Layer-Wise Learning Framework for Efficient DNN
Deployment in Biomedical Wearable Systems

Saleh Baghersalimi*, Alireza Amirshahi*, Tomas TeijeiroT, Amir Aminifarf, David Atienza*
*Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
TBasque Center for Applied Mathematics (BCAM), Bilbao, Spain
YLund University (LU), Lund, Sweden
*{saleh.baghersalimi, alireza.amirshahi, david.atienza} @epfl.ch, Ttteijeiro@bcamath.org, famir.aminifar @eit.Ith.se

Abstract—The development of low-power wearable systems
requires specialized techniques to accommodate their unique
requirements and constraints. While significant advancements
have been made in the inference phase of artificial intelligence,
the training phase remains a challenge, particularly for biomed-
ical wearable systems. Traditional training algorithms might
not be suitable for these applications due to the substantial
memory requirements and high computational costs associated
with processing the large number of bits involved in neural
network operations. In this paper, we introduce a novel learning
procedure specifically designed for low-power wearable systems,
dubbed Bio-BPfree (deep neural network training without back-
propagation for low-power wearable systems). Using a two-class
classification task, Bio-BPfree replaces conventional forward and
backward backpropagation passes with four forward passes, two
for data of the positive class and two for data of the negative
class. Each layer is equipped with a unique objective function
aimed at minimizing the distance between data points within the
same class while maximizing the distance between data points
from different classes. Our experimental results, which were
obtained by conducting rigorous evaluations on the MIT-BIH
dataset that features electrocardiogram (ECG) signals, effectively
demonstrate the superior performance and suitability of Bio-
BPfree for two-class classification tasks, particularly within the
challenging environment of low-power wearable systems designed
for continuous health monitoring and assessment.

Index Terms—Low-power wearable systems, Training algo-
rithms, Memory requirements, Deep neural networks.

I. INTRODUCTION

Neural network training on low-power wearable devices
boasts numerous benefits, such as continuous on-device train-
ing that allows learning without a cloud or external server
connection. This results in reduced latency and improved
responsiveness and is vital for real-time applications. On-
device training also mitigates privacy concerns by limiting
sensitive data transmission and leads to energy savings by
avoiding data transfer and processing on external servers.
These advantages are crucial for devices with limited battery
life and contribute to enhanced performance in personalized
neural networks.

Training neural networks for edge devices is an active
research area due to various challenges. During training, neural

This work has been supported by the FVLLMONTI EC project (grant
no. 101016776) and the RESoRT project of Botnar Foundation, the grant
RYC2021-032853-1 funded by MCIN/AEI/ 10.13039/501100011033, the Eu-
ropean Union NextGenerationEU/PRTR, and the WASP Program funded by
the Knut and Alice Wallenberg Foundation.

networks require more bits for data representation, increasing
resource needs. Implementing backpropagation with optimiza-
tion methods like SGD [1] or Adam [2] is problematic.
Computing gradients for a layer requires gradients from the
next layer, which delay weight updates. This process is time-
consuming and presents significant challenges for edge devices
with limited processing capabilities and memory.

Powerful algorithms such as SGD [1] and Adam [2], along
with large datasets, facilitate neural network training; however,
challenges arise when applied to low-power wearable devices.
State-of-the-art deep learning frameworks typically rely on
high-power GPUs, essential for frameworks like Squeeze
and Excitation networks [3], CycleGAN [4], and Parallel
WaveNet [5]. These frameworks’ exceptional results are due
to GPUs’ computational power, but incorporating GPUs into
edge devices is problematic due to high power consumption.

Human decision-making involves considering current obser-
vations and past experiences, which current neural networks
and deep learning algorithms do not emulate. Humans use
their senses to make decisions during everyday tasks and
efficiently transfer knowledge between tasks. Current deep
learning models lack this efficiency, so there is a need to
develop models that simulate human-like learning processes
for increased adaptability and effectiveness across scenarios.

In this research article, we introduce an innovative approach
to train deep neural networks without relying on backpropa-
gation. We propose a layer-wise training strategy that takes
advantage of locally generated errors, allowing independent
training of each layer and updating hidden-layer weights
during the forward pass. By employing local loss functions,
we negate the need for gradient backpropagation to preceding
layers. Our approach aims to maximize the distance between
distinct categories while minimizing intra-category distances
in feature spaces, fostering valuable representations within
hidden units for precise binary classification.

II. LAYER-WISE LEARNING FRAMEWORK FOR DNN
DEPLOYMENT TO LOW-POWER WEARABLE SYSTEMS

We introduce Bio-BPfree, an innovative approach for train-
ing Deep Neural Networks (DNNs) for binary class classifi-
cation, eliminating the need for backpropagation. Rather than
propagating errors globally, each weight layer is trained using
a local learning signal that is not back-propagated throughout

Layer 1
: class + — conviD
x5 : class +—] Output:
x5 : class — —»| f'(x1): feature map of xi°
fh(x3): feature map of x5
fh(x3): feature map of x5
fl1(x7): feature map of xj

xg : class — —

l

Fully connected layer

Layer 2

conviD

softmax [(l]] class +

—]

Layer 2
Layer 2]

Output: .
f'2(xi): feature map of norm(f'1 (x1))
Fl2(x}): feature map of norm(f (x3))
f'2(x3): feature map of norm(f'1 (x3))
Fl2(x7): feature map of norm(f (x7))

l

[(1)] class —

Loss layer 1:
distance | (f'(x}), f11(x3)), distance | (f'*(x3), f(x7)),
distance T (f(x]), f(x3)), distance 1 (f1(x), f1(x7)),
distance T(f"(x}), f1(x3)), distance 1 (f1(x3), f1(x;))

Loss layer 2:
distance | (f'2(x{), f'2(x3)), distance | (f'2(x3), f'2(x3)),
distance T (f'2(x}), f2(x3)), distance T (f2(x), f'2(x7)),
distance T(f2(x3), fl2(x;)), distance T (f12(x3), f2(x7))

Loss FC layer:
Cross-entropy loss

Fig. 1: Example of the proposed learning process of layers in a neural network. Each layer has its loss/objective function, which is to
minimize the distance between samples from the same category and maximize the distance between samples from different categories.

the network. Let D : {x1,..,2,}, where D is the training set
and x; € R are the samples with length L. The goal of the
main detection task is to predict the output of y; € R? where y;
shows the class of the corresponding input z;. In Bio-BPfree,
we modify the task as follows. In each training iteration of Bio-
BPfree, we take a random subset D : {27, x4, 25,2, } C D.
The samples =i and 23 are sampled from the distribution
p(x;|y; = 1) and similarly, the samples x5 and z,; are from
the distribution p(z;|y; = 0). Each sample of the subset D is
applied to the model one, by one and the intermediate outputs
fle (x;t) are extracted for every layer, where [, represents the
k-th layer.

We employ a distance-based loss function to train each DNN
layer, using the subset of D in each iteration, as illustrated in
Fig. 1. The loss function is defined as follows:

cle = d(f (), (@) + d(f* (@5), ()
+ 30 > d(), @),

i=1,2j=3,4

where d(.,.) denotes the distance function. This loss function
aims to minimize the distance between samples of the same
class while maximizing the distance between samples of
different classes.

In this study, we assess the performance of Bio-BPfree in the
context of an end-to-end Deep Neural Network model called
Res1DCNN [6]. ResIDCNN consists of 13 convolutional
layers and a fully connected layer for binary classification.
To facilitate DNN training on low power wearable systems,
we implemented a layer-wise training strategy in Bio-BPfree.
We train the layers sequentially, starting with layer #1 and
proceeding to layer #2 and so on. For each layer, the loss
function assesses the similarity matching of the feature maps
employing the distance L1 for all possible combinations of
the four samples from the two classes. The objective is to
minimize the L1 distance for combinations containing sam-
ples from the same class while maximizing the distance for
combinations with samples from different classes, achieved by
minimizing the inverse L1 distance. In the final layer, which
comprises a fully connected layer, the loss function quantifies
the cross-entropy between the prediction generated by a local
classifier and the corresponding target. A potential challenge
arises when the activities of the first hidden layer contain

all the necessary information for classification, rendering it
redundant for subsequent layers to learn new features. To
address this issue, we introduce a normalization step that
removes this information, encouraging subsequent layers to
rely on the relative activities of the neurons in the first hidden
layer [7], [8].

Our approach replaces backpropagation, reducing compu-
tational demands and enabling DNN training on low-power
wearables. We aimed to assess Bio-BPfree as an alternative for
low-power DNN development, finding performance compara-
ble to traditional backpropagation on the MIT-BIH dataset.
This highlights the potential of distance-based learning as a
backpropagation substitute. Although not a primary focus, we
also mention Bio-BPfree’s applicability in distributed learn-
ing scenarios. Here, the model is divided among multiple
devices, each handling specific layers, and they communicate
to exchange intermediate outputs, ensuring synchronized and
uniform training across all devices.

III. EXPERIMENTAL SETUP

We tested our method on the PhysioNet MIT-BIH Ar-
rhythmia database [9], with ECG signals from 48 subjects.
Using ECG lead 11, classes N and V, and leave-one-out cross-
validation, we evaluated binary classification in 21 patients
with over 40 beats in class V. Class N includes NORMAL,
LBBB, RBBB, AESC, and NESC, while Class V covers PVC
and VESC. Preprocessing involved extracting and normalizing
ECG waves, splitting into heartbeats without filtering or noise
removal. Models were trained on these segments, initializing
weights from a normal distribution and biases at zero, opti-
mizing inter-class correlation and sample distances. Training
utilized the Adam optimizer with a learning rate of 1074

IV. EVALUATION

The evaluation of the proposed Bio-BPfree method encom-
passes two main aspects: an examination of how the approach
can effectively learn without backpropagation, and a compar-
ison with state-of-the-art algorithms, such as those described
in [10], [11], on the MIT-BIH database. The evaluation focuses
on understanding learning curves, visualizing output space
through PCA, and comparing classification performance and
computational costs.

8 o

—_ caie;cryN :"?" o < — category N

—— category V. ,f * —— category V
(a) Epoch 1 (b) Epoch 20

Fig. 2: Visualization of DNN feature clusters in the last layer using
PCA for epoch 1 and 20.

A. Effectiveness in Learning without Backpropagation

1) Feature Distribution Analysis Through Principal Compo-
nent Analysis (PCA): Investigating DNN feature visualization
through semantic clustering is vital in deep learning research.
Semantic clustering groups features based on meaningful rela-
tionships rather than numerical similarity alone. In this study,
we use PCA to reduce the dimensionality of DNN-learned
features and visualize them in a lower-dimensional space.
PCA identifies the most significant feature variation directions
and projects features accordingly, facilitating interpretable
structure analysis.

Figure 2 shows the DNN’s last-layer feature visualization
using PCA at epochs 1 and 20. Neuronal activations are
extracted for input data points, and PCA identifies and projects
the principal components into a lower-dimensional space. Scat-
ter plots reveal the feature distribution in this space. Figure 2a
shows random patterns of last-layer features in epoch 1,
while Figure 2b in epoch 20 reveals distinguishable clusters
according to image content. These clusters represent the two
data classes, indicating that high-level DNN representations
contain information for accurate signal classification.

By comparing the features of ResIDCNN trained with Bio-
BPfree and backpropagation, this visualization reveals how
the proposed method allows for effective learning without
backpropagation.

2) Analyzing Layer-Wise Learning through Loss Function
Examination: Examining the loss function in neural network
training is key to understanding performance and identifying
issues. Often visualized through a loss curve, this study looks
at loss function variation across layers to grasp how they learn
differences between categories and similarities within them.
This analysis helps identify layers needing refinement to im-
prove overall model performance. By minimizing each layer’s
loss through weight and bias adjustments during training, the
examination of loss per layer offers insights into the learning
process and potential areas for enhancement.

In this study, the deep neural network (DNN) processes four
samples per iteration, including two from Class I (A, B) and
two from Class II (C, D). Each layer’s loss function has six el-
ements, with two reflecting same-class sample distances ([Al,
B1] and [C1, D1]) and four for different-class samples ([Al,
Cl1], [Al, D1], [B1, C1], and [B1, D1]). Figures 3a and 3b
show the loss variation for same-class samples, revealing
only latter layers learn similarities within the class. Figure 3c

0020

0012

0010

B0 20 To 3o 20 30 % B %0
Iterations Iterations

(a) Category N & N (b) Category V & V

00 150 200 250 00 350 400

Iterations
(c) Category V & N

Fig. 3: Variation of loss function across ResIDCNN layers for Intra-
Class and Inter-Class sample comparisons.

illustrates different-class sample loss variation, indicating all
layers learn differences between classes. These insights guide
the DNN’s layer-wise learning process, assisting in optimizing
architecture and training for various applications.

B. Comparison with ResIDCNN Trained with Backpropaga-
tion

1) Computational and Memory Costs: In this study, we
compare the ResIDCNN model trained using the Bio-BPfree
method (without backpropagation) to the ResIDCNN model
trained with backpropagation, focusing on computational and
memory costs. The comparison begins with assessing the num-
ber of trainable parameters in each model, as this metric offers
a rough approximation of the memory required for model
storage. Generally, a network with fewer parameters demands
less memory. As shown in Table I, the ResIDCNN model
trained with backpropagation requires 8.72 megabytes to store
parameters in 14 layers. Conversely, the ResIDCNN model
trained with Bio-BPfree shows variable memory requirements
for parameter storage, ranging from 0.002 megabytes for the
least demanding layer to 3 megabytes for the most demanding
layer, as each layer is trained individually.

The memory assessment goes beyond considering model pa-
rameters alone, including the storage of intermediate gradients,
activations, and feature maps. As illustrated in Table I, the total
memory usage for the ResIDCNN model trained using back-
propagation reaches 17.81 megabytes. In contrast, the total
memory consumption with Bio-BPfree varies between 0.095
megabytes and 3.0137 megabytes. This substantial decrease
in memory requirements enhances the feasibility of training
deep neural networks, making them well-suited for biomedical
wearable systems.

Computational costs of both backpropagation and the Bio-
BPfree method were compared using FLOPS, as outlined
in Table I. Calculations were performed with TensorFlow

TABLE I: Comparative analysis of ResIDCNN trained with backpropagation and ResIDCNN trained using Bio-BPfree: Computational and

Memory Costs

Memory for training FLOP
Training method #Layers Parameters Gradients Feature map Sum Reduction | Forward Backward Sum Reduction
Backpropagation 14 8.72 Mbytes 8.72 Mbytes 0.3737 Mbytes 17.81 Mbytes - 457TM 457TM 914 M -
Bio-BPfree 1 (lightest layer) | 0.002 Mbytes 0 0.0930 Mbytes 0.095 Mbytes 99.47%, 897 0 897 99.99%.,
Bio-BPfree 1 (heaviest layer) | 3 Mbytes 0 0.0137 Mbytes 3.0137 Mbytes 83.09% J | 1.57 M 0 1.57M 82.8%]

1.14, profiling both forward and backward operations. For
one iteration, the Bio-BPfree method needed significantly
fewer FLOPS than traditional backpropagation, indicating
lower computational demands. It also required fewer FLOPs
than state-of-the-art networks like EfficientNet and MobileNet,
emphasizing the efficiency of Bio-BPfree as an alternative
to both conventional and modern resource-saving techniques.
These tests were conducted in Python 3.6 within a virtual
environment to ensure consistency across the development
process.

2) Classification Performance: In this study, we compare
the performance of ResIDCNN trained with backpropagation,
Bio-BPfree, and algorithms from [10] and [11] using the MIT-
BIH database. The comparison is visualized using box plot
data in Fig 4.

While ResIDCNN trained with Bio-BPfree shows slightly
inferior performance compared to backpropagation, it provides
reduced computational and memory costs, making it more
suitable for wearable systems. Moreover, Bio-BPfree has the
highest median sensitivity (97.67) compared to the other
algorithms, with fewer low-sensitivity cases.

Algorithm [11] boasts the highest median specificity
(99.87), and the narrowest range of specificity values (lower
quartile 99.53, upper quartile 100) compared to algorithms
Bio-BPfree (lower quartile 95.77, upper quartile 99.76)
and [10] (lower quartile 93.29, upper quartile 99.62), indi-
cating more consistent performance across cases.

Furthermore, algorithm Bio-BPfree has the highest median
geometric mean (97.87) compared to the algorithms [10]
(95.77) and [11] (98.15), with a similar range of geometric
mean values to the algorithm [11] (lower quartile 96.12, upper
quartile 99.01). Algorithm [10] exhibits a wider range (lower
quartile 87.06, upper quartile 98), suggesting more inconsis-
tent performance. Overall, algorithm Bio-BPfree shows better
performance in terms of sensitivity and geometric mean, while
algorithm [11] leads in specificity. Algorithm [10] generally
performs the worst among the four algorithms in all perfor-
mance metrics.

V. CONCLUSION

This paper introduced the Bio-BPfree learning procedure,
designed for training deep neural networks in low-power medi-
cal wearables. Bio-BPfree replaces conventional backpropaga-
tion with a more efficient method, using four forward passes
for two-class tasks. Although ResIDCNN trained with Bio-
BPfree shows slightly inferior performance, its reduced com-
putational and memory costs make it preferable for biomed-
ical wearables. The Bio-BPfree algorithm offers comparable

Detection Results on MIT-BIH Arrhythmia Database

HSen WSpe HGmean

Tmom oy

Results of ResIDCNN
with Backpropagation

Results of ResIDCNN
with Bio-BPfree

Results of [10] Results of [11]

Fig. 4: Performance comparison of algorithms Res1DCNN trained
with backpropagation, ResIDCNN trained with Bio-BPfree, [10],
and [11] on MIT-BIH Arrhythmia Database in terms of sensitivity,
specificity, and geometric mean. Box plots illustrate the distribution
of performance metrics, with medians, lower and upper quartiles, and
outliers for each algorithm.

accuracy to traditional methods, but with significantly lower
memory consumption, making it a viable option for resource-
limited systems in efficient biomedical signal analysis.

REFERENCES

[1] Léon Bottou. “Large-scale machine learning with stochastic gradient
descent”. In: Proceedings of COMPSTAT 2010. Springer, 2010, pp.
177-186.

[2] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[3] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-excitation networks”. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018, pp. 7132-7141.

[4] Jun-Yan Zhu et al. “Unpaired image-to-image translation using cycle-
consistent adversarial networks”. In: Proceedings of the IEEE interna-
tional conference on computer vision. 2017, pp. 2223-2232.

[5] Aaron Oord et al. “Parallel wavenet: Fast high-fidelity speech synthesis”.
In: International conference on machine learning. PMLR. 2018, pp.
3918-3926.

[6] Saleh Baghersalimi et al. “Personalized Real-Time Federated Learning
for Epileptic Seizure Detection”. In: IEEE Journal of Biomedical and
Health Informatics (2021), pp. 1-1. DOI: 10.1109/JBHI.2021.3096127.

[7] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer
normalization”. In: arXiv preprint arXiv:1607.06450 (2016).

[8] Matteo Carandini and David J Heeger. “Normalization as a canonical
neural computation”. In: Nature Reviews Neuroscience 13.1 (2012), pp.
51-62.

[9] George B Moody and Roger G Mark. “The impact of the MIT-BIH
arrhythmia database”. In: IEEE engineering in medicine and biology
magazine 20.3 (2001), pp. 45-50.

[10] Naif A. Alajlan et al. “Detection of premature ventricular contraction
arrhythmias in electrocardiogram signals with kernel methods”. In:
Signal, Image and Video Processing 8 (2014), pp. 931-942.

[11] M Sabarimalai Manikandan et al. “Robust detection of premature
ventricular contractions using sparse signal decomposition and temporal
features”. In: Healthcare Technology Letters 2.6 (2015), pp. 141-148.

