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ABSTRACT

In the field of image acquisition, Dynamic Vision Sensors (DVS) present an innovative methodology, capturing
only the variations in pixel brightness instead of absolute values and thereby revealing unique features. Given
that the primary deployment of DVS is within embedded systems characterized by their constrained transmission
and storage capabilities, the emphasis on data compression becomes significant. Nonetheless, such a compression
could potentially compromise the efficacy of computer vision (CV) applications. This study investigates the
implications of a lossy compression technique, premised on point cloud representation, for event data in CV
tasks. Multiple scenarios under various compression intensities are applied to event data, and the experiments
indicate the feasibility of attaining reduced bitrates while incurring minimal impact in CV task performance.
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1. INTRODUCTION

The world has observed in the past decades an explosion in the amount of media being produced, transmitted,
and stored. Frame-based cameras are, among many other technological advancements, responsible for this
phenomenon, and have been used to acquire vast amounts of dynamic visual information. The produced digital
data is usually represented as a succession of two-dimensional arrays of pixels, with a sampling rate high enough
to fool the human vision system into perceiving it as continuously change over time. This frame rate is constant
and specified by an external clock, typically at around 30 frames per second or more (fps).

While such cameras are adequate for many scenarios, some applications where the brightness of the scene
can change faster than the Nyquist rate require shorter response times, and increasing the frame rate indefinitely
would result in impractical amounts of data. Event cameras, also known as Dynamic Vision Sensors (DVS), are
interesting alternatives in these cases. Instead of recording the entire field of view at a fixed frequency, DVS
records changes in the measured intensity of the brightness over independent individual pixels asynchronously.
This biologically-inspired approach makes DVS capable of achieving very high temporal resolutions and dynamic
range, as well as low latency and reduced power consumption. These novel characteristics bring new possibilities
for all kinds of applications and various research activities have been conducted to apply DVS to classic computer
vision (CV) tasks, such as recognition, segmentation, and reconstruction.

Data generated by DVS are represented as events that contain the location and timestamp of brightness
changes. Each event is triggered when the brightness of a pixel either increases or decreases by a value equal to the
contrast sensitivity C. In the Address Event Representation (AER) protocol, the event contains the coordinates
(x, y) of the pixel, the timestamp t when the event occurs, and the polarity p of the lightness variation, which is
set either to 1 or −1 and refers to the direction of the brightness variation (C or −C, respectively). Considering
the different requirements on the resolution of raw event data, 96 or 64 bits are used to represent the tuple
(x, y, t, p), where 1 bit is assigned to indicate polarity, 64 or 32 bits are assigned to timestamp and the rest used
to signal spatial coordinates. Since they do not use synchronous clocks for data transmission, event cameras can
record events, usually with a precision of microseconds. When the spatial resolution is also increased, the amount
of output data can also be a burden for transmission and storage, especially for embedded systems with limited
resources. Therefore, finding efficient compression methods for event data streams is important to several DVS
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applications. While general-purpose entropy coding and integer coding compression algorithms can be utilized,
methods specifically developed for event data compression have demonstrated increased performance.

Several approaches proposed in the literature conduct lossless compression of event data, allowing for complete
recovery of the information at the decoder side. However, the resulting compression ratio of such techniques is
low and does not meet the requirements of some applications, which have to rely on lossy approaches in order to
enable higher compression. Among the specifically designed methods, time aggregation is one of the most popular
strategies, where events during a fixed time interval are combined into one event frame (EF) and conventional
image coding is applied to compress them. However, the time interval is fixed for EFs, and thus such methods
cannot maintain the native time resolution of event cameras. Recent works1,2 resorted to the representation of
event data as point clouds, casting the time values as a spatial dimension and denoting each event by coordinates
(x, y, t), which are then encoded with lossless or lossy point cloud compression methods.

The impact of compression methods on the quality of regular images is usually measured by objective quality
metrics or by subjective experiments. However, since event data is not made for direct visualization for humans,
it cannot be evaluated neither subjectively nor objectively through image-based metrics such as PSNR or SSIM.3

One meaningful alternative that has not been explored in the literature is to assess the impact of lossy compression
on the performance of state-of-the-art CV algorithms, which are usually applied only to the original and therefore
undistorted event data.

This paper presents an evaluation study of the impact of a lossy event data compression method on the
performance of four distinct vision tasks representative of several important applications: recognition, video
reconstruction, optical flow estimation, and depth estimation. A dataset containing event data sequences is
selected, represented as point clouds following the pipeline proposed in,1 and compressed with G-PCC4 using
lossy configurations. The decoded sequences are then fed to state-of-the-art algorithms for the selected vision
tasks. Their performance is evaluated using different metrics and compared to the case where uncompressed
data is used as input, allowing to draw conclusions on the impact of such compression methods in practical
applications.

2. RELATED WORK

2.1 Event based Vision

The paradigm shift brought by event data when compared to dense images has opened new perspectives in many
applications relying on computer vision tasks, especially those requiring higher speed and lower latency. However,
the sparse nature of such data calls for the adaptation of image-based algorithms to handle brightness variations
rather than absolute pixel values. For example, object and shape recognition are challenging tasks in event
cameras. Most current datasets for frame-based images are acquired with static camera and scene, a condition
where DVSs are not likely to perform well as events are generated by moving edges. In contrast, they would
probably excel in applications with moving objects or cameras where motion blur would affect the performance
of traditional frame-based cameras. However, such evaluation conditions have not yet been adequately defined,
and the lack of large-scale annotated datasets remains a challenge.

Even so, research in the field has been improving the performance of such algorithms. Early works performed
template matching for the detection of known simple shapes.5,6 Other researchers7 have relied on a similar
approach to detect low-level features, which are then used to recognize more complex shapes with a classifier.
Learning-based methods can obtain images from the events prior to recognition8 or convert a trained network
into a spiking neural networks (SNN) that can take event data as input.9 In this work, we evaluate a method10

that converts an event stream into a set of points lying on a three-dimensional grid using differentiable operations,
which is then used in combination with recognition methods based on convolutional networks and trained end-
to-end.

Another example is video reconstruction, which is a task that, in an ideal noise-free scenario, can be eas-
ily computed by integrating the events over time, requiring the initial offset image containing absolute values.
However, past work has demonstrated that it is possible to estimate brightness from input events even without
an initial condition.11 Early works12 reconstructed images with events obtained by a rotating camera on static
scenes. In more recent efforts,13 regularization has been added, enabling the model to operate in any type of



camera movement and scenes containing dynamic objects by performing both brightness and optical flow esti-
mation. Recent learning-based approaches14 replaced hand-crafted regularizers with learned functions obtaining
better image quality. Studies15 have also demonstrated that the images generated by such methods can become
input to CV algorithms such as objective classification or visual odometry and achieve better performance when
compared to directly using event data. This method15 is taken as the basis for evaluation in this paper.

Event cameras are naturally suitable for motion analysis tasks, such as optical flow estimation, in which the
velocity of objects in the image plane must be computed. If with conventional images, the flow can be derived
from solving sets of equations obtained through the spatial and temporal derivatives over two consecutive frames,
event data contain neither absolute brightness nor spatially continuous information across all pixels in a given
region of space. However, DVS is very attractive for this task since it provides edge information in a more direct
way, crucial for a correct estimation of optical flow. Early works16 attempted a direct adaptation of image-based
algorithms for event data, but the small number of events generated when an edge crosses a pixel hinders the
estimation of spatial and temporal derivatives of the brightness, resulting in inconclusive results. The work
from17 takes into account the geometrical distribution of events and considers that the movement of an edge
can be represented by a surface in the xyt volume. The optical flow can then be extracted from a plane fitted
to the event data in this three-dimensional space. Recent methods have leveraged the vast amount of data
available in current datasets to develop algorithms based on deep learning, which are trained with event data
either supervised18 by image data captured by a DAVIS camera or in an unsupervised manner.19,20 A recent
approach21 has proposed an image-event fusion model allowing the prediction of optical flow both dense in space
and continuous in time and is used for the evaluation conducted in this paper.

In addition, event data can be used for 3D vision tasks, such as depth estimation and simultaneous localization
and mapping (SLAM). The problem of depth estimation using DVS has been mainly addressed by two categories
of methods: instantaneous stereo or monocular. The majority of the works in the literature focus on the first
class, where two event cameras are placed at a fixed known distance between each other and share the same
clock, meaning that the timestamp of one event captured by both cameras is related to the same reference. These
works usually follow a two-step approach: the events from the two cameras are matched, and then the spatial
position of the point is obtained through triangulation. The first step is usually the most computationally heavy
and therefore different algorithms have been suggested to accomplish this task. Local methods22,23 compare the
neighborhoods of different events in both cameras to determine if they correspond to the same spatial location.
However, they are prone to ambiguities, and global methods that consider additional constraints tend to produce
better results. In this category, there are extensions24,25 of the cooperative stereo algorithm26 and methods based
on belief propagation over Markov Random Fields.27,28 Recent works have also proposed to integrate data from
LiDAR sensors, which already measure depth at sparsely distributed points. The event data is in this case used
to enhance the results obtained with LiDAR. The work presented in29 uses both convolutional and recurrent
neural networks for this integration, predicting much denser depth maps, and is adopted for evaluation in this
paper.

2.2 Event Data Compression

In the first lossless compression strategy for event data,30 the authors designed two different modes termed
Address-Prior (AP) and Time-Prior (TP) to deal with the spatially decentralized data stream and spatially
centralized data stream separately. For each macro cube formed by accumulated event data of a certain time
interval, the two modes are applied synchronously and the one achieving the better compression performance is
selected. A CABAC entropy encoder is cascaded to generate the final bitstream.

On the other hand, aggregating event data of fixed time intervals into event frames (EFs) is meaningful
for high-level tasks, and conventional video coding can be applied to these EFs. In an effort to leverage the
performance of popular video compression standards,31 a method was proposed where the pixels of produced
EFs record the number of event data during a time interval, producing two different EFs concurrently according
to their polarity. They are then concatenated into one superframe and the sequence of superframes is encoded
by frame-based video coding, such as HEVC. Schiopu et. al.32 also proposed using EFs to compress DVS data.
A more efficient data structure of up to eight EFs is introduced and a binary map signaling the positions where
at least one event occurs in the EFs is used to relieve the sparsity of the DVS data stream. Besides, the number



of events for each signaled position and their EF index are also encoded together by conventional video coding.
Another compression method was introduced33 where, at the encoding stage, events are first aggregated over time
to form polarity-based event histograms. A quadtree (QT) segmentation map derived from the adjacent intensity
images is then used to solve the lack of spatial structure of event data. The histograms are variably sampled via
Poisson Disk Sampling and the entropy coding strategy is cascaded to further improve the compression ratio.

Though specifically designed for the DVS data stream, the above-mentioned methods are based on aggregated
EFs, leading to a loss of time resolution. If the event data is aggregated via a fixed time interval, it is difficult
to satisfy different computer vision tasks with different time resolution requirements. Besides, the sparsity of
DVS data makes conventional video coding designed for video frames of dense pixels inefficient. Recent works1,2

proposed to regard event data sequences as a sequential sparse point cloud with coordinates of (x, y, t) and utilize
point cloud encoding such as G-PCC4 to compress the event point cloud. Since the sparsity of the event data is
similar to point clouds, which suit the characteristics of the point cloud coding, time and space redundancy can
be significantly reduced leading to high compression ratios.
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Figure 1. The proposed assessment pipeline.

3. PROPOSED ASSESSMENT PIPELINE

To assess the effect of lossy compression on event data, the event stream is restructured into a 3D point cloud
representation, where the timestamp t serves as the third axis. Subsequently, point cloud coding techniques are
applied to the resulting event point cloud at varying levels of lossy compression. The decompressed versions are
then reverted back to their original format for subsequent testing. The assessment pipeline is depicted in Fig.1.
This section expounds on the background of point cloud compression (PCC) and the critical stages within the
proposed assessment pipeline.

3.1 Point Cloud Compression

A point cloud is a data structure that comprises numerous distinct points, with each point containing coordinates,
known as geometry information, and additional features such as color or reflectance, referred to as attributes. In
an effort to enhance storage and transmission efficiency, point cloud compression techniques have been proposed
to exploit the inherent redundancy within 3D space. Two distinct approaches exist for point cloud compression:
one directly compresses the 3D data structure, while the other projects 3D data onto 2D planes and subsequently
employs conventional 2D video coding.

The Moving Picture Expert Group (MPEG) has been involved in the standardization of Point Cloud Compres-
sion (PCC) since 2018, developing two coding approaches tailored to distinct point cloud application scenarios.34

One approach, Video-based PCC (V-PCC), is specifically designed for dynamic point clouds, while the other,
Geometry-based PCC (G-PCC), is intended for static and dynamically captured point clouds, such as those
derived from LiDAR sensors. V-PCC relies on 3D-to-2D projections, better suited for dense point clouds where
points are primarily situated on the surface of the 3D object. Indeed, point clouds with a significant number of
inner points may lead to overlapping projections on 2D frames, resulting in a reduction of reconstruction quality.

Contrasting with V-PCC, G-PCC employs an octree structure to partition the point cloud into recursive
cubes. G-PCC is better suited to irregular and sparser point clouds, mirroring the sparsity inherent in event



data. Furthermore, the octree structure in G-PCC enables it to encode all points of the 3D object directly,
thereby enhancing its utility for a broader range of data that resemble point cloud structures.

Draco serves as another prevalent codec for 3D object compression. It compresses point clouds by transforming
them into mesh structures and subsequently performs mesh compression. Draco’s compression speed notably
outpaces that of both V-PCC and G-PCC. However, since it was originally designed for mesh compression,
managing the distortion in Draco is more challenging when compared to its counterparts.

With the advancements in machine learning and deep learning techniques, neural networks have also been
used in the field of PCC. Numerous studies have focused on leveraging Deep Neural Network (DNN)-based PCC
strategies. A significant proportion of these DNN-based methods employ the architecture of an auto-encoder,
incorporating residual blocks and attention mechanisms to enhance compression performance. Importantly, some
of these DNN-based methods can process the point cloud in its raw data structure, eliminating the necessity
for voxelization. This attribute of DNN-based techniques effectively prevents the loss usually introduced by
coordinate quantization.

From the findings of our preliminary experiments,1 G-PCC was selected as the point cloud coding in this
paper. This decision was influenced by Draco’s observed suboptimal compression rates and its challenging
controllability. Additionally, compared to handcrafted models, DNN-based approaches manifested reduced gen-
eralization capabilities.
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Figure 2. The framework for event data compression method based on point cloud representation. In this framework, two
point clouds are generated based on polarity and each compressed separately.

3.2 Coding Procedure

The overall methodology for event compression is illustrated in Fig.2. The initial stage involves the construction
of a tridimensional point cloud representation for the event data by considering the timestamp as a third dimen-
sion. It has been suggested by35 that event data of identical polarity exhibit more robust spatial and temporal
correlations. This is due to the fact that points belonging to a single object are likely to exhibit synchronous
movements, thus resulting in events of a consistent polarity in space, which subsequently persist over time. As
a result, events are segregated according to their distinct polarities - positive or negative - and two individual
event point clouds are generated.

To keep the consistence of the values of timestamp comparable to spatial coordinates in their order of magni-
tude, the timestamp of each event point is multiplied with a scaling factor, and the event point cloud is centralized.
To fragment the continuous event data stream into discrete point cloud frames, events are accumulated to a fixed
quantity, thus yielding an event point cloud comprising a constant number of points.

The parameters mentioned above are determined based on experimental findings.1 The encoding procedure
for the proposed method can be summarized as follows. The incoming event data stream is accumulated up
to a predetermined threshold, thus creating a three-dimensional point cloud with coordinates (x, y, t). This is
followed by scaling and centralization operations to ensure that the coordinate range of the generated event point
cloud is suitable for the subsequent point cloud encoding. Once the event point cloud is generated, a point cloud
encoder is employed to compress the event point clouds at varying loss levels. This is achieved by adjusting
different quantization scale parameters.



The decoding procedure is essentially the inverse of the encoding process. During this stage, the decompressed
bitstream is reconverted into its original format, albeit with some information loss as a consequence of the lossy
compression. An advantage of such a flexible coding approach is that the decompressed event point clouds can
be re-aggregated at any desired temporal resolution to facilitate subsequent CV tasks.

4. EVENT-BASED CV TASKS

In order to assess the effect of lossy compression on event-based vision tasks, a diverse range of CV operations are
selected. These operations encompass various categories, including recognition and video reconstruction tasks,
which represent information comprehension and reconstruction, respectively. Given the focus on motion analysis
and 3D-related applications, optical flow estimation and depth estimation are also selected. In this section, the
methodologies employed in the selected CV tasks are briefly outlined, with a particular emphasis on the format
of the input data and the objective metrics used. The goal is to provide a comprehensive understanding of the
experimental results.

4.1 Recognition

As a classic CV task, recognition is a fundamental application of visual information understanding. Object
recognition based on event data holds distinct advantages such as superior dynamic range, reduced latency, and
minimal motion blur.

In the selected recognition algorithm,10 the authors propose a universal framework to convert asynchronous
event streams into grid-based representations, and the conversion is performed through differentiable operators,
which allows end-to-end optimization for recognition. To ensure differentiability, the events are defined as the
Event Measurement Field regulated by a time-stamp measurement f±(x, y, t) =

t−t0
∆t , and a suitable aggregation

kernel is used to derive a meaningful signal from the event spikes. After kernel convolutions, the convolved signal
is sampled according to a predefined voxel grid to generate a grid representation called event spike tensor (EST).
The entire process can be described as follows:

S±[xl, ym, tn] = (k ∗ S±)(xl, ym, tn) = Σek∈ε±f±(xk, yk, tk)k(xl − xk, ym − yk, tn − tk) (1)

where the xl, ym, tn lie on the voxel grid {0 ∼ W − 1, 0 ∼ H − 1, t0 ∼ t0 +B∆t}, and k(x, y, t) is the convolution
kernel. Commonly, k is handcrafted functions, such as alpha-kernel or exponential kernel, and the authors propose
to use multilayer perception (MLP) to estimate the activation map for each grid location in the representation
for better performance.

In terms of object recognition, the researchers employed a ResNet-34 architecture,36 modifying the first
and last layers of the pre-trained model with randomly initialized weights to accommodate discrepancies in the
number of input channels and output classes between the pre-trained model and the proposed method. To
evaluate the performance, recognition accuracy is used, which is defined as (TP + TN)/ALL, where TP is true
positive, TN is true negative, and ALL is the total number of samples.

4.2 Video Reconstruction

Video reconstruction takes event data stream as input and outputs synthesized content. In our experiments,
E2VID15 was selected, a recurrent convolutional neural network developed specifically for event-based video
reconstruction. To accommodate the event data within a neural network framework, the authors used an event
tensor representation predicated on a spatiotemporal voxel grid, formulated as follows:

E(xi, yi, pi, b) = ΣN
i max(0, 1− |b− t∗i |) (2)

where t∗i = B−1
tend−tstart

(ti − tstart). In the proposed implementation, the temporal bin B is set to 5. By using
the recurrent layer, E2VID only takes the event data stream as input, without requiring the last reconstructed
images as explicit memory. After generating the reconstruction result, the frames are rescaled using robust
min/max normalization to obtain the final output.

In the presence of ground truth frames, the PSNR (Peak Signal-to-Noise Ratio) is commonly employed as
an objective metric for video reconstruction. For each ground-truth frame, the reconstructed image with the



closest timestamp is selected. To ensure a fair comparison, local histogram equalization is implemented on each
ground-truth frame and reconstructed frame prior to computing PSNR. This procedure ensures that the intensity
values lie within the same range across frames.

4.3 Optical Flow Estimation

Given the high dynamic range and exceptional temporal resolution of event cameras, they naturally excel in
dynamic analysis in complex environments, such as optical flow estimation. Considering that event streams
reveal only brightness changes rather than absolute brightness, it is challenging to identify the spatial photometric
consistency among sparse pixels and consequently estimate dense optical flow. To address this issue, the selected
algorithm DCEIFlow21 utilizes a single image as an anchor, and the event streams are input into the neural
network to yield continuous optical flow estimations.

The event stream is aggregated into a 3D event volume in the DCEIFlow network. The event representation
can be described as follows:

E(xi, yi, pi, b) = ΣN
i max(0, 1− |b− B − 1

tend − tstart
(ti − tstart)|) (3)

where B is the temporal bin and is set to 5. tstart, tend are the start and end timestamps of the event streams,
respectively. The two polarities are concatenated to generate the final event volume.

A commonly used metric for optical flow evaluation is the average End Point Error (EPE):

EPE =
1

m
· Σm

√
(F pred

x − F gt
x )2 + (F pred

y − F gt
y )2 (4)

where x and y are the horizontal and vertical directions. Besides, following KITTI,37 the outlier metric is also
used, which reports the percentage of points with endpoint errors greater than 3 pixels and 5% of the magnitude.

4.4 Depth Estimation

In addition to 2D CV tasks, event-based 3D vision tasks also garner significant interest, particularly as the
integration of event data with other data modalities in 3D-related tasks holds substantial practical implications,
such as depth estimation.

LiDAR sensors are frequently used for depth estimation. However, the 3D information gathered by LiDAR
is inherently sparse, thereby presenting a limiting factor. The selected algorithm, ALED,29 concentrates on
integrating LiDAR and event data, utilizing the events to enrich the sparse LiDAR data. In this approach,
each event is assigned two depth estimations, one prior to the occurrence of the event and one afterward.
ALED network is a fully convolutional recurrent network, designed to process both LiDAR and event data
concurrently. The event data {ei = (xi, yi, pi, ti)}Ni=1 is represented as Discretized Event Volumes, which is
shown in Eq.2. Following the setting of the original paper, B is set to 5, and the negative and positive polarity
bins are concatenated along the first dimension.

The objective assessment of depth estimation is conducted at various cut-off distances, ranging from 10m to
200m. At each distance, the average absolute error is calculated. Given the ground truth depth map Dgt and
the estimated depth map Dpred, the average absolute error is defined as follows:

AAE = mean(|Dgt −Dpred|) (5)

Since two depth estimations are given to each event in the paper, the final AAE is calculated by averaging the
AAE of depth estimation before and after each event. In addition, events are classified to different objects based
on the estimated depth, and the percentage of correctly classified events is also reported.



5. EVALUATION CONDITIONS

5.1 Dataset

For a fair comparison, the testing datasets for each task are selected in accordance with the original paper.
This includes the MVSEC dataset38 for optical flow estimation and depth estimation, the N-Caltech101 dataset
provided by10 for recognition, and the DAVIS dataset39 for video reconstruction. Given time constraints, only
portions of the MVSEC and DAVIS datasets were used. However, the selected sequences incorporate a variety of
scenarios, including both outdoor and indoor environments, to ensure a comprehensive evaluation. The details
of the selected sequences are summarized in Tab.1.

Task Dataset Notes
Recognition N-Caltech101 testing dataset in N-Caltech101, containing 101 se-

quences
Optical flow estimation MVSEC indoor-flying1/2 and outdoor-days1
Depth estimation MVSEC indoor-flying1/2 and outdoor-days1
Video reconstruction DAVIS boxes 6dof, hdr poster, office zigzag, outdoors walk-

ing, poster translation and slider depth
Table 1. Detailed dataset information for the selected tasks.

5.2 Experiment Settings

In the subsequent experiments, event point clouds are generated according to a fixed number of points, with
the number of points per frame controlled at around 1’000’000. The temporal scaling factor is set to 1× 106 to
minimize information loss during pre-processing, and to keep the consistence of the order of magnitude, (x, y) is
multiplied by a spatial scaling factor 1× 103.

The degree of lossy compression for G-PCC is modulated by the position quantization scale parameter, which
is set to values 1, 1/5, 1/50, 1/100, and 1/500 during the experiments. By definition, a position quantization
scale of 1 corresponds to lossless compression, while a value less than 1 indicates lossy compression. For each
task, the performance of the selected algorithm was first assessed according to its corresponding metric using
uncompressed event data as the input. The event data decompressed at the selected levels were then served as
input and the performance was again evaluated. The percentual difference between these two values was finally
obtained, denoting the impact of compression in the performance of the method.

The recognition algorithm was trained as per the instructions using the N-Caltech101 dataset, while all
other tasks utilized pre-trained checkpoints provided. It should be noted that the output frames from the video
reconstruction algorithm displayed notable brightness discrepancies compared to the ground truth images in the
DAVIS dataset. Therefore, a histogram-based brightness calibration function from the scikit-image library was
used prior to metric calculation.

6. RESULTS AND DISCUSSION

The performance variations associated with G-PCC compression of event data are illustrated in Fig.3. Broadly,
event-based vision tasks exhibit minimal sensitivity to lossy compression. However, the impact of compression
can be more perceived at higher compression ratios, and the extent of this influence diverges across distinct
tasks. Such variability is rooted in the disparities in input data and the different requirements on the temporal
resolution for different applications.

As observed in Fig.3, across all tasks, the performance degradation is minor for the first four loss levels, i.e.,
the lossless compression and the lossy compression with position quantization scale of 1/5, 1/50, 1/100. This can
be partially attributed to the composition of the input data. For depth estimation and optical flow, the impact of
information loss in event data may be alleviated by the inclusion of other input data modalities, such as LiDAR
data and images. In particular, the depth estimation method displays higher robustness to compression as the
LiDAR data serves as a continuous input.



Figure 3. Results of relative performance differences in selected event-based vision tasks using G-PCC compressed event
data.

In the case of recognition and video reconstruction, where the sole input is event data, the omission of some
input details does not significantly hinder the overall information and subsequent recognition accuracy, since
the process is based on the accumulation of event data, whose resolution is decided by the temporal bins in the
representation. Moreover, for video reconstruction, the reconstructed frames are compared with ground truth
frames derived from a traditional camera operating at a comparatively lower frame rate of approximately 20 fps.
As such, the reconstruction results maintain a comparable level of quality. Nevertheless, tasks related to visual
information reconstruction demand a greater level of details when compared to tasks focused on understanding.
Evidently, the performance degradation in video reconstruction escalates more obviously than in recognition.
Interestingly, certain tasks such as recognition even demonstrate enhanced results with lossy compression. The
possible reason is that the process of lossy compression may eliminate some redundant information, which can
simplify the subsequent CV tasks and enable easier capture of important information. However, a more detailed
explanation warrants further investigation.

With escalating loss levels, there’s a notable uptick in the compression ratio, paralleled by a marked and
swift degradation in performance, exemplified in tasks like video reconstruction and optical flow estimation. The
optical flow estimation algorithm predominantly employs a singular input image as its optical flow estimation
anchor. Such dependency renders optical flow estimation particularly susceptible to performance decrements
when event streams lack precise information, which is evidenced by the elevated outlier metric. The performance
of video reconstruction is also linked to the level of details in the event data, especially the high-frequency
information, which is also the central target during lossy compression optimization. However, the evaluated
levels of compression were not enough to produce a significant effect on the subject visual quality of the output
even for the highest compression ratio, as showcased by Fig.4.

As a preliminary conclusion, it can be summarized that the performance loss is contingent upon both the
event representation and the input data format. Notably, for CV tasks that integrate event data with other



sensor modalities, such as LiDAR and images, the impact of lossy compression remains constrained, rendering
the algorithms intrinsically resilient. For content reconstruction and generation tasks that rely purely on event
data, lossy compression should be applied more carefully to avoid degradation in quality. In future works,
extensive evaluation will be conducted on diverse event vision-based tasks, using various PCC codecs.

boxes_6dof hdr_poster outdoors_walking slider_depth

Ground truth

G-PCC

Uncompressed

Figure 4. Visualization results of sequences in DAVIS. The G-PCC results are at the highest compression ratio.

7. CONCLUSION

In this paper, a point cloud representation-based lossy event data compression method is proposed and its
influence on event-based vision tasks is investigated. Our method restructures the event data stream into point
cloud formations, compresses them using point cloud coding in a lossy manner, and the decompressed event point
clouds are further tested across four event-based vision tasks, encompassing a range of domains, including visual
information interpretation, reconstruction, motion analysis, and 3D vision. Based on our empirical findings, it
is ascertained that high compression ratios via lossy compression can be realized while maintaining tolerable
performance degradation in event-based vision tasks. Importantly, the selection of the compression intensity
dictates the resultant quality of outputs. This research contributes to the foundational understanding of event
data compression aimed at machine learning applications and underscores the potential for achieving efficient
lossy compression of event data streams.
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