40 1.57 1.10 54.4 11.2 6.58 5.93 69.5 36.0 22.7 17.4

Table 4.1: Comparison between characteristic head and tail length, head breadth and head
volume for toughness-dominated fractures Mk̂ ∈ [

10−3,10−1
]

at various dimensionless times
t/tkk̂ . The mismatch is calculated as the relative difference between our numerical results and
the approximate 3D K̂ GG, (2014) solution (GG in the table).

4.5.3 Large time buoyant regime

The head and tail structure of such a fracture with uniform breadth can be further leveraged

to obtain an approximate solution at late time
(
t ≫ tkk̂

)
when assuming a state of plane strain

for each horizontal cross-section. Such an approximate 3D solution was obtained by Garagash

and Germanovich (2022), imposing a toughness-dominated head and a viscosity-dominated

tail (in which ∂p/∂z ≪ ∆γ). In that solution, which we will refer to as the 3D K̂ GG, (2014)

solution, the head is constant, and the extension of the viscous tail governs the upward growth.

We compare numerical simulations with this late-time solution (this approximate solution

in the scaling used here is recalled in the supplementary material). We perform a series of

simulations for Mk̂ = 10−3, 10−2 and 10−1. A typical evolution of the fracture opening and net

pressure along the centreline (x = 0) of a buoyant toughness fracture (Mk̂ = 10−2) is reported

in figures 4.2a and b respectively. The time evolution of length and breadth are illustrated in

figure 4.2c and d. We can observe that both the fracture length and breadth compare well with

the 3D K̂ GG, (2014) solution at late time, especially for Mk̂ = 10−3, 10−2.

We further compare various characteristic quantities from our simulations with the 3D K̂ GG,

(2014) late time solution of Garagash and Germanovich (2022) in table 4.1. Our numerical

evolution of the head length ℓhead (t )/ℓb shows a marked variability but converges for the

cases Mk̂ = 1.×10−3 and Mk̂ = 1.×10−2 to their solution ℓhead (t )/ℓb ∼ 1.77 at late time. The

explanation for the variability lies within our automatic evaluation of the head length from

our numerical results. Before an inflection point forms in the opening along the centreline, we

estimate the head length as the maximum distance between the source point and the front.

Once an inflection point forms (see figure 4.3a), we use either this inflection point or a local

pressure minimum between the opening inflection and the maximum pressure in the head

(see figure 4.3b). These changes in criteria are more visible for the less toughness-dominated
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4.5 Toughness-dominated buoyant fractures Mk̂ ≪ 1

simulation Mk̂ = 1.× 10−1. Nonetheless, they do not affect the estimation of ℓhead (t ) for

lower values of Mk̂ . Overall, the length of the head stabilizes once it is evaluated via the

pressure minima. The reason is because Garagash and Germanovich (2022) similarly define

the length of the head as the point where the minimum pressure is reached (see figure 4.3).

The relative difference of ∼ 4% for the simulation with Mk̂ = 1.×10−3 is within the precision of

our post-processing method. The increased mismatch of ∼8.5 % for Mk̂ = 1.×10−2 is caused

by a deviation from the strictly zero viscosity case and the uncertainties of our evaluation

method. Finally, the simulation with Mk̂ = 1.×10−1 has a relative difference ∼17 %, which

clearly reflects a significant deviation from the approximate 3D K̂ GG, (2014) solution.

Defining the head breadth bhead = b
(
z = zhead = zT i p −ℓhead

)
with zT i p = max{zc } (see fig-

ures 4.1 and 4.2i), figure 4.2d shows that the maximum breadth b (t ) (continuous lines) is

equivalent to the head breadth bhead (dashed lines) for Mk̂ ≤ 1.×10−2. Combining these ob-

servations with figures 4.2h and i, we conclude that this breadth corresponds to the stabilized

breadth of the finger-like fracture. From figure 4.2d, we observe that the breadth in simulations

Mk̂ = 1.×10−3 and Mk̂ = 1.×10−2 is fully established for t/tkk̂ >∼ 1, corresponding to the mo-

ment when the head is entirely formed. This is supported by the values displayed in table 4.1

that are stable for the corresponding simulations. We validate the semi-analytical 3D K̂ GG,

(2014) solution b ≈π−1/3ℓb (green dotted line in figure 4.2d) within our numerical precision.

The mismatch lies below <1 % for Mk̂ = 1.×10−3, and is around ∼5 % for Mk̂ = 1.×10−2. For

the simulation with Mk̂ = 1.×10−1, the breadth remains stable but shows a relative mismatch

of about ∼25 %, indicating the limit of validity of the 3D K̂ GG, (2014) solution.

To ensure that the head is effectively constant in time, we additionally estimate its volume.

Generally, our estimated head volumes are larger than the semi-analytical solution: V head ≈
0.701V head

k̂
. This phenomenon is not surprising as we overestimate the head length with the

post-processing of our numerical results. We can confirm the emergence of a constant head

volume and verify the order of magnitude derived by Garagash and Germanovich (2022) for

small values of Mk̂ (4.23). In conclusion, our numerical evaluation indicates that the head of

a buoyancy-driven hydraulic fracture is constant and that the semi-analytical 3D K̂ GG, (2014)

solution of Garagash and Germanovich (2022) is valid as long as Mk̂ ≤ 1.×10−2.

It is interesting to compare the fully 3D results reported here with the 2D plane-strain solutions

previously reported in the literature (Lister and Kerr, 1991; Lister, 1990b; Roper and Lister,

2007). At late time, assuming that we are far enough from the source region and neglecting

any 3D curvature, one can approximate the fracture as semi-infinite propagating at a constant

velocity. Such a two-dimensional solution has notably been presented by Roper and Lister

(2007) for large toughnesses. Their scaling can be retrieved from ours (4.24) by replacing the

two-dimensional injection rate with Q2D ∼ ∂ℓk̂ /∂t wk̂ . We construct a two-dimensional nu-

merical solver for a semi-infinite hydraulic fracture combining a Gauss-Chebyshev quadrature

for elasticity and finite difference for lubrication flow similar to the one used in Moukhtari and

Lecampion (2018). This 2D solver verifies exactly the large fracture toughness limit of Roper

and Lister (2007), and we use it to compare with this contribution hereafter (we report details
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Figure 4.3: Tip-based scaled opening (a) and pressure (b) of three toughness dominated
buoyant simulations with Mk̂ ∈ [

10−3,10−1
]
. Continuous lines correspond to the PyFrac

simulations (Zia and Lecampion, 2020) with dots indicating the discretization (the number
of elements in the head is > 50), dashed lines to a 2D plane-strain steadily moving solution.
The vertical green dashed line indicates the head length, and green continuous lines the 3D K̂
solutions.
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of this 2D solver in the supplementary material).

In figure 4.3, we plot the opening and pressure along the centreline (x = 0) as a function of

the tip based coordinate ẑ (t ) = zT i p (t )− z, such that ẑ (t ) ∈ [0,ℓ (t )] marks the interior of the

fracture. Even for very small dimensionless viscosities
(
Mk̂ ≪ 1

)
, the pressure gradient in the

head from the 3D numerical simulations is not entirely linear and presents a gentler slope than

the limiting 3D K̂ GG, (2014) solution (green dashed line (Garagash and Germanovich, 2022)).

Only for the simulation with Mk̂ = 1.×10−3 is the viscous flow small enough to allow for a truly

linear pressure gradient in the head. The shape of the opening is qualitatively similar between

2D and 3D (see Mk̂ = 1.×10−3), but the 2D ones shrink in the direction of the buoyant force.

The difference with the 2D solution is directly related to three-dimensional effects associated

with the curvature of the head.

The 3D Garagash and Germanovich (2022) and 2D Roper and Lister (2007) solutions predict a

negative net pressure at the end of the head. Our 3D simulations do not show such a feature

and exhibit a smaller “neck” than the one described by Roper and Lister (2007) in 2D. The

“neck” defines the region at the end of the head, where fracture opening is reduced compared

to its stable value in the tail. This location is a pinch point leading to fluid influx from the tail

into the head. Nevertheless, figure 4.3 shows that the minimum pressure in the neck decreases

with a decreasing Mk̂ . We expect that a negative net pressure should appear for smaller

values of Mk̂ . These observations directly influence the opening distribution (figure 4.3a). We

observe only a limited reduction of the opening between the tail and the head in the fully 3D

simulations. Nonetheless, such a neck is present, and an inflection point can be identified

(black circles in figure 4.3a). In the limit of zero fluid viscosity, the opening in the tail would

become 0. This would be when the neck fully pinches and a finite volume pulse forms.

4.5.4 Transient toward the late buoyant regime

In figure 4.2c, an acceleration phase associated with the transition to buoyancy can be ob-

served. Such an acceleration is directly related to the fact that, when radial, the fracture

velocity decreases with time as ℓk ∝ t 2/5 and ultimately, once in the fully buoyant regime,

reaches a constant velocity. The intensity of such acceleration can be directly related to the

dimensionless number Mk̂ by comparing this terminal velocity with the radial velocity at the

onset of buoyancy t = tkk̂ (4.20):

vk̂ /vk (tkk̂ ) =M−1/3
k̂

. (4.28)

The fracture needs to “catch up” from a length ℓk (tkk̂ ) ∼ ℓb to the buoyant late time solution(
ℓk̂

(
tkk̂

)∼M−1/3
k̂

ℓb

)
and thus accelerates. According to figure 4.2c, the acceleration starts

approximately when t/tkk̂ ≈ 0.5. Correlating this with the observations of figure 4.2a, it corre-

sponds approximately to the time when the bulk of the head starts to leave the source region.

The acceleration is thus driven by the pressure difference between the head and tail visible in

figure 4.2b. Figure 4.2c further shows that around t/tkk̂ ≈ 3, the fracture starts to decelerate and
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approaches the complete 3D K̂ solution (green dashed lines). The simulation then presents a

good match until the end of the simulation (around t/tkk̂ ≈ 6.5). Approximation to the linear,

dominant term (green dashed-dotted lines) is only observed once a simulation reaches about

t/tkk̂ ≈ 10 (see the simulation with Mk̂ = 1.×10−1 in figure 4.2c). This is consistent with the

approximate 3D K̂ GG, (2014) solution, which predicts that the linear velocity is reached within

5 % in relative terms when t/tkk̂ ≈ 14 (see supplementary material for details).

In the limiting case of zero fluid viscosity (µ′ = 0 →Mk̂ = 0), the acceleration is infinite, and

we can not hope to capture such a sharp transition numerically. The strictly Mk̂ = 0 limit

corresponds to a three-dimensional Weertmans pulse (Weertman, 1971) associated with a

zero-width tail. For minimal but non-zero values of µ′|Mk̂ , overcoming the transition phase is

numerically challenging but possible. Defining the end of the transient via the 5 % deviation

level from the 3D approximate solution
(
t/tkk̂ ≈ 14

)
, we obtain a corresponding fracture length

of ℓ (t ) ∼ 19M−1/3
k̂

ℓb . Expressing this limit as the aspect ratio ℓ (t )/b (t ), assuming that the

breadth follows the Garagash and Germanovich (2022) solution
(
b (t ) ≈π−1/3ℓb

)
, the required

aspect ratio is ℓ (t )/b (t ) ≈ 28M−1/3
k̂

. The numerical example with Mk̂ = 1.× 10−2 (largest

value of Mk̂ validating the 3D K̂ solution) leads to a aspect ratio of ℓ (t )/b (t ) ∼ 132 with

a corresponding fracture length of ℓ (t ) ∼ 90ℓb . Such fracture lengths require a significant

number of discretization cells. Numerically, the discretization is mainly bounded by two

parameters: the distance of the source point to the fracture front and the number of elements

discretizing the head where a strong gradient of opening and pressure takes place. In the

toughness-dominated case, the first is more restrictive and requires discretizations of about

44 elements per ℓb . The total number of degrees of freedom thus quickly exceeds the current

computational capacities of PyFrac (Zia and Lecampion, 2020) and ultimately explains why

we do not report simulations for values of Mk̂ lower than 1×10−3.

4.6 Viscosity-dominated buoyant fractures Mk̂ ≫ 1

We now turn to the viscosity-dominated limit for which the transition to buoyancy occurs

before the transition to the radial toughness-dominated regime: tmm̂ ≪ tmk , i.e., Mk̂ ≫ 1. We

focus on the limiting case of a strictly zero-fracture toughness
(
Mk̂ =∞)

, that we will also

refer to as the M̂ limit (at late time). The evolution of such a fracture can be grasped from

the numerical results reported in figures 4.4e-i. Similar to the toughness case (figure 4.2),

the fracture is initially radial (figure 4.4e) and elongates (figures 4.4f-i) as soon as buoyancy

plays a role (t ∼ tmm̂). The overall footprint is strikingly different from the toughness limit.

Notably, the fracture breadth is not uniform along the vertical direction and continuously

grows horizontally due to the lack of any resistance to fracture. The shape of the fracture at

late time is akin to an inverted cudgel with distinct source and head regions.
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Figure 4.4: Viscosity-dominated buoyant fracture. a) Opening along the centreline
w (x = 0, z, t )/wmm̂ for a simulation with Mk̂ = ∞. b) Net pressure along the centreline
p (x = 0, z, t )/pmm̂ for the same simulation. c) Fracture length ℓ (t )/ℓmm̂ for six simulations
with large viscosity Mk̂ ∈ [

5.×102,∞[
. d) Fracture breadth b (t )/ℓmm̂ for the same simulations.

e - i) Evolution of the fracture footprint from radial (e) towards the final elongated inverse
cudgel shape (h and i) for the same simulation as in a and b.
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4.6.1 Late-time zero-toughness limit

It is enlightening to compare this simulation for Mk̂ =∞ with the scaling originally derived

by Lister (1990a) for this problem (and his near-source solution). We first recall briefly the

argument of such scaling. Contrary to the toughness limit, the breadth is not constant, but the

aspect ratio of the fracture remains related to the ratio of the characteristic horizontal vx∗ to

vertical vz∗ fluid velocities

b∗
ℓ∗

∼ vx∗
vz∗

. (4.29)

The horizontal and vertical extent are linked to their corresponding velocities as b∗ = vx∗t ,

ℓ∗ = vz∗t . Viscous fluid dissipation for viscous fractures occurs as much in the vertical as it

does in the horizontal direction. Vertically, the net pressure gradient ∂p/∂z is negligible com-

pared to∆γ such that, similarly to the viscosity-dominated tail in the K̂ limit, the dimensionless

ratio

Gmz = µ′vz∗
w2∗∆γ

, (4.30)

is of order one. Horizontally, in the absence of gravitational forces, the magnitude of vis-

cous flow is quantified by the ratio of the horizontal viscous pressure µ′vx∗b∗/w2
∗ to the

characteristic net pressure p∗

Gmx = µ′vx∗b∗
w2∗p∗

(4.31)

which is also of order one. Combined with elasticity (Ge = 1) and global volume balance

(Gv = 1), solving for the lengths, width, and pressure scales, we recover the scaling of Lister

(1990a):

ℓm̂ = ∆γ1/2 Q1/2
o

E ′1/6µ′1/3
t 5/6, bm̂ = E ′1/4Q1/4

o

∆γ1/4
t 1/4, (4.32)

wm̂ = Q1/4
o µ′1/3

∆γ1/4 E ′1/12
t−1/12, pm̂ = E ′2/3

µ′1/3

t 1/3
.

Interestingly, in that scaling, the dimensionless toughness (Gk ≡Km̂) associated with horizon-

tal growth (defined with b∗ as the characteristic fracture length) increases with time. From

equation (4.12), we obtain the “horizontal” (subscript x) dimensionless toughness
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Figure 4.5: Scaled evolution of characteristic values of a buoyancy-driven viscosity-dominated
fracture. Fracture footprint (a), cross-sectional volume (integral of the opening over the
breadth) (b), opening (c), and pressure (d) at various dimensionless times t/tmm̂ . Blue dashed
lines represent the pseudo-three-dimensional near-source solution of Lister (1990a). A shifted
coordinate system z̃ is used such that the lowest point of the fracture marks z̃ = 0.

Km̂,x (t ) = K I c
∆γ1/8 t 5/24

E ′19/24Q1/8
o µ′1/3

=M−3/14
k̂

(
t

tmm̂

)5/24

. (4.33)

As a result, in the case of finite fracture toughness, one expects the horizontal growth to stop

(and thus the breadth to stabilize) when Km̂,x (t ) reaches order one.

The time evolution of fracture length and breadth obtained numerically (figures 4.4c and d)

exhibit a transition from the radial viscosity regime to this late buoyant viscous scaling. The

power-law evolution with time of length and breadth matches equation (4.32) precisely at

late time for the Mk̂ =∞ simulation. Contrary to the toughness case, where the horizontal

growth stops abruptly, we observe a smoother horizontal deceleration accompanied by vertical

acceleration, which is less abrupt than in the toughness case.

In this zero toughness limit, at late time, the growth of the fracture is self-similar and will

not stop (neither horizontally nor vertically) as long as the volume release continues. To

confirm the overall self-similarity of such a viscous, buoyant late-time regime, we rescaled

our numerical results at different times and plot scaled footprints, centreline width, and net

pressure, as well as the volume of each horizontal cross-section in figure 4.5. The z-axis is

shifted such that the lowest point of the fracture coincides with z̃ = 0. A nice collapse of the
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scaled footprint is observed for t/tmm̂ >∼ 100. A similar collapse appears for centreline sections

of width, pressure, and cross-section volume. We recognize that the head region shrinks

with time and eventually reduces to a boundary layer. Before discussing the head region, we

observe that the source region solution derived in Lister (1990a) matches our numerical results,

albeit in a relatively narrow zone close to the injection point only. The Lister (1990a) solution

is based on a pseudo-three-dimensional approximation assuming only horizontal growth

with an unspecified upper “head” part. In this approximate solution, the breadth increases

monotonically with the scaled coordinate z/ℓm̂(t ) without any possibility of reduction at large

z/ℓm̂(t) to model the fracture “head”. For the Lister (1990a) solution, the distance within

which this source solution is applicable depends on the material, fluid, and release properties.

This distance is equivalent to the transition length scale of a fracture without buoyancy ℓmk ,

which for the zero toughness case becomes infinite. This solution, however, appears as the

correct inner solution in the near-source region (but not up to z ∼ ℓmk ). Further comparison

of the width profiles at different cross-sections between our numerical solution and this

approximation is reported in figure 4.6.

Head region

From both the footprints with width contours displayed in figure 4.4 and the scaled profiles in

figure 4.5, we observe that, contrary to the toughness case, the head region shrinks with time.

Self-similarity of the overall fracture growth becomes evident when the head and the source

region volumes are negligible compared to the volume in the tail, i.e., for times greater than

∼ 100 tmm̂ . The following scaling argument can explore the depletion of the head. In a viscous

head
(
bhead∗ ∼ ℓhead∗

)
, the horizontal and vertical fluid velocities are of the same order, elasticity

(Ge = 1), buoyancy (Gb = 1), and viscous dissipation dominates (Gmz = 1), but its volume is a

priori unknown. In addition, we assume that the characteristic fluid velocity in the head is

given by the vertical characteristic velocity vzm̂ ∼ ℓm̂/t from equation (4.32). In other words,

the volumetric flow rate between the head and the tail is Q∗ = whead∗ bhead∗ vzm̂ . Under those

assumptions, the corresponding characteristic viscous head scales are:

ℓhead
m̂ = bhead

m̂ = E ′11/24Q1/8
o µ′1/6

∆γ5/8t 1/24
, whead

m̂ = Q1/4
o µ′1/3

E ′1/12∆γ1/4t 1/12
,

phead
m̂ = E ′11/24Q1/8

o µ′1/6∆γ3/8

t 1/24
, V head

m̂ = E ′5/6Q1/2
o µ′2/3

∆γ3/2t 1/6
. (4.34)

These characteristic scales are consistent with the shrinking/depleting viscous head observed

numerically. The numerical validation is presented in table 4.2, where we observe the evolution

of the head length, head volume, and the maximum opening in the head. Even though we

do not have an analytical or semi-analytical solution to compare to, stabilization, when

normalized with the depleting scales 4.34, is observed in table 4.2 within the precision of

our automatic evaluation of the head length. It is interesting to note that at the onset of
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Figure 4.6: Footprint and cross-sectional opening profiles of two buoyant, viscosity-dominated
fractures. The color code of the fractures represents the scaled opening as described at the
top. Black lines correspond to opening-profile evaluations. The horizontal blue dashed line
in a) is the limiting height for the viscous solution of Lister (1990a). Blue dashed lines in a)
and e) show the Lister (1990a) solution. Red dashed lines mark the maximum breadth and the
beginning of the head. Figures b to d show the opening profiles in the cross-section where
blue-dashed lines represent the Lister (1990a) solution, dashed-dotted lines correspond to
Mk̂ =∞ and continuous lines to Mk̂ = 105.
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Mk̂ 104 105 ∞
t/tmm̂ 10 100 200 350 10 100 200 350 10 50 100 125
ℓhead (t )/ℓhead

m̂ (t ) 2.39 2.33 2.29 2.33 2.39 2.37 2.31 2.21 2.63 2.86 2.79 2.77

V head (t )/V head
m̂ (t ) 4.66 5.34 5.38 5.58 4.66 5.34 5.29 5.08 5.07 5.78 5.63 5.56

whead
max (t )/whead

m̂ (t ) 1.35 1.70 1.71 1.73 1.34 1.62 1.65 1.65 1.27 1.30 1.30 1.30

Table 4.2: Comparison between characteristic head length, head volume, and maximum open-

ing in the head

(
whead

max = max
x,z

{
w

(
x, z ∈ [

zt i p −ℓhead (t ) , zt i p
]

, t
)})

for viscosity-dominated

fractures Mk̂ ∈ [
1×104,∞[

at various dimensionless times t/tmm̂ .

buoyancy, for t ≈ tmm̂ (defined in equation (4.20)), these scales are strictly equal to the radial

viscosity-dominated scales (e.g. ℓhead
m̂ (tmm̂) = ℓm(tmm̂), V head

m̂ (tmm̂) =Qo tmm̂). This confirms

the mechanism of a viscous head that detaches from the source region and slowly depletes as

it moves upward.

Comparison with the Semi-Infinite Plane-Strain Solution

Such a 3D viscous head can be compared to the existing 2D plane-strain solution for a viscosity-

dominated steadily moving buoyant fracture (Lister, 1990b). The 2D scales of Lister (1990b)

are based on a constant fracture velocity. For the three-dimensional case, the characteristic

fracture velocity vzm̂ decreases as

vzm̂ = ℓm̂

t
= ∆γ1/2 Q1/2

o

E ′1/6µ′1/3t 1/6

which can be translated into a two-dimensional release rate reducing in time by multiplication

with the characteristic tail opening

Q2D ∼ vzm̂ wm̂ ∼ Q3/4
o ∆γ1/4

E ′1/4t 1/4
. (4.35)

Replacing this injection rate into the scales of Lister (1990b), we retrieve exactly the scaling

of equation (4.34). Rescaled 3D numerical results are shown along with the zero-toughness

solution of Lister (1990b) using a tip based coordinate system
(
ẑ (t ) = zT i p (t )− z

)
in figure 4.7.

The 3D and 2D solutions practically coincide (relative error of ∼ 5%) for times t ≳ 50tmm̂ . In

the viscosity-dominated case, the shrinking of the head indeed reduces the effect of the 3D

curvature at large time (see also the scaled footprint in figure 4.5) and thus renders the elastic

state of plane-strain more valid.

In conclusion, the buoyant viscosity-dominated fracture exhibits a viscous source region

following the Lister (1990a) solution, combined with a depleting head according to the scal-

ing (4.34) at the propagating edge for late times (t ≫ tmm̂). The depleting head follows the

solution of a 2D semi-infinite plane-strain fracture along the centreline. It may be possible
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to construct a complete pseudo-3D approximation matching these asymptotes in the source

and head region, a task we leave open for further studies.

4.7 Intermediate/Finite Mk̂ cases

In the toughness-dominated case, we have seen that the K̂ limit is captured by the Gara-

gash and Germanovich (2022) finger-like solution for Mk̂ <∼ 1.×10−2. On the other end, for

zero-toughness
(
Mk̂ =∞)

, horizontal growth continues as ∼ t 1/4 at late times
(
t ≳ 100tmm̂

)
.

Numerical results for large but finite values of Mk̂ (see insets c and d in figure 4.4) show that,

as anticipated (Lister, 1990a; Garagash and Germanovich, 2022), horizontal growth arrests

after some time. The vertical velocity thus increases to a constant terminal velocity due to

volume balance. This is confirmed by the Mk̂ = 500, 103 simulations displayed in figures 4.4c

and d (and to a lesser extent for Mk̂ = 104 where the horizontal arrest was not completely

reached). The characteristic time-scale for such a horizontal arrest can be estimated as the

time at which the horizontal dimensionless toughness Km̂,x (4.33) in the viscous tail scaling

reaches order one. We obtain

Km̂,x

(
t x

m̂k̂

)
= 1 → t x

m̂k̂
= E ′19/5Q3/5

o µ′8/5

K 24/5
I c ∆γ3/5

=M 36/35
k̂

tmm̂ (4.36)

and the corresponding maximum breadth and length scales are

bm̂

(
t x

m̂k̂

)
=M 2/5

k̂
ℓb , ℓm̂

(
t x

m̂k̂

)
= ℓmk . (4.37)

From our previous discussion, the zero-toughness
(
Mk̂ =∞)

self-similar growth is established

for t ≳ 100tmm̂ . For large values of Mk̂ , such a zero toughness solution is thus expected to be

realized at intermediate times after the transition to buoyancy but before the characteristic

time of horizontal arrest: for t ∈ [100 tmm̂ , t x
m̂k̂

]. Using (4.36), we thus expect to see a period of

lateral growth for dimensionless viscosities at least larger than M 36/35
k̂

∼Mk̂ = 100.

We performed a series of simulations spanning a wide range of values of Mk̂ from 10−3 to 103

for which the simulations were run long enough to observe a cessation of horizontal growth.

We report in figure 4.8 the evolution of the maximum breadth of the buoyant fracture with

Mk̂ . As expected, in the toughness-dominated limit Mk̂ < 1, the fracture breadth remains

close to the K̂ limit. The maximum breadth then increases with Mk̂ from the Garagash and

Germanovich (2022) b ∼ π−1/3ℓb solution for Mk̂ < 10−2 up to b ∼ 5ℓb for Mk̂ = 100. For

values up to Mk̂ ∼ 100, we always observe a uniform breadth along the fracture footprint,

and no horizontal growth is observed after the transition to buoyancy. These fractures have a

clear finger-like shape. It is worth noting that from their approximate 3D toughness solution

Garagash and Germanovich (2022) obtain a lower value Mk̂ ≈ 0.92 as a criterion for no further

horizontal growth. Accounting for fully 3D effects, the domain of “finger-like” fracture shapes
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Figure 4.7: Tip-based opening (a) and pressure (b) of a viscosity-dominated buoyant simu-
lation with Mk̂ =∞ as a function of the scaled tip coordinate. Continuous lines correspond
to the simulations with PyFrac (Zia and Lecampion, 2020) with dots marking the location
of discrete evaluations. The dotted-dashed line shows the 2D plane-strain steadily moving
solution (see details in the supplementary material).
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Figure 4.8: Comparison of maximum breadth for buoyant fractures as a function of the
dimensionless viscosity Mk̂ ∈ [

10−3,5.×103
]
. Black dots are used for fractures with a uniform

breadth, and red stars otherwise.The dashed green lines represent the limits of the 3D K̂ GG,
(2014) solution

(
b ∼π−1/3ℓb

)
for the breadth limit (horizontal line) and Mk̂ ≈ 0.92 for the

stabilization criterion (vertical line)). The grey dashed line emphasizes the scaling relation
max

z,t
{b (z, t )} ∼M 2/5

k̂
ℓb .

is seen to extend up to Mk̂ = 100.

For values of Mk̂ > 100, the fractures have a distinctly different late-time shape akin to an in-

verted cudgel (non-uniform horizontal breadth) with an ultimately fixed maximum horizontal

breadth. We recover the predicted evolution of the maximum breadth (4.37) as M 2/5
k̂

ℓb (red

stars in figure 4.8). A fit of our numerical results actually provides max
z,t

{b (z, t )} ≈ 0.6858M 2/5
k̂

ℓb

for Mk̂ ∈ [102 − 2× 103]. Using this fitted pre-factor on the breadth evolution, assuming

b ∼ bm̂(t ) before stabilization, we estimate the time for breadth stabilization to be ∼ 0.22t x
m̂k̂

.

We graphically show in figure 4.9 that this estimation agrees fairly well with the numerical

results. For the reported simulations, the fracture length ultimately evolves linearly in time

(indicated by a 1 to 1 slope in figure 4.9) as ℓ (t )/ℓmm̂ ∼M−6/35
k̂

(t/tmm̂).

We also performed simulations for Mk̂ > 103 , which did not reach the arrest of horizontal

growth within a reasonable computational time limit. It is worth pointing out that from

these numerical results, the self-similar viscous (Mk̂ = ∞) evolution is actually visible at

intermediate times only for dimensionless viscosities larger than 104 (see figures 4.4c and d).

4.8 Discussion

4.8.1 Orders of magnitude

In nature, buoyant hydraulic fractures are suggested to be a major contributor to magma

transport through the lithosphere (Rivalta et al., 2015). For such cases, data collection is

difficult and often restricted to the investigation of outcrops from dikes. A broad range of

rarely well-constrained parameters are possible. We thus only briefly illustrate the emergence

of dikes using the following parameters: E ′ ∼ 10GPa, K I c ∼ 1.5MPa ·m1/2, µ f = 100Pa · s,
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Figure 4.9: Evolution of fracture breadth and length for intermediate fractures without a
uniform breadth Mk̂ ∈ [102 −2×103] (the simulation with Mk̂ =∞ is used as a reference).
Dashed lines show fracture breadth, continuous lines fracture height, and horizontal dashed-
dotted lines the expected time where lateral growth stops. We indicate the emerging power
laws on the figure.

∆ρ ∼ 250kg ·m−3, and a low value of the release rate Qo ∼ 1m3 · s−1. For this set of parameters,

the dike intrusion is strongly viscosity dominated with Mk̂ ≈ 3.29×106 and has a maximum

lateral extent of tens of kilometers. The use of a higher release rate would linearly increase the

value of Mk̂ and thus only render the growth more viscosity dominated. The corresponding

fracture height easily exceeds the thickness of the lithosphere, as already pointed out by Lister

(1990a). As a result, such large extents will necessarily clash with the length scales of stress

and material heterogeneities. It also indicates the very strong effect of buoyancy on upward

growth.

4.8.2 Comparison with experiments

Various experiments on buoyant fractures have been performed in the laboratory (Heimpel

and Olson, 1994; Taisne and Tait, 2009; Rivalta et al., 2005; Taisne et al., 2011; Ito and Martel,

2002). Most of these experiments consist of a finite (not continuous) release and aim at in-

vestigating various mechanisms (arrest due to material heterogeneities, among others). In

figure 4.10a, we evaluate the evolution of the fracture velocity with time for the experiments

performed by Heimpel and Olson (1994). The data in their figure 2 is transformed to corre-

spond to our scaled velocity and time. All experimental parameters except the release rate

Qo are taken from Heimpel and Olson (1994). The good match of figure 4.10a was obtained

using an estimate of the release rate of Qo ∼ 10−8 m3 · s−1. The corresponding dimensionless
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Figure 4.10: a) Comparison of the experiments of Heimpel and Olson (1994) with our sim-
ulations. The experiment takes place within the transient, and the initiation already favors
the buoyant propagation. b) Comparison of estimated and observed breadth for various
experimental studies.

viscosities range between Mk̂ ∈ [
8.8×10−8,2.3×10−3

]
(see details in supplementary material).

When superimposing their velocity evolution with our numerical results for Mk̂ ∈ [
10−3,10−1

]
,

we observe that their experiments start in the transition between the radial and buoyant

regimes. In other words, their experiments are situated within the accelerating phase, and

their velocities tend to stabilize only towards the very end of the experiment. Some experi-

ments show a deceleration but do not quite reach a constant velocity as the time to overcome

the transient
(
t/tkk̂ ≈ 14

)
is reached in none of the experiments. This is a direct consequence

of the limited sample size, which is insufficient in all experiments to reach the end of the tran-

sient regime (see details in supplementary material). We thus conclude that these experiments

are strongly influenced by their initial conditions (a too-large initial notch) and the finiteness

of the specimens, which prevents them from reaching the constant terminal velocity.

As described in section 4.5.4, we can compare the fracture breadth in the transient phase in

that range of such low dimensionless viscosities. We could extract information on the fracture

breadth from two contributions, albeit with uncertainties on some reported parameters. We

assume that for such toughness-dominated buoyant fractures, the K̂ solution of Garagash and

Germanovich (2022) is also valid in the case of a finite volume release, which allows us to use

the data from Taisne and Tait (2009). We report in figure 4.10b the measured breadth bexp

and compare it to the limiting 3D K̂ GG, (2014) solution of π−1/3ℓb . The breadth is generally

underestimated for both contributions. In most cases, the extension of the fracture in these

experiments clashes with the finite size of the sample, and the initial notch size might be

inadequate. These boundary and initiation effects may also modify the linear gradient of the

background stress and thus render the evaluation of ∆γ erroneous.
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4.8.3 Possibility of approximate solutions

The computational cost of the reported simulations is considerable and tests the limits of

the numerical solver used herein (see section 4.3.2 for details). For example, the simulations

presented in figures 4.2 and 4.4 took between two to two and a half weeks on a multithreaded

Linux desktop system with twelve Intel®Core i7-8700 CPUs and used at most 30 GB of RAM.

Such requirements are typical for the simulations presented in this contribution.

Interestingly, our results point to the possible development of reduced-order pseudo-3D

models (Adachi and Peirce, 2008; Adachi et al., 2010) that would inevitably be much more

computationally efficient. For example, the 3D K̂ GG, (2014) solution of Garagash and Ger-

manovich (2022) is based on a finger-like fracture approximation for the tail while keeping a

complete description of the elasticity in the head region. We could demonstrate the validity of

this assumption as discussed in section 4.5. Employing the knowledge gained from our results,

the development of accurate and computationally efficient models similar to the ones pre-

sented in Dontsov and Peirce (2015b) may be possible. The solution derived in Lister (1990a)

is based on a similar approach for the zero-toughness case. We could show that this approach

works fairly well within the source region but fails to capture the transition to the head region,

which has not been prescribed in the work of Lister (1990a). The insights gained from our

simulations (see section 4.6.1) could be used further to develop an enhanced pseudo-3D

model for the viscous case. Such a model could bridge the source-region solution of Lister

(1990a) with a viscous head.

4.9 Conclusions

For a homogeneous linear elastic solid subjected to a linear background confining stress and

Newtonian fluid, using numerical simulations and scaling analysis, we have shown that under

a constant release rate the growth of 3D buoyant fractures is governed by a single dimen-

sionless number Mk̂ (4.23). It is worth emphasizing the very large computational cost of the

simulations reported here, which span more than ten, respectively, twenty orders of magni-

tude in space and time. They reach the computational limit of our current implicit level set

algorithm implementation. Nonetheless, from this series of simulations, we have shown that

a family of buoyant HF emerges at late times as a function of Mk̂ (HF = Hydraulic Fractures –

see def at the beginning of the paper). The solution phase space can be summarized in the

diagram displayed in figure 4.11. At early time, all fractures start with a radial shape and are

initially dominated by viscous dissipation (M-vertex), and remain radial for times lower than

the buoyancy transition time scales 4.20. Depending on the ratio between the radial viscosity

to toughness transition time-scale tmk (without buoyancy) and the viscous buoyancy transi-

tion time-scale tmm̂ (or tkk̂ ), encapsulated in the definition of the dimensionless viscosity Mk̂

(4.23), a family of solutions exists at late time when buoyancy dominates. If the transition to

buoyancy occurs when the hydraulic fracture is already in the toughness-dominated regime(
Mk̂ <∼ 10−2

)
, the late time growth is well captured by the K̂ approximate solution of Gara-
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Figure 4.11: Propagation diagram for 3D buoyant fractures under a continuous fluid release.
Radial growth is initially viscosity-dominated (M-vertex). Transition to buoyancy either occurs
before

(
Mk̂ ≫ 1

)
or after

(
Mk̂ ≫ 1

)
the transition to radial toughness-dominated growth. At

late times, a family of buoyancy-driven solutions as a function of Mk̂ (4.23) emerges. The large
toughness limit (section 4.5) is reached for values of Mk̂ <∼ 10−2, whereas the zero-toughness

solution (section 4.6) appears at intermediate times t ∈ [100tmm̂ , t x
m̂k̂

] for Mk̂ >∼ 104.

gash and Germanovich (2022). In this limit of large toughness, the buoyant HF has a distinct

toughness-dominated head with a constant volume and shape, and a viscosity-dominated tail

that governs its upward growth. For an intermediate range of Mk̂ ∈ [
10−2,102

]
, the fracture

remains finger-like with a uniform breadth for each cross-section albeit with an increasing

breadth with Mk̂ . Above Mk̂ > 100, the hydraulic fractures exhibit an inverted cudgel shape at

late time (the breadth is no longer spatially uniform in the tail) and the maximum horizontal

breadth increases as M 2/5
k̂

ℓb as horizontal growth occurs until a given time t x
m̂k̂

(4.36). For

values of Mk̂ >∼ 104, a zero-toughness self-similar M̂ limit (section 4.6) can be observed at

intermediate times. This self-similar M̂ viscosity-dominated limit exhibits an ever-increasing

breadth in association with the zero toughness assumption. The scaling of the M̂, regime

originally presented in Lister (1990a), is confirmed by our numerical results. In that limit,

the viscous head is slowly depleting with time with a centerline evolution akin to the known

2D plane-strain near-tip asymptotic solution at late time. It might be possible to develop an

approximate solution for that viscous limit along similar lines as in the toughness-dominated

case when combining the source solution and the near-tip viscous head. A finite toughness al-

ways ensures an ultimate arrest of horizontal growth at a characteristic time t x
m̂k̂

=M 36/35
k̂

tmm̂

for which the horizontal dimensionless toughness becomes of order one. Besides their final

shapes, the transition to the buoyant regime is another important difference between buoyant

toughness-dominated HF and viscous ones. For toughness-dominated fractures, a significant
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vertical acceleration
(
∝M−1/3

k̂

)
is observed, whereas viscosity-dominated fractures have a

smoother vertical acceleration thanks to horizontal growth.

Natural magmatic buoyant fractures are likely always viscosity-dominated, while on the other

hand, all laboratory experiments have been performed under toughness-dominated condi-

tions. It appears that even in the toughness regime, precise experiments are still lacking for

quantitative comparison with the theoretical predictions reported here for buoyant fractures.

Orders of magnitude for magmatic dikes also indicate that their horizontal and vertical extent

will necessarily clash with length scales of stress and material heterogeneities at late times.

These heterogeneities and the possibility of fluid exchange with the surrounding rock and

thermal effects may play a critical role in the growth and potential arrest of buoyant hydraulic

fractures on their way toward the surface. The interplay of these effects on linear hydraulic

fracture mechanics growth remains to be investigated. Finally, most fluid releases are of a finite

volume rather than having an ever-ongoing release at a constant injection rate. This particular

problem is part of ongoing research and is essentially based on the findings presented in this

contribution.

Data availability statement. The version of the open-source solver PyFrac, correspond-

ing scripts, and results of the simulations of this study are openly available at 10.5281/zen-

odo.6511166.

4.10 Appendix of the article

4.10.1 Recapitulating tables of scales

We list all the scales used within this contribution in the following tables for completeness.

A Wolfram Mathematica notebook containing their derivation and the different scalings is

further provided in the supplementary material.

4.11 Supplementary material of the article

4.11.1 Approximated toughness-dominated solution K̂

The solution of Germanovich et al. (2014) recognizes that in the toughness limit, the 3D

buoyant fracture has a finger-like geometry consisting of a toughness-dominated head and a

viscosity-dominated tail. The head has a constant volume and shape and strictly hydrostatic

net pressure, as viscous dissipation is neglected. The viscous tail has a constant breadth, the

net force is uniform at every horizontal cross-section, and the vertical net pressure gradient is

negligible compared to buoyancy.
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t ℓ∗ = b∗ w∗ p∗

M → K tmk = E ′13/2Q3/2
o µ′5/2

K 9
I c

ℓmk = E ′3Qoµ
′

K 4
I c

wmk = E ′1/2Q1/2
o µ′1/2

KI c
pmk =

K 3
I c

E ′3/2Q1/2
o µ′1/2

M → M̂ tmm̂ = E ′5/7µ′4/7

Q3/7
o ∆γ9/7

ℓmm̂ = E ′3/7Q1/7
o µ′1/7

∆γ4/7
wmm̂ = Q2/7

o µ′2/7

E ′1/7∆γ1/7
pmm̂ = E ′3/7Q1/7

o µ′1/7∆γ3/7

K → K̂ tkk̂ =
K 8/3

I c

E ′Qo∆γ5/3
ℓkk̂ = ℓb =

K 2/3
I c

∆γ2/3
wkk̂ =

K 4/3
I c

E ′∆γ1/3
pkk̂ = K 2/3

I c ∆γ1/3

Table 4.4: Transition scales between regimes. The toughness head scales in table 4.3 corre-
sponds to the transition scales K → K̂.

Toughness-dominated head

The shape of the head is solved numerically by Germanovich et al. (2014) such that K I = K I c

all along the propagating part of the head front. A linear hydrostatic pressure is set in the head,

which leads to a constant and uniform breadth in its lower part. The toughness head scaling

applies. In other words, the characteristic scales are:

bhead
k̂

= ℓhead
k̂

= ℓb = K 2/3
I c

∆γ2/3
, whead

k̂
= K 4/3

I c

E ′∆γ1/3
,

phead
k̂

= K 2/3
I c ∆γ

1/3, V head
k̂

=Qo tkk̂ = K 8/3
I c

E ′∆γ5/3
= ℓ2

b whead
k̂

.

These scales are also given in equation (4.24).

In the head, fluid flow is negligible such that according to Poiseuille’s law,

∂p

∂z
=∆γ

The head is divided into a rounded part where lateral expansion occurs and a bottom, laterally

stationary part. Using a local coordinate system whose origin is centered at the boundary

between the expanding and stationary part: z̃ = z −ℓhead
k̂

(γhead −λ), in dimensionless form,

the dimensionless pressure becomes

Π(ζ,ξ) = ζ− (γhead −λ)

where γhead the dimensionless head length scaled by ℓb and ζ= z/ℓb . The condition

K I = K I c

is imposed for ζ ∈ [0,λ], while the breadth is constant for ζ< 0 and given by βℓb , i.e.:

116



4.11 Supplementary material of the article

b(ζ< 0)/ℓb =β

where β is the unknown dimensionless breadth in the laterally stationary part and db/dζ= 0

at ζ= 0. Solving numerically the elasticity equation using a piece-wise constant displacement

discontinuity method in combination with the previous constraints, Germanovich et al. (2014)

arrives at the following solution for the total breadth of the fracture

b(ζ> 0)/ℓb =β
√

1−a(ζ/λ)2 − (1−a)(ζ/λ)4 a ≈ 0.6967 (4.38)

in the laterally spreading part of the head with the following dimensionless extent of the

laterally extending region

λ≈ 1.3935×
(
0.249

p
2/π

)2/3 ≈ 0.4745

the dimensionless head size

γhead ≈ 5.19×
(
0.249

p
2/π

)2/3 ≈ 1.7671

and dimensionless breadth:

β≈ 2× (0.249
p

2/π)2/3 ≈ 0.6809 ≈π−1/3.

We show that the evolution of the breadth in the head (over λ, equation (4.38)) matches our

simulations in figures 4.2g - i of section 4.5.3 by red dashed lines. In fine, the dimensional

head breadth, length, net pressure, and volume are, respectively

b ≈ 0.6809ℓb ≈π−1/3ℓb

ℓhead ≈ 1.7671ℓb

p ≈ phead
k̂

×
(
z/ℓb − (γhead −λ)

)
V head ≈ 0.7008ℓ2

b whead
k̂

Viscous tail

The tail is modeled as a long finger-like hydraulic fracture for which the usual PKN hydraulic

fracture model assumptions apply. Notably, the elastic relation can be written at the cross-
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section z

w(z, x) = 2
bp(z)

E ′
√

1−4x2/b2 x ∈ [−b/2,b/2]

with p the net pressure. The average width of the cross-section is related to the net pressure

simply as:

w̄(z) =πbp(z)

2E ′

The fluid flow in the tail is 1D,

∂w̄

∂t
+ ∂qz

∂z
= δ(z)Qo/b

and with a cross-sectional average of Poiseuille’s law is:

qz =− w̄3

π2µ

(
∂p

∂z
−∆γ

)

In the viscous tail ∂p
∂z ≪∆γ, such that

qz ≈ w̄3∆γ

π2µ
.

and the global volume balance in the tail is

b
∫ ℓtail

0
w̄dz =Qo t −V head

accounting for the constant volume of the head. Looking for a self-similar solution for which

the average width w̄ is uniform and constant in the tail, and the velocity in the tail is constant

such that

vz = dℓtail

dt
= qz /w̄ = w̄2∆γ

π2µ
.

The volume balance of the tail becomes

bℓtailw̄ =Qo t −Vhead
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which provides the expression for the velocity in the tail:

dℓtail

dt
= Qo

bw̄
= w̄2∆γ

π2µ

such that we obtain

w̄ =
(
π2 Qoµ

b∆γ

)1/3

p = 2E ′

πb

(
π2 Qoµ

b∆γ

)1/3

and

ℓtail = Qo t

bw̄
− Vhead

bw̄
. (4.39)

It is possible to rewrite equation (4.39) using the characteristic tail length ℓk̂ as

ℓtail = 121/3

π2/3β2/3
ℓk̂ −

Vhead

bw̄

where we now replace V head (with its numerical prefactor) and w as defined previously and

used by the scales in (4.24) using ℓtail = γtailℓb to obtain

γtail ≈ 121/3

π2/3β2/3

(
∆γ13/9Q2/3

o t

K 10/9
I c µ′1/3

−0.7008
K 14/9

I c

µ′1/3Q1/3
o ∆γ2/9E ′

)
.

We now replace the time as τ= t/tkk̂ and note that

M−1/3
k̂

= K 14/9
I c

µ′1/3Q1/3
o ∆γ2/9E ′

such that we get

γtail ≈ 121/3

π2/3β2/3
M−1/3

k̂
(τ−0.7008) ≈ 1.3789M−1/3

k̂
(τ−0.7008) . (4.40)

A comparison of our numerical simulations with this value is presented in table 4.1 of sec-

tion 4.5.3.

We estimate from this equation the dimensionless time τ for which the dominant linear term

will be valid within a given percentage. We pose the equation as

119



Chapter 4. Three-dimensional buoyant hydraulic fractures: constant release from a point
source

ε
121/3

π2/3β2/3
M−1/3

k̂
τ= γtail → τε = 0.7008

1−ε

where ε is the “error” between the linear term and the complete solution. We estimate the

error to be within our maximum numerical error of 5 % (e.g. ε = 0.95) such that we get a

dimensionless time of

τ0.95 =
(
t/tkk̂

)
0.95 ≈ 14.0

this limit for convergence is used within section 4.5.4 to describe the transient.

It is now possible to derive the total fracture length by the addition of the head length to the

tail length (4.40) as

γtotal = γtail +γhead ≈ 1.3789M−1/3
k̂

(τ−0.7008)+1.7671

This expression for γtotal is plotted with green dashed lines in figure 4.2c of the main text. We

additionally present the dominant term 1.3789M−1/3
k̂

τ with green dashed-dotted lines.

We finally derive the scales of the opening and the pressure in the tail. According to Ger-

manovich et al. (2014), they are given in their scaling as

p/p∗ = w/w∗ =
(

Qo/Q∗
2α

)1/3

where w is the average opening in the tail. Transformed in our scaling, these two quantities

read

p

1.3674phead
k̂

= 0.7281M 1/3
k̂

→ p/phead
k̂

= 0.9956M 1/3
k̂

w

1.46264whead
k̂

= 0.7281M 1/3
k̂

→ w/whead
k̂

= 1.0650M 1/3
k̂

.

From this, we can now derive the maximum opening (at the centreline x = 0) as

w (0, z) = 4

π
w (z) → w (0, z)/whead

k̂
= 1.3559M 1/3

k̂
.
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Limit of applicability of their theory

Germanovich et al. (2014) argue that their solution is only valid as long as the breadth in the

tail is stationary. To validate this condition, the pressure in the tail cannot exceed the value

required for lateral fracturing (i.e., p ≤ K I c /
√
πβℓb). This condition results in a dimensionless

release rate in their contribution

Q/Q∗ < 0.1761.

We can translate their dimensionless release rate into our scaling as

Q/Q∗ = 0.1922Mk̂

such that the above inequality leads to the following limit

0.1922Mk̂ < 0.1761 →Mk̂ < 0.9159

which is reported as the limit of Mk̂ ≈ 0.92 in section 4.7.

4.11.2 Viscosity-dominated solution in the source region

The scales presented by Lister (1990a) in his equations (2.14) correspond qualitatively (upon

numerical prefactors and by replacing t by solving ℓ (t ) = z for t) to the scaling listed in

equation (4.32) of the main text . We re-derive their scaling using our parameters to plot the

corresponding solutions in figures 4.5 and 4.6 of section 4.6.1. First, we can retrieve his scales

using our characteristic fracture length

ℓm̂ (t ) = z = ∆γ1/2 Q1/2
o

E ′1/6µ′1/3
t 5/6 → tz = E ′1/5µ′2/5

∆γ3/5 Q3/5
o

z6/5

such that we obtain them as

bLister, 1990 (z) = 0.6335×bm̂ (t = tz ) = 0.6335
Q1/10

o µ′1/10E ′3/10

∆γ4/10
z3/10

wLister, 1990 (z) = 0.5086×wm̂ (t = tz ) = 0.5086
Q3/10

o µ′3/10

E ′3/10∆γ6/10
z−1/10

hLister, 1990 (t ) = 2.5698×ℓm̂ (t ) = 2.5698× ∆γ1/2 Q1/2
o

E ′1/6µ′1/3
t 5/6
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It is now possible to get the breadth plotted in figure 4.5a by replacing z = ζℓm̂ (t ), using the

prefactors to his solution and then dividing by our breadth scale

bpseudo 3D (ζ)

bm̂ (t )
= 1.6629×ζ3/10

similarly, we can get the opening at the centreline, the opening profile (with ξ= x/bm̂), and

the cross-sectional volume as

wpseudo 3D (ξ= 0,ζ)

wm̂ (t )
= 0.9197×ζ−1/10

wpseudo 3D (ξ,ζ)

wm̂ (t )
= 0.9197×

(
1−0.3616

ξ2

ζ3/5

)
ζ−1/10

∫ 1
−1 wpseudo 3D (ξ,ζ)dξ

wm̂ (t )bm̂ (t )
= 1.8017ζ1/5

The central opening and the 2D cross-sectional volume are used in figures 4.5b and c of the

main text. We give further their transition scale from viscosity- to toughness-dominated for

buoyant fractures as

ℓLister, 1990
mk = 5.76×10−4ℓmk .

The opening distribution used in figures 4.6c and d is scaled by the time-independent transi-

tion scales ℓmm̂ and wmm̂ . The opening distribution in such scaling is interestingly exactly

equivalent to the one presented previously.

4.11.3 Post-processing of the numerical results

Automatic evaluation of characteristic quantitites

All of the following is performed by the two PyFrac functions:

• get_fracture_geometric_parameters()

• get_fracture_head_volume()

Global quantitites

The numerical data of PyFrac (Zia and Lecampion, 2020) includes the intersections of the
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Figure 4.12: Flow chart of numerical evaluation. Black circles mark the origin, blue squares are
the max head opening, red stars distance to the maximum breadth, green polygons are the
location of the head evaluated by the “opening method”, and yellow crosses the update with
the pressure check.
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fracture front C (t ) with the cell edges (c.f. figure 4.12).We extract from these points the fracture

breadth vector at the locations zi as b (z, t ) from the subtraction between the intersections on

the positive (i.e. where xi > 0) and the negative side (i.e. where xi < 0). In the vector notation,

we have z as the vector of all the intersections of the front with a discrete cell edge on the

z-axis. There is no ambiguity in this evaluation as the release point is chosen as (x, z) = (0,0)

and needs to be at a cell center, and the z−axis is an axis of symmetry of the problem.

From the breadth, we obtain the maximum breadth by simply taking the maximum of b (z, t ).

Note that between two edge intersections, the connection is a straight line, ensuring that the

maximum breadth evaluated as such is actually the maximum breadth in the simulation. We

then also estimate the distance to the maximum breadth as

ℓmax
z

{b(z,t )} = min
{

zi ∈ b (z, t ) ≥ 0.975 ·max
z

{b (z, t )}
}

.

We acknowledge a variation of 2.5 % along the breadth as numerical noise. To stabilize the

scheme, notably for toughness-dominated cases, we thus decide to take the distance to the

maximum breadth as the smallest value of an intersection zi where the breadth exceeds 97.5 %

of its maximum observed. This further allows us to get an average breadth b (t ) and a variance

of the breadth var
z

{b (z, t )}.

The fracture height is evaluated as the distance between the maximum vertical extent and the

minimum vertical extent,

ℓ (t ) = max{z}−min{z} .

The last quantity we measure is the distance to the lower end of the fracture from the release

point (i.e., the downward growth of the fracture) as ℓlow = |min{z}|.

Some of the quantities are displayed in figure 4.12. See also the sketch of figure 4.1 of chapter 4.

Local quantities

We are mainly interested in the quantities within the head of the fracture. We must first decide

if a head exists and its extent to achieve those. To do so, we get the pressure and opening

profiles along the centreline of the fracture (e.g., w (x = 0, z, t )) evaluated at the cell center.

We then search for the release point (i.e. z = 0) and get the location of the overall maximum

opening max
z

{w (x = 0, z, t )}. We check if the maximum opening is at the origin (with a security

margin of 4 cells around the origin) or elsewhere.

1. Maximum opening at the origin: If the maximum opening is at the origin, we check
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for a sign change in the derivative of the opening between the origin and the top of the

fracture. If we do not have such a case, the opening monotonically decreases from the

injection point to the fracture tip, and we do not have a head. In this case, we evaluate

the head length ℓhead (t ) as

ℓhead (t ) = max{z} if no head exists.

If the decrease between the release point and the fracture tip exists, we check for the

location where the opening starts to increase again towards the fracture tip. This allows

us to define the location of the maximum opening in the head, which is further away

than the previously mentioned slope change but still inside the fracture. Between this

maximum opening and the location where fracture breadth starts to increase again

must necessarily be at least two inflection points. We take the first inflection point from

the sign change in the opening as the location of the head length (the second is where

the opening slope starts to decrease towards the head).

2. Maximum opening in the head: If the maximum opening is not at the origin, it must be

in the head. If such is the case, we search for a sign change between the origin and the

maximum opening and proceed as previously described. There might not be any sign

change (flat tail above the release point). In the configuration without sign change, we

directly search for all inflection points and take the one second closest to the maximum

opening in the head (the closest one would be where the slope of the opening starts to

decrease towards the head).

The just described evaluation method is called the “opening method”from here on.

We perform a “check”using the pressure distribution on all opening method evaluations. The

primordial usage of the opening is favored because our scheme provides a better estimate of

opening than pressure. For the pressure “check ”, we first evaluate if the maximum breadth

occurs in the head using the head length defined via the “opening method ”. If such is the

case, we chose the head breadth bhead (t ) = b
(
zt i p (t )−ℓhead (t ) , t

)
as the maximum breadth

to reduce numerical noise in our results. If a head exists, we check if a local pressure minimum

exists inside the previously evaluated head. If so, we redefine the beginning of the head from

this local minimum to the tip. Otherwise, we leave the evaluation unchanged.

The maximum head opening and pressure are then defined according to our evaluation of the

head dimensions and the breadth is calculated as

bhead (t ) = b
(
zt i p (t )−ℓhead (t ) , t

)
.

It remains for us to obtain the volume of the head. We obtain this by simply summating the

elements in the head. We define the channel ehead
ci channel means fully inside the fracture, c.f.

figure 4.12) and the tip ehead
t i (elements where the front passes, c.f. figure 4.12) elements in the
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head using the previously obtained dimensions of the head. The volume in the head is then

given by

V head (t ) = Ae

{
nc∑

i=1
w (x (eci ) , z (eci ) , t )+

nt∑
j=1

f
(
et j

)
w

(
x

(
et j

)
, z

(
et j

)
, t

)}

where Ae is the (uniform) element area, and f the filling fraction of the tip element. The filling

fraction is the percentage of the area occupied by the fracture.

Definition of uniform breadth

The distinction between uniform and non-uniform breadth is based on a post-processing

evaluation within Mathematica©(Wolfram Research, 2020). The evaluation is performed

on the last time step of the simulation. From the post-processing within PyFrac (Zia and

Lecampion, 2020), we know where the head starts and where the maximum breadth is located.

On the footprint, we thus extract the breadth in between as the breadth of the tail

btail
(
ztail, t

)
for ℓmax

z
{b(z,t )} ≤ ztail ≤ zt i p −ℓhead (t ) .

This is the domain for which the breadth must be uniform for the fracture to be classified

as finger-like. We recall that we defined the distance to the maximum breadth with a 2.5 %

margin. We need to account for this uncertainty in our decision regarding a uniform breadth.

We define our decision upon the breadth being uniform using the maximum difference in

breadth in the tail

max
z

{
btail

(
ztail, t

)}−min
z

{
btail

(
ztail, t

)}
max

z

{
btail

(
ztail, t

)} ≤ 0.04

which corresponds to a 4 % relative difference. If we subtract the 2.5 % error already included

due to the evaluation of the distance. This leaves us with a maximum variation of 1.5 % that we

accept. This evaluation is used to obtain figure 8 of the main text and defines the discussion of

uniform (finger-like) vs non-uniform (inverted cudgel) breadth.

4.11.4 2D steadily moving semi-infinite buoyant hydraulic Fracture Solver

We derive from the two-dimensional formulation the following scales

ℓ2D
b = E ′1/2Q1/6

2D µ
′1/6

(∆ρg )2/3
, w2D

b = Q1/3
2D µ

′1/3

(∆ρg )1/3
, p2D

b = E ′1/2Q1/6
2D µ

′1/6(∆ρg )1/3 (4.41)
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and a dimensionless toughness

κ= K I c

E ′3/4µ′1/4Q1/4
o

where the 2D release rate is obtained using Q2D = vz∗w∗. This leads us to the following set of

scaled equations for the 2D semi-infinite fracture

Π2D (
ξ̂2D)= 1

4π

∫ ∞

0

∂Ω

∂η̂2D

dη̂2D

ξ̂2D − η̂2D
elasticity

1 =Ω2
(
∂Π

∂ξ̂2D
+1

)
lubrication

Ω=
√

32

π
κ

(
ξ̂2D)1/2

ξ̂2D ≪ 1 LEFM

where ξ̂2D = x̂/ℓ2D
b is the scaled distance to the tip with x̂ = vz∗t − z the tip-based coordinate.

The two-dimensional semi-infinite buoyant hydraulic fracture is now solved via a numerical

scheme based on a Gauss-Chebyshev quadrature. Using this approach for elastic boundary

integral equations is well established (Erdogan et al., 1973) and has been used for similar

problems before (Viesca and Garagash, 2018; Moukhtari and Lecampion, 2018). We follow

mainly the developments presented in Moukhtari and Lecampion (2018), albeit including the

buoyant stress gradient. The same discretization method is chosen such that one has

∂Ω

∂ξ̂2D
=

√
32

π

κ

ξ̂2D
+

√
ξ̂2Dφ

(
ξ̂2D)

(4.42)

with φ
(
ξ̂2D

)
the unknown, non-singular dislocation density represented as a Chebyshev poly-

nomial. This approach allows us to embed the LEFM condition naturally in the discretization,

which will thus automatically be verified. We solve for the values of the Chebyshev polynomials

using third kind Gauss-Chebyshev polynomials, which use two sets of nodes v = {v j } with

j = 1, ...,n and u = {ui } with i = 1, ...,n. The use of third-kind polynomials directly declines

from equation (4.42), as naturally the corresponding weight function ω (s) appears after the

following variable transformation (Ioakimidis and Theocaris, 1980; Viesca and Garagash, 2018)

ξ̂2D = 1+ v

1− v
, ω (s) =

√
1+ v

1− v
.

The related set of points corresponding to the roots of the third and fourth Chebyshev polyno-

mials, respectively, are given as
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v j = cos

(
π j

n +1/2

)
, j = 1, ..,n; ui = cos

(
πi

n +1/2

)
, i = 1, ...,n.

This allows us to discretize the elasticity equation as

Π2D
(
ξ̂2D

j

)
1− v j

= 1

4π

n∑
i

Ai

1−ui

φ
(
ξ̂2D

j

)
v j −u j

where ξ̂2D
j = ξ̂2D

(
v j

)
and Ai = π (1+ui )/(n +1/2) are the quadrature weights. From this

equation, we create the following elasticity matrix

Ki j = 1

4π

n∑
i

Ai

1−ui

1− v j

v j −u j
.

The lubrication equation is discretized via a finite difference scheme at the mid-points ξ̂2D
j+1/2

Ω
(
ξ̂2D

j+1/2

)2

Π
2D

(
ξ̂2D

j+1

)
−Π2D

(
ξ̂2D

j

)
ξ̂2D

j+1 − ξ̂2D
j

+1

= 1 (4.43)

where we recall that due to equation (4.42), the opening is given by

Ω
(
ξ̂2D

j+1/2

)
=

√
32

π
κξ̂2D

j+1/2 +φ
(
ξ̂2D

j+1/2

)
. (4.44)

Note that we obtain φ
(
ξ̂2D

j+1/2

)
by linear interpolation of φ

(
ξ̂2D

)
. We need now to set a single

last condition to close the system, which we choose as a zero pressure condition at infinity

Π2D
(
ξ̂2D

n

)= 0. The problem is then solved via the built-in Mathematica©(Wolfram Research,

2020) find root function using a quasi-Newton method with a finite difference approximation

of the jacobian. The sequence to solve the problem is then as follows:

1. Create the discretization with the elasticity matrixK and the interpolation function of

φ
(
ξ̂2D

j+1/2

)
2. Give an initial estimate of the pressure. The estimate of the initial pressure is performed

stepwise:

(a) We use the so-called viscosity asymptote (Desroches et al., 1994) as an initial

guess for a value of κ ≈ 0.16, which we know to have a good convergence. We

then stepwise reduce its value to κ≈ 0.02, using the previously obtained pressure

distribution as an initial guess.
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(b) Depending on the value of κ in our problem, we choose the closest corresponding

pressure distribution. The value of κ≈ 0.02 is sufficient to get a good convergence

for the solver even when κ= 0 in the zero toughness case.

3. Solve iteratively until the residual convergence (Accuracy Goal of Mathematica set to 8):

(a) We use the built-in linear solve function of Mathematica©(Wolfram Research,

2020) to solve the equation

Π2D =K ·φ

at the discrete points for φ
(
ξ̂2D

j

)
.

(b) Evaluate the opening at the mid-points by equation (4.44).

(c) Use equation (4.43) to build a residual.

(d) Estimate the new pressure distribution from the residual and restart at (a)

Note: The K∗ used in the code is directly equal to

K∗ =
√

32

π
κ.

Validation with Limiting Solutions

Large-Toughness Limit

The article Roper and Lister (2007) solves the large toughness limit. However, to compare,

we need to make our scales equivalent, which requires some additional steps. We have the

following equivalencies between their and our scales

x̂ = 1

2
ℓ2D

b , ĥ = 1

2
w2D

b , p̂ = 1

2
, KRoLi07 = 1

2

√
32

π
κ= 1

2
K∗ (4.45)

where KRoLi07 is their dimensionless toughness as in their equation (2.10). We need to em-

phasize that their opening h equals our w/2. Roper and Lister (2007) then rescale those

parameters again to obtain

X = x/x̂

K 2/3
RoLi07

= 2 ·22/3 x/ℓ2D
b

K 2/3∗
, H = h/ĥ

K 4/3
RoLi07

= 24/3 w/w2D
b

K 4/3∗
, P = p/p̂

K 2/3
RoLi07

= 2 ·22/3 p/p2D
b

K 2/3∗
(4.46)
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Figure 4.13: 2D semi-infinite opening (a) and pressure (b) in the scaling of equation (4.46).
Blue-dashed lines correspond to the solution of Roper and Lister (2007) for KRoLi07 = 32 (equa-
tions (4.47)). Simulation with KRoLi07 = 2 shows the evaluation points as markers. Relative
error ((c) opening and (d) pressure) of our numerical evaluation with the solutions (4.47).

They now derive an approximated solution for the opening and pressure in this scaling. The

output of our numerical solver is the scaled coordinates x/ℓ2D
b , opening w/w2D

b , and pressure

p/p2D
b .

We use as a comparison and validation of our code the opening with the first-order tail

correction and the zero-order pressure

H = 1

2
X 1/2 (2−X )3/2 +H (x −2)K −4/3

RoLi07

p
2

X 1/4 (x −2)3/4(
2x2 −2x −1

)1/2

P = 3

2
−X +H (x −2)

(2X −1)(X −2)1/2

2X 1/2
(4.47)

where H is the Heaviside theta function. We compare the solutions graphically in figures 4.13a

and b and present the errors in the head obtained for an evaluation with n = 400 and κ ≈
10,20(KRoLi07 = 16,32) in figures 4.13c and d. Note that we present the relative error, which

explains the increase when approaching the zero in pressure at X ≈ 1.5. The absolute error

in this range is small if we compare it using figure 4.13b Generally, the relative error remains

within a few percent except towards the end of the head. This can be explained by the enforced

continuity of our model as opposed to the Heaviside functions present in the analytical
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Figure 4.14: Comparison between the zero-toughness solution extracted from Lister (1990b)
figure 3 (blue-dashed line) with our zero-toughness Gauss-Chebyshev evaluation (red line).

solutions (4.47). Additionally, one observes that the error on the opening increases towards

the transition from the head to the tail. The reason is that the corrected head solution tends to

0 at X = 2, whereas our solution is continuous. The match between the solutions in the tail is

then again well visible when comparing the opening at values of X ≫ 2.

Zero-Toughness Limit

To ensure that the code also works in the other limit of zero-toughness we compare the results

to the numerical results with K∗ = 0 presented in figure 3 of Lister (1990b). This data is picked

numerically and then rescaled from the scales provided in the figure. Figure 4.14 is comparing

our opening profile graphically for a simulation with K∗ = KRoLi07 = κ= 0 in “our” scales (4.41).

Generally, the match is nearly perfect except around the maximum opening. Around the

maximum opening, picking the data from the figure was very difficult as the resolution there

made it very hard to determine the exact location of the graph. Nonetheless, the very good

match elsewhere, as well as the correspondence for the toughness-dominated case, allow us to

conclusively state that our numerical 2D Gauss-Chebyshev solver of the semi-infinite fracture

is valid for the entire range of κ possible.
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Gelatines

Concentration G [Pa] K I c
[
Pa ·pm

]
ν [-] ρs

[
kg ·m−3

]
E ′ [Pa]

1.4 % 190 15

0.5 1000

760
1.6 % 276 19 1104
1.8 % 355 23 1420
4.0 % 2150 114 8600

Fluids

Fluid type µ [Pa · s] g ′ [m · s−2
]

µ′ [Pa · s] ∆γ
[
Pa ·m−1

]
Air 10−5 9.8 1.2×10−4 9.8×103

Hexane 10−4 3.4 1.2×10−3 3.4×103

1 Cst silicon Oil 10−3 1.8 1.2×10−2 1.8×103

Mineral Oil 10−1 1.5 1.2 1.5×103

Corn syrup solution 5×100 −4.1 6×101 −4.1×103

Corn syrup/cadmium 5×100 1.41 6×101 −1.41×103

Mercury 10−3 −126 1.2×10−2 −1.26×105

Table 4.5: Properties of the solids and the fluids used in the experiments of Heimpel and Olson
(1994). After the double boundary, the parameters are estimated or derived and not explicitly
reported in Heimpel and Olson (1994).

4.11.5 Comparison with experiments

Heimpel and Olson (1994)

We try to compare the experimental investigations performed by Heimpel and Olson (1994)

with our numerical results. Their experiments’ equivalent solid and fluid properties are

reported in table 4.5. The plain strain modulus E ′ is derived from their shear modulus G with

the assumption of a Poisson’s coefficient of ν≈ 0.5 (also estimated by them) as

E ′ = 2G (1+ν)

1−ν2 .

The toughnesses reported are the ones they obtain using a critical volume. It is interesting to

note that this critical volume corresponds to our toughness-dominated head volume V head
k̂

(see equation (4.24) of section 4.5). We infer this correspondence because our simulations

present a similar kink in the velocity (see figure 4.10a of section 4.8.2) as observed in their

experiments. Using this resemblance, we can estimate the fracturing toughness from the

critical volume as

V c = K 8/3
I c

E ′∆γ5/3
→ K c

I c =
(
V c)3/8 E ′3/8∆γ5/8

where we use the superscript ·cto indicate the critical volume. We report the result in table 4.6
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and observe an acceptable match between the two approaches.

A buoyancy g ′ is reported for the fluids. From their reported values, we obtain our ∆γ with the

assumption of a gelatine density akin to the density of water ρs ≈ 1000
[
kg ·m−3

]

g ′ = ∆γ

ρs
→∆γ= ρs g ′.

Velocity comparison

For a series of experiments, Heimpel and Olson (1994) report the injected volume and fracture

velocity (their figure 2). We extract the values of this visualization and scale the results with

our K̂ head scales (see equation (4.24) of section 4.5) as follows

V

V head
k̂

= QoE ′∆γ5/3t

K 8/3
I c

= t

tkk̂

U

∂ℓk̂ (t )/∂t
= ℓ̇ (t )

ℓ̇k̂

= ℓ̇ (t )
Q2/3

o ∆γ7/9

K 4/9
I c µ′1/3

where we estimate the unknown Qo for laboratory experiments as Qo = 1.×10−8
[
m3 · s−1

]
.

We can thus obtain our numerical velocity using the time steps and increments of height

(i.e., ℓ̇ (ti ) ≈ (ℓi −ℓi−a)/(ti − ti−1)) and compare it to their values of U reported in figure two.

Similarly, the volume of the abscissa of their figure 2 can be transformed into a dimensionless

time using their parameters for the experiments. The so obtained figure is figure 4.10a of

section 4.8.2) overlayed with three numerical simulations.

We report for the experiments the obtained value of the dimensionless viscosity Mk̂ (equa-

tion (4.23) of section 4.4) to derive the length necessary to overcome the transient phase

ℓt ≈ 19M−1/3
k̂

ℓb .

In table 4.6, this value is compared with the sample height Hs . We observe that the distance

to overcome the transient is generally much larger than the sample size. This indicates that

boundary effects due to the finiteness of the sample and the poorly known initiation conditions

significantly influence the results.

Breadth comparison

In figure 4.10b of section 4.8.2, we compare three values of fracture breadth from this contribu-

tion to the limiting breadth of the K̂-solution of Germanovich et al. (2014). The breadth values

133



Chapter 4. Three-dimensional buoyant hydraulic fractures: constant release from a point
source

E
xp

erim
en

ts
o

fH
eim

p
elan

d
O

lso
n

(1994)

So
lid

Flu
id

V
c [m

3 ]
K

cIc [Pa· p
m ]

K
cIc [Pa· p

m ]
1−

K
Ic /K

cIc
[ %

]
ℓ

t /H
s [ -]

Q
o [m

3 ]
M

k̂
[ -]

1.4
%

A
ir

4.×
10 −

7
15

15
0.11

55.6

10 −
8

7.8×
10 −

7

1.6
%

A
ir

6.×
10 −

7
20

24.4
22.1

64.8
8.×

10 −
7

1.6
%

H
exan

e
6.×

10 −
6

25
77.0

3.9×
10 −

6

1.6
%

M
in

eralO
il

1.5×
10 −

5
21

15.9
2.3×

10 −
3

1.6
%

M
ercu

ry
3.×

10 −
8

32
1.44

4.4×
10 −

4

1.8
%

A
ir

1.×
10 −

6
27

27
13.9

77.0
7.×

10 −
7

1.8
%

C
o

rn
syru

p
/cad

m
iu

m
co

n
tin

u
o

u
s

release
5.43

9.5×
10 −

2

4.0
%

A
ir

1.×
10 −

5
124

124
8.39

446
8.8.×

10 −
8

Tab
le

4.6:C
o

m
b

in
atio

n
s

u
sed

fo
r

th
e

exp
erim

en
ts

rep
o

rted
in

H
eim

p
elan

d
O

lso
n

(1994)
an

d
ch

aracteristic
valu

es
d

erived
.

134



4.11 Supplementary material of the article

B
re

ad
th

ev
al

u
at

io
n

So
lid

Fl
u

id
M

ea
su

re
d

b
re

ad
th

b
o

b
s

[c
m

]
P

re
d

ic
te

d
b

re
ad

th
b

p
re

d
≈
π
−1

/3
ℓ

b
[c

m
]

∣ ∣ 1−b
o

b
s /b

p
re

d
∣ ∣ [% ]

1.
4

%
A

ir
1.

5
0.

9
65

.4
1.

8
%

C
o

rn
sy

ru
p

/c
ad

m
iu

m
5.

6
4.

4
27

.5
4.

0
%

A
ir

5.
2

3.
5

48
.3

Ta
b

le
4.

7:
C

om
p

ar
is

on
of

fi
n

ge
r-

lik
e

to
u

gh
n

es
s-

d
om

in
at

ed
fr

ac
tu

re
b

re
ad

th
w

it
h

th
e

ex
p

er
im

en
ts

of
H

ei
m

p
el

an
d

O
ls

on
(1

99
4)

sh
ow

n
in

th
ei

r
fi

gu
re

s
8

an
d

9.

135



Chapter 4. Three-dimensional buoyant hydraulic fractures: constant release from a point
source

are extracted from figures 8 and 9 of Heimpel and Olson (1994). We list the values in table 4.7

along with their relative error.

Taisne and Tait (2009)

We use the table of breadths reported in Taisne and Tait (2009) to compare their breadth to

the predicted breadth from the K̂-solution of Germanovich et al. (2014). We use their values

of Young’s modulus reported in their table 1 and again estimate the Poisson’s coefficient of

the gelatine as ν ≈ 0.5. As they directly report ∆ρ, we obtain the buoyancy ∆γ by simple

multiplication with the earth acceleration g = 9.81
[
m · s−2

]
. We document our values in

table 4.8, where the experiment N° corresponds to the value reported in table 1 of Taisne and

Tait (2009). The definitions of bobs and bpred are as in table 4.7.
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5 Three-dimensional buoyant hydraulic
fractures: finite volume release

This chapter is a modified version of an article submitted to the Journal of Fluid Mechanics

(JFM).

Möri, A. and Lecampion, B. (2023). Three-dimensional buoyant hydraulic fractures: Finite

volume release. Submitted to: J. Fluid Mech., ArXiv: 2304.00907v1.

Contributions

Andreas Möri has conceptualized the problem, performed a formal and scaling analysis,

decided on the methodology, adapted the numerical solver, committed validation against

known results, generated the visualizations, wrote the original draft, and edited the manuscript

iteratively. Brice Lecampion acted as supervisor, supported the conceptualization and method-

ology, supervised the formal and scaling analysis, acquired the funding, and reviewed and

edited the text in iterations with Andreas Möri.
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Chapter 5. Three-dimensional buoyant hydraulic fractures: finite volume release

5.1 Abstract

In impermeable media, a hydraulic fracture can continue expanding even without additional

fluid injection if its volume exceeds the limiting volume of a hydrostatically loaded radial

fracture. This limit depends on the mechanical properties of the surrounding solid and the

density contrast between the fluid and the solid. We show that two dimensionless numbers

characterize self-sustained fracture growth. The first is a buoyancy factor that compares the

total released volume to the volume of a hydrostatically loaded radial fracture to determine

whether buoyant growth occurs. The second number is the dimensionless viscosity of a radial

fracture when buoyant effects become of order one. This dimensionless viscosity notably

depends on the rate at which the fluid volume is released, indicating that both the total

volume and release history impact self-sustained buoyant growth. We identify six well-defined

propagation histories based on these two dimensionless numbers. Their growth evolves

between distinct limiting regimes of radial and buoyant propagation, resulting in different

fracture shapes. Our findings notably reveal two growth rates depending on the dominant

energy dissipation mechanism (viscous flow vs fracture creation) in the fracture head. For

finite values of material toughness, the toughness-dominated limit represents a late-time

solution for all fractures in growth rate and head shape (possibly reached only at a very late

time). The viscosity-dominated limit can appear at intermediate times. Our three-dimensional

simulations confirm the predicted scalings. This contribution highlights the importance of

the entire propagation and release history for accurate analysis of buoyant hydraulic fractures.

5.2 Introduction

This work investigates the growth of a planar three-dimensional (3D) hydraulic fracture (HF)

from the release of a finite volume of fluid from a point source and its possible transition to a

self-sustained buoyant fracture. Hydraulic fractures are tensile, fluid-filled fractures driven

by the internal fluid pressure exceeding the minimum compressive in-situ stress (Detournay,

2016). Natural occurrences of HFs are related to the transport of magma through the litho-

sphere by magmatic intrusions (Rivalta et al., 2015; Spence et al., 1987; Lister and Kerr, 1991)

or pore pressure increases due to geochemical reactions during the formation of hydrocar-

bon reservoirs (Vernik, 1994). One of the most frequent engineering applications of HFs is

the production stimulation of hydrocarbon wells (Economides and Nolte, 2000; Smith and

Montgomery, 2015; Jeffrey et al., 2013).

In the absence of buoyancy, the propagation of radial hydraulic fractures upon the end of the

release (denoted as "shut-in” in industrial applications) has recently been analyzed in detail

(see chapter 3). In an impermeable medium, the final radius of the HF solely depends on the

material parameters and the total amount of fluid volume injected/released. However, the HF

does not necessarily stop its growth directly upon the end of the release. When dissipation

through viscous fluid flow is important at the end of the release, the propagation continues in a

viscosity-dominated pulse regime before finally arresting at a radius independent of the release
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rate. These theoretical findings derived in chapter 3 were recently verified experimentally by

Tanikella et al. (2023).

When considering gravity, recent research has focused on deriving the limiting volume neces-

sary for the emergence of a three-dimensional buoyant fracture (Dahm, 2000b; Davis et al.,

2020; Salimzadeh et al., 2020; Smittarello et al., 2021). Neglecting fluid viscosity, Davis et al.

(2020) identify a critical volume similar to previous two-dimensional (2D) predictions (Weert-

man, 1971). It is, however, impossible to constrain the ascent rate of the fracture without

accounting for the effect of fluid viscosity (as discussed in Garagash and Germanovich (2014)).

The consensus of these studies is that the resulting buoyant fracture features a head and tail

structure (Lister and Kerr, 1991), where the head dominates the overall fracture behavior, but

the tail dominates the ascent rate (Garagash and Germanovich, 2022) (see figure 5.1). Davis

et al. (2023) estimate a maximum ascent velocity considering a viscosity-dominated tail. A

similar solution has been derived by Garagash and Germanovich (2014) (see Garagash and

Germanovich (2022) for details) for a finger-like fracture with a toughness-dominated head.

In their work, they derive a three-dimensional (3D) head similar to the limiting volume of

Davis et al. (2020). This fracture "head" is coupled to a tail of constant breath, providing

a late-time solution after the transition from radial to self-sustained buoyant propagation.

Considering lubrication flow in the initially radially propagating fracture, Salimzadeh et al.

(2020) performed a few simulations investigating the early phase of the transition to buoyant

propagation. Equivalent to Davis et al. (2020) and Garagash and Germanovich (2014), a limit-

ing value for the necessary volume released for a buoyant fracture to emerge is reported. All

three minimal/critical volume release estimates have the same characteristic scale and only

differ in prefactors. A combined study of the limiting volume, considering the emergence of

buoyancy-driven fractures and their evolution towards their late-time characteristics, is not

yet available.

5.3 Preliminaries

We investigate tensile (mode I) hydraulic fractures under the classical assumption of linear

elastic fracture mechanics (LEFM) and laminar Newtonian lubrication flow (Detournay, 2016).

A finite volume is released from a point source at depth into a linearly elastic and impermeable

medium with uniform properties. The fracture orientation and stress state are equivalent to

the one described in chapter 4 and sketched in figure 5.1. We omit the detailed discussion of

the mathematical formulation (see section 4.3.1 of chapter 4 for details) as the only difference

pertains to the history of the fluid release. We consider here a simple injection history where

the fluid volume is released at a constant rate until the end of the release at time t = ts (the

shut-in time), where the rate suddenly drops to zero. We denote the constant release rate

during the block injection as Qo such that the rate history is:
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Chapter 5. Three-dimensional buoyant hydraulic fractures: finite volume release

Figure 5.1: a) Buoyant self-sustained growth of a hydraulic fracture. b) Arrested hydraulic
fracture at depth. Both fractures emerge from a finite fluid volume released from a point
source through a block injection and propagate in a homogeneous linear elastic medium (x|z
plane) with the downwards oriented gravity vector g (in −z) creating a linear confining stress
σo (z). Fracture area is denoted by A (t ) with a closed front C (t ) and a local normal velocity
vc (xc , zc ) (with (xc , zc ) ∈C (t )). The fracture extent is defined by its local breadth b (z, t ) and
total length ℓ (t ).
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Q (t ) =
Qo t ≤ ts

0 t > ts

. (5.1)

The coherent global volume balance in the case of an impermeable medium is

V (t ) =
∫
A (t )

w (t , x, z)dxdz =
Qo t t < ts

Vo =Qo ts t ≥ ts

, (5.2)

where Vo =Qo ts is the total volume of fluid released.

In the following, we combine scaling arguments and numerical simulations using the fully-

coupled planar 3-D hydraulic fracture solver PyFrac (Zia and Lecampion, 2020). We refer the

reader to Zia and Lecampion (2020); Peirce and Detournay (2008) and references therein for

a detailed description of the numerical scheme. In short, the solver is a Python-based dis-

placement discontinuity method combined with the implicit level set algorithm implemented

using boundary elements. The documentation of the open-source code and examples of

applications are available for download at PyFrac. We initiate the fracture according to the

self-similar solution of a radial, viscosity-dominated fracture (see its definition in Savitski and

Detournay (2002)) at a fixed time ti ni t . For this solution to be valid, we must ensure that the

dimensionless numbers describing the transition from viscosity- to toughness-dominated

(Km (t ) (5.4)) and the change from radial to buoyant propagation (Bk (t ) and Bm (t ) (5.9))

are all significantly smaller than one at t = ti ni t . We provide the time of initialisation and

other parameters of the simulations in the shared data of this chapter. Note that we could

equivalently initiate our simulations with a finite size, radial fracture with a radius smaller

than the respective transition scales ℓmk , ℓmm̂ , and ℓkk̂ (see Savitski and Detournay (2002)

and chapter 4). The simulation would then automatically approach the self-similar, viscosity-

dominated solution. Note that in any case, we need to ensure that ti ni t ≪ ts or equivalently

for a finite size fracture, ℓi ni t ≪ Ra (5.3).

5.3.1 Arrest of a finite volume radial hydraulic fracture without buoyancy

In the absence of buoyant forces, considering the limiting case of an impermeable medium,

hydraulic fractures finally arrest after the end of the injection when reaching an equilibrium

between the injected volume and the linear elastic fracture mechanics propagation condition.

This problem was investigated in chapter 3. The fracture characteristics at arrest are inde-

pendent of the shut-in time ts . They only depend on the properties of the solid and the total

amount of fluid released. For example, the arrest radius Ra (subscript a for arrest) is given by

Ra =
(

3

8
p
π

)2/5 (
E ′Vo

K I c

)2/5

, (5.3)
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where E ′ = E/
(
1−ν2

)
is the plane-strain modulus with E the materials Young’s modulus and

ν its Poisson’s ratio, and K I c the fracture toughness of the material.

Even though the arrest radius is independent of ts , the growth history prior to arrest depends

on it. In particular, the arrest is not necessarily immediately after the end of the release. This

is notably the case when the hydraulic fracture propagates in the viscosity-dominated regime

at the end of the release. The immediate arrest versus continuous growth is captured by the

value of the dimensionless toughness at the shut-in time:

Kms = K I c
t 1/9

s

E ′13/18µ′5/18Q1/6
o

. (5.4)

where µ′ = 12µ and µ is the fracturing fluid viscosity. In (5.4), we have used the subscripts

m and s to indicate a viscous scaling and the end of the release, respectively. If the fracture

is viscosity-dominated (Kms ≪ 1), it propagates in a viscosity-dominated pulse regime for

a while until it finally arrests when reaching R = Ra . On the other hand, if fracture energy is

already dominating (Kms ≫ 1), the arrest is immediate upon shut-in. The viscosity-dominated

pulse regime has been shown to emerge for Kms ⪅ 0.3 (for a detailed description of the

viscosity-dominated pulse regime, see section 3.4.2 of chapter 3). Numerical estimation of the

immediate arrest yields a value of Kms ⪆ 0.8 (note that in chapter 3 we report a value of 2.5

due to an alternative definition of (5.4) using K ′ =p
32/πK I c instead of K I c ).

5.3.2 Buoyant hydraulic fracture under a continuous release

In the case of a fluid release occurring at a constant volumetric rate Qo , the fracture elongates

along the orientation of the gravity vector. These buoyant forces are generated by the density

difference between the solid and the fracturing fluid. To obtain the value of the buoyancy, we

assume fractures propagating in vertical planes and the minimum in-situ horizontal stress as

σo (z) =σh (z) =ασ′
v (z)+pp (z) (5.5)

with σh the minimum in-situ horizontal stress, σ′
v the effective vertical stress, α a lateral earth

pressure coefficient, and pp the pore pressure in the formation. Assuming now that the vertical

stress is lithostatic σv = ρs g z ′, and the formation fluid pressure hydrostatic pp = ρF g z ′, the

gradient of the stress normal to the fracture plane is (in the coordinate system sketched in

figure 5.1)

∇σo = (
α

(
ρs −ρF

)+ρF
)

g (5.6)

where ρs is the solid and ρF the formation fluid density, g is the Earth’s gravitational accelera-

tion coefficient, and g = (
0,0,−g

)
the gravity vector. Using the net pressure

(
p = p f −σo

)
in
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the Poiseuille relation, we obtain the following expression

q (x, z, t ) =−w (x, z, t )3

µ′

(
∇p (x, z, t )+∆γ g

|g|
)

(5.7)

with: ∆γ= (
α

(
ρs −ρF

)+ρF −ρ f
)

g . (5.8)

In equation (5.8), ∆γ is the effective buoyancy contrast of the system. A positive buoyancy will

lead to a fracture elongation in the opposite direction of the gravity vector. A negative buoyancy

will lead to propagation in the direction of the gravity vector. Without additional stresses (e.g.

tectonic stresses), the lateral earth pressure coefficient can be approximated as α= ν/(1−ν).

In the following, we include any tectonic or other effects into α and assume, consistent with

equation (5.8), that ∆γ= cst. Note that the expression of ∆γ differs from the one in chapter 4

where we assumed a dry formation (e.g. pp = 0). Two dimensionless buoyancies related either

to the viscosity dominated (subscript m) or the toughness-dominated regime (subscript k)

emerge (see chapter 4):

Bm =∆γ Q1/3
o t 7/9

E ′5/9µ′4/9
, Bk =∆γE ′3/5Q3/5

o t 3/5

K 8/5
I c

. (5.9)

These dimensionless buoyancies are related through the dimensionless viscosity of a radial

fracture when buoyancy becomes of order O (1):

Mk̂ =µ′QoE ′3∆γ2/3

K 14/3
I c

(5.10)

as

Bk =B27/35
m M 12/35

k̂
. (5.11)

Similar to the dimensionless toughness at the end of the release Kms (5.4), Mk̂ defines if the

transition from a radial to an elongated buoyant fracture occurs in the viscosity-
(
Mk̂ ≫ 1

)
or toughness-dominated

(
Mk̂ ≪ 1

)
phase of the radial hydraulic fracture propagation. A

family of solutions emerges as a function of this dimensionless viscosity Mk̂ as discussed

in detail in chapter 4. Notably, a limiting large toughness solution has been obtained in

Garagash and Germanovich (2014) (see details in Garagash and Germanovich (2022)). This

large toughness limit is observed for Mk̂ ≤ 10−2 (see notably section 4.5 of chapter 4) and

shows a buoyant finger-like fracture with a constant breadth and a fixed-volume head. These

attributes, combined with a constant injection rate, lead to a linear growth rate of the buoyant

fracture. In an intermediate range of values for Mk̂ ∈ [
10−2,102

]
, the fractures exhibit a

uniform horizontal breadth and a finger-like shape. In this range of Mk̂ , the prefactors (for
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length, width, etc.) become dependent on the dimensionless viscosity Mk̂ (5.4). Particularly,

an increase in fracture breadth and head volume is observed with increasing values of Mk̂ .

Even larger values of Mk̂ ≥ 102 generate fractures exhibiting a negligible toughness, buoyant

solution at intermediate times, where the growth of the fracture is sub-linear. The breadth

of these fractures increases for a while before reaching an ultimately constant value related

to the non-zero fracture toughness value. The fracture’s growth rate then becomes constant.

Concurrently, the head and tail structure stabilizes. In the strictly zero-toughness limit, the

breadth continuously increases, and the fracture height growth always remains sub-linear as a

consequence of global volume balance.

5.3.3 Hydrostatically loaded radial fracture

The occurrence of the self-sustained buoyant growth of a finite volume fracture has been

investigated by several authors from the point of view of the static linear elastic equilibrium of

a radial fracture under a linearly varying load (Davis et al., 2020; Salimzadeh et al., 2020; Davis

et al., 2023). Under the hypothesis of zero viscous flow, the net loading opening the fracture

is equal to the hydrostatic fluid pressure minus the linearly varying background stress σo (z).

The elastic solution and the evolution of the stress intensity factor at the upper and lower tip

are known analytically for this loading (Tada et al., 2000) (see section 2.2 of Davis et al. (2020)

for a detailed derivation). Adopting a LEFM propagation condition, the stress-intensity factor

(SIF) K I at the upper end is set to the material fracture toughness K I c . On the other hand, the

lower tip SIF is set to zero, allowing the fracture to close and liberate the volume necessary for

further upward propagation. Enforcing the conditions of K I = K I c at the upper and K I = 0 at

the lower tip constrains the limiting volume to

Vlimit ∝
K 8/3

I c

E ′∆γ3/5
=V head

k̂
(5.12)

This minimal volume for buoyant propagation has been independently identified in recent

contributions (Davis et al., 2020; Salimzadeh et al., 2020; Davis et al., 2023) and corresponds

to the one of the toughness-dominated head of a buoyant hydraulic fracture in the case of a

constant release (see Garagash and Germanovich (2014) and chapter 4).

If the volume of fluid released in the radial fracture is slightly larger than this value, the

upper tip would have a stress intensity K I > K I c , indicating excess energy leading to upward

propagation. Similarly, the lower end would have K I < 0 and the fracture would interpenetrate.

Small perturbations of the released volume around this minimum would lead to either an

arrest of the fracture (lower volume) or a departure of a buoyant fracture (larger volume). Note

that when the fracture volume equals this minimal volume and fluid viscosity is neglected,

the previous derivation fails to predict how the fracture will subsequently propagate. Only the

introduction of fluid viscosity can resolve the physical limitation of this approach.

146



5.4 Arrest at depth vs. self-sustained propagation of buoyant hydraulic fractures

In addition, the previous derivation of the minimum volume for a buoyant self-sustained

propagation assumes a perfectly radial shape until the entire fluid volume has been released.

This approach is equivalent to considering buoyancy only at this moment. It does not cover

cases where buoyant forces become non-negligible when the fracture is still propagating

(whether this is the case during the release or after its end).

5.4 Arrest at depth vs. self-sustained propagation of buoyant hy-

draulic fractures

From the discussion of the arrest radius of a hydraulic fracture in the absence of buoyancy (see

section 5.3.1) and the regimes of buoyant hydraulic fracture growth under a continuous release

(see section 5.3.2), we can anticipate several scenarios for the emergence of a self-sustained

buoyant finite volume fracture. The transition toward buoyancy-driven growth can occur

during the release of fluid or the pulse propagation phase, when the propagation is viscosity-

dominated at the end of the release. We investigate these different propagation histories in

relation to the dimensionless buoyancies and dimensionless buoyant viscosity introduced in

section 5.3 and discuss their relationship with the critical minimum volume (5.12).

5.4.1 Toughness-dominated at the end of the release

We first investigate the case where the fracture is toughness-dominated at the end of the release.

In the absence of buoyancy, a constant fluid pressure establishes in the penny-shaped fracture,

which immediately stops at its arrest radius Ra (see equation (5.3)). Due to the addition of

buoyant effects, a linear pressure gradient develops and creates the configuration discussed

above (see section 5.3.3). We anticipate that the total volume released must exceed V head
k̂

(5.12)

for a buoyant fracture to emerge. Neglecting the temporal evolution, the comparison Vo/V head
k̂

is sufficient to assess the emergence of buoyant fractures. When considering a radial growth

in time, the dimensionless buoyancy Bk (t ) (5.9) indicates when buoyant forces become

dominant. Estimating Bk (t ) at the end of the release t = ts , we obtain

Bks =Bk (t = ts) =∆γE ′3/5Q3/5
o t 3/5

s

K 8/5
I c

=∆γE ′3/5V 3/5
o

K 8/5
I c

=
 Vo

V head
k̂

3/5

. (5.13)

From this last relation (5.13), we see that the condition of a dimensionless buoyancy at the

end of the release Bks > 1 (under the hypothesis of a radial toughness-dominated fracture) is

strictly equivalent to the condition of a released volume larger than the minimal volume for

buoyant growth (5.12).
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5.4.2 Viscosity-dominated at the end of the release Kms ≪ 1

In contrast to toughness-dominated hydraulic fractures, radial viscosity-dominated fractures

at the end of the release will continue to propagate in a viscous-pulse regime until they reach

their arrest radius Ra (5.3) (see section 3.4.1 of chapter 3). During that post-release propagation

phase, the fracture may become buoyant and continue its growth as a result. In addition, we

need to check if it remains buoyant when it is already so at the end of the release. This can be

done by estimating the dimensionless buoyancy of a radial viscous fracture Bm (t ) (5.9) at the

end of the release t = ts :

Bms =Bm (t = ts) =∆γ Q1/3
o t 7/9

s

E ′5/9µ′4/9
=∆γ V 1/3

o t 4/9
s

E ′5/9µ′4/9
. (5.14)

A value of Bms ≥ 1 indicates that the fracture has already transitioned to buoyant propagation

when the release stops and is already elongated. On the other hand, if Bms < 1, buoyancy

is not of primary importance at the end of the release, and the fracture still exhibits a radial

shape.

Dominant buoyancy at the end of the release Bms ≥ 1

In the case Bms ≥ 1, the fracture is already buoyant at the end of the release. We must check

if it remains buoyant or possibly arrests after the release ends. It is natural to compare the

volume of the viscous head at the end of the release V head
m̂ (t = ts) to the limiting volume

(equation (5.12)). The time-dependent volume of a viscous head is given in equation (4.34) of

chapter 4 and relates to equation (5.14) as

Bms =
(

Vo

V head
m̂ (t = ts)

)2/3

. (5.15)

Using the relationship of equation (5.11), we obtain the following relation with the minimal

limiting volume:

Vo

V head
k̂

=
(

Vo

V head
m̂ (t = ts)

)6/7

M 4/7
k̂

.

For a viscosity-dominated fracture, one necessarily has Mk̂ ≥ 1 and to be buoyant at the end

of the release, we necessarily have Vo ≥V head
m̂ (t = ts) as Bms ≥ 1. As a result of the previous

relations, we necessarily have Vo ≥ V head
k̂

, respectively Bks ≥ 1 and the volume released is

larger than the minimum required for a toughness-dominated radial fracture subjected to

a linear pressure gradient to become buoyant. After the release ends, the viscous forces

diminish in the head, ultimately becoming toughness-dominated. As a result, after the release,
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as buoyancy is of order one, the condition Bks ≥ 1 is always satisfied, and self-sustained

buoyant growth will necessarily continue.

Viscosity-dominated fracture with negligible buoyant forces at the end of the

release Bms < 1

If buoyancy forces are negligible at the end of the release, and the propagation is viscosity-

dominated (Bms < 1 and Kms ≪ 1), the finite volume fracture will continue to grow radially

in a viscous-pulse regime for a while before it finally arrests. In the presence of buoyant

forces, it may be possible that buoyancy takes over as a driving mechanism before the fracture

arrests. To incorporate such a possible growth history into the analysis, we use a dimensionless

buoyancy in such a radial viscous pulse regime:

B[V ]
m (t ) =∆γ V 1/3

o t 4/9

E ′5/9µ′4/9
=Bms (t/ts)4/9 , (5.16)

where the superscript [V ] indicates that the scaling is related to a finite volume release (replac-

ing Qo by Vo/t in the continuous release expression). From chapter 3, the radial viscous pulse

fracture stops propagating when it becomes toughness-dominated. The corresponding time

scale for which K [V ]
m of a finite volume radial hydraulic fracture in the absence of buoyancy

(see equation (3.10) in chapter 3) becomes of order one, and the fracture arrests is given by

t [V ]
mk = E ′13/5V 3/5

o µ′

K 18/5
I c

. (5.17)

It is thus possible to check if buoyancy is of order one at this characteristic time of arrest by

estimating the value of the dimensionless buoyancy B[V ]
m (t ) (5.16) at t = t [V ]

mk :

B[V ]
m

(
t = t [V ]

mk

)
=∆γE ′3/5V 3/5

o

K 8/5
I c

=
 Vo

V head
k̂

3/5

=Bks . (5.18)

Interestingly, this evaluation is strictly equivalent to the comparison of the limiting V head
k̂

with the total released volume Vo (see equation (5.13)). We conclude that regardless of the

propagation history, the comparison of the released volume with the limiting volume for

toughness-dominated buoyant growth is sufficient to characterize the emergence of a self-

sustained buoyant hydraulic fracture. In what follows, we use the dimensionless buoyancy of

a radial toughness-dominated finite volume hydraulic fracture Bks to quantify the emergence

of self-sustained growth (Bks > 1). Similarly, the volume ratio Vo/V head
k̂

=B5/3
ks could also be

used.
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Figure 5.2: Structure of the solution for a finite volume release hydraulic fracture as a function
of the dimensionless buoyancy Bks (5.13) and viscosity Mk̂ (5.10). Each symbol represents a
simulation. Arrested fractures have empty symbols, and filled symbols indicate self-sustained
buoyancy-driven pulses. Numbered areas of different colors delimit distinct propagation
histories. The color of the symbols represents the value of the horizontal overrun O (5.22). We
indicate the simulations presented in figure 5.3 via blue arrows.

5.4.3 Structure of the solution for a finite volume release

In the preceding subsections, the necessary and sufficient condition for the birth of a buoyant

fracture Bks ≥ 1 (see equation (5.13)) was derived. The fact that the birth (or not) of a buoyant

hydraulic fracture solely depends on the total released volume and elastic parameters but

is independent of how the volume is accumulated intrinsically derives from this statement.

Furthermore, we discussed that the characteristics of self-sustained buoyant fractures de-

pend additionally on the dimensionless viscosity Mk̂ (see equation (5.10)), and hence on the

specifics of the release (how the volume got released). These two parameters combined en-

compass any possible configuration and thus form the parametric space of the entire problem

(see figure 5.2).

First, the parametric space can be split into an upper half (Bks ≥ 1) where self-sustained

buoyant propagation occurs and a lower part (Bks < 1) where the fractures ultimately arrest at

depth. We have numerically investigated this limit, where every symbol in figure 5.2 corre-

sponds to a simulation. Empty symbols show simulations where the fracture ultimately arrests

at depth, whereas filled symbols correspond to cases where self-sustained buoyant growth oc-

curs. In general, figure 5.2 shows that the scaling argument that self-sustained buoyant growth

occurs for Bks ≥ 1 is correct without any prefactor. Only toughness-dominated fractures at the

end of the release (Kms ≥ 0.8 where no post-injection radial propagation occurs) sometimes

lead to self-sustained buoyant growth for values of Bks slightly smaller than 1. We use a value
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Region Limiting regimes encountered Range of applicability

1 (red) M → K → K[V ] 0.30M 3/2
k̂

≤Bks < 1 Mk̂ ≤ 2.23

2 (purple) M → M[V ] → K[V ] Bks < 1 76B2/3
ks ≤Mk̂

3 (orange) M → K → K̂ → K̂
[V ]

1 ≤Bks Mk̂ ≤ 10−2

4 (dark green) M → M̂ → K̂ → K̂
[V ]

M 24/35
k̂

≤Bks 102 ≤Mk̂

5 (light blue) M → M̂ → M̂
[V ] → K̂

[V ]
3.98M 12/35

k̂
≤Bks ≤ 0.40M 24/35

k̂
102 ≤Mk̂

6 (dark blue) M → M[V ] → M̂
[V ] → K̂

[V ]
40 ≤Bks ≤ 0.17M 12/35

k̂
8.25×106 ≤Mk̂

Table 5.1: The regions of figure 4.11 with their respective propagation history and the estimated
limiting values of the dimensionless coefficients. The descriptions of the limiting regimes can
be found in Savitski and Detournay (2002) for the M and K regimes, chapter 3 for the M[V ]

and K[V ] regimes, chapter 4 for the M̂ and K̂ regimes, and in this chapter for the M̂
[V ]

and K̂
[V ]

regimes (see appendix 5.9.1 for a summary of the scalings).

of Bks = 1 as the limit for the birth of a self-sustained finite volume buoyant hydraulic fracture.

This limit is close to the results obtained in previous contributions: Bks ≈ 0.90 for Davis et al.

(2020) and Bks ≈ 0.91 for Salimzadeh et al. (2020). The equivalent value of Bks calculated from

the semi-analytically derived head volume of a propagating toughness-dominated buoyant

fracture by Garagash and Germanovich (2014) is significantly higher: Bks ≈ 1.26.

The parametric space of figure 5.2 captures more than the limit between fractures that ul-

timately arrest and self-sustained buoyant pulses. We distinguish six well-defined regions,

corresponding to several propagation histories visiting the limiting regimes of radial and

buoyant growth: stagnant fractures with a toughness-dominated end of the release (region 1;

bottom left - red, section 5.5), stagnant fractures with a viscosity-dominated end of the release

(region 2; bottom right - purple, section 5.5), toughness-dominated buoyant fractures at the

end of the release (region 3; top left - orange, section 5.6.1), viscosity-dominated buoyant

fractures with a stabilized breadth at the end of the release (region 4; top centre - dark green,

section 5.6.2), viscosity-dominated buoyant fractures without stabilization at the end of the

release (region 5; top centre - light blue, section 5.6.2), and viscosity-dominated radial fractures

at the end of the release (region 6; top right - dark blue, section 5.6.2). The distinction between

regions 4 and 5 stems from the stagnation of lateral growth observed for viscosity-dominated

buoyant hydraulic fractures under a constant release rate with a finite toughness (see notably

section 4.6.1 and equation (4.33) of chapter 4) and will be detailed later. We define in table 5.1

the sequence and respective limiting regimes visited for every region of the parametric space

with their estimated range of applicability as a function of the dimensionless numbers Mk̂

and Bks . The scales of the buoyant finite volume limiting regimes are listed in appendix 5.9.1.

The characteristics of the propagation path of these different regions are described in the

following sections.
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Chapter 5. Three-dimensional buoyant hydraulic fractures: finite volume release

5.5 Fractures arrested at depth Bks < 1

Fractures that arrest at depth do not show self-sustained propagation in the buoyant direction.

In the absence of any form of material or stress heterogeneities and assuming an infinite

impermeable elastic medium, a fracture will arrest only due to an insufficient volume being

released: Bks < 1. The lower part of figure 5.2 distinguishes two propagation histories for ar-

resting fractures: a region where the fracture is toughness-dominated at the end of the release

(region 1) and one where it is viscosity-dominated (region 2). As described in section 5.3.1,

the characteristics of radially arresting fractures are independent of the propagation history.

In the cases where Bks ≪ 1, the fracture has a stress intensity factor (SIF) K I along the entire

fracture front equal to the fracture toughness K I c (c.f. figures 5.3d) - f)). In other words, as long

as the final radius of the fracture Ra (5.3) is small compared to the buoyancy length scale ℓb

(Lister and Kerr, 1991), the fracture arrests radially, and the findings obtained in the absence

of buoyancy are valid (see chapter 3 for this case).

For larger released volumes which are still insufficient for the start of self-sustained growth(
Bks ≲ 1

)
, fracture elongation occurs before it finally arrests. The fracture footprints of fig-

ures 5.3a) - c) indicate such elongated shapes as the dimensionless buoyancy approaches 1.

In line with this, the stress intensity factor is smaller than the material toughness in the lower

part of the fracture. The final elongation of the fracture is more pronounced for lower values

of the dimensionless viscosity Mk̂ . The continuous release case has shown that toughness-

and viscosity-dominated transitions present a distinct evolution of their shape (see chapter 4).

Therefore, it is not surprising that the shapes of the arrested fractures differ as a function of

the dimensionless viscosity if the released volume approaches the limiting one.

5.6 Self-sustained finite volume buoyant fractures: Bks > 1

5.6.1 Toughness-dominated, buoyant fractures at the end of the release (region 3):
Mk ≪ 1

When the released volume is sufficient to create a buoyant hydraulic fracture (Bks > 1), a set

of possible propagation histories exists as function of the dimensionless viscosity Mk . We first

discuss toughness-dominated fractures, which, according to the arguments of sections 5.3.1

and 5.4 must have a transition from radial to buoyant when the release is still ongoing. This

results in a well-established, finger-like buoyant fracture with a constant volume, toughness-

dominated head at the end of the release. The head characteristics in the case of a continuous

release were obtained from the assumption that ℓhead (t ) ∼ bhead (t ) and elasticity, toughness,

and buoyant forces are dominating. If we additionally restrict these derivations by the finite-

ness of the total release volume, the resulting length, opening, and pressure scales remain

unchanged (see equations (4.24) in chapter 4) but a time-dependent dimensionless viscosity

emerges
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Figure 5.3: Final shape and stress intensity factors (SIF) along the front C (t ) of ultimately
arrested fractures at depth (Bks < 1) as a function of Bks and Mk̂ . Colors indicate the ratio
between the local stress intensity factor K I and the material fracture toughness K I c from 0
(light grey) to 1 (red). The blue dashed lines in a) to c) correspond to the shape of an expanding
head of a propagating toughness-dominated buoyant fracture (Garagash and Germanovich,
2014).
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Chapter 5. Three-dimensional buoyant hydraulic fractures: finite volume release

M [V ]
k̂

(t ) =µ′VoE ′3∆γ2/3

K 14/3
I c t

=Mk̂

ts

t
. (5.19)

The decreasing nature of M [V ]
k̂

with time indicates that the fracture head will necessarily

become toughness-dominated at late time. Garagash and Germanovich (2014) similarly

derived the finite volume limit and concluded that the head and tail breadths do not change

compared to the continuous release case. Their solution is thus equivalently representative

of any finite volume, buoyant hydraulic fracture with a finite toughness. We denote their

result hereafter as the 3D K̂ [V ] GG (2014) solution. For cases in the intermediate range of

Mk̂ ∈ [
10−2,102

]
, we check how their head breadth approaches the 3D K̂ [V ] GG (2014) solution

at late time (e.g. bhead (t →∞) = π−1/3ℓb). We show in figure 5.4a) the evolution of one

toughness-dominated simulation with Mk̂ = 10−2 and two fractures with an intermediate

value of Mk̂ = 1. The head breadth of the toughness-dominated fracture validates the limiting

solution during the release (dark green line in figure 5.4a)) and shows no change after the

release has ended. In contrast to this constant value of the head breadth, the simulations with

an intermediate value of Mk̂ (light green and red lines in figure 5.4a)) have a maximum value

exceeding the limiting breadth at the end of the release. Afterward, the head breadth gradually

reduces and approaches the limiting 3D K̂ [V ] GG (2014) solution. In the continuous release

case, the limiting breadth is valid for Mk̂ ≤ 10−2, using equation (5.19) we can thus estimate

the time for the fracture to reach the limit as t
(
M [V ]

k̂
(t ) = 10−2

)
= 102Mk̂ ts (see section 4.5

of chapter 4 for the derivation of the limit of 10−2). For Mk̂ ∈ [
10−2,102

]
, the simulations

presented in figure 5.4 the 3D K̂ [V ] GG (2014) solution would be reached once t ∼ 100ts . From

the rate with which the breadth approaches the 3D K̂ [V ] GG (2014) observed in figure 5.4a),

this estimate seems reasonable. In fact, the fracture with Mk̂ = 1 and Bks = 2 is already within

15% of the limiting solution at t ∼ 50ts .

We derive the scaling of the viscosity-dominated tail of such a late-time solution using the

assumption of a constant fracture breadth on the order of the breadth of the head b ∼ ℓb =
K 2/3

I c /∆γ2/3 as

ℓ[V ]
k̂

(t ) = V 2/3
o ∆γ7/9 t 1/3

K 4/9
I c µ′1/3

, b[V ]
k̂

= K 2/3
I c

∆γ2/3
≡ ℓb (5.20)

w [V ]
k̂

(t ) = V 1/3
o µ′1/3

K 2/9
I c ∆γ1/9t 1/3

, p [V ]
k̂

(t ) = E ′∆γ
5/9V 1/3

o µ′1/3

t 1/3K 8/9
I c

. (5.21)

where we use ·̂ to refer to a buoyant scaling. These scales are obtained from the continuous-

release scales by replacing Qo with Vo/t , and reveal a sub-linear growth of the fracture height

according to a power law of the form ℓ (t ) ∼ t 1/3. Note that these scales have been obtained by

Garagash and Germanovich (2014) when deriving their 3D K̂ [V ] GG (2014) solution. We present

in figure 5.4b) the evolution of dimensionless fracture length ℓ (t )/ℓ (t = ts) as a function of
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Figure 5.4: Toughness-dominated self-sustained buoyant fractures. Evolution of the dimen-
sionless head breadth bhead (t )/ℓb (a) and fracture length ℓ (t )/ℓ(t = ts) (b) as a function of
the dimensionless shut-in time t/ts . The green-dotted line corresponds to the limiting 3D K̂
GG (2014) solution (bhead (t →∞) =π−1/3ℓb in a), and the orange dashed line is the 3D K̂ [V ]

GG (2014) solution. The inset of figure (b) shows the same quantity on the y-axis with a shifted
x-axis (e.g., (t − ts)/ts).
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Figure 5.5: Illustration of the definition of the overrun (5.22). Left: example of a zero overrun
(as obtained for toughness-dominated buoyant fractures at the end of the release - region 3).
Right: example of an overrun with the maximum breadth larger than the limiting breadth of
the 3-D K̂ [V ] GG (2014) solution (Garagash and Germanovich, 2014, 2022).

the dimensionless time t/ts . The dark green line with a 1 : 1 slope indicates the scaling-

derived temporal power-law for a toughness-dominated buoyant hydraulic fracture under a

continuous fluid release. The two simulations with low Bks (dark red and green) cannot reach

this intermediate regime, as they are not propagating long enough in this K̂ -regime (see the

discussion in section 4.5.4 of chapter 4). The simulation with Bks = 4 reaches this limit for

about one order of magnitude in time before decelerating towards the late-time power law

predicted by the scaling of equation (5.20). A similar deceleration is observed for the other

two simulations without any of the simulations reaching the limiting ℓ (t ) ∼ t 1/3 power-law.

The orange dashed line indicates the 3D K̂ [V ] GG (2014) for fracture length, which we would

expect to be valid at late times. The inset of figure 5.4b) sets the time when the release ends as

zero according to the hypothesis of Garagash and Germanovich (2014). This correction of the

data highlights the tendency of the fracture length of all simulations to approach the limiting

solution. A late-time validation of the solution can be expected as the relative difference

between the predicted length and the simulation with Bks = 2 and Mk̂ = 1 at the end of the

simulation is only on the order of 23 %. These findings indicate that buoyant fractures with a

finite toughness will have a late-time behavior akin to the 3D K̂ [V ] GG (2014) solution. Even

though this late-time behavior will be consistent, it also shows that the exact shape of the

fracture will depend on both parameters, Mk̂ and Bks . Only the breadth close to the head, the

head itself, and the growth rate will be equivalent to the 3D K̂ [V ] GG (2014) solution. To get an

idea of the overall fracture shape, we define a shape parameter called the overrun as
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O =
max

z,t
{b (z, t )}−π−1/3ℓb

π−1/3ℓb
, (5.22)

sketched in figure 5.5. This parameter defines how much the maximum lateral extent exceeds

the late-time head breadth π−1/3ℓb . O has a lower bound of 0, reached for fully toughness-

dominated fractures with Mk̂ ≤ 10−2. This limit is validated by the simulation reported in this

section with Mk̂ = 10−2 and Bks = 1.25 which effectively has an overrun of 0 (see figure 5.5).

For the fractures in between the toughness and viscosity dominated limit of the continuous

release with a uniform breadth (e.g., Mk̂ ∈ [
10−2,102

]
), the overrun cannot be predicted by

scaling laws. From the observation of figure 4.8 of chapter 4, we can, however, derive that it

will increase with increasing values of Mk̂ .The overrun of the two simulations reported here is

respectively 0.88 (Mk̂ = 1 and Bks = 4) and 0.80 (Mk̂ = 1 and Bks = 2). We display the overrun

value for simulations that lead to a buoyant hydraulic fracture in figure 5.2. Within the region

of the toughness-dominated fractures with a buoyant end of the release (region 1), the values

are effectively 0. The overrun increases with the value of Mk̂ towards the viscosity-dominated

domain (regions 4 to 6) and will be estimated using scaling arguments later (figure 5.5 sketches

the concept for a fracture of region 5).

Numerical limitations

The fact that no simulations propagating for longer times - which would ultimately exhibit

the 3D K̂ [V ] GG (2014) solution - are reported deserves discussion. These simulations have

multiple numerical challenges: their overall computational cost and the numerical treatment

of closing cells at the bottom of the fracture, among others. We illustrate the computational

cost by the example of a toughness-dominated buoyant hydraulic fracture. Such fractures

accelerate around the transition from radial to buoyant before slowing down to the ultimately

constant velocity. In chapter 4, we report that for their simulations, the acceleration terminates

at a dimensionless time of approximately t/tkk̂ ≈ 3, where tkk̂ is the transition time from radial

to buoyant (see equation (4.20) of chapter 4). Observation of figure 5.4b) shows that after the

end of the release, additional time is required to transition to the late-time buoyant pulse

solution. This figure gives an estimate of the time to reach the 3D K̂ [V ] GG (2014) solution of

t ∼ 100ts . An estimate of the fracture extent for a simulation with Mk̂ = 10−2 at this time, based

on growth according to the power law of equation (5.20), gives ℓ∼ 1600ℓb . The computational

cost can now be estimated by taking a discretization of approximately 44 elements per ℓb (see

section 4.5.3 of chapter 4) and an approximation of the constant breadth of b (t ) ≈ π−1/3ℓb ,

yielding about 2×106 elements in the fracture. Our current implementation of PyFrac (Zia and

Lecampion, 2020) can handle buoyant simulations covering up to 20 orders of magnitude in

time and up to 15 orders of magnitude in space within about 4 weeks of computation time on

a multithreaded Linux desktop system with twelve Intel®Core i7-8700 CPUs, using at most 30

GB of RAM, and arising to a discretization of up to 2×105 elements within the fracture footprint.

It is worth noting that the simulation with Mk̂ = 1 tends towards the predicted ℓ (t ) ∝ t 1/3

propagation with a significant offset. This difference is related to the inherent assumption
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of equation (5.20) that the total released volume is significantly larger than the volume of

the head
(
V head ≫Vo

)
. The difference can thus be related to the ratio of the two volumes or

equivalently to Bks (5.13). We show in the supplementary material (section 1.2) that reaching

the solution to within 5% is only possible if Bks ≥ 12. For all simulations presented in figure 5.4,

the fracture height could only get within ∼ 17% (for Bks = 4) of equation (5.20). Efficiently

reaching the exact solution would require a toughness-dominated fracture Mk̂ ≤ 10−2 with

Bks ≥ 12, which becomes even more challenging than the calculations presented previously.

An additional issue presents closing cells at the bottom of the fracture. As the opening continu-

ously reduces (see w [V ]
k̂

in equation (5.20)), and we do not allow for complete fracture healing,

a minimum width activates (Zia and Lecampion, 2020) (the minimum width is considered

fluid-filled, and we continue solving the width-averaged lubrication approximation for these

cells). In the context of hydraulic fractures in rocks, such a minimum aperture relates to the

roughness of the fracture. With the current system of closed, fluid-filled cells, two effects arise:

First, elastic contact stress changes the stress distribution and the overall behavior. Second,

some volume gets trapped, reducing the one available for fracture propagation. Both effects

slow down propagation (Pezzulli, 2022). They further increase the non-linearity of the system,

such that convergence is challenging, which leads to a breakdown of the simulation at late

time t ≫ ts . A possible remedy would be removing these closed cells from the fracture domain

and reallocating the fluid they contain.

5.6.2 Viscosity-dominated at the end of the release (regions 4 to 6): Mk ≫ 1

The difference between a buoyant or radial end of the release has been shown to depend on

the dimensionless viscosity at the end of the release Bms (see quation (5.14), section (5.4.2)).

An additional separation between two possible cases of buoyant fractures at the end of the

release is required to accurately evaluate the emerging shape. In chapter 4 we have shown that

whenever a finite fracture toughness is present (e.g., K I c ̸= 0), lateral growth stabilizes within a

finite time at max
z,t

{b (z, t )} ∝M 2/5
k̂

ℓb . The time of stabilization is related to a dimensionless

lateral toughness Km̂,x (t) (see their equation 6.1), which we can evaluate at the end of the

release

Km̂s,x =Km̂,x (t = ts) = K I c
∆γ1/8 t 1/3

s

E ′19/24V 1/8
o µ′1/3

=M 1/3
k̂

B25/72
ks . (5.23)

A value of Km̂s,x ≥ 1 indicates that lateral growth has ceased, whereas a value below one means

that the fracture is still growing laterally as b ∼ t 1/4 (see equation (4.33) of chapter 4).
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Figure 5.6: Evolution of fracture length ℓ (t )/ℓ(t = ts) (a) and head breadth bhead (t )/ℓb for
viscosity-dominated buoyant non-stabilized fractures at the end of the release as a function
of the dimensionless shut-in time t/ts : Mk̂ ≫ 1, Bks ≥ 1, Km̂x,s < 1. Colored dashed-dotted
lines in (a) show the corresponding late time, 3D K̂ [V ] GG (2014) solution, the blue dashed
line the continuous release buoyant scaling

(
ℓ (t )/ℓ(t = ts) ∼ t 5/6

)
, the blue dashed-dotted

line a numerical zero-toughness fit ℓ (t )/ℓ (t = ts) ≈ 1.62(t/ts)0.33 (matching the M̂ [V ]-scaling).
The green dashed line in (b) indicates the late-time limit of the 3D K̂ GG (2014) solution for
the corresponding simulation. The blue-dashed line indicates the scaling dependence in the
M̂ [V ]-scaling, bhead (t ) ∼ t−1/6. Note that the two zero-toughness simulations differ by their
value of Bms (100 for the dark red and 25 for the light red simulation).
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Viscosity-dominated, buoyant fracture at the end of the release without laterally stabilized

breadth (region 5): Bms ≥ 1 andKm̂s,x ≪ 1

First, we consider the case of zero-fracturing toughness by developing a tail scaling. The

principle hypotheses are buoyant forces, elasticity, and viscous energy dissipation at first

order and an aspect ratio scaling like the respective lateral and horizontal fluid velocities

(ℓ (t )/b (t ) ∼ vz (t )/vx (t ))

ℓ[V ]
m̂ = V 1/2

o ∆γ1/2 t 1/3

E ′1/6µ′1/3
, b[V ]

m̂ = E ′1/4V 1/4
o

∆γ1/4
(5.24)

w [V ]
m̂ = V 1/4

o µ′1/3

E ′1/12∆γ1/4t 1/3
, p [V ]

m̂ = E ′2/3µ′1/3

t 1/3
.

Note that Davis et al. (2023) presented the same scaling for fracture length. The finite volume

inherently prevents the infinite lateral growth observed for a continuous release, and b[V ]
m̂ is

time-independent. Figure 5.6c) shows limited lateral growth for all simulations. It is inter-

esting to note that the scaling predicts a fracture length evolution with a ℓ∼ t 1/3 power-law,

equivalent to the height evolution in the toughness-dominated case. Figure 5.6a) shows this

evolution for various viscosity-dominated simulations. When Mk̂ is sufficiently large and

Km̂s ≪ 1 (in other words, when the fracture is sufficiently far from lateral stabilization) the

1 : 3 slope predicted by the scaling of equation (5.24) emerges. However, the height growth

quickly departs from the t 1/3 power-law. The reason is the time-dependent inflow rate of the

head (derived from the scaling of equation (5.24))

ℓhead ,[V ]
m̂ = bhead ,[V ]

m̂ = E ′11/24V 1/8
o µ′1/6

∆γ5/8t 1/6
, whead ,[V ]

m̂ = V 1/4
o µ′1/3

E ′1/12∆γ1/4t 1/3
(5.25)

phead ,[V ]
m̂ = E ′11/24V 1/8

o µ′1/6∆γ3/8

t 1/6
, V head ,[V ]

m̂ = E ′5/6V 1/2
o µ′2/3

∆γ3/2t 2/3
,

revealing a shrinking viscous head.

Considering now a finite fracture toughness, a dimensionless toughness can be obtained in

the head

K [V ]
m̂ (t ) = K I c

t 1/4

E ′11/16V 3/16
o ∆γ1/16µ′1/4

=B5/48
ks M [V ]

k̂
(t )−1/4 =B5/48

ks M−1/4
k̂

(
t

ts

)1/4

. (5.26)

Equation (5.26) indicates that the head will become toughness dominated at late times as

160



5.6 Self-sustained finite volume buoyant fractures: Bks > 1

K [V ]
m̂ (t ) increases with time. From this observation, we anticipate that the region close to the

propagating head will ultimately follow the 3D K̂ [V ] GG (2014) head solution (see section 5.6.1)

and derive the characteristic time scale of the transition

t [V ]
m̂k̂

= E ′11/4V 3/4
o ∆γ1/4µ′

K 4
I c

. (5.27)

Evaluating the viscosity-dominated head scaling (see equations (5.25)) at this characteristic

time gives the scales of the toughness-dominated head (see (5.20)). This observation implies

that even though the shape further away from the head varies, the length scale ℓ (t )[V ]
k̂

becomes

applicable. Relating the two length scales of buoyant fractures from a finite volume release

ℓ[V ]
k̂

(t ) =B5/18
ks ℓ[V ]

m̂ (t ) (5.28)

shows that ℓ[V ]
k̂

(t ) ≥ ℓ[V ]
m̂ (t ) for a buoyant fracture (as Bks ≥ 1). The observation of figure (5.6)a)

shows the fracture deviation from the lower, viscosity-dominated solution towards the upper,

toughness-dominated solution (shown by dashed-dotted lines for two simulations). The

observed faster growth in height originates in the narrowing of the tail, creating a lateral inflow

from the stagnant parts of the fracture into a central tube of the fixed breadth predicted by

the 3D K̂ [V ] GG (2014) solution. We do not present a simulation that finishes the transition to

the toughness-dominated regime due to its high computational cost (see the discussion in

section 5.6.1).

In equation (5.22), we have introduced the overrun as a characteristic of the fracture shape. In

the case of viscous fractures with a buoyancy-dominated, laterally non-stabilized end of the

release, such overrun can be estimated from the viscous scaling as

Om̂ = b[V ]
m̂ −π−1/3ℓb

π−1/3ℓb
=π1/3 E ′1/4V 1/4

o ∆γ5/12

K 2/3
I c

−1 =π1/3B5/12
ks −1. (5.29)

The increase of the overrun with the value of the dimensionless buoyancy Bks is observable

in figure 5.2.

Viscosity-dominated, buoyant fracture at the end of the release with laterally stabilized

breadth (region 4): Bms ≥ 1 and Km̂s,x ≥ 1

Lateral stabilization of buoyant, viscosity-dominated fractures occurs when the volume of the

fracture head becomes constant, leading to two fixed points, the laterally stabilized breadth

of max
z,t

{b (z, t )} ∼ M 2/5
k̂

ℓb and the constant volume, constant breadth head. The section of

extending fracture breadth in between the two conserves its shape, creating a fracture where
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elongation concentrates within the zone of laterally stabilized breadth. From this observation,

one can draw an analogy to a toughness-dominated buoyant fracture (see section 5.6.1). The

scales of this equivalent toughness-dominated fracture are related through a factor of M 2/5
k̂

,

such that the behavior after the end of the release will be the same as presented in section 5.6.1,

differing only by the starting point (M 2/5
k̂

instead of Mk̂ ).

Because the processes after the end of the release do not differ from toughness-dominated

fractures, we omit a detailed discussion of this case hereafter and only list the difference in the

shape parameter

Ost ab
m̂ =

M 2/5
k̂

ℓb −π−1/3ℓb

π−1/3ℓb
=π1/3M 2/5

k̂
−1. (5.30)

The overrun in the non-stabilized case of viscosity-dominated fractures depends solely on the

dimensionless buoyancy Bks and, as such, on the total released volume and elastic parameters.

In contrast, the governing parameter of the stabilized case is the dimensionless viscosity Mk̂ ,

and the history of the release (how the total volume gets accumulated) governs the overrun of

the fracture.

Viscosity-dominated fracture with negligible buoyancy at the end of the release (Region 6):

Bms ≪ 1

This type of fracture becomes buoyant in the pulse propagation phase as long as its dimen-

sionless buoyancy Bks (see (5.13)) is larger than one. This transition from radial to buoyant

propagation is characterized by the dimensionless buoyancy of the viscous pulse M [V ]-scaling

B[V ]
m (t ) (see equation (5.16)) and has a characteristic transition time

t [V ]
mm̂ = E ′5/4µ′

V 3/4
o ∆γ9/4

=B−5/2
ks t [V ]

m̂k̂
. (5.31)

The corresponding transition length scale is equivalent to the constant breadth of a buoy-

ant viscosity-dominated fracture ℓ[V ]
m

(
t = t [V ]

mm̂

)
= ℓ[V ]

mm̂ = b[V ]
m̂ , indicating that the maximum

breadth is reached at the transition. Figure 5.7d) shows that for an increasing dimensionless

buoyancy Bks (see (5.13)), the growth of the maximal breadth continues (continuous lines)

after transition but remains within the order of magnitude predicted by the scaling (5.24).

Lateral growth ultimately tapers off at about 3ℓ[V ]
mm̂ at t ≈ 103t [V ]

mm̂ . The expected overrun

becomes equivalent to the case of a non-stabilized, buoyant viscosity-dominated end of the

release (see equation (5.29)).

The scaling for these fractures is given by equations (5.24) and (5.25). Despite the distinct prop-

agation histories, the late-time fracture footprint does not vary significantly (see figure 5.8).

Similar to the case of a constant release, the fracture first becomes somewhat elliptical, with
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5.6 Self-sustained finite volume buoyant fractures: Bks > 1

a peak in pressure and opening appearing in the fracture head. Propagation then deviates

to the buoyant direction with a continuously shrinking head, and no saddle point develops

between the maximum lateral extent and the head. In the case of finite fracture toughness, an

inflection point forms in this area, such that the evolution of the breadth towards the head

becomes convex at the transition time t [V ]
m̂k̂

(see equation (5.27)). Note that the bottom end of

the fractures in figure 5.7h), i) seem to be of uniform opening. This observation directly results

from the numerical scheme with an activated minimum width.

When observing the evolution of the fracture length and head breadth, one observes that

the simulations approach the 3D K̂ [V ] GG (2014) solution for cases with a finite toughness.

The breadth and length evolution of the 3D K̂ [V ] GG (2014) in the viscous buoyant scaling

(see equations (5.24) and (5.25)) depends on the value of Bks such that we only indicate

one of the possible late-time solutions. We pick the one which is most likely to be reached,

corresponding to the smallest value of Bks for the length and the largest for the breadth with

dashed orange lines. The tendency towards those solutions is visible. Reaching them exactly

is, however, associated with too high computational costs (see the discussion in section 5.6.1).

The evolution of fracture opening and net pressure is plotted along the centreline (e.g., x =
0) in figures 5.7a) and b). The head is identified once it departs from the source before it

subsequently shrinks. This shrinking makes the head volume negligible compared to the

overall fluid volume after sufficient buoyant propagation. When this moment is reached,

the fracture propagates in the viscosity-dominated regime (see also the nearly self-similar

footprint reported in figure 5.12 of section 5.10.2). Section 5.10.2 shows that the opening

along the centerline approaches the 2D solution of Roper and Lister (2005). An approximated

solution may be possible when combining the zero toughness head (c.f. figure 4.7 of chapter 4)

with the tail solution of Roper and Lister (2007) (see their equation (6.7)) but is left for further

study.

5.6.3 Late time fracture shapes

The governing mechanisms delimiting the different regions of the parametric space of fig-

ure 5.2 give rise to different phenotypes of fracture shape. Figure 5.8 displays the late-time

shape of buoyant fractures in the different regions (3-5) of the parametric space. Figure 5.8a)

shows the characteristic shape of a toughness-dominated buoyant fracture at the end of the

release (region 3). Their footprint is finger-like with a constant breadth and head volume.

Already early in the propagation, the bulk of the released volume is located in the head (indi-

cated by the color code). Except in the source region and for the expanding head, no change

in breadth is observed, and the overrun O (see equation (5.22)) is zero. For fractures with a

uniform breadth, not validating the toughness solution (e.g., Mk̂ ∈ [
10−2,102

]
and Bks ≥ 1,

between regions 3 and 4), the bulk of the fluid volume is similarly in the head. One difference

is the change in breadth observed close to the source region related to the end of the release,

giving rise to a small, non-zero overrun. When the fractures are more viscosity-dominated

(see figures 5.8c-e)), the overrun becomes more pronounced, and the opening distribution
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Figure 5.7: Viscosity-dominated fractures with negligible buoyancy at the end of the release:
Bks ≥ 1 and Bms ≪ 1. a) Opening along the centerline w (0, z, t )/w [V ]

mm̂ for Mk̂ =∞, Bks =∞,

and Bms = 10−3 (zero-toughness case). b) Net pressure along the centerline p (0, z, t )/p [V ]
mm̂

for the same case as in a). c) Fracture length ℓ (t )/ℓ[V ]
mm̂ for large viscosity Mk̂ ∈ [

5.1×105,∞]
simulations. The blue dashed line is a fit of the zero-toughness simulation ℓ (t ) ∝ t 0.33. d)
Fracture breadth b (t )/ℓ[V ]

mm̂ (continuous lines) and head breadth bhead (t )/ℓ[V ]
mm̂ (dashed lines)

for the same simulations. Purple dashed lines indicate the M [V ]-solution (see section 3.4.2 of
chapter 3), orange dashed lines the 3D K̂ [V ] GG (2014) solution for the highest value of Bks . e -
i) Evolution of the fracture footprint from radial e) towards the late time shape h) and i)) for
the zero-toughness simulation. For the definition of the transition scales ·[V ]

mm̂ see table 5.4.
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5.6 Self-sustained finite volume buoyant fractures: Bks > 1

Figure 5.8: Phenotypes of possible buoyant hydraulic fractures of finite volume emerging
from a point source (Bks ≥ 1). a) Toughness-dominated finger-like fracture (region 3 in fig-
ure 5.1). b) Intermediate fracture with a stable breadth and negligible overrun. c) Viscosity-
dominated buoyant end of the release with stabilized breadth (region 4 in figure 5.1). d)
Viscosity-dominated buoyant end of the release without stabilized breadth (region 5 in fig-
ure 5.1). e) Zero-toughness case with a buoyant end of the release

(
Bms = 102

)
. a) and b) are

scaled by ℓb (Lister and Kerr, 1991), c) to e) by ℓ[V ]
mm̂ (see table 5.4).
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is more homogeneous along the fracture length. For example, figure 5.8c) shows a viscosity-

dominated, buoyant fracture with a stabilized breadth at the end of the release (region 4) with

a barely visible head (light red area at the propagating edge). The red-colored part extending

long into the tail shows that the tail opening is much closer to the head opening than in the

toughness-dominated cases of figures 5.8a) and b). The particularity of this phenotype is

its uniform breadth over a finite height due to lateral stabilization (associated with a finite

fracture toughness value). Figure 5.8d) (region 5) emphasizes the approaching towards the

late-time 3D K [V ] GG (2014) solution of viscosity-dominated fractures by thinning the breadth

along the fracture length towards its head. The head breadth of this simulation still exceeds the

limiting solution by a factor of about 4.7, and the opening distribution along the fracture is still

too homogeneous. In other words, a significant proportion of the volume remains in the tail

(compare the grey color in figure 5.8a) with the green color in figure 5.8d)). The last phenotype

in figure 5.8e) represents the case of a zero-toughness simulation with a buoyant end of the

release. Comparing this shape to the zero toughness simulation with negligible buoyancy at

the end of the release (c.f. figures 5.7h-i)) reveals no significant difference. All zero-toughness

simulations, independent of the state at the end of the release, will show this particular shape.

Only if a finite fracture toughness is present, the fracture will tend to the late-time 3D K [V ]

GG (2014) solution, and the shape will resemble figure 5.8d) (see also figure 1b) of Davis et al.

(2023)).

5.7 Discussion

5.7.1 Implications for industrial treatments

We consider a single stage of a multistage fracturing treatment in a horizontal well, taking

the fluid properties as the ones of slickwater (Economides and Nolte, 2000; Lecampion and

Zia, 2019) with a density of ρ f ≈ 1000 kg/m3 and a viscosity of µ ≈ 0.005 Pa·s. We consider

a relatively compliant rock with a Young’s Modulus of E ≈ 10 GPa, a Poissons’s ratio of ν ≈
0.1, density of ρs ≈ 2300 kg/m3, and fracture toughness K I c ≈ 2 MPa·m1/2. Assuming that

the reservoir and fracturing fluids have similar densities (ρF ≈ ρ f ), the effective density

contrast (5.8) becomes ∆γ=α(ρs −ρ f )g . Typical injection rates are on the order of Qo ≈ 0.1−
0.3 m3/s with a total fluid volume of Vo ≈ 1500−5700 m3. With this set of material, fluid, and

injection parameters, the critical volume for buoyant propagation as a function of the lateral

earth pressure coefficient α reads Vl i m (α) ≈ 0.90α−5/3 (5.12). For the fluid release with the

smallest volume Vo ≈ 1500 m3 to become buoyant, the lateral earth pressure coefficient must

exceed α≳ 0.012. When using a lateral earth pressure coefficient at rest α= ν/(1−ν) = 0.11,

the fracture becomes buoyant with a dimensionless buoyancy of Bks ≈ 9.51 (5.13). It is

necessary to reduce the horizontal stress gradient by about 90% (through tectonic relaxation

or other processes) to prevent buoyant propagation under these conditions. Note that the

corresponding dimensionless viscosity is on the order of Mk̂ ≈ 0.60−10.0 (5.10) for the release

rates considered. The emerging buoyant fractures are thus situated somewhere in between

the toughness-dominated region 3 (section 5.6.1), and the viscosity-dominated regions 4 and
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Unit Exp. 1837 Exp. 1945 Exp. 1967

µ f Pa · s 1.74×10−3 48×10−3 970×10−3

E Pa 1345 426 944
ν 0.5 0.5 0.5

K I c Pa ·m1/2 23.1 7.3 16.2
∆ρ kg ·m−3 260 160 150
Vo m3 2.×10−5 1.×10−5 1.×10−5

Qo m3 · s−1 1.23×10−7 8.33×10−7 1.11×10−7

ts s 162 12 90
Mk̂ 1.20×10−3 1.11 0.76
Bks 2.28 2.93 1.24
Bms 57.7 3.85 1.49

Table 5.2: Material parameters and the released volume Vo are taken from table 3 of Davis et al.
(2023) (based on the work of Smitarello (2019)). We extract the shut-in time from figure 5a of
Davis et al. (2023) and calculate the release rate as Qo =Vo/ts .

5 (sections 5.6.2 and 5.6.2).

5.7.2 Comparison with experiments

We compare recent laboratory experiments with our scalings and numerical simulations. We

use three sets of parameters from experiments performed by Smitarello (2019) and reported in

Davis et al. (2023) (see table 5.2). The resulting dimensionless parameters are listed in table 5.2.

These fractures appear to be toughness-dominated (experiment 1827) or in the transition with

a uniform breadth (experiments 1945 and 1967). We report the evolution of fracture height

with time in figure 5.9 (data of the experiments from figure 5a of Davis et al. (2023)). Along

with the three experiments, we show our simulation closest to experiments 1945 and 1967 as

well as the limiting solutions derived by Garagash and Germanovich (2014). The toughness-

dominated experiment (exp. 1837) displays a linear fracture height growth with time, expected

from the continuous release scaling. Surprisingly, the end of the release does not lead to a

significant reduction in height growth (c.f. the simulation with Mk̂ = 10−2 in figure 5.4b)),

which continues linearly until it reaches the top of the tank (end of the data stream). We

expect this to be related to free-surface effects attracting the fracture, a hypothesis supported

by observations of the other two experiments. The fractures of the other experiments grow

without showing any scaling-based power laws. This behavior is typical for many laboratory

experiments, which unfortunately appear to be “in-between” limiting regimes. Additionally,

the extent of the hydraulic fractures created often suffers from detrimental effects associated

with the finite size of the sample, making any comparison with theoretical and numerical

predictions difficult. The fact that the release rate in laboratory experiments is often not

constant presents an additional inconvenience. Indeed, at early time, the interplay between

compressibility of the injection line and fracture initiation leads to a non-constant entering
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Figure 5.9: Fracture height evolution as a function of dimensionless time for the experiments
listed in table 5.2. Data extracted from figure 5a of Davis et al. (2023) based on experiments
reported in Smitarello (2019). The black line shows a simulation with similar dimensionless
parameters to Exp. 1945 and Exp. 1967. Purple dots mark the moment when the fracture
becomes toughness dominated (e.g., t = tmk ), and dashed lines indicate the limiting solutions
derived by Garagash and Germanovich (2014) respectively (green for a continuous release,
orange for the release of a finite volume).

flux (Lecampion et al., 2017). In addition, for many experiments related to buoyancy, the

fluid is injected manually using a syringe which is likely the case here. Especially in viscosity-

dominated fracture propagation regimes, this has a significant influence on fracture growth

via Mk̂ . Another possible effect is given by the "oriented" fluid release with a syringe from the

bottom of the tank rather than perpendicular to the fracturing plane. Such a difference notably

influences the early propagation phase, which should be radial and accurately reproduced

(note that PyFrac has been shown to reproduce laboratory experiments of initially radial

hydraulic fractures with success (Peruzzo, 2023; Zia and Lecampion, 2019)).

The complete parametric space characterizing 3D finite volume buoyant hydraulic fractures

described in this paper should help in better designing experiments within probing well-

defined propagation history.
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5.8 Conclusions

5.8 Conclusions

We have shown that finite-volume hydraulic fractures are entirely characterized by a di-

mensionless buoyancy Bks = ∆γE ′3/5V 3/5
o /K 8/5

I c relating the total released Vo to the min-

imum volume necessary for self-sustained buoyant propagation V head
k̂

= K 8/3
I c /

(
E ′∆γ3/5

)
:

Bks =
(
Vo/V head

k̂

)3/5
, and a dimensionless viscosity Mk̂ =µ′QoE ′3∆γ2/3/K 14/3

I c representative

of the ratio between the energy dissipation through viscous flow and the creation of new

surfaces at the change from radial to buoyant propagation. Although the emergence (or not) of

a self-sustained buoyant fracture solely depends on Bks , in other words, on the total volume

released and material and fluid parameters, the details of the release (duration and injection

rate) have a first-order impact on the shape and propagation rates of the fracture through the

dimensionless viscosity Mk̂ . Combining these two dimensionless numbers (Bks , Mk̂ ), reveals

six regions corresponding to distinct propagation histories (see figure 5.2 and table 5.1).

For a finite value of the material fracture toughness (K I c ̸= 0), the toughness-dominated pulse

solution of Garagash and Germanovich (2014) characterizes the late-time buoyant head and

the fracture breadth in its vicinity (bhead = π−1/3ℓb). Note that such a late-time solution

may appear only at very late times and does not describe the complete fracture shape. In

the zero-toughness case (K I c = 0), the fracture head continues to lose fluid such that its

volume asymptotically approaches zero. Due to the finiteness of the released volume, the

maximum lateral breadth stabilizes at a finite value even for the zero-toughness case. It is thus

possible to relate the limiting breadth close to the head, given by the solution of Garagash

and Germanovich (2014), to the stabilized maximum one. We define this parameter as the

overrun O and derive its value for the different regions of the parametric space. Note that this

parameter gives only an idea of the shape: a similar overrun does not imply that the fracture

has the same overall shape. When the fracturing toughness is zero, the head breadth tends

to zero (e.g., ℓb = 0 → bhead = 0), resulting in an infinite overrun. It is important to note that

this does not imply unbounded lateral growth, as lateral growth is limited by the finite volume

rather than fracture toughness.

The identified late-time behavior further fixes the late-time ascent rate to the toughness-

dominated solution as ℓ̇[V ]
k̂

(t ) ∼V 2/3
o ∆γ7/9/

(
K 4/9

I c µ′1/3t 2/3
)∝ t 1/3. An important observation

is that the time power-law dependence of the ascent rate for a viscosity-dominated buoyant

fracture is equivalent (e.g., ℓ̇[V ]
m̂ ∼ V 1/2

o ∆γ1/2/
(
E ′1/6µ′1/3t 2/3

) ∝ t 1/3). During its history, a

buoyant hydraulic fracture can first ascent in a viscosity-dominated manner as ℓ̇[V ]
m̂ (t ) and

then transition to the limiting ascent rate dictated by the late toughness solution ℓ̇[V ]
k̂

(t ). The

late-time ascent rate of the toughness limit is always faster (or at least equal) than the one

of the viscosity-dominated limit (ℓ̇[V ]
k̂

(t ) = B5/18
ks ℓ̇[V ]

m̂ (t ), with Bks ≥ 1 for a self-sustained

buoyant fracture). Fractures transitioning when the fluid release is still ongoing can show

even higher velocities during their propagation history. Estimations or averaging of vertical

growth rates must be done with great care and must necessarily account for both Mk̂ and

Bks . In other words, the details of the release history (rate and duration) do significantly

169



Chapter 5. Three-dimensional buoyant hydraulic fractures: finite volume release

impact the ascent rate even long after the end of the release, implying that for realistic cases

(as well as laboratory experiments), the detail of the release matter. Consequently, a more

complicated evolution of the release (compared to the simple constant rate / finite duration)

will undoubtedly impact the growth of buoyant fractures.

Notably, most parameter combinations for natural or anthropogenic hydraulic fractures would

lead to self-sustained buoyant propagation between the well-distinct regions of the parametric

space depicted in figure 5.2. Additionally, the time required to reach the late-time solution at

the propagating edge and the fracture size when doing so naturally clash with sample sizes in

the laboratory or the scales of heterogeneities in the upper lithosphere. We emphasize that

even though theoretically buoyant fractures emerge (see 5.7.1), to our knowledge, nearly no

cases of buoyant fractures from hydraulic fracturing treatments reaching the surface have

been reported. We expect this to originate from the interaction with heterogeneities, fluid

leak-off, confining stress jumps, and other possible arrest mechanisms not considered in this

contribution.

Data availability statement. The data supporting this study’s findings are openly available at

10.5281/zenodo.7788051 .

5.9 Appendix

5.9.1 Recapitulating tables of scales

We list all the characteristic scales used within this contribution in the following tables for

completeness. A Wolfram Mathematica notebook containing their derivation and the different

scalings is also provided as Supplementary Material.

5.10 Supplementary material

5.10.1 Approximated toughness-dominated solution K̂
[V ]

The main hypotheses of the solution presented first in Garagash and Germanovich (2014),

detailed in Garagash and Germanovich (2022) and termed in this contribution the 3D K̂ [V ]

GG (2014) solution, do not differ from their constant-release counterparts. Both assume a

toughness-dominated 3D buoyant fracture head with a finger-like tail far enough from the

source point to feel any influence of it (e.g., large aspect ratios). The strictly hydrostatic net

pressure in the head leads to a constant volume and geometry head. Due to the finite volume

release, the net pressure in the tail is no longer uniform along its length. A 2D plane-strain

approach with constant pressure is still possible along the horizontal cross-section.
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t [V ] ℓ[V ]∗ = b[V ]∗ w [V ]∗ p[V ]∗

M[V ] → K[V ] t [V ]
mk

= E ′13/5V 3/5
o µ′

K 18/5
I c

ℓ[V ]
mk

= E ′2/5V 2/5
o

K 2/5
I c

w [V ]
mk

=
K 4/5

I c V 1/5
o

E ′4/5
p[V ]

mk
=

K 6/5
I c

E ′1/5V 1/5
o

M[V ] → M̂
[V ] t [V ]

mm̂ = E ′5/4µ′

V 3/4
o ∆γ9/4

ℓ[V ]
mm̂ = E ′1/4V 1/4

o

∆γ1/4
w [V ]

mm̂ = V 1/2
o ∆γ1/2

E ′1/2
p[V ]

mm̂ = E ′1/4V 1/4
o ∆γ3/4

M̂
[V ] → K̂

[V ]

(tail) t [V ]
m̂k̂

= E ′11/4V 3/4
o ∆γ1/4µ′

K 4
I c

ℓ[V ]
m̂k̂

= E ′1/4V 1/4
o

∆γ1/4
w [V ]

m̂k̂
=

K 4/3
I c

E ′∆γ1/3
p[V ]

m̂k̂
= K 4/3

I c
E ′1/4V 1/4

o ∆γ1/12

M̂
[V ] → K̂

[V ]

(head)
ℓ

head ,[V ]
m̂k̂

= ℓb =
K 2/3

I c

∆γ2/3
whead ,[V ]

m̂k̂
= w [V ]

m̂k̂
phead ,[V ]

m̂k̂
= K 2/3

I c ∆γ1/3

Table 5.4: Transition scales between regimes. The transition scales of the M[V ] → K[V ] transition

correspond to the K[V ]-scales, and the transition scales of the M̂
[V ] → K̂

[V ]
(head) to the K̂

[V ]

scales of the head, given respectively as the K[V ] and K̂
[V ]

(head) in table 5.3.

Toughness-dominated head

This part of the fracture is strictly identical to the 3D K̂ GG (2014) solution, described in

section 4.11.1.

Viscous tail

The tail only differs in its overall volume balance, which is given by

b
∫ ℓt ai l

0
w̄ (z, t )dz =Vo −V head (5.32)

where the opening now depends on time and location. For all other details, we refer the reader

to section 4.11.2.

With the hypotheses of the 3D K̂ [V ] GG (2014) at hand, one can obtain the similarity solutions

for the propagating tail through the usual methods (see Spence et al. (1987); Lister (1990b);

Spence and Turcotte (1990)). When casting the numerical solutions (with prefactors) presented

by Garagash and Germanovich (2022) in our scaling, we obtain

ℓt ai l (t ) ≈ 2.60603
V 2/3

o ∆γ7/9 t 1/3

K 4/9
I c µ′1/3

−2.05837
K 4/3

I c t 1/3

E ′2/3∆γ1/3µ′1/3

≈ 2.60603ℓ[V ]
k̂

(t )−2.05837
K 4/3

I c t 1/3

E ′2/3∆γ1/3µ′1/3
(5.33)

we substitute ℓt ai l = γt ai lℓ[V ]
k̂

(t = ts) to obtain
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γt ai l ≈ 2.60603
Q1/3

o t 1/3

V 1/3
o

−2.05837
K 16/9

I c Q1/3
o t 1/3

E ′2/3Vo∆γ10/9
(5.34)

and replace t = τts to obtain

γt ai l ≈ 2.60603τ1/3

(
1−0.78985

K 16/9
I c

E ′2/3V 2/3
o ∆γ10/9

)
≈ 2.60603τ1/3 (

1−0.78985B−10/9
ks

)
. (5.35)

This equation shows we will reach the tail solution within a certain percentage. This difference,

respectively the change in the prefactor, depends on the value of the dimensionless buoyancy

Bks as

ετ1/3 = γtail → ε= 1−0.78985B−10/9
ks (5.36)

where ε is the change in the prefactor to the tail scaling one obtains for the given parameter

combination. To observe the scaling predicted by the K̂ [V ] solution presented in the article (e.g.

ℓt ai l (t ) = 2.60603ℓ[V ]
k̂

(t )) within an error of 5 %, we would need a dimensionless buoyancy of

the order of

Bε=5%
ks ≥ 11.9872. (5.37)

When applying this to figure 5.4b, we show with an orange dotted line the main trend

γt ai l ≈ 2.60603τ1/3 (5.38)

and omit the details of the dependency on Bksbecause only one simulation (the one showing

the linear trend in the continuous release case) could effectively show these details. We hence

report the exact prediction for this simulation only in figure 5.10 and observe a minimal error

to the end of the simulation of about 24 %. If propagation continues, the error decreases

further. To discuss why we do not report further ongoing simulations, we refer the reader to

section 5.6.1.

We further get the scales of the opening and pressure of their solution, which are, respectively

w (t ) = 0.845257
V 1/3

o µ′1/3

K 2/9
I c ∆γ1/9t 1/3

= 0.845257w [V ]
k̂

(t ) (5.39)
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Figure 5.10: Height evolution of a toughness-dominated fracture together with the 3D K̂ [V ]

GG (2014) according to equation (5.35).

p (t ) = 0.790216
E ′V 1/3

o ∆γ5/9µ′1/3

K 8/9
I c t 1/3

= 0.790216p [V ]
k̂

(t ) . (5.40)

More interesting to see is the evolution of the average opening and pressure with the coordinate

z

w (z, t ) = 0.523599
µ′1/2

∆γ1/2t 1/2
z1/2. →

x=0
w (z, t ) = 2

3

µ′1/2

∆γ1/2t 1/2
z1/2 (5.41)

p (z, t ) = 0.489504
E ′∆γ1/6µ′1/2

K 2/3
I c t 1/2

z1/2. (5.42)

In figure 5.10, we show the opening and pressure profile at the last time step of the simulation

with Mk̂ = 1 and Bks = 2 reported in figure 4) of the main article. One observes that the match

obtained using equations (5.41) and (5.42) is very accurate.

Limit of applicability of the 3D K̂ [V ] GG (2014) solution

This solution is only valid if the pressure in the tail does not allow for lateral expansion (e.g.,

the fracture breadth does not grow). In other terms, the pressure in the tail must at all times

be p (z, t ) ≤ K I c /
√

0.782257ℓb . As the pressure in the tail reduces, this condition verifies at a
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Figure 5.11: Opening (a) and pressure (b) along the centerline (e.g., x = 0) for a toughness-
dominated simulation with Mk̂ = 1 and Bks = 2 at t/tkk̂ = 179. Black dashed-dotted lines
show the tail solutions of equations (5.41) and (5.42).
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given time during fracture propagation. Garagash and Germanovich (2014) derive this limit as

Vo/V∗
t/t∗

< 0.352139 (5.43)

which be transformed in a stabilization time of the form

tst ab = 0.545885t [V ]
m̂k̂

B5/12
ks . (5.44)

The fact that lateral stabilization occurs later than the transition of the tail from viscosity- to

toughness-dominated propagation (because Bks ≥ 1 for buoyant fractures) explains why we

have such a hard time showing simulations validating the toughness-dominated limit after

being viscosity-dominated. Figure 5.6 shows this problem, and we sketch the computational

cost implied in section 5.6.1.

5.10.2 Self-Similarity of the Zero-Toughness Solution

In section 5.4.2 of the main article, we mention that the evolution of a zero-toughness, finite

volume, buoyant hydraulic fracture becomes nearly self-similar at a late time. This self-

similarity is a function of the scales presented in equation (5.24)

ℓ[V ]
m̂ = V 1/2

o ∆γ1/2 t 1/3

E ′1/6µ′1/3
, b[V ]

m̂ = E ′1/4V 1/4
o

∆γ1/4
(5.45)

w [V ]
m̂ = V 1/4

o µ′1/3

E ′1/12∆γ1/4t 1/3
, p [V ]

m̂ = E ′2/3µ′1/3

t 1/3
.

Figure 5.12 shows a simulation with Mk̂ =Bks =∞ and Bms = 10−3 (e.g. transitioning from

radial to buoyant in the viscosity-dominated pulse M[V ]-regime) where we report all quantities

scaled by the scaling of equation (5.45). Note that we use a shifted z coordinate ẑ as to have

ẑ = 0 coinciding with the lowest point of the fracture.

The horizontal scale of the footprint is time-independent, whereas its vertical scale depends

on time as ℓ[V ]
m̂ ∝ t 1/3. One observes that after the transition, the total height of the fracture

(e.g., the highest point in the scaled simulation) no longer changes. Simultaneously, fracture

propagation becomes akin to the scaling, as depicted in figure 5.7. Such is the case for times

later than t/t [V ]
mm̂ ≳ 10, even though the footprint shape is still elliptical. During ongoing propa-

gation, the shape becomes more and more avocado-like before approaching self-similarity for

t/t [V ]
mm̂ ≳ 800. The resulting footprint is similar to the self-similar shape of a zero-toughness,

continuous-release, buoyant hydraulic fracture (see figure 4.5), albeit elongated. As in this

continuous release case, the nearly self-similar shape occurrence relates to the head volume

becoming negligible compared to the total release volume. This effect is visible in figure 5.12b,
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where the head to the right becomes smaller and no longer shows significantly more cross-

section volume than the adjacent parts of the tail. The detail of the head becomes negligible

when observing the overall shape, even though it still governs the propagation rate.

Similarly to the continuous release case, the footprint becomes flat around the centreline

x = 0 (see figure 5.12a), indicating that the approximation of a 2D plain strain fracture at the

centreline might be applicable. Roper and Lister (2007) sketched such a solution in section

6 of their article and derived the fracture height (see their equation (6.7)). Interestingly, this

two-dimensional evolution is equivalent to the scaling for the toughness-dominated case of

equation (5.41) but without a prefactor

w l i ster (z, t ) = µ′1/2

∆γ1/2t 1/2
z1/2. (5.46)

Scaling with Ω = w l i ster (z, t )/w [V ]
m̂ and using the dimensionless coordinate ζ̂ = ẑ/ℓ[V ]

m̂ we

obtain

Ω
(
ζ̂
)=√

ζ̂ (5.47)

shown as a blue dashed line in figure 5.12c. The match close to the source region is aston-

ishing and holds even if the width constraint becomes activated close to the source point.

In the proximity of the propagating head, the solution seems to deviate because of 3D ef-

fects. Nonetheless, combining the zero toughness head solution (c.f. figure 4.7 of chapter 4)

with equation (5.47) could result in a complete description of zero toughness, buoyant, finite

volume fractures.
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Figure 5.12: Footprint (a), cross-sectional volume (b), opening (c), and pressure (d) of a zero-

toughness, finite volume buoyant hydraulic fracture scaled by the corresponding M̂
[V ]

-scaling
(see equation (5.45), or equation (5.24)). The blue dashed line in c) indicates the solution
presented by Roper and Lister (2007).
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6 Effects of fluid leak-off or solidifica-
tion on buoyant hydraulic fractures

This chapter is a manuscript currently prepared for submission to the Journal of Geophysical

Research Letters (GRL).

Contributions

Andreas Möri has conceptualized the problem, performed a formal and scaling analysis,

decided on the methodology, adapted the numerical solver, committed validation against

known results, searched experiments for comparison, and developed the discussion. He

further generated the visualizations, wrote the original draft, and edited and adapted the

manuscript. Prof Brice Lecampion has assisted in clarifying the pulsation times, reviewed and

helped to adjust figures and the writing, and acquired the funding for this study.
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6.1 Abstract

Three-dimensional buoyant hydraulic fractures propagating through the lithosphere show

large extents and migrate during long periods. The host formations are usually permeable,

which is susceptible to generating leak-off-related effects to fracture propagation. Similarly, the

emplacement of magmatic intrusions shows thermal effects due to the temperature difference

between the fluid and the solid. We derive in this contribution the limiting late-time regime

for buoyant hydraulic fractures under a continuous fluid release at a constant rate considering

these two effects. We demonstrate that, under certain conditions, the two can be treated

as a one-dimensional diffusion problem of matching time dependence. Through scaling

arguments and numerical simulations, we demonstrate that the overall fracture propagation is

akin to a global volume balance but shows a pulsating behavior when considering the typical

head and tail structure of buoyant hydraulic fractures. Such a pulsating behavior observed in

laboratory experiments may arrive even for a continuous fluid release with a constant release

rate.

6.2 Introduction

We consider in this study three-dimensional (3D) planar hydraulic fractures propagating in the

subsurface and investigate the phenomena of fluid leak-off and solidification. The problem of

fluid leak-off (e.g., the loss of fracturing fluid into the surrounding porous media) has obtained

a lot of interest in the literature. This interest stems from industrial applications, where the

so-called fracturing efficiency describes how much of the injected fluid remains in the fracture.

In other words, this quantity is an indicator of fracture opening.

The most commonly used model for fluid leak-off is the so-called Carter’s model (named

after Carter (1957)). This model assumes a porous solid surrounding the fracture governed

by Darcy flow. Such a configuration leads to a 3D diffusion equation governing pore pressure

and fluxes in the porous media. Additional complexity is added to the problem by the time

dependence of the problem and the fact that the fluid pressure in the fracture is an inherent

part of the problem. Carter’s leak-off model uses several simplifications to overcome these

complexities. Notably, it assumes only slightly permeable media, which holds for most deep

geo-energy applications (Kovalyshen, 2010), such that the fracture propagates much faster

than 3D diffusion can occur. In line with the assumption of deep reservoirs with low perme-

ability, the excess fluid pressure (above the confining background stress) is supposed to be

negligible. Combining these two major assumptions, Carter’s leak-off model reduces to a

pressure-independent, one-dimensional (1D) diffusion equation in which the leak-off velocity

evolves as an inverse square-root dependence of the exposure time (e.g., vl ∝ (t − to)−1/2).

The effects of a Carter-like leak-off have been studied numerically for two-dimensional (2D)

plane strain (Adachi and Detournay, 2008) and axisymmetric (penny-shaped) fractures (Mad-

yarova, 2003). Extensions to the Carter leak-off model were proposed by Kovalyshen (2010). He

performed a study using the complete 3D diffusion and showed that Carter’s leak-off approx-
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Figure 6.1: Sketch of a buoyant hydraulic fracture propagating within a permeable media. a)
Sketch showing the change in total ℓ (t ), head ℓhead (t ), and tail ℓtail (t ) height in the interval
∆t = tn − tn−1. The color code shows the fracture opening normalized by the maximum
value. b) Zoom on the propagation at the head. The head’s positions and the tail’s beginning
can be related to the coordinates zn and tn−1. c) Evolution of total fracture height ℓ (t ) as a
function of time for simulations with various leak-off coefficients at the transition from radial
to buoyant propagation C ̂̃k . d) Zoom on the evolution of the simulation with C ̂̃k = 1, showing
the pulsation of the fracture.
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imation breaks down for highly permeable solids. A similar result was found by Kanin et al.

(2020); Dontsov (2021), who assumed a pressure-dependent leak-off instead of complete 3D

diffusion. Other studies investigated the circulation in a tip region (Detournay and Garagash,

2003), or water flooding treatments in weak permeable rocks (Gao and Detournay, 2020, 2021).

All these contributions focused on propagating hydraulic fracture. The study of arresting or

receding fractures has only recently obtained interest. In the framework of Carter’s leak-off, we

investigated in chapter 3 the arrest of fractures generated by a finite volume of fluid released.

They showed that, albeit post-injection propagation is possible, fluid leak-off will always lead

to an ultimate arrest of the fracture. The work presented in chapter 3 was extended by Peirce

(2022) to account for the closure of axisymmetric fractures.

Interestingly, some indications can be derived from the investigation of solidifying magmatic

intrusions. Instead of economic considerations, the interest in the solidification of dikes relates

to their ability to reach the surface and become eruptive. In contrast to the evaluations of leak-

off for non-buoyant fractures, the study of solidification considers already well-established

buoyant fractures. Bruce and Huppert (1990) notably developed a model based on the initial

presence of a finite width dike in 2D. To obtain the same time-dependence of the solidification

front as for the Carter leak-off, they assumed an early-time behavior where the advection

of the fluid is negligible, and the conduction diffusion equation governs the problem. If

the temperature difference between the fluid at its source is minor compared to the far-

field temperature of the host medium, Bruce and Huppert (1990) derive a solidification

front moving inward at a rate with an inverse square-root dependence of the exposure time

vs ∝ (t − to)−1/2. Several studies used this, or similar, simplified approaches to derive limiting

volumes for the ascent of magmatic intrusions (Turcotte and Schubert, 2002; Bruce and

Huppert, 1989, 1990; Bruce, 1989; Carrigan et al., 1992; Delaney and Pollard, 1982; Petford

et al., 1994; Rubin, 1993). These studies were similarly limited to early-time behavior and

generally 2D geometries.

In this study, we investigate the influence of a Carter-like leak-off for buoyant hydraulic

fractures and the early-time solidification of magmatic intrusions. We use scaling arguments

and validate these using a 3D planar hydraulic fracture solver (PyFrac, (Zia and Lecampion,

2020)).

6.3 Data and methods

6.3.1 Mathematical formulation

Figure 6.1a sketches the problem considered in this contribution. A planar tensile hydraulic

fracture is fed by a constant fluid inflow from a deep laying point source leading to vertical

propagation. The propagation plane is enforced by the minimum in-situ stress σo (z) acting

horizontally (perpendicular to the vertical plane). Vertical propagation inherently means

that the gravity vector is acting in-plane in the downward direction (in −z, see figure 6.1a).
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Because we consider deep hydraulic fractures, the presence of a fluid lag can be neglected (see

discussion in Garagash and Detournay (2000); Lecampion and Detournay (2007); Detournay

(2016)). In this numerical model, the in-situ stress is assumed to vary linearly with depth akin

to the weight of the overlaying rock (Heidbach et al., 2018; Cornet, 2015; Jaeger et al., 2007).

The material within which the fracture propagates is modeled as a linear elastic medium with

constant and uniform properties. Under these assumptions, we can relate the net loading on

the fracture (e.g., the fluid pressure minus the in-situ stress p (x, z, t ) = p f (x, z, t )−σo (z) to

the fracture opening w (x, z, t ) as (Crouch and Starfield, 1983; Hills et al., 1996)

p (x, z, t ) = p f (x, z, t )−σo (z) =− E ′

8π

∫
A (t )

w
(
x ′, z ′, t

)[
(x ′−x)2 + (z ′− z)2]3/2

dx ′dz ′ (6.1)

where we have denoted the fracture surface in the propagation plane as A and introduced

the materials plane-strain modulus E ′ = E/
(
1−ν2

)
(E is the materials Young’s modulus and

ν its Poisson’s ratio). The model accounts for the fluid flow of an incompressible Newtonian

fracturing fluid in the fracture under the hypothesis of lubrication flow (Batchelor, 1967). The

corresponding width-averaged continuity equation reads

∂w (x, z, t )

∂t
+∇· (w (x, z, t )v f (x, z, t )

)+ 2CL√
t − to

(
x, y

) = δ (x)δ (z)Qo (t ) . (6.2)

In equation (6.2) we have denoted the width averaged fluid velocity as v f (x, z), the constant

volumetric fluid release rate as Qo , Carter’s leak-off coefficient as CL , and the leak-off initiation

time, the time when the fracture arrives at a point (x, z), as to (x, z). The fluid exchange

according to the third left-hand-side term of equation (6.2) assumes Carter leak-off (Carter,

1957; Howard and Fast, 1957), a model considering a one-dimensional diffusion perpendicular

to the fracture under the condition that the fluid net pressure is much smaller than the

in-situ stress. These assumptions hold for most hydraulic fractures at depth (see among

others Kovalyshen (2010); Dontsov (2021)). In the framework of the thin film lubrication

approximation, we can define the fluid flux along the fracture using Poiseuille’s law

q (x, z, t ) = w (x, z, t )v f (x, z, t ) =−w (x, z, t )3

µ′
(∇p f (x, z, t )−ρ f g

)
=−w (x, z, t )3

µ′

(
∇p (x, z, t )+∆γ g∣∣g∣∣

)
. (6.3)

In the definition of Poieuille’s law, the constant and uniform fluid density is denoted as ρ f ,

and we have used the equivalent parallel µ′ = 12µ f , which is a simple multiplication of the

fluid viscosity µ f . Were we changed from the fluid to the net pressure and accounted for the

linear variation of the in-situ stress. ∆γ=∆ρg = (
αρs −ρ f

)
g is the buoyancy of the system
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Figure 6.2: a) Sketch of a one-dimensional Stefan problem of a moving solidification boundary.
The fracture can either melt the surrounding rock (meltback) such that the opening increases
or the fluid solidifies, and the effective fracture opening for fluid flow reduces. b) Section of the
considered problem where leak-off and solidification are considered. The fracture opening
gets reduced due to the solidification of the fluid, whereas leak-off can still occur across the
solidified boundary.

fluid-solid withα a lateral earth pressure coefficient and ρs the density of the solid. The driving

mechanism of fracture propagation is the fluid release at the point source. We have thus to

validate the volume balance of the system given by

Qo t =
∫
A (t )

w (x, z, t )dxdz +
∫
A (t )

∫
t

2CL

τ−τo
dτ. (6.4)

For stable fracture propagation in a linear elastic medium, we can use the linear elastic fracture

mechanics (LEFM) approach to quasi-static equilibrium and obtain a propagation criterion of

the form

(K I (xc , zc )−K I c ) vc (xc , zc ) = 0 vc (xc , zc ) ≥ 0 K I (xc , zc ) ≤ K I c (6.5)

where vc is fracture velocity normal to the fracturing front at any point laying on the fracture

front (xc , zc ). Equation (6.5) states that when the fracture propagates vc >= 0, the stress

intensity factor at the tip K I must match the fracture toughness of the host media K I c .

The 3D planar-hydraulic fracture solver PyFrac (Zia and Lecampion, 2020) is used to solve the

set of equations (6.1), (6.2), (6.4), and (6.5). This open-source code is a Python implementation

of the implicit level set algorithm (ILSA) (Peirce and Detournay, 2008) tested in various regimes

of hydraulic fracture growth (Peirce, 2015, 2016; Zia et al., 2018; Zia and Lecampion, 2020;

Moukhtari et al., 2020) (see also chapters 3, 4, and 5).
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6.3.2 Model for fluid solidification

When dealing with magmatic intrusions in the lithosphere, magma solidification becomes

a process to consider. Solidification includes mass exchanges between the solid and the

fluid, rheological changes of the latter, and thermally induced changes to the host rock. It is

driven by two heat transfer processes, advection by the hot flowing magma along the dyke

and convection from the magmatic body to the surrounding host rock. We restrict hereafter to

conductive heat exchange between the fluid and the solid only (see figure 6.2 for a sketch of the

problem) and assume Newtonian rheology for the magma. The last assumption is validated

thanks to limited crystallization (Brandeis and Jaupart, 1986). We assume a laminar flow in the

fracture (consistent with our base hypothesis), and shear heating effects are neglected. When

we additionally make the hypothesis of a solid at a constant initial temperature To everywhere

and a fluid remaining at a constant temperature T f , the problem of solidification reduces to

a one-dimensional Stefan problem (Stefan, 1891) (see i. e. Carslaw and Jaeger (1959) for its

detailed solution). We make here the additional assumptions that the density of the solidified

melt and the density of the fluid, as well as their melting temperature Tm and latent heat L,

are equivalent. Under these assumptions, the velocity of the solidification front is given by

vT =λ
√
κ f

t
(6.6)

with λ the solution to

λπ1/2 =− e−λ
2

Erfc[λ]S f
−

√
κs

κ f

e−
κ f
κs
λ2

Erfc[λ]Ss
(6.7)

with the Stefan numbers

S f =
L

c f
(
T f −Tm

) , Ss = L

cs (Tm −To)
(6.8)

where we have used the subscripts ·s and · f to denote quantities of the fluid and solid respec-

tively. κi is the thermal diffusivity and ci the corresponding specific heat of the material. The

problem thus depends on its Stefan numbers (6.8) and the respective ratio of the thermal

diffusivity. In the case of solidification, one can assume that the thermal diffusivity and specific

heat of the materials are equivalent (e.g., κs = κ f = κ and cs = c f = c), such that equation (6.7)

reduces to

π1/2λeλ
2 =− 1

Erfc[λ]Sc
(6.9)

with the Stefan number

Sc = L

c
(
T f −To

) . (6.10)
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Equation (6.9) gives solidification (λ< 0, see figure 6.2a) for all positive values of Sc .

Figure 6.2b shows a possible consideration of solidification for dikes in the framework of planar

3D hydraulic fractures. Denoting the total opening as wt , the hydraulically and elastically

relevant open channel height as w , and the part lost due to the solidification of the fluid as

wT . Rewriting now the conservation of mass (6.2) in the absence of fluid leak-off as

dwt
(
p,T, x, z, t

)
dt

+∇· (w (x, z, t )v f (x, z, t )
)= δ (x)δ (z)Qo (t ) . (6.11)

Following the definitions of the three openings, we can rewrite the first term on the left-hand-

side of equation (6.11) as

wt
(
p,T, x, z, t

)= w
(
p, x, z, t

)+wT (T, x, z, t )

dwt
(
p,T, x, z, t

)
dt

= ∂w
(
p, x, z, t

)
∂t

∣∣∣∣
T=cst .

+ ∂wT (T, x, z, t )

∂t

∣∣∣∣
p=cst .

= ∂w
(
p, x, z, t

)
∂t

∣∣∣∣
T=cst .

=−2λ

√
κ

t
. (6.12)

Note that in equation (6.12), we have accounted for the direction of the solidification boundary

and used equation (6.6). We also have a factor 2 appearing because equation (6.6) gives the

velocity of a single solidification front. As sketched in figure 6.2, both boundaries solidify

simultaneously such that the total reduction in opening is equivalent to twice the propagation

of a single solidification front. The solidification will only begin once the fracture has arrived at

the location evaluated. This moment has already been used in the definition of the fluid leak-

off as to , which is not only the leak-off but also the solidification initiation time. Introducing

now the total derivative (6.12) in the conservation of mass (6.11), we obtain the final expression

for the case of fluid solidification as

∂w
(
p, x, z, t

)
∂t

+∇· (w (x, z, t )v f (x, z, t )
)− 2λ

p
κ√

t − to
(
x, y

) = δ (x)δ (z)Qo (t ) . (6.13)

Comparing equation (6.13) with equation (6.2) we observe that the leak-off and solidification

terms show the same time-dependence and differ only by their prefactor. It is thus possible to

define a general fluid mass loss coefficient C ′ as

C ′ =
2CL for fluid leak-off,

−2λ
p
κ for solidification.

(6.14)

186



6.3 Data and methods

In the expressions hereafter, we restrict our analysis to the values of C ′ (6.14) without referenc-

ing a specific mechanism generating the fluid mass loss.

6.3.3 Leaking/Solidifying buoyant hydraulic fracture

When considering a fully developed, buoyant hydraulic fracture, the characteristic head-tail

structure shown in figure 6.1 emerges (see the derivations in chapters 4 and 5). In chapters 4

and 5, we have shown that the fracture tail governs the dynamics/ascent rate of such fractures,

whereas their head dominates the shape. The respective regimes of the head and tail are

related to the typical competition of energy dissipation mechanism in hydraulic fractures

(Detournay, 2016). The characteristics of a hydraulic fracture are different if the energy

dissipated by the viscous flow of the fluid (viscosity-dominated) exceeds the energy required

to create new surfaces and vice-versa (toughness-dominated). Additional complexity arises

when considering solidification or fluid exchange between the fracture and the solid. The

fracture can either be storage- (most of the total released volume is in the fracture) or leak-

off/solidification-dominated (most of the released fluid has been lost to the surrounding host

rock or got solidified). We will refer hereafter to the leak-off/solidification-dominated case as

the leak-off-dominated case only.

Global scaling

The scalings for storage-toughness-dominated buoyant fractures have been shown in table 4.3

and read

bk̂ = K 2/3
I c

∆γ2/3
, ℓk̂ (t ) = Q2/3

o ∆γ7/9t

µ′1/3K 4/9
I c

,

wk̂ (t ) = Q1/3
o µ′1/3

K 2/9
I c ∆γ1/9

pk̂ (t ) = E ′Q1/3
o ∆γ5/9µ′1/3

K 8/9
I c

(6.15)

Ck̂ =C ′ K 2/9
I c ∆γ1/9t 1/2

Q1/3
o µ′1/3

, (6.16)

where b∗ is the scale of the lateral extent, ℓ∗ the total length of the fracture, w∗ is the scale of the

overall average opening, and p∗ the average pressure. Equation (6.16) defines a dimensionless

leak-off coefficient. Its increasing function of time indicates that the overall fracture necessarily

becomes leak-off-dominated at late time. Adopting the same scaling approach as in the

storage-toughness-dominated case, we obtain the buoyant leak-off-toughness-dominated

scalings enforcing that the second term on the right-hand-side of equation (6.4) dominates

the overall volume balance. Considering then that the dynamics are given by viscous flow in

the tail, we obtain the global scaling as
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b ̂̃k = K 2/3
I c

∆γ2/3
, ℓ̂̃k (t ) = Qo∆γ

2/3t 1/2

C ′K 2/3
I c

,

w ̂̃k (t ) = Q1/2
o µ′1/2

C ′1/2K 1/3
I c ∆γ1/6t 1/4

p ̂̃k (t ) = E ′Q1/2
o ∆γ1/2µ′1/2

C ′1/2K I c t 1/4
(6.17)

where we have used the subscript ·̂̃∗ to indicate a buoyant leak-off-dominated scaling. The

scaling (6.17) indicates that leak-off/solidification significantly slows down fracture propaga-

tion in time. It is expected that buoyant hydraulic fractures either ascend due to the linear

velocity prescribed by the storage-toughness-dominated scaling (see table 4.3) or with the

square root dependence coming from equation (6.17), disregarding their structural details. For

the discussion of this chapter, we retain these two scalings because we show in appendix 6.6.2

that the leak-off toughness-dominated scaling is the late-time scaling of all buoyant hydraulic

fractures.

Head-Tail seperation

We are focusing first on the specific case of storage-toughness-dominated buoyant hydraulic

fractures. Chapter 4 has shown that such fractures have a head of constant shape and volume.

The tail thus governs the dynamics of this fracture without any fluid exchange between the

two. Moreover, the head volume is equivalent to the minimum volume necessary for buoyant

propagation (see the discussion in section 5.4). When extending the approach to account

for fluid leak-off/solidification, the head is expected to lose fluid mass such that the head

volume would fall below the critical one, which would, as of the derivations of section 5.4,

arrest the upward propagation. Due to the nature of the considered fluid loss depending

solely on the exposure time, we investigate the amount of fluid lost by the head alone. As for a

storage-toughness-dominated fracture, the propagation velocity of the fracture is constant (see

equation 6.15), and the exposure time becomes constant. We highlight this by the observation

of figure 6.1b where we show the movement of the head for a time step of ∆t = tn − tn−1

corresponding to the advancement of the head of exactly its head length ℓhead. Starting

from the general form of a leak-off volume (see also the second right-hand-side term of

equation (6.4))

V head
L ∼

∫
t

∫
x

∫
z

C ′
p
τ−τo

dξdζdτ. (6.18)

Performing a change of variable for the arrival and maximum exposure time. The former of

the two results in a leak-off initiation time to as the solution to the equation

to → zn−1 = ℓ (to)+ℓhead (to) . (6.19)
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Similarly, the head will be past this location at the time tmax when we have the condition

tmax → zn−1 = ℓ (tmax ) . (6.20)

For the particular case of the toughness-, storage dominated fracture, we can define the exact

dependences of τ and τo as

ℓk̂ (t ) = Q2/3
o ∆γ7/9t

K 4/9
I c µ′1/3

= vk̂ t , ℓhead
k̂

=
(

K I c

∆γ

)2/3

= ℓb → τ= ζ

vk̂

, τo = ζ−ℓb

vk̂

. (6.21)

In equation (6.21), we have made use of the constant fracture velocity vk̂ . With these inclusions,

the integral equation of the head leak-off volume (6.18) becomes

V head
L ∼

∫
t

∫ bhead

o

∫ vk̂ t+ℓb

vk̂ t

C ′v1/2
k̂√

ζ− (ζ−ℓb)
dξdζdτ=

C ′v1/2
k̂

ℓ1/2
b

∫
t

∫ bhead

o

∫ vk̂ t+ℓb

vk̂ t
dξdζdτ. (6.22)

Performing a dimensional analysis of equation (6.22), we obtain the scale of the leak-off

volume of a propagating head as

V head
L ∝C ′v1/2

∗ (t )ℓhead1/2
∗ (t )bhead

∗ (t ) t , (6.23)

where we allow for the head breadth and length and for fracture velocity to be time-dependent.

We further replaced the subscript characterizing this specific case with a placeholder. This

generalization holds because the dependence is linked to the exposure time, which is always

on the order of the time required for the fracture to propagate the distance of its head. The

scaling of this time is thus inherently coming from the ratio between the distance to travel and

the velocity (for a demonstration of the applicability, see appendix 6.6.1).

When introducing the scales of the storage-toughness-dominated buoyant hydraulic fracture

(see equation (6.21) in equation (6.23) we can see that the leak-off volume of the head increases

linearly in time. In this case, no fluid exchange between the tail and head occurs such that the

head is of a finite volume. This volume is reduced due to the fluid leak-off/solidification. At

some point, it falls below the critical volume, and the fracture arrests. We hypothesize that also

the fracture footprint no longer changes, meaning that the tail stops elongating simultaneously.

From this, two effects arise: First, the exposure time of the arrested head increases, and second,

fluid exchange between the tail and head immediately initiates. The former means that the

leak-off rate of the head will now follow the classical square-root decrease of the fluid mass

loss models, and the leak-off volume will only increase as V head
L ∝ t 1/2. We observe from the

fluid exchange between the head and tail that the released fluid directly feeds the head. For
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the continuous release at a constant rate considered, the inflow to the head thus increases

linearly in time such that the head should regain volume and resume propagation.

This argument indicates that, even if the release rate at the source is constant, a pulsating

vertical growth should occur if the fracture head is at the critical volume for buoyant propaga-

tion. Such is the case if the fracture is either storage- or leak-off-toughness-dominated (for a

demonstration of the second, see Appendix 6.6.1).

We have used until here the case of a buoyant storage-toughness-dominated hydraulic fracture

for ease of illustration. The scaling analysis of the entire domain does, however, show that

the late-time solution for buoyant hydraulic fractures will be a buoyant leak-off-toughness-

dominated hydraulic fracture (see the argument for this in Appendix 6.6.2). The scaling and

physical arguments in this late-time regime remain unchanged.

Note that these arguments clarify why a pulsation should be observable without specifying

the timescale of the phenomenon. From a theoretical point of view, the volume of the head

is precisely at the critical volume, and any fluid leak-off/solidification, no matter how small,

should arrest the fracture. However, an arrest would immediately lead to a fluid exchange with

the tail for which propagation should resume. The propagating fracture is thus oscillating

around a stable equilibrium governed by the overall volume balance.

6.4 Results

Observing the pulsating behavior of buoyant hydraulic fractures is possible by running simu-

lations in the toughness-dominated limits. The simulations differ in the importance of fluid

leak-off at the transition from radial to buoyant propagation, characterized by the dimension-

less leak-off coefficient at this moment

Ck
(
t = tkk̂

)= C ′E ′1/2

Q1/2
o ∆1/2

. (6.24)

Figure 6.1c shows the evolution of the overall fracture height with time. This figure shows the

zero leak-off case, which tends to the linear propagation at late time predicted by the scal-

ing (6.21) for comparison. The simulations with intermediate and small leak-off (Ck
(
t = tkk̂

)=
1.0 respectively 0.1) tend to the square-root evolution in time predicted by (6.17). The sim-

ulation with high leak-off
(
Ck

(
t = tkk̂

)= 10
)

did not yet become buoyant. This effect comes

simply from the excessive fluid mass loss to the medium, delaying the fracture volume from

reaching the critical one.

In figure 6.1c, we cannot identify a pulsation but see that the overall behavior is validated.

However, a zoom into the details of the overall height growth reveals a pulsating behavior of

the fracture with Ck
(
t = tkk̂

)= 1.0 (6.24). We emphasize this behavior with a close-up view in

figure 6.1d. We denote with red dots all moments when buoyant propagation resumes. One
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Figure 6.3: Dimensionless maximum opening of the head (equivalent to the maximum overall

opening) max
x,z

{
w(x,z,t )

wkk̂

}
with wkk̂ = K 4/3

I c

E ′∆γ1/3 as a function of dimensionless time t/tkk̂ (see

figure 6.1 for a definition of tkk̂ ) for a simulation with Ck
(
t = tkk̂

) = 1. Black dots mark the
reported evaluation points, and green edges indicate the approximate power law. A = Arrested
phase, P = Propagation phase.
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main observation of figure 6.1d is that the arrested phases, when fracture growth is stopped,

are significantly larger than the propagation phases of the fracture. One also observes that

the pulsation is fairly regular, meaning that one cycle composed of a propagation and arrest

phase takes up approximately (0.357±0.065)tkk̂ . As stated in section 6.3.3, this phenomenon is

closely related to the head volume. The numerical evaluation of the head volume is challenging

(see the discussion in section 4.11.3 of chapter 4), and the precision might be on the order of

the accuracy of the evaluation method. A more suitable quantity to monitor is the maximum

opening in the head because it is the maximum overall opening. Figure 6.3 shows the evolution

of this quantity for the same time window as selected in figure 6.1d. The pulsating behavior is

well reflected in the maximum opening, as peaks correspond to moments when the fracture

starts to propagate and minima to the temporal arrest of the fracture. The head undergoes

inflation (arrested phase) and deflation (propagation phase) cycles.

The spatial distribution of the opening changes is visualized in figure 6.4, where we plot the

evolution of the fracture opening and pressure during the propagation and arrested phase

between t/tkk̂ ∈ (11.0,11.5) as a function of the tip based coordinate ẑ (t ) =− (z −ℓ (t )). During

the propagation phase (figures 6.4a and b), the fracture opening effectively decreases in the

head (from grey to red). This effect is subtle and only visible when watching closely (see the

inset of figure 6.4a). The changes outside the maximum opening are negligible and even

disappear for the tail. The changes to the pressure are also marginal. The only difference

observed is that the linearity of the pressure gradient along the head gets lost, indicating that

viscous effects become important and that propagation will cease (see the inverse curvature

appearing at the propagating tip of figure 6.4b). When the evolution of the volume in the

head is reversed (figures 6.4c and d), the opening increases again (red to green), and the

pressure regains the linear gradient. One crucial observation is that neither the opening nor

the pressure change significantly in the tail. If we recall, one assumption of the argument

for pulsation was that when propagation ceases, the tail becomes of constant volume. The

sections of figures 6.4 support this hypothesis, which can be explained with simple arguments.

The breadth is stable from the beginning, and the opening of the tail does not change because

its exposure time is long compared to the pulsation time, such that the leak-off velocity in

this part of the fracture is negligible during the arrested phase. Finally, the length of the tail

cannot change because it is limited by the neck (pressure depression between the head and

tail), which would first need to be lifted. From all of these effects, we have that the opening

of the head must necessarily change at the rate of the fluid release. Figure 6.3 indicates the

linear increase in opening expected for a linear fluid release, and we observe a good match

over nearly all of the cycles investigated.

6.5 Discussion and conclusion

We have considered in this contribution the propagation of buoyant hydraulic fractures

subjected to fluid leak-off or solidification. We discussed arguments for why this type of

fracture should present a pulsating behavior at late time. For our solidification model, fluid
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Figure 6.4: Opening and pressure evolution during propagation (a and b) and arrest (c and
d) cycle for Ck̂ = 1. a) and c) show the tip-based opening evolution. Insets emphasize the
reduction (a) and increase (c) during the two stages. b) and d) show the corresponding pressure
profiles. At the tip, the linearity disappears, causing the fracture to arrest. Insets show the
oscillation of head volume (b)) and the head length (d)). Red dots mark the last moment of
arrest before propagation occurs again.
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leak-off is modeled using Carter’s model, and we assume negligible convection along the

fracture and fluid at a constant temperature. The fluid release is continuous in time, and all

material properties are uniform and constant.

Using a three-dimensional planar hydraulic fracture solver, we simulated buoyant fractures

subjected to fluid mass loss and observed pulsating behavior during their upward propagation.

We then used physics-based scaling arguments to show that such pulsation should effectively

occur for a continuous fluid release. Our scaling approach fails to predict the time scale of

this phenomenon. The pulsating behavior can be explained from a toughness-dominated

head with an original volume equal to the critical one necessary for buoyant propagation. The

fluid leak-off/solidification depletes the head, bringing it to an arrest. During the arrested

phase, the tail becomes of constant volume such that the entire released fluid can flow into the

fracture head. Once the head becomes inflated above the critical volume again, propagation

resumes. Our simulations show that minimal changes in head volume induce this behavior

and that an overall volume balance predicts global behavior.

We cannot determine the pulsating cycles’ duration or amplitude as of today. We can merely

state that the pulsation occurs around the stable equilibrium given by the overall volume bal-

ance and highlight its relation to the pronounced head-tail structure of toughness-dominated

buoyant hydraulic fractures. Nonetheless, the behavior demonstrated here numerically and

explained by scalings has been observed in the laboratory experiments of Taisne and Tait

(2011). These experiments investigate the solidification of various fluids injected in hydrogels.

Further investigations are needed to clarify the behavior and define the limits of applicability

of the pulsation phenomenon. We further envision comparing our findings with the Taisne

and Tait (2011) experiments and seismic data recorded during the emplacement of dikes.

6.6 Appendix

6.6.1 Dimensionless leak-off coefficient ̂̃K-regime

We apply the derivations of section (6.3.3) to a buoyant hydraulic fracture with a toughness-

dominated head and a leak-off-, viscosity-dominated tail with

ℓ̂̃k (t ) = Qo∆γ
2/3t 1/2

C ′K 2/3
I c

= B ̂̃k t 1/2, ℓhead̂̃k =
(

K I c

∆γ

)2/3

= ℓb (6.25)

τ=
(
ζ

B ̂̃k
)2

, τo =
(
ζ−ℓb

B ̂̃k
)2

, (6.26)

where B ̂̃k is a dimensional prefactor with the unit m/s1/2.

If we include these scales in the integral equation (6.18), one obtains
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V head
l o ∼

∫
t

∫ ℓb

o

∫ B ̂̃k t 1/2+ℓb

B ̂̃k t 1/2

C ′B ̂̃k√
ζ2 − (ζ−ℓb)2

dζdξdτ

∼
C ′B ̂̃k√
ℓb

∫
t

∫ ℓb

o

∫ B ̂̃k t 1/2+ℓb

B ̂̃k t 1/2

1√
2ζ−ℓb

dζdξdτ. (6.27)

Integrating over ξ and ζ, and manipulating the equation

V head
l o ∼C ′B 3/2̂̃k

√
ℓb

∫
t

√
2τ1/2 + ℓb

B ̂̃k −
√

2τ1/2 − ℓb

B ̂̃k dτ (6.28)

which we now integrate over time to obtain

V head
lo (t ) ∼C ′B 3/2̂̃k

√
ℓb

{
1

5

[(
2
p

t + ℓb

B ̂̃k
)5/2

−
(

2
p

t − ℓb

B ̂̃k
)5/2]

− ℓb

3B ̂̃k
[(

2
p

t − ℓb

B ̂̃k
)3/2

+
(

2
p

t + ℓb

B ̂̃k
)3/2]}

. (6.29)

We know that reaching buoyant propagation requires ℓ (t ) ≫ ℓb (e.g.
p

t ≫ ℓb/B ̂̃k ). This

condition is equivalent to a late-time behavior, as shown in chapter 4, such that we can

approximate equation (6.29) as

V head
lo (t ) ∼C ′B 3/2̂̃k

√
ℓb

23/2

3

ℓb t 3/4

B ̂̃k ∼ 23/2

3
C ′B 1/2̂̃k ℓ3/2

b t 3/4. (6.30)

Equation (6.30) is very similar to equation (6.23) and can be shown to be equivalent when

dropping prefactors and using an alternative definition of B ̂̃k
V head

lo ̂̃k (t ) ∼C ′√v ̂̃k (t )ℓ3/2
b t with B ̂̃k ∼ v ̂̃k t 1/2. (6.31)

6.6.2 Transition from ̂̃M to ̂̃K
Viscosity-dominated buoyant hydraulic fractures in impermeable media, respectively, in an

isothermal system, differ from toughness-dominated fractures in the same configuration

because of their ability to accumulate a fluid volume exceeding the minimum volume for

propagation in their head (see the discussion in chapters 4 and 5 and table 4.3 for the scalings).
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For a media subjected to fluid leak-off or solidification, this volume will be reduced during the

propagation of the fracture. It is thus physically intuitive that the late-time solution would

directly have the limiting volume for propagation, which forms the basis for the derivation of

toughness-dominated scalings.

In sections 6.3.3 and 6.6.1, we have demonstrated that the pulsating propagation theoretically

appears for both toughness-dominated cases. However, the overall behavior is always gov-

erned by the tail (storage- or leak-off-dominated). For this reason, we list the corresponding

viscosity-dominated scalings in table 6.1 with their respective dimensionless coefficients.

From the increasing nature of all dimensionless toughness and leak-off coefficients (head

and tail), we can deduce that the late-time solution of buoyant hydraulic fractures from a

continuous fluid release is necessarily leak-off, toughness-dominated.
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7 Arrest mechanisms of buoyant hy-
draulic fractures

This chapter is a modified version of a conference paper submitted to the 57th U.S. Rock

Mechanics / Geomechanics Symposium, 2023 in Atlanta (ARMA23).

Möri, A., Peruzzo, C., Lecampion, B., and Garagash, D.I. (2023). Arrest Mechanisms of Buoyant

Hydraulic Fractures. 57th U.S. Rock Mechanics / Geomechanics Symposium (ARMA23).

Contributions

Andreas Möri has conceptualized the problem, performed a formal and scaling analysis,

decided on the methodology, adapted the numerical solver, generated the visualizations, and

wrote the original draft. Carlo Peruzzo has derived the framework to study the energy budget of

a semi-infinite hydraulic fracture, participated in the adaption of visualizations, and reviewed

and edited the text in iterations with Andreas Möri. Brice Lecampion acted as supervisor,

supported the conceptualization and methodology, supervised the formal and scaling analysis,

acquired the funding, and reviewed and edited the text in iterations with Andreas Möri. Dmitry

Garagash acted as supervisor, supported the conceptualization, assisted in the formal analysis,

and reviewed the text in iterations with Andreas Möri. He further emphasized the approach of

a fracture size-dependent toughness and gave valuable inputs on how to model it.
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Chapter 7. Arrest mechanisms of buoyant hydraulic fractures

7.1 Abstract

Hydraulic fracturing (HF) treatments can form widespread fractures. Understanding their

containment at depth is critical, given the positive buoyancy contrast between the fracturing

fluid and the surrounding rock, promoting upward growth. We study arrest mechanisms

for established buoyant HF, restricting our investigation to fully planar fractures. We show

that changes in the fracturing toughness (K I c ) (E , and ν remain unchanged) are inefficient

in arresting buoyant HFs. A fracture size-dependent, apparent K I c can only prevent buoyant

fractures from emerging but not stop their ascent. Sudden changes of K I c between layers

need to be significant to arrest a buoyant HF K I c-2/K I c-1 ≳ 2−3. Contrary, a stress barrier

efficiently arrests buoyant fractures for stress contrasts as little as ∆σ≳ 1.00 (MPa). We further

demonstrate that the interaction with a high-leak-off layer is more efficient in arresting fracture

ascent than an equivalent uniform leak-off value. Moderate to high leak-off arrests fractures

before they become buoyant or without significant uprise. All considered arrest mechanisms

can stop the propagation of a buoyant HF, implying that combining several mechanisms will

likely prevent buoyant HFs from reaching shallow formations or even the surface.

7.2 Introduction

Hydraulic fractures (HF) created through industrial treatments can have significant extents.

Ensuring a safe operation and efficient exploitation of the targeted formation is only possible

if the fracture remains contained at depth. In the absence of any heterogeneity, assuming

a Newtonian fluid, an impermeable medium subjected to linear background stress, and a

block injection, we have shown in chapter 5 that the containment depends on a single, di-

mensionless buoyancy Bks (see their equation (9)). It is possible to define a limiting volume,

determining if the fracture arrests at depth or becomes buoyant (Davis et al., 2020; Salimzadeh

et al., 2020). This limit for buoyant propagation is equivalent to Bks ≥ 1. Here we investigate

cases of buoyant fractures with Bks ≫ 1 (see table 7.1) and will explore the effects of changes

in the apparent fracturing toughness, stress barriers, and fluid leak-off will have on buoyant HF.

Following chapter 5, we consider a block injection of a fluid with a viscosity µ at a constant rate

Qo until shut-in of the injection at ts , giving a total injected volume of Vo =Qo ts . The medium

is considered linear-elastic with a given value of the plain-strain modulus E ′ = E/
(
1−ν2

)
, with

E the materials Young’s modulus and ν its Poisson’s coefficient. We consider a linearly varying

background stress with depth (e.g., σ (z) ∝ z) and use constant values for the rock and fluid

density. A buoyant force, caused by the difference of the two ∆γ=∆ρg = (
ρsol i d −ρ f lui d

)
g ,

with g = 9.81 (m·s−2) the earth gravitational acceleration, emerges, driving buoyant propaga-

tion. Note that we do not consider any density variation. The effect of any heterogeneity will be

related to the dominating energy dissipation mechanism (viscosity- vs. toughness-dominated)

when the fracture becomes buoyant and encounters heterogeneity. For a change in properties

at a given distance from the injection point, the interaction will differ if the fracture reaches

the jump during an ongoing injection or when shut-in has already occurred. All these possible

interactions depend on an additional set of two dimensionless coefficients. The first is the
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7.3 Toughness heterogeneities

Set 1 Set 2

E ′ (GPa) 20 30
KIc (MPa·m1/2) 1.5 1.0
µ (Pa·s) 5·10−3 1.0
∆ρ (kg·m−3) 1700 1200
Qo (m3·s−1) 0.05 0.01
Vo (m3) 135 27
Mk̂ 236 1.68·105

Bks 63.0 41.3
D 12.5 12.9

Table 7.1: The two sets of parameters used within this study and their main dimensionless
parameters.

dimensionless viscosity Mk̂ describing the dominant energy dissipation mechanism at the

transition from radial to buoyant propagation (see equation (4.23) of chapter 4). This parame-

ter alone governs the case of a constant rate, continuous release and characterizes together

with Bks the release of a finite volume of fluid (see chapters 4 and 5). Combining these two

coefficients is sufficient to describe any possible state of a buoyant fracture. Notably, values

of Mk̂ ≫ 1 indicate viscosity-dominated and Mk̂ ≪ 1 toughness-dominated fractures at the

transition from radial to buoyant. Finally, the case of a change in properties at a distance d

(distance from the injection point to the change of properties, see figure 7.1) requires a dimen-

sionless form of this distance. We achieve the dimensionless form using the buoyancy length

scale ℓb = (
K I c /∆γ

)2/3 (Lister and Kerr, 1991) to obtain D = d/ℓb-1 (see table 7.1). According

to chapter 5, we must ensure D ≥ 3 to have fully developed buoyant fractures.

We showcase the interaction with various arrest mechanisms according to table 7.2 for two

sets of parameters (see table 7.1). The first set is considered an approximation of a crosslink

gel injection into a sandstone. The second refers to a slickwater injection into a mudstone.

For all simulations with a change in properties, we assume a distance to the layer of d = 250

(m). table 7.2 reports the considered material parameters or changes between solid one and

solid two (see figure 7.1). We use PyFrac, an open-source, planar HF solver developed in

our laboratory. The reader finds details in Zia and Lecampion (2020) and applications to

buoyancy problems in chapters 4 and 5 of this thesis. We further use scaling arguments where

we indicate the corresponding scalings with subscripts. The subscripts m and k refer to a

viscosity- respectively, toughness-dominated scaling. Subscripts with a ·̃ indicate leak-off

dominated scalings, a ·̂, scalings with dominant buoyancy. Finally, we use an addition to

the subscript of the form -i with i ∈ (o,1,2) referring either to a base value (e.g., o) or the

corresponding material (e.g., 1,2).
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Chapter 7. Arrest mechanisms of buoyant hydraulic fractures

Qo

g

Figure 7.1: Sketch of the numerical simulation setup. We consider a block injection of fluid
creating a planar three-dimensional fracture in the (x, z)-plane (point source at (x, z) = (0,0).
The compressibility of the injection line and surface effects are neglected. All considered fluids
are positively buoyant, so we study changes in solid properties at a distance z = d from the
source point.
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7.3 Toughness heterogeneities

Section Modest Max

Size-dependent K I c 7.3.1
κ 0.25 0.50

h (m) 0.25 0.10
Toughness jump 7.3.2 K I c-2/K I c-1 2.0 5.0
Stress jump 7.4 ∆σ (MPa) 0.5 3.0
Uniform leak-off 7.5.1 C (m·s−1/2) 10-6 10-10

Jump in leak-off coefficient 7.5.2 ∆C (m·s−1/2) 10-6 10-10

Table 7.2: The two parameters, respectively, changes used throughout the paper.

7.3 Toughness heterogeneities

The first mechanism considered is a change in the apparent fracture toughness, respectively,

the material fracture toughness because of a lithology change. In the former case, we restrict

our investigation to a fracture size-dependent toughness (section 7.3.1) and neglect any effects

on apparent toughness by the fracture velocity. To address lithology changes, we investigate a

change in fracturing energy by varying only the fracturing toughness K I c between two layers.

7.3.1 Fracture size dependent toughness

Numerous field observations of anthropogenic fractures indicate that the apparent fracturing

toughness felt by the propagating fracture might depend on its size (Rutledge et al., 2004;

Mayerhofer et al., 2000; Garagash, 2023). We restrict our investigation here to a global apparent

fracturing toughness by altering the property of the material without considering any local

effects. The apparent fracturing toughness is adapted between time steps due to the fracture

size of the previous iteration. More precisely, we change the overall fracturing toughness of

the material as a function of the propagating part(s) of the front according to the law proposed

by Liu et al. (2019)

K I c-ap
(
ℓp ,κ,h,K I c-o

)= K I c-o

(
ℓp

h

)κ
(7.1)

where K I c-o (MPa·m1/2) is the fracturing toughness measured at the laboratory scale h (m),

ℓp is the curvilinear length along the fracture front where the local velocity is not zero at the

current time step, and κ the dimensionless exponent. Liu et al. (2019) used a similar approach

and derived the characteristics of a radially propagating fracture where ℓp is proportional

to the fracture radius. We investigate this problem using the planar three-dimensional (3D)

hydraulic fracture solver PyFrac (Zia and Lecampion, 2020). Due to the discretization on a

regular rectangular grid on the fracture plane, we have numerous front segments, and each

is considered a straight line for which we calculate the normal velocity. For the transition

from radial to buoyant propagation investigated in this work, the fracture propagation goes

from axisymmetric to uni-directional. During this transition, various front segments alter
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Figure 7.2: Evolution of scaled fracture height for simulations with a size-dependent apparent
toughness. Green and red lines represent respectively set 1 (crosslink gel into sandstone)
and set 2 (slickwater into mudstone), with continuous lines the modest property change
and dashed lines the maximum one. Classical scaling laws like the t 4/9 of radial-viscosity-
dominated propagation or the t 1 dependence for toughness-dominated buoyant fractures
during the injection are indicated. Black dashed lines indicate the solution for a uniform,
constant fracture toughness.
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7.3 Toughness heterogeneities

their state multiple times between propagation and arrest. Because we want to consider only

the contribution of propagating parts of the fracture to the apparent fracturing toughness

K I c-ap (7.1), the scheme is prone to show large fluctuations when we only count propagating

segments of the front. This numerical effect can be reduced when introducing a maximum

reduction of K I c-ap between two successive time steps. In the simulations shown in this work,

we arbitrarily limit the reduction of K I c-ap to 5 % between two considered time steps. This

artificial damping stabilizes our numerical code while allowing the fracture to follow the radial

scalings (see the correct power-laws in figure 7.2 (Liu et al., 2019)). The validity of this approach

and the sensibility to the reduction chosen remains to be validated in ongoing studies. We

omit the scaling details herein (see Liu et al. (2019) for the radial case) and emphasize the

possibility of the size-dependent toughness to arrest a fracture before it becomes buoyant. We

obtain the equivalent dimensionless viscosity for a fracture size-dependent toughness of the

form of equation (7.1) as

Mk̂-eq =µ′ h14κ/(3−2κ)E ′3∆γ14/(3−2κ)

K 14/(3−2κ)
I c-o

. (7.2)

One can obtain the scaling for a uniform toughness by setting κ= 0. Similar to equation (7.2),

we derive an equivalent value of the dimensionless buoyancy Bks as

Bks-eq =∆γ
(

E ′3−2κV 3−2κ
o h8κ

K 8
I c-o

) 1
5+2κ

. (7.3)

We validate numerically that the conclusions of chapters 4 and 5 remain valid when using the

adapted dimensionless coefficients (equations (7.2) and (7.3)) instead of the original ones (see

notably figure 5.2 of chapter 5).

The modest and maximal values (see table 7.2) applied to the first parameter set (see table 7.1,

crosslink gel injection into a sandstone) lead to fractures which are toughness-dominated at

the transition (Mk̂-eq = 0.51 for the modest values and Mk̂-eq = 2.06 ·10−6 for the maximum

values). We expect the maximum values to arrest the fracture at depth, as its dimensionless

buoyancy becomes inferior to unity
(
Bks-eq = 0.29

)
. For the modest variation, the emergence

of a buoyant fracture is still expected
(
Bks-eq = 4.68

)
. Figure 7.2 shows the evolution of the

fracture height ℓ (t ) of these fractures (green lines represent Set 1) and validates our prediction.

Despite a delay in the emergence of the buoyant fracture (expected at t/tkk̂ ∼ 1 for a uniform

K I c , see the black lines for the case with κ= 0), a self-sustained buoyant pulse emerges. The

evolution of the apparent fracturing toughness in figure 7.3 further shows that during buoyant

propagating K I c-ap tends to stabilize, as expected from the finger-like behavior of buoyant

fractures (e.g., a constant breadth of the propagating front). During radial propagation, the

apparent fracturing toughness continuously increases before fluctuating around a stable value.

Note that the reported simulation has not yet reached shut-in, as the scaling does not indicate
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10-4 0.01 1 100 104 106
1
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Figure 7.3: Evolution of scaled fracture-size dependent apparent toughness. The color code is
equivalent to figure 7.2. Indicated power laws are derived from characteristic length scales
of classical HF regimes in equation (7.1). For the becoming buoyant at late time (two lines
with smaller slope, set 1 and set 2 with modest values), the toughness seems to become
approximately stable with variations of the order of ±15−20 %.
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Figure 7.4: Evolution of fracture height (a) and maximum breadth (b) for simulations with a
jump in fracture toughness. Grey lines show an immediate breakthrough (minimal spreading
at the interface), turquoise lines a temporal containment (height growth stops temporarily
before increasing again), and red lines an indefinite containment (the fracture arrests indefi-
nitely at the interface).
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Chapter 7. Arrest mechanisms of buoyant hydraulic fractures

any more changes to the fracture propagation; the conclusions remain valid. Additionally, the

fracture height at shut-in would already extend beyond the scale of other heterogeneities like

jumps in stress, toughness, or leak-off (ℓ (t = ts) ≈ 1.8 (km)).

When studying the second set of parameters (slickwater injection into a mudstone), the modest

version of the size-dependent toughness is not able to change the governing dissipation mecha-

nism at the radial to buoyant transition from viscosity- to toughness-dominated
(
Mk̂-eq = 381

)
.

Only the more restrictive, maximum values are sufficient to change the governing energy dis-

sipation mechanism
(
Mk̂-eq = 1.67 ·10−3

)
. Similar to the first parameter set, the volume, in

this case, becomes insufficient to create a buoyant fracture
(
Bks-eq = 0.236

)
, whereas a self-

sustained buoyant fracture is expected for the modest parameters
(
Bks-eq = 3.45

)
. According

to the evolution of the fracture height and the apparent fracturing toughness (see figures 7.2

and 7.3), the predictions are confirmed. The apparent fracturing toughness seems to decrease

for the fractures that arrest, which is related to the numerical damping preventing a sudden

drop in the fracturing toughness. At a very late time, one would expect the apparent toughness

to reduce back to the initial value of K I c-o . This phenomenon poses the question of emerging

buoyant fractures at late times. Our simulations do not show such behavior even at very late

times, not reported within figures 7.2 and 7.3. From the observations of figures 7.2 and 7.3,

we anticipate that the findings of chapter 5 remain valid through the use of the equivalent

dimensionless coefficients of equations (7.3) and (7.2). A fracture size-dependent toughness

of the form presented in equation (7.1) can thus prevent the emergence of a buoyancy-driven

fracture but is not a mechanism that could arrest an already buoyant fracture.

7.3.2 Toughness jump

Unlike a size-dependent toughness, K I c might change abruptly between layers. We restrict

our analysis to increases in the fracturing toughness from the injection layer (material 1

in figure 7.1) to the upper layer (material 2, K I c-2 > K I c-1). The upper and lower limits of

the toughness jump are chosen according to the compilation performed by Peruzzo and

Lecampion (2023a) as K I c-2/K I c-1 = 2 and K I c-2/K I c-1 = 5. Peruzzo and Lecampion (2023a)

have shown that in the absence of buoyancy, three scenarios are possible when injecting into a

layer with K I c-1, contained between two layers of higher toughness K I c-2. The options consist

of an immediate breakthrough, a temporary containment, or an indefinite containment. Similar

behavior is expected for the presented case, where the scenario depends on the characteristics

of the fracture when it encounters the interface between the two formations. Numerically, we

characterize the moment when the fractures interact with the interface by the time passed

since the fluid injection started when the fracture front reaches the upper layer denoted

as td . Comparing td to the shut-in time of the fracture ts , we decide whether the fracture

encounters the heterogeneity when the injection is still ongoing (e.g., td ≤ ts) or when the

injection has already ended (e.g., td > ts). This distinction is necessary because it directly

affects the governing mechanisms, fracture velocity, and characteristics of the buoyant head

at first contact (for possible fracture states at contact, see chapters 4 and 5).
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Figure 7.5: Evolution of the "local" energy release rate at the top front position on the fracture
center line (see the inset for a definition) for toughness jump simulations. The color code is as
defined in figure 7.4, and dashed horizontal lines indicate the modest (blue) and maximum
(red) toughness jumps.
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Chapter 7. Arrest mechanisms of buoyant hydraulic fractures

We investigate first the situation of a crosslink gel injection into a sandstone (Set 1), leading

to a viscosity-dominated
(
Mk̂ = 236 > 1

)
fracture encountering the heterogeneity during the

injection (td ≈ 550 (s) < 2700 (s) = ts). Figure 7.4a shows that only for the case of K I c-2/K I c-1 =
5 a containment is observed, whereas K I c-2/K I c-1 = 2 leads to an immediate breakthrough.

The observed containment of the higher toughness jump is a temporary containment. As

observed in the case without gravity (Peruzzo and Lecampion, 2023a), the lateral expansion of

the fracture leads to an increase in fracture opening at the center (x = 0), where the buoyant

fracture originally encountered the interface. The stress intensity factor, initially below the

higher fracture toughness K I c-2, increases with the opening increase. It is possible to estimate

the stress intensity factor from an inversion of the classical LEFM square-root asymptote

(Rice, 1968b) as K top
I =p

π/32E ′wtop /
p

s, with wtop the numerical opening at a distance s

from the front (at the ribbon cell (Zia and Lecampion, 2020)), obtained from the solution of

the complete elastohydrodynamic system (e.g., also accounting for viscous effects, see the

inset of figure 7.5 for a definition of wtop and s). When the local front velocity is non-zero

(before reaching the interface or after breakthrough), K top
I has no physical meaning as the

use of the classical LEFM square-root asymptote (Rice, 1968b) is not correct. On the other

hand, it measures the stress-intensity factor and can thus be compared to the fracturing

toughness K I c-i for an arrested fracture at the point where K top
I is evaluated. For the two

contained fractures of figure 7.4 (maximum parameters on both sets), we show the evolution

of K top
I /K I c-2 during their arrested time, where the evaluation has a meaning. Figure 7.4 shows

that for the temporarily arrested fracture of the crosslink gel injection into a sandstone (green

line), K top
I is effectively below the fracturing toughness of solid 2 K I c-2, such that the fracture

is not able to break through immediately. During the time when the fracture is arrested, K top
I

increases up to K I c-2. The breakthrough occurs at this instance, and the fracture becomes

buoyant again (note that the "overshoot" is numerical and corresponds approximately to our

numerical precision). Interestingly, lateral expansion does not stop after the breakthrough

and continues at about the same rate (see figure 7.4b). The same observation holds for the

fracture with an immediate breakthrough, where lateral propagation is also established. In

both cases, a buoyant finger-like fracture rises from the breakthrough point in the higher

toughness layer, showing a decreasing breadth towards the propagating head (see figure 7.6).

After the breakthrough of a temporarily contained fracture, the fluid in the lower layer starts

to concentrate in a channel at the interface with continued lateral extension at the lateral

extremities as well as fracturing fluid flowing back from zones close to the breakthrough point

into the central finger-like buoyant HF of the higher toughness layer. The opening distribution

in the lower toughness layer is thus complex and uneven.

Different from the first set of a crosslink gel injection into sandstone, the second set encoun-

ters the heterogeneity once the injection has already ended
(
td ≈ 105 (s) > 2700 (s) = ts

)
as

a viscosity-dominated fracture
(
Mk̂ = 1.68 ·105 > 102

)
. Figure 7.4a shows that the minimum

toughness jump of K I c-2/K I c-1 = 2 cannot stop the buoyant propagation of the fracture. On the

other hand, the high toughness jump (e.g., K I c-2/K I c-1 = 5) creates an indefinitely contained

fracture. Observation of figure 7.5 shows that the stress intensity factor at the propagating
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Figure 7.6: Footprint and opening distribution for the temporarily contained fracture of Set
1 and a toughness Jump of K I c-2/K I c-1 = 5 at t/td = 5.11. The buoyant HF in the upper layer
after the breakthrough is finger-like. A combination of extension and fluid flow into the central
buoyant HF generates a complex opening distribution in the low-toughness layer.

edge K top
I (dark red line) never reaches the fracturing toughness of the upper layer K I c-2. The

state of the fracture upon reaching the interface and the stress jump can explain this behavior.

When the fluid injection has stopped when the fracture encounters the higher toughness layer,

and the fracture accumulates volume at the interface, K top
I increases. As soon as lateral propa-

gation is favored, lateral spreading initiates. If, until this moment, no breakthrough occurred,

the finite volume will spread out and reduce the opening, and hence K top
I , at the point of

contact on the layer. From then on, no more increase in K top
I can occur if no additional fluid

is released, leading to the observed indefinite containment. It is interesting to note that the

same volume released directly into the higher toughness layer would have created a buoyant

fracture (e.g., Bks-2 = 3.14 ≥ 1).

7.4 Stress jump

The case of a stress jump can be treated similarly to a toughness jump. Nonetheless, the

mechanisms are slightly different, as the fracture must penetrate the higher confining stress

layer to feel the change in normal stress. Recent developments based on the seminal work

of Adachi et al. (2010) have shown that pure lateral extension is only possible for toughness-

dominated fractures (Peruzzo and Lecampion, 2023b). In this regime, the fracture penetrates

the higher stress level for a uniform depth from the interface (Peruzzo and Lecampion, 2023b).

Different from this symmetrically contained case with uniform net pressure, we expect the
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Figure 7.7: Footprint and opening distribution for an indefinitely contained fracture with
∆σ = 1.00 (MPa) at t/td = 156. After a limited penetration into the upper layer, the fluid
release ceases. The fracture concentrates in an elongated, nearly elliptical shape just below
the interface of the stress jump.
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7.4 Stress jump

asymmetry of the problem combined with an emerging linear pressure gradient from the

background stress to lead to a penetration depth that decreases from the center to the edges

of the lateral expansion along the interface. Comparing figure 7.7 and 7.6, this prediction is

observed. Even though we expect the same outcomes for both jumps, the breakthrough in the

stress jump case will be related to a penetration depth overcoming the buoyancy length scale.

It is possible to perform an adimensionalization of the stress jump using the characteristic

buoyancy pressure S =∆σ/
(
K 2/3

I c ∆γ1/3
)
. The limiting value of the dimensionless stress jump

S for temporal or indefinite containment will, however, change in function of the state of the

fracture upon reaching the stress jump (the values of Mk̂ , Bks , and D). For ease of simplicity,

we use hereafter the dimensional values of the stress jumps ∆σ.

7.4.1 Simulations of modest and maximum cases

We perform the four simulations (two parametric sets, table 7.1 combined with two values

of ∆σ, table 7.2. Different from the case of a toughness jump (see section 7.3.2), we can only

observe an indefinite containment and an immediate breakthrough (see figure 7.8a). In both

cases, the higher stress jump of ∆σ = 3.0 (MPa) arrests the fracture at depth. Nonetheless,

a transient containment is theoretically possible. As indicated by figure 7.7, we define the

penetration depth as the maximum distance (at the center x = 0) the fracture propagated

into the high confinement layer, which we expect to increase continuously. Figure 7.8b shows

that the evolution of the penetration depth is smooth for the simulations breaking through

immediately and in jumps for the contained fractures. These jumps stem from the spatial

discretization and not the physics of the problem. The definition of temporal containment

and immediate breakthrough for a stress jump must be related to a timescale. As hypothesized,

we expect the breakthrough when the penetration depth overcomes the buoyancy length scale

ℓb-1. From this observation, we arbitrarily define a fracture as temporarily contained when

the breakthrough occurs only after a time larger than t ≥ 2td . Figure 7.8b clearly shows that

for the lower stress jump, breakthrough occurs at a time t < 2td such that we classify it as an

immediate breakthrough. On the other hand, the higher stress jumps generate indefinitely

contained fractures as the penetration depth never reaches ℓb-1.

7.4.2 Temporal containment for set 2

We numerically vary the stress jump between the limiting values of ∆σ= 0.5, and 3.0 (MPa) to

obtain the limit of temporal containment. Figure 7.9 shows the evolution of the penetration

depth of these fractures. One observes that effectively a breakthrough occurs only when

the penetration depth overcomes the buoyancy length scale ℓb-1 = 19.3 (m). The limiting

stress jump to create temporal containment is about ∆σ = 0.80 (MPa). The limiting stress

jump to arrest the fracture is between ∆σ= 0.80 (MPa) and ∆σ= 1.00 (MPa), corresponding

approximately to S ≈ 4.
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Figure 7.8: Evolution of fracture height (a) and penetration depth (b) for simulations encoun-
tering a stress jump. The color code is equivalent to the one described in figure 7.2. (b) Shows
the expected behaviour derived from the analysis of figure 7.9 with no breakthrough if the
penetration depth remains below ℓb-1.
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Figure 7.9: Evolution of the penetration depth for various stress jumps (corresponding to
S ∈ (2.20,13.2) applied to the second parameter set. This evaluation shows that breakthrough
only occurs once the penetration depths overcome the buoyancy length scale ℓb-1.

7.5 Leak-off

The last arrest mechanism considered is fluid leak-off to the surrounding media. We assume

the Carter leak-off model (Carter, 1957) (for a discussion of the model and its validity, see

Lecampion et al. (2018); Kanin et al. (2020) and section 2.2.2) and consider two different sce-

narios. In the first scenario, the leak-off coefficient is constant in the entire domain consisting

of one material only and denoted as C . Second, we investigate the configuration shown in

figure 7.1, where Solid 1 is impermeable, and Solid 2 has a non-zero leak-off coefficient with a

change in leak-off coefficient denoted as ∆C .

7.5.1 Uniform leak-off coefficient

When the injection consists of a finite volume release, a uniform leak-off will always lead to the

arrest of the fracture. We thus focus on the capabilities of uniform leak-off to minimize its final

height. The evolution of a radial fracture under a constant injection rate is well characterized

by a rectangular propagation diagram, depending on only one dimensionless coefficient

(Madyarova, 2003; Detournay, 2016; Dontsov, 2016). The case of a finite volume release was

later described in chapter 3 and extended to the closure of the fracture by Peirce (2022) (based

on Peirce and Detournay (2022)). We restrict our analysis to the possible arrest of the hydraulic

fracture and neglect any phenomena occurring during closure. In chapter 3, we have shown

that a radial fracture arrests immediately upon shut-in of the injection when it is leak-off or

toughness-dominated. Our scaling analysis of the radial, leak-off dominated cases reveals that
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a transition during an ongoing release is possible in all four limiting regimes. On the other

hand, a buoyant fracture during a pulse propagation can only occur if the fracture is viscosity-

and storage-dominated (see the discussion in chapter 3).

Studying first the crosslink injection into a sandstone, with a value of Mk̂ = 236 > 1, the

transition from radial to buoyant of this fracture will be viscosity-dominated. We check if

the transition is in the viscosity-storage dominated regime or the viscosity-leak-off regime

through the examination of the dimensionless leak-off coefficient at the transition

Cm (t = tmm̂) = C ′E ′1/2

Q1/2
o ∆γ1/2

, with tmm̂ = E ′5/7µ′4/7

Q3/7
o ∆γ9/7

. (7.4)

For the material properties of Set 1 (see table 7.1) and the two different leak-off coefficients

(see table 7.2) the corresponding values are Cm (t = tmm̂) = 9.80 ·10−3 for C = 10−6 (m·s−1/2)

and 9.80·10−7 for C = 10−10 (m·s−1/2) respectively. In both cases, the transition is thus viscosity-

storage dominated and happens during the release. Figure 7.10 shows that the influence of

leak-off is negligible up to shut-in (indicated by the ℓ (t ) ∝ t 5/6 power-law). The higher leak-off

simulation (dashed line) then indicates a leak-off caused arrest of buoyant propagation. From

the progression of height growth observed in figure 7.10, we can estimate this arrest at a final

fracture extent of about ℓ f /ℓmm̂ ≈ 55.0, corresponding to ℓ f ≈ 2500 (m) (see the caption of

figure 7.10 for a definition of ℓmm̂). Such a fracture height is above the typical length scale of

other heterogeneities, such as the ones presented herein. Uniform leak-off is thus not efficient

in arresting fracture propagation at depth. We expect uniform leak-off to be efficient only if

the fracture becomes leak-off dominated before the transition to buoyant propagation occurs.

We perform an additional simulation with C = 10−4 (m·s−1/2) which leads to a dimensionless

leak-off coefficient of Cm (t = tmm̂) = 0.98 arresting the fracture radially upon shut-in. The

final extent of this fracture, arrested at depth, would be ℓ f ≈ 130 (m).

As the second set of parameters also generates a fracture transitioning to buoyancy in the

viscosity-dominated regime
(
Mk̂ = 1.68 ·105

)
, we check again the dimensionless leak-off coef-

ficient at the transition (see equation (7.4)) and obtain Cm (t = tmm̂) = 3.19 ·10−2 for C = 10−6

(m·s−1/2) and 3.19 ·10−6 for C = 10−10 (m·s−1/2) respectively. Different from the previous case,

the shut-in occurs at about the time when the fracture becomes buoyant (ts/tmm̂ = 0.51).

Prediction of an arrest at depth before becoming a buoyant fracture is thus difficult for this

parameter set. Using numerical simulations (see figure 7.10), we observe that the high-leak-

off coefficient stops the fracture close to the end of the release. The ongoing propagation

of the high-leak-off fracture after shut-in (blue dots in figure 7.10) is solely related to the

radial fracture becoming toughness-dominated (see section 3.4.3). Fracture arrest for this

high leak-off occurs at about the same time as if the fracture would be perfectly radial (pre-

dicted arrest at t/tmm̂ ≈ 12.1). Observation of the fracture footprint at arrest (see figure 7.12a)

reveals a nearly radial fracture with a maximum height of about ℓ f ≈ 204 (m). The small

leak-off coefficient tends to the finite volume, buoyant, viscosity-dominated fracture height
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Figure 7.10: Fracture height evolution for simulations with a uniform leak-off coefficient as a
function of t/tmm̂ with ℓmm̂ = E ′5/7µ′4/7/

(
Q3/7

o ∆γ9/7
)
. Color code as in figure 7.2.

growth before it accelerates towards the equivalent toughness-dominated fracture growth (at

about t/tmm̂ ≈ 100). The expected arrest of the fracture (when becoming toughness, leak-off

dominated) would occur at t/tmm̂ ≈ 2.22 ·106 at a fracture length of about ℓ f ≈ 5.40 (km)

(corresponding to ℓ f /ℓmm̂ ≈ 50.1). This final height is again beyond the length scales of the

different heterogeneities considered herein, and we expect a combination of effects to arrest

the fracture before.

We can conclude from this section that uniform leak-off as an arrest mechanism is only

efficient if it prevents the fracture from becoming buoyant in the first place. If the fracture

becomes buoyant, the final fracture height becomes of the order of (km). We expect formations

with a small leak-off coefficient to be arrested by different arrest mechanisms, limiting their

buoyant growth.

7.5.2 Jump in leak-off intensity

The previous section revealed the limited capabilities of uniform leak-off to arrest a buoyant

fracture. We now investigate a different mechanism, a change in the leak-off coefficient with

an impermeable injection layer (Solid 1). The buoyant fracture then encounters a layer of

higher leak-off (Solid 2), where the jumps in leak-off intensity are chosen in agreement with

the uniform leak-off coefficients considered. A jump in leak-off intensity is only interesting
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Figure 7.11: Fracture height evolution for simulations with a jump in leak-off coefficient. The
dotted lines show the evolution for uniform leak-off simulations with C = 10−10 (m·s−1/2).
Color code as in figure 7.2.

if the fracture arrests "at the interface". If a fracture propagates long enough into the higher

leak-off layer, the considerations will be equivalent to the uniform leak-off case of section 7.5.1.

Considering still a distance of d = 250 (m), we found that the contact is buoyant, viscosity-

dominated, and when the injection is still ongoing for Set 1 and buoyant, viscosity-dominated

in a pulse regime for Set 2.

Figure 7.11 shows that for the crosslink gel injection into sandstone, the influence of a jump

in leak-off coefficient does not differ from the effect of uniform leak-off. For comparison, we

plot in dotted lines the equivalent simulation with uniform leak-off for C = 10−10 (m·s−1/2) to

emphasize this point. Because leak-off will only act once the fracture has passed into the upper

layer, the final fracture extent for the jump is slightly larger due to the delayed effect of leak-off.

Because we have negligible leak-off-related effects, we consider the encountering of an even

higher leak-off layer with ∆C = 10−4 (m·s−1/2). The corresponding simulation (black dashed

line in figure 7.11) shows that this increased leak-off can arrest the fracture within about 100

(m) of the interface. Compared to the total height of 130 (m) when the same coefficient is used

in the uniform case, the jump is more efficient in arresting the fracture even though the total

fracture height at arrest is more extensive (375 (m)).

The slickwater injection is shown in figure 7.11. This figure shows that fracture growth for these

parameters rapidly stops if ∆C = 10−6 (m·s−1/2). The final fracture height of this simulation

arises to ℓ f = 366 (m), which is about 1.8 times the size obtained for the uniform leak-off case,
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Figure 7.12: Arrested fracture footprint with opening distribution before closure for a uniform
(a) and a jump (b) in leak-off coefficient. The figures use parameter Set 2 and a leak-off
coefficient C =∆C = 10−6 (m·s−1/2).
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whereas the penetration depth is only about 65 (m). Compared to the arrested size in the

case of uniform leak-off (e.g., 204 (m)), the jump is more efficient than continuous leak-off.

The lower jump in leak-off intensity is not distinguishable from the continuous release case

(continuous and dotted red lines in figure 7.11).

Jumps in leak-off intensity seem to arrest a fracture only if an equivalent, uniform value would

arrest the emerging fracture before it becomes buoyant. In these cases, we then observe that

the jump is more efficient. This statement refers to a smaller penetration depth when com-

pared to the final height of a fracture with the same uniform leak-off coefficient. Observation

of figure 7.12, where figure a) shows the arrested footprint of the fracture with uniform leak-off

and figure b) the same for a jump in leak-off intensity validates this statement. The fractured

part entering the high leak-off layer is negligible compared to the total size of the fracture in

the uniform case, indicating that this heterogeneity of leak-off is more efficient.

7.6 Conclusions

We have shown through observation of numerical 3D planar simulations that various arrest

mechanisms can stop buoyant hydraulic fractures. Through a scaling analysis, we derive that

a fracture size-dependent, apparent fracturing toughness (see equation (7.1)) can prevent a

fracture from becoming buoyant but not stop it if it is already buoyant. Interestingly, a jump

in fracturing toughness between two layers (e.g., K I c-2/K I c-1 > 1.0) proves to be a possible

arrest mechanism, even when the total released volume would theoretically be sufficient to

create a buoyant hydraulic fracture in the upper level (e.g. Bks-2 ≥ 1). Our simulations show

that the required jump to arrest a fracture is significant and that an indefinite containment, a

immediate breakthrough, and a temporal containment are possible. The most efficient way

of arresting an already buoyant fracture is when it encounters a positive stress contrast (e.g.,

∆σ> 0.0). For the parametric sets considered within this study, a stress contrast of the order of

∆σ∼ 1.0 (MPa) is sufficient to create an indefinite containment (e.g., S ≈ 3−4). The leaking of

fluid into the surrounding environment will always lead to an ultimate arrest of a finite volume

injection. We distinguish between an arrest at depth before the fracture becomes buoyant in

the uniform leak-off case or at the interface to a different, higher leak-off layer and the final

arrest reached when the fracture evolves as a buoyant hydraulic fracture. We find that the same

values of leak-off are necessary to arrest a fracture when a higher leak-off layer is encountered

or when leak-off is uniform. Generally, modest leak-off values (e.g., C ∼ 10−6 (m·s−1/2)) can

arrest fractures within a reasonable final height and even prevent buoyant propagation. A

single, high leak-off layer (e.g., C ∼ 10−4 (m·s−1/2)) is very efficiently arresting the fractures

considered within a few meters of penetration into it. Our investigation has considered all

effects separately. Most likely, a combination of several of these mechanisms occurs, arresting

buoyant fractures. Even though the volumes of hydraulic fracturing treatments are usually

sufficient to initiate the emergence of buoyant hydraulic fractures, we show that these fractures

rarely present significant uprise due to a series of possible arrest mechanisms.
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8 Conclusions and perspectives

8.1 Main contributions

In this thesis, we have studied the buoyant propagation of planar three-dimensional hydraulic

fractures from a scaling and numerical perspective. In detail, we have investigated the transi-

tion from radial/axisymmetric to uni-directional buoyant propagation of hydraulic fractures

created by a fluid release from a point source.

In the first step, we clarified the behavior of radial hydraulic fractures when the released fluid

volume is finite. We could notably show that in impermeable media, the final arrested size,

opening, and pressure distribution solely depend on the total volume of fluid released and

the fluid and material parameters. The exact history of the release (e. g. the release rate and

duration) do not influence the final fracture characteristics. However, large release rates can

lead to significant propagation of the fracture even after the end of the fluid release. On the

other hand, when the host medium of the fracture is permeable, the final arrested fracture

characteristics are no longer unique for the same fluid volume released. This phenomenon

arises due to the time dependence of the fluid leak-off into the surrounding media. It remains

possible to predict the final extent and shape for any finite volume release may the host

medium be impermeable or permeable. The necessary condition for such a prediction is the

knowledge of the fracturing fluid and host rock properties, total fluid volume released, and

leak-off rate.

The knowledge of the behavior of finite volume radial hydraulic fractures was a necessary

pre-requisite to answer the first research questions addressed in this thesis. To understand

the emergence and shape of buoyant hydraulic fractures, we first restricted ourselves to a

continuous fluid release (e. g. the released volume is infinite) in an impermeable media.

Under these circumstances, all fluid releases become buoyant self-sustained fractures. We

studied their late-time behavior and the transition from radial to buoyant propagation. Our

study confirmed the typical head and tail structure of buoyant fractures previously observed

in two-dimensional (2D) studies. We demonstrated that this problem depends on a single

dimensionless number defining a family of solutions. This dimensionless number is the
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ratio between the energy dissipation rate by the viscous flow in the fracture, and the energy

dissipated to create new surfaces when the fracture becomes buoyant. It measures the energy

split in the fracture’s head and defines the resulting characteristics of the entire fracture. The

tail is always dominated by the viscous fluid flow inside and governs the vertical propagation

velocity of buoyant hydraulic fractures. The emerging family of solutions has two limiting

regimes. In the viscosity-dominated limit where the fracture resistance of the material is

negligible, the fracture grows laterally ad vitæm eternum at a sub-linear velocity, and the

fracture head becomes unimportant to the problem at late times. The other limit has no

solution for a strictly zero fluid viscosity. However, a toughness-dominated regime with a fixed

horizontal fracture breadth and a constant vertical propagation velocity exists. This toughness-

dominated limit shows significant acceleration around the transition from radial to buoyant

propagation and requires long propagation distances and times to establish its finger-like

shape fully. We showed that most natural occurrences and industrial applications fall within

the boundaries of these limiting regimes. On the other hand, laboratory experiments often

suffer from boundary effects and unsteady release rates and can not be allocated to one of

these two limiting regimes.

Combining the first two studies, we answered the question of when a hydraulic fracture

becomes buoyant by investigating finite volume releases. We remained in the framework

of an impermeable media and notably showed that the emergence of buoyant hydraulic

fractures is linked to another dimensionless number. Using scaling arguments, we derived the

uniqueness of the emergence condition and verified our theoretical considerations through a

series of numerical simulations. The answer to the question about the characteristic shape of

finite-volume buoyant hydraulic fractures requires the combination of the two dimensionless

numbers mentioned previously. We could delimit several "regions" within which the combined

set of the two would lead to similar propagation histories of the emerging self-sustained

fractures. We further demonstrated that various combinations of numbers could lead to

comparable late-time behavior, making the interpretation of field data difficult.

Defining the limits when buoyant hydraulic fractures emerge and studying their characteristics

has revealed that a significant range of conditions should favor buoyant propagation, especially

for typical industrial configurations. Nonetheless, observations of anthropogenic buoyant

fractures are rare. We thus used our knowledge of the different characteristics and vertical

propagation velocities of buoyant hydraulic fractures to study the effect of possible arresting

mechanisms. A particular interest was put on fluid leaking off to the surrounding medium,

respectively, solidification of magmatic intrusions. Our numerical simulations revealed a

pulsating advancement of buoyant hydraulic fractures subjected to fluid mass loss (leak-off

or solidification). Based on this observation, we performed a physics-based scaling analysis,

which gave a rationale for why such behavior could exist even for a fluid release at a continuous

rate. We could further show that considering a size-dependent fracture toughness of the

material is a very inefficient mechanism to arrest propagating buoyant hydraulic fractures. Our

evaluations show that the most efficient arrest mechanisms of buoyant hydraulic fractures are

jumps in the minimum in-situ stress (so-called stress barriers) and a depletion of the fracture
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head associated with fluid mass loss by leak-off or solidification. To a lesser extent, changes in

the fracturing toughness can also limit the vertical propagation of buoyant hydraulic fractures.

8.2 Perspectives

The developments presented in this thesis pave the way for other research questions. In

particular, the following research questions could be addressed:

• The post-injection propagation of finite volume radial hydraulic fractures could be

investigated experimentally. This point has already partially been investigated for an

impermeable media (see the recent work of Tanikella and Dressaire (2022); Tanikella

et al. (2023)) but remains open to be explored when leak-off is prominent.

• The available experimental data on the limiting regimes of buoyant hydraulic fractures

due to a continuous fluid release still needs to be increased. Notably, most existing

experiments suffer from boundary effects, and the difficulty in generating a constant

fluid release rate must be resolved. Further, they are generally in an intermediate or

toughness-dominated regime. It would thus be interesting to perform experiments in

the viscous limit of buoyant hydraulic fractures to validate our findings.

• Similarly, experimental validation of the finite volume regimes and the limit on the

critical volume for buoyant fractures to emerge could be beneficial to support the

theory.

• A series of experiments investigating the solidification of buoyant hydraulic fractures

exists (Taisne and Tait, 2011). These experiments show the same pulsation as observed

in the numerical simulations. It would be interesting to compare them with numerical

simulations to prove that the analogy between fluid leak-off and magma solidification

is applicable. In this regard, a study on the limitations of the underlying simplifying

assumptions should be performed theoretically, and additional experimental and nu-

merical data should be collected.

• All considerations within this thesis treat an infinite medium. For questions related to

ascending magmatic intrusion, the incorporation of topographical loads and the free

surface remain to be investigated. These considerations are notably important when

comparing the developed theoretical and numerical findings to field data of magmatic

intrusions and laboratory experiments.

• Our developments have been limited to one point source. This limitation restricts

the modeling of complex systems like the plumbing systems of volcanic edifices. It

remains to be clarified how buoyant hydraulic fractures interact and how they differ if

they do not originate from a single point source. Such considerations notably become

important when applying the theory to dehydrating slabs in subduction zones. The
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accumulation of fluid in such cases starts from a sub-critically growing flaw by an inflow

of overpressurized formation fluid. Modeling such a process would also require the

development of pressure-dependent leak-off type fluid exchange with the host media.

• We have yet to explore the transition from vertical to lateral diking at a neutral buoyancy

line or due to changes in material properties. Theoretical developments to study such

processes are of potential interest to understand the lateral emplacement of magmatic

intrusions. The lateral emplacement often occurs in the form of sills which are laterally

growing intrusions with a horizontal plane of propagation. With the current model, such

a mechanism can not be studied as the plane of propagation is prescribed. Modeling

the transition from diking (vertical propagation) to sill intrusions (horizontal propaga-

tion) would thus require an extension to the current numerical solver to account for

propagation in a plane perpendicular to the originating dyke at the neutral buoyancy

line.

• The limitations of lubrication flow and Newtonian fluids are non-negligible, especially

when applications for magma migration are considered. Extending the present consider-

ations to non-Newtonian fluids and multi-phase flows would be of significant scientific

interest.
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Möri, A., B. Lecampion, and F. Ciardo (2019). “A-seismic fracture growth driven by fluid
injection and remote nucleation of dynamic rupture in a weaker part of the fault”. In:
Third Schatzalp Workshop on Induced Seismicity, SED 2019. Swiss Seismological Service.
5–8 March, Davos, Switzerland.

Outreach / Invited Talks / Seminars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Möri, A. and B. Lecampion (2023). “Birth and Ascent of Buoyant Hydraulic Fractures”.
In:MCE Seminar Talk. Californian Institue of Technology (Caltech). 21 June, Pasadena,
USA.
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