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Abstract

The pervasive adoption of field-programmable gate arrays (FPGAs) in both cyber-physical

systems and the cloud has raised many security issues. Being integrated circuits, FPGAs

are susceptible to fault and power side-channel attacks, which require physical access to

the victim device. However, recent work demonstrated that physical proximity is no longer

required for these attacks, as FPGA logic can be misused to create on-chip voltage sensors or

power-wasting circuits. The work in this thesis explores the impact of FPGA-based voltage

sensors on FPGA security and shows that sensors create new opportunities to evaluate, exploit,

and hide power side-channel leakage in remote FPGAs.

In the first part of this thesis, we demonstrate that voltage sensors can increase power side-

channel security. In the case of deployed and no longer accessible cyber-physical devices, we

show that FPGA-based voltage sensors allow designers to evaluate the power side-channel

leakage after deployment, ensuring constant power side-channel security monitoring. Our

results, comparable to state-of-the-art measuring equipment, move the leakage evaluation

boundary from controlled lab environments to the field, allowing future work to combine

leakage evaluation with other security measures such as tamper detection.

In the second part of the thesis, we focus on evaluating the security impact of FPGA-based

voltage sensors on multitenant FPGAs, and show that voltage sensors can evaluate, exploit,

and hide power side-channel leakage. We demonstrate that a remote attacker can mount both

statistical (correlation power analysis) and machine learning based attacks with the voltage

sensors, emphasizing the need to deploy countermeasures in multitenant FPGAs. The work

in this thesis was the first to show a successful remote power analysis attack on cloud FPGA

instances and the first to provide an instruction-level leakage analysis of soft-core CPUs in a
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shared FPGA scenario. Motivated by the exploits, this thesis proposes a novel hiding technique

against remote power side-channel analysis attacks: active wire fences. Our results show that

active wire fences outperform the state-of-the-art hiding techniques in shared FPGAs.

In the last part of the thesis, we explore more efficient and stealthy techniques for sensing

on-chip voltage. We present the first stealthy routing-based FPGA sensor that outperforms

the state of the art in remote power analysis attacks. With our stealthy sensor architecture, we

show that detecting sensor circuits is not a scalable solution for guaranteeing security. Finally,

this thesis evaluates the impact of external factors, specifically temperature, on FPGA-based

voltage sensors and the success of remote power side-channel attacks in multitenant FPGAs.

Our work shows that, if ignored, temperature effects on voltage sensors can lead to misleading

attack results.

Keywords: reconfigurable logic and FPGAs, multitenancy, power analysis attacks, on-chip

sensors, cloud, CPU instruction identification, hiding, temperature impact
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Résumé

L’adoption généralisée de systèmes FPGA dans les systèmes cyber-physiques et dans le cloud

a soulevé de nombreux problèmes de sécurité. En tant que circuits intégrés, les FPGAs sont

sensibles aux attaques d’analyse de consommation, qui nécessitent un accès physique au

dispositif victime. Cependant, des travaux récents ont démontré que la proximité physique

n’est plus nécessaire pour l’éxécution de ces attaques, car les ressources internes des FPGAs

peuvent être utilisées à mauvais escient pour créer des capteurs de tension directement sur la

puce, ou des circuits qui gaspillent de l’énergie. Cette thèse explore l’impact que peut avoir,

sur la sécurité des FPGAs, de capteurs de tension basés ces derniers. Nous montrons que ces

capteurs créent de nouvelles opportunités pour évaluer, exploiter et dissimuler des fuites issus

de canaux latéraux d’alimentation dans les FPGA distants.

Dans la première partie de cette thèse, nous démontrons que les capteurs de tension peuvent

augmenter la sécurité. Dans le cas de dispositifs cyber-physiques déployés et devenus in-

accessibles, nous montrons que les capteurs de tension basés sur les FPGA permettent aux

concepteurs d’évaluer la présence de fuites d’information à travers un canal latéral de puis-

sance après que le système FPGA ait été déploié, assurant ainsi une surveillance constante de

la sécurité. Nos résultats, comparables à ceux obtenus avec de l’équipement de mesure de

pointe, déplacent la limite d’évaluation des fuites depuis un environnement de laboratoire

contrôlé vers le terrain, ce qui permettra à l’avenir de combiner l’évaluation des fuites avec

d’autres mesures de sécurité telles que la détection de sabotage.

Dans la deuxième partie de la thèse, nous nous concentrons sur l’évaluation de l’impact

sécuritaire des capteurs de tension on-chip sur les FPGAs multi-utilisateur, et nous montrons

que les capteurs de tension peuvent évaluer, exploiter et dissimuler des fuites de canaux
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Résumé

latéraux de puissance. Nous démontrons qu’un assaillant distant peut déployer des attaques

statistiques (analyse de puissance par corrélation) et des attaques basées sur l’apprentissage

automatique avec les capteurs de tension, soulignant la nécessité de déployer des contre-

mesures dans les FPGAs multi-utilisateur. Les travaux de cette thèse ont été les premiers

à montrer une attaque réussie d’analyse de puissance à distance sur des instances FPGA

dans le cloud, et les premiers à fournir une analyse de fuite au niveau des instructions des

CPU soft-core dans un scénario FPGA partagé. Motivée par ces exploits, cette thèse propose

une nouvelle technique de dissimulation contre les attaques d’analyse de canal latéral de

puissance à distance : les clôtures de fils actives. Nos résultats montrent que les clôtures de fils

actives sont plus performantes que les techniques de dissimulation de pointe dans les FPGAs

partagés.

Dans la dernière partie de la thèse, nous explorons des techniques plus efficaces et plus furtives

pour détecter la tension sur une puce. Nous présentons le premier capteur FPGA furtif basé sur

le routage qui surpasse l’état de l’art dans les attaques d’analyse de puissance à distance. Avec

notre architecture de capteur furtif, nous montrons que la détection des circuits de capteurs

n’est pas une solution qui peut être mise à l’échelle pour garantir la sécurité. Enfin, cette thèse

évalue l’impact des facteurs externes, en particulier de la température, sur les capteurs de

tension basés sur les FPGAs et le succès des attaques par canal latéral de puissance à distance

dans les FPGAs multi-utilisateur. Notre travail montre que, s’ils sont ignorés, les effets de la

température sur les capteurs de tension peuvent conduire à résultats trompeurs en ce qui

concerne la réussite ou l’échec d’une attaque.

Mots clés : logique reconfigurable et FPGAs, multi-utilisateur, attaques d’analyse de puissance,

capteurs on-chip, cloud, identification des instructions CPU, dissimulation, impact de la

température
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1 Introduction

Due to the end of Moore’s law and the breakdown of Dennard’s scaling, compute-intensive

systems are transitioning from homogeneous and processor-dominated systems toward more

heterogeneous architectures which rely on specialized hardware to improve performance and

energy efficiency. As a result, today’s computing systems feature not only central processing

units (CPUs) but also graphics processing units (GPUs) and special-purpose integrated circuits

such as application-specific integrated circuits (ASICs) and field-programmable gate arrays

(FPGAs). Compared to ASICs, using FPGAs significantly reduces design time, development,

and deployment costs. The flexibility of FPGAs, coupled with their highly-parallel architecture

and energy efficiency, has led to their integration into various heterogeneous systems—from

small embedded and cyber-physical systems to datacenters and, recently, the public cloud of

major cloud service providers (Microsoft Azure [2], Amazon AWS [3], and Alibaba Cloud [4]).

The growing awareness of the importance of security and privacy and the increased regulatory

and legal attention to data makes security not only desired but, in many cases, required in

modern systems. Industry and research trends have seen an increase in attention to cybersecu-

rity, trusted execution environments, and confidential and trusted computing [5,6]. Therefore,

apart from satisfying the short design time and ever-growing complexity of the systems, design-

ers of FPGA-based systems face a new challenge: ensuring security and privacy for the system

end users. Consequently, previous work has explored FPGA security in heterogeneous systems,
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covering vulnerabilities such as fault injection or side-channel analysis (SCA) attacks [7]. In

particular, power SCA attacks—targeting information inadvertently leaked through the power

consumption or supply voltage fluctuations—can be easily mounted by attackers with physical

access to the device [8, 9]. In power SCA attacks, an adversary collects a number of power

measurements, typically with an oscilloscope, and applies statistical or machine learning

techniques to infer algorithmically secure information. These attacks represent a critical class

of side-channel attacks, as even a limited number of power measurements can contain leakage

sufficient to extract confidential data, such as encryption keys, from unprotected devices [10].

Recent research demonstrated that physical proximity is no longer required for SCA power

measurements on FPGA, as voltage fluctuations occurring during the computation of a hard-

ware module, for example, a cryptographic accelerator, can also be captured by dedicated

circuits realized in the FPGA logic itself, such as time-to-digital converter (TDC) converter sen-

sors or ring oscillators [11–14]. Data collected with these voltage-drop sensors could then be

used instead of the classical power measurements collected by an oscilloscope to successfully

recover confidential information. Successful examples of these attacks directly exploited the

relation between circuit activity and the voltage fluctuations on the power delivery network

(PDN) to extract encryption keys of a cryptographic core [12,13] or data from machine learning

(ML) accelerators [15, 16].

In this thesis, motivated by the possibility of performing remote voltage measurements, we in-

vestigate the implication of voltage-drop sensors on the security of remotely accessible FPGAs.

We identify two prominent use cases of remote FPGAs—cyber-physical devices deployed in

the field and cloud FPGAs—and we show that on-chip voltage sensors can be used to both

evaluate and compromise the security of FPGA-based systems.

1.1 Thesis Goals

Often accessible to attackers, deployed cyber-physical devices remain susceptible to physical

attacks. In the case of both protected and unprotected devices in the field, adversaries can
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resort to more invasive methods to increase the power side-channel leakage and reduce

the attack effort, such as tampering with the PDN [12, 17]. Moreover, effects such as aging,

malfunctioning, or even maintenance can also impact the leakage. However, the device leakage

is only verified before deployment, in a controlled scenario, and is almost never reevaluated

after deployment. As its first objective, this thesis explores the possibility of leveraging on-chip

sensors to provide continuous monitoring and evaluate the device’s vulnerability to first-order

power SCA attacks [18].

In the cloud, a multitenant ecosystem is already in place, and the available computational

resources—namely CPUs—are shared between system users. To enable better management

and use of available datacenter resources, increased efforts are being made to support secure

virtualization and sharing of FPGA hardware acceleration fabric [19–31]. However, spatial

sharing, i.e., co-locating multiple users on the same FPGA, implies many security issues,

primarily due to the access to low-level hardware primitives and electrical-level coupling

via the shared PDN or long wires [32, 33]. As a second objective, this thesis tackles power

side-channel security in shared, i.e., multitenant FPGAs. It uncovers and analyzes new security

vulnerabilities introduced by attackers with access to low-level FPGA logic—power SCA attacks

on encryption and soft processor cores using on-chip voltage sensors [14]—and explores new,

more efficient ways of mitigating these vulnerabilities specialized for shared FPGAs.

As a third objective, this thesis aims to explore new, more efficient, and stealthy techniques of

sensing on-chip voltage in shared FPGAs [34]. Finally, this thesis aims to evaluate the impact

of external factors, specifically temperature, on on-chip voltage sensors and the success of

remote power side-channel attacks in multitenant FPGAs [35].

Thesis statement:

Access to fine-grained FPGA hardware in modern heterogeneous systems allows constructing

efficient on-chip voltage sensors, which create new opportunities to evaluate, exploit, and hide

power side-channel leakage in remote FPGAs.
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1.2 Thesis Contributions

As indicated in the thesis title and statement, this work extends the state of the art alongside

three main pillars of power side-channel leakage in remote FPGAs: evaluating, exploiting, and

hiding. Fig. 1.1 illustrates the main contributions of this work. Alongside the evaluating axis,

this thesis leverages FPGA-based voltage sensors to enhance security by providing continuous

leakage monitoring and methodologies to evaluate the power side-channel security of de-

ployed devices. Our work uses FPGA-based voltage sensors to demonstrate new vulnerabilities

in FPGA-based systems, enhancing the state of the art alongside the exploiting axis. Finally,

our work contributes to the hiding axis by leveraging low-level FPGA logic to reduce the power

side-channel leakage, while using the FPGA-based sensor to record voltage traces.

We organize the thesis contributions into three main parts to align with the thesis goals out-

lined in Chapter 1.1. Part I centers around evaluating the security of deployed cyber-physical

devices, contributing to the evaluating axis. Part II, contributing to all three axes of power

side-channel security, centers around multitenant FPGA security. Lastly, Part III, contributing

to the evaluating and exploiting axis, centers around advanced sensor architectures and tem-

perature impact on sensors. In the following subsections, we describe the contributions of

each of the three main parts of the thesis.

1.2.1 Evaluating the Security of Deployed Cyber-Physical Devices

The leakage of cyber-physical devices can change during their service life for various reasons

(tampering, aging, or malfunctioning). However, until our thesis, the device leakage was typi-

cally evaluated in laboratory environments before deployment and not reevaluated. Previous

work demonstrated that FPGA-based voltage sensors require an order of magnitude more

traces than an oscilloscope for a successful power analysis attack [12]. Our work shows that,

despite lower-quality power measurements, FPGA-based voltage sensors can be successfully

leveraged to evaluate power side-channel leakage in deployed devices. The work in this thesis

was the first to present and validate a built-in test for self-evaluation of power side-channel
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Power Side-Channel Leakage of Remote FPGAs
(State of the Art)

Part I
Evaluating the Security of
Deployed Cyber-Physical Devices

Part II
Multitenant FPGAs:
Attacks and Mitigations

Part III
Advanced Voltage Sensing
and Temperature Effects

Analysis of temperature effects
on FPGA sensors

(Chapter 9)

Built-in remote
leakage evaluation system

(Chapter 4)

Evaluating

Contributions

Exploiting Hiding

Leakage analysis of softcore
CPUs in shared FPGAs

(Chapter 6)

The first remote power SCA
on a cloud FPGA

(Chapter 5)

Routing-based FPGA
voltage sensor

(Chapter 8)

Routing-based hiding technique
against remote power SCAs

(Chapter 7)

Figure 1.1: Thesis contributions supported by three main pillars: evaluating, exploiting,
and hiding power side-channel leakage of remote FPGAs. Our work in Chapters 4, 6, and 9
presents the contributions along the evaluating pillar, extending the state of the art with
new techniques for measuring leakage of deployed devices, measuring leakage of softcore
CPUs, and analyzing the temperature impact on FPGA sensors. Our work in Chapters 5, 6,
and 8 builds the contributions of the exploiting pillar, demonstrating statistical and ML-based
attacks on cloud FPGAs and a new FPGA sensor architecture. Finally, the work in Chapter 7
contributes to the hiding pillar, improving the state of the art hiding techniques with new
routing-based power-wasting circuits.

leakage, suitable for FPGAs in cyber-physical devices [18]. Our methodology is based on the

t-test, the de facto industry standard for security assessments. The system consists of an

FPGA-based voltage sensor [11] to measure the on-chip voltage fluctuations and an engine

to calculate the t-test statistic on the fly and thus verify the presence of information leakage.

Using an advanced encryption standard (AES) cryptographic accelerator implemented on

FPGA, we show that our built-in test achieves results comparable to those obtained with

state-of-the-art laboratory oscilloscope equipment. The system proposed in this thesis allows,

for the first time, a real-time assessment of power side-channel leakage during the device
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operation in the field. This work opens new frontiers for ensuring the security of safe and

robust cyber-physical systems, which are currently verified only before deployment.

1.2.2 Multitenant FPGAs: Attacks and Mitigations

Previous work demonstrated that on-chip sensors and remote power SCA attacks present

a potential threat to the security of multitenant FPGAs [12, 13]. These experiments were,

however, mostly carried out on low- to mid-end FPGAs in a controlled environment and

not on a real system deployed on the cloud. In contrast, most modern cloud FPGAs have

updated resource architectures, 10–20× more resources, and a higher quality PDN. While

giving the intuition that the threat of remote power analysis attacks could also be exploitable

in a real cloud environment and high-end cloud FPGAs, previous work did not provide any

clear evidence of this fact.

The work in this thesis demonstrates, for the first time, a successful key recovery attack on a

cryptographic accelerator running on an Amazon EC2 F1 instance. Our research shows that

the FPGA-based voltage sensors used in previous work should be carefully ported to new FPGA

families to reduce the attack effort. The results in this thesis demonstrate that a correlation

power analysis (CPA) attack can recover the full AES key using less than 0.5 million traces,

which is two orders of magnitude higher compared to a controlled environment. We show that

even though the effort for a successful attack on the cloud increases, the security concerns

raised by multitenant FPGAs are valid, and countermeasures should be put in place to mitigate

them. Moreover, our work motivated a growing amount of subsequent studies to showcase

their attacks not only on local FPGA boards, but also on datacenter-scale FPGAs.

Previous work on remote power side-channel attacks, including our attack on Amazon F1

instances, requires many victim traces for statistical attacks on cryptographic circuits or at-

tacks large, power-consuming victim circuits such as machine learning accelerators. However,

confidential information extends beyond a user’s bitstream, cryptographic key, or neural

network accelerator parameters and architecture. If the user’s design includes a soft-core
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CPU, the executed code may contain secrets or be proprietary, and identifying the executed

instructions can compromise the confidentiality of the code. Therefore, this thesis analyzes

the instruction-level power side-channel leakage of a small open-source RISC-V soft processor

core. We profile a soft-core CPU and implement various instruction opcode classifiers based

on classical machine learning algorithms used in disassembly attacks and novel deep learn-

ing approaches. We explore how parameters such as placement, trace averaging, profiling

templates, and different FPGA families (including a cloud-scale FPGA) impact the classifi-

cation accuracy. Our results show that in a worst-case scenario for the evaluator, i.e., an

attacker breaching physical separation, we can identify the opcode of executed instructions

with high average accuracy. The results in this thesis also show that the instruction-level

leakage is significantly reduced in a cloud-scale FPGA scenario with higher soft-core CPU

frequencies. However, our results show that even small circuits, such as soft-core CPUs, leak

potentially exploitable information through on-chip power side channels, and users should

deploy mitigation techniques against disassembly attacks to protect their proprietary code

and data.

Previous work proposed various mitigation techniques to protect against power SCA attacks

on shared FPGAs, such as detecting and preventing the deployment of voltage-sensing circuits,

reducing the signal-to-noise ratio (SNR) by hiding, and masking the victim design using

random shares [33]. On the one hand, masking methods require modifying the victim design

while detecting voltage-sensing circuits is prone to false positives and negatives. On the

other hand, hiding techniques can be independent of the victim’s application and do not

require modifications to the victim’s design, making them appealing to both the cloud service

providers (CSPs) and users. In a mitigation context, this thesis presents a design of an active

wire fence and demonstrates its ability to provide hiding protection against remote power

side-channel attacks in shared FPGAs. The novel wire fence uses FPGA routing resources to

draw more current and generate more noise than the state-of-the-art fence built solely with

ring oscillators (ROs). Comparing the voltage drop resulting from the activation of the wire

fence and the RO fence, this thesis shows that the RO fence compares to the wire fence of
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approximately half the logic resources. Therefore, when the space is limited, active wire fences

are a better alternative to their RO counterparts. Additionally, our results show that the wire

fence provides stronger side-channel security than the state of the art: when comparing the

attack effort to break a 128-bit AES key, we demonstrate that at least 6× more traces were

required to break the key with the wire fence compared to the RO fence.

1.2.3 Advanced Voltage Sensing and Temperature Effects

The state-of-the-art FPGA voltage sensors, i.e., TDCs, rely on CARRY elements, which require

careful vertical placement for optimal sensitivity. However, using dedicated CARRY elements

limits the sensitivity, requires complex placement constraints, restricts the portability of the

TDC sensors, and, more importantly, makes TDCs easily detectable by scanning tools. To

further push the limits of remote power analysis attacks, this thesis presents a novel FPGA-

based voltage sensor design, different from TDC and RO sensors. Our new routing-delay

sensor (RDS), free of a tapped delay line, is the first sensor that leverages routing resources for

sensing voltage variations. We evaluate RDS using the CPA attack and the key rank estimation

metric, in an attack against an AES-128 module. The results in this thesis show that RDS

outperforms TDC, and that for many different sensor and AES placements on the Sakura-X

board, an attack with RDS requires, on average, 35% fewer traces to break the secret key. Our

results confirm that RDS is considerably superior to TDC even on cloud-scale FPGAs (AMD

Alveo U200): the key rank estimation in 25 experiment runs with approx. 2 million traces per

run shows that, on average, RDS breaks half the key bits while TDC breaks fewer than 16 bits.

Finally, this thesis is the first to evaluate the temperature impact on TDC sensors in a mul-

titenant FPGA scenario. The operating temperature of the TDC sensor affects the acquired

traces, but its impact on the success of remote power SCA attacks has largely been ignored in

the literature. Our results show that the temperature impact can vary across FPGA families

and that the temperature variations during trace acquisition can considerably impact the

success of the CPA attack. Our analysis also reveals that, if ignored, temperature effects on

TDC sensors can lead to misleading and overly optimistic results of ML-based profiling attacks.
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This thesis emphasizes the importance of following power SCA trace acquisition guidelines for

minimizing the temperature effects and, consequently, obtaining a more realistic measure

of success for remote ML-based profiling attacks: in some cases, ML models of incorrectly

recorded traces can learn temperature variations instead of leakage, resulting in a misleadingly

higher accuracy of up to 15%.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 motivates the research on electrical-level security

issues caused by access to FPGA logic in heterogeneous systems. Chapter 3 provides the

background by introducing FPGA architecture, power analysis attacks, and FPGA-based sensor

architectures. Then, we present the contributions of this thesis, organized in three parts:

• Part I and Chapter 4 demonstrate how FPGA-based voltage sensors can be used to

evaluate power side-channel leakage in remote FPGAs, by presenting the first built-

in remote leakage evaluation methodology for deployed FPGA-based cyber-physical

devices.

• Part II shows how FPGA-based voltage sensors and other FPGA logic can be used to

evaluate, exploit, and hide power side-channel leakage of multitenant FPGAs. Chapter 5

focuses on exploiting power side-channel leakage, and demonstrates the first remote

power analysis attack on a cloud FPGA. Chapter 6 evaluates and exploits the power

side-channel leakage of soft-core CPUs in shared FPGAs. Finally, Chapter 7 focuses on

hiding the power side-channel leakage, and shows a novel mitigation technique against

remote power analysis attacks.

• Part III focuses on evaluating and exploiting the power side-channel leakage in more

depth. Chapter 8 shows a novel voltage sensor design based on routing resources,

outperforming the state-of-the-art TDC sensors, while Chapter 9 provides an analysis of

the temperature effects on FPGA voltage sensors and remote power analysis attacks.
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Finally, in Part IV, we present the related work in Chapter 10, and we conclude the thesis in

Chapter 11.
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2 Security Implications of FPGAs in

Modern Heterogeneous Systems

In this chapter, we motivate the use of FPGA-based heterogeneous systems and provide an

overview of electrical-level security vulnerabilities arising from access to low-level FPGA logic.

2.1 Towards Heterogeneous Systems

Today’s computing systems face limits that require fundamental changes in system archi-

tectures. Performance improvement is significantly hindered by both physical limitations,

such as the end of Moore’s law and Dennard scaling, and architectural limitations, includ-

ing instruction-level parallelism and Amhdal’s law. With the ever-growing need for higher

performance—especially in the era of big data and machine learning—system architects need

new computing paradigms to ensure latency, throughput, and power requirements.

Fig. 2.1 shows the difference between the transistor density predicted by Moore’s law and

state-of-the-art technologies. As can be observed, the technology scaling is in the slowdown

phase of Moore’s law, with 10× fewer transistors than predicted by Moore’s law. Additionally,

small transistor sizes led to the breakdown of Dennard scaling in 2008, as shown in Fig. 2.2.

With an exponential increase in power consumption, power and energy have become key

design constraints. Therefore, in addition to having a slower increase in transistors, system

designers must use them more efficiently.
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Figure 2.1: Difference between the transistor density predicted by Moore’s law and the current
state of the art [1].
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Figure 2.2: Breakdown of Dennard scaling. Power consumption in the function of the technol-
ogy node [1].

However, systems also face architectural limitations: as we push the fundamental architec-

tural ideas further, they become less efficient. For example, the breakthrough concepts in

instruction-level parallelism brought immense performance improvements in the 90s but

reached their limits in 2004, effectively ending the uniprocessor era. Multicore systems fol-

lowed, but they also reached their limits because of Amhdal’s law.

As general-purpose processor performance improvement reaches the end of the line, today’s

systems are becoming increasingly heterogeneous, and rely on domain-specific architectures

to accelerate various workloads. Instead of relying on a general-purpose processor, heteroge-
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neous systems include specialized circuits that perform specific tasks incredibly well, such as

GPUs for graphic processing, tensor processing units (TPUs) for machine learning, FPGAs for

hardware acceleration, or programmable network switches for networking. These specialized

cores make more effective use of parallelism and memory bandwidth. The shift to heteroge-

neous systems can be observed in both the cloud, where vendors include various instances

with different accelerators (GPUs, TPUs, FPGAs), and in embedded systems, where SoCs—

including big-little CPU configurations, GPUs, FPGAs, and AI accelerators— have become the

norm.

2.2 FPGAs in Heterogeneous Systems

FPGAs are highly reprogrammable integrated circuits that allow designers to create application-

specific digital circuits. A key advantage of FPGAs is their flexibility: unlike ASICs, they are

reprogrammable after fabrication and can implement arbitrary digital circuits. This flexibility

makes FPGAs ideal for applications in which the specifications are subject to change over time

and require fast time to market. In addition, their RTL programming model and hardware-

level parallelism also allow low-level optimizations, resulting in low latency and better power

efficiency than general-purpose CPUs.

FPGAs are often used in heterogeneous computing systems, ranging from cyber-physical

systems and, more recently, to the cloud [2–4,37,38]. They are programmed to perform specific

tasks, allowing them to be customized to meet the system requirements. As a result, FPGAs

can accelerate specific computation, offloading work from other processors and improving

overall system performance. Therefore, FPGAs are commonly used in heterogeneous systems

to accelerate tasks that require real-time data processing, such as signal processing, image

processing, cryptography, networking, and machine learning.
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2.2.1 FPGAs in the Cloud

Microsoft pioneered the use of FPGAs in cloud computing. Their Catapult project pilot of

1,632 FPGA-enabled datacenter servers demonstrated a dramatic improvement in Bing search

latency, launching the era of FPGA-accelerated cloud computing [39]. Other cloud service

providers soon followed. Today, Amazon AWS, Microsoft Azure, Alibaba, Baidu, and Tencent

offer their customers remote access to datacenter FPGAs, to develop, test, and deploy their

custom hardware accelerators [3, 4, 37, 38].

FPGAs are typically exposed to remote users through a host CPU virtual machine interface

and a shell-role use model [31]. The cloud service providers deploy the shell, which shares the

FPGA logic with the users. The shell implements platform-specific management tasks: PCIe,

direct memory access engine, DRAM controller, and debugging interfaces. The FPGA region

reserved for each user is called a role, and users deploy their accelerators within their role. The

shell-role separation helps faster accelerator deployment and ensures different privilege levels

between the cloud service providers and the external users.

In both academia and industry, increased efforts are being made to extend multitenancy and

resource virtualization from CPUs to FPGAs, to enable better management and use of available

datacenter resources [19–31]. Multitenancy can be achieved through spatial and temporal

multiplexing. Temporal multiplexing separates users in time, ensuring that each tenant gets

their own, exclusive instance. In spatial multiplexing, FPGA roles are occupied by potentially

different tenants, and consequently, the cloud service providers need to ensure security and

privacy to all of them [29, 40, 41].

2.2.2 Security Concerns

Unlike other processing units in heterogeneous systems, FPGAs give users control over low-

level hardware, such as look-up tables (LUTs), flip-flops (FFs), memory controllers, and even

PCIe interfaces. Current FPGA compilation tools have virtually no constraints over how the

logic can be used and connected, provided valid connections exist. This low-level access to
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Figure 2.3: Architecture of cloud FPGA servers.

hardware resources brings many concerns, especially in security.

On the one hand, access to higher-level interface modules has serious system security ram-

ifications, as seen in Fig. 2.3. For example, unrestricted access to the PCIe module allows

attackers to access physical memory, bypassing security measures introduced by virtual mem-

ory abstractions in operating systems. Consequently, the shell-role model in cloud FPGAs

allows only access to AXI interfaces— the PCIe modules are contained in the privileged shell.

Nevertheless, in current cloud FPGA servers, multiple FPGAs can share the same CPU socket,

and the PCIe interconnect. Even with a privileged shell, incorporating FPGAs in larger het-

erogeneous systems can negatively impact security. For example, previous work has shown

that users can oversaturate the PCIe bus bandwidth and significantly slow down other tenants

sharing the same PCIe interconnect [42].

On the other hand, access to low-level logic resources implies many electrical-level security

concerns. For example, in valid FPGA designs, users can build specialized circuits such as

ROs (commonly used as fast clock sources) and TDCs (commonly used to measure the time

between two signals in the nanosecond range) leveraging LUTs and FFs. However, as these

logic elements are closely coupled with the PDN voltage, potentially malicious parties can

misuse these valid structures to exploit electrical-level effects and compromise security. Two

examples of such malicious circuits are power-wasting circuits, used for fault injection attacks,

and voltage-drop sensors, used for power analysis attacks.
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Figure 2.4: Power delivery network coupling across the board, package, and the FPGA die.

In this thesis, we focus on electrical-level attacks on remote FPGAs, in particular remote

power side-channel attacks, and evaluate how these low-level FPGA structures can enhance

or compromise security.

2.3 Electrical-Level Attacks on FPGA Systems

In FPGA designs, all hardware modules share the FPGA die and the common PDN illustrated

in Fig. 2.4. On the printed circuit board (PCB) level, the PDN starts with the primary voltage

regulator. The power is then distributed through several levels of voltage regulators, if needed,

and the power and ground planes. Inside the FPGA, a PDN resembling a dense mesh supplies

power to all FPGA logic and routing resources. On all levels—board, package, chip—the PDN

contains resistive, capacitive, and inductive components, some of which are intended and

some parasitic, which create a medium for voltage fluctuations in one hardware module to

propagate to another or the external power pins.

The electrical coupling of FPGA logic opens the door to various security vulnerabilities, which

can be exploited both by attackers with physical access to the system (physical attacks) and

attackers with remote access to the system (remote attacks). Fig. 2.5 illustrates the threat

model for remotely accessible FPGA systems. For FPGA devices deployed in the field, an

attacker has physical access to the device and the external PDN, allowing them to perform

physical attacks. For multitenant FPGAs in the cloud, an attacker has remote access to a part

of the device and the internal PDN through the low-level FPGA logic, allowing them to perform

remote attacks.
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Figure 2.5: Threat model for remote FPGAs. For FPGAs deployed in the field, an attacker has
physical access to the device and can perform physical attacks such as power analysis, fault
injection, or tampering. For multitenant FPGAs in the cloud, an attacker has remote access
and can misuse the FPGA logic to perform remote power analysis and fault-injection attacks.

2.3.1 Physical Attacks

FPGAs, like other integrated circuits deployed in the field, are vulnerable to many physical

attacks. These attacks can be classified as passive or active, depending on the influence on

the target. In passive attacks, the device remains working within its specifications, while the

attacker observes specific physical properties of the device (power consumption, electromag-

netic (EM) emanation, execution time). Side-channel attacks are the most commonly used

passive attacks. They involve recording the device’s power consumption, electromagnetic

emissions, or other physical characteristics under normal operating conditions. Then, by

analyzing the recorded signals, attackers can mount statistical attacks to extract sensitive

information, such as cryptographic keys or CPU instructions and code.

In active attacks, attackers manipulate the device and operate it outside its specifications to

extract secret information. The most commonly used active attacks are fault attacks. These

attacks intentionally introduce faults into the device’s operation to manipulate its behavior.

For example, an attacker may introduce a fault in a specific location in memory to modify a

critical value, or lower the power supply voltage to cause glitches within the device and bypass

security measures such as key validation. Attackers can even combine passive and active

attacks with more invasive methods that damage the device. For example, they can remove
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capacitors to increase the power side-channel leakage and mount the attacks more easily, or

use power analysis to determine the best moment to inject faults for fault-injection attacks.

2.3.2 Remote Attacks

Attackers with physical access control many system variables, allowing them to mount various

attacks. Attackers with remote access are restricted to the pre-defined interfaces of the device

and cannot connect measuring equipment to the target. However, unlike physical attacks,

which mostly aim to compromise the confidentiality of the devices, remote attacks aim to

impact the system’s availability, integrity, and confidentiality. Denial of service attacks on the

system’s availability aim to incapacitate the device completely. Attacks on integrity, notably

fault injection attacks, aim to introduce faults into the victim device and compromise the

integrity of the results. Finally, attacks on confidentiality, including fault injection attacks and

power analysis attacks, aim at extracting secret information that is otherwise not available.

The low-level programmability of FPGAs allows attackers in multitenant scenarios to exploit

low-level electrical phenomena to build primitives such as sensors or power wasters, open-

ing the door to various security vulnerabilities previously considered to require physical

access [32]. Two main categories of remote electrical-level exploits exist: SCA attacks and

fault-injection attacks. Similar to physical side-channel attacks, remote side-channel analysis

is based on observing unintended information leakage from a victim design. The malicious

party can use a sensor to measure power variations on the chip (power side channel) or to

deduce the value carried by a neighboring wire through the EM coupling effects (crosstalk

side channel). A similar class of attacks are covert communication attacks; they use the same

mechanisms, but require both a sender to send a message and a receiver with a sensor to read

it. For remote fault-injection attacks, the adversary leverages power viruses to affect the PDN

shared among tenants. Done aggressively enough, this can cause a reset of the board, i.e., a

denial-of-service (DoS) attack. If done more precisely, this can cause a computational fault

(i.e., a fault attack). These findings temporarily put on hold the FPGA multitenancy in the

cloud and pushed many researchers to investigate new attack surfaces, threat models, and
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countermeasures [32, 33].

Power Analysis Attacks

The sensor is the essential component for a successful power side-channel exploit. For remote

attacks, ROs, whose frequency of oscillation varies with voltage, are used for power SCAs [13]

and for crosstalk SCAs [43–45]. They have also been leveraged for covert communication,

where the sender is a CPU, GPU, or FPGA, and the receiver is an FPGA sharing the same

power supply unit in a datacenter setting [46]. For a faster reaction time than ROs, delay-line

sensors, similar to the one proposed by Zick et al. [11], are employed to sense fast voltage

fluctuations [12, 47]. Delay-line sensors have even been used to demonstrate power SCAs on

Amazon AWS F1 instances [14] and to recover the inputs to a neural network deployed on

the same instances [16]. They have also been used to mount attacks against other integrated

circuits on the same board [47] and against a CPU sharing the same system-on-chip [48].

Fault-Injection Attacks

Combinational ROs are not only used for sensing on-chip delay changes, but also as power

viruses, which, when used in a large enough grid and with specific activation patterns, have

been shown to cause board reset [49] and to inject faults [50–52]. Therefore, CSPs such

as Amazon [3] have disallowed combinational loops in designs deployed on their FPGAs.

However, recent work has shown that other primitives, without combinational loops, can

be used for the same purposes. Examples of these primitives include sequential ROs, shift

registers, dual-port RAM instances, glitch generators, and even benign-looking circuits such

as AES rounds [53, 54].
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3 Background

In this chapter, we provide the background required for the remainder of the thesis. We first

describe the high-level architecture of FPGAs. Then, we present the most common sensors

used to measure on-chip voltage in FPGAs. Further, we introduce power analysis attacks

and metrics used for evaluating the attack success, and finally, we define the t-test metric for

evaluating the first-order leakage.

3.1 FPGA Architecture

To allow reprogrammability, FPGAs are structured as 2-D arrays of logic resources, connected

through vertical and horizontal routing channels, as shown in Fig. 3.1. The reprogrammable

logic resources, organized in configurable logic blocks (CLBs), represent the building blocks

of the FPGA. CLBs usually consist of multiple slices, each containing a number of LUTs and

FFs. The LUTs can implement arbitrary combinational logic functions of up to six inputs,

while the FFs implement sequential logic functions [55, 56]. In some cases, the FPGA slices

contain additional resources, such as fast adders in AMD FPGAs. Depending on the device

family, the adders, i.e. CARRY primitives, come in four- or eight-bit variants and can have

ripple-carry or carry lookahead implementations [56]. With the growing workload complexity,

FPGA architecture is becoming more heterogeneous. In addition to CLBs, modern FPGAs
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Figure 3.1: FPGA architecture consisting of a matrix of configurable logic blocks (CLBs) and
routing resources. The vertical and horizontal routing resources are connected with cross-bars
called switch boxes (SB).

contain more specialized blocks such as digital signal processing (DSP) units for fixed point

addition and multiplication, SRAM memory in the form of block RAM (BRAM) memory units,

and most recently, even specialized AI engines for machine learning acceleration [56, 57].

Finally, FPGAs offer mixed-mode clock manager (MMCM) modules, allowing users to derive

several clocks from the base input clock.

Each CLB is connected to the routing resources using a local crossbar, while vertical and

horizontal routing lanes are connected through switch boxes (SBs). In special cases, CLBs

are connected through dedicated direct routes. For example, to support chains of fast adders

required for large additions, AMD FPGAs contain direct routing paths between carry input

and output bits of adders in subsequent vertical CLBs. When designing an RTL design, FPGA

compilation tools map the digital circuit to a combination of LUTs, FFs, and other resources

while ensuring the routing between them is correctly configured, and timing and area con-

straints are satisfied. After compilation, the tools generate a bitstream, used to program the

newly compiled RTL design onto the FPGA.

3.2 FPGA-Based On-Chip Voltage Sensors

In recent years, it was shown that it is possible to measure internal voltage fluctuations on

the PDN of an FPGA by using sensors implemented using the reconfigurable FPGA fabric.
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Figure 3.2: RO-based voltage sensor.

After their introduction, these sensors found a wide variety of applications: detection of

voltage undershoots caused by malicious attackers [11], measurement of power side-channel

leakage to mount remote power analysis attacks [12–14], protection against power analysis

attacks [58, 59], and detection of voltage drops caused by the insertion of shunt resistors in

tampering [60].

The two most commonly used sensors to measure voltage fluctuations on FPGA are TDC

and RO sensors. Any change in the PDN voltage behavior directly influences the delays of

the CMOS logic gates, which these sensors exploit to estimate the power consumption of the

neighboring logic. RO-based sensors, shown in Fig. 3.2, count the number of RO oscillations

in a fixed time period. In contrast, the TDC-based sensors, shown in Fig 3.3, count the number

of buffers in a delay line through which a clock signal has propagated in one clock period.

Both sensors produce an output in the function of their circuit delay, which is approximately

inversely proportional to the core voltage fluctuations.

RO-based sensors use combinational loops and LUTs to measure the delay. As such, RO-based

sensors need considerably longer to produce a value than TDC sensors. In many scenarios,

such as on the AWS EC2 F1 instances studied in this thesis, combinational loops are not

supported [61]. This limitation can be bypassed by designing RO-based sensors containing

registers, as shown by Giechaskiel et al. [62]. Despite this workaround, the sampling frequency

of RO-based sensors is much lower than that of the TDC sensors, making the former unsuitable

for recording nanosecond-scale voltage fluctuations needed to perform power analysis attacks.

However, RO-based sensors have a smaller footprint and need not be calibrated, unlike TDCs.
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Figure 3.3: Time-to-digital converter (TDC) sensor architecture.
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Figure 3.4: TDC sensor architecture with a tunable phase shift between the clock that enters
the observable delay line and the clock that samples the output (i.e., takes a snapshot of the
observable delay line). The exact number of slices in our implementation is in Table 6.2.

Good use cases for RO-based sensors are FPGA undervolting-based attacks [63, 64] and covert

communication [62]. For power side-channel leakage analysis, given the importance of a high

sampling rate, TDCs are the preferred solution [12, 14, 15]; they can record voltage fluctuations

with sampling periods in the nanosecond range [11]. Therefore, in our work, we use TDC

voltage-drop sensors, described in the following paragraphs.

The most straightforward TDC architecture consists of a line of buffers driven by a high-

frequency input clock signal, as seen in Fig. 3.3. The propagation depth of the clock signal

is proportional to the overall delay of the buffer line. The first part of the delay line, the

initial delay, uses elements with a higher delay (such as LUTs or latches) to introduce a more

significant initial delay to the clock signal with a smaller area overhead. The second part of the

delay line, the observable delay, consists of buffers whose outputs are tapped, i.e., connected

to registers that record the state of the line. The sensor registers are clocked with the sampling

clock—usually a shifted input clock—and therefore record how far the clock propagated

through the delay line when the sampling clock reaches the registers. The observable delay
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line is usually implemented using carry-chain primitives that provide a very fine resolution

per bit.

The phase shift between the input and the sampling clock determines the sensor calibration.

For a correctly calibrated sensor, the rising edge of the input clock signal is positioned within

the observable delay line when its state is saved to the registers. The correct calibration can be

achieved by changing the length of the initial delay (at compile time or at run time), tuning

the phase of the sampling clock, or both.

Since the calibration is a lengthy process of trial and error, it is usually automated and per-

formed at run time. One possibility is to use a tunable digital clock manager (DCM) to control

the phase delay between the input and the sample clock. Another possibility, introduced by

Gnad et al. [65] and used throughout this thesis, is implementing a tunable initial delay line.

Fig. 3.4 shows the high-level architecture of the TDC sensor with a tunable initial delay line. It

consists of fine calibration slices, coarse calibration slices, and the observable delay line. The

input and the sample clocks are the same. Therefore, to control the phase shift between the

input and the sample clock, fine and coarse calibration slices are inserted on the input clock

path. The fine calibration slices are implemented using CARRY logic, as shown in Fig. 3.5a,

while the calibration inputs control the number of carry chain multiplexers on the clock

path. The fine calibration slices are then connected to the coarse calibration slices (Fig. 3.5b),

where the calibration inputs control the number of coarser delay elements on the clock path.

In the TDC design used throughout this thesis, coarse delay elements are implemented as

LUTs followed by latches, to achieve coarser delay increments. The third and last stage is the

observable delay line (Fig. 3.5c), implemented using CARRY logic connected to slice registers.

During the calibration process, the length of the initial delay line is incrementally increased

until the rising edge of the input clock signal is positioned within the observable delay line

when its state is saved to the registers.
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3.3 Power Analysis Attacks

Cryptographic algorithm designers are primarily concerned with the mathematical security

of the algorithms, usually without regard for their future implementation. However, if the

engineers responsible for implementing the algorithm in hardware or software lack knowledge

of cryptography, the implementations of mathematically secure cryptographic ciphers can

unintentionally leak information through so-called side channels. In such cases, adversaries

mount side-channel attacks that try to recover otherwise secure information through the side

channels. These attacks are usually passive and non-invasive, operating the device within its

specifications without any permanent alterations. Examples include timing-based attacks

(targeting the execution time of secret-dependent operations), cache side-channel attacks

(leveraging the cash access latency to determine the data recently accessed by a potential

victim), and power analysis attacks (targeting secret-dependent power consumption).

This thesis primarily focuses on power side-channel attacks. First introduced by Kocher et

al. [8], power side-channel attacks exploit the fact that the data-dependent switching activity

of the logic cells directly impacts the power consumption of an integrated circuit. Changes in

the circuit inputs lead to data propagation through the combinational logic, causing glitches

and transitions in the logic gate outputs that consume power. Consequently, the power

consumption is correlated to the changes in the circuit inputs. In the case of a cryptographic

device, an attacker can infer the secret key by exploiting this correlation. The attacker can

use simple, visual analysis of the power measurements, or more complex statistical analysis

such as the differential power analysis (DPA) attack [8], or the CPA attack [9]. Statistical attacks

represent a set of very powerful attacks, and can extract the key of unprotected cryptographic

implementations using a small number of measurements [10]. Although extremely powerful,

power side-channel attacks have always been considered a danger only for embedded devices

since the adversary was required to have physical access to the device to collect the power

measurements needed to mount the attack. In their simplest form, power side-channel attacks

are noninvasive attacks, as performing a successful attack does not require physical changes
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to the victim device.

In power side-channel attacks, a power trace P [i ][:] is the measured power consumption

during one execution, i.e., execution i , of the victim circuit. A power trace consists of a finite

set of points, each one being a measured sample of the power consumption P [i ][ j ] at time j .

The number of samples per trace depends on the sampling frequency of the measurement

circuit and the operating frequency of the victim circuit. The number of traces for an attack

depends on various factors, such as the victim circuit, the quality of the measurement setup,

and the threat model.

The measured power consumption traces contain the exploitable power consumption, made

by the attacked circuit, and the noise originating both from the power consumption of the

rest of the circuit and other electrical effects. The success of the attack largely depends on the

SNR of the collected traces, i.e., the ratio of the variance of the exploitable signal and the noise.

Therefore, to increase the chances of a successful power analysis attack, the attacker needs to

record power consumption traces with as little noise as possible [10]. Depending on the threat

scenario, attackers can resort to different noninvasive methods. One of the standard methods

is averaging, where for each different input of the cryptographic circuit the attacker collects a

number of traces and performs a sample-wise average. Another noise reduction technique is

filtering, where the traces are passed through a low-pass filter to remove electronic noise at

high frequencies.

In case of protected designs, in addition to first-order attacks, attackers resort to more ad-

vanced methods such as higher-order attacks. These include preprocessing the traces to

obtain mean-free squared traces [66], or attacking multiple samples at the same time [10, 67].

Higher-order attacks are out of scope for this work, as our threat model targets only first-order

attacks on both protected and unprotected designs.
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3.3.1 Correlation Power Analysis Attack

The CPA attack, shown in Fig. 3.6, is one of the most widely used power analysis attacks today.

It assumes the adversary has physical access to the device and can record the power while it

is encrypting data. Moreover, it assumes the attacker has access to the encrypted data being

sent over a public channel. The attack relies on a divide-and-conquer approach to extract

the secret key: instead of attacking the whole 128-bit key (2128 space), it exploits the fact that

AES, specifically the S-box, operates on key bytes (sub-keys), which allows attacking the bytes

independently and reduces the key space to 16×28.

To start an attack, the attacker records N power traces and their corresponding ciphertexts, as

seen in step 1 in Fig. 3.6. For each key byte, the attacker considers all possible 256 values

(guesses). Each guess is then used to calculate the estimated power consumption for all the

observed ciphertexts (step 2 in Fig. 3.6). Then, for each sample in the recorded power traces,

the estimated power is correlated with the measured power using the Pearson coefficient (step

3 in Fig. 3.6). The Pearson coefficient equals to:

r [k][ j ] = cov(P [:][ j ], H [:][k])

σP [:][ j ]σH [:][k]
=

∑N−1
i=0

[(
H [i ][k]−H [k]

)(
P [i ][ j ]−P [ j ]

)]
√∑N−1

i=0

(
H [i ][k]−H [k]

)2 ∑N−1
i=0

(
P [i ][ j ]−P [ j ]

)2
, (3.1)

where N is the number of power traces P [i ][:], where each of the traces has K samples. The

matrix notation P [i ][ j ] refers to the power sample j in trace i , where 0 ≤ i ≤ N −1,0 ≤ j < K −1.

If there are I values a sub-key can take, H [i ][k] represents the power estimate in trace i for

the sub-key guess k, where 0 ≤ i ≤ N −1,0 ≤ k < I −1. With this information, the Pearson

coefficient shows how well the modeled power at sample j matches with the measured power

for each sub-key guess k. The correlation factor is calculated for all the samples j and all the

possible values for the sub-key k, resulting in a K × I matrix of correlation factors r [k][ j ]. For

each sub-key guess k, the value j for which |r [k][ j ]|,0 ≤ j ≤ K −1 is the highest, is the power

trace sample which correlates best with the model using the guess k. The sub-key guess that

has the highest correlation |r [k][ j ]|,0 ≤ j ≤ K −1,0 ≤ j < K −1 is assumed to be the correct
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Figure 3.6: Correlation power analysis attack

sub-key. After the calculation is repeated for all the sub-keys, the attacker can reconstruct the

key.

To get a power consumption estimation, attackers use various different power models. Since

in most cases, the power consumption of synchronous CMOS devices depends on the toggling

bits in the registers, the most commonly used power model is the Hamming distance (HD) of

a register output. The advantage of the HD model is that it is implementation-agnostic. More

advanced power analysis attacks require the use of more complex models, which rely on more

implementation details of the attacked device [68].

3.3.2 Attack Success Metrics

Most power side-channel attacks use a divide-and-conquer strategy [8, 9], and they partition

the full cipher key into small parts that are easy to attack. For example, instead of directly

recovering the full 16-byte key of AES-128, the CPA attack in Section 3.3 divides it into 16 parts

and tries to recover every one of the bytes individually. For every 8-bit key part, the attack will

produce scores for every key candidate. In CPA, the score is the correlation of the key candidate

k. To assess the success of the attack, attackers (and evaluators) deploy different ranking

metrics based on the scores. These metrics are similar for both attackers and evaluators: the

only difference is the attackers do not know the key, while the evaluators do.

The key rank metric, performed on each byte, is obtained when the key candidates are sorted

from best to worst based on the score. From an attacker’s point of view, the key guess with the
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key rank of 1 is the best key candidate, and is assumed to be the key byte. In the case of an

evaluator, the key rank of the actual key can be used to measure the success of an attack. If

the rank of the key byte is 1, it was successfully broken. Otherwise, the rank can potentially

indicate how far was the attack from successfully breaking the key byte. This process of scoring

and ranking is typically repeated for all bytes of the key; that is, in an example of an AES-128, it

will be performed 16 times (partitioning the full key to 16 key byte-sized parts).

As previously stated, power side-channel attacks are usually performed in a divide-and-

conquer fashion, where each part of the key is attacked independently from all others. The

key rank metric described thus far focuses on the security of these key parts and does not

generalize directly to the security of the full key. For example, in the case of AES-128, if all 16

correct key bytes are ranked first among their candidate set, the full key is trivially recovered.

However, when this is not the case, the adversary has to verify different full keys through trial

and error using a process called key enumeration. Similarly, the evaluator must also quantify

the remaining effort for full key recovery using rank estimation. The goal of the enumeration

and estimation processes is to convert the security metrics for the 16 8-bit parts of the key to a

security metric for the full key.

Since key enumeration is more computationally intensive, and researchers usually know the

key of the cryptographic device under attack, this thesis performs known-key power side-

channel assessment with the key rank estimation metric. Notably, rank estimation can also

work in the unknown key setting, since heuristics have been proposed to approximate the

rank of an unknown secret key without performing key enumeration [69]. In the known-key

case, the key rank estimation metric uses the correlation computed with the CPA—or some

other scoring metric—to quickly estimate the remaining brute force effort to recover the

full key, without necessarily listing all possible keys [70]. For example, if an attacker has no

side-channel information, then the key rank equals to the entire key space, i.e., 2128 in the

case of AES-128. Alternatively, when the entire key is broken, the key rank drops to zero.

While there are several ways of computing the key rank, in this thesis, we use the histogram-

convolution-based algorithm of Glowacz et al. [71], where the key rank is upper and lower
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bounded.

3.4 First-Order Side-Channel Leakage Evaluation

Welch’s t-test, most often used to determine if two datasets statistically differ from each other,

is commonly used for the evaluation of the first-order side-channel leakage in the context of

the test vector leakage assessment (TVLA) methodology [72, 73]. One of the commonly used

versions of the t-test, the nonspecific t-test, does not target a specific intermediate value in

the cryptographic device. In this case, to evaluate the observable leakage, two sets of power

traces need to be collected: one containing traces obtained encrypting random plaintexts

(QR ), and the other containing traces obtained encrypting a constant, fixed, plaintext (QF ).

Moreover, to avoid biased initial conditions, the encryptions of fixed and random plaintexts

should be interleaved in a nondeterministic or random fashion. The t-test statistic, following

the Student’s t-distribution, can be then computed as

t = µF −µR√
s2

F
nF

+ s2
R

nR

, (3.2)

The t-test is widely utilized due to its simplicity and ability to be used without the knowledge

of the underlying cryptographic implementation. However, the t-test returns a binary result,

classifying a trace sample as leaky, i.e., containing first-order leakage, and not leaky, i.e., not

containing first-order leakage. Therefore, as a leakage evaluation metric, the t-test cannot

quantify the leakage in the trace samples and cannot be used to compare two cryptographic

implementations. The t-test does not provide information on whether a (leaky) sample can

be successfully attacked. Therefore, the t-test is used to evaluate the observable leakage, but

not the exploitable leakage. In the leakage detection framework of the t-test false positives

correspond to the detection of leaky samples that contain no exploitable leakage, but for

which exists some data dependency in the power consumption, for instance, corresponding to

plaintext variations or intermediate values that are difficult to attack.

32



Part I

Evaluating the Security of

Deployed Cyber-Physical Devices

33





4 Power Side-Channel Leakage Evalua-

tion on Remote FPGAs

The pervasive diffusion of embedded and cyber-physical systems in automotive, industry 4.0,

healthcare, power grid, and all other aspects of our lives imposes new challenges for system

developers. The criticality of the applications and the sensitivity of data require the use of

appropriate security primitives everywhere. Deploying these devices in hostile environments,

often accessible to adversaries, calls for side-channel attack countermeasures and the ability

to detect unwanted tampering. Finally, the service life of these devices—typically longer than

that of consumer electronic devices—requires the ability to deal with device performance

degradation, affecting its resilience to side-channel attacks.

To detect tampering, some devices have shields and sensors that detect changes in light,

temperature, or even attempts to remove mechanical protections. However, these methods are

limited and cannot detect other tampering attempts or changes due to device malfunctioning

or maintenance [74]. Therefore, to ensure that the security of their devices is not compromised,

users need to be able to monitor the device during its entire life span. For instance, one can

monitor the statistical properties of random number generators [75] or samplers in lattice-

based constructions [76]. If they exhibit irregular behavior, it can indicate malfunctioning

or a tampering attempt. Other examples include monitoring the PDN for signs of voltage

This chapter is based on the work of a paper published at the 2020 International Symposium On Field-

Programmable Gate Arrays [18].
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drops caused by the insertion of shunt resistors [60, 77], or detecting impedance changes

caused by other measuring equipment such as EM probes [78]. However, the latter type of

monitoring focuses on detecting changes in the device’s electrical properties and does not

provide information on how these changes impact (power side-channel) security.

Despite these initial and successful attempts, developing on-chip sensors for real-time moni-

toring of security primitives is still a largely unexplored area of research. A security problem

that would benefit from using real-time on-device sensing is that of power side-channel at-

tacks, which have proven very effective on CPUs and FPGAs [8, 13]. Moreover, successful

tampering attempts on protected and unprotected devices have shown that attackers can

increase the information leakage to deploy these power side-channel attacks more easily. Tam-

pering with the PDN, e.g., removing or adding components to the PCB, is a common method

to reduce the attack effort [12, 17, 79, 80]. For example, Schellenberg et al. demonstrated that

removing decoupling capacitors, which ensure the filtering of local voltage variations at the

board level, results in 100× fewer measurements needed to break the secret key [47].

Our work targets embedded/cyber-physical systems often accessible to adversaries, which

may be subject to aging, malfunctioning, or tampering with the intent to make the device

leak a higher-than-desired amount of information via the power side channel. A large body of

research is devoted to countermeasures against power side-channel attacks. However, their

effectiveness can only be verified before the device deployment and almost never reevaluated,

making it impossible to detect an increase in power side-channel leakage due to malfunction-

ing or tampering.

In this chapter, we describe and design a standalone test that performs on-chip voltage

measurements and evaluates the susceptibility to power analysis attacks of an FPGA imple-

mentation of a cryptographic core. We assess the test accuracy using the AES-128 algorithm

as a case study and compare the results with those obtained using standard in-lab testing

procedures and equipment. The de facto standard method for estimating power side-channel

leakage is Welch’s t-test [72]; it requires measuring the power-supply voltage during many
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encryptions and computing the t-test statistic over the acquired data. We employ sensors

directly implemented in the FPGA fabric to measure the FPGA power-supply voltage as fre-

quently as possible. Our test hardware computes the first-order t-test statistic and is calibrated

on the target cryptographic core. Although verified using AES, our proposed methodology

is general and can be applied to any cryptographic core. Moreover, our built-in test can be

triggered remotely, periodically, or on power-up, thus continuously monitoring the device’s

susceptibility to the first-order correlation and differential power analysis attacks during its

entire service life.

In the remainder of this chapter, we first introduce the threat model. Then, in Section 4.2,

we outline common tampering techniques. In Section 4.3, we introduce the t-test leakage

estimation methodology and describe how we adapt it for computing the t-test metric in

hardware. Section 4.4 describes the architecture and FPGA implementation of our system.

Section 4.5 presents and discusses the experimental results, while Section 4.6 concludes the

chapter.

4.1 Threat Model

Our threat model targets FPGA-based embedded and cyber-physical devices accessible to

attackers, and vulnerable to PDN tampering attacks that make the devices leak higher-than-

desired information through the power side channel. This adversary model includes devices

vulnerable to first-order power side-channel attacks, both protected and unprotected, and

connected or unconnected to the network. The security of the devices is typically assessed

only before deployment in the field, making it impossible to detect an increase in power side-

channel leakage during the device service life. Our threat model is focused on cyber-physical

systems where the security primitives are implemented on FPGA. In such a system, voltage

traces can be recorded using FPGA-based sensors such as TDCs, while FPGA DSP blocks can

be used for computing the leakage estimates.
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4.2 Tampering with the PDN

As the power delivery network on the PCB is designed to minimize and filter the voltage

fluctuations on the chip’s power pins, a noninvasive attacker obtains filtered traces, requiring

a significant number of measurements for a successful attack. Consequently, to improve

the quality of the acquired traces, attackers resort to more invasive methods. On the one

hand, attackers can insert shunt resistors and/or amplifiers to easily record the fluctuating

current consumed by the cryptographic device [10, 17]. On the other hand, the attackers can

remove decoupling capacitors, ensuring that local voltage variations are not filtered at the

board level. Khan et al. showed that removing capacitors can lead to a significant increase

in the detectable leakage [79], while Mazur et al. showed that removing capacitors leads to a

significant reduction in the number of traces needed to extract the key [80]. Schellenberg et

al. demonstrated that removing decoupling capacitors results in a 100× fewer measurements

needed to break the secret key [12].

4.3 Online Computation of the t-test Statistic

In cryptography, the nonspecific t-test is commonly used to evaluate first-order side-channel

leakage. To compute it, two sets of power traces need to be collected: one while a constant

plaintext is encrypted (QF ) and the other while randomly chosen plaintexts are encrypted

(QR ). Additionally, the decision whether to encrypt the fixed or random plaintext must be

made in a nondeterministic or a randomly-interleaved fashion, to avoid predictable initial

conditions. The t-test statistic can then computed as

t = µF −µR√
s2

F
nF

+ s2
R

nR

, (4.1)

where µF (resp. µR ) is the sample mean and s2
F (resp. s2

R ) the sample variance of the set QF

(resp. QR ), and nF (resp. nR ) is the cardinality of the set QF (resp. QR ). If |t | exceeds the

threshold of 4.5, the test has detected a leakage with a confidence of at least 0.99999 [73]. If

38



4.3 Online Computation of the t-test Statistic

the power traces contain multiple samples, the test needs to be repeated for every sample.

Therefore, calculating the t-test requires efficient and correct computation of the mean and

variance for each power trace sample. With the cardinality of the power trace sets in the tens

of thousands, a straightforward computation of these statistic parameters would result in

excessive memory overhead, significant latency, and low throughput. Hence, the statistic must

be computed online. However, algorithms for incremental computation are typically limited

to recomputing the mean and variance with every new trace [81, 82]. We demonstrate that this

frequent computation is inefficient and not needed to achieve correct t-test results. Instead,

we propose a method that performs minimal computation after each new trace acquisition

and recomputes the statistic parameters only after a batch of k power consumption traces

have been processed. The parameter k is defined by the user, according to the needs of the

target application.

For a set of traces X of cardinality N , where each trace has M samples, the mean and the

variance of a trace sample x over all N traces are defined as follows:

µ=µN = 1

N

N∑
i=1

xi , (4.2)

s2
N = 1

N

N∑
i=1

(xi −µN )2, (4.3)

where i is the index of the trace in the set X. The above equations are called standard two-pass

algorithm [83], as they require traversing the data twice: once to compute the mean and

a second time to compute the variance. From a hardware acceleration point of view, the

computation is impractical, as a large cardinality of X can lead to an unacceptable amount of

memory and computational overhead to store and access all the data. A possible solution is to

use the one-pass algorithm, where (4.3) can be transformed to:

s2
N =

N∑
i=1

x2
i −

1

N

(
N∑

i=1
xi

)2

. (4.4)

However, this form is numerically unstable when implemented in floating-point arithmetic. In
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fact, it is susceptible to large cancellation errors or even a negative estimated variance. The in-

stability can be remedied by using an online method [83], for instance Welford’s algorithm [82],

in which the statistics are recomputed with every new sample that arrives:

µn+1 =µn + 1

n +1
(xn+1 −µn), (4.5)

s2
n+1 =

1

n +1

(
s2

n + (
xn+1 −µn+1

)(
xn+1 −µn

))
. (4.6)

The disadvantage of (4.6) is that the new mean needs to be ready before the update of the

variance can take place. Schneider et al. address this by first introducing the term central sum

C Sd ,n =
n∑

i=1
(xi −µn)d (4.7)

and then deriving the formula for updating it incrementally [73]:

C Sd ,n+1 =C Sd ,n+
d−2∑
m=1

(
d

m

)
C Sd−m,n

(µn −xn+1

n

)m
+

(
n −1

n

(
µn −xn+1

))d
[

1−
( −1

n −1

)d−1
]

.

(4.8)

Finally, the expression for the variance—as it is also used by Sonar et al. [81]—is only one

scaling factor away:

s2
n+1 =

1

n +1
C Sd ,n+1 =C S2,n + n

n +1
(xn+1 −µn)2. (4.9)

To avoid updating the mean and variance with every new power trace, we introduce incremen-

tal updates of size k. We introduce the term partial central sum: C Sd (n,k). It corresponds to

the central sum computed over k samples in the range (n +1, ...,n +k):

C Sd (n,k) =
n+k∑

i=n+1
(xi −µn)d =

k∑
i=1

(xn+i −µn)d . (4.10)
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The mean of n +k elements can then be represented as:

µn+k = 1

n +k

(
n∑

i=1
xi +

n+k∑
i=n

xi

)
= 1

n +k

(
nµn +

n+k∑
i=n

xi

)
(4.11)

The numerator in (4.11) can be further written as:

nµn +
n+k∑
i=n

xi = (n +k)µn −
k∑

i=1
µn +

k∑
i=1

xn+i (4.12)

Finally, merging (4.11) and (4.12) results in an incremental expression for the mean:

µn+k =µn + 1

n +k
C S1(n,k). (4.13)

Similarly, the variance of n+k elements can be rewritten in terms of the variance of n elements,

C S1(n,k), and C S2(n,k):

s2
n+k = 1

n +k
C S2,n+k . (4.14)

Moreover, C S2,n+k can be rewritten using (4.7), (4.10), and (4.13):

C S2,n+k =
n+k∑
i=1

(xi −µn+k )2 =

=
n+k∑
i=1

(
xi −µn − C S1(n,k)

n +k

)2

=

=
n+k∑
i=1

(
(xi −µn)2 −2(xi −µn)

C S1(n,k)

n +k
+ C S1(n,k)2

(n +k)2

)
.

(4.15)

The sum in (4.15) can be decomposed in three sums:

sum1 =
n+k∑
i=1

(xi −µn)2, (4.16)

sum2 =
n+k∑
i=1

2(xi −µn)
C S1(n,k)

n +k
, (4.17)
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and

sum3 =
n+k∑
i=1

C S1(n,k)2

(n +k)2 . (4.18)

The expression in (4.16) can be rewritten as:

sum1 =
n∑

i=1
(xi −µn)+

n+k∑
i=n

(xi −µn)2 =C S2,n +C S2(n,k), (4.19)

while the expression in (4.17) can be rewritten as:

sum2 = 2
C S1(n,k)

n +k

n+k∑
i=1

(xi −µn) =

= 2
C S1(n,k)

n +k

(
n∑

i=1
(xi −µn)+

n+k∑
i=n

(xi −µn)

)
=

= 2
C S1(n,k)

n +k

(
(nµn −nµn)+C S1(n,k)

)=
= 2

C S1(n,k)2

n +k
.

(4.20)

Finally, the expression in (4.18) can be rewritten as:

sum3 = (n +k)
C S1(n,k)2

(n +k)2 = C S1(n,k)2

n +k
. (4.21)

Combining (4.19), (4.20), and (4.21) in (4.15) results in the incremental equation for C S2,n+k :

C S2,n+k =C S2,n +C S2(n,k)− C S1(n,k)2

n +k
. (4.22)

Dividing (4.22) with n +k leads to the final equation for the variance with an incremental step

k:

s2
n+k = C S2,n

n +k
+ C S2(n,k)

n +k
−

(
C S1(n,k)

n +k

)2

=

= n

n +k

C S2,n

n
+ C S2(n,k)

n +k
−

(
C S1(n,k)

n +k

)2

=

= n

n +k
s2

n + C S2(n,k)

n +k
−

(
C S1(n,k)

n +k

)2

.

(4.23)
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Figure 4.1: Dataflow graph for operations when calculating the mean and variance incremen-
tally with step 1.

To eliminate the second central sum in the first element of the sum in (4.23), we can multiply

and divide it by n, resulting in the final equation for the variance of n +k elements in (4.14)

written in terms of the variance of n elements, C S1(n,k), and C S2(n,k):

s2
n+k = n

n +k
s2

n + 1

n +k
CS2(n,k)−

(
1

n +k
CS1(n,k)

)2

. (4.24)

The new equations for the mean and variance in (4.13) and (4.24) remove the constraint of

recomputing the statistics after every new trace, which is the case in the work by Sonar et

al. [81]. Fig. 4.1 highlights the differences in calculating the statistics with each new trace and

k new traces. On the left, the dataflow graph of the operations performed in (4.5) and (4.9)

shows that computing the mean and variance takes eight operations with every new trace.

In contrast, on the right, the dataflow graphs of the operations in (4.13) and (4.24) show that

computing the partial central sums takes four operations with every new trace, and additional

eight operations after k traces. Starting from a step size of k = 3, it takes fewer operations to

compute the mean and the variance than with a single incremental step.

To avoid hardware divisions, updating the mean and variance with each new trace requires

storing values 1
n and 1

n+1 in local memory; for 1 ≤ n ≤ N . The memory overhead amounts

to N words, where N can be in the tens of thousands. When the step size is k, the memory
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overhead is N
k words, which is negligible when k is sufficiently large (e.g., 1024). Finally, (4.9)

requires storing the second central sum—a sum of squares—of all trace samples. A large N

can have large numerical values, requiring many integer bits for a fixed-point representation.

Conversely, C Sd (n,k) is a sum of squares of size k, requiring fewer integer bits for the hardware

representation.

In our approach, the t-statistic of every trace sample is updated with the same frequency

as the mean and the variance: every k power consumption traces. To avoid computing the

square root and division, similar to Sonar et al. [81], we use the squared t-test statistic, and an

equal number N of fixed- and random-plaintext traces:

t 2 =
(
µR −µF

)2

1
N

(
s2

R + s2
F

) . (4.25)

As the t-test cannot be used to quantify leakage, and leakage is detected when the t value

crosses the predefined threshold |t | > 4.5, we implement the following comparison:

N
(
µR −µF

)2 > 4.52 (
s2

R + s2
F

)
. (4.26)

Power trace samples for which this comparison returns logical 1 are considered as leaky.

4.4 Built-in Leakage Evaluation System

Our system for online self-evaluation of the first-order power side-channel leakage follows the

steps of the function BuiltInTest, shown in Algorithm 1. The parameters of the BuiltInTest

function include EMAX, the desired maximum number of random/fixed encryptions for the

test, k, the rate at which the mean, variance, and the t-test statistic are updated, NS , the

number of sensor samples per power trace, the cryptographic test key K , the fixed plaintext

PTF , and the initial chained plaintext PT0. The higher the value of k, the smaller the number

of operations the built-in test needs to perform and, consequently, the shorter the time for
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Algorithm 1: BuiltInTest. Checks if the first-order power side-channel leakage is
present.

Input: EMAX: number of encryptions for which the t-test is performed
Input: k: mean and variance increment size
Input: NS: number of sensor samples per power trace
Input: K : test key, for use only during built-in testing
Input: PTF: fixed plain-text input
Input: PT0: initial plain-text input
Variables: MR ,MF ,VR ,VF : memories for keeping means and variances of the random

(R) and fixed (F) traces pCS1R ,pCS1F ,pCS2R ,pCS2F : memories for
keeping the first and second partial central sums of the random (R) and
fixed (F) traces

Output: TTEST, array with the t-test results of every trace sample for every step k
PTR ← PT0
ttest.clock.disable()
t = 0
while t < EMAX do

pCS1.clear()
pCS2.clear()
/* Phase I */
for e ← 1 to k do

/* Repeat for every new trace. */
foreach t , t ∈ {R,F } do

CRYPTO.reset()
CTt ← CRYPTO.encrypt(PTt ,K )
trace ← load(sensor(),NS)
ttest.clock.enable()
foreach trace sample i , i ∈ [0..NS −1] do

xt ← (trace(i)−Mt(i))+pCS1t(i)
yt ← (trace(i)−Mt(i))2 +pCS2t(i)
pCS1t .store(xt , i)
pCS2t .store(yt , i)

ttest.clock.disable()
PTR ← CTR

/* Phase II */
/* Repeat after k traces. */
ttest.clock.enable()
foreach trace sample i , i ∈ [0..NS −1] do

mF ← mean(MF (i),pCS1F (i), t)
mR ← mean(MR(i),pCS1R(i), t)
MF .store(mF , i)
MR.store(mR, i)
s2

F ← var(VF (i),pCS1F (i),pCS2F (i), t)
s2

R ← var(VR(i),pCS1R(i),pCS2R(i), t)
VF .store(sF , i)
VR.store(sR, i)
ttSuccess ← ttest(mF ,mR,s2

F ,s2
R, t)

TTEST.stor e(ttSuccsess, i , t )
ttest.clock.disable()
t ← t +k

return Passed
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the test to complete. NS depends on the frequencies at which the cryptographic core and the

sensor are running and NE , the number of cycles need to perform the entire encryption. The

valid range for NS is from one sample to at most ⌊NE ×TS/TE ⌋, where TS and TE are the clock

periods of the sensor and the cryptographic core, respectively.

The algorithm has two phases. During the first phase, using the test-only key K , the system

runs k encryptions of the fixed and random plaintexts in an alternating fashion. Before every

encryption, the cryptographic core is reset, to ensure constant and data-independent initial

conditions. During encryption, the t-test core is disabled, minimizing any effects its power

consumption may have on the measurements. For simplicity, the random plaintext of the

current encryption is the ciphertext from the previous encryption. For each encryption, the

according first and second partial sums from (4.10) are updated, resulting in 2×k ×NS online

updates. During the second phase, triggered after the completion of the first, the system

updates the mean, the variance, and the t-test statistic for every power-trace sample. For each

batch of k traces, NS t-test results are produced, which can be used for the first-order leakage

detection.

The end condition (whether the device passed or failed the test) depends on the desired use

case of the system. For instance, one may want to signal a problem as soon as a leaky sample

is detected—a scenario illustrated in Algorithm 1. In another situation, one may want to be

less conservative and allow a small, but limited, number of leaky samples during the test,

and report failure only if that number is exceeded. In yet another use case, one may want to

compare the number of leaky samples between different test runs, to detect if the board has

undergone changes or tampering. Whatever the target deployment scenario, the change to be

made to the algorithm (and, consequently, the system implementation) remains minimal.

4.4.1 System Architecture and Integration

Fig. 4.2 shows the architecture of the complete built-in leakage evaluation system integrated

with a cyber-physical system. It comprises the cyber-physical system with the cryptographic
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Figure 4.2: Architecture of the built-in leakage evaluation system. The leakage evaluation
system is co-located with the cyber-physical system, allowing for fast leakage evaluation with
minimal service interruption.

device under test, the TDC-based voltage-drop sensor, the t-test core, and the controller.

The TDC-based sensor records one power consumption trace per encryption, and sends

it to the t-test system as a burst of NS consecutive samples. The t-test core processes the

traces and evaluates the leakage in each sample after k traces. A cross-clock domain first-

in-first-out (FIFO) buffer stores a single sensor trace before the t-test core reads it. This

intermediate storage reduces the noise from the traces by disabling the t-test core during

the encryption process. Moreover, different read and write clocks for the FIFO allow the

sensor to work at the maximum possible frequency without over-constraining the timing

requirements for the compute-intensive t-test core. The controller is responsible for triggering

the encryptions, generating the correct plaintexts, disabling the t-test core during encryption,

correctly calibrating the sensor, and detecting if the alarm should be signaled. The controller

is triggered by the cyber-physical system depending on the user requirements: at startup,

periodically, or when changes in the system happen (such as impedance changes).

Two ways exist to integrate the t-test system into the FPGA-based cyber-physical system. On

the one hand, the t-test system can be a separate (or partial) bitstream programmed on the

FPGA whenever the test is triggered, replacing the cyber-physical system with the t-test system

and the cryptographic device under test. This method incurs no area overhead for the t-test,

but requires storing two bitstreams off-chip and significantly increases the unavailability of
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the system. In addition to the time required for the test, the FPGA must be reprogrammed

twice. On the other hand, having the t-test system co-residing with the cyber-physical system

allows performing the test anytime, with minimal interruption. When triggered, the controller

logic takes control of the cryptographic device until the end of the test. Colocating the t-test

with the cyber-physical system incurs an area overhead. However, with the vast logic resources

of the current FPGAs and the latency constraints of cyber-physical systems, some applications

might find it more advantageous than reprograming the FPGA for every test. In our system,

shown in Fig. 4.2, we colocate the leakage detection logic with the cyber-physical system. This

configuration requires two modes of operation:

• Regular mode, where the t-test logic is disabled while the cyber-physical system runs in

regular operating mode.

• Test mode, when the t-test system gains control, disabling the cyber-physical system

and performing the t-test on EMAX fixed and random cryptographic encryptions.

4.4.2 Power-Supply Voltage Sensor

Even though FPGAs contain embedded system monitors, these on-chip measurement circuits

have a low sample rate and cannot detect nanosecond voltage fluctuations caused by logic

switching at high frequencies [11]. Therefore, to capture on-chip power-supply voltage varia-

tions, we use a voltage-fluctuation sensor implemented directly on the FPGA. In this work, we

use the TDC voltage-drop sensor with a phase-locked loop (PLL) to delay the capture clock,

as it can capture voltage variations in time intervals as short as a few ns. We use a priority

encoder to convert the thermometer code of the TDC sensor to binary encoding.

4.4.3 Hardware Implementation of the t-test

Fig. 4.3 shows the architecture of the t-test core implementing (4.26). It consists of three

main computation blocks: the block for incrementing the partial central sums in (4.10) after

each new trace, the block for updating the mean and the variance in (4.13) and (4.24) after
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Figure 4.3: Architecture of the t-test block. The blocks in the green part are updated with every
trace, while blocks in the blue part are updated after k traces.

k traces, and the block for computing the t statistic in (4.26) after k traces. The t-test core

contains BRAM memories for keeping the partial central sums in (4.10), the running means

and variances in (4.13) and (4.24), and t-test scores for all NS power trace samples, for both

fixed and random traces. The multiplicative factors 1
n+k and n +k are computed offline and

saved in read-only memories.

As its input, the t-test core processes the sensor values from the FIFO. The traces processed by

the t-test can contain an arbitrarily large number of samples without increasing the datapath

resource utilization, as the computation blocks are implemented in a pipelined manner. A

control unit, triggered by the start of each AES encryption, ensures that the intermediate

values are read and stored at the correct addresses in the corresponding memories.

The t-test computation can be performed in floating-point or fixed-point arithmetic, depend-

ing on the resources the host FPGA offers. Our test platform, Sasebo-GII [84], has a Xilinx

Virtex-V LX30 FPGA. This FPGA contains fixed-point DSP blocks, which we harness for all the

required arithmetic operations. Conversion from floating-point to fixed-point representation

leads to precision loss. It imposes the challenge of finding the right number of bits to represent

the integer and the fractional parts of each intermediate variable in the t-test computation.

The DSP blocks in the Virtex-5 FPGA [85] perform addition/subtraction on two 48-bit wide

operands, which enables a minimal loss in precision. However, the DSP multipliers take one

25-bit and one 18-bit wide input. These limited bit widths require careful analysis of the range

of values the intermediate variables may have; this analysis is one of the steps in the t-test
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calibration process described in Section 4.4.5.

4.4.4 Encryption Core

The encryption core is the circuit that needs to be monitored, because of its susceptibility

to power side-channel leakage. As a case study, we use AES-128 encryption cores, but our

monitor is sufficiently general to be used with any cryptographic core that leaks information

through the power side channel.

4.4.5 System Calibration and Robustness

The t-test system requires calibration to evaluate the leakage correctly. The calibration is

performed for each device instance, since process variation can significantly impact the sensor

performance and the sensor output distribution [86]. The calibration is done for two reasons:

first, the delay-line sensor needs calibration so that its output is within the observable range

(none of the values reach min/max sensor limits). Second, the width of the integer and the

fractional parts of all intermediate variables n the t-test system need to be set.

To calibrate the sensor, we run a sequence of encryptions, record the sensor readings, and

tune the capture clock shift with a PLL until the maximum value in the steady state reaches

∼130. We make the TDC sensor delay line long (160 bits) to ensure that the sensor works in

the operating range even when the on-chip voltage drops or becomes excessively noisy due to

tampering or changing working conditions. Later work proposed more advanced calibration

techniques that maximize the side-channel leakage extraction [86], which are particularly

suitable for datacenter-scale FPGAs with a low SNR and peak-to-peak ratio [14, 86]. Our t-test

system targets low- to mid-end FPGAs used in cyber-physical devices, with a high sensor

peak-to-peak ratio and SNR, allowing us to use a more straightforward and shorter calibration

procedure. Using a more complex calibration procedure that maximizes the sensor quality,

while not necessary, would be desirable in future work.

After the sensor calibration, we run many fixed and random plaintext encryptions and record

50



4.5 Experimental Results

XC5VLX30XC35400A

Power Delivery Network

Cryptographic
FPGA

Control
FPGA

VDD VDD

VUSB

Sasebo-GII

Rshunt

GND

Host
PC

MDO3014

Voltage Trigger

USB

Figure 4.4: Measurement setup used for acquiring the power side-channel traces on the
Sasebo-GII board, and evaluating the correctness of the t-test system.

the power consumption traces. Then, we compute the t-test statistic on the collected traces

in floating-point arithmetic. Finally, using the computed t-test statistic as a reference, we

employ standard methods for floating-point to fixed-point format conversion to find the

integer/fractional-part widths of all the intermediate variables, which respect DSP-block

constraints that produce accurate t-test results. However, if PDN tampering changes the

statistical properties of the sensor traces, the t-test module should not start having overflows

in the DSPs, as this could lead to a loss of precision. In our system, we avoid overflows by

increasing the number of integer bits of each variable by two bits after calibrating the t-test

core.

4.5 Experimental Results

Fig. 4.4 shows our experimental evaluation setup. As our evaluation platform, we choose

the Sasebo-GII [84] board, equipped with two AMD FPGAs. One FPGA, commonly referred

to as control FPGA (AMD Spartan 3A XC35400A), manages the communication with the

cryptographic core. The other, main FPGA (AMD Virtex-5 LX30 FPGA), implements our t-test

system. We use a Tektronix MDO3104 Oscilloscope with a 1 GHz sampling frequency and an

eight-bit ADC to record oscilloscope traces. A host PC communicates with the device under

test (e.g, sending plaintexts, receiving ciphertexts) and the oscilloscope (e.g., receiving traces

and the t-test output), and checks the correctness of the t-test system.
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Figure 4.5: The percentage of power trace samples for which the t-test fails for the nonpipelined
AES, in the function of the number of traces. Solid lines are obtained using the oscilloscope
traces and a t-test software routine in floating-point precision. Dashed lines are obtained
using the FPGA sensor traces and the same software routine, while the diamond markers—
which almost perfectly overlap the dashed line—are the result of the FPGA t-test module.

We evaluate our system on two AES-128 cores implemented on the main FPGA; the first AES is

a nonpipelined 128-bit AES [87], while the second is a 32-bit four-stage pipelined architec-

ture [88]. Both cores operate at 24 MHz—the maximum frequency of the communication

bus used for providing the plaintexts and offloading the ciphertexts from the FPGA [12]. The

sensor and the t-test core run at 96 MHz, and we set the k parameter to 1024 traces.

To evaluate the system performance, we perform two experiments on each of the two AES

cores. First, we record the oscilloscope traces of only the cryptographic core. Second, we

record the sensor traces, the t-test core output, and the oscilloscope traces of the entire t-test

system. In every experiment, we collect 28×210 traces: half using a fixed plaintext and half

using random plaintexts. We repeat the experiments ten times for both AES cores to obtain

more statistically significant results.

Figs. 4.5 and 4.6 show the percentage of the leaky trace samples in the function of the number of

collected traces, averaged over all experiment runs. The full (resp. dashed) curves correspond

to the results obtained using the oscilloscope (resp. sensor) traces and a t-test software routine

in floating-point precision. The diamonds correspond to the hardware t-test core results.

The almost perfect alignment of the diamonds and the dashed curve indicates a very good
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Figure 4.6: The percentage of power trace samples for which the t-test fails for the pipelined
AES, in the function of the number of traces. Solid lines are obtained using the oscilloscope
traces and a t-test software routine in floating-point precision. Dashed lines are obtained
using the FPGA sensor traces and the same software routine, while the diamond markers—
which almost perfectly overlap the dashed line—are the result of the FPGA t-test module.

accuracy of our t-test computation in hardware. A common characteristic among all these

curves is that the average leakage increases with the number of power traces. Additionally,

due to the noise introduced by the components of the built-in self-evaluation system, the

standalone AES core (in green) has slightly more leaky samples than the complete system (in

blue).

In the case of the nonpipelined AES in Fig. 4.5, the results obtained using the sensor traces

closely match those obtained using the oscilloscope traces. However, sensor traces for the

pipelined AES in Fig. 4.6 seem to contain more leaky samples than the oscilloscope traces.

To understand why, we look at the change in the numerators (subtraction of means) and

the denominators (sum of variances) in (4.1) and compare them when using the sensor and

oscilloscope traces. The results show that, due to the lower precision of the TDC sensor

compared to the oscilloscope ADC, sensor traces for both AES cores have, on average, ∼60%

smaller sum of variances than the oscilloscope traces. At the same time, for the nonpipelined

AES, the subtraction of means has ∼70% higher value than for the pipelined AES (because

the former occupies more resources, consumes more power, and thus creates higher voltage

fluctuations). The values of the numerators in (4.1)—for both the sensor and the oscilloscope

traces of the nonpipelined AES—are similar and large enough to compensate for the difference
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Table 4.1: FPGA resource utilization breakdown. The number of available resources shown
first. In the left columns of the two AES groups, the resources occupied by the encryption core
and related modules. In the right columns, the resources used by the leakage-estimation parts
of the system.

Resource type FPGA total
AES Pipelined AES

Encryption core Leakage estimation Encryption core Leakage estimation

LUTs 19200 11.90% 8.23% 5.16% 9.16%

Registers 19200 4.55% 7.31% 6.30% 7.47%

DSP48E 32 - 43.75% - 40.63%

RAMB18 64 3.13% 6.25% 3.13% 7.81%

RAMB36 64 - 9.38% - 7.81%

between the corresponding denominators. In the case of the pipelined AES, the denominators

in (4.1) have a larger influence on the t-test, resulting in a slightly increased number of leaky

samples in the sensor traces.

In the next experiment, we compare the t-test values obtained using the oscilloscope traces

and the floating-point computation in software with the values computed by the hardware

t-test module. After aligning and downsampling the oscilloscope traces, we count the false

positives (samples erroneously declared as leaky) and false negatives (samples erroneously

declared as not being leaky). In the case of the nonpipelined AES, we counted only 3.88% false

negatives and 5.74% false positives, on average. In the case of the pipelined AES, we counted

5.63% and 13.51%, respectively. These results match the offsets between the corresponding

dashed and solid lines in Figs. 4.5 and 4.6.

Table 4.1 summarizes the FPGA resource utilization. The leakage estimation part of the design

(the sensor, the control logic, the DSP, and the RAM blocks) uses up to ∼10% of the LUTs and

registers, up to ∼10% of the on-chip memory, and up to ∼44% of the DSP blocks available.

The minor mismatch between the systems with pipelined and nonpipelined AES is due to the

change in the sensor calibration and the width of the AES core datapath.

Compared to the design by Sonar et al. [81], our t-test core requires 3.8× fewer LUTs, 1.7×
fewer slice registers, 2.6× fewer BRAMs, and 18.3× less DSP blocks, for the same number of

trace samples (NS = 64). Unlike their solution, which requires replicating the t-test module

for every new trace sample, we reuse the datapath resources in a pipelined fashion and only
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increase the storage requirements for keeping the partial sums, the means, and the variances

of the newly added samples only. Finally, Sonar et al. report the maximum relative error of

20% between the floating-point and the fixed-point leakage estimation, whereas we do not

calculate the t-test value itself—we calculate its binary equivalent (1 if |t | > 4.5, 0 otherwise).

Comparing the binary t-test value obtained using floating-point processing of sensor traces

with the output of the FPGA t-test core shows the maximum of 0.8% of incorrectly classified

trace samples.

4.6 Chapter Summary

In this chapter we have presented and validated a built-in test for self-evaluation of power side-

channel leakage, suitable for FPGAs. The system consists of a digital sensor to measure the

on-chip voltage fluctuations and an engine to calculate the t-test statistic on-the-fly and thus

verify the presence of information leakage. Our design is validated using two AES accelerators

implemented on FPGA. When evaluating the t-test statistic, our built-in test achieves results

comparable to those obtained using state-of-the-art lab equipment. The system proposed in

this chapter allows, for the first time, a real-time assessment of power side-channel leakage

during the device operation in the field. This work will open new frontiers for ensuring

security of safe and robust cyber-physical systems, which is currently verified only before the

deployment.

55





Part II

Multitenant FPGAs:

Attacks and Defenses

57





5 Remote Statistical Power Analysis

Attacks on Cloud FPGAs

Today, the largest cloud providers, including Amazon, Microsoft, Alibaba, and Baidu, offer

FPGA instances in their large-scale datacenters [2–4, 38]. However, the cloud-scale integration

and increasing research efforts to support multitenant FPGAs bring several challenges and

raise concerns related, in particular, to security. For example, in multitenant systems, it is

necessary to guarantee the correct insulation between different users and ensure that one

user cannot interfere with or delay the computation of another user. Additionally, preventing

information leakage through a side channel is essential for guaranteeing security. In the past,

this problem was limited to timing and microarchitectural side channels since the adversary

would have needed physical access to the device to mount all other types of physical attacks

successfully.

As described in Chapter 3, remote access to low-level logic removes the need for physical

access to perform some attacks [12,13]. Power traces, now captured using FPGA-based voltage

sensors instead of classical oscilloscopes, allow attackers to mount power analysis attacks on

remote FPGAs. However, the first examples of these attacks were carried out in controlled

lab environments with dedicated setups. For example, previous work has shown successful

remote power analysis attacks on low- to mid-end FPGAs such as AMD Virtex-V [12] or AMD

This chapter is based on the work of a paper published at the 2020 Design, Automation & Test in Europe Conference

& Exhibition [14].
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Zynq-7000 [13] FPGAs, containing 19.2k and 53.2k LUTs respectively. In contrast, most modern

cloud FPGAs are from the AMD Ultrascale+ FPGA family [2,3,37,38] and contain approximately

1–2 million LUTs. These FPGAs are 10–20× bigger than those used in previous work, have new

architectures of FPGA resources, and have higher quality PDNs.

While giving the intuition that the threat of remote power analysis attacks could also be

exploitable in a real cloud environment and high-end cloud FPGAs, previous work did not

provide any clear evidence of this fact. The work in this chapter bridges this gap. For the first

time, we show a successful remote key recovery attack on a 128-bit AES accelerator on a real

cloud system: Amazon EC2 F1 instances. To collect the power traces, we carefully port the TDC

sensor and adapt it to be tolerant to carry look-ahead chains available in high-end Xilinx Virtex

Ultrascale+ FPGAs, which, unlike ripple-carry carry chains on low-end FPGAs, do not have

monotonic delay increase at their outputs. Our results demonstrate that high-end cloud FPGAs

have a lower SNR than small, low-end FPGAs, requiring significantly more traces to break the

key successfully. Nevertheless, our work shows that power side-channel vulnerabilities exist

even in cloud FPGAs and that cryptographic circuits should not be unprotected in a future

multitenant scenario.

In the remainder of this chapter, we first introduce the threat model. Then, in Section 5.2,

we discuss the issues with porting TDC sensors to state-of-the-art FPGAs used in the cloud.

Section 5.3 describes the architecture and FPGA implementation of our system. Section 5.4

presents and discusses the experimental results, while Section 5.5 concludes the chapter.

5.1 Threat Model

In a co-tenancy or multitenancy scenario, multiple users share the same reconfigurable logic

and deploy their hardware tasks on it. Every deployed task and its computation is a relevant

intellectual property of a user and, as such, must be protected. This is achieved with logical

and physical separation of the tenants [89]. However, unwanted interaction between the

tenants can still happen through the PDN. This can introduce several security risks, including
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the leakage of secret information via the power side channel.

In this work, we assume that a victim uses a subset of the FPGA resources to encrypt data with

a secret key, while the other tenant is malicious, with the aim of attacking the confidentiality

of the victim. Logical and physical separation of the tenants ensure that the adversary is not

able to connect to any of the signals in the victim logic—he has only the indirect access to the

shared PDN. Furthermore, we assume that, after performing the encryption, the victim sends

the ciphertexts over a public channel that can be observed by the adversary.

5.2 Porting the TDC Sensor on Ultrascale+ FPGAs

While older FPGA generations contain ripple-carry adders, CARRY8 blocks in state-of-the-art,

high-end UltraScale+ FPGAs are implemented as carry look-ahead adders [56]. Therefore, the

main challenge of implementing TDC sensors on Amazon EC2 F1 instances is that the delays

of the CARRY8 outputs do not increase monotonically. In other words, the delay from the

input of the carry chain CIN to the individual carry outputs COi ,0 ≤ i ≤ 7 does not increase

monotonically when all the other inputs are constant and set so that CIN can propagate. In

practice, a carry look-ahead architecture implies that CO7 output of the last reached CARRY8

in the observable delay line can be high while the other carry outputs are low, producing

unexpected sensor readings.

Since the sensor output is usually encoded using a priority encoder which expects a monoton-

ically increasing thermometer code at its input, unexpected sensor readings can be incorrectly

encoded, reducing the quality of the sensor. There are two commonly used priority encoder

implementations for TDC sensors. In the first, the encoded value represents the position

of the last bit equal to one, regardless of the value of the previous bits. For example, values

11110000 and 1001000 would both be encoded as a decimal 4. Since metastability can cause

an unstable transition from one to zero in the sensor output register even when using ripple-

carry adders [90], a second, more robust encoder returns the position of the last bit equal to

one followed by more than one zero. The robust priority encoder effectively ignores values
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Figure 5.1: CARRY8 internal architecture and nonmonotonic delays from input CIN to the
outputs COi , 0 ≤ i ≤ 7. To increase the likelihood of monotonically increasing delays with the
increase in the CARRY8 output index, it suffices to permute the CARRY8 outputs before they
reach the sensor register. The permutation is devised from a detailed timing analysis of all
paths within one CARRY8 element.

after large bubbles in the transition from one to zero. For example, values 11110000 and

11010000 would be encoded as 4, while 10010000 is encoded as 1. However, in the case of

carry look-ahead adders, both of the aforementioned encoders are incompatible with the

nonmonotonic sensor output, as the former can encode a large number of zeros as one, and

the latter ignores bits set to one after any bubble larger than two zeros (which often happen

with fast carry outputs of the carry look-ahead adders).

Fig. 5.1 shows the delays of the CARRY8 outputs on the UltraScale+ FPGA on Amazon EC2

F1, extracted using setup and hold timing analysis in Vivado. We conclude that to achieve a

monotonic increase in the output delays needed for the priority encoders, CARRY8 outputs

should be arranged in the following order: CO7, CO1, CO0, CO2, CO3, CO5, CO4, CO6. To

implement the reordering, it suffices to permute the order of signals between the sensor

register and the encoder, as illustrated in Fig. 5.1. Alternatively, calculating the Hamming

weight of the sensor output—counting the number of output bits set to one—avoids using

priority encoders entirely, as it implicitly orders the output bits in monotonic order. Hamming

weight represents an implementation-agnostic way of encoding the sensor output, as it does

not depend on the underlying CARRY architecture.
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Figure 5.2: Amazon EC2 F1 Instance architecture.

In this work, we record the state of the sensor’s entire observable delay line, allowing us to

process and encode the sensor output in software and directly compare different encoding

methods. We refer to the traces permuted in software and encoded with the robust encoder

as permuted. Conversely, we refer to the traces obtained using the delay line values encoded

without permutations as nonpermuted. Finally, traces obtained by calculating the Hamming

weight are referred to as HW.

5.3 System Architecture and Experimental Setup

The target system of the attack that we present in this chapter is an AES cryptographic core

running on an Amazon EC2 F1 instance. Fig. 5.2 shows the simplified architecture of the FPGA

instance. It consists of a virtual machine (VM) with the CENTOS operating system, with all

the drivers and APIs needed to communicate with the FPGA. This VM can run any user code

in C, including a correlation power analysis attack. The instance also contains a Xilinx Virtex

Ultrascale+ FPGA that has a static privileged shell, used for controlling the communication

between the user design and the C code in the VM.

Fig. 5.3 illustrates our system architecture, composed of several modules: First, an open-source

128-bit AES core [87] with an AXI-Lite wrapper. Then, a 160-bit voltage drop sensor to measure

the power side-channel leakage, a robust priority encoder to encode the propagation depth

of the clock to a corresponding binary number, and a true dual-port BRAM memory to store

the sensor output. The remaining modules enable communication between the AES, the

BRAM, and the shell. Our system has four clock domains. The shell provides the main clock

(125 MHz), which drives the interconnect, the BRAM controller, and the read port of the BRAM.
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We derive all the remaining design clocks from the main clock. A 96 MHz clock drives the

sensor delay line, while a phase-shifted 96 MHz clock is used for capturing the sensor output,

the encoder, the control unit, and the BRAM write port. The phase-shifted clock is used for

sensor calibration purposes, to delay the capture clock of the TDC sensor and ensure the rising

edge transition falls in the sensor observable delay line. The phase shift of 45° was chosen

experimentally during the sensor calibration process.

Our system simulates a potential victim by sending plaintexts to the AES core from the VM.

Upon the start of each encryption, the AES core asserts a trigger signal, and a fixed number of

consecutive sensor readings (encoded and raw) are stored in the BRAM. After the encryption,

the ciphertext and the power consumption trace are communicated to the VM in two read

requests. These steps are repeated for every new plaintext.

The implementation of our system satisfies the principle of physical separation, as a column of

unused DSP blocks separates the AES core and the sensor. Even though we use the AES trigger

signal to synchronize the power traces, it is done for practical reasons and can be avoided

using trace alignment techniques on the sensor traces [12], in which case, the system would

also satisfy the principle of logical separation.
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Figure 5.4: Waveform obtained by averaging a hundred power-consumption traces. Plaintext
loading and all ten AES encryption rounds can be clearly identified.

5.4 Experimental Results

As our first experiment, we analyzed the permuted power traces of the AES cryptographic

core. Across all the samples in 1M collected traces, only five distinct values appeared: 113,

115, 116, 117, and 121, whereas the sensor operating range was 1–159. Fig. 5.4 shows the

waveform obtained after averaging a hundred power consumption traces collected from the

sensor, where each trace corresponds to one encryption. The plaintext loading (the first dip)

and the subsequent ten rounds of AES encryption are all clearly visible in the power trace.

Hence, the traces, albeit represented with only five distinct values, contain information that

an attacker could potentially exploit.

For the second experiment, we perform the CPA attack on the last round of the AES encryption,

using the permuted traces. We mount the attack using 106 traces, with each byte attack leading

to the successful recovery of the secret key byte. Fig. 5.5 illustrates the results of the attack

on the seventh byte of the key. On the left side, the correlation for the correct key guess (in

black) reaches the maximum at sample 133 of the power trace. On the right side, we show how

the rank of the correct key guess evolves with the increase in the number of traces used in the

attack. We can observe that after a short instability, the rank of the correct key guess reaches

the value of one, and the key is successfully broken.

In our third experiment, we repeat the attack but this time on nonpermuted traces. Fig. 5.6

shows that the attack is still successful, although, the key rank drops to one after a much higher
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Figure 5.5: CPA attack on the seventh byte of the AES encryption, using 106 permuted traces.
On the left, the correlation for all key guesses, with the correct key candidate in black. On the
right, key rank evolution of the correct key candidate.
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Figure 5.6: CPA attack on the seventh byte of the AES encryption, using 106 nonpermuted
traces. On the left, the correlation for all key guesses, with the correct key candidate in black.
On the right, key rank evolution of the correct key candidate.

number of traces.

To evaluate the security of the entire key, we use the CPA results from the previous experiments

and calculate the key rank estimation metric outlined in Chapter 3.3.2. Fig. 5.7 shows the

results on the nonpermuted and permuted traces. In the case of permuted traces, 0.65×106

traces were sufficient to break the entire key. Without permutation, 106 traces were required

for a successful attack. Our results demonstrate that permuting the sensor output before

encoding results in fewer traces needed to break the entire key. As discussed in Chapter 5.2,

permuting the sensor output bits prevents information loss during encoding, as it prevents

large bubbles caused by the carry look-ahead logic in newer FPGA families.

To obtain more statistically relevant results, we repeat the previous experiments 30 times.
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Figure 5.7: Key rank estimation when attacking the full 128-bit key of the AES encryption for
the nonpermuted and permuted traces.

Before every experiment, we shut down and restart the Amazon EC2 F1 instance, potentially

having the resource allocator assign a different FPGA every time. For each repeated experiment

we record 106 traces using the same bitstream, sensor calibration, and AES inputs. Out of all

attempts to attack the individual key bytes using 106 traces, 48% were successful. In 73% of

the successful key-byte attacks, the CPA on the permuted traces succeeded with the smaller or

equal number of traces than the CPA on the nonpermuted ones. Moreover, the CPA on the

permuted traces required up to 88% (on average 20%) less measurements than the CPA on the

nonpermuted traces, to retrieve one byte of the key.

To analyze why some key-byte attacks were not successful, we calculate the key rank estima-

tions when attacking the entire key. Fig. 5.8 shows the results for all 30 runs with permuted

traces. We can observe that in some cases, the attack using 106 results in virtually no broken

key bits, while some attacks result in the entire key being revealed with as little as 0.6×106

traces. While the sensor was correctly calibrated in all 30 experiment runs, using the same

calibration for all experiments does not guarantee the same measurement quality on dif-

ferent Amazon EC2 F1 FPGA instances. As discussed in Chapter 4.4.5, variations in sensor

performance are expected across device instances because device timing characteristics, and

thus sensor measurements, are known to be affected by process variations, temperature, and

aging [91]. For example, Drewes et al. [86] later showed that in the case of datacenter-scale

FPGAs the sensor quality depends on where the clock edge lands in the delay line at the

moment it is sampled. Landing between two carry elements in the sensor carry chain results
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Figure 5.8: Key rank estimation for all 30 different experiment runs on the Amazon EC2 F1
instances, using permuted traces.

in poorer measurements than landing within the bits of a carry element. Since Fig. 5.4 shows

the peak-to-peak ratio of the sensor is already low—less than one sensor bit when averaging

100 traces—any variation in the delay can cause changes in the quality of the sensor mea-

surements. Drewes et al. [86] later demonstrated a calibration method for maximizing the

side-channel information measured by the sensor, by carefully tuning the phase between the

input and sampling clock of the sensor. The results in Fig. 5.8, along with the results from

Drewes et al. [86], demonstrate the need for careful sensor calibration, especially on large

datacenter-scale FPGAs with a small SNR.

As our last experiment, we compare the power side-channel attack results for the three different

sensor encodings. Fig. 5.9 shows the averaged results over the 30 runs for nonpermuted,

permuted, and HW traces. Since the key rank estimation has an upper and lower bound for

each run, we calculate and plot the area between the average lower and average upper bound

over the 30 runs. From Fig. 5.9, we can observe that, on average, permuted and HW traces

outperform the nonpermuted traces. As the nonpermuted traces have neither an explicit nor

implicit monotonic ordering before the encoding, the fast propagating carry bits of the carry

look-ahead adders are ignored in the transition from zero to one, resulting in a less successful

attack. Permuted and HW traces demonstrate similar trends in Fig. 5.9 and break the same

number of key bits since both encodings preserve the notion of monotonicity. Indeed, Drewes

et al. [86] later showed that the Hamming weight encoding maximizes the recovered leaked

information in case of workload classification on shared FPGAs. Since Hamming weight is
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Figure 5.9: Key rank estimation for three different sensor output encodings on the Amazon
EC2 F1 instances, averaged over 30 experiments.

easier to implement and port across different FPGA families, we use it as the encoding of

choice in the remainder of this thesis.

5.5 Chapter Summary

When deployed, multitenant FPGAs will offer new opportunities but will also expose new

security threats. Power analysis attacks are potentially among them since recent work showed

the possibility of remotely extracting the secret key of a cryptographic algorithm by mounting

an attack on the power traces obtained from sensors implemented using the FPGA fabric.

These experiments were, however, mostly carried out on FPGA development boards in a

controlled environment and not on a real system deployed on the cloud. In this Chapter, we

demonstrate, for the first time, a successful key recovery attack on a cryptographic accelerator

running on an Amazon EC2 F1 instance. As a case study, we used the AES-128 algorithm.

However, our attack is applicable to any cryptographic core susceptible to power analysis

attacks. Our results demonstrate that the security concerns raised by multitenant FPGAs are

indeed valid and that countermeasures should be put in place to mitigate them.
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6 Instruction-Level Power Side-Channel

Leakage Evaluation of Soft-Core CPUs

In the FPGA-accelerated cloud, highly-parallel tasks are accelerated on FPGAs. At the same

time, developers rely on host CPUs for general computation, particularly noniterative and

user event-dependent control algorithms, which are significantly easier to implement and

maintain in software than in hardware. However, the FPGA-CPU communication incurs high

latency, especially for short data transfers [92]. If such delays are of no concern, then the

control software can be deployed on a cloud CPU instance; yet, only a limited range of FPGA

applications—usually data movement ones—can afford the resulting communication latency.

Therefore, in the case of latency-critical control algorithms, system designers resort to using

soft-core CPUs as real-time co-processors (e.g., Microblaze [93], Nios [94], PicoRV [95]), which

allow tight and customizable integration with FPGA accelerators, and short communication

latencies.

As we demonstrated in Chapter 5, FPGA multitenancy introduces security threats that cannot

be mediated by physical or logical isolation between tenants. Including our own work, several

remote power-analysis attacks have already been demonstrated: a simple power analysis

(SPA) attack on Rivest-Shamir-Adleman (RSA) exponentiation [13], CPA attacks against AES

(requiring a large number of victim power traces) [12, 14, 48], and reverse engineering attacks

This chapter is based on the work currently under review for the Springer Journal of Hardware and Systems

Security.
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on neural network accelerators (which occupy a significant portion of the FPGA resources) [15,

96–98].

For an FPGA user, secret information is not limited to their bitstream, the cryptographic

key, or neural network accelerator parameters and architecture. If their design contains a

soft-core CPU, the code being executed can be proprietary or contain secrets. If an attacker,

by observing power side-channel traces during CPU code execution, can determine which

instructions are being executed, the confidentiality of the code will be compromised. In

embedded applications and smart cards, where adversaries have physical access to the target

device to measure power and electromagnetic side-channel leakage, attacks that aim at code

recovery are termed side-channel disassembly attacks [99,100]. Unlike statistical-based power

analysis attacks such as CPA, side-channel disassembly attacks are profiling attacks and

assume the attacker can record a limited number of victim execution traces.

Our subsequent work takes an evaluator’s point of view: we explore to which extent soft-core

CPUs leak instruction-level information through the remote power side channel, in cases

when an evaluator (or a potential attacker) has no physical access to the device but can

deploy on-chip voltage-drop sensors. Unlike traditional side-channel disassembly attacks—

where the CPU runs at frequencies orders of magnitude lower than the sampling rate of the

oscilloscope—sensors used in remote power analysis attacks have sampling frequencies in the

same operating range as soft-core CPUs. Our work analyzes if and under which conditions

soft-core CPU instructions contain power side-channel leakage and incentivizes the use of

protection methods in multitenant FPGAs. As our leakage evaluation targets, we choose

two RISC-V soft-core CPUs using the 32-bit RISC-V base integer instruction set architecture

(RV32I), most suitable for lightweight real-time co-processors [101].

To start, we record the side-channel traces corresponding to the execution of every CPU

instruction. Then, to investigate whether the traces leak secrets, we train diverse ML classifiers

used in previous work and also explore the use of novel deep learning (DL) classifiers to

improve the extraction of the power side-channel leakage. The results reveal that, despite the
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limited accuracy and sampling rate of on-chip sensors compared to oscilloscopes used in

disassembly attacks with physical access, the limited leakage compared to previous remote

reverse-engineering attacks, and the limited number of victim trace acquisitions compared to

statistical-based attacks, instruction-level leakages still exist: we can determine the executed

instructions with average accuracy higher than 80%. These results call for proper mitigations

to limit power side-channel leakage of soft-core CPUs in shared FPGAs.

We make the following contributions:

• To the best of our knowledge, we present the first analysis of instruction-level leakage of

soft-core CPUs in a shared FPGA setting.

• While power side-channel traces recorded by an on-chip FPGA sensor during the execu-

tion of one RISC-V soft-core CPU instruction contain limited visually observable leakage,

we demonstrate that, in certain conditions, advanced ML techniques can extract suffi-

cient information to identify the opcode of the executed instructions. The maximum

average instruction accuracy we achieve on the RV32I instruction set architecture (ISA)

is 86.46%.

• Besides evaluating previous side-channel disassembly approaches, we explore new, DL-

based instruction classifiers, and experimentally find that they are superior at extracting

leakage compared to common ML techniques deployed in previous work, and should

be used for future side-channel security evaluations.

• We perform an extensive experimental analysis that compares how different leakage

evaluation scenarios, such as the number and placement of sensors, number of tem-

plates, and type of templates, affect the instruction-level leakage. We also demonstrate

our results on two soft CPU cores and two different FPGA families. In addition to the

leakage analysis of the RISC-Y [102] soft-core CPU running at 80 MHz on the Sakura-X

board [103], we show results on a cloud-scale, AMD Alveo U200 datacenter accelerator

card, using the compact PicoRV [95] soft-core CPU, running at 320 MHz. With our

on-chip sensors running at 320 MHz, the side-channel traces have only four sensor
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samples per CPU clock cycle on Sakura-X, and only one sensor sample per CPU clock

cycle on Alveo U200; significantly lower than in traditional side-channel disassembly

attacks.

• We provide a detailed discussion of our experimental results and their impact on soft-

core CPU leakage evaluation, which we use to motivate appropriate mitigation tech-

niques.

Our work aims to provide a leakage evaluation methodology for soft-core CPUs in remotely

accessible scenarios and to benefit future power side-channel disassembly attacks by providing

novel DL power trace classification techniques. Therefore, we make all our FPGA designs,

associated software, and ML code openly available for the reproducibility of the experiments

and the results in this work [104].

The remainder of the chapter is organized as follows. In Section 6.1, we describe the threat

model, while Section 6.2, we explain the experimental setup in detail. Section 6.3 covers

dataset generation and the DL classification models used in our work. Experimental results

are presented in Sections 6.4 and 6.5. Section 6.6 discusses the results, while Section 6.7

discusses potential countermeasures. Finally, Section 6.9 concludes the chapter.

6.1 Threat Model

Research on the security of multitenant FPGAs follows a well-established threat model of

the fault and side-channel attacks on remote shared FPGAs [13–15, 32, 51, 52, 63, 105]. The

primary assumption is that at least two users can remotely deploy their designs on the same

FPGA instance simultaneously. For security reasons, these remote users are given control over

dedicated partial reconfiguration regions, which are logically and physically isolated; thus,

the attacker has no direct access or control over the victim or the victim’s deployment. The

adversary can deploy voltage fluctuation sensors to record power side-channel traces and

send them over the network for remote analysis.
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Figure 6.1: Threat model. The top half illustrates the profiling phase, which results in a library
of side-channel instruction classifiers, for a number of FPGA instances and CPU and sensor
placements. The bottom half shows the attack.

In this work, we assume an evaluator’s point of view: we evaluate the security of a victim using

a soft processor core in their shared FPGA platform, for example, to configure and control

the operation of an accelerator. This work analyzes instruction-level leakage to assess if and

under which circumstances soft-core CPUs leak instruction information through the power

side channel in shared FPGAs, with the goal of motivating the use of countermeasures.

When evaluating the side-channel security of a device, it is a common practice to consider

the worst-case estimates (even if not practically achievable by an attacker), as they quantify

the limits of the leakage. For example, in the context of cyber-physical devices, white-box

power side-channel leakage evaluation methods leverage proprietary architectural informa-

tion (unavailable to attackers) to build better power models for power analysis attacks [68].

Removing the plastic cover of a chip to record near-field EM emanations is another example

of a common practice in leakage evaluations, even though attackers might not always be able

to remove the casing. Consequently, our experiments assume and evaluate various scenarios:

from worst-case (a breach of physical and logical separation, no additional noise sources, and

averaging of traces) to more realistic scenarios, including physical separation, no averaging,

and noise from surrounding instructions and the shell.

In reality, a hypothetical attacker mounting a profiling attack on soft processor cores would

have to perform a procedure similar to the one shown in Fig. 6.1. To prepare for the attack,

an adversary would start by renting an FPGA instance as its only tenant. On this FPGA
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instance, the adversary would need to calibrate the voltage fluctuation sensors and use them

to profile the execution of the CPU instructions for various operating frequencies and several

CPU placements. Then, the attacker could train side-channel instruction classifiers. This

step would have to be repeated for many FPGA instances, each uniquely identified (e.g., by

fingerprinting cloud FPGAs as suggested by Tian et al. [106]).

To perform an exploit using the library of trained classifiers, the attacker would need to

rent a shared FPGA instance. Using fingerprinting to identify the shared FPGA instance, the

attacker can focus on the subset of the classifiers in the library trained on that particular FPGA

instance. Once side-channel traces are obtained, the adversary would need to identify that

the co-located user is using a soft-core CPU (and repeat until a victim with a soft-core CPU is

identified), using workload classification techniques [105]. Then the attacker could further

prune the subset of trained classifiers using the same workload classification techniques—

which can distinguish between different soft-core implementations in shared FPGAs—and

run the inference. Finally, in addition to the attack procedure, the attacker would need to

train models robust to noise from the shell or any other accelerator the victim might be using

alongside their soft processor core.

Our aim is to evaluate how and under which circumstances soft-core CPUs leak instruction

information in shared FPGAs, we therefore focus on assessing instruction leakage. We refer to

related work for FPGA identification and workload classification.

6.2 Experimental Setup

The Sakura-X (Sasebo-GIII) board [103] and the Alveo U200 datacenter accelerator card serve

as our target evaluation platforms. Sakura-X is an evaluation board designed for power side-

channel analysis and, hence, commonly used in both cryptologic research [107, 108] and

research on side-channel attacks on shared FPGAs [12,47,98]. Sakura-X has one AMD Kintex-7

FPGA and one AMD Spartan-6 FPGA. The former FPGA is the larger of the two, often referred to

as main or target FPGA, as it hosts the adversary and the victim as two logically isolated FPGA
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tenants. The second FPGA, often referred to as auxiliary or control FPGA, reduces unwanted

noise by implementing the communication protocol between the target FPGA and the host

machine [103]. For our evaluation, the Sakura-X architecture increases the already low SNR of

soft-core CPUs and helps isolate the instruction-level power side-channel leakage. To evaluate

the leakages in a more realistic, cloud-scale FPGA scenario, we use the Alveo U200 datacenter

accelerator card. This card contains an AMD UltraScale+ XCU200-2FSGD2104E FPGA, and is

commonly used in publicly available cloud FPGA instances [2]. Unlike Sakura-X, Alveo U200

contains a single FPGA consisting of three super-logic regions (SLRs). The shell, containing

resources necessary for communicating with the DRAM and host CPU, is instantiated in the

middle SLR and physically separated from both the attacker and the victim. The placement of

the sensor and the victim CPU varies across experiments, however, in most cases, we physically

separate the sensors and the victim soft CPU core to conform with the standard shared FPGA

threat scenario described in Section 6.1.

Fig. 6.2 gives an overview of the experimental setup for both boards. The target FPGA design

contains the victim and the hypothetical attacker logic and has four main components: a

soft-core RISC-V processor, the on-chip voltage-drop sensors, the control finite state machine

(FSM), and the shell. As discussed at the beginning of Chapter 6, the primary purpose of using

soft-core CPUs is to implement latency-critical control algorithms, especially ones subject to

change over time. Therefore, our study assumes the victim uses small soft-core CPUs, common

in embedded bare-metal applications [109]. These soft-core CPUs are usually lightweight, with

no advanced microarchitectural features such as cashing or speculative execution. They have

a low area overhead and can run at high clock frequencies. Their microarchitectural simplicity

allows easy and tight integration with FPGA hardware, facilitating low-latency communication.

Integrating larger soft-core CPUs would reduce the operating frequency (e.g., Rocketchip

can run on a couple of tens of MHz only [110]), increase the area overhead (reducing the

available resources for hardware accelerators), and adversely affect the communication latency

(as communication would take place through memory mapped interfaces or an operating

system).
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Figure 6.2: Overview of the experimental setup.

Table 6.1: Resource utilization of the soft-core CPUs.

CPU FPGA LUT FF BRAM36 DSP

RISCY [102]
Kintex-7

2544 1944 40 0
XC7K160T-1FBGC

PicoRV32 [95]
Virtex Ultrascale+

1442 1473 8 0
XCU200-FSGD2104-2-E

Rocket Chip [110]
Virtex Ultrascale+

25785 12654 12 15
XCU200-FSGD2104-2-E

For the RISC-V soft-core designs, we chose RISCY and PicoRV32, both openly available [95,

102]. Table 6.1 summarizes the FPGA resource overhead. As a reference, we also show the

resource usage of Rocket Chip [110], a larger, more complex soft-core RISC-V implementation.

RISCY, used on the Sakura-X board, implements a classic five-stage pipeline and supports

the complete RV32I ISA at the cost of a lower operating clock frequency. On Sakura-X, the

maximum operating frequency of the RISCY CPU is 100 MHz; however, our system runs it at

80 MHz, to have an integer number of sensor samples per one CPU clock cycle. PicoRV32,

used on the Alveo U200 board, has a multicycle CPU microarchitecture designed to minimize

resources and maximize the CPU operating frequency. Our system runs PicoRV32 at the

maximum operating clock frequency of 320 MHz.

6.2.1 FPGA Voltage-Drop Sensors

In this work, we use TDC sensors with the reconfigurable initial delay line described in Chap-

ter 3. Through experimentation, we found that a 16-bit observable delay line is sufficient
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Table 6.2: Coarse calibration, fine calibration, and observable delay line slices per sensor.

FPGA Fine calibration Coarse calibration Observable line

Kintex-7 24 slices 8 slices 4 slices

XC7K160T-1FBGC (= 96 stages) (= 32 LUTs and Latches) (= 16 FFs)

Virtex Ultrascale+ 12 slices 4 slices 2 slices

XCU200-FSGD2104-2-E (= 96 stages) (= 32 LUTs and Latches) (= 16 FFs)

to capture the supply voltage variations caused by the CPU operation on both FPGA boards.

Table 1 lists the FPGA resources used for our TDC implementation on both boards. The sensor

clock frequency was set to 320 MHz on both boards, the highest operating frequency that

satisfied timing constraints. Consequently, the sensor captures four samples per one clock

cycle of the RISCY CPU running at 80 MHz, and one sample per clock cycle of the PicoRV32

CPU running at 320 MHz.

Previous work has shown that the side-channel information captured by voltage-drop sensors

varies with both the absolute location of the sensors as well as their relative position to the

victim [111]. It is, therefore, to be expected that an attacker may instantiate more than one

power side-channel sensor. The exact number is usually limited by the linearly scaling on-chip

memory resources and the data transfer word size. For example, to improve the success of

their attack, Gravellier et al. [48] deployed eight sensors on an AMD Artix-7 FPGA. In our

experimental setup, we instantiate five TDCs on Sakura-X, and 29 TDCs on Alveo U200, the

highest number that fits in a communication message exchanged between the FPGA [103]

and the host PC. In Sections 6.4 and 6.5, we will show to what extent having multiple sensors

affects the attack efficiency.

6.2.2 Controller

The controller coordinates the experiments by executing and replying to the commands from

the host machine through the shell. It is in charge of initializing the CPU instruction memory

with the code to be executed, triggering the execution of the code, and saving the correspond-

ing sensor traces to the on-chip memory. Once the CPU code execution is completed, the

controller receives a trigger from the CPU, which initiates the transfer of sensor traces to the
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Figure 6.3: Side-channel instruction leakage evaluation.

host machine. In each message sent from the FPGA to the host, the controller inserts five

(Sakura-X) or 29 (Alveo U200) simultaneous sensor readings and the 32-bit word of the corre-

sponding CPU instruction. We replace the default read-only instruction memory of both CPUs

with a dual-port block RAM, connecting one memory port to the CPU while exposing the other

port to the controller. This temporary change permits the controller to write arbitrary code in

the CPU instruction memory before triggering its execution and recording the side-channel

traces.

Prior to starting the experiments, the controller calibrates every sensor. The calibration is

performed iteratively. First, a test code sequence is loaded to the instruction memory, and

the number of elements in the sensor’s initial delay line is set to zero. The code execution is

triggered, and the obtained sensor trace is inspected. If no clock transition is observed or the

transition is located too close to the two extremes of the observable delay line, the fine and

coarse calibration slices are adjusted. This process is repeated until the sensor is calibrated.

The calibration settings are then communicated to the host machine for record keeping.

6.3 Instruction Classification

Like all hardware circuits, soft-core CPUs leak information through the power side channel.

Various ALU operations, memory accesses, and control-flow changes all impact power con-

sumption differently. In addition, as a combination of fetch, ALU, memory, and program

counter operations, instructions also leak information: in the form of unique patterns spread

across the time and amplitude domain of the recorded power traces. For example, on the one

hand, memory instructions might have high power consumption both in the ALU stage, when
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the address is computed, and in the later stages of instruction execution, i.e., when the data is

read/written to the memory. On the other hand, arithmetic instructions might only have a

power consumption peak during the ALU stage.

To analyze the instruction-level power side-channel leakage of soft-core CPUs, we employ an

ML-inspired method illustrated in Fig. 6.3. The key idea behind this approach is that leakage

patterns are discovered during ML model training, while the leakage is assessed using the

prediction accuracy achieved on templates unseen during training. For this purpose, we first

build a large set of template assembly codes for all the target instructions: we generate a set

of 10,000 templates for every instruction. Once the templates database is ready, we run the

experiments to collect the corresponding power side-channel traces. As leakage evaluators,

we reduce the background noise and improve the signal-to-noise ratio by executing each

template multiple times and averaging the side-channel traces: 100 times for Sakura-X and

1000 times for Alveo U200. Even though our work represents an instruction-level leakage

analysis, averaging is still a commonly used noise reduction approach even in real attack

scenarios: for an attack, the victim code is often executed frequently, allowing averaging, while

during training, the attacker can execute templates an arbitrary amount of times [10, 112–114].

Finally, to spread out the impact of environmental noise equally across all instruction classes,

we record traces in an interleaved fashion: we record a single trace of each class, in a round-

robin order, before continuing the acquisition of the next power trace. Subsequently, we

prepare the acquired side-channel traces for the training and inference steps. Similar to

previous work [112, 115, 116], we partition the final dataset into a training set (for training the

instruction classifier) and a test set, for evaluating the instruction classification accuracy and

the leakage learned by the models. The following subsections explain the template generation

and the training of the side-channel instruction classifiers in greater detail.

6.3.1 Instruction Template Generation

For our leakage analysis, we create two templating configurations. In the first, denominated

as N, the target instruction is surrounded by NOP instructions. We use this set of templates to
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Table 6.3: RV32I base integer instructions for template generation.

Category Instructions

Arithmetic ADD, ADDI, SUB, LUI, AUIPC

Logical XOR, XORI, OR, ORI, AND, ANDI

Compare SLT, SLTI, SLTU, SLTIU

Shifts SLL, SLLI, SRL, SRLI, SRA, SRAI

Loads LB, LH, LW, LBU, LHU

Stores SB, SH, SW

Branches BEQ, BNE, BLT, BGE, BLTU, BGEU

Jump & Link JAL, JALR

analyze the instruction-level leakage without additional noise from the surrounding instruc-

tions. In the second configuration, denominated by R, we surround the target instruction

with a random instruction before and after. We use the R templating configuration to analyze

instruction-level leakage in the presence of other instructions, which represents a more realis-

tic leakage scenario: in practice, the target instruction will be surrounded by a pair of random

instructions instead of NOPs.

Algorithm 2: Instruction template generation. NNOP stands for the number of NOPs.
Input : Target instruction, Seed
Output : Target instruction template

/* Randomize registers */
foreach All registers x, except x0 do

Initialize with a randomly chosen 32-bit value;

/* Insert NOPs */
for i = 1..NNOP do

ADDI x0,x0,0

/* Insert random instruction */
if templating == R then

random instruction;

/* Insert target instruction */
target instruction;

/* Insert random instruction */
if templating == R then

random instruction;

/* Insert NOPs */
for i = 1..NNOP do

ADDI x0,x0,0

/* Insert instruction with an invalid opcode */
exit;
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6.3 Instruction Classification

For both templating configurations, we generate 10,000 templates for every instruction from

the RV32I ISA, which are listed in Table 6.3. The process of template generation is detailed

in Algorithm 2. The first step is the initialization of x registers with random values. Then,

if needed, we insert additional preparation instructions (e.g., to initialize the contents of a

memory location for the load instruction). The central and key part of the template contains

the target instruction itself: in the case of N templating, similarly to previous work [115, 116],

we surround the target instruction with a few NOPs to separate it from the setup phase, while

in the case of R templating, we insert a random instruction before and after, making sure the

control flow is not altered. Finally, at the end of the template code, we insert an instruction

with an invalid opcode, to trigger a signal to the controller that the code execution is completed

(see Fig. 6.2).

6.3.2 Instruction Classification Models

Most power side-channel disassemblers in previous work used traditional ML methods and

common classification algorithms, e.g., quadratic discriminant analysis (QDA), k-nearest

neighbors (k-NN), support vector machine (SVM), Gaussian diffusion model (GDM) [112, 114–

117]. However, the accuracy of these algorithm-driven ML classifiers dramatically depends

on the preprocessing for dimensionality reduction and feature extraction. Without suitable

preprocessing, the noise in the dataset can significantly affect the classification results. For

these reasons, previous research relied on the high sampling rate of the oscilloscope to achieve

reasonable accuracy. In this work, considering the limited sampling frequency of the on-chip

sensors with respect to the soft-core CPU operating frequency, besides testing how well the

ML methods proposed in previous work perform in this scenario, we explore leakage analysis

using DL-based classifiers.

First, we treat the side-channel instruction classification as a time-series classification prob-

lem, as different instructions have unique patterns spread across the time and amplitude

domain. Since we use multiple sensors for classification, we represent the trace of each sensor

as a separate input channel. Fig. 6.4 shows the classification process.
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S1

SN
N input

channels Power trace
Instruction prediction

ML model

Figure 6.4: Classification process. The power trace of each sensor (S1 to SN ) is used as one of
N input channels. The input is then forwarded to the model, and the instruction prediction is
collected for accuracy evaluation.

A class of networks naturally suited to processing sequential data is recurrent neural network

(RNNs), specifically long short-term memory (LSTM) models [118]. They have an internal

state that can represent context information, and they keep information about past inputs for

an amount of time that is not fixed but depends on the weights and the input data. As LSTMs

do not perform well when directly extracting features from raw data, they are commonly

paired with more complex networks for feature extraction [119, 120], such as convolutional

neural networks (CNNs). In practice, feature extraction with CNNs can be applied before

or after the LSTM model. Moreover, recent work showed that 1D-CNNs consisting of single-

dimensional convolutional layers achieved good results in time-series classification [121].

Finally, CNNs structured as residual networks (ResNets) have shown to be very performant in

time-series classification, achieving high accuracy across a range of datasets [121]. Therefore,

we train and compare the following models: LSTM, a small 1D-CNN, a large 1D-CNN, and

the combination of LSTM and 1D-CNN (LSTM followed by 1D-CNN and LSTM preceded by

1D-CNN), a multi-layer perceptron (MLP), and a time-series ResNet [121].

6.4 Evaluation on Sakura-X

In this section, we provide a detailed instruction-level leakage analysis on Sakura-X. The first

step in experimental evaluation is deciding the hypothetical attacker and victim’s placement.

Given the power delivery network imperfections and knowing that side-channel leakage

picked up by the sensors varies with both the absolute and the relative positions of the victim
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Figure 6.5: Sensor delay lines (in yellow) and CPU (in purple) in Exp-IN.

S5S6S7S8S9

Legend:
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Figure 6.6: Sensor delay lines (in yellow) and CPU (in purple) in Exp-OUT1.

and the attacker [111], we opt to assign the victim to an arbitrary FPGA region and vary the

sensor placement.

Figs. 6.5, 6.6, and 6.7 zoom in on the FPGA floorplan containing three different placements of

the target CPU and the sensors. In the floorplan in Fig. 6.5, we place the sensors inside the

region occupied by the target CPU, in the top-left clock region of the Kintex-7 FPGA (X0Y4).

Even though this floorplan does not conform to the standard shared FPGA threat model—

where the FPGA regions assigned to the tenants do not overlap—we use it as a worst-case

leakage scenario for the evaluator (best-case scenario for the attacker). In the floorplan in

Fig. 6.6, we place our five sensors to the right of the target—in the top-right clock region

(X1Y4)—in the space between the CPU and the edge of the FPGA, simulating an attacker that

spreads out the available sensors across their entire FPGA region. In the floorplan of Fig. 6.7,

we move the target CPU one clock region down (X0Y3), further away from the sensors. In the

remainder of this section, we will refer to the described floorplans as Exp-IN, EXP-OUT1, and

Exp-OUT2, respectively.
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Legend:
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Figure 6.7: Sensor delay lines (in yellow) and CPU (in purple) in Exp-OUT2.

Using the leakage evaluation setup and following the instruction classification method de-

scribed in Sections 6.2 and 6.3, we create 10,000 templates per instruction (for both N and

R template types) and collect the corresponding power side-channel traces, creating four

datasets: Exp-IN-N, Exp-OUT1-N, Exp-OUT1-R, and Exp-OUT2-N. We use the Exp-IN-N

dataset to evaluate the worst-case leakage (i.e., with physical separation between the victim

and the adversary violated and no noise of surrounding instructions). Exp-OUT1-N and

Exp-OUT2-N are collected in addition to Exp-IN-N to evaluate the impact of CPU and sensor

placement on the instruction-level leakage and model accuracy. Finally, we use Exp-OUT1-R to

evaluate the most realistic scenario, where the templates contain the noise of the surrounding

instructions. With these four datasets, we cover the three main goals of our instruction-level

leakage evaluation: worst-case for the evaluator (Exp-IN-N), the impact of CPU and sensor

placement on the accuracy (Exp-IN-N, Exp-OUT1-N, Exp-OUT2-N), and a realistic case for

the attacker (Exp-OUT1-R).

We set the sensor trace length to T = 60 samples (i.e., 60 consecutive readings of the TDC
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output register), to guarantee that all the execution cycles of the instructions in Table 6.3 are

captured. To ensure we are capturing the correct instruction execution, we align the start of all

instructions to the same sample in the traces (fourth sample): we center the traces around the

correct instruction using the recorded CPU opcode.

In our experimental evaluation, we first visually analyze the recorded power traces for multiple

sensor placements. We show that instructions of different types show limited visual leakage

patterns, while the instructions of the same type do not display any differences. To determine

the limits of the instruction-level leakage, we train a range of DL models on the four datasets

and show how the accuracy changes depending on the placement and template type. We also

use ML techniques to further evaluate the inter- and intra-type instruction leakage and show

that most of the classification confusion comes from two or three instructions with similar

leakage. We show that preprocessing techniques and ML approaches used in previous work

are outperformed by DL techniques. Finally, we evaluate the limits of the instruction-level

leakage by investigating the impact of the number of sensors, averaging, and the dataset size

on the accuracy.

6.4.1 Visual Analysis of Sensor Traces

Before analyzing leakage using the DL-based classification methodology described in Sec-

tion 6.3.2, we first visually analyze the recorded sensor traces. In our first experiment, we

investigate how sensor placement impacts the waveforms and the leakage in the traces. Fig. 6.8

shows the average trace of all templates of arithmetic and logical instructions across all 15

sensors (five in each of the three floorplans) for the Exp-IN-N, Exp-OUT1-N, and Exp-OUT2-N

datasets. We can observe that the sensor placement significantly impacts the shape of the

traces, including the peak-to-peak ratio: S10, the furthest from the CPU, has a peak-to-peak

ratio of less than one, while S3 has a peak-to-peak ratio of almost six. For some sensors (e.g.,

S4, S8, S7, S12, and S13), we observe peaks every four samples, perfectly synchronized with

the CPU clock. For some other sensors (e.g., S1, S2, and S4), we observe a different pattern:

slight dips every 20 sensor samples (around samples 12, 32, and 52), corresponding to five
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Figure 6.8: Average sensor traces for the arithmetic and logical instructions in Table 6.3.

CPU clock cycles, i.e., to the fetch of the next instruction. This experiment already shows the

benefit of having multiple sensors for increasing the power side-channel leakage.

In our next experiment, we visually inspect the inter-type instruction leakage, i.e., how different

instruction types impact the shape of the recorded side-channel traces. Fig. 6.9 shows the

average traces of sensor S9 (Exp-OUT1-N) for the six instruction groups in Table 6.3. We chose

sensor S9, as the plots in Fig. 6.9 were most visually distinguishable for this particular sensor

and it represents the worst-case scenario for an evaluator. The peak in sample 48 makes the

load and store instructions clearly distinguishable from other groups. Branches and jumps

also contain a distinguishable peak centered around sample 28, surrounded by dips on both

sides. This experiment shows that, after significant averaging, some distinct visual traits can be

attributed to specific instruction groups. However, not all instruction groups can be identified

visually. For example, just like loads and stores, jumps and branches have very similar power
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Figure 6.9: Average traces of sensor S9 for all instruction groups in Table 6.3.

Figure 6.10: Average S3 traces for OR, AND, ORI, and ANDI (left) compared to S3 traces for
BEQ, BNE, BLT, and BGE (right).

consumption traces, and it is difficult to tell the exact instruction type from visual analysis

alone.

As the final visual experiment, we compare the side-channel traces of several instructions of

the same instruction type. Fig. 6.10 shows average sensor S3 traces for eight instructions. We

chose S3 because it is in the heart of the soft-core CPU (Fig. 6.5), and it shows, when averaged,

the biggest visual differences between instructions of the same type. On the left, we overlap

the average traces for OR, AND, ORI, and ANDI. The differences, located between samples 10

and 20, are difficult to notice even with averaging across all templates, as all four instructions
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use the same datapath. On the right, we overlap the average traces of four branch instructions:

BEQ, BNE, BLT, and BGE. We practically see no difference between these instructions and can-

not distinguish them visually. Therefore, even though the visual classification of instructions

is possible for some victims (e.g., sizeable ML-based accelerators [15]), soft-core CPUs require

more advanced methods for instruction-level leakage analysis.

6.4.2 Deep Learning-Based Instruction Leakage Evaluation

After showing that visual analysis is insufficient to identify CPU instructions executing on

remote FPGAs, we deploy advanced DL techniques. We obtain our four datasets by collecting

all the sensor traces for each instruction in Table 6.3, as described in Section 6.3.2. Each

data point, corresponding to one instruction template, is represented as a matrix with five

rows, where each row, i.e., the input channel, is the trace of one of the five sensors. Using

the newly created dataset, we first train our deep learning models from Section 6.3.2 using

10-fold validation and compare the resulting accuracy. Then, we compare the results of our

DL models with the classical ML methods previously proposed for side-channel disassembly

attacks, and we evaluate if frequency-based preprocessing methods, shown promising in

previous work [116], have any impact on the extracted leakage. Furthermore, we evaluate how

the number of sensors used in the attack impacts the final accuracy. Finally, we evaluate how

the amount of averaging or a smaller dataset size can impact the leakage, i.e., the best model

accuracy.

To train our deep learning models, we set the number of epochs and the batch size to 100 and

64, respectively. We use the Adam optimizer with an initial learning rate of 0.0001 and the loss

to monitor and adjust the learning rate. Table 6.4 summarizes the model details. To facilitate

reproducibility, we choose deep learning models with standardized parameters and openly

available implementations [121, 122].

Table 6.5 lists the average test accuracy obtained with the four datasets, with the highest

accuracy in bold. We can observe that overall, ResNet and 1D-CNN2, the two most complex
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Table 6.4: Architecture details of the deep learning models.

Model Architecture

MLP Dense(X units, ReLU) | X = (250, 350, 150, 50)

Dropout(0.2)

Dense(100, ReLU) + Dense(37, Softmax)

1D-CNN1 Conv1D(X filters, kernel size of Y) + MaxPool(2) | (X,Y) = ((64,10), (64, 4))

Dropout(0.2)

Dense(100 units, ReLU) + Dense(37, Softmax)

1D-CNN2 Conv1D(X filters, kernel size of Y) + MaxPool(2) | (X,Y) = ((32,12), (45, 10), (64,8), (128,4))

Dropout(0.2)

Dense(100 units, ReLU) + Dense(37, Softmax)

LSTM LSTM(100 units)

Dropout(0.2)

Dense(100 units, ReLU) + Dense(37, Softmax)

1D-CNN & LSTM Conv1D(64 filters, kernel size of 4, ReLU)

Conv1D(64 filters, kernel size of 4, leakyReLU=0.3)

Dropout(0.2)

MaxPool(2)

LSTM(100 units)

Dense(100 units, leakyReLU=0.3) + Dense(37, Softmax)

LSTM & 1D-CNN LSTM(100 units)

Conv1D(64 filters, kernel size of 2, leakyReLU=0.3) + MaxPool(2)

Dropout(0.2)

Dense(100 units, leakyReLU=0.3) + Dense(37, Softmax)

ResNet Standard time-series Resnet: 3 blocks with 3×Conv1D layers and residual connections [121]

DL models, achieve the highest accuracy for all datasets. Results in Table 6.5 also show that

models without convolutional layers do not manage to extract leakage well and result in

low classification accuracy. Moreover, the accuracy drops as the sensors are placed further

away from the target CPU. For example, for the best model (ResNet), Exp-OUT1-N has a

16.07% lower accuracy than Exp-IN-N, and Exp-OUT2-N has a 22.5% lower accuracy than

Exp-OUT1-N. Therefore, an evaluator testing local CPU leakage with sensors placed inside the

CPU will achieve an overestimation of the leakage—if leakage does not exist in a scenario such

as Exp-IN-N, an evaluator can, with a high probability, guarantee that a potential attacker

will not be able to exploit the leakage. Finally, Table 6.5 also shows the contrast in accuracy

resulting from differences between isolated instructions (Exp-OUT1-N) and instructions with

random instructions surrounding them (which is the case in a code sequence execution).

We can observe that the drop in SNR caused by additional instructions results in a 10.69%

accuracy drop for the ResNet model.
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Table 6.5: Instruction classification accuracies (in %) for the deep learning methods. The
highest accuracies, in bold, are obtained using the 1D-CNN2 and ResNet models.

Dataset
Average Accuracy (%)

MLP 1D-CNN1 1D-CNN2 LSTM 1D-CNN & LSTM LSTM & 1D-CNN ResNet

Exp-IN-N 79.24 82.38 84.91 77.21 81.53 84.04 86.46

Exp-OUT1-N 61.60 65.15 69.58 61.63 65.07 68.45 70.39

Exp-OUT1-R 52.89 56.79 59.10 50.58 55.59 58.44 59.71

Exp-OUT2-N 43.29 46.11 48.03 42.10 44.70 46.84 47.89

For the best model, i.e., ResNet, we explored different hyperparameters with the goal of

increasing the accuracy of Exp-OUT1-R, a realistic dataset in terms of an attack. Increasing the

initial learning rate and the number of epochs did not result in higher accuracy. An increase

of the batch size to 128 or a reduction to 32 did not significantly change the classification

accuracy. Increasing the number of ResNet blocks, increasing the number of layers per block,

or adding an LSTM layer at the input did not significantly change the ResNet classification

accuracy either.

To analyze further the instruction-level leakages and understand why the classification accu-

racy for Exp-OUT1-R does not reach a number significantly higher than 60%, we evaluate the

top-K accuracy of our best model for all four datasets. Unlike the regular model accuracy, i.e.,

top-1 accuracy, the top-K accuracy labels a prediction as correct if the real class is among the

top K predicted classes (ranked by predicted scores). If the top-K accuracy is high while the

top-1 accuracy is low, this signifies that groups of classes are often confused. Fig. 6.11 shows

the top-K accuracy for ResNet (using 10-fold validation), for all four datasets, and K ranging

from one to six. We can observe that, for all datasets, the trend is the same, and the accuracy
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Figure 6.11: Top-K accuracy (K = 1, 2, 3, 4, 5, and 6) using ResNet, for all four datasets.
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Figure 6.12: Normalized confusion matrix (in %, rounded) of the ResNet model (100 epochs),
for Exp-OUT1-R.

significantly increases with K. The most significant accuracy increase is observed between

top-1 and top-2 accuracy: 15% on average. The difference reduces for every subsequent K

increase while the accuracy converges to almost 100% for all datasets except Exp-OUT2-N.

This trend shows that the main difficulty for the classification is distinguishing between two or

three similar instructions. For Exp-OUT2-N, the sensors are far away from the soft-core CPU

and record a limited leakage compared to the other two placements, which is also noticeable

in the weaker visual trace properties in Fig. 6.8.

To evaluate which instructions have similar leakages and lower the top-1 accuracy, we look

into how well ResNet distinguishes between the instructions in Table 6.3. The corresponding

normalized confusion matrix is shown in Fig. 6.12. We see that instructions of a similar

type are more challenging to tell apart; for example, different branch instructions. Other
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Table 6.6: Classification accuracy of the ResNet model trained for hierarchical classification on
the Exp-OUT1-R dataset.

Average Hierarchical Classification Accuracy (%)

Inter-Type Classification Intra-Type Classification

83.60
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Figure 6.13: Confusion matrix in case of instruction type classification.

examples include arithmetic, shift, and logical operations. The confusion is not surprising,

as many instructions share the CPU datapath and, consequently, tend to have very similar

power consumption patterns, which makes the classification task harder. However, it is worth

noting that the classification is highly successful for instructions of different types, allowing

a potential attacker to easily distinguish between the control and data flow of the executed

code sequence. This is also confirmed by the 100% top-6 accuracy in Fig. 6.11, and the visual

analysis presented in Section 6.4.1.

As our final instruction leakage evaluation experiment, we implement a hierarchical approach

to instruction classification. We first perform inter-type classification—training the ResNet

model to classify between different instruction types—and then we perform intra-type classi-

fication by training a ResNet per each instruction type. Table 6.6 shows the results of inter-

and intra-type classification using 10-fold validation on Exp-OUT1-R. We can observe that

the inter-type accuracy is significantly (>20%) higher than the ResNet accuracy on the entire

dataset, as the model does not need to classify between similar instructions of the same type.

Furthermore, we can see that the intra-type classification accuracy heavily correlates with
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the confusion shown in Fig. 6.12: instruction types with high intra-type confusion in Fig. 6.12

such as loads and branches, have very low intra-type classification accuracy in Table 6.6.

Finally, Fig. 6.13 shows the confusion matrix of the inter-type classification. Similar to Fig. 6.12,

there is no confusion between loads, stores, branches, and jumps. The confusion is limited to

arithmetic, logic, shift, and compare instructions, which are ALU instructions and share most

of the processor datapath.

6.4.3 Impact of Preprocessing On Instruction Leakage

Previous work showed the importance of preprocessing for increasing the classification ac-

curacy when identifying instructions [116, 117, 123, 124]. Furthermore, frequency-domain

analysis, particularly the continuous wavelet transform (CWT), was shown to be well-suited

for side-channel disassembly [116]. Therefore, we evaluate our deep learning models with

CWT preprocessing to determine if CWT is beneficial for extracting instruction-level leakage

in our setting.

From a time-series vector of M sampling points, CWT creates a matrix of M ×D entries, where

the D dimensions describe how D frequency components of the time series change over time.

Including the original time-series vector in the CWT matrix results in a matrix of M × (D +1)

entries. Knowing that every entry in our original dataset contains five sensor traces, each

having T samples, we create the following two additional datasets using CWT with a scale

parameter of D . We perform CWT on each sensor trace individually, resulting in five T ×(D+1)

matrices for each data point. For the first dataset, CWT-H, we concatenate these matrices

horizontally in a 5T × (D +1) feature matrix. For the second dataset, CWT-V, the matrices are

concatenated vertically, resulting in a T ×5(D +1) feature matrix.

Table 6.7 shows the average 10-fold validation accuracy drop (compared to the baseline

datasets in Table 6.5) using DL models with CWT. The scale parameter D for CWT is set to

49 [116]. As can be seen, most DL models do not benefit from the increase of the input space

size. For models with high accuracy in Table 6.5 such as ResNet and 1D-CNN2, the overall
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Table 6.7: Difference in the instruction classification accuracies when using classical ML
approaches, compared to the deep learning methods.

Average Accuracy Increase (%)

Exp-IN-N Exp-OUT1-N Exp-OUT1-R Exp-OUT2-NModel

CWT-H CWT-V CWT-H CWT-V CWT-H CWT-V CWT-H CWT-V Average

MLP 3.00 3.01 3.87 4.18 1.74 1.63 2.32 2.36 2.76

1D-CNN1 -0.70 -0.27 -1.98 -0.05 -3.67 -1.93 -2.59 -1.04 -1.53

1D-CNN2 -2.40 -1.92 -4.59 -2.72 -4.95 -2.73 -4.39 -2.07 -3.22

LSTM 0.05 3.81 0.54 3.28 0.11 3.42 1.15 2.74 1.88

1D-CNN & LSTM -13.35 -3.25 -16.05 -3.41 -10.23 -2.23 -5.23 -0.95 -6.84

LSTM & 1D-CNN -0.56 -0.69 -2.56 -1.57 -3.43 -2.24 -2.78 -1.62 -1.93

ResNet -3.66 -2.04 -5.19 -2.37 -4.77 -2.25 -3.04 -2.01 -3.17

accuracy drops on average by approximately 2–3%, with a maximum drop being 16.05% for

1D-CNN & LSTM with CWT-H. For models with originally low accuracy in Table 6.5 such

as MLP and LSTM, preprocessing slightly increases the accuracy: for approximately 2–3%.

We can therefore conclude that with well-fitted models, a DL approach does not require

computationally heavy CWT preprocessing, as the models are complex enough to capture the

correlation between the traces and the instructions.

6.4.4 Comparison with Classical ML Approaches

Physical power side-channel disassembly attacks relied on high-frequency oscilloscopes and

classical ML techniques to achieve high profiling accuracy. However, in our work, we use

TDC sensors sampling at 320 MHz, having a significantly lower sampling frequency than

oscilloscopes. To evaluate how disassembly techniques used in previous work translate

on TDC sensor traces, we obtain the instruction classification accuracy using common ML

models (GDM, QDA, k-NN, and SVM) and preprocessing techniques—principal component

analysis (PCA) and linear discriminant analysis (LDA)—used in previous work on side-channel

disassembly, discussed in Section 10.3. Table 6.8 lists the average 10-fold validation accuracy

of classical ML approaches. We obtain the highest accuracy using SVM with PCA and QDA

with LDA: 68.74% for Exp-IN-N, 52.45% for Exp-OUT1-N, 47.06% for Exp-OUT1-R, and 37.65%

for Exp-OUT2-N, which is 10–20% lower than the accuracy of our best-performing DL-based

classifier. Even the deep learning models with lower accuracy (LSTM, 1D-CNN & LSTM) are
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Table 6.8: Instruction classification accuracies for the classical machine-learning methods.
The highest accuracies, in bold, are obtained when combining SVM with PCA and QDA with
LDA.

Method

Average Accuracy (%)

PCA LDA

GDM QDA k-NN SVM GDM QDA k-NN SVM

Exp-IN-N 56.55 67.15 39.64 68.74 59.78 67.17 50.28 65.33

Exp-OUT1-N 45.36 48.56 26.87 51.83 48.24 52.45 36.15 50.44

Exp-OUT1-R 39.66 41.80 22.02 47.06 43.31 46.47 30.59 45.96

Exp-OUT2-N 33.74 34.23 26.63 37.65 34.82 37.19 29.02 37.11

comparable with the best results in Table 6.8. We can, therefore, conclude that advanced

techniques, such as deep learning, are required in the shared-FPGA attack scenario, as it

involves low resolution and a reduced sampling rate of the voltage sensors coupled with a high

victim CPU frequency.

6.4.5 Impact of the Number of Sensors on Instruction Leakage

To investigate the role of the number of sensors in the attack, we analyze the impact of

incrementally including additional sensors in the dataset on the classification accuracy. The

analysis is performed for all four datasets and on sensor data collected in the setup where all

sensors are simultaneously present. Since the sensors record power traces of the same events

simultaneously, they are subject to the same experimental conditions (e.g., environmental

noise or temperature), facilitating a fair comparison. Furthermore, as the power-intensive

measurement logic (memory and controllers) is placed far from the sensors, only the last few

elements in their 16-bit delay lines cause differences in sensors’ switching activity, which is

thus negligible compared to the switching activity of the CPU.

In this experiment, we choose our best-performing model: ResNet. We start by training

separate models, one for each sensor, and evaluate the instruction classification accuracy.

Table 6.9 summarizes the results. We can observe that the closest sensor does not necessarily

have the highest classification accuracy—as sensor S7 has higher accuracy than S5—which is

in line with conclusions from previous work [111]. However, we can observe that the further

the sensors are from the soft-core CPU, the smaller the accuracy difference between the best
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Table 6.9: Average instruction classification accuracies (in %) of ResNet, when trained on the
traces of a single sensor only. In bold, the highest accuracies for each of the four datasets.

Average Accuracy (%)

Exp-IN Exp-OUT1-: N (top), R (bottom) Exp-OUT2-N

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

48.76 60.22 64.59 71.52 53.14
39.32 40.52 55.50 45.00 44.34

39.78 41.24 41.79 42.38 39.69
31.17 31.54 45.86 36.92 38.16
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Figure 6.14: Average instruction classification accuracy in the function of the number of
sensors contributing to the dataset, for all datasets, with the ResNet model. Upper, dashed lines
correspond to including the next best sensor in the dataset. Lower, dotted lines correspond to
including the next worst sensor in the dataset.

and the worst sensors: for Exp-IN-N and Exp-OUT1-N the range is 10–20%, while the sensors

in Exp-OUT2-N have a maximum difference of 2–3%. This signifies that across multiple

sensors, the overall placement does have an impact on the accuracy, also confirmed by results

in Table 6.5.

Using data from Table 6.9, we sort the sensors by the obtained accuracy, once in increasing

order (from “worst” to “best”) and once in decreasing order (from “best” to “worst”). Fig. 6.14

illustrates the accuracy increase in function of the number and the choice of sensors in the

dataset used for training. The dashed (respectively, dotted) lines show the accuracy increase

when the next best (respectively, next worst) candidate sensor is added to the dataset. For

example, the highest accuracy achieved with a single sensor (71.52% in Fig. 6.14) corresponds

to sensor S3 and Exp-IN-N (Table 6.9), while the accuracy obtained after adding the next best

candidate (81.91% in Fig. 6.14) corresponds to sensors S3 and S2 used together. The accuracy
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Figure 6.15: Accuracy in the function of the number of averaged traces per template. The
dataset size is 10,000 templates per instruction, while the model used for training is ResNet.

increase is more pronounced on the dotted lines, as every new sensor added to the dataset has

better individual accuracy than the ones already in the dataset. Comparing the trend of the

shaded regions, we see that the sensors in Exp-OUT1-N and Exp-OUT2-N floorplans, being

further away from the CPU, pick up less information leakage. However, the distance between

the best and worst-case region borders reduces significantly when four or five sensors are

used, showing the importance of using multiple sensors for better leakage extraction. Finally,

we can observe that the shaded region for Exp-OUT2-N is significantly narrower than for the

other two datasets in Fig. 6.14: an effect that arises because the range between the best and

the worst sensor for Exp-OUT2-N is significantly smaller than for Exp-IN-N and Exp-OUT1-N.

6.4.6 Impact of Averaging on Instruction Leakage

To evaluate the impact of averaging on leakage and the ability of DL models to extract it, we

use the best model, ResNet, and train it on the four datasets while changing the number of

traces averaged for each template. Fig. 6.15 shows the results. We can observe that with only a

single trace (no averaging), all four datasets have very low accuracy: approximately 30% for

Exp-IN-N and 20% for the other three datasets. Note that, in the beginning, as we increase the

number of averaged traces, the accuracy increases significantly for all four datasets, showing

the benefit of averaging in eliminating noise. This experiment also shows that increasing the

averaging does not indefinitely increase the SNR, as the curves in Fig. 6.15 are logarithmic and
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Figure 6.16: Accuracy drop in the function of the dataset size (number of templates) used for
training and testing compared to the full dataset with 10,000 templates. Results are shown on
the ResNet model for all four datasets.

flatten off after using roughly 80 averaged traces per template.

From a leakage evaluator point of view, we can see the usefulness of averaging for identifying

and analyzing instruction-level leakages. As trace acquisition is a time-consuming process,

we see that finding a good number of traces for averaging can help reduce the evaluation time.

From an attacker’s point of view, we can observe that recording only one trace of the victim

execution might not be sufficient for extracting secret information: the attacker might have to

resort to recording multiple victim executions or folding loops to accommodate averaging for

a better SNR.

6.4.7 Impact of the Dataset Size on Instruction Leakage

As our final experiment on the Sakura-X board, we evaluate the impact of the number of

templates per instruction, i.e., the dataset size, on the accuracy of the ResNet model. For

five different input seeds, we randomly select a subset of the templates for each instruction

and train the ResNet model. Fig. 6.16 shows the accuracy drop compared to the full dataset

for a range of template sizes, averaged across all five seeds. We can observe that when using

only 10% of the dataset size, i.e., 1000 templates per instruction, the accuracy of Exp-IN-N

drops only 4%, while it drops approximately 7% for the Exp-OUT datasets. This indicates

that increasing the accuracy is a very difficult problem, as the initial accuracy comes from
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the inter-type classification, and the intra-type confusion cannot be significantly improved

even by increasing the dataset size by 10×. Fig. 6.16 also shows that after some point, as with

averaging, the accuracy does not significantly increase with a bigger dataset size. We can

observe that the curves flatten for all four datasets and that using more than 8k templates does

not significantly affect the accuracy.

6.5 Evaluation on Alveo U200

This section provides an instruction-level leakage analysis on the Alveo U200 board containing

a cloud-scale AMD Virtex Ultrascale+ FPGA. Fig. 6.17 shows the floorplan. At the bottom,

we can see the entire FPGA rotated by 90°, with three SLRs, and the shell occupying half of

the middle SLR. Fig. 6.17 also shows the enlarged view of SLR2. Similar to the Exp-OUT1

placement in Fig. 6.6, we physically separate the soft-core CPU (PicoRV32 [95]), the sensor

region, and the controller. As Alveo U200 contains a much larger FPGA than Sakura-X, we

instantiate 29 sensors, as described in Section 6.2. However, unlike the spread-out placements

in Exp-OUT1 and Exp-OUT2, we place the 29 sensors along the border of the sensor region,

clustered in 6 equidistant groups of five sensors (except the last group with four sensors),

simulating an attacker placing all the sensors as close to the victim as possible.

Using the leakage evaluation setup and following the instruction classification method de-

scribed in Sections 6.2 and 6.3, we create 10,000 templates of N type and 20,000 templates

of R type. We collect the corresponding power side-channel traces, creating three datasets:

Exp-10k-N, Exp-10k-R, and Exp-20k-R. Since the sensor and the soft-core CPU both work at

the same clock frequency, the sensor traces do not need as many samples as for the Sakura-X

board: we set the sensor trace length to T = 16 samples which guarantees that the longest

instruction execution is completely captured. Like in the Sakura-X experiments, we align the

start of all instructions to the same sample in the traces using the recorded CPU opcode.
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Figure 6.17: Floorplan on the Alveo U200 board. Sensor delay lines (in yellow) and CPU (in
purple).

6.5.1 Instruction-Level Leakage on Cloud-Scale FPGAs

In the first experiment on Alveo U200, we evaluate the instruction-level leakage by training

the ResNet model on all three datasets. Table 6.10 shows the averaged results for 10-fold

validation. We can observe that on a significantly larger FPGA and a CPU running at the

same high clock frequency as the sensor, the accuracy for all three datasets is approximately

40%. The Exp-OUT-20k-R dataset has a 20% lower accuracy than the Exp-OUT1-R dataset on

Sakura-X, while the Exp-OUT-10k-N dataset has an approximately 30% lower accuracy than

the Exp-OUT1-N dataset. Table 6.10 also shows that the difference between N and R datasets
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Table 6.10: Instruction classification accuracies on Alveo U200 (in %) for the ResNet model.

Model
Average Accuracy (%)

Exp-OUT-10k-N Exp-OUT-10k-R Exp-OUT-20k-R

ResNet 42.59 37.60 39.05

is much smaller on Alveo U200 (≈5%) compared to Sakura-X (≈10%). As the target used on

Alveo is a multicycle CPU (PicoRV32 [95]) and the target used on Sakura-X is a pipelined CPU

(RISC-Y [102]), the impact of surrounding instructions is smaller on a multicycle CPU. Finally,

Table 6.10 confirms the findings shown in Section 6.4.7, as the accuracy difference when using

10,000 templates (Exp-OUT-10k-R) and 20,000 templates (Exp-OUT-20k-R) is less than 2%:

after a certain threshold, increasing the templates does not significantly impact the model’s

ability to extract leakage.

6.5.2 Code Sequence Classification

As our final experiment, we evaluate the leakage of code sequences instead of single instruc-

tions. To do this, we train a classifier to predict which sequence was executed from a set of

known code sequences. We create eight code sequences, each comprised of multiple instruc-

tions of the same type, separated by instructions of another type. Each code sequence has

a primary type from Table 6.3: load, store, branch, arithmetic, logic, compare, and shift. For

example, the load code sequence consists of load instructions separated by shift instructions,

and the store code sequence contains store instructions separated by logic instructions. The

number of instructions is tailored so that all eight sequences have the same execution length of

40 clock cycles. This structure makes them representative of short code sequences dominated

by same-type instructions, commonly found in open-source code.

The code sequence templates have the same structure as instruction templates of type N in

Algorithm 2, where instead of a single instruction, the target is a fixed set of instructions for

the given sequence. For each code sequence, we create 10,000 templates, each representing

an execution of the code sequence on random data. For this dataset, called Exp-10k-S, the

traces for each template are recorded as an average across 1,000 executions of the same code
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Table 6.11: Code sequence classification accuracies (in %) for the deep learning methods. The
highest accuracies, in bold, are obtained using the 1D-CNN1, 1D-CNN2, LSTM & 1D-CNN,
and ResNet models.

Average Accuracy (%)

MLP 1D-CNN1 1D-CNN2 LSTM 1D-CNN & LSTM LSTM & 1D-CNN ResNet

99.45 100 100 26.82 82.63 100 100

sequence and input data.

Table 6.11 shows the average accuracy across five different seeds for all the DL methods

in Section 6.3. We can observe that unlike instruction-level leakages, which contain the

randomness of the operands and data as noise, code sequences emit significantly higher

leakage, as almost all the models achieve high accuracy: 1D-CNN1, 1D-CNN2, LSTM & 1D-

CNN, and ResNet achieve the accuracy of 100%. The only model with a noticeably low accuracy

is LSTM since it fails to converge for four out of five seeds, while for the remaining seed, it

achieves 80% accuracy.

From an evaluator’s point of view, this experiment shows that it is important to evaluate not

only instruction-level leakages but also the deployed code in its entirety. Moreover, since

short code sequences dominated by same-type instructions are common in open-source code,

our results demonstrate that known, i.e., open-source code sequences can be profiled and

more easily distinguished than single instructions. For example, in an AES algorithm, the

attacker can use a load-intensive piece of code for profiling and easily differentiate it from a

branch-intensive code sequence in a control-flow algorithm. To avoid potential exploits, users

should deploy countermeasures or use proprietary (unknown) code. From an attacker’s point

of view, these results show that attacking code sequences instead of individual instructions

requires less attack effort for a potentially higher benefit.

6.6 Discussion

In Sections 6.4 and 6.5, we have seen the evaluation of instruction-level leakages on two

FPGA boards. Unlike large ML accelerators—which require recording long execution traces
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and have significant architecture- and data-dependent power variations—the instructions

of soft-core CPUs have very short execution traces: in the range of tens of microseconds.

Consequently, our results show that soft-core CPUs do not have visible leakage in power traces

that SPA can exploit; unless extensive averaging of a million traces is performed. Through

visual analysis of averaged traces, we have observed that instructions of different types are

more likely to have different leakages. In contrast, instructions of the same type have almost

no differences despite averaging. These results are also confirmed by DL models, as both

the confusion matrix and hierarchical classification indicate that the classification confusion

is concentrated within instruction groups, not between them. Furthermore, a significantly

higher top-K accuracy also demonstrates that the confusion between only a few instructions

prevents the models from achieving 100% accuracy.

Our analysis demonstrates that for the evaluator’s worst-case scenario, i.e., an attacker breach-

ing the physical separation barrier, the highest achieved accuracy is 86.46% using the time-

series ResNet model [121]. We show that classical ML approaches used in previous side-

channel disassembly work do not transfer well to the shared FPGA scenario. As no high-end

oscilloscope equipment is available, using ML and preprocessing approaches from previous

work on sensor traces results in a 10–20% lower accuracy than DL approaches.

Our results indicate that the templating impacts SNR and the model accuracy, where Exp-

OUT1-N has an approximately 10% higher accuracy than the Exp-OUT1-R dataset. These

results suggest that the evaluator should use N templating for the worst-case estimate, while

for a more realistic estimate, they should use R templating.

Throughout our experimental evaluation, we show that placement does matter: the overall

distance between the sensors and the CPU impacts the SNR and, thus, the accuracy. We

demonstrate that increasing the distance between the CPU and sensors (Exp-IN, Exp-OUT1,

Exp-OUT2) incurs an approximately 15% accuracy drop. For one sensor placement, our

results, like previous work [111], also indicate that sensors closer to the CPU do not necessarily

have the highest accuracy, possibly due to the imperfections of the PDN implementation and
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different sensor calibrations. Additionally, we show the benefit of using multiple sensors: the

accuracy increases significantly (≈15% for Exp-IN-N) when using five sensors instead of only

one.

We analyze the impact of averaging on the ResNet model accuracy. We demonstrate that no

averaging, i.e., only one trace recording per template, results in very low accuracy due to noise.

From the point of an evaluator, averaging increases SNR, which reflects in our results, showing

that averaging 80 traces can significantly increase the accuracy; however, averaging more

traces brings limited to no further benefit. This means that an evaluator can use averaging for

a worst-case leakage analysis, to identify weak points of their soft-core CPU design, while also

knowing an attacker would need to deploy additional techniques, such as loop folding, to be

able to average a single code execution trace. We find that increasing the dataset size does

not significantly impact the accuracy: having 10× more templates increases the accuracy at

most 8% (for Exp-OUT datasets), showing again that inter-type instruction classification is a

relatively easy classification problem, achieving a specific accuracy with only 1,000 templates

per instruction. In contrast, distinguishing between instructions of the same type is a hard

classification problem, where even 10× more templates are insufficient for increasing the

accuracy significantly.

Our results show that cloud-scale FPGAs exhibit less leakage due to their size and PDN struc-

ture. Consequently, the accuracy on both N and R template types is approximately 40%,

significantly lower than on Sakura-X. However, unlike instructions, we demonstrate that

short code sequences have significant leakage and that DL models can predict them with an

accuracy of 100%.

Finally, our experimental analysis shows that to ensure no exploitable leakage, the evaluator

should always test the worst-case scenario: multiple sensors with no physical separation,

using N-type templates on a smaller FPGA with higher SNR, and averaging. In this case, the

evaluator will either ensure there is no leakage or, if there is, they will be able to analyze it

more efficiently and design appropriate mitigations.

106



6.7 Countermeasures

6.7 Countermeasures

Countermeasures against power side-channel analysis have been extensively studied, and

they fall into two main categories: hiding and masking [10]. Hiding aims to reduce the SNR of

the signal recorded by the attacker. Therefore, protections can either focus on reducing the

leakage signal, e.g., by equalizing the data-dependent power consumption [125], or increasing

the side channel noise. Because most attacks depend on aligned traces, hiding can also be

done in the time dimension, by adding random delays or clock jitters during the hardware

execution. Masking, on the other hand, requires processing algorithmically-randomized data,

while maintaining the correctness of the circuit operation [88]. Both hiding and masking,

however, suffer from considerable area overhead and vulnerability to higher-order attacks [10].

Mitigations for power side-channel disassembly attacks involve restructuring the code or

redesigning the hardware to reduce leakage [7]. De Mulder et al. integrated defenses into

the microarchitecture of a soft-core RISC-V processor and tested them on a Zynq FPGA [126].

They enhanced the side-channel security by protecting memory accesses and introducing

masking in the CPU. Another example of a side-channel protected microprocessor is PARAM,

developed and tested on a Sakura-X FPGA [127]. After analyzing the RTL and leakage of an

open-source RISC-V processor, the authors used obfuscation to reduce datapath leakage

and to conceal the addresses sent to the cache. Alternative (or complementary to) hardware

changes are software defenses: random code injection, code obfuscation [128], or shuffling

the instruction execution [129] are most used to protect proprietary code against side-channel

disassembly attacks.

On shared FPGAs, protections against side-channel analysis commonly deploy different hiding

techniques, better tenant isolation, or methods that prevent the deployment of sensor circuits.

As hiding techniques, the works of Le Masle et al. [58] and Krautter et al. [59] are most relevant.

Le Masle et al. designed a network of on-chip RO-based sensors to control power wasters

and maintain a constant power consumption, thus reducing the SNR [58]. They used a

proportional-integral-derivative (PID) controller as the control circuit, while power wasters
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were implemented using long routing wires (equivalent to high capacitive load). Similarly,

Krautter et al. designed an active fence composed of ring oscillators placed between two

neighboring FPGA tenants [59]. The actuator controlling the fence in a closed-loop control

system was a TDC sensor, and the fence area overhead was 100% compared to the unprotected

design.

Additionally, Güneysu and Moradi proposed a set of countermeasures on FPGAs [130]. Using

BRAM write collisions, short circuits, and shift register LUTs, they implemented Gaussian noise

to reduce the SNR. Sasdrich et al. improve the resistance against FPGA side-channel attacks

by dynamically changing the hardware implementation of a PRESENT cipher at runtime

using the FPGA partial reconfiguration [131]. All these countermeasures are independent of

the design under protection and can hence be used to increase the side-channel security of

soft-core CPUs in a shared FPGA scenario.

The final way of preventing remote power side-channel attacks on shared FPGAs is by detecting

and forbidding sensor-like structures in the RTL designs: Krautter et al. [132] and La et al. [133]

developed bitstream scanners, which search for signatures of potentially malicious circuits.

Deploying them on the cloud could prevent remote attackers from recording power traces

and thus achieve power side-channel security of soft-core CPUs. However, bitstream scanners

are not 100% effective in preventing malicious designs, as researchers have found ways to

implement stealthy voltage sensors using benign circuits [134].

6.8 Limitations

In this work, we experiment with two lightweight soft-core CPUs commonly used for em-

bedded bare-metal applications, which support straightforward integration with FPGA logic.

Within the spectrum of embedded CPU microarchitectures, we have focused on two prevalent

varieties commonly used in previous work on power disassembly attacks: a multicycle and a

pipelined CPU. Therefore, the results and conclusions in Sections 6.4 and 6.5 should generalize

to a good number of embedded CPU implementations and ISAs.
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Our results show that inter-type instruction leakage is the strongest, while it is harder to

distinguish instructions of the same type. This result implies that instructions using different

hardware and datapath in the CPU, typically instructions of different types, exhibit varied

leakage, thus rendering them more distinguishable by machine learning models. For instance,

logic and arithmetic instructions solely utilize the ALU, while loads additionally fetch data

from memory. Branches use the ALU and modify the program counter, and jumps merely

alter the program counter. Conversely, instructions sharing most of the datapath exhibit

similar leakage, making them difficult to distinguish. For example, for instructions where only

the ALU opcode differs—such as logic instructions—the CPU controller executes the same

steps, with only a different ALU operation. Regardless of the microarchitecture and ISA, these

observations hold. Some microarchitectures might be single-cycle, some multicycle, and

some pipelined. However, the overall impact of the microarchitecture is on the SNR, resulting

in the leakage (and classification accuracy) being stronger or weaker, but not impacting our

conclusions. For example, pipelined architectures might have a more significant difference

between N and R datasets, while multicycle architectures might have a comparably smaller

difference (as is the case of RISC-Y and PicoRV32).

Our insights on DL superseding classical ML approaches in cases with low SNR are also

general and should not depend on the CPU microarchitecture. Similarly, our conclusions

regarding placement, averaging, and dataset size also apply to other soft-core CPU cores. Only

in cases with high SNR (e.g., in ML-based processors with more straightforward differentiation

between workloads) might our conclusions change: classical and DL methods may display

more comparable accuracy if faced with an easy classification problem.

As mentioned earlier, the evaluation presented in this work is limited to embedded soft-

core CPUs. Considering more complex processor cores would bring a new set of challenges.

Larger CPUs—superscalar, out-of-order, and speculative—entail a higher communication

latency, lower operating frequency, and higher area overhead. These factors impact instruc-

tion identification accuracy in various ways. On the one hand, a larger area may make the

instruction-level leakage stronger. Conversely, the hardware overhead for operating system
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support or instruction-level parallelism (out-of-order and speculative execution) could in-

crease the noise and reduce the instruction-level leakage. More complex cores might have

a lower maximum operating frequency, allowing more sensor samples per CPU clock cycle

(i.e., higher quality measurements), but the out-of-order execution could make synchronizing

the power traces more difficult. Evaluating the impact of microarchitectural features of larger

soft-core CPUs on the leakage is, therefore, an interesting avenue for future work.

Our work evaluates instruction-level leakage of soft-core CPUs in isolation. Future research

could explore the leakage in the context of a complete system consisting of a soft-core CPU

and an accelerator. To further justify the need for mitigations, future work could showcase an

attack on longer code sequences, e.g., detecting loops in power traces (with no averaging) and

then folding loop executions to obtain averaged traces, or profiling longer open-source code

sequences to detect specific code execution. Turning to the countermeasures, Section 6.7 out-

lines a palette of mitigation techniques that could be implemented in many ways. Evaluating

their performance and scalability is important and, as such, merits a study on its own.

Last but not least, the instruction-level leakage evaluation methodology presented in this

chapter is general and can be used for any CPU microarchitecture to obtain implementation-

specific results and conclusions.

6.9 Chapter Summary

This work analyzes the instruction-level leakages of soft-core CPUs in shared FPGAs. We show

that, unlike with ML accelerators, potential attackers cannot rely on SPA alone, as even with

significant averaging, the visual leakage of small soft-core CPUs is limited. Instead, to ana-

lyze the instruction-level leakages, we compute the classification accuracy using instruction

profiling templates. We demonstrate that ML methods from previous power disassembly

attacks are insufficient for remote leakage analysis and that evaluators should deploy DL

methods: they achieve approximately 10–20% higher accuracy when classifying instructions

from power templates. Using DL methods and a worst-case scenario for the evaluator—a
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breach of physical and logical separation—we achieve a maximum accuracy of 86.42%.

Our analysis demonstrates that as the leakage evaluation scenarios become more realistic for a

potential attack, the leakage, and thus the classification accuracy, reduces. Enforcing physical

separation and placing the soft-core CPU further away from the on-chip sensors reduces the

accuracy significantly, as well as using more realistic templates with the target instruction

surrounded by random instructions. Furthermore, we show that most of the instruction-level

leakage is constrained to instructions of different types and that the confusion comes from

only a few similar instructions: using the top-4 accuracy metric already results in an accuracy

above 90% for most of our datasets.

We quantify the impact of averaging on the accuracy and show that the accuracy increases,

up to a certain point, as the number of averaged traces increases. We also demonstrate that

increasing the number of templates does not significantly increase the accuracy. Furthermore,

our analysis shows that a cloud-scale FPGA on the Alveo U200 board has significantly less

leakage, as the more prominent and higher quality PDN results in a lower SNR. Finally, we

demonstrate that, unlike instruction-level leakages, code sequences exhibit significantly

higher leakage and can be classified with an accuracy of 100% even on cloud-scale FPGAs.

Our work can serve as a leakage evaluation methodology for remotely deployed soft-core CPUs.

It can also be leveraged for building more advanced power side-channel disassembly attacks.

In conclusion, we demonstrate that even small circuits leak information on shared FPGAs, and

that potential attackers can remotely extract that information with a small number of power

trace acquisitions. This result highlights the need for deploying appropriate mitigations on

soft-core CPUs, in multitenant cloud FPGAs.
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7 Active Wire Fences Against Remote

Power Analysis Attacks

As we have seen in Chapters 5 and 6, multitenancy on FPGAs presents a unique set of security

challenges that cannot be fully addressed with solutions involving physical or logical isolation

between tenants [135]. Our work and the related work outlined in Chapter 10, highlight the

need for protecting FPGA users in a multitenant setting.

In Chapter 6.7, we discussed possible countermeasures to protect against power SCA attacks

on shared FPGAs, specifically regarding attacks on soft-core CPUs. As a universal mitigation

technique, we discussed hiding techniques (i.e., reducing the signal-to-noise ratio). To im-

plement hiding on shared FPGAs, Krautter et al. designed an active fence [59] consisting of

ROs, and placed it between the victim (in their case, an AES module) and the rest of the FPGA.

The advantage of active fences is that they are independent of the victim’s application and do

not require modifications to the victim’s design. Krautter et al. showed that the RO fence, of

approximately the same size as the victim AES circuit, when activated with a pseudo-random

number generator (PRNG), leads to a considerably higher attack effort: the number of traces

needed to break a byte of the secret key using CPA increased by approx. 60×.

On FPGAs, noise can be generated in many ways. Here, we present a novel active fence design,

offering better area efficiency and power side-channel security than the RO-based fence. We

This chapter is based on the work of a paper published at the 26th International Symposium on Design and

Diagnostics of Electronic Circuits and Systems [36].
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construct wire-based power wasters which are easy to replicate to build an active wire fence of

arbitrary size. Similarly to previous work, we used a PRNG to activate the fence. To evaluate

the effectiveness of the fence against a power side-channel attack, we collected millions of

side-channel traces while an AES-128 cryptographic core was performing encryption. Our

results show that, without any fence, the entire 128-bit key could be broken with approx. 30

thousand traces. With an RO fence, that number increased to one million traces, on average.

Finally, with our novel active wire fence, more than six million traces (an improvement of 6×)

were required to recover all the bits of the secret key. These results highlight the importance of

developing alternative power wasters for building effective active fences.

In the remainder of this chapter, we first introduce the threat model. Then, in Section 7.2, we

present the architecture of our active wire fences. Section 7.3 describes the experimental setup.

Section 7.4 presents and discusses the experimental results, while Section 7.5 concludes the

chapter.

7.1 Threat Model

Our work adopts the threat model commonly used in the literature on attacks in shared FP-

GAs [12–14, 59]. For security reasons, the users of the multitenant FPGA are physically and

logically separated [89]. We assume an attacker attempting to impact the system’s confiden-

tiality by extracting secret information through the power side channel enabled by the shared

PDN. In this threat model, the adversary can use a region of the FPGA to instantiate TDC

sensors and measure the voltage changes caused by the victim, where the victim performs

AES encryption with a secret key. The ciphertext is sent over a public channel accessible to

the attacker, allowing them to execute a power analysis attack using the sensor traces and

the ciphertext. Finally, the fence is implemented by the cloud service provider; therefore,

the power wasters do not have to conform to security checks such as combinational loop

detection.
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7.2 Active Wire Fence

In this section, we present our design of a wire-based power waster and the architecture of the

active wire fence.

7.2.1 Wire-Based Power Waster

Our unit wire-based power waster consists of three components: a driver, a wire, and a sink.

The driver acts as a source: it creates a high-frequency signal to drive the wire. What we refer

to as the wire is, in fact, a connected sequence of FPGA routing resources (i.e., local and global

wires, and routing multiplexers); when driven by the toggling signal, the wire consumes power

and introduces noise. Finally, the sink is a termination point of the wire waster needed to

prevent the FPGA compilation tool from optimizing it away.

To implement the source, we opt for a high-frequency signal generator: an RO implemented

as a two-input NAND gate (occupying one LUT). Other pulse generators available in the

literature, such as glitch generators [136], require considerably more resources than one LUT,

thus negatively impacting the area overhead of the entire fence. When enabled to generate a

high-frequency signal, the sources of the wire fence contribute to the overall noise [49]. In our

wire waster, the sink is implemented as a buffer (one LUT). It, too, contributes to the overall

power consumption of the wire waster, because its input is driven by a toggling signal. It can

be noted that we do not attempt to maximize the contribution of the source or the sink, as we

opt for the simple and resource-efficient implementations of the two terminal points of our

wire waster. This approach facilitates the comparison with the RO-based fence and allows us

to better estimate the impact of wires on the fence performance.

To ensure the use of global routing resources (i.e., wires spanning one or more FPGA slices), we

place the sources and sinks sufficiently apart, and constrain them to the same FPGA column.

After placing the source and sink of a power waster, we let the FPGA compilation tool complete

the routing. To minimize the number of FPGA logic resources used by the fence, we do not
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Figure 7.1: RO fence occupying 32×16 FPGA slices; four LUTs are used per slice. Four vertically
neighboring slices form a bank. In gray, bank with index zero. Each bank is controlled by a
dedicated enable signal.

impose any constraints on the signal routes (e.g., we do not force the routes to pass through

LUTs or transparent latches at specific locations [58, 136]).

7.2.2 Building a Wire Fence

Before explaining the implementation of the wire fence, let us look at Fig. 7.1, illustrating a

fence built solely from ring oscillators [59]. The ROs are organized in groups referred to as

banks, which, in our implementation, have two configurable parameters: density (the number

of ROs per FPGA slice) and size (the total number of slices occupied by the ROs). Hence, the

total number of ROs in the fence equals the number of banks times the size and density. All

ROs in the bank are controlled by the same enable signal, whereas each bank can be controlled

independently from another. The fence is built by tiling multiple banks. As shown in Fig. 7.1,

for the given area budget of the fence, we place the banks in column-major order, connecting

one enable signal to each bank.

Our wire fence is shown in Fig. 7.2. The sources (ROs) are placed at the top; the sinks (buffers)
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Figure 7.2: Wire fence of 32×16 FPGA slices; four LUTs are used per slice. The top region is
occupied by sources (ROs). The bottom region is reserved for sinks (buffers). The distance
between the two regions is adjustable. Two vertically-neighboring slices form a bank. Each
bank is controlled by a dedicated enable signal.

are at the bottom. The distance parameter D corresponds to the number of unused slices

between the regions occupied by the sources and the sinks. Similarly to the RO fence, the

sources are organized in banks, characterized by their density and size, and placed in column-

major order. The sources are enabled the same way as the blocks in the RO-fence (Fig. 7.1), with

one enable signal per bank. To ensure the distance between a source and its corresponding

sink (in terms of the number of slices vertically between them) is constant, we order the banks

of sinks in the same way as their corresponding sources.
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In the experimental evaluation (detailed in the next section), similar to Krautter et al. [59],

we set the size of the fences to match the resource utilization of the design under protection.

In our case, that value amounts to 2048 LUTs. Hence, the wire fence has, in total, 32 rows

(16 for the sources and 16 for the sinks) and 16 columns of slices. Four LUTs are used per

slice. Sources are grouped in 128 banks, each containing two slices (i.e., eight LUTs) and

enabled independently. For a fair comparison, we implement the RO fence with the same

resource utilization, resulting in twice as many ROs than in the wire fence. Fig. 7.1 illustrates

the RO-fence implementation: 128 banks, each having four slices with four LUTs, organized in

32 rows and 16 columns.

7.3 Experimental Setup

For evaluating the fences, we choose Sakura-X [103], a board specially designed for power SCA

evaluation and commonly used in research on attacks in both standalone and multitenant

FPGAs [12,47,98]. It has two AMD FPGAs: Kintex-7 and Spartan-6. The former, also referred to

as the target FPGA, houses the adversary and the victim. The latter, referred to as the control

FPGA, aids in reducing unwanted noise by running the communication protocol between the

target FPGA and the host machine. For the FPGA design compilation, we use AMD Vivado

2018.3.

Fig. 7.3 gives an overview of the system architecture, consisting of four main components.

The open-source AES-128 running at 20 MHz is the victim design requiring protection [87].

The attacker’s TDC sensor and FIFO, both running at 200 MHz, serve to record the side-

channel traces. The attacker and the victim are physically and logically separated, according

to the threat model. The fence is placed between the victim and the adversary. It is directly

controlled with a 128-bit PRNG, implemented using a 7-bit Fibonacci linear-feedback shift

register (LFSR) [137]. The LFSR generates a pseudorandom value from zero to 127, which is

then decoded in hardware, and enables the corresponding number of fence banks. Finally,

the controller is in charge of sending the plaintext and receiving the ciphertext, enabling or
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Figure 7.3: System block diagram.

disabling the fence, calibrating the sensor, triggering the trace recording, and offloading the

traces to the host machine.

The design floorplan is shown in Fig. 7.4. The attacker and the victim reside in separate FPGA

regions. The sensor is placed at the edge of the attacker’s region (top right), close to the victim,

simulating a worst-case attack scenario. The active fence is located towards the edge of the

victim’s region (top left). The controller is placed away from the remaining logic, to minimize

the noise.

To evaluate the efficiency of our active wire fence, we record sensor traces for three designs:

(1) RO fence disabled, (2) RO fence enabled, and (3) wire fence enabled in place of the RO

fence (using a different bitstream). For all three designs, we collect traces with a fixed key and

chained plaintext: starting with an initial plaintext, we use the resulting ciphertext as the next

plaintext. With the obtained traces, we run the CPA attack on the ninth AES round in steps

and compute two metrics: the key rank metric of each byte of the 128-bit secret key [70], and

the key rank estimation metric described in Chapter 3.3 [71].

Using the key ranks obtained for all 16 bytes of the key, we compute the following additional

metrics. First, we find the number of bytes broken when using all traces; this metric shows how

successful an attack is in terms of broken bytes. Second, with all traces, we find the number of

bytes for which the key rank is below or equal to 25, 50, and 100; this metric shows the key rank
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Figure 7.4: Design floorplan, as seen from AMD Vivado.

trends and how many bytes the attacker was close to or managed to break. Finally, we find the

number of sensor traces for which the rank of (at least) one of the key bytes drops to zero and

stays at zero for at least 10k traces (Metric-10k) and 30k traces (Metric-30k). These last two

values will tell us how many traces are required to break at least one byte of the secret key.

7.4 Results and Discussion

In this section, we evaluate our active wire fences. First, we demonstrate the power wasting

capabilities of the wire wasters, and then, we show their effectiveness in protecting against

remote power side-channel attacks.
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Figure 7.5: Sensor readings drop (i.e., voltage drop) caused by the activation of RO/ERO wasters
(dashed lines) compared to wire-based wasters (solid lines).

7.4.1 Voltage Drop Comparison

In our first experiment, we compare the voltage drops caused by the following three types of

power wasters: ROs, EROs, and the wire wasters described in Section 7.2. We build the RO

fence from Fig. 7.1 (twice: once with ROs, once with EROs) and the wire fence from Fig. 7.2

(setting the distance parameter to zero). At the beginning of the trace recording, we disable

the fence. Then, we enable all wasters in the RO (ERO, resp.) fence. In the case of the wire

fence, we ran multiple experiments: with 25%, 50%, 75%, and 100% of the wasters enabled

(by adjusting the number of active fence columns). Results, visualized in Fig. 7.5, show that,

for the same amount of FPGA resources, EROs and wire wasters create significantly more

pronounced voltage drops than ROs. In fact, with only 50% of the resources of the RO fence,

the wire fence can create a voltage drop similar to that obtained with the fully utilized RO

fence. Additionally, we observe that EROs and wire wasters create a similar voltage drop, even

though the ERO fence has twice the number of ROs. From this, we can conclude that the long

interconnects and the sinks used in our wire fence compensate for the smaller number of ROs.

7.4.2 Varying Distance D

To evaluate the impact of the distance D (between the source and sink regions in Fig. 7.2)

on the voltage drop, we vary D from 0 to 150 and record the sensor output once the fence

is enabled. In these experiments, the location of the sensor and the sources remains fixed.
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Figure 7.6: Voltage drop for different distances D (in slices) with wire-based wasters (solid
lines), compared to ROs (dashed line).
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Figure 7.7: Wire delay from source to sink of a wire-based waster extracted using Vivado 2018.3
static timing analysis, in the function of distance parameter D .

Fig. 7.6 shows the results, together with the RO-fence baseline from the previous experiment.

We can observe that as the distance D increases, the overall voltage drop does change, but

not as much as one would expect. This result is rather unexpected because, if the distance is

significantly larger, the wires connecting the sources and the sinks should intuitively be much

longer. Thus, the voltage drop should be proportionally more pronounced. To investigate

why this is not the case, we extract the routing delays from the fence sources to the sinks

using Vivado static timing analysis, for each considered value of D . Fig. 7.7 shows the average

delays and their standard deviations. We observe that the wire length, on average, increases

proportionally with the parameter D. However, for the fixed location of the attacker sensor,

higher D results in a greater distance between the sensor and the sinks, reducing the effect

of the noise generated by a considerable part of the fence (the sinks and long wire segments
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close to them). Given the limited impact of increasing D on the voltage drop, and to minimize

the area occupied by the fence, we set D to zero in the remaining experiments.

7.4.3 Power Side-Channel Attack Success

In our third and last set of experiments, we evaluate the effectiveness of the wire fence against

a power side-channel attack in a multitenant FPGA setting. To that end, we collect power

side-channel traces for the following scenarios: (1) RO fence disabled (three runs with 0.5

million traces), (2) RO fence controlled by the PRNG (three runs with 0.5 million and three

runs with three million traces), and (3) wire fence controlled by the PRNG (three runs with 0.5

million, three runs with three million, and one run with eight million traces).

Three runs with half a million traces

The results of the CPA attack with 0.5M traces are summarized in Table 7.1. The two central

columns of the table show the number of traces needed to break one byte of the secret key.

Metric-10k (Metric-30k, resp.) considers the byte broken when its key rank drops to zero and

stays at zero for at least 10k traces (30k traces, resp.). The four right-most columns show the

total number of key bytes for which the rank is below a certain threshold (100, 50, 25, and 0) at

the end of the attack.

Table 7.1: CPA attack results with 0.5M traces.

Setup Run
Number of traces (103) Bytes with key rank ≤

Metric-10k Metric-30k 0 25 50 100

No fence

1 4 4 16 16 16 16

2 3 3 16 16 16 16

3 5 5 16 16 16 16

RO fence

1 89 115 9 14 15 15

2 81 100 7 11 13 15

3 96 190 6 15 15 15

Wire fence

1 N/A N/A 0 0 1 9

2 449 N/A 0 2 3 4

3 N/A N/A 0 0 1 5

123



Chapter 7. Active Wire Fences Against Remote Power Analysis Attacks

0.0 0.1 0.2 0.3 0.4 0.5
Number of traces (×106)

0

32

64

96

128
lo

g 2
(k

ey
 ra

nk
)

No fence RO fence Wire fence Avg, lower Avg, upper

Figure 7.8: Key rank estimation with 0.5M traces.

From Table 7.1, we can observe that without any fence, it takes fewer than 10k traces to break

the first byte of the key. Moreover, a CPA attack with 0.5 million traces can break all key bytes.

With the RO fence, the number of traces needed to break the first byte according to Metric-10k

increases by approximately 20×: 81–96k traces. According to Metric-30k, which requires the

key rank to be stable for an even longer period of time, the number of traces to break a key

byte increased even further (at least 100k). Between six and nine bytes were broken by the

end of the attack. At the same time, all but one key byte had a rank lower than 100, showing

that even though not all bytes were broken, their rank decreased considerably. Looking at the

wire-fence results at the end of the attack, only four to nine key bytes had rank ≤100.

Next, we compute the key rank estimation metric [71]. The results for the three runs are

aggregated and shown in Fig. 7.8. Because the key rank estimation is upper and lower bounded,

we plot a shaded area indicating the entire range of the key rank estimation (min, max)

observed across the runs. Additionally, the dashed and dotted lines correspond to the average

lower and upper bounds across the runs. From Fig. 7.8, we see that, without a fence, the key is

broken rather quickly: after approx. 30k traces. With the RO fence, the log key rank estimate

drops to approx. 63, on average. With the wire fence, the key rank estimation remains very

close to its maximum value. These results agree with those listed in Table 7.1 and show that

the wire fence achieves higher power side-channel security than the RO fence when attacking

with 0.5M traces.
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Figure 7.9: Key rank estimation with 3M traces.

Three runs with three million traces

Next, we repeat the experiments, this time to collect 3M traces. The results of the CPA attack

are summarized in Table 7.2. According to Metric-30k, to break the first key byte with the wire

fence, approx. 2–10× more traces are required than with the RO fence. Moreover, with 3M

traces, all key bytes are broken with the RO fence, while only seven to nine are broken with the

wire fence.

Fig. 7.9 visualizes the log key rank estimation metric. Analyzing the results with the wire fence,

we find that the key rank estimation dropped to 58 bits after 3M traces. With the RO fence,

this level was reached after approx. 0.4M traces (7.5× faster). Lastly, with the RO fence, all

key bytes were broken after approx. 1M traces, showing again that the wire fence provides

superior power side-channel security.

Table 7.2: CPA attack results with 3M traces.

Setup Run
Number of traces (103) Bytes with key rank ≤

Metric-10k Metric-30k 0 25 50 100

RO fence

4 115 136 16 16 16 16

5 170 170 16 16 16 16

6 37 37 16 16 16 16

Wire fence

4 759 864 8 14 16 16

5 318 345 7 14 15 16

6 148 394 9 13 14 14
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Figure 7.10: Key rank estimation for the wire fence with 8M traces.

One run with eight million traces

In our last experiment, we collect 8M traces with the wire fence and plot the key rank estima-

tion results in Fig. 7.10. The key rank drops to a value below three at approx. 6M traces and

stays within the [0, 6) bound for the subsequent 2M traces. Even though not all 128 bits of the

key are broken with 8M traces, the key rank estimation stays sufficiently low for an attacker to

guess the remaining key bits with a limited effort. Therefore, we can conclude that with the

wire fence, at least 6M traces were required to break the key: an improvement of at least 6×
compared to the RO fence.

7.5 Chapter Summary

In this work, we presented a design of an active wire fence and demonstrated its ability to

provide protection against remote power side-channel attacks in multitenant FPGAs. Our

wire fence uses FPGA routing resources to draw more current and generate more noise than

a fence built solely with ROs. Comparing the voltage drop resulting from the activation of

the wire fence and the RO fence, we found that the RO fence compares to the wire fence of

approximately half the logic resources. Therefore, when the space is limited, active wire fences

are a better alternative to their RO counterparts. Comparing the side-channel attack effort to

break a 128-bit AES key, we found that at least 6× more traces were required in a setup with a

wire fence than with an RO fence. Future work will investigate combining enhanced ROs with
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the wire wasters, to further improve the efficiency and reduce the resource overhead of the

active wire fence.
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8 FPGA Routing Delay Sensors for Effec-

tive Remote Power Analysis Attacks

In Chapter 3, we have seen that on-chip sensors suitable for remote power-analysis attacks

can be classified into two groups: TDCs and ring oscillators. The working principle is the

same: instead of measuring the voltage directly, they sense the variations of the logic delay

caused by the voltage fluctuations, which carry the side-channel information. In parts I and II

of this thesis, we have seen that TDC sensors can be successfully leveraged for both leakage

evaluation and for performing remote power analysis attacks.

In this chapter, we present a novel FPGA on-chip voltage sensor design, fundamentally dif-

ferent from both TDCs and ROs. To pick up voltage variations, our sensor uses the type of

FPGA resources that is the most abundant and least constrained: FPGA wires and routing mul-

tiplexers, i.e., FPGA routing resources. The routing-delay sensor (RDS) can be implemented

in various ways: with or without a tapped delay line, with or without placement constraints.

Furthermore, it can be made stealthy and even more effective than TDC in the context of

remote power side-channel attacks.

We begin by designing and implementing two RDS variants working on the principle of

a tapped delay line; both use the routing resources only, but one is constrained vertically

(VRDS), whereas the other is constrained horizontally (HRDS). Then, we remove the routing

This chapter is based on the work of a paper published in the IACR Transactions on Cryptographic Hardware and

Embedded Systems, Volume 2023/2 [34].
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and placement constraints to obtain the third variant, which we name simply RDS. As we will

demonstrate, the third design is the most performing of the three.

We perform extensive experiments to evaluate the success of a remote power side-channel

attack against an AES-128 cryptographic core. To this end, two experimental platforms are

used: Alveo U200 (AMD UltraScale+) and Sakura-X side-channel evaluation board (AMD

Kintex-7). Experiments are repeated multiple times, the placement of the sensor and the

AES is varied, as well as the secret key. We compare the three RDS variants to the TDC

implementation commonly used in literature [11, 14, 65, 138] and the recently published

voltage-fluctuation sensor VITI [139] (openly available).

Our results show that the final, third variant of our RDS sensor, is more effective not only than

VRDS and HRDS, but also VITI and even TDC. When attacking an AES-128 on Sakura-X, the

attack with the RDS sensor requires, on average, 35% fewer power side-channel traces to break

the entire secret key with the TDC, with this number going as high as 80% in the extreme case.

In our experiments, RDS outperforms TDC on an Alveo U200 datacenter card as well.

The remainder of the chapter is organized as follows. In Section 8.1, we describe the threat

model of a remote power side-channel analysis attack on cloud FPGAs. Then, in Section 8.2,

we explain the design and operation of time-to-digital converters for on-chip voltage sens-

ing. In Section 8.3, we present the designs of our routing delay sensors and explain how to

calibrate them. Section 8.4 describes the experimental evaluation approach and the corre-

sponding hardware and software setups. Section 8.5 presents and discusses the results. Finally,

Section 8.6 concludes the chapter.

For reproducibility of the experiments and the results in this work, we make the sensor designs

and the associated software openly available [140].
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8.1 Threat Model

This work follows the common threat model of remote electrical-level attack on multitenant

FPGAs [14, 32, 43, 49], in which an FPGA in a datacenter or the cloud is spatially shared by

multiple users. The FPGA tenants are given physically separate FPGA regions to deploy their

circuits. Furthermore, the assigned regions are logically isolated. To access the external

interfaces, such as PCI Express, or the off-chip memory, the tenants use dedicated FPGA logic

called shell, deployed by the datacenter or the cloud service provider. The tenants are free to

implement almost any FPGA circuit (the exception being circuits containing combinational

loops [3]) and set placement and routing constraints for their designs. Finally, the FPGA tenant

applications share the on-chip power delivery network.

The adversary, in the assigned FPGA region, implements one or more on-chip voltage-fluctuation

sensors, together with the control logic and the on-chip buffers, for saving the measurements.

The adversary has the possibility of offloading the sensor traces for the off-chip analysis.

The victim, on the other side, is performing encryption using a secret key and sending the

ciphertexts over a public channel that can be observed by the adversary.

8.2 Sensitivity of TDC Voltage Sensors

In Fig. 8.1, we illustrate the typical implementation of a TDC sensor, as described in Chapter 3.

We can identify three parts: (1) a tapped delay line, commonly implemented using fast carry

propagation logic and dedicated routing, (2) an output register (with every carry output

driving one flip-flop), and (3) some circuitry (e.g., look-up tables, phase-locked loops, or

IDELAY adjustable input delay elements) for tuning the phase shift between the sampling

clock of the output register and the clock propagating through the delay line. These two clocks

have the same frequency.

Careful tuning of the phase shift and the length of the tapped delay line is critical for correct

sensor calibration, i.e., ensuring that only one clock transition is captured in the output register
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per sampling clock period. Additionally, the delay line must be properly formed by chaining

the carry output of one FPGA slice to the carry input of the next one, where all the occupied

slices are constrained to one vertical column of the FPGA; and, every carry output must drive

precisely the corresponding FF residing in the same slice. These strict placement constraints

are necessary for ensuring the optimal sensitivity of this TDC sensor.

In the absence of any on-chip activity, the sensor output usually is constant (modulo back-

ground noise) and determined by three parameters: the clock frequency, the initial delay (i.e.,

the phase shift), and the length of the delay line N . For a given clock frequency, the initial delay

and the parameter N are chosen so that the output register captures a single clock transition

in every clock cycle. In other words, the output register should always be filled with a sequence

of ones followed by the sequence of zeros—with a possibly imperfect transition—where the

location of the FF with the transition corresponds to the depth of propagation of the clock

signal through the delay line. The value in the output register can be converted to the nu-

merical value of one sensor sample using a thermometer code [49] or by taking the Hamming

weight of the bits in the output register [14,65], as we do in this work. Once the on-chip voltage

starts fluctuating due to the activity of the victim circuit, the delay of the elements in the

sensor change, and consequently, so does the sensor output. We consider the sensor well

calibrated (i.e., the initial delay and the length of the delay line are well chosen) if, for the

entire duration of the measurement, the Hamming weight of the output register lies in the

range 0 < HW(O) = HW(O0,O1, ...,ON−1) < N and only one clock edge is captured.

Let us define di as the time the delayed clock signal takes to propagate from the input of the

D
FF

Q D
FF

Q D
FF

Q D
FF

QD
FF

Q D
FF

Q

. . .

. . .

. . .

O2 O3 ON-4 ON-3 ON-2 ON-1

Initial delay
(calibration)

TDC: Tapped delay line, with fast carry-propagation logic

CLKIN

D
FF

Q D
FF

Q

O0 O1

PIN

P0 P1 P2 P3 PN-1PN-2PN-3PN-4

DN-4D0 D1 D2 D3 DN-3 DN-2 DN-1

Figure 8.1: TDC sensor.

134



8.2 Sensitivity of TDC Voltage Sensors

tapped delay line PI N to the input Di of the flip-flop FFi . For the TDC illustrated n Fig. 8.1, di

is, therefore, the following time difference:

di = t (Di )− t (PI N ). (8.1)

The sensitivity of the TDC sensor, i.e., the minimum signal change that can be detected, can

be expressed as

S = min(di −di−1), 0 < i < N . (8.2)

Because the TDC has a tapped delay line, we can rewrite the expression for di as the sum of the

propagation delay through the first segment, last segment, and all the intermediate segments

of the delay line:

di = t (P0)− t (PI N )︸ ︷︷ ︸
first segment

+ t (Di )− t (Pi )︸ ︷︷ ︸
last segment

+ ∑
1≤k≤i

t (Pk )− t (Pk−1)︸ ︷︷ ︸
intermediate segments

, (8.3)

where Pi is at the output of the delay element i in Fig. 8.1. Combining the expressions in

Equations (8.1), (8.2), and (8.3), the sensitivity can be reformulated as:

S = min

 t (Di )− t (Pi )︸ ︷︷ ︸
routing resources

+ t (Pi )− t (Pi−1)︸ ︷︷ ︸
delay element

− (t (Di−1)− t (Pi−1))︸ ︷︷ ︸
routing resources

 . (8.4)

Therefore, the sensitivity of the TDC improves if, first, the input signal takes a very short

time to pass through a delay element; and, second, if the delays through routing resources

(t (Di )− t (Pi ), for 0 ≤ i < N ) are all approximately equal. These two requirements have a direct

impact on the way TDCs are often implemented on FPGAs: the former is satisfied by using fast

carry propagation logic, while the latter is achieved by ensuring that each carry output drives

only the corresponding flip-flops in the same slice. Routing outside of the slice boundaries is,

in general, avoided. The exception is when it is necessary to connect the carry output of one

slice to the carry input of another. Even then, dedicated carry-specific routing resources are

used to minimize the penalty, and consequently, the tapped delay line has to be placed in a
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single FPGA column.

Another property of a tapped delay line is the monotonic increase of the propagation delay:

d0 < d1 < ·· · < dN−1. (8.5)

In practice, carry propagation logic in FPGAs is often implemented in the look-ahead fash-

ion, and the delays from the carry input to the carry outputs of the same slice may not be

strictly monotonically increasing [14]. Given that we apply Hamming weight instead of the

thermometer code on the output register value, the mentioned lack of monotonicity is of no

practical concern.

8.3 Routing Delay Sensors

As described in Sections 8.2, the principle of operation of the FPGA on-chip voltage sensors is

measuring and quantifying the change of the propagation delay of the carry logic (in TDCs) or

LUTs (in ring oscillators and VITI). Even though it is not explicitly mentioned in the literature

on remote power-side channel attacks, the routing multiplexers in the FPGA interconnect

are affected by the on-chip voltage fluctuations and they too contribute, though to a lesser

extent, to the delay variations captured by the sensors. Ahmed et al. explored techniques

for optimizing FPGA logic circuitry for variable voltage supplies [141]. As part of the study,

the authors compared the impact of the power supply voltage on the propagation delay of

LUT-dominated and routing-dominated signal paths, to find that (1) both were affected and

(2) the LUT-dominated paths were affected more. Motivated by their findings, we ask ourselves

the following research question: if the delay line is built using FPGA routing resources only,

how effective would such a sensor be in the remote power SCA attack setting? To answer this

question, we start by designing the following two variants of a routing delay sensor:

• VRDS, with the placement and the routing constrained vertically, as in TDCs, and

• HRDS, with the placement and the routing constrained horizontally, completely oppo-
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site of the TDCs.

In the remainder of this section, we present our VRDS and HRDS implementations and explain

their operation. Then, we introduce a third and improved design. Finally, we discuss the

calibration procedure and the challenges of portability and detectability of the routing delay

sensors.

8.3.1 VRDS and HRDS

In Fig. 8.2, in the same style as in Fig. 8.1 for TDCs, we illustrate the design of our routing delay

sensor, in which the delay line is implemented with FPGA routing resources (RR) only. We

use the label RR to model the global interconnect; the local interconnect is modeled with the

direct connection between Pi and Di , for 0 ≤ i < N . It is worth noting that all the expressions

in Equations (8.1), (8.2), (8.3), and (8.4) hold here as well.

When placing and routing, we aim for a modular design and as uniform RR delay as possible

across the entire delay line. Fig. 8.3a shows the placement of two subsequent FFs in the output

register and the routing of the delay line for the VRDS. The delay element labeled RR in Fig. 8.2

is realized with a vertical wire segment of length one (the full line), whereas the segment

between Pi and Di is routed locally (dashed line). The placement of the output register is

constrained to a single FPGA column. This placement and routing pattern is then repeated

for the entire length of the sensor. Reusing the same connectivity pattern helps improve the

sensitivity of the sensor, as the first and the third of the three terms in Eq. (8.4) become equal,

thus canceling each other out.

The implementation of the HRDS is similar, except for using horizontal wires and constraining

the FFs to a single FPGA row (Fig. 8.3b). However, there is one important difference between

the HRDS and the VRDS. FPGA columns have a uniform architecture, whereas FPGA rows do

not (e.g., in one FPGA row, there are CLBs, DSP blocks, RAM memories, etc.). As a consequence,

in the case of the HRDS, the RR blocks in Fig. 8.2 no longer have a constant delay because the

wires connecting two immediately neighboring CLBs are shorter than the wires between two
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Figure 8.3: Placement and routing of a segment of VRDS and HRDS sensors.

CLBs that are separated by a column of DSP or memory blocks.

8.3.2 RDS

As the global interconnect wires are longer than the dedicated connections in the carry propa-

gation chains, we expect both VRDS and HRDS to have lower sensitivity than the TDC and,

hence, to be less effective for remote power side-channel attacks. When it comes to VITI,

it is harder to predict how it compares to VRDS and HRDS without experimenting, as the

sensitivity of VITI is considerably lower than the sensitivity of the TDC, because of the LUTs in

the tapped delay line.
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Is it even possible to build an RDS sensor with better sensitivity than TDC? The answer is yes.

To explain how, let us again recall the expression for the sensitivity in Eq. (8.4). The first and

the last term are unavoidable, as the connections to the inputs of the FFs in the output register

have to exist. Ideally, the first and the third term could cancel each other out, if the exact same

last-mile routing path is taken; this is the case in our realization of the VRDS and the HRDS.

The middle term in Eq. (8.4), labeled as delay element, is more challenging to optimize. In

TDCs, the carry propagation logic is fast, hence the high sensitivity of TDCs. In VITI, VRDS,

and HRDS sensors, the middle term has a more significant impact on the sensitivity.

It is hard to imagine that the middle term in Eq. (8.4) can be better optimized than it is already

with the dedicated carry propagation logic and routing. Therefore, we turn to the alternative

expression for sensitivity in Eq. (8.2) and formulate a new sensor design goal.

Goal: All the paths between PI N and Di should be routed so that the delays di , where 0 ≤ i < N ,

are as similar as possible:

d0 ∼ d1 ∼ d2 ∼ ·· · ∼ dN−2 ∼ dN−1.

Ideally, the difference between any pair (di , d j ), where 0 ≤ i , j < N , should be lower than the

sensitivity of a TDC. In practice, the more (di , d j ) pairs that satisfy the above goal, the more

effective we expect the sensor to be, compared to the TDC, in an attack scenario.

The ideal sensor we formulate above, however, would not be usable in practice because the

observable time window, i.e., the range of the sensor

W = max |di −d j |, 0 ≤ i , j < N (8.6)

would be significantly reduced compared to any delay-line-based sensor, where W = dN−1−d0.

Such a sensor would not only be challenging to calibrate, but it would also be prone to

becoming easily decalibrated, to the extent that even the calibration at run time may not be

the solution. With this in mind, we rephrase our sensor design goal as follows.
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Table 8.1: Characteristics of the TDC, VITI, and our three variants of the RDS sensor.

Sensor TDC [11] VITI [139] VRDS HRDS RDS

Main component Carry chain LUT Routing resources (wires, multiplexers)

Tapped delay line Yes Yes Yes Yes No

Placement

and routing

Vertically

constrained
Unconstrained

Vertically

constrained

Horizontally

constrained
Unconstrained

Sensitivity High Low Low Low High

Goal: Many of the paths between PI N and Di should be routed so that the delays di , where

0 ≤ i < N , are as similar as possible. At the same time, the observable time window (W in

Eq. (8.6)) should not be too narrow.

The approach we take to achieve the above goal is threefold: first, not having a tapped delay line

at all; second, letting the FPGA router build the connections between PI N and Di , 0 ≤ i < N ;

and, third, letting the FPGA placer decide on the locations of the FFs in the output register, in

the interest of helping the router find suitable paths. In Fig. 8.4, we illustrate the resulting RDS

design. Finally, it is worth noting that using Hamming weight to convert the binary value in

the output register to the integer value of the sensor sample applies perfectly well also to the

RDS sensor free of the tapped delay line.

In Table 8.1, we summarize the main characteristics of the TDC, VITI, and our three variants

of the RDS sensor.
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8.3.3 Calibration

The goal of the calibration is to ensure that an edge of the clock signal is within the observable

delay line when its state is captured in the output register. Drewes et. al [86] later showed that

in the case of TDC, there is no significant difference in attack success between capturing the

rising or falling edge of the clock in the delay line, provided the sensor uses Hamming weight

encoding and is calibrated to maximize the power side-channel leakage. Therefore, even in

the case of RDS, one can choose either the rising or the falling edge and adjust the calibration

procedure accordingly. In this work, we opt for the rising edge.

As the calibration is a lengthy process of trial and error, it is convenient to automate it. We im-

plement a reconfigurable initial delay line approach proposed in literature [65]: implementing

delay line elements as multiplexers allows a reconfigurable clock entry point in the initial delay

line, thus changing the clock delay. Selecting a subset of the available coarse delay elements

(in our implementation, LUTs) and fine delay elements (carry propagation logic) allows fine

clock delay tuning required for voltage-drop sensors [65]. We control the calibration from

software for better control and higher flexibility.

For the sensors with a tapped delay line (TDC, VITI, VRDS, and HRDS), the calibration proce-

dure is straightforward: increasing (respectively, decreasing) the initial clock delay—an action

that moves the rising edge closer to (respectively, further from) the beginning of the delay

line (the point PI N in Figs. 8.1 and 8.2)—until the rising edge is close to the middle of the

observable delay line [12]. Considering the Hamming weight of the output register, the rising

edge being close to the middle of the observable line translates to the sensor sample being

equal to approximately N /2.

Given that the RDS does not have a tapped delay line but a tree of routing resources, it requires

a somewhat different calibration approach. We can no longer tell where the edge precisely

lands, but we can observe and influence the Hamming weight of the output register. We aim

to calibrate the sensor so that the power side-channel trace (i.e., the time sequence of sensor

samples for a given measurement duration) has a high variance. In other words, the more bits
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Algorithm 3: Calibration algorithm

Input :L I DC , maximum number of coarse elements
L I DF , maximum number of fine elements
n, number of samples per trace
N , observable delay line length (maximum sensor value)
δ, calibration parameter
Ntr aces , number of traces recorded at each calibration step

Output : I DC , I DF , number of coarse and fine elements, respectively
for I DCcnt to L I DC do

smi n ← N ;
I DC ← I DCcnt ; I DF ← 1;
send_calibration(I DC , I DF);
for tr ace to Ntr aces do

(s1, s2, ..., sn) ← record_trace();
smi n ← min(smi n ,min(s1, s2, ..., sn));

if smi n = N then
break;

for I DCcnt to L I DC do
for I DFcnt to L I DF do

smax ← N ;
I DC ← I DCcnt ; I DF ← I DFcnt ;
send_calibration(I DC , I DF);
for tr ace to Ntr aces do

(s1, s2, ..., sn) ← record_trace();
smax ← max(smax ,max(s1, s2, ..., sn));

if smax = δ then
return I DC , I DF ;

return failure;

in the output register that toggle when a voltage drop happens, the better. Our RDS calibration

approach is illustrated in Fig. 8.5 and described in Algorithm 3.

The algorithm has two parts that together ensure that many bits of the output register capture

the changes in the propagation delay of the rising edge of the clock signal. In the first part

(lines 2–13), we incrementally increase the initial delay by including more coarse elements

(I DC ) until the falling edge of the clock exits the observable delay line and all the output bits

become ‘1’: HW (O) = N . The effects of increasing the initial delay are illustrated in steps

1, 2, and 3 in Fig. 8.5. We stop including more coarse elements (line 10 of the algorithm)
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when all the samples in Ntr aces measured traces reach the maximum value, N . In the second

part of the algorithm (lines 14–28), we gradually increase the number of coarse and the fine

(I DF ) elements, to bring the rising edge carefully into the observable delay line. For every

(I DC , I DF ) pair, we record Ntr aces traces and compute the maximum value of all the sensor

samples. When that maximum value crosses the predefined threshold δ (del t a < N ), as shown

in step 4 of Fig. 8.5, the calibration is finished. Alternatively, we choose another (I DC , I DF )

pair and repeat the procedure.

The user-controlled threshold δ (0 ≤ δ< N ) determines the number of output FFs that capture

‘0’ instead of ‘1’. If δ is high, a few bits in the output register satisfy this condition: for them, the

clock edge has passed to the left of the capture window (shown in the right half of Fig. 8.5). For

the other bits, those equal to ‘1’, the clock edge is to the right of the capture window. It is these

bits that, when the on-chip voltage drops due to the victim activity and, consequently, the

clock edge moves to the left of the capture window, may change from ‘1’ to ‘0’. If it happens,

this change will be reflected in the lower Hamming weight of the output register (i.e., the lower

value of the sensor sample s in Algorithm 3).

If δ is low, for many bits in the output register the clock edge will be to the left of the cap-

ture window. These bits are unlikely to change their value, as lowering the on-chip voltage

moves the edge further away from the capture window. Therefore, low δ results in fewer bits

potentially toggling and, hence, less side channel leakage getting captured. Therefore, we set

δ to a value close to N , so that for as many output FFs as possible, the clock edge is likely to

enter the capture window during trace recording. If the calibration fails, then the width of the
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observable window N needs to be increased, by adding more FFs in the sensor output register.

The described calibration algorithm is not limited to RDS; it can be used for VRDS, HRDS,

and even TDC. For these three sensors, we expect the observable window to be wider than for

RDS. Consequently, for the same supply voltage variations, fewer bits in their output registers

should toggle. From the calibration perspective, fewer bits toggling means that a wider range

of δ values should result in equally correct calibration.

8.3.4 Portability and Detectability

As described in Section 8.2, TDC sensors employ carry chain logic and require strict placement

constraints, ensuring that the carry chain is correctly and vertically formed and that each carry

output drives the corresponding flip-flop residing in the same FPGA slice. These constraints

ensure the tapped delay line is fine-grained, as uniform as possible, and that only dedicated

connections are used. Depending on the FPGA device on which the sensor is to be deployed,

the constraints may need to be adjusted to account for a different sensor location and type of

carry logic available (e.g., CARRY4 or CARRY8). As described in Sections 8.3.1 and 8.3.2, unlike

TDC, neither VRDS, HRDS, nor RDS, require carry-chain logic to sense voltage variations. In

the case of HRDS and VRDS, the sensor location, the placement of the flip-flops, and addition-

ally, the resources to route the clock signal through the tapped delay line need constraining.

The sensor location aside, in RDS, neither the placement of the flip-flops nor the choice of

routing resources needs to be specified by the adversary, which makes RDS easier to deploy

and port across FPGA devices.

For the purpose of calibration, both TDC and the routing delay sensors require means to adjust

the clock phase. We provide it using LUTs and carry-chain logic (the latter requiring placement

constraints). However, if the ease of implementation and portability are of importance, then

other approaches, such as a PLL or an adjustable input-delay element [139], can be used

instead. These alternative approaches are equally suitable for TDC as for the routing delay

sensors.
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Given the high interest in fault and power analysis attacks on cloud FPGAs, researchers have

proposed bitstream checking tools [132, 133]. Their principle of operation is to, first, reverse

engineer the bitstream into a design netlist and, second, search for potentially malicious

patterns. A simple example of a malicious pattern is a combinational loop; some cloud

FPGA providers are able to detect it during synthesis and flag it as a design error. This check

effectively prevents LUT-based ring oscillators (either as sensors or power wasters) from being

deployed on the cloud.

In the case of TDC sensors, bitstream checkers could look for a number of potential issues,

starting with timing violations [132], because the clock propagating through the tapped delay

line has to violate timing by construction. RDS sensors, similarly to TDC sensors, introduce

timing violations in the output register. These timing violations can be bypassed, equally

efficiently for TDC and RDS, by using programmable clock-generating circuits (i.e., PLLs or

mixed-mode clock managers). It suffices to set a sufficiently low clock frequency at compile

time, not to violate the timing constraints, and then change it to the desired value during

runtime.

A clock-to-data path [132], inherent to both TDC and RDS, is another flag-raising netlist

structure. Yet, if needed, it can be easily avoided; for example, by adding a T flip-flop on the

clock path and using its output instead of the clock to drive the delay line.

Precisely constrained carry chains, when detected, can indicate the presence of a sensor. While

the carry chains are the basic building blocks of TDCs, RDS can be entirely free of them and,

therefore, pass the check.

Finally, connecting the clock signal to the flip-flops of the RDS sensor output register creates

a relatively high fan-out signal, yet another feature checked by bitstream scanning tools in

literature [133]. However, these tools look for orders of magnitude higher fan-out, common to

power-wasting circuits. The fan-out of 128 (or less) in RDS is not uncommon in FPGA designs

(e.g., for enable and reset signals of registers) and, as such, calls for no alarm [133].
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8.4 Experimental Evaluation

This section presents the experimental evaluation methodology. We first describe the archi-

tecture of the system used to record power traces. Then, we provide a detailed description

of the experiments and, finally, explain the attack metrics used to evaluate and compare the

effectiveness of the sensors in the remote power side-channel attack setting.

8.4.1 System Architecture and Floorplan

Our experimental setup consists of three different FPGA boards, allowing us to evaluate the

RDS sensor across various FPGA families. For most experiments, we use the side-channel

evaluation board Sakura-X [103], equipped with a AMD Kintex-7 FPGA (xc7k160tfbg676-1).

Additionally, we perform experiments on AMD Alveo U200 datacenter accelerator card, having

an AMD Virtex UltraScale+ FPGA (xcu200-fsgd2104-2-e). We use Vivado 18.03 for the Sakura-X

board, and Vivado 2022.1 for the Alveo U200 design. For compilation, we use the default

Vivado synthesis and implementation strategies.

Fig. 8.6 shows a block diagram of the system architecture used in all three FPGA boards. Despite

the FPGA-specific implementation differences, the system architecture of all three setups has

the same main components: The shell, responsible for the communication between the FPGA

tenants (the adversary or the victim) and the host machine. The victim is an AES-128 hardware

module [87]; it has an associated controller, for transferring plaintexts and ciphertexts, and

for initiating encryption. The adversary, physically isolated from the victim, has a voltage-

146



8.4 Experimental Evaluation

Sensor
FIFO

Shell

AES

Controller

SLR 2

SLR 1

SLR 0

Figure 8.7: Floorplan of all three boards used in the experimental evaluation.

fluctuation sensor calibrated by a controller module, and a FIFO buffer where sensor samples

are stored before they are offloaded to the host machine. To facilitate easy trace collection, we

use the encryption initiation signal as a trigger for storing the sensor traces.

Fig. 8.7 shows the floorplan of the system on the three FPGAs. In all implementations, the

attacker and victim reside in separate regions (Pblocks). The AES and the sensor are placed

close to one another, simulating the worst-case scenario for the victim. Because of different

FPGA/host communication constraints, the shell and the controller implementation differ for

each FPGA. On Sakura-X, the shell occupies the smallest area, as the communication happens

through a serial connection and an additional control FPGA [103], which reduces the noise of

the communication process. On Alveo U200, the automatically inserted shell occupies the
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Table 8.2: Key and plaintext values used in the experimental evaluation.

Key Key value Plaintexts

K1 0x7d266aecb153b4d5d6b171a58136605b

PT0 = 0

PTi+1 =C Ti

K2 0xe3fb107fa4aaeb7130f411d4c88dbf6c
K3 0xa89e2fd6926dc2478402b717631d08ce
K4 0xa3a03d60c06457dc65d8afd5815f629c
K5 0xe1055ac2abadea4fc7fc6be1310448d9

largest share of the FPGA: it is static and prevents using a custom, smaller shell. Users are

constrained to use the AXI-4 shell interface, making the design and implementation of the

controllers more complex. The clock frequencies of the sensor and the AES are set to 200 MHz

and 20 MHz, respectively.

8.4.2 Experimental Setup

In our experiments, we aim to break the secret key of an open-source AES-128 cryptographic

module implementation [87], using CPA. We record NT R AC ES power side-channel traces per

experiment (the exact value of NT R AC ES depends on the experimental platform). For each

trace acquisition, we send the key K and the plaintext PT to the AES core and record all the

sensor samples captured during the AES encryption. We use the current ciphertext as the

next plaintext, to avoid plaintext repetition. For simplicity, as seen in Fig. 8.6, we use the

start encryption signal to trigger the collection of a sensor trace. In real attacks, this signal

is absent, and the attacker resorts to trace alignment and automatic triggering techniques

described in previous work [12]. We repeat the experiments with five different keys to draw

more substantial results. The keys and the plaintexts used in the experimental evaluation are

listed in Table 8.2.

8.5 Results and Discussion

In this section, we present the results of the experiments. We start by comparing the power

side-channel traces measured with the TDC and the RDS. Then, we compare the RDS sensor
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Table 8.3: Resource utilization of TDC, VITI, and RDS.

Sensor
Initial delay (calibration) Other resources

LUT CARRY Latch LUT CARRY FF

TDC 32 0 32 0 32 128

VITI 32 0 32 4 0 4

VRDS 32 0 32 0 0 32

HRDS 32 0 32 0 0 16

RDS 32 24 32 0 0 128

with the TDC [65] by performing a power side-channel attack and a statistical analysis of the

characteristics of the sensor traces. Finally, we compare the RDS with the TDC across a range

of different placements for the sensor and the AES.

Table 8.3 lists the FPGA resource utilization of our implementations of the TDC, VITI, and

RDS sensors. As described in Section 8.3.3 and similarly to previous work [65], we use the

coarse (LUTs, latches) and fine (carry) elements for calibration. With 32 LUTs and latches, and

24 fast carry elements for fine phase shift tuning, every sensor in Table 8.3 can be calibrated.

Because of the high sensitivity of the TDC and the RDS, we set the output register size to 128

bits (N = 128). Unlike the TDC, VITI has a short observable delay line and uses only 4 LUTs and

FFs [139]. For VRDS and HRDS, we set the output register size, N , to 32 and 16, respectively.

We constrain the RDS register to a Pblock having ≈ 2× more flip-flops than required and let

Vivado complete the placement and routing (P&R). We conjecture that if the assigned Pblock

is not overly resource-limited, the P&R will not be a hard task and, hence, Vivado will place the

flip-flops and route the signals in a close to optimal way.

8.5.1 RDS Sensors Versus TDC and VITI

As a first step in the experimental analysis, in Fig. 8.8 we visualize the waveforms of the RDS

and the TDC traces recorded during the encryption of a single plaintext on Sakura-X. The

traces are placed side by side for easier comparison. In both of them, the AES rounds are

clearly visible. The traces have 128 samples, covering the entire duration of one AES-128
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Figure 8.8: One side-channel trace recorded with the RDS (left) and the TDC (right) sensor.

encryption. Because of two independent calibrations, the vertical offsets of the traces differ.

What is more important to notice is that the peak-to-peak amplitude of the RDS trace is higher

(37) than the peak-to-peak amplitude of the TDC trace (8). The higher RDS trace variation

suggests that an attacker with the RDS may be able to break the secret key faster. To evaluate

this hypothesis, we run additional experiments.

We record 100k traces (corresponding to the encryption of 100k plaintexts) for each of the five

keys in Table 8.2, as described in Section 8.4.2. We run the experiments for the TDC, VITI, and

the three variants of our RDS sensors. Fig. 8.9 visualizes the results of the statistical analysis of

the sensor samples recorded for the key K 1. On the left, we compare the number of output

bits with nonzero variance. For VITI, VRDS, and HRDS, there are only one or two bits that

toggle. In the case of TDC, there are 11 bits. Finally, the RDS has the highest number of bits

toggling: 47. This result explains the waveforms in Fig. 8.8, as the higher peak-to-peak value is

in direct relation with the number of bits toggling.

The right part of Fig. 8.9 depicts the variance of the output bits of the RDS and the TDC. As

expected, the TDC has a cluster of bits with nonzero variance, where the rising clock edge

lands in the delay line. This figure also highlights the difference between the RDS and the TDC:

replacing the delay line with free routing in the RDS results in a higher number of bits toggling.

Additionally, the toggling bits are not necessarily clustered closely together.

Let us now compare the SNR for the RDS and TDC. The SNR is a side-channel evaluation
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Figure 8.9: Number of bits toggling during trace acquisition for every sensor (left), and the
variance of the bits for RDS and TDC sensors (right).

metric defined as the ratio between the useful signal, i.e., the variance of the data-dependent

power consumption, and noise. It can be obtained from the power side-channel traces without

performing an attack and is most commonly used to identify trace samples with significant

leakage (i.e., samples that are commonly linked to the secret key). To compute the SNR, we

follow the procedure outlined by Papagiannopoulos et al. [70]. Fig. 8.10 shows the results

corresponding to the least-significant byte of the output of the ninth AES round, for the keys in

Table 8.2. For both sensors, we can observe two peaks: in sample 102 (the beginning of the last

AES round) and in sample 112 (the end of the last round, i.e., the moment when the ciphertext

is saved in the state register). RDS is clearly superior to TDC, as the SNR approximately doubles

in these two points of interest. Across all the experiments and every byte of the intermediate

value, SNR in sample 112 for RDS is consistently higher than for TDC, by a factor of 1.57× on

average, with a maximum of 2.87×.

To compare the sensors in the power side-channel attack scenario, we attack the traces using

CPA and the key rank estimation metric, and repeat the experiment five times (each time with

a different key). Fig. 8.11 shows the attack results. As outlined in Chapter 3, the key rank is

estimated as a range. The dashed and dotted lines represent the lower and the upper bounds

of this range, averaged over all the experiments. The shaded areas indicate the entire range

of the key rank (min, max), observed across all the runs. The results demonstrate that the

RDS and the TDC, as predicted, are superior. The coarse delay lines of VITI, HRDS, and VRDS
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Figure 8.10: Signal-to-noise ratio for the RDS (left) and TDC (right), computed on the least-
significant byte of the output of the ninth AES round.
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Figure 8.11: Key rank estimation for TDC, VITI, and our three RDS variants.

result in lower sensor sensitivity, making it difficult for the sensor to capture small voltage

fluctuations. HRDS and VITI give very similar results, suggesting that both the horizontal wires

and the LUTs have a similar response to voltage fluctuations. VRDS, however, is superior. This

result is not surprising, as vertical routing uses shorter wires than horizontal, thanks to the

absence of heterogeneous blocks (DSPs, memory) within an FPGA column.

Finally, and most interestingly, Fig. 8.11 shows that, on average, the RDS sensor outperforms

the TDC. As the RDS sensor has more output bits with nonzero variance and the RDS trace

has higher peak-to-peak amplitude, an attack with the RDS requires fewer traces to recover

the full key.
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Figure 8.12: Comparison of RDS sensors with the number of bits used.

8.5.2 Impact of The RDS Size on The Attack Success

The number of FFs in the output register of the TDC does not impact its performance—

provided that the sensor is correctly calibrated. This is not the case for the RDS. The left side

of Fig. 8.13 shows the number of bits with nonzero variance for RDS with 128, 96, 64, and 32

FFs in the output register. The right side shows the variance of each bit in the output register,

computed across 100k traces (corresponding to 100k AES-128 encryptions on Sakura-X, with

the key K1). We see that reducing the output register size results in fewer bits that toggle.

Fig. 8.12 shows the results of the key rank analysis. In general, increasing the number of bits in

the output register leads to fewer number of traces needed to break the full AES key. However,

for 96 and 128 bits in the output register, there is no notable difference. These results correlate

well with the per-bit variance shown in Fig. 8.13 and the intuition that the more bits with the

nonzero variance, the more effective the attack.
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Figure 8.14: Key rank estimation for the TDC and RDS sensors on the Alveo U200 board.

8.5.3 RDS Versus TDC on The Alveo U200 Datacenter Card

To evaluate the RDS sensor on a cloud-scale FPGA, we deploy our system on the AMD Alveo

U200 datacenter accelerator card (as explained in Section 8.4.1). Cloud-scale FPGAs are large

in size, which makes it more difficult to sense switching activities on the shared PDN [14].

Therefore, we record 1.8 million traces, and repeat the trace collection for each of the keys in

Table 8.2. Furthermore, we repeat all the experiments five times.

The results are summarized in Fig. 8.14. Similarly to Fig. 8.11, the average of the lower and the

upper bounds of the key rank are shown with dashed lines. The shaded areas correspond to

the minimum and the maximum key rank values observed across all the attacks. Again, we see
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Figure 8.15: Floorplans for the chosen sensor and AES placements.

that the RDS outperforms the TDC, even more clearly than in the experiments discussed in

Section 8.5.1. Therefore, a remote adversary equipped with the RDS instead of the TDC can

steal a secret with fewer measurements.

8.5.4 Varying the Placement

To further evaluate and compare the RDS and the TDC, we record the power side-channel

traces for a number of different sensor and AES placements. Fig. 8.15 provides a conceptual

overview of the Sakura-X floorplan, with the sensor and AES positions marked in green and

blue, respectively. The FPGA has ten clock regions, out of which the shell, which is always

kept at a constant location, occupies the bottom two. In the remaining eight clock regions, we

define eight sensor locations (in regions 2, 3, 6, and 7) and four AES locations (in regions 1,

4, 5, and 8). In all experiments, AES and the sensors are in separate regions, in line with the

threat model. For a pair of sensor-AES placements, we record 100k traces, once for the key K1

and once for the key K4 in Table 8.2.

In the first set of experiments, we fix the AES to the location labeled as M1 and vary the sensor
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placement. In total, we collect the data from 32 experiments (eight sensor locations, two secret

keys, and two sensors). Then, we compute the key rank metric and record the number of

traces required for breaking all the bytes of the secret key (i.e., the number of traces for which

the log(key rank) first time drops to zero). To compare the effectiveness of the RDS with the

TDC, we normalize the results and visualize them in Fig. 8.16 (left part). We see that, in most

cases, the RDS outperforms or performs equally well as the TDC. On average, the number

of traces that the RDS requires to break the key is 60% of the number of traces that the TDC

requires (in other words, the attack with the RDS needs 40% fewer traces than the attack with

the TDC, to break the entire secret key). Finally, we observe that the number of traces when

the log(key rank) drops to zero can vary across the experiments (irrespective of the chosen

key). The same can be observed in Figs. 8.11 and 8.14: When the key rank drops to zero and

the slope of the curve significantly reduces, likely due to the low SNR of many bits of the secret

key, the range of the obtained results widens. Figs. 8.11 and 8.14 also show that the extent

of this variability, for both TDC and RDS, reduces for the bits of the secret key which are less

impacted by noise and, consequently, broken earlier.

In the second set of experiments, we fix the location of the sensors at M2 and vary the place-

ment of the AES. The results are shown on the right side of Fig. 8.16. Again, in most cases,

the RDS requires fewer or an equal number of traces to break the key. In this experiment, the

average ratio is 0.76 (i.e., the RDS needs 24% fewer traces than the TDC to break the key, on

average). If we take all the experiments into account, then we can say that an attack with the

RDS requires 35% fewer traces than the attack with the TDC, for all the bytes of the secret key

to be recovered.

Table 8.4 lists the obtained results: the first two rows contain data per sensor and location

(averaged across the corresponding experiments with two different keys). The third row

aggregates the results per region, both sensors considered. Looking at the last row of data, we

can note the correlation between the number of traces to break the key and the locations of

the sensor and the AES with respect to one another: When the AES is in the first region, and

the sensors change places, the attack is fastest with sensors in the second, third, then sixth,
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Figure 8.16: Ratio between the number of traces needed to break the key with the RDS and the
TDC sensor when varying the placement of the sensor (left) or the AES (right). In dark blue are
the results where an attack with RDS is at least as efficient as with TDC. The dashed red line
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Table 8.4: Number of traces required to break the full AES 128-bit key, for different sensor
placements (AES placed at M1) and different AES placements (sensor placed at M2). The last
row shows the average number of traces to break the key per FPGA region, both RDS and TDC
sensors considered.

Traces to break key (×103)

Sensor
Sensor placement AES placement

M2 R2 L3 M3 M6 R6 L7 M7 M1 M4 M5 M8

RDS 16 18 17 29 46 31 56 59 16 29 91 41

TDC 23 48 71 41 73 39 76 76 23 30 95 77

Average 26.3 39.5 47.3 66.8 19.5 29.5 93.0 59.0

and finally the seventh region; with respect to the AES, regions two and three are close by,

while six and seven are further away. When the sensors are in the second region, and the AES

changes place, the attack is fastest when AES is in the first, then fourth, then eighth, and finally

the fifth region; with respect to the sensors, the first and the fourth region are close by, while

the fifth and the eighth regions are further away.

8.6 Chapter Summary

This work presents a novel FPGA-based voltage sensor design, fundamentally different from

TDC and RO sensors. Our new routing delay sensor leverages routing resources for sensing
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voltage variations. We present three variants of the new sensor: one vertically constrained

(VRDS), one horizontally constrained (HRDS), and one free of any placement or routing

constraints (RDS). We evaluate the performance of the RDS sensor using the correlation power

analysis attack and the key rank estimation metric, in an attack against an AES-128 hardware

cryptographic module. The results, computed for a number of different sensor and AES

placements on the Sakura-X board, show that the RDS outperforms the TDC: on average, an

attack with the RDS requires 35% fewer traces to break the secret key. The observation that the

RDS is superior is confirmed with extensive experiments on the cloud-scale FPGA (the Alveo

U200 datacenter card). Future work will investigate the avenues for further improvements of

the RDS sensor performance.
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9 Temperature Impact on Remote

Power Analysis Attacks

As we have shown in parts I and II of this thesis, malicious parties can mount remote power

SCA attacks using FPGA-based voltage sensors such as TDCs and ROs. However, attack-

ers implement these on-chip sensors using FPGA fabric, which, in turn, is vulnerable to

temperature-induced delay changes [91, 142]. Even in the cloud, changes in the on-chip

temperature are inevitable: they can happen due to the inertness of the cooling systems or

even be a remnant of previous tenant computation on the same FPGA [106]. In general, these

temperature changes are considered too slow to impact individual power traces, which are in

the nanosecond range. Therefore, in previous work, authors assumed negligible temperature

changes during the operation of the victim circuit. However, in the case of ML-based profiling

attacks or attacks on protected cryptographic circuits, trace acquisition can take a very long

time (even days [143]); therefore, temperature variations unavoidably occur.

As we demonstrate in this Chapter, ignoring the temperature variations and the correct trace

acquisition guidelines can lead to erroneous observations, even in the case of remote FPGAs

in the cloud. For example, in the presence of temperature variations, ML models, instead of

learning the target side-channel leakage, may inadvertently learn temperature effects that are

otherwise not present in a real-life setup. Although remote power SCA attacks can succeed at

This chapter is based on the work of a paper published at the 2023 Design, Automation & Test in Europe Conference

& Exhibition [35].
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different temperatures [139, 144], we find a better understanding of the temperature effects is

necessary for future work.

The key contributions of this Chapter are:

1. Analysis of the temperature impact on sensor measurements. We show, mathematically

and experimentally, that sensor traces suffer from the same drifting offset seen in

oscilloscope traces [143], and that the variance of trac:w e samples is temperature

dependent. These effects directly impact the measured side-channel leakage and are

reflected in the success of a CPA attack on an AES encryption module.

2. Analysis of the temperature impact on the accuracy of ML-based profiling attacks. When

the power side-channel leakage is limited, and the trace acquisition takes a non-negligible

time, we show that incautious trace acquisition can lead to ML models biased by tem-

perature, resulting in misleadingly high accuracy. We analyze this unwanted effect and

quantify the impact of correct trace acquisition techniques on accuracy.

In the remainder of the chapter, Section 9.1 discusses the impact of temperature on the sensor

output. Section 9.2 describes our experimental evaluation methodology. In Section 9.3, we

present the results, while Section 9.4 concludes the chapter.

9.1 Temperature Impact on TDC Sensors

The cell delay impacts circuit performance and limits the maximum operating frequency.

In a simple circuit delay model, e.g., the alpha-power law [145], the cell delay is inversely

proportional to the drain current Id of a CMOS transistor. Id can be expressed as

Id ∝µe (T )(Vdd −Vth(T ))α, (9.1)

where µe represents the mobility, Vdd the supply voltage, Vth the threshold voltage, α a

small positive constant, and T the temperature [142]. The threshold voltage and mobility
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decrease with the rise of temperature, leading to two opposite effects on the drain current:

decreased mobility reduces the drain current, while lower threshold voltage increases it. At

high voltages, the mobility dominates Equation (9.1), resulting in a delay increase with the

temperature. In contrast, at lower voltages, Vth becomes the dominant factor, resulting in a

delay decrease at higher temperatures. The voltage at which the temperature dependence

inverts is called the crossover voltage, and it depends on the fabrication technology. This

inverse temperature dependence (ITD) phenomenon was thoroughly studied across different

fabrication technologies [142, 146].

Let us now formalize the temperature impact on the TDC sensor. As previously explained, the

delay of a logic circuit d(T,V ) is indirectly proportional to the drain current Id . Depending

on the technology and the voltage V , Id can be directly or inversely proportional to the

temperature. In addition to the carrier mobility and threshold voltage, Id depends on the

Johnson-Nyquist thermal noise, which is constant across the spectrum and increases with

temperature [147–149]. Moreover, the sub-threshold leakage current in lower technology

nodes represents a source of noise that increases with the temperature [150]. Therefore, we

can formalize the delay of a circuit under constant voltage as

d(T +∆T ) ∝ d(T )+∆d(∆T )+δ(∆T ), (9.2)

where ∆T is the temperature change, ∆d is the change in delay, and δ is the thermal noise.

When ∆T is positive, and the carrier mobility dominates Equation (9.1), ∆d(∆T ) decreases.

Otherwise, ∆d(∆T ) increases with the temperature when the threshold voltage dominates.

The TDC sensor measures the number of delay elements through which an input clock has

propagated during one sampling period tsample . The relationship between the sampling

period and the sensor output can be represented as tsample = O(T )d(T ), where d(T ) is the

delay of one delay element and O(T ) is the sensor output, i.e., the number of delay elements

the input clock has traversed. When the temperature changes by ∆T , the sensor output
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becomes

O(T +∆T ) = tsample

d(T +∆T )
= O(T )d(T )

d(T )+∆d(∆T )+δ(∆T )
. (9.3)

Therefore, when the delay increases with the temperature, the clock propagates through

fewer elements in the delay line, resulting in lower sensor output. Otherwise, in the ITD case,

temperature increase results in higher sensor output.

From (9.3), we find the expressions for the trace DC offset µ (i.e., the mean of all the samples

in a trace) and the variance σ2 (i.e., the dispersion of the values in a sensor trace):

µ= 1

N

N∑
i

Oi (T +∆T ) ∼ 1

∆d(∆T )+δ(∆T )
, (9.4)

σ2 = 1

N

N∑
i

(Oi (T +∆T )−µ)2 ∼ 1

∆d 2(∆T )+δ2(∆T )
. (9.5)

Here, N is the number of sensor samples per trace. From (9.4) and (9.5), we can conclude that

the trace DC offset is inversely proportional to the logic delay, while the variance is inversely

proportional to the delay squared.

9.2 Evaluating The Impact of Temperature

In the context of remote power SCA attacks, we evaluate the impact of temperature on the

sensor leakage and the ML-based power side-channel attacks.

9.2.1 Leakage Analysis

In our first experiment, we evaluate how the sensor trace statistics change in the function of

the temperature. In a thermal chamber, we start with a constant 40°C, and while recording

AES encryptions, we increase the temperature in steps of 5°C up to 60°C. We measure the DC

offset and variance of the sensor traces, two critical statistical parameters for SCA attacks.

Sudden ambient temperature variations—and their potential impact on the DC offset and
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variance of the sensor traces—could cause degradation in the Pearson correlation coefficient

in the CPA attack, resulting in a higher number of traces to break the secret key. Therefore, in

our second experiment, using the key rank estimation metric [70], we evaluate how transient

temperature changes impact the success of the CPA attack against an AES hardware module.

If the impact is significant, the temperature could severely interfere with conclusions between

two different experiment runs (e.g., comparing the side-channel security of two cryptographic

implementations).

Finally, we analyze the difference in side-channel leakage for traces recorded at different

stable temperatures. In a thermal chamber with stable operating temperatures above 35°C,

we record ten runs at 40°C, 45°C, 50°C, 55°C, and 60°C. For each temperature, we compute

the average number of traces needed to break the key using the CPA attack and the key

rank estimation metric [70]. Significantly varying leakage at different external temperatures

indicates a potential problem with lengthy experiments: traces acquired over a long time

may result in skewed ML models, which are either degraded by the thermal noise or learn the

temperature patterns instead of the actual leakage.

9.2.2 ML Accuracy Evaluation

To evaluate the influence of the temperature and the trace acquisition method on ML classifi-

cation problems, we devise three attack scenarios, i.e., victim workloads, each with a different

classification complexity:

• Hardware workload classification. The victim contains several hardware modules, with

only one running at a time. We choose four encryption cores: AES, PRESENT, KLEIN,

and CRYPTON. All implementations are open source and available in the SCABox reposi-

tory [151]. Using these cores, the attacker can train an ML model to identify the currently

running hardware operation. This classification problem is considered easy [105], as the

power consumption traces of entirely different hardware cores usually contain particular

identifiers.
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• Soft-core CPU workload classification. The victim is an open-source soft-core RISC-V

CPU executing eight code snippets on random data. Each code snippet is intensive in

one of the RV32I ISA instruction types: load, store, branch, arith, compare, shift,

logic, and jump. The attacker, having access to the same CPU design and code, profiles

the code snippets on many executions with random data inputs and trains a model to

identify the one the victim is running. Gobulukoglu et al. showed that distinguishing

between different soft-core CPU workloads is a difficult classification problem, and

achieved an average classification accuracy of ∼ 50% [105].

• Soft-core CPU instruction subset classification. Here, the attacker is trying to identify

instructions from the subset of the RV32I instruction set. The attacker trains on 10k

instruction templates where the target instruction has randomized operands and data,

and is surrounded by nop instructions. The templated instructions are jal, add, xor,

sll, lw, sw, bne (not taken), bne (taken), and slt. Because individual CPU instructions

have a short execution time, if the sensor has the same sampling frequency as the CPU,

the leakage is limited, and the classification problem is considered hard.

To evaluate the temperature impact on the ML classification accuracy at room temperature,

we use two trace acquisition methods for each workload, one incorrect and one recommended

for power side-channel evaluation [70]:

• Consecutive acquisition, room temperature (CR). In this method—contrary to the rec-

ommended trace acquisition guidelines [70]—the traces of each ML class are acquired

separately, by first recording all traces of class 1, then class 2, etc. When there is a large

number of traces per class, and the trace acquisition takes hours, each class (i.e., specific

workload) can be considered as recorded at a distinct temperature.

• Interleaved acquisition, room temperature (IR). In this recommended trace acquisition

method—commonly used in power side-channel evaluation methods such as the t-

test [70]—the traces of each ML class are acquired in an interleaved fashion, by recording

a single trace of each class, in a randomized order, before continuing the acquisition of
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the next group of power traces. For many traces per class, interleaving the traces ensures

equal temperature effects across all classes.

To evaluate model robustness and simulate exaggerated temperature changes during trace ac-

quisition, we record two trace sets for hardware workload classification in a thermal chamber:

• Consecutive acquisition, thermal chamber (CT). The traces of each ML class are acquired

separately. However, to exaggerate temperature variations, each class is recorded at a

different but stable temperature: PRESENT at 38°C, AES at 43°C, KLEIN at 48°C, and

CRYPTON at 53°C.

• Interleaved acquisition, thermal chamber (IT). The trace acquisition is interleaved,

spreading the significant temperature changes across all classes. There are four sets of

traces recorded at different stable temperatures: 38°C, 43°C, 48°C, and 53°C.

For classification, we implement five ML models commonly used in previous work: convolu-

tional neural network (CNN1 and CNN2, a large and a small model), MLP, LSTM, and random

forest classifier (RFC) [96, 105, 144]. Table 9.1 lists their architectural details. When training,

we set the batch size to 64 and use the Adam optimizer while monitoring the loss to adapt

the learning rate. We train on 90% of the dataset and use the remaining 10% for testing. The

test/train split is performed randomly and in a stratified fashion. We train for 50 and 100

epochs for the hardware and software workload classification, respectively.

Table 9.1: Architecture details of the ML models.

Model Architecture

LSTM LSTM(100 units) + Dropout(0.2) + Dense(100 units, ReLU) + Dense(Softmax)

CNN1 Conv1D(X filters, kernel size of Y) + MaxPool(2) | (X,Y) = ((32, 12), (45, 10), (64, 8), (128, 4)) +

Dropout(0.2) + Dense(100 units, ReLU) + Dense(Softmax)

CNN2 Conv1D(64 filters, kernel size of 10) + MaxPool(2) + Conv1D(64 filters, kernel size of 4) +

MaxPool(2) + Dropout(0.2) + Dense(100 units, ReLU) + Dense(Softmax)

RFC number of estimators = 100

MLP Dense(X units, ReLU) | X = (250, 350, 150, 50) +

Dropout(0.2) + Dense(100, ReLU) + Dense(Softmax)
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9.3 Results and Discussion

This section presents the results of the experimental analysis. We first show how temperature

changes impact the sensor output and the success of a CPA attack, and then demonstrate the

impact of temperature on ML-based profiling attacks.

9.3.1 Leakage Analysis

Following the methodology in Section 9.2, we first evaluate the temperature impact on the

sensor traces and the success of the CPA attack. We use a Digilent Basys3 (AMD Artix-7

XC7A36T FPGA): a cost-efficient FPGA platform suitable for potentially damaging thermal

chamber experiments. With a single 128-bit TDC sensor (observable line with 128 elements)

operating at 200 MHz, we record the power traces of an open-source AES-128 core clocked

at 50 MHz [87]. To facilitate comparison between the experiments, we always use the same

encryption key and the same set of plaintexts, and keep the sensor calibration constant.

In our first experiment, we record 900k AES traces in the thermal chamber, increasing the

temperature over time: from 40°C to 60°C in steps of 5°C. Fig. 9.1 shows the trace DC offset,

variance, and on-chip temperature in function of the elapsed time, as represented by the index

of the recorded trace. We can observe that both the DC offset and the variance increase with

the temperature; hence, the temperature-delay dependence lies in the ITD domain, where

the threshold voltage dominates Equation (9.1). This experiment shows that the temperature

significantly impacts the TDC sensor output and should not be overlooked when recording

traces using on-chip sensors.

Next, we investigate how sudden temperature changes during the TDC sensor trace collection

impact the success of the CPA attack. Before the experiment, we place the device in a cool

place. Then, we record two datasets: 70k traces at a low temperature and 70k traces where the

device is returned to room temperature after 10k traces to warm up gradually. Fig. 9.2 shows

the key rank estimation when attacking the key using CPA, in the function of the number
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Figure 9.1: The trace DC offset and variance at different on-chip temperatures, in the function
of elapsed time, i.e., the trace acquisition index.
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Figure 9.2: Transient temperature impact on the key rank estimation using CPA.

of traces used in the attack. The temperature change has a visible impact: the orange line

stops following the gray one and stagnates instead of decreasing. Consequently, the key rank

estimation drops to zero later, and the number of traces required to break the key increases.

The reason is clear: as the CPA attack is performed using the Pearson correlation coefficient,

any change in the trace DC offset and variance directly impacts the attack’s success. This result

shows that in security-sensitive experiments, such as comparing the side-channel security of

cryptographic designs, it is important to consider environmental temperature changes and

follow correct trace acquisition guidelines that minimize their impact [70].

To evaluate the transient temperature effects on the RDS sensor introduced in Chapter 8, we

record 70k traces using a fixed key while keeping the calibration constant throughout the

trace acquisition. First, we record the baseline results at a stable room temperature. Then, we

turn to the following three temperature-varying scenarios: one temperature increase and two

temperature drops. In all the experiments, we first record 9k traces at room temperature and

only then start warming up or cooling the device.
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Figure 9.3: Key rank estimation for the RDS at different transient temperatures.
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Figure 9.4: Impact of the environment temperature on the sensor trace DC offset, variance,
and the number of traces needed to break the key using CPA.

Fig. 9.3 shows how the transient temperature changes impact the success of the attack in

case of RDS. We can observe that the slight temperature drop of ∼17°C (green line) does not

significantly impact the attack success when compared to the baseline. By contrast, cooling

the FPGA by ∼47°C for 15k traces (yellow line) increases the attack effort to break the entire

key by the additional 10k–15k traces. Finally, heating the FPGA by ∼37°C (red line) has an even

more pronounced impact on the success of the attack. From Fig. 9.3 we can observe that the

impact of temperature on the RDS sensor is similar to that on the TDC sensor. Importantly,

despite having a more sensitive calibration process, the RDS sensor remained calibrated

even under significant temperature changes, and the clock edge did not drift away from the

observable time window.

Additionally, we examine the impact of stable temperature on the attack’s success, for the

TDC sensor traces. For each temperature outlined in Section 9.2.1, we record ten experiment
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Figure 9.5: Key rank estimation for the RDS at different, but stable, environment temperatures.

runs in the thermal chamber and compute the average trace DC offset, variance, and the

number of traces required for a successful attack (when the key rank estimation metric first

drops to zero). Fig. 9.4 shows the results, averaged across ten runs. We can observe that more

traces are required for a successful attack at higher temperatures and that thermal noise, more

pronounced at higher temperatures, can increase the attack effort, resulting in approx. 1.4×
more traces to break the key. Although the trace variance increases, the quality of sensor traces

degrades at higher temperatures because the thermal noise becomes the dominant factor.

In our final set of experiments, we evaluate the impact of different stable environment temper-

atures on the RDS sensor traces. To this end, we record the traces with the FPGA in a thermal

chamber. We set the chamber temperatures to 40, 45, 50, 55, and 60°C. At each temperature,

we acquire 70k traces using a fixed key, while keeping the calibration constant and repeat the

trace acquisition ten times. Fig. 9.5 shows the average upper and lower bounds of the key rank

estimation metric. We see that, as with the TDC, at higher environmental temperatures, the

attack effort increases due to thermal noise.

In the case of real datacenter FPGAs, the on-chip temperatures often exceed 80°C [106, 152].

In this Chapter, the results shown in Figs. 9.4 and 9.5 indicate that the thermal noise causes an

increased attack effort at higher temperatures. Therefore, the thermal noise can potentially

act as a free complementary technique against power analysis attacks in multitenant FPGAs,

further increasing the effort needed to break the key successfully. For example, mitigation

169



Chapter 9. Temperature Impact on Remote Power Analysis Attacks

techniques such as masking or active wire fences outlined in Chapter 7, could become more

efficient at the higher temperatures in datacenter FPGAs.

9.3.2 ML Accuracy Evaluation

After demonstrating that the temperature can significantly impact the success of a remote CPA

attack, we next evaluate the temperature impact on two common ML-based profiling attacks:

hardware and software workload classification.

Hardware workload classification

For this experiment, we use SCABox [151], an open-source tool for side-channel evaluation

on Digilent ZedBoard (AMD Zynq-7000 FPGA). We instantiate four cores working at 10 MHz:

AES, PRESENT, KLEIN, and CRYPTON. As the AES is considerably larger than other cores, we

replicate the other cores eight times to obtain hardware workloads of approximately the same

size and avoid classes with significantly different features. The SCABox instantiates eight TDC

sensors, operating at 200 MHz.

For each core, we record 10k traces for IR, CR, IT, and CT datasets, and train five ML mod-

els (Section 9.2.2). In all cases, our models achieve 100% accuracy, showing that hardware

workload classification is an easy problem and that the temperature does not impact the

accuracy.

To evaluate the robustness of the trained models, we validate them using traces not seen

during training and testing (the validation dataset size is 10% of the corresponding dataset).

Fig. 9.6 shows that the models trained on the interleaved traces generalize well, and achieve

high validation accuracy when tested on all the other datasets. As interleaved traces contain

data samples from a wider range of temperatures, they help build more robust and generalized

models.
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Figure 9.6: Impact of the trace recording methodology on the ML model accuracy, in the case
of hardware workload classification.
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Figure 9.7: Impact of the temperature on the average DC offset of each ML class, in the case of
code snippet power side-channel traces.

Software workload classification

In this experiment, we use a high-end FPGA to evaluate the temperature impact on cloud

FPGAs. On an AMD Alveo U200 datacenter accelerator card (UltraScale+ XCU200 FPGA), we

place a PicoRV32 CPU [95] and 30 16-bit TDC sensors running at 320 MHz.

We start by reinvestigating the temperature impact on the DC offset of the sensor traces. We

record 10k traces for each of the eight code snippets described in Section 9.2.2. To reduce

noise, instead of recording one execution trace for the given code and data it operates on, we

record and average 1k traces. Fig. 9.7 shows the average DC offset and the temperature of the

traces of each class, for consecutive and interleaved trace acquisition. First, we can observe a

direct temperature-delay dependence, because the sensor output drops as the temperature

increases. Second, the DC offset of the traces recorded in the interleaved fashion does not

correlate with the temperature, because the temperature variations impact all classes equally.
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Figure 9.8: Impact of the dataset size on the accuracy of the ML models, in the case of soft-core
CPU workload classification.

Next, we examine if the temperature impact on the classification accuracy changes with the

dataset size (i.e., the difficulty of the classification problem). Using the acquired traces of the

eight code snippets, we train the ML models twice: once with all 10k traces per code snippet

and once with only 200 randomly selected traces per code snippet. We repeat the training

with five random seeds and average the results, for more general conclusions. In addition

to having randomized training parameters, the smaller dataset results in a unique random

subset for each seed. The results in Fig. 9.8 show that, when using the entire dataset, both

interleaved and consecutive datasets result in good accuracy (though lower for LSTM and

CNN2 as they fail to converge for some seeds). However, training on incorrectly acquired

traces results in considerably higher accuracy with the reduced dataset size, as the ML models

learn the temperature effects instead of the leakage.

Let us now look at the training accuracy evolution. We record 10k traces for the nine instruction

templates described in Section 9.2.2, interleaved and consecutive. Fig. 9.9 shows the results.

Once again, we see that for complex classification problems (here, limited leakage of a single

CPU instruction), incorrectly (i.e., consecutively) recorded traces mislead the ML models into

learning the temperature effects instead of the actual leakage. In contrast, training on traces

recorded in an interleaved fashion results in a lower, but more realistic classification accuracy.

Finally, we evaluate if common preprocessing techniques can alleviate the unwanted temper-

ature effects from recorded traces. Table 9.2 shows the ML model accuracy when DC removal,

filtering (high-pass with a 5 MHz cutoff), and normalization (MinMaxScaler) are applied. We
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Figure 9.9: Impact of trace acquisition on the evolution of the training accuracy, in the case of
soft-core CPU instruction classification.

Table 9.2: Accuracy of ML models with and without preprocessing.

Dataset Preprocessing
Test accuracy (%)

CNN1 CNN2 LSTM MLP RFC

Interleaved None 77.2 78.4 78.2 72.5 46.0

Consecutive None 94.4 94.9 96.4 95.4 92.0

Consecutive DC removal 94.5 94.6 92.4 94.7 81.0

Consecutive Filtering 94.6 94.6 96.1 95.5 93.0

Consecutive Normalization 98.4 98.2 98.0 98.3 92.0

see that neither of the three approaches significantly impacts the model’s accuracy. Therefore,

we can conclude that the temperature impacts not only the sensor measurements but possibly

the power side-channel leakage generated by the victim.

Our results demonstrate that the impact of temperature on the TDC sensor measurements is

important because it can lead to incorrect conclusions if trace acquisition guidelines are not

followed. In the case of ML-based profiling attacks specifically, it can skew the accuracy and

show better-than-expected results. Interleaving the trace recordings—the proper method of

acquiring power traces—is necessary for spreading the temperature effects equally across the

dataset.

9.4 Chapter Summary

Varying environmental temperature impacts power side-channel traces recorded with TDC

sensors. Our findings confirm that the temperature influences the sensor output and that

this dependence varies across different FPGA families. We demonstrate that the temperature
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changes during trace acquisition impact the attack’s success, as CPA requires more traces to

break the AES encryption key if the temperature increases. Further, due to temperature, the

trace acquisition method can significantly impact the robustness and the generality of models

in ML-based profiling attacks. We demonstrate that for easily distinguished classes, (i.e.,

datasets with models converging to a 100% accuracy), trace acquisition has little to no impact

on the final accuracy. However, for harder classification problems, ML models of incorrectly

recorded traces learn temperature variations instead of leakage, resulting in misleadingly

higher accuracy. Our research highlights the importance of adhering to appropriate trace

acquisition guidelines, even in the context of shared FPGAs, if robust models and a realistic

measure of classification accuracy are to be obtained.
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10 Related Work

In this Chapter, we present the related work most relevant to our research. Related work

includes monitoring of security primitives, remote power analysis attacks, voltage-drop sensor

architectures, and active fences.

10.1 Monitoring of Security Primitives

Most of the previous work on monitoring security primitives targets resistance against fault at-

tacks or tolerance to errors. The most natural example of such monitors is the error correction

circuitry included in hardware and software implementations of cryptographic primitives. A

typical example is parity codes applied to the AES algorithm [153]. However, albeit adapted

to security primitives, this functionality monitoring is still an application of classical error-

correcting codes.

The first security primitive monitored with a dedicated hardware watchdog is a true random

number generator (TRNG): to ensure that the sequences produced by TRNGs respect strict

statistical properties, Yang et al. [75] designed on-the-fly statistical tests suitable for hardware

implementation on FPGAs. Checking the statistical properties of the results has also been

proposed to counteract fault attacks on other cryptographic primitives, such as lattice-based

ones. Howe et al. [76] used a battery of statistical tests to verify if the distribution produced
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by the sampler is the expected one (Gaussian or binomial). These statistical tests have been

designed for FPGAs and included as hardware monitors in the samplers in lattice-based

algorithms.

While valuable, these monitors focus only on active attacks. However, evaluating the leakage

exploitable with passive attacks using monitors is a task largely unexplored in literature. The

most relevant work related to our contribution is the one of Sonar et al. [81]: they implement a

hardware watchdog to measure the side-channel leakage of a cryptographic primitive. Our

work extends their initial ideas, providing various novel contributions. Instead of using a

model of leakage, which requires training and does not accurately model unexpected changes

in the environment, we measure the actual leakage from the device (we design a sensor and

integrate it into the user design as a part of our monitor). Thus, we replace the training phase

with a simple calibration procedure, which tailors our monitor to different cryptographic

algorithms and implementations. By performing the calculation on real power traces, we

remove the strong assumptions of a constant mean and a negligible variance of the fixed

plaintext traces used for the t-test, which could lead to erroneous results. Finally, we improve

the computation of the t-test statistic since we measure leakage in multiple trace samples

instead of in only one.

10.2 Power Analysis Attacks on Shared FPGAs

Zhao et al. characterized the RO and TDC voltage monitors on an AMD Zynq-7000 SoC and

successfully used them in an SPA attack against a collocated RSA cryptomodule and RSA

exponentiation running on the ARM processor. The traces they recorded had visibly different

amplitude and duration, depending on whether the processed RSA key bit had a binary value

of 0 or 1. In a concurrent study, Schellenberg et al. demonstrated a CPA attack in which,

instead of an oscilloscope, they used a TDC sensor collocated with an AES crypto module on

an AMD Spartan-6 FPGA [47]. In our work, we refined the TDC sensor design and ported it on

an Amazon EC2 F1 cloud instance (AMD Virtex UltraScale+ FPGA) to showcase a successful
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CPA attack against a 128-bit AES module.

Similarly to Zhao et al., Gravellier et al. targeted AMD Zync-7000 SoC; with correlation power

analysis, they recovered the secret key of a bare-metal implementation of Tiny AES and

OpenSSL AES [48]. These seminal works showed that physical access is no longer required for

power side-channel attacks and that shared FPGAs are vulnerable to power analysis attacks.

However, unlike our work on the leakage of soft-core CPU processors, all the attacks mentioned

above are statistical-based attacks that depend on thousands or millions of victim execution

traces for a successful attack.

Another class of power side-channel attacks on shared FPGAs concerns profiling and reverse

engineering of another common FPGA workload: neural network accelerators. Given the size

of a neuron and the network as a whole, the change in network topology or size can have

a considerable (i.e., lasting and distinguishable) impact on the power supply voltage. In a

remote attack scenario involving a shared FPGA, it has already been shown that an adversary

can infer the activation function, the weights, the number of neurons and layers, the width

and depth of convolutional layers, the width of pooling layers, filter sizes, and the stride

of convolutional and pooling layers [15, 96–98, 144]. Unlike statistical-based attacks, these

profiling attacks require a small number of victim execution traces. However, since the victims

are ML accelerators occupying a large portion of the FPGA logic, a good SNR results in easily

exploitable side-channel leakage and high attack accuracy. Our work analyzes the leakage of a

soft-core CPU, which is a significantly smaller victim than ML accelerators.

In the context of side-channel attacks on ML accelerators, the work of Tian et al. [15] is

most relevant to us, as the authors exploit instruction-level leakages of an ML accelerator.

The authors use TDC sensor traces to attack a versatile tensor accelerator (VTA) on an AMD

Zynq-7000 FPGA. VTA is a generic and customizable deep learning accelerator, which realizes

an ML model as a set of VTA instructions and collates them into instruction groups, each

containing a mix of LOAD, GEMM, ALU, or STORE instructions. Firstly, Tian et al. have observed

that all TDC traces recorded during 25,000 clock cycles (120 MHz clock frequency) for GEMM,
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ALU-Add, and LOAD-and-STORE unit tests have distinctly different shapes, allowing SPA

attacks. Additionally, SPA on the traces recorded during GEMM instructions allows the reverse

engineering of the instruction parameters by finding the time interval between adjacent

peaks, counting the number of peaks, and measuring the amplitude of the voltage drop

in the sensor trace. In our work, we analyze the leakage of a soft-core CPU, considerably

smaller than VTA. Moreover, the traces corresponding to the CPU instructions are orders of

magnitude shorter in time, and many CPU instructions give remarkably similar sensor trace

waveforms. Consequently, more than a visual analysis of the traces is required. To analyze the

instruction-level leakages, we deploy different ML classifiers.

Instead of assuming that the victim is a cryptographic core or a neural network, Gobulukoglu

et al. used TDC sensor traces to determine whether a cotenant application is present and

what type of application it may be [105]. On an AMD Zynq-7000 FPGA, they deployed one

TDC sensor and nine scenarios: one without any cotenant, one power-hungry tenant, and

others covering several implementations of AES and PRESENT (a custom IP core, software

running on Microblaze, ORCA, and PicoRV soft-core processors). They collected 250 sensor

traces for each scenario, transformed them into two-dimensional images, and trained the

ResNet50 classifier to predict workloads. The reported classification accuracy ranged between

33% and 99%, with an average of around 70%. The lowest classification accuracy was reported

between AES and PRESENT running on the same type of soft-core CPU. The highest was

achieved when distinguishing between very different implementations: an AES core and a

soft-core CPU. It is worth noting that the soft-core processors were running at 5 MHz, while

the sensor was clocked at 100 MHz. In this work, we target a considerably more challenging

classification problem; not only is our target soft-core CPU working on a higher frequency, but

the information required to determine the instruction the CPU executes is also contained in a

significantly smaller number of sensor samples (shorter trace). Nevertheless, we show that

instruction leakage in the power traces is sufficient to achieve an accuracy higher than 80%.
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10.3 Power Side-Channel Disassembly Attacks

A body of research covers power side-channel attacks on cryptographic computations, whether

executed by a CPU or implemented as an ASIC or FPGA circuit. Similarly, researchers investi-

gated whether power side-channel or electromagnetic side-channel emanations can be used

to determine the instructions executed by a CPU.

Vermoen et al. were the first to recover the code executed on a Java 4 MHz SmartCard, by

correlating the average power traces (recorded with a 200 MS/s oscilloscope with a set of

templates [113]. Instead of power, Strobel et al. measured the EM emanations of an 8-bit

PIC16F687 MCU, running at 4 MHz [115]. The first to use ML methods, the authors deployed

LDA coupled with the k-NN algorithm and obtained instruction classification accuracy of 96%

and 87% for the test and the real codes, respectively. Cristiani et al. focused on the instruction

fetch stage of a 14-bit PIC16F15376 MCU operating at a significantly higher frequency than

in previous work: 20 MHz [112]. To compensate for a higher CPU frequency, they used a

10 GS/s oscilloscope, averaged 1,000 traces per template to reduce noise, and were the first

to record EM side-channel traces at multiple chip locations. Using LDA for dimensionality

reduction and a QDA classifier, they reported 95% instruction recognition accuracy. Park

et al. targeted an 8-bit ATmega328p MCU (16 MHz, two-stage pipeline) and recorded the

power side-channel traces with a 2.5 GS/s oscilloscope [116]. The authors were the first to

deploy frequency analysis for disassembly and used CWT to find the differences between the

instructions not observable in the time domain. Park et al. then applied Kullback-Leibler (KL)

divergence to identify important features, PCA for dimensionality reduction, and a hierarchical

classification approach. On the test codes, they reported 99% instruction opcode recognition

accuracy. Krishnankutty et al. were the first to find the instruction execution boundaries in a

side-channel trace of an MSP430 MCU [114]. Their hierarchical classification based on SVM

resulted in 86% opcode recognition accuracy.

Common to the above works is that the victim CPU was running at frequencies orders of mag-

nitude lower than the sampling rate of the oscilloscope for measuring the side-channel traces.
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On FPGAs, voltage-drop sensors cannot reach the sampling frequencies of an oscilloscope.

In our experimental setup, in one case, only four sensor samples were available per one CPU

clock cycle, whereas in the other, only one sensor sample was available per CPU clock cycle.

Additionally, unlike power disassembly attacks which depend on only one source of power

traces, i.e., the oscilloscope, our work leverages multiple remote on-chip sensors to increase

the signal. Despite that, we show that ML methods used in power disassembly attacks are not

optimal for remote leakage evaluation. We present new DL time-series classifiers that can

determine the type of instruction executed with an accuracy higher than 80%. Our work not

only presents new DL methods beneficial for future power side-channel disassembly attacks,

but also shows the need to deploy countermeasures against power disassembly attacks, even

in a remote scenario.

10.4 Power Wasters

As another security vulnerability in shared FPGAs, researchers investigated the consequences

of excessive power wasting. Gnad et al. [49] demonstrated that a large number of ROs acti-

vated in a repetitive pattern could reset the FPGA, resulting in a DoS attack. Mahmoud and

Stojilović [51] showed that careful activation of ROs could introduce faults in neighboring

circuits. Consequently, some cloud service providers, such as Amazon AWS, do not allow com-

binational loops in FPGA designs. As an alternative, researchers investigated power wasters

free of combinational loops [53, 136, 154], typically less effective than ROs. In the active fence

scenario, power wasters generate noise to reduce the SNR; the noise must not be excessive, as

the victim needs to operate correctly in its presence. If the fence is deployed by cloud service

providers, both synchronous and combinational power wasters can be considered [59], and

their number must be limited.

The most relevant power wasters to our work are the NAND-based ROs, used to build and

evaluate an active fence in previous work [59]. The NAND-based ROs consist of a single LUT,

programmed as a NAND gate, where the output is connected back to one of the two inputs,
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while the free input acts as an enable signal. When the enable signal is active, the RO oscillates

at a high frequency and draws current. An enhanced version of a NAND-based RO, ERO,

was later proposed by La et al. and used to perform a remote DoS attack [154]. In the case

of EROs, the output of one RO is connected to an unused LUT input of another nearby RO,

thereby enhancing the effects of the switching activity thanks to the capacitance of the local

interconnect. As we will later show, unlike EROs, our wire-based wasters primarily use longer,

global wiring to enhance the effects of the RO switching.

10.4.1 Active Fences

Following the discovery of remote power SCA attacks in multitenant FPGAs, Krautter et al. [59]

presented a new mitigation technique: active fencing. This hiding countermeasure employs

ROs to generate noise in the PDN and, consequently, reduce the SNR measured by the attacker.

The fence was designed as a set of RO banks (where each contains an equal number of ROs and

can be independently enabled) placed between the victim and the attacker. The output signals

of a PRNG or a TDC were used to control the fence activation. The result was a significant

increase in the number of traces needed for a successful attack. Such a fence is easily portable

and does not depend on the underlying victim design. However, the increased security comes

at the cost of FPGA resources used by the fence. In previous work, the fence was dimensioned

to occupy approximately the same number of slices as the victim (i.e., incurring 100% area

overhead) [59]. We adopt a similar approach when comparing the efficiency of the wire fence

to previous work: we implement a fence having the same type of ROs (NAND-based), use a

PRNG to independently enable parts of the fence, and size the fence to occupy approximately

the same number of resources as the victim to be protected.

10.5 Voltage-Drop FPGA Sensors

In literature, the TDCs and the RO-based sensors have been used in the context of power

side-channel attacks [13, 14, 43, 155] and crosstalk side-channel attacks [44, 156]. They have
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been shown to be effective as covert communication receivers, where the sender is the FPGA,

CPU, or even GPU sharing the common power delivery network [46]. The TDC sensors have

been used in a correlation power analysis attack on Amazon AWS F1 instances [14] and to

recover the inputs to a neural network deployed on the same cloud FPGA instances [138].

On-chip sensors were shown effective in capturing the side-channel leakage across integrated

circuits sharing the same board [47] and against a CPU within the same system-on-chip [155].

As ring oscillators are less effective for side-channel attacks [157] and ring-oscillator structures

are relatively easy to detect [132, 133], we focus on the TDC-based sensors in this work.

Zick et al. [11] were the first to introduce a phase shift (e.g., with a phase-locked loop) between

the clock propagating through the delay line and the clock sampling the output register. This

design choice allowed for reducing the length of the observable (i.e., tapped) part of the delay

line and helped fit the TDC inside an FPGA column. In the early TDC designs of Zick et al. [11]

and Gnad et al. [49], transparent latches were used to capture the sensor samples. In later

works, latches were replaced by flip flops [14, 138, 158].

Various implementations of clock phase shifting have been proposed. To reduce jitter, Gnad et

al. replaced the phase-locked loop with a chain of LUTs, latches, and fine carry elements [65].

They implemented a self-calibrated sensor (i.e., with the calibration in hardware): while

monitoring the sensor output, the number of coarse delay elements (LUTs, latches) or fine

delay elements (carry) is tuned as long as the desired calibration is not achieved. Udugama et

al. followed this example and implemented another variant of a voltage-fluctuation sensor

calibrated in hardware. For tuning the initial delay, Udugama et al. chose the adjustable input

delay FPGA elements (IDELAY). In our work, we perform phase shifting using the coarse and

fine delay elements, similarly to Gnad et al. [65]; however, we control the calibration from the

software because it allows us to have much better control and flexibility, which is desirable

when experimenting.

Recently, Udugama et al. proposed VITI [139], a delay-line-based sensor built with the goals of

minimizing the use of logic resources and escaping from the strict placement constraints of
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the carry chains in TDCs. In VITI, the delay line is implemented using LUTs as delay elements.

Additionally, LUTs are freely placed, and the connections between them are freely routed.

By saving the resources and by using the LUTs instead of the carry-propagation logic, the

resolution and the sensitivity of the sensor were sacrificed. Yet, the authors have shown that

an adversary armed with VITI can, sometimes partially and sometimes fully, break the secret

key of an AES-128 hardware module. Our proposed routing delay sensors are very different

because they primarily use the FPGA routing resources to sense the on-chip voltage variations.

The third variant of our sensor is free of any placement and routing constraints, similar to

VITI, making it simple to deploy and difficult to detect. And this last variant, on average, has

better sensitivity than the TDC and allows breaking the secret key faster. In this work, we

implement one TDC [65] and one VITI [139] and use them as references for comparison with

our implementations of routing delay sensors.

10.6 Temperature Effects

Researchers often leverage ML models for remote power SCA attacks. Usually, attackers record

one set of sensor traces, randomly splitting it into training (to profile the victim and train the

ML model) and test traces (to evaluate the final accuracy). Gobulukoglu et al. used short-term

Fourier transform and image classifiers to distinguish between cloud FPGA workloads [105],

achieving high accuracy of 97.6%. They indicated that identifying soft-core CPU applications

is challenging, resulting in comparatively low accuracy of approx. 50%. Zhang et al. showed

that ML models could predict hyperparameters of a DNN accelerator with an accuracy of up

to 100% [96]. In addition, Meyers et al. found that ML models can recover neural network

folding [144].

To show model robustness, Meyers et al. [144] trained the model on traces recorded at room

temperature and tested it on traces recorded at different ambient temperatures. The reported

high accuracy (almost 100%) indicates that the traces contained substantial side-channel

leakage, independent of temperature. We take a step further and show that when the leakage
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is limited (e.g., a small victim circuit), the temperature impact on the classification accuracy

can be significant.

As the logic delay depends on both the voltage and the temperature, when voltage is constant,

FPGA sensors can be used to measure temperature variations. Zick et al. [150] used ROs

distributed across the FPGA die to sense temperature variations, and modeled the temperature

as a function of the supply voltage and the RO frequency. They found that, for a Xilinx

Virtex-5 FPGA (manufactured in 65nm technology), the RO circuit delay increases with the

temperature. However, when comparing their results with even earlier work, they noticed

that the temperature impact grows weaker in newer FPGAs, concluding that with newer

technologies and voltage scaling, the temperature dependence will likely reach the crossover

voltage point. Tian et al. used the ROs to sense the FPGA temperature and create a temperature-

based covert communication channel [159]. They experimented with an Intel Stratix V FPGA

(28nm technology) and observed that the RO delay increases with the junction temperature.
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Today’s heterogeneous systems rely on hardware acceleration to improve performance and

energy efficiency. The reconfigurability and parallel architecture of FPGAs have led to their

integration into various remotely-accessible systems, from embedded and cyber-physical

systems to datacenters. However, remote access to low-level FPGA hardware raises several

security issues, primarily because of the electrical-level coupling between the FPGA logic

and the PDN. In this thesis, we focus on power side-channel leakage, and using FPGA-based

voltage sensors, we investigate methods to evaluate, exploit, and hide power side-channel

leakage in remote FPGAs.

In the first part of the thesis, we presented the first built-in system for remote leakage evalua-

tion based on Welch’s t-test, with results comparable to those obtained using state-of-the-art

lab equipment. Our system allows, for the first time, a real-time assessment of power side-

channel leakage during the device operation in the field, moving the leakage evaluation

boundary from the lab environment to devices in the field. Our system is complementary

to tamper and attack detection mechanisms, and tamper detection methods can trigger our

leakage evaluation test when the device is compromised. Our work paves the way for future

system designers to design more advanced leakage evaluation systems, as we have shown that

FPGA-based sensors are sufficient for leakage evaluation. For example, system designers can

leverage the additional CPU computing power in FPGA-based SoCs for advanced statistical
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analysis.

In the second part of this thesis, we investigated the limits of power side-channel leakage in

multitenant FPGAs. We demonstrated the first remote power side-channel attack on Ama-

zon F1 instances, revealing that even large datacenter-scale FPGAs are susceptible to power

analysis attacks. Our findings underscored the relevance of remote power analysis attacks,

contributing to the discourse and research surrounding potential countermeasures in cloud

environments. Furthermore, we showed that the effort required for a power analysis attack

increases on larger datacenter FPGAs, necessitating two to three orders of magnitude more

traces compared to lower-end FPGAs. Our research has since inspired a growing body of work,

demonstrating attacks not only on local FPGA boards but also on datacenter-scale FPGAs.

Our research on soft-core CPU instruction-level power side-channel leakage analysis revealed

that exploitable leakage extends beyond statistical attacks on cryptographic circuits and profil-

ing attacks on ML accelerators. Our findings underscore the presence of power side-channel

leakage in small soft-core CPUs in multitenant FPGAs. Although instruction-level leakage ex-

ists, future work has yet to demonstrate a full exploit or a code extraction attack. Since our work

shows that averaging is crucial for high accuracy, exploring methods for detecting branches

to fold loops and average power traces should also be analyzed in future work. Additionally,

proper methods for template window alignment with low SNR are needed for code extraction

to be possible. Nevertheless, demonstrating the existence and potential exploitability of power

side-channel leakage across various devices—from small soft-core CPUs and encryption cores

to large ML accelerators—highlights the need for suitable mitigation strategies in FPGA-based

systems.

Prior to the widespread deployment of multitenant FPGAs, it is imperative to establish effec-

tive security solutions for power analysis attacks. As a step towards this goal, our research

introduces a universal hiding technique against remote power analysis attacks: active wire

fences. Our results show a six-fold increase in power side-channel security compared to RO-

based fences, without incurring additional resource overheads. Future work can investigate
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ways to implement even more effective power wasters. For example, sinks can also be ROs

instead buffers. The RO sinks can then drive long wires back to the source RO to increase the

power-wasting capabilities further. Moreover, future work can further investigate the impact

of wire wasters on congestion and routability in large designs, and add support for including

active wire fences after the implementation step, using tools such as RapidWright. Overall,

active wire fences are a versatile protection method that cloud service providers or users

can implement without necessitating modifications to the protected device. More impor-

tantly, their application-agnostic design enables seamless integration with other mitigation

techniques—such as masking schemes or bitstream scanning tools—paving the way to more

secure FPGA-based systems in future research.

In the last part of our thesis, we explored new voltage sensor architectures on shared FPGAs,

and presented the first stealthy, routing-based FPGA sensor that outperforms the state-of-

the-art TDC. RDS is free of placement and routing constraints, and thus easy to deploy and

port between FPGA families. More importantly, detecting and eliminating RDS with bitstream

checking tools is significantly more challenging than the TDC, as it consists of entirely valid

FPGA constructs. RDS demonstrates that bitstream checking is a cat-and-mouse game, where

preventing state-of-the-art sensor architectures does not guarantee security, as electrical-level

coupling means new sensor architectures can be designed to bypass the tools. Therefore,

a more holistic approach for guaranteeing security is needed in future work, potentially

combining multiple approaches proposed in previous work, including hiding techniques,

bitstream checking, PDN design, and others [33].

Finally, this thesis systematically evaluated how temperature effects can impact FPGA-voltage

sensors and remote power analysis attacks. We show the importance of adhering to appropri-

ate trace acquisition guidelines, even in shared FPGAs, if robust ML models are to be obtained.

Our work can guide researchers in better interpreting their results and obtaining more realistic

attack results, while future work can focus on evaluating the impact of aging and other external

effects on the sensors.
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This thesis provides insights into the possibilities and pitfalls of including FPGAs in remote

heterogeneous systems, focusing on power side-channel security. Our work on cyber-physical

and cloud FPGA systems shows that low-level FPGA logic can be effectively used to evaluate,

exploit, and hide power side-channel leakage in remote FPGAs. Perhaps the most important

insight of this thesis is the importance of a more comprehensive approach to designing secure

FPGA-based systems. Current countermeasures are either application-specific or address

only a subset of vulnerabilities, lacking a holistic approach to electrical-level security. Our

work has uncovered many issues that future research should address: low generality, in-depth

exploration of interoperability and its implications, and the general absence of experiments in

a real cloud setting. Finding the proper countermeasure—or a combination of them—remains

an open problem. The best approach to solving it, we think, is through collaboration between

and contribution from all the involved parties: researchers (by uncovering new attacks and

developing new protection strategies), FPGA vendors (with enhanced FPGA architecture and

tools), and the CSPs (by preventing or locating the attackers, while allowing everyone else to

deploy their protections, if they wish). This thesis is an essential step in this direction.
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of first-order power side-channel leakage for FPGAs,” in Proceedings of the 28th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Seaside,

CA, USA, Feb. 2020, pp. 204–10.

[19] S. Byma, J. G. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow, “FPGAs in the cloud:

Booting virtualized hardware accelerators with openstack,” in Proceedings of the 22nd

IEEE Symposium on Field-Programmable Custom Computing Machines, Boston, MA,

USA, May 2014, pp. 109–16.

[20] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne, “Virtualized execution runtime

for FPGA accelerators in the cloud,” IEEE Access, vol. 5, no. 1, pp. 1900–10, Feb. 2017.

[21] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang, “Enabling FPGAs

in the Cloud,” in Proceedings of the 11th ACM Conference on Computing Frontiers, New

York, NY, USA, May 2014, pp. 1–10.

[22] A. Vaishnav, K. D. Pham, and D. Koch, “A survey on FPGA virtualization,” in Proceedings

of the 28th International Conference on Field-Programmable Logic and Applications,

Dublin, Ireland, Aug. 2018, pp. 131–8.

[23] Z. István, G. Alonso, and A. Singla, “Providing Multi-tenant Services with FPGAs:

Case Study on a Key-Value Store,” in 2018 28th International Conference on Field Pro-

grammable Logic and Applications (FPL), Dublin, Ireland, Aug. 2018, pp. 119–24.

[24] Y. Zha and J. Li, “Virtualizing FPGAs in the cloud,” in Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming Languages and

Operating Systems, New York, NY, USA, Mar. 2020, pp. 845–58.

193



Bibliography

[25] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J. Rossbach, “Shar-

ing, Protection, and Compatibility for Reconfigurable Fabric with AmorphOS,” in 13th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), Carls-

bad, CA, Oct. 2018, pp. 107–127.

[26] M. Paolino, S. Pinneterre, and D. Raho, “FPGA virtualization with accelerators overcom-

mitment for network function virtualization,” in International Conference on ReConFig-

urable Computing and FPGAs (ReConFig), Cancun, Mexico, Dec. 2017, pp. 1–6.

[27] S. Pinneterre, S. Chiotakis, M. Paolino, and D. Raho, “vFPGAmanager: A virtualization

framework for orchestrated FPGA accelerator sharing in 5G cloud environments,” in

IEEE International Symposium on Broadband Multimedia Systems and Broadcasting

(BMSB), Valencia, Spain, Jun. 2018, pp. 1–5.

[28] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling FPGAs in hyperscale

data centers,” in IEEE 12th Intl. Conf. on Ubiquitous Intelligence and Computing and

12th Intl. Conf. on Autonomic and Trusted Computing and 15th Intl. Conf. on Scalable

Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom),

Beijing, China, Aug. 2015, pp. 1078–86.

[29] J. M. Mbongue, D. T. Kwadjo, A. Shuping, and C. Bobda, “Deploying multi-tenant FPGAs

within linux-based cloud infrastructure,” ACM Transactions on Reconfigurable Technol-

ogy and Systems (TRETS), vol. 15, no. 2, pp. 1–31, Jun. 2022.

[30] H. Yu, A. M. Peters, A. Akshintala, and C. J. Rossback, “Automatic virtualization of

accelerators,” in Workshop on Hot Topics in Operating Systems (HotOS), Bertinoro, Italy,

May 2019, pp. 58–65.

[31] C. Bobda, J. M. Mbongue, P. Chow, M. Ewais, N. Tarafdar, J. C. Vega, K. Eguro, D. Koch,

S. Handagala, M. Leeser, M. Herbordt, H. Shahzad, P. Hofste, B. Ringlein, J. Szefer,

A. Sanaullah, and R. Tessier, “The future of FPGA acceleration in datacenters and the

cloud,” ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 15,

no. 3, pp. 1–41, Feb. 2022.

194



Bibliography
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