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Abstract

Graph machine learning offers a powerful framework with natural applications in scientific fields
such as chemistry, biology and material sciences. By representing data as a graph, we encode the
prior knowledge that the data is composed of a set of entities, that the interactions between these
entities are as informative as their individual properties, and that the task at hand does not depend
on their ordering. While graph representations allow for effective learning, building graph neural
networks that are both expressive and efficient poses important challenges.

The primary focus of this dissertation is to advance the state-of-the-art in building permutation
equivariant neural networks capable of handling large-scale data. To achieve this, we will first
develop our understanding of permutation equivariance and its practical implications, and then
propose novel algorithms that exploit the strengths of graph neural networks while circumventing
challenging problems such as graph matching.

In our first contribution, we propose the Structural Message-Passing (SMP) model. SMP intro-
duces node identifiers in the form of a one-hot encoding, and processes them in a permutation
equivariant way. The use of identifiers confers to the network a higher expressive power than
standard Message-Passing Neural Networks, but retains its inductive bias towards learning local
functions. Empirically, SMP demonstrates superior generalization capabilities compared to
alternative expressive architectures that do not leverage the message-passing scheme.

While architectures for learning representations of unordered data are well studied, we show in the
next contributions that architectures for graph generation feature on the contrary still many open
questions. We begin by examining an important component of many set and graph generation
architectures, namely operators that transform vectors to sets. As permutations transform sets but
not vectors, vector-to-set layers constitute a challenge for standard equivariance theory, which
cannot be used when a group acts trivially on a function input. To address this challenge, we
analyze the equivariance requirements in this setting and propose a novel vector to set layer called
the Top-n creation layer. This layer can be plugged into several architectures as a replacement
to other vector-to-set functions. We show that it improves generation quality on several set and
graph generation tasks.
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Chapitre 0 Abstract

We then show that performance can greatly be improved by building denoising diffusion models,
i.e., architectures that iterative denoise a random set or graph. Specifically, we propose the
DiGress model for graph generation and MiDi for jointly generating the 2D and 3D structure of
molecules. These models exploit the discrete structure of graphs and are able to preserve their
sparsity during diffusion. As a result, they can successfully model larger graphs than previous
Gaussian diffusion models.

Overall, the presented research shows that representing and generating graph data requires careful
consideration. Using architectures developed for other data modalities, such as images, can lead
to serious theoretical problems that are as demanding as isomorphism testing. By identifying
these limitations, we are able propose novel methods that are more effective, paving the way to
novel applications of graph neural networks in various scientific fields.

Keywords: Permutation Equivariance, Graph Neural Networks, Message-Passing Neural Net-
works, Graph Generation, Denoising Diffusion Models.
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Résumé

L’apprentissage automatique sur les graphes offre un cadre très général qui trouve des ap-
plications naturelles dans des domaines scientifiques tels que la chimie, la biologie et la science
des matériaux. En représentant des données sous forme de graphes, nous codons la connaissance
préalable que les données sont composées de plusieurs entités, que les interactions entre ces
entités sont aussi importantes que leurs propriétés individuelles, et que la tâche à accomplir ne
dépend pas de leur ordre. Si les représentations graphiques permettent un apprentissage efficace,
la construction de réseaux de neurones pour les graphes qui sont à la fois expressifs et efficaces
pose cependant d’importants défis.

L’objectif principal de cette thèse est de faire progresser l’état de l’art en matière de réseaux de
neurones équivariants aux permutation capables de traiter des données à grande échelle. Pour
y parvenir, nous développerons d’abord notre compréhension des implications pratiques de
l’equivariance aux permutations, puis nous proposerons de nouveaux algorithmes qui exploitent
les forces des réseaux de neurones sur les graphes, tout en contournant des problèmes difficiles
tels que les tests d’isomorphisme de graphes.

Dans notre première contribution, nous proposons le modèle Structural Message-Passing (SMP).
Le modèle SMP introduit des identifiants à chaque noeud sous la forme d’un codage unique, et
les traite de manière équivariante aux permutations. L’utilisation d’identifiants confère au réseau
un pouvoir expressif supérieur à celui des réseaux neuronaux à échange de messages classique,
mais il conserve son biais inductif en faveur de l’apprentissage de descripteurs locaux des noeuds.
Empiriquement, SMP démontre des capacités de généralisation supérieures à celles d’autres
architectures expressives qui n’exploitent pas le schéma d’échange de messages.

Alors que les architectures pour l’apprentissage sur des données non ordonnées sont bien étudiées,
nous montrons dans les contributions suivantes que les architectures pour générer de graphes
soulèvent au contraire de nombreuses questions. Nous commençons par examiner un élément
important de nombreuses architectures de génération d’ensembles et de graphes, à savoir les
opérateurs qui transforment les vecteurs en ensembles. Comme les permutations transforment les
ensembles mais pas les vecteurs, les couches "vecteur-vers-ensemble" constituent un défi pour la
théorie standard de l’équivariance, qui ne peut pas être utilisée lorsqu’un groupe agit trivialement
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Chapter 0 Résumé

sur l’entrée d’une fonction. Pour relever ce défi, nous analysons les exigences d’équivariance
dans ce contexte et proposons une nouvelle couche "vecteur-vers-ensemble" appelée couche de
Création Top-n. Cette couche peut être intégrée dans plusieurs architectures et d’autres fonctions
"vecteur-vers-ensemble". Nous montrons qu’elle améliore la qualité de la génération dans plu-
sieurs tâches de génération d’ensembles et de graphes.

Nous montrons ensuite que les performances peuvent être grandement améliorées en construisant
des modèles de diffusion, c’est-à-dire des architectures qui débruitent de manière itérative un
ensemble aléatoire ou un graphe. Plus précisément, nous proposons le modèle DiGress pour
la génération de graphes et MiDi pour la génération conjointe de la structure 2D et 3D des
molécules. Ces modèles exploitent la structure discrète des graphes et sont capables de préserver
leur parcimonie pendant la diffusion. Par conséquent, ils peuvent modéliser avec succès des
graphes plus grands que les modèles de diffusion gaussiens existants.

À travers les contributions présentées, ces recherches montrent que la représentation et la généra-
tion de graphes nécessitent une attention particulière. L’utilisation d’architectures développées
pour d’autres modalités de données, comme les images, peut conduire à de sérieux problèmes
théoriques tels que les tests d’isomorphisme de graphes. En identifiant ces limitations, nous
sommes en mesure de proposer de nouvelles méthodes plus efficaces qui ouvrant la voie à de
nouvelles applications des réseaux neuronaux pour les graphes graphes dans divers domaines
scientifiques.

Mots clefs :
Equivariance aux permutations, réseaux de neurones sur les graphes, réseaux de neurones à
échange de message, génération de graphes, modèles de diffusion.
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1 Introduction

Graphs machine learning has emerged as a powerful and versatile tool in machine learning,
gaining popularity across a wide range of applications. Originally employed for sensor and social
network analysis, graph machine learning is now being used increasingly in scientific domains
such as chemistry, computational biology, and material sciences. The advantage of representing
data as a graph lies in the invariance that graphs naturally encode, particularly the assumption
that the data ordering is irrelevant for the task at hand. This prior is beneficial for many real-
world systems, including molecules, n-body systems, agents in a game, social networks, and
objects in a scene. However, computers require graphs to be represented with ordered tensors
such as adjacency matrices or adjacency lists. This presents a critical challenge. Permutation
equivariance, namely, the need to process unordered objects using an ordered representation, lies
at the core of graph machine learning and its associated difficulties.

To leverage the power of graph-based representations, specialized neural architectures are needed.
Arguably, it is theoretically possible to use a multi-layer perceptron (MLP) to accomplish graph-
based tasks, as it is a universal approximator of continuous functions on compact spaces (Cybenko,
1989). This approach is however limited in practice (Zaheer et al., 2017), as MLPs do not encode a
lot of prior knowledge about the task at hand (Xu et al., 2020b). As continuity and smoothness do
not constitute sufficient priors to overcome the curse of dimensionality (von Luxburg & Bousquet,
2004), we can expect the amount of data required to learn graphs with MLPs to be exponential in
the graph size. This strong limitation calls for the development of graph neural networks that
properly constrain the hypothesis class by leveraging the unordered nature of graphs.

Graph neural networks (GNNs) have emerged as a common framework for learning on graph-
structured data. GNNs have historically been constructed based on the definition of a Fourier
transform for graphs (Bruna et al., 2013). These spectral filters were then formulated as Laplacian
polynomials (Defferrard et al., 2016; Khasanova & Frossard, 2017), which can be implemented
using an iterative propagation scheme. This perspective led to the rediscovery of Message-Passing
Neural Networks (MPNNs) (Gilmer et al., 2017), which had originally been proposed in the
pioneering work of (Scarselli et al., 2008). MPNNs have a computational complexity which
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is linear in the number of edges, and they compute local descriptors of the data similarly to
convolutional kernels for images. Thanks to these beneficial properties, MPNNs have achieved
impressive performance on various tasks, including semi-supervised classification in social
networks (Kipf & Welling, 2016) and physical simulations (Garcia & Bruna, 2017). Theoretically,
graph neural networks have a sample complexity that only grows quadratically in the graph size
(Scarselli et al., 2018; Garg et al., 2020), making them more suitable than MLPs for learning on
graphs.

Although graph neural networks have shown impressive performance on various tasks, their
limitations have been identified, particularly on graphs with limited attributes (Cai & Wang,
2018). For example, they perform surprisingly poorly on tasks that require to learn structural
properties of graphs such as their connectivity (Corso et al., 2020) or cycle counts (Vignac et al.,
2020). These limitations are not only observed empirically, but are rooted in the analysis of
the representation power of MPNNs. Specifically, Morris et al. (2019) and Xu et al. (2019)
have shown that MPNNs can only learn a restricted class of functions on graphs by proving
that they are not more powerful at graph isomorphism testing than the 1-Weisfeiler-Lehman
test (1-WL) proposed in (Weisfeiler & Lehman, 1968). This means that, for any two graphs
that the 1-WL test considers as isomorphic, MPNNs will output the same embedding. Among
other consequences, this result implies that MPNNs have limited ability to count substructures
in graphs (Chen et al., 2020). The study of the representation power of MPNNs has led to the
development of more powerful architectures that typically consider triplets of nodes (Morris
et al., 2019) or perform message-passing on larger structures than typical MPNNs (de Haan et al.,
2020). These architectures gave rise to rich theoretical analysis (Morris et al., 2021), but they
usually do not incorporate the important locality prior of MPNNs, which eventually restricts their
performance.

The expressive power of graph neural networks is not their only limitation. It is also surprisingly
challenging to build efficient graph coarsening functions (Mesquita et al., 2020) or rich global
pooling layers (Corso et al., 2020). Furthermore, on several datasets with rich node attributes,
MPNNs do not perform better than simple spectral filters (Wu et al., 2019). While some of these
results come from the specific properties of the datasets used in standard benchmarks, other
constitute fundamental limitations of MPNNs and permutation equivariant networks.

While methods and open problems in graph representation learning are now relatively well
understood, graph generation is in contrast still at its infancy. Yet, it has important applications
in fields such as drug discovery (Xia et al., 2019), computational biology (Yang et al., 2021a),
catalyst design (dos Passos Gomes et al., 2021), code completion (Brockschmidt et al., 2019),
and circuit design (Brophy & Voigt, 2014). Graph generation can be used in both distribution
learning settings, where the goal is to generate graphs similar to those in the training set, and in
goal-oriented settings where a specific property needs to be optimized under constraints. In both
cases, correctly capturing the training set distribution is a crucial prerequisite.

Graph generation shares the challenges of graph representation learning, but also features its own
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difficulties. To understand them, we can compare graph generative architectures to corresponding
architectures for image generation. Neural networks for image generation typically feature a
"U-net" structure with pooling layers in the encoder and up-sampling layers in the decoder. As
neighboring image pixels tend to be very correlated, such layers are often very effective. The U-
Net structure permits to define a latent space of reduced dimension where the data representation
is compressed, which is an effective strategy for designing generative architectures. In contrast,
graphs are unordered, and two neighboring entries of an adjacency matrix cannot be assumed to
be correlated. Graph coarsening and graph up-sampling is therefore significantly more difficult
for graphs than for images. As a result, graphs are typically hard to compress in a vector or in a
smaller graph.

Theoretically, we can observe that, if we had access to a permutation invariant graph-to-vector
model and a deterministic decoder that reconstructs the input graph from its latent vector, we
would have access to a graph canonization algorithm. Graph canonization being at least as hard as
graph isomorphism testing, it is not surprising that early graph generation architectures that used
a low-dimensional latent space could only be successful at generating tiny graphs (Simonovsky
& Komodakis, 2018; De Cao & Kipf, 2018).

In this thesis, we aim at developing our understanding of the practical consequences of permuta-
tion equivariance on machine learning tasks. By better understanding the benefits of permutation
equivariant functions and the challenges associated to them, we are able to design architectures
that leverage the strengths of graph neural networks and rely as little as possible on their weak-
nesses. These architectural choices can have a huge impact on performance, as exemplified in
the comparison between the Set2GraphVAE and DiGress architectures proposed in this thesis.
In Chapter 4, we propose a graph generation architecture that can generate 60% of realistic
molecules after 6 hours of training on the QM9 dataset, which was close to state-of-the-art at the
time of publication. In the model proposed in Chapter 5, we achieve 99% validity in one hour on
the same dataset, with most of the improvement coming from another problem formulation that
does not require compressing the data in a latent space.

In the rest of this introduction, we summarize the contributions of this thesis. In Chapter 2, we
introduce background on permutation equivariant neural architectures, and recall known results
about their representation power.

Chapter 3 then answers the following question: how can we design more expressive architectures
that retain the inductive bias of MPNNs, and when are such architectures needed? We propose the
Structural Message-Passing framework (SMP), an equivariant message-passing architecture that
overcomes the limitations of MPNNs at the cost of manipulating larger order tensors. SMP is the
first architecture based on the message-passing framework that achieves a higher representation
power without introducing randomness in the network. In contrast to other powerful architectures,
it retains the locality prior of MPNNs, which empirically results in better generalization properties.

We then turn our attention to graph generation architectures. In Chapter 4, we first study general
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formulations of equivariance in generative settings. We then propose the Top-n creation module,
which is a layer to transform vectors to set. We show on various architectures that performance
can be improved by replacing other set creation methods by our module.

Finally, we propose in Chapter 5 two denoising diffusion models for graphs. With the first model,
DiGress, we show that discrete diffusion is better suited to graph generation than Gaussian
diffusion, as it respect the sparsity properties of graphs and their discrete nature. We then propose
the MiDi model for generating simultaneously the graph structure and the 3D conformation of
molecules. We demonstrate that when both graph and 3D information is simultaneously available,
it is clearly beneficial to define one single model that generates jointly both data modalities.

Structural message-passing

Despite their limited expressivity, message-passing neural networks constitute the most used
class of graph neural network. Through their iterative propagation scheme, they compute local
information around each node, similarly to what convolutional networks do for images. While
more powerful architectures such as (Chen et al., 2019) or (Maron et al., 2019a) have been
proposed, these networks unfortunately lack the important locality prior of MPNNs.

To gain insight into the limitations of MPNNs, we adopt the perspective of distributed algorithms,
where the class of functions that can be executed using iterative propagation schemes is well
studied. Standard results in distributed algorithms suggest that any graph algorithm can be
executed when nodes are uniquely identified, but the class of executable algorithms is very
limited when they are not (Suomela, 2013). These results are applicable to machine learning
settings as well. When node features can uniquely distinguish nodes, message-passing networks
can be used to build universal approximators of functions on graphs (Loukas, 2020a). However,
when dealing with unattributed graphs, the representation power of MPNNs is limited by the
Weisfeiler-Lehman test, as observed in (Xu et al., 2019) and (Morris et al., 2019).

To address the limitations of message-passing neural networks on graphs with poor node features,
it is therefore natural to introduce identifiers. Previous approaches have used random identifiers,
but their performance on complex tasks has been disappointing due to the high level of noise
introduced during network training (Murphy et al., 2019; Sato et al., 2020).

Instead, we propose propose the Structural Message-Passing (SMP), which utilizes a one-hot
encoding of the nodes as identifiers. As these one-hot encodings depend on the ordering of
the nodes, the message-passing layers need to be adapted in order to preserve permutation
equivariance and to guarantee that the final output does not depend on this initial ordering. This
process is illustrated in Figure 1.1. SMP can be described by the following steps:

• Initialization First, to increase the expressive power of the network, we initialize higher-
order tensors known as local contexts instead of manipulating vectors as in standard
message-passing networks. These local contexts are multisets denoted by U ∈ Rn×d and
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Figure 1.1 – In the structural message-passing model, each local context U (l)
i is an n× d matrix,

with each row storing the d-dimensional representation of a node (denoted by color). The figure
shows the local context in the output of the first layer and blank rows correspond to nodes that
have not been encountered yet. The network is parameterized in such a way that, upon node
reordering, the lines of the local context are permuted but their content remains unchanged.

are initialized with a one-hot encoding of the nodes.

• Propagation Similarly to standard MPNNs, each message-passing layer of SMP contains
a message function, an aggregation function and an update function. However, while the
message and update functions of MPNNs can be chosen arbitrarily, SMP requires that
these functions preserve equivariance to transformation of the local contexts. This implies
that these functions should be equivariant functions on sets.

• Pooling After several message-passing layers have been applied, each node carries a local
context with rich information. To perform tasks such as node classification, the contexts
must be mapped to a vector using a permutation-invariant pooling function.

By following this framework, SMP models can learn from graphs with poor node features and
achieve high performance on complex tasks. Experimental results show the benefits of both rich
expressive power and message-passing inductive bias. We observe SMP can solve tasks that
standard MPNNs cannot solve while generalizing better than powerful architectures that do not
use the message-passing locality prior.

Equivariance in generative models

The background section and our first contribution show that MPNNs can be interpreted as local
permutation equivariant functions, and that equivariant identifiers can be used to improve their
representation power. However, as universal function approximation on graphs is equivalent
to isomorphism testing (Chen et al., 2019), there is little hope to build architectures that do
not have a restricted representation power in practice. Overall, we can therefore consider that
the consequences of permutation equivariance on graph neural networks are relatively well
understood, and that the main limitations that have been identified are fundamental. In this
chapter, we shift our focus towards graph generation and explore permutation equivariance in
generative settings.
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We start by exploring architectures which feature a probabilistic decoder that maps a latent vector
to a set or a graph, such as those proposed by Achlioptas et al. (2018), De Cao & Kipf (2018),
Simonovsky & Komodakis (2018), and Kosiorek & Kim (2020). While standard equivariance
theory requires the symmetry group to have a non trivial action on the input space, permutations
left vectors invariant. A new definition of equivariance is therefore required in this setting.

To address the challenge of defining equivariance in generative settings, we propose a definition
that applies to both discriminative and generative architectures. Specifically, we define a pair
(architecture, loss function) as equivariant if the updates to the parameters during training on the
loss function using gradient descent do not depend on the group elements used to represent the
training data. We derive several consequences of this definition:

• For a discriminative architecture to be equivariant, both an equivariant neural network and
an invariant loss function are required. An example of a non-invariant loss function is the l1
loss, which is not suitable for a rotation-equivariant point cloud prediction problem in 3D.

• In generative tasks, equivariance imposes constraints on the loss function, but not always
on the decoder. It may not matter what permutations of a generated graph are produced or
whether all permutations are equally likely or not.

• Enforcing exchangeability, i.e., requiring that all permutations of a generated graph are
equally likely, is mostly needed for likelihood computation in normalizing flows architec-
tures.

These definitions do not really provide novel conditions, but capture standard practice with a
single definition that captures both discriminative and generative settings.

Using these observations, and based on a review of layers that have previously been used to map a
vector to a set, we propose the novel Top-n creation module. This layer, depicted in Fig. 1.2, uses
a bank of reference points with trainable representations. Based on the value of the latent vector,
n points are chosen in this set. Since this selection process is not differentiable, a modulation
mechanism is used to obtain gradients and train the point selection. Top-n creation can be used in
replacement for other set creation layers, or combined with a Set2Graph layer (Serviansky et al.,
2020) in order to generate graphs. We demonstrate on multiple models that this replacement
consistently improves generation quality.

Diffusion models for unordered data

Despite the consistent performance improvements obtained when replacing set creation layers by
our Top-n creation module, we observe that generating sets and graphs with a vector-shaped latent
space remains challenging. In particular, graph generation methods based on this framework are
limited to very small graphs, and do not seem to scale well.

To address this limitation, we investigate generative architectures that take an entirely different
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Figure 1.2 – The Top-n creation module learns to select the most relevant points in a trainable ref-
erence set based on the value of the latent vector. To obtain gradients and train the angles and the
MLP despite the non-differentiable argsort operation, we modulate the selected representations
with the values of the cosines.

approach, and propose to generate graphs with denoising diffusion models. Unlike other popular
generative models such as VAEs, GANs, or normalizing flows, denoising diffusion models do
not require the specification of a latent space. Instead, they view generation as a sequence of
denoising tasks. In particular, an important advantage of this framework is that it does not require
to compress data into a lower-dimensional representation. The denoising network is trained
to perform node and edge-level predictions, which are tasks at which graph networks excel.
Moreover, the iterative denoising scheme employed by diffusion models allows them to correct
their own predictions, which results in the production of high-quality outputs.

We introduce two denoising diffusion models for graphs: DiGress generates graphs with categor-
ical attributes and the nodes and edges, while MiDi extends the generation to graphs that also
feature continuous 3D coordinates. Although they operate on different data modalities, these
models share strong similarities.

DiGress and MiDi both use discrete diffusion, which means that corrupting the data or performing
one denoising step amounts to sampling each node and edge type from a categorical distribution.
We show that discrete diffusion significantly outperforms Gaussian based models. This is due to
the fact that Gaussian-based diffusion models for graphs try to predict continuous values that do
not exist in the data, and destroy the graph’s sparsity. Instead, discrete diffusion can adapt the
noise model to preserve the graph’s sparsity during diffusion.

We then present the MiDi model which learns to generate molecular graphs jointly with their
corresponding 3D structures. Unlike existing methods that rely on predefined rules to determine
molecular bonds based on the 3D conformation, MiDi offers an end-to-end differentiable approach
that streamlines the molecule generation process. Learning jointly to generate the 2D and 3D
structure of a molecule allows to generate molecular bonds that are consistent with the 3D
structure, while also alleviating the limited expressivity of MPNNs.

Both DiGress and MiDi provide significant performance gains over previous work on their
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Figure 1.3 – Denoising diffusion models define a Markov noise model q progressively applied
to data, and a denoising network φθ trained to predict clean data from a noisy input. They
can be used to produce new samples by iteratively sampling Gt−1 ∼

∫
G q(G

t−1|Gt, G)dpθ(G).
DiGress defines a discrete diffusion process for graphs with categorical node and edge attributes.
MiDi is a SE(3) equivariant model for molecule generation in 3D. While previous models would
produce a 2D graph from a 3D conformer, MiDi learns to generate both modalities together,
which results in more realistic compounds.
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respective data modalities. These successes can be to a large part attributed to the structure of
denoising diffusion models, that are particularly suited to permutation equivariant learning.

List of contributions
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• Building powerful and equivariant graph neural networks with structural message-passing,
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2 Background

In this chapter, we introduce graph neural networks and discuss their expressive power. While
graph neural networks were historically introduced as an extension of convolutional networks
to graphs, we rather describe them as local permutation equivariant networks. This perspective
uses group equivariance as a tool to design novel architectures that respect a problem symmetries
(Bronstein et al., 2021). We will show that this perspective better reflects their connection
with equivariant networks for sets such as Transformers (Vaswani et al., 2017), and permits to
understand the specificity of graph data.

2.1 Equivariance

2.1.1 Group representations

Equivariant machine learning is a broad and rapidly evolving field that extends beyond graph
neural networks (Kondor, 2008; Cohen et al., 2021). Its primary goal is to develop algorithms
that can effectively model data with symmetry or invariance properties. While some symmetries,
such as scale invariance (Worrall & Welling, 2019) or stability to diffeomorphisms (Bruna &
Mallat, 2013), can be considered, most works in this field focus on symmetries that have the
structure of a group G. These symmetries have a profound impact on the structure and behavior
of the data and are therefore crucial to consider in any analysis or generation task.

Groups

A group G is a set endowed with a composition operation denoted ◦ (usually omitted in practice)
that satisfies 3 requirements:

• Associativity: ∀g, g′, g′′ ∈ G, (g ◦ g′) ◦ g′′ = g ◦ (g′ ◦ g′′)

• Existence of an identity element: ∃e ∈ G,∀g ∈ G, e ◦ g = g ◦ e = g
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• Existence of an inverse: ∀g ∈ G,∃g−1 ∈ G, g ◦ g−1 = g−1 ◦ g = e, where e is the identity
element.

In this work, the groups that we will consider are mostly the symmetric group Sn containing all
permutations of n elements, and the special Euclidean group SE(3) generated by translations and
rotations of the 3D space.

Group actions

In this thesis, we use groups to study symmetries, i.e., properties of a space that are preserved
when a transformation is applied. These transformations are mathematically defined by group
actions. Specifically, given a group G and a set X, a group action of G on X is a function (denoted
by a dot) from G× X to X such that the following conditions hold: (1) the identity element of
G fixes every element of X, (2) the action is associative, and (3) ∀g, h ∈ G, ∀x ∈ X, we have
(gh).x = g.(h.x).

An example of group action is the action of the rotation group SO(2) on the plane: each
rotation rθ ∈ SO(2) defines a bijective transformation of the plane that maps (x, y) ∈ R2 to
(cos θ x + sin θ y, sin θ x − cos θ y) ∈ R2. We can also consider actions of SO(2) on the 3D
space: each action will be parameterized by an axis of rotation.

Group representations

In practice, group actions are not a sufficient notion for machine learning applications: usually,
we do not consider the way a symmetry transforms a space, but the way it transform a signal
defined on that space (Kondor, 2008). Among the possible ways to transform a signal, the class of
transformations that can be described by matrix multiplications are prone to a rich mathematical
analysis. Such transformations are called linear group representations (Serre, 1977).

A linear representation ρ of a group G on a vector space X of dimension d is a group homo-
morphism from G to the invertible d × d matrices GL(d). This means that for any group
elements g1, g2 ∈ G, their associated matrices ρ(g1) and ρ(g2) satisfy the group multiplication
law: ρ(g1g2) = ρ(g1)ρ(g2). In other words, the linear transformation induced by the group
action on X is described by a matrix that respects the group structure. Certain representations are
particularly natural: for example, when we refer to a rotation matrix in 2D, we do not directly
refer to an element of SO(2), but rather to a representation of SO(2) on the plane. To simplify
the notation, we will use the shorthand g.x to denote the image of x under the action of g ∈ G,
rather than the more cumbersome notation ρ(g)(x) ∈ X. This notation emphasizes the intuitive
interpretation of linear group representations in most practical cases.

Linear group representations have found a wide range of applications in physics, and particularly
in quantum mechanics, where symmetries play a fundamental role. By associating matrices with
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group elements, linear representations permit to study the behavior of physical systems under the
action of symmetries, and to construct invariant quantities that capture the essential properties of
these systems. The key theorem of linear representation theory states that the decomposition of
any group action into a direct sum of irreducible representations, or irreps, which are the most
basic building blocks of representations that cannot be further decomposed. The manipulation of
irreps has led to the development of many machine learning methods, particularly for the special
Euclidean group SE(3) (Cohen et al., 2021; Geiger & Smidt, 2022).

In this thesis, we will only consider intuitive representations, and will not manipulate irreps
theory. We describe below the representations that we will use for the permutation group and the
special Euclidean group.

Representations of the permutation group

As this thesis considers unordered objects, we are primarily interested in the representations of
the permutation group. Let T be a tensor of size nk × d. We refer to k as the order of the tensor:
a vector is an order 0 tensor for the permutation group, a set as in order 1 tensor, and a graph is
an order 2 tensor. Hyper-graphs can also be considered, but their cost make them impractical for
many applications. In this thesis, the only representation of the permutation group that we will
consider permutes the indices on the dimensions that index nodes. For any tensor T ∈ Rnk×d, it
acts as:

∀π ∈ Sn, π.T[i1, ..., ik, j] = T[π−1(i1), ..., π−1(ik), j]

In particular, if π ∈ Rn×n is the permutation matrix corresponding to π, we get π.z = z ∈ Rd

for vectors, π.X = πTX for multisets, and π.A = πTAπ for adjacency matrices.

Representations of SO(3)

In chapter 5, we will also consider 3D point clouds with a rotational symmetry, which requires
to also study representations of the rotation group SO(3). We will only consider two simple
representations. The first one is the trivial representation, which is used for rotation invariant
quantities such as the atom type a of a molecule. In this case, for any rotation r, we simply have
r.a = a. The second representation corresponds to quantities, such as a momentum vector p,
that rotate with the molecule. In this case, we have r.p = Rp, where R is the rotation matrix
associated with r.

The possible representations of SO(3) are much more diverse than these two basic examples. The
irreducible representations (irreps) of SO(3) correspond to the spherical harmonics, which have
important applications in quantum physics. Several neural networks have been proposed that
manipulate these spherical harmonics (Thomas et al., 2018; Liao et al., 2019; Brandstetter et al.,
2021; Liao & Smidt, 2022).
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2.1.2 Equivariance

Definition We can now move to the definition of equivariance. Consider a function f : X→ Y,
and two representations ρ(g) and ρ′(g) of a group G on respectively X and Y. We say that f is
equivariant to the action of G if:

∀g ∈ G,∀x ∈ X, f(ρ(g)x) = ρ′(g)f(x) (2.1)

Here again, since we will in practice manipulate intuitive representations, we simplify the
notations and write f(g.x) = g.f(x). In this formula, the two representations, both denoted by
"g.", might not be the same.

In the particular case where the group representation on Y is trivial, we say that f is invariant to
the action of G:

∀g ∈ G,∀x ∈ X, f(g.x) = f(x) (2.2)

Group averaging When the symmetry group G is finite and small enough, equivariance or
invariance can be achieved by averaging any function f over G. Group averaging is described by
the two following functions:

f inv(x) =
∑
g∈G

f(g.x) and f eq(x) =
∑
g∈G

g−1.f(g.x) (2.3)

It is elementary to check that these functions are respectively invariant and equivariant. Unfor-
tunately, the groups considered in this thesis are either infinite (e.g. SE(3)) or too large (Sn)
to compute an average over the group elements. Although networks that are approximately
equivariant can be designed by summing over random permutations (Murphy et al., 2019), this
strategy is not computationally efficient.

2.1.3 Equivariance through the choice of the data representation

While most of this thesis is devoted to the design of equivariant neural network, it needs to
be noted that adapting the neural network parametrization is not the only way to respect the
symmetry of a problem. When possible, it can be more efficient to directly represent the data in a
coordinate system that is invariant to the symmetry. For example:

• When predicting the future state of a n-body system, it can be useful to model the data
as a graph with edge features representing the distance between points. Modeling a
physical system as a distance graph incorporates many symmetries such as the invariance
to translations, rotations, reflections and permutations.

• Invariance to permutations in graphs can be obtained by learning only functions of the
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graph eigenvalues. For equivariance, we can also consider the eigenvectors (ui) associated
to eigenvalues of multiplicity one, although the sign ambiguity needs to be resolved by
considering both ui and −ui (Lim et al., 2022).

• Since proteins are essentially chain graphs of alpha carbons (Cα), many symmetries of
proteins can be leveraged by choosing the data representation appropriately. For example,
the 3D arrangement of the proteins can modeled using the angles between successive
carbons. This representation naturally encodes invariance to translations and rotations, but
also reduces the number of parameters from 3n to n, if n is the number of Cα atoms in the
chain. This representation plays a key role in the success of both AlphaFold (Jumper et al.,
2021) and diffusion models for proteins, which can scale to much larger structures than
arbitrary graphs or point clouds (Ingraham et al., 2022).

At first sight, it might not be clear how to derive general principles to guide the choice of the
data representation. Frame averaging (Puny et al., 2021) constitutes a first step towards this
direction. Given a point x ∈ X, a frame corresponds to a subset F (x) ∈ G such that equivariance
is achieved when averaging over F (x). For a simple example of frame averaging, consider
translation invariant functions of a point cloud C ∈ Rn×d. Such functions can be obtained by
defining f inv(X) = f(X − 1n( 1

n

∑n
i=1 xi)

T ), which corresponds to an averaging over a frame
f(X) = { 1

n

∑n
i=1 xi} that contains a single element. Frame averaging can both be seen as an

extension of group averaging, and as a change of representation of the data.

Despite these advances, it is sometimes often clear how to represent the data in a way that
naturally incorporates all symmetries. In such cases, the neural networks need to be constrained
in order to only represent the relevant class of functions. In the following section, we describe
methods to construct neural networks that possess equivariance with respect to a particular group.

2.2 Equivariant neural networks for sets

In order to build a rich family on nonlinear and differentiable functions, a common approach is to
combine linear equivariant functions with equivariant non-linearities. Other operators that pre-
serve equivariance can also be considered. For permutation equivariance, these operators include
multiplication, addition, composition, and tensor products. By constructing a computational
tree using these building blocks, we can create rich classes of equivariant function. It is worth
noting that the class of invariant linear functions is often much more restricted than the class
of equivariant functions. Thus, when the task requires invariance to a group action (e.g., image
classification, where the identity of an animal does not change upon rotation), a typical strategy
is to employ equivariant layers and then to apply an invariant operator at the end of the network.
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2.2.1 Equivariant linear layers between arbitrary dimensions

To construct equivariant neural networks, the computation of linear equivariant layers is a critical
component. When the group G is compact, it can be demonstrated that the linear layers that are
equivariant to the action of G are convolutions on the group G. When considering the group of
translations in Rd, these convolutions correspond to the standard definition of convolutions on
Euclidean spaces, such that f(x)[u] =

∫
Rd x(u− τ)k(τ)dτ , where k is the convolutional kernel.

Translations are however peculiar, as the symmetry group can be identified with the base space
Rd. For other groups, the integral is defined over G and not over Rd (Kondor & Trivedi, 2018).

Fortunately, when dealing with equivariance to the symmetric group S =
⋃
n∈N∗ Sn, the compu-

tation of equivariant linear layers does not require integrating over the group. Since for each n,
Sn is a finite group, the equation ∀π ∈ Sn, π.f(T1) = f(π.f(T2)) forms a linear system with a
finite number of equations. By solving these equations, Maron et al. (2018) showed that the space
of functions from Rnk×d to Rnk

′×d′ is of dimension dd′Bell(k + k′), where Bell(k + k′) is the
Bell number of order k + k′, i.e., the number of partitions of a set of k + k′ elements. Notably,
this number is independent of the number of nodes n and only depends on the tensor order.

Different values of k, k′ correspond to different types of functions: k = 1 and k′ = 0 correspond
to functions that map sets to vectors, k = 1 and k′ = 2 corresponds to set to graph functions, etc.
In general, we write lk→k′ the linear permutation functions from Rnk×d to Rnk

′×d′ .

2.2.2 Neural networks for sets

Before analyzing graph neural networks, we first consider neural networks for sets, i.e., layers
with k = 1. We therefore consider a set V where each point vi has an attribute vector xi. For
small values of k′, we obtain the following functions:

Global pooling of sets The space of linear set to vector functions is spawned by a single
element:

l1→0(X) =
∑
vi∈V

xiW (2.4)

In practice, a popular alternative to linear set to vector layers is the use of several pooling
operators, as done in the PNA layer (Corso et al., 2020):

PNA(X) = cat(mean(X),max(X),min(X), std(X)) (2.5)

Set to Set: Deep sets The space of linear functions mapping sets to sets is spawned by two
elements:

l1→1(X) = IXW1 + 1n1
T
nXW2 (2.6)

16



Background Chapter 2

This class of functions, called Deep Sets (Zaheer et al., 2017), can equivalently be written:

∀vi ∈ V, l1→1(X)i = W T
1 xi +

∑
vj∈V

W T
2 xj (2.7)

This equivalence may seem trivial, but it provides valuable insights into permutation-equivariant
networks. Specifically, in a permutation equivariant network, each point can distinguish itself
from the other nodes and learn a separate coefficient for its own representation, but it cannot
distinguish between the other points. This insight can be used to guess the equivariant functions
for other interaction orders. For example, in linear graph-to-vector functions, since each node
vi0 can distinguish the pair i0 − i0 from other pairs i0 − j, we can predict a basis for linear
equivariant graph-to-vector functions is spawned by the trace ofA and the sum of non diagonal
entries.

The approach outlined above can be extended to construct neural networks that operate on tensors
of any order, including graph neural networks (Maron et al., 2019a). However, these networks
lack a principled inductive bias that can leverage the locality and sparsity of adjacency matrices.
As a result, these methods tend to be hard to train and do not generalize very well (Vignac et al.,
2020).

Interaction networks for sets Another line of works proposed an alternative to the use of
linear layers. Since the main assumption of graph neural networks is that the data is composed
of interacting entities, these methods propose to explicitely model the interaction between
components (Battaglia et al., 2016; Lee et al., 2019). That is, instead of Eq. (2.7), these networks
compute

∀vi ∈ V, InteractionNet(X)i = h(xi,
∑
j 6=i

g(xi,xj)), (2.8)

where g and h are two arbitrary functions, such as multi-layer perceptrons (MLP). This function
class can be slightly extended to:

InteractionNet(X)i = h(xi,
∑
j 6=i

g(xi,xj , {xk}k 6=i,j) (2.9)

Here, the interaction function also depends on the other node, for example through a normalization
factor. A special parametrization of this architecture is:

∀vi ∈ V, f(X)i =
∑
j 6=i

softmax(W T
q xi︸ ︷︷ ︸

query

W T
k xj︸ ︷︷ ︸
key

, {W T
k xkW

T
q xi}k 6=j)W T

v xi︸ ︷︷ ︸
value

, (2.10)

where Wq,Wk,Wv are three matrices of learnable parameters. In this formula, we recognize
the the self-attention layer of the Transformer architecture (Vaswani et al., 2017) which has
become widely popular in many areas of machine learning. Interestingly, Transformers can
therefore be seen as equivariant neural network for sets (Joshi, 2020). Given the success of
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Transformers across many data modalities, a natural question arises as to what makes this
parametrization superior to other equivariant networks for sets such as the interaction networks
h(xi,

∑
j 6=i g(xi,xj)) of Eq. (2.8). Although this question is not completely resolved yet, two

key factors can be identified. The first one is the fact that in Transformer, the variance of the
activations is controlled through the use of residual connections and normalization layers. The
second one is the relative memory efficiency of the Transformer model. Despite a O(n2) memory
cost due to the computation of interaction terms, the only quadratic tensor manipulated in the
Transformer is of size n × n × nheads, with a number of attention heads that is typically very
small. This is in contrast to other interaction networks, in which each g(xi,xj) can be a much
larger vector.

Overall, the introduction of equivariant neural networks for sets permits to show that there is
no fundamental distinction in the parametrization of set equivariant networks and graph neural
networks. Even for sets, it is often relevant to introduce interaction terms in the learned function,
and therefore to consider pairs of nodes. In graph neural networks however, the data contains
edge features that need to additionally be taken into account.

2.3 Graph neural networks

2.3.1 Graph representations

We now consider the case of data represented as graphs. In this context, in addition to the node
features, we have access to an adjacency matrixA and potentially edge features yij ∈ Rdy on
each edge. These edge features are grouped in a tensor Y ∈ Rn×n×dy .

Graphs can be represented using either adjacency matrices or adjacency lists. While these two
representations are theoretically equivalent, the computational implications of each representation
are distinct. Adjacency matrices are dense tensors that require to store n2 entries. Since the
size of the representation does not depend on the sparsity level, it is therefore often beneficial
to consider fully connected graphs when working with adjacency matrices. In this case,A can
be seen as an edge feature on a fully connected graph. Conversely, adjacency lists result in
the manipulation of sparse tensors. The main drawback of sparse operations is that they are
challenging to parallelize on GPUs due to their irregular memory access patterns. However, graph
libraries such as PyTorch Geometric (Fey & Lenssen, 2019) and Deep Graph Library (Wang,
2019) are now able to implement message-passing operations on GPUs using only adjacency lists.
These libraries permit to process graphs with up to ∼ 105 nodes provided that the graphs are
sparse enough, and even bigger graphs with the use of stochastic node samplers. The importance
of these libraries in the rise of graph neural networks cannot be overstated.

However, it should be noted that graph libraries introduce an overhead compared to dense tensor
operations. With the increasing availability of GPUs with large memory capacity, the trend has
shifted back towards the use of dense representations for processing small graphs. Ultimately,
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the choice of graph representation depends on the size of the graphs, their sparsity level, and the
available memory for computations.

2.3.2 Parametrization

The interaction networks presented in Eq. (2.8)) can naturally be extended to incorporate edge
features, as they compute a function for all pairs of points. Specifically, the following "Edge-
Interaction network" generalizes the interaction network to take into account edge features:

∀vi ∈ V, Edge-InteractionNet(X,Y)i = h(xi,
∑
j 6=i

g(xi,xj ,yij)) (2.11)

The main drawback of this parametrization is its O(n2) complexity, which makes it impractical
for large graphs. Nevertheless, it offers a very efficient way to process small graphs, and has been
used successfully on datasets of small molecules, with the edges encoding pairwise distances
between atoms as well as bond types (Gilmer et al., 2017). When dealing with larger graphs, the
quadratic complexity becomes a strong limitation, making it necessary to restrict the computation
to nodes that are most likely to affect each other, i.e., neighboring nodes. This gives rise to
Message-Passing Neural Networks (MPNNs) (Scarselli et al., 2008; Gilmer et al., 2017), which
only model explicitly interactions between each node vi and its neighbors vj ∈ N(vi). By
restricting interaction networks to the explicit modeling of interaction between neighbors only,
we obtain a MPNN based on the sum aggregation:

∀vi ∈ V, sum-MPNN(X,Y)i = h(xi,
∑
j∈N(i)

g(xi,xj ,yij)) (2.12)

The term message-passing arises from an interpretation of these algorithms as an iterative
propagation scheme, similar to those used in distributed algorithms or belief propagation. The
function g is viewed as a message passed on the edge vj → vi, while the function h corresponds
to the update rule of node vi. Finally, the sum can be replaced by any permutation-invariant
aggregation function �. Message-passing neural networks are typically expressed as:

∀vi ∈ V, MPNN(X,Y)i = h(xi,�j∈N(i)g(xi,xj ,yij)) (2.13)

An important advantage of message-passing neural networks is their computational efficiency,
with a complexity linear in the number of edges. This makes them well-suited for processing
large graphs. Additionally, MPNNs are designed to compute and propagate local information,
similar to how convolutional networks operate on images. As a result of these desirable properties,
MPNNs serve as the most studied function class in graph machine learning.

Parametrization of the message and update functions The choice of parametrization is
highly empirical, and architectures can vary significantly across applications. For graphs without
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edge attributes, the message function can be parameterized as g(xj), in which case only n
unique messages need to be computed, or as g(xi,xj), which requires computing m different
messages. While the latter is more computationally intensive, it allows for the explicit modeling
of interactions, which is beneficial in many settings. A example of a message function could for
example be:

g(xi,xj) = W T
1 ReLU(W T

2 cat(xi,xj ,xi � xj , eij)), (2.14)

whereW1 andW2 are learnable matrices. This function can be implemented more efficiently by
leveraging the equivariance between addition and concatenation before a linear layer (Perez et al.,
2018):

m(xi,xj) = W T
1 ReLU(W T

3 xi +W T
4 xj +W T

5 xi � xj +W T
6 eij), (2.15)

whereW2 is the horizontal concatenation of the matricesW3, . . . ,W6. The update function is
often a simple residual connection h(xi, x̃i) = xi + x̃i, or a MLP applied to the concatenation
of the input xi and the aggregated messages x̃i.

Parametrization of the aggregation function The simplest aggregation function in MPNNs
is the sum, but it has the drawback of being unstable when the number of nodes varies across
graphs. On the contrary, mean aggregation stabilizes the activations but is unfortunately less
expressive, as the neural network loses information about the number of nodes in the graph (Xu
et al., 2019). To get the best of both worlds, it is possible to divide the sum by the average degree.
The max aggregation function is mostly used for algorithmic reasoning tasks (Cappart et al.,
2021). When it is not clear which aggregation function will work best, it is possible to let the
network learn it by concatenating the output of several ones (Corso et al., 2020).

2.3.3 Standard architectures

MPNNs encompass a wide range of architectures. We describe some of the most popular ones
below:

Graph Convolutional network (GCN)

The Graph Convolutional network (GCN) layer has been proposed in (Kipf & Welling, 2016) as
a simplification of the ChebNet architecture for graph classification (Defferrard et al., 2016):

GCN(X,A)i = σ(
1

di
W Txi +

∑
vj∈N(i)

1√
(di + 1)(dj + 1)

W Txj), (2.16)

where σ is a ReLU non-linearity and di the degree of node vi. While previous architectures
were mostly designed as a equivalent of CNNs for graphs, with a succession of convolutional
and pooling layers designed for graph classification tasks, an interesting contribution of (Kipf &
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Welling, 2016) is the use of graph neural networks for node-level tasks such as semi-supervised
node classification. Architectures for node classification are conceptually simpler than archi-
tectures for graph classification, as they do not require the use of pooling layers. Furthermore,
node-classification architectures can be trained on one single graph, which makes it easier to
build novel datasets for node-level tasks than for graph-level tasks. As a result, this very simple
architecture has become the most popular one, despite several known limitations discussed later
such as over-smoothing and a bias towards homophily.

Graph Isomorphism Network (GIN)

The Graph Isomorphism Network (GIN) proposed in (Xu et al., 2019) aims at being the simplest
architecture that is maximally powerful in the class of MPNNs. GIN operates on graphs without
edge attributes. It computes the following update:

GIN(X,A)i = MLP

(1 + ε) · xi +
∑

j∈N (i)

xj

 , (2.17)

where ε is a small constant, and MLP a multi-layer perceptron applied in parallel on each node.
GIN is a particularly cheap architecture, as it does not put any learnable parameters in the message
function. However, it is usually not the best performing architecture (Dwivedi et al., 2023), which
can be attributed to the fact that it does not compute explicitly any interaction term.

Graph Attention Network and Graph Transformers

Graph attention networks (GAT) (Veličković et al., 2017) aim at adapting the popular self-
attention networks (Bahdanau et al., 2014) to graphs. They propose a model in which the node
features are used to compute attention weights, i.e., to favor interactions between some nodes at
the expense of others. The update rule of GAT can be written as:

GAT(X,A,E)i =
∑

j∈vi∪N(i)

αij Wvxj , (2.18)

where the attention coefficients αi,j are computed using a softmax over a node and its neighbors:

αi,j =
exp(ei,j)∑

k∈vi∪N(i) exp(ei,k)
(2.19)

and ei,j is the attention energy between nodes vi and vj . The energy function can be defined as a
concatenation of the hidden states of nodes vi and vj , followed by a linear transformation:

ei,j = LeakyReLU
(
aT [Wqxi||Wkxj ]

)
(2.20)
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where a is a learnable attention parameter vector, LeakyReLU is the leaky rectified linear unit
activation function, || denotes concatenation, Wq and Wk are respectively called the key and
query matrices. (Brody et al., 2021) later found that the LeakyReLU should be placed before the
learnable attention vector for greater expressivity. In this case, the attention energy writes:

ei,j = aTLeakyReLU
(

[Wqxi||Wkxj ]
)

(2.21)

On standard benchmarks, vanilla GATs tend to perform on par with simpler graph networks
such as GCN (Shchur et al., 2018). However, the self-attention mechanism can be integrated
into a graph Transformer architecture through the use of normalization layers and positional
encoding. Graph Transformers have recently attracted a lot of attention and have shown impressive
performance, outperforming vanilla GAT networks in many cases. For comprehensive surveys of
recent architectures, we refer to (Chen et al., 2022), (Min et al., 2022), and (Müller et al., 2023).

2.4 Known Limitations of permutation equivariant networks

2.4.1 Expressive power

Despite their potential, graph neural networks have limitations in their expressive power, particu-
larly in their ability to approximate all functions over graphs. In this section, we explore some
known results about the expressive power of equivariant neural networks, beginning with those
for sets. We will see that, while neural networks for sets and graph neural networks differ little in
their parametrization, there are important differences in their theoretical properties.

Equivariant Networks for Sets

The design of universal approximators of equivariant functions on sets is straightforward. For
example, Deep Set layers, which were introduced earlier in Eq. (2.7) and are parameterized
by f(X) = XW0 + 11TXW1, can be used in conjunction with pointwise non-linearities to
build a universal approximator of invariant and equivariant functions on sets (Zaheer et al., 2017;
Segol & Lipman, 2019). An even simpler universal approximator of invariant functions on sets is
provided by the PointNet architecture (Qi et al., 2017), which computes:

PointNet(X) = MLP(
n∑
i=1

MLP(xi)) (2.22)

Note however that these universal approximation results are limited to sets of a fixed maximal
size, and the dimensionality of the feature maps considered needs to grow with n (Wagstaff et al.,
2019).

Another way to obtain universal approximators of permutation equivariant functions for sets is
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through canonization. Consider the following function:

fcanon(X) = unsort ◦ group ◦MLP ◦ flatten ◦ sort(X)

This function takes a set as input, sorts its rows by lexicographic order, flattens the resulting
n × d matrix into a vector of size nd, learns an MLP on this vector, groups the output into an
n× d matrix, and reverts the sort operation defined at the beginning. We can easily check that
fcanon is permutation equivariant, and that it is a universal approximator of equivariant functions
on sets. Note however that this function may not be practical as it learns an MLP over a very
high-dimensional vector.

The expressive power of Message-Passing Neural Networks

We now turn our attention to the analysis of the expressive power of graph neural networks.
First of all, one may wonder if the canonization strategy presented for sets can be used to build
universal approximators of functions on graphs. Unfortunately, graph canonization is at least as
hard as graph isomorphism testing, and no polynomial time algorithm is known for these tasks.
This hints that universal approximators of functions on graphs will be difficult to obtain.

While a large literature has considered the expressive power of MPNNs, there is not one unique
way to define expressive power. One interesting approach is for example to explore its ability
to detect substructures, which has been explored in (Chen et al., 2020; Tahmasebi et al., 2020).
Other approaches consider connections with distributed algorithms (Loukas, 2020b) and their
algorithmic reasoning abilities (Xu et al., 2020a). Among the different perspectives on the
expressivity of graph neural networks, the predominant viewpoint has however been to evaluate
the network’s capacity to differentiate between non-isomorphic graphs, which is the perspective
that we adopt here. This perspective considers their relationship to the Weisfeiler-Lehman
isomorphism test, that we know describe.

The Weisfeiler-Lehman test The Weisfeiler-Lehman (WL) algorithms (Weisfeiler, 2006; Cai
et al., 1992) are a hierarchy of increasingly powerful algorithms for isomorphism testing. These
algorithms propagate information on k-uplets of nodes, hash the embeddings obtained at every
step, and compute the histograms of hashes obtained at each step. These histograms can then be
compared in order to test graph isomorphism. The 1-WL test is the simplest instantiation of this
algorithm, as it simply propagates information on the nodes. The algorithm iteratively computes

x
(k+1)
i ← hash(x

(k)
i ,

∑
j∈N(i)

x
(k)
j ), (2.23)

and aggregates the histograms of the x(k)
i at each step. The computations of the histograms can

be seen as a global pooling operator that computes a permutation invariant descriptor from a
multi-set of values. Two graphs are considered as isomorphic if the histograms of values are the
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Figure 2.1 – Because of the iterative propagation scheme of message-passing neural networks, we
can attach to each node an ego-subtree which corresponds to the computations made by MPNNs.
These ego-subtrees informally represent the equivalence class of MPNNs: two nodes that have
similar ego-subtrees will be mapped to the same value. When nodes do not have attributes or
identifiers, nodes that do not have the same local topology can still have the same ego-subtree.

same for k = 1 to k = K, where K is a predefined number of iterations.

MPNNs are not more powerful than the 1-WL test The fundamental result, obtained si-
multaneously by Morris et al. (2019) and Xu et al. (2019), states that message-passing neural
networks cannot surpass the Weisfeiler-Lehman test in terms at isomorphism testing. In the
following, we provide more insight where this result comes from.

Consider the use of a MPNN of depth K. At each message-passing step, each node vi updates its
representation based on the representation of its neighbors vj ∈ N(vi). The representations of
each neighbor vj depends, in turn, on the representation of the neighbors vk ∈ N(vj) at previous
step. Overall, the computations of the MPNN can be represented as a directed tree of depth K
with root vi, as shown in Figure 2.1. We refer to such a tree as the ego-subtree of depth K at
node vi.

Since 1-WL uses the same iterative propagation scheme as MPNNs, 1-WL also operates on rooted
subtrees. Specifically, by comparing histograms, it compares the distribution of ego-subtrees of
depth k at each step. It judges that two graphs are non isomorphic by identifying a depth k0 at
which the distribution of ego-subtrees differs between two graphs.

The results of (Xu et al., 2019) and (Morris et al., 2019) essentially shows that the rooted
subtrees form the equivalence class of MPNNs. MPNNs cannot differentiate between nodes
that have identical subtrees, but can potentially assign different values to all subtrees if they are
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Figure 2.2 – These two simple graphs cannot be distinguished by the Weisfeiler-Lehman test.
This reveals that message-passing neural networks are not able to detect very basic structural
information about the graphs, such as connectivity or triangle counts.

parameterized in a maximally powerful way.

It is important to note that the ability to distinguish non-isomorphic graphs is highly dependent on
the richness of the features. In graphs where each node can be uniquely identified by its features,
the ego-subtrees become unique. This idea has motivated the introduction of node identifiers
in message-passing networks (Loukas, 2020a), which we also use in Chapter 3. However, in
unattributed graphs, MPNNs are limited in their ability to compute rich information on the nodes.
At the first message passing step, MPNNs on an attributed graph can only learn a function of the
node’s degree. The second message-passing steps can only learn a function of distributions of
the degrees, and so on. In regular graphs (where each node has the same degree) such as the one
in Fig. 2.2, MPNNs are therefore not able to compute any useful information, as all nodes are
assigned the same representation.

The limited expressive power of message-passing neural networks may appear to be a purely
theoretical concern, but it has important practical implications on graph neural networks. The
equivalence between the expressive power of MPNNs and the WL test highlights the inability
of graph neural networks to learn fundamental graph structural information, such as the count
of substructures (Chen et al., 2020; Tahmasebi et al., 2020). From Fig. 2.2 alone, the fact that
MPNNs cannot distinguish between these two graphs shows that it is unable to detect if a graph
is connected or if it possesses triangles, which is very basic information. As a result, graph neural
networks tend in general to perform poorly on unattributed graphs (Cai & Wang, 2018).

The expressive power of higher-order graph neural networks

In order to overcome these strong limitations, many works have investigated more expressive
classes of functions on graphs. Several of these architectures (Murphy et al., 2019; Sato et al.,
2020) introduce stochasticity in the neural networks, which improves their theoretical power
but makes them hard to train. Among the deterministic architectures, two main strategies have
been proposed for building more expressive networks. The first approach involves defining linear
layers between tensors of size Rnk×d, which represent k-tuples of nodes. These linear layers
can be concatenated and augmented with pointwise non-linearities (Maron et al., 2018). The
second approach involves defining message-passing schemes between k-tuples of nodes, as done
in (Morris et al., 2019; 2020).

Recent work by Keriven & Peyré (2019) showed that linear layers between high-order tensors
are universal approximators of graph-to-set equivariant functions on graphs, which extends the
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results of (Maron et al., 2019b) for invariant functions. However, the tensor order required for
this approach may be prohibitively large, making it impractical.

In contrast, the expressive power of higher-order message-passing networks depends on the
particular parameterization of the networks. Typically, networks that perform message-passing
operations between k-tuples of nodes have an expressive power which is between the k-Weisfeiler-
Lehman (k-WL) test (Morris et al., 2019) and the (k+1)-WL test (Maron et al., 2019a). However,
Cai et al. (1992) constructed a graph that cannot be distinguished by the k-WL test, but that can
be distinguished by the (k+1)-WL test, demonstrating that no k-WL powerful algorithm is a
universal approximator of functions on graphs.

Overall, graph neural networks come with variable computational complexity and expressive
power, but no deterministic architecture can approximate all functions on graphs. This should
not surprise the reader: if we had access to a universal approximator of functions on graphs, it
would be possible to use it in order to test the isomorphism of two graphs. Building universal
approximators of functions on graphs is therefore at least as hard as isomorphism testing (Chen
et al., 2019).

2.4.2 Other known limitations of graph neural networks

Isotropy. The equivalence between the expressive power of MPNNs and the Weisfeiler-Lehman
test only holds when many MPNN layers are used. In practice, graph neural networks often use
few layers, which results in even lower expressivity. Additionally, each graph network layer has
undesirable local invariance properties due to the use of a symmetric (e.g., permutation invariant)
aggregation operation (Kondor et al., 2018). Because of the use of symmetric aggregations, graph
networks applied to grids compute filters with a spherical shape (shown in Figure 2.3), which is
why they are commonly referred to as isotropic filters (Levie et al., 2018). This is in contrast to
the kernels learned by CNNs for images, which are often directional (Krizhevsky et al., 2017).
Isotropy is not necessarily a problem if it corresponds to a correct prior about the task. However,
edge detectors cannot be obtained with spherical filters, and experiments have shown that graph
networks applied to grids perform worse than CNNs with the same number of parameters (Vignac
& Frossard, 2019). This suggests that isotropy could be a harmful inductive bias for other types
of data as well.

The lack of an obvious notion of direction or orientation for arbitrary graphs makes it hard to
design designing anisotropic or oriented filters. One approach to break the isotropy of message-
passing layers involves using the first eigenvectors of the graph Laplacian to define general
directions on the graph (Beaini et al., 2021). The use of the first eigenvectors can be theoretically
justified when the graph is a cartesian product of small factors. In such cases, it is possible to
retrieve filters that are as expressive as CNNs on regular data (Grassi et al., 2017; Vignac &
Frossard, 2019). This approach is however limited when dealing with eigenspaces of dimension
more than one, as the choice of eigenvectors is in this case not unique.
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Figure 2.3 – When visualizing the filters learned by linear MPNNs on images, we observe an
isotropy phenomenon: the value of the filters at a given pixel only depends to its distance from
the kernel center. Figure from (Levie et al., 2018).

Oversmoothing (Cai & Wang, 2020). Early graph neural network architectures, such as the
Graph Convolutional Network (GCN) of Kipf & Welling (2016), suffer from a phenomenon
called oversmoothing (Cai & Wang, 2020). Oversmoothing designates the fact that, when many
message-passing layers are used, some architectures tend to forget local information and learn
similar embeddings for all nodes in a graph. Oversmoothing often leads to degraded performance,
which explains why early architectures would typically only use 2 or 3 message-passing layers
(Shchur et al., 2018). To mitigate this problem, residual connections can be included in the
network, which allows for the effective use of graph networks with more layers. However, the
design of very deep graph networks is still an active area of research (Liu et al., 2020; Rusch
et al., 2023).

Homophily (Zhu et al., 2020). Homophily refers to the tendency of graph neural networks to
learn functions that smooth the features over the graph, i.e., as low-pass filters (Gasteiger et al.,
2018; Wu et al., 2019; Nt & Maehara, 2019). As such, it is closely related to oversmoothing.
The inductive bias towards homophily is highly effective when the task involves making similar
predictions for nearby nodes, such as predicting the scientific field of a paper given the citation
network. However, homophily can be problematic if the task requires predicting opposite labels
for neighboring nodes, such as in maximal independent set search. While standard architectures
may suffer from this issue, carefully designed architectures can avoid it (Zhu et al., 2021;
Yang et al., 2021b). Recent works, however, have questioned homophily, arguing that standard
architectures can still work well on datasets that require heterophily, as long as the distribution of
rooted subtrees differs across classes (Ma et al., 2021).

Oversquashing (Alon & Yahav, 2020). Oversquashing refers to the fact that the number of
paths considered in the computational tree of MPNNs grows exponentially as the number of
message-passing layers increases. This makes it difficult to find one particular path within a
graph, as required by certain tasks, for example in algorithmic reasoning (Cappart et al., 2021).
While oversquashing is inherent to message-passing architectures, the use of the max aggregation
operator instead of sum or mean can mitigate this phenomenon.
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Vulnerability to adversarial attacks Deep neural networks are known to be susceptible to
small input changes known as adversarial attacks that result in a drastic change in the network
predictions (Szegedy et al., 2013). In the context of graph neural networks (GNNs), adversarial
attacks can be applied to manipulate the graph structure, node features, or both, with the goal of
altering the GNN’s output in a targeted way (Zügner et al., 2018; Sun et al., 2020a). An important
feature of adversarial attacks is that they should be imperceptible. For the graph structure, it
is clear that if an edge is removed that turns a connected graph into disconnected graph, this
change can have large effects on a classifier. However, the corresponding perturbation would be
very noticeable. To avoid this issue, some works analyze adversarial perturbations in the graph
spectral domain, which allows to provide measures of perceptibility of a perturbation (Li et al.,
2022; Lin et al., 2022). To alleviate the network sensitivity to adversarial attacks, methods such as
defensive dropout (Wang et al., 2018) or adversarial training (Bojchevski & Günnemann, 2019)
can be used. While we will not consider adversarial attacks in this thesis, their existence need to
be kept in mind for sensitive applications.

Conclusion Overall, we can observe that the limitations of graph neural networks that matter in
practice depend a lot on the dataset. In general, we can classify graph datasets into two regimes:
datasets which feature graphs with many attributes, and datasets that feature graphs with few
attributes. On graphs with many node attributes, the expressive power of graph neural networks
is not really an issue, as most rooted subtrees are distinct. Usually, structural descriptors are not
key, as the node features already provides rich information. In such settings, the main challenge
is to understand whether the graph neural networks really learn complex functions, or if they
only learn the equivalent of low-pass graph filters. It is often observed empirically that extremely
simple graph architectures such as APPNP (Gasteiger et al., 2018) are close to state-of-the-art,
which questions the need for developing more complex architectures for these datasets.

On the contrary, on graphs with relatively few node attributes such as molecules (where we often
only have access to atom types and bond types), or on relational reasoning tasks, the limited
expressive power of graph networks becomes an important issue. In these settings, we are looking
for neural networks that are able to recognise patterns in the graphs, such as functional group in
molecules. It is clear usually clear that tasks on such datasets cannot be solved with simple graph
filters, and powerful neural networks have proved to be more effective than simple MPNNs.

2.5 Alternative perspectives on message-passing neural networks

While we introduced message-passing neural networks (MPNNs) as local permutation equivariant
operators, it is worth noting that they can also be viewed from other perspectives: the spatial per-
spective generalizes convolutions to graphs through the definition of a weight-sharing mechanism,
while the spectral perspectives defines convolution trough the spectral convolutional theorem. It
is interesting to note that, while all these perspectives are very different, they eventually result in
similar formulation of MPNNs. Here we briefly discuss the spatial and spectral frameworks.
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2.5.1 MPNNs as a generalization of CNN to graphs (spatial perspective)

The spatial perspective on graph neural networks views them as a generalization of convolutional
neural networks (CNNs) to graphs. This perspective builds on the remarkable success of CNNs
on image processing tasks (Krizhevsky et al., 2017). There are many similarities between images
and graphs, the first one being that the computation of local descriptors of the data is known to be
important. Furthermore, the same pattern can appear at various locations of an image, similar to
how the same subgraph can be present at different locations in a graph. Thus, weight sharing is
essential in both cases. Additionally, both graphs and images can be analyzed at multiple scales.
These similarities have led to the development of convolutional layers and pooling operators
(Defferrard et al., 2016; Khasanova & Frossard, 2017; Ying et al., 2018; Ahmadi, 2020) for
graphs.

However, images have a regular structure which is not the case for graphs. This creates creating
specific challenges that need to be addressed. For example, consider a 2D convolutional kernel
for images, where a different coefficient matrix is learned at each location. With a 3x3 kernel, the
following equation describes the convolution operation around a central pixel (i, j):

∀(i, j), CNN(X)ij =
1∑

k=−1

1∑
l=−1

Wkl xi−k,j−l (2.24)

As images have a regular structure, shifting a convolutional kernel to another central pixel (i′, j′)

does not pose significant problems (except for border effects) as there is a clear way to map the
kernel weights to other pixels. Consider now the application of a similar kernel to a graph: a
central node is chosen, and a coefficient is learned per neighbor. This is expressed in the following
equation:

∀vi ∈ V, GraphCNN(X)i =
∑

vj∈N(vi)∪{vi}

Wj xj (2.25)

Weight-sharing is a key component of convolutional networks, so we must define the same kernel
centered around other nodes in the graph. This poses a problem illustrated in Fig. 2.4: while the
center of the kernel is well-defined, it is unclear how to map the neighbors of one node to those
of another. To address this challenge, two strategies have been proposed. The first method is
to use heuristics that minimize a distortion criterion (Grelier et al., 2016) when translating the
kernel over the graph. The second and more common approach is to assign the same coefficient
to all the neighbors of a node, resulting in:

∀vi ∈ V, GraphCNN(X)i = W1xi +
∑

vj∈N(vi)

W2xj (2.26)

This equation represents the simplest form of MPNNs, and we recognise a formula that it close to
the Deep Sets of Eq. 2.7. Non-linear versions of this function lead to the more general formulation
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Figure 2.4 – In CNNs for Euclidean data, translating kernels does not pose particular problems
(except for border effects). On graphs however, there is no obvious way to move a kernel
centered at one node to another location. The solution to this problem is to attribute the same
coefficient to all neighbors of the central node. The resulting convolution writes f(X,A)i =
W T

0 xi +
∑

vj∈N(vi)
W T

1 xj , which corresponds to a MPNN.

of MPNNs:
∀vi ∈ V, f(X)i = h(xi,

∑
vj∈N(vi)

g(xj)) (2.27)

This spatial formulation show that MPNNs constitute the most natural way to extend CNNs to
graphs, and that the use of a permutation invariant aggregation function can be explained by the
difficulty of defining a weight-sharing scheme on irregular structures. This is the approach that
motivated the pioneering work of (Scarselli et al., 2008).

2.5.2 Graph convolutions in the Fourier domain (spectral perspective)

Another perspective introduces convolutions on graphs through the Graph Fourier Transform
(GFT) and the convolution theorem. At the core of this idea is the observation that Laplacian
matrices can be defined that converge to the standard Laplacian under certain hypotheses (Hein
et al., 2005) as more and more points are sampled uniformly on a manifold.

Various definitions of the Laplacian can be used. The unnormalized Laplacian L = D −A and
the symmetric normalized Laplacian L = In −D−1/2AD−1/2 are the most popular choices, as
they lead to symmetric Laplacian matrices. However, the random walk Laplacian I −D−1A is
also a natural quantity that arises when considering the probability of visiting nodes in a random
walk.

Since the Fourier basis is the eigenbasis of the Laplacian operator on Euclidean domains, the
GFT basis is similarly defined as the eigenbasis of the graph Laplacian. Specifically, if we denote
the eigendecomposition of L by L = UTΛU , then UT is interpreted as the change of basis
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from the spatial domain to the spectral domain. The convolution theorem states that a convolution
in the spatial domain corresponds to a pointwise multiplication in the spectral domain.

Spectral Graph convolutions (Henaff et al., 2015) use the spectral theorem as a definition. It
defines the convolution of two signals x ∈ Rn and y ∈ Rn on a graph as:

x ?G y := UT (Ux�Uy) (2.28)

Here, ?G designates the graph convolution operator, and � is a point-wise multiplication. While
convolution is mathematically defined between two signals, in signal processing and machine
learning, one of the two signals constitute the kernel (or filter), while the other signal corresponds
to the data x. This can be expressed as:

f(X,A) = UT (w � (Ux)) (2.29)

wherew is a vector of learnable parameters of length n. However, this formulation is not very
convenient, as the learned filter on one graph of size n cannot be used for another graph of size
n′ 6= n. To address this limitation, spectral networks are typically constructed by defining a
differentiable function gθ : R→ R and computing:

f(X,A) = UT gθ(Λ)Ux (2.30)

Here, gθ(Λ) is obtained by applying the element-wise function gθ to the eigenvalues Λi of the
graph Laplacian, vectorizing the result as vec((gθ(Λi))i≤n)) and then mapping it to a diagonal
matrix. This formulation of spectral convolution is transferable across graphs of different sizes
and has some stability properties. Specifically, if a graph is perturbed by adding or removing
edges, it is possible to bound the change in the response of the convolutional filter (Kenlay et al.,
2021).

Despite its sound mathematical foundation, this definition of graph convolutions suffers from
some practical limitations. Firstly, its naive implementation requires the computation of the
eigendecomposition of the graph Laplacian, which has a complexity of O(n3). Moreover,
although a smooth kernel can be defined in the spectral domain to achieve fast decay in the spatial
domain, the resulting kernel is not strictly localized, which can hinder its applicability on large
graphs.

To address some of the limitations of the original spectral convolution definition, Defferrard et al.
(2016) proposed a new formulation built on the observation that Laplacian polynomials are a
particular form of spectral filters. Specifically, Laplacian polynomials can be expressed as:

K∑
k=1

αkL
k = UT (

K∑
k=1

αkΛ
k)U , (2.31)
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where L is the graph Laplacian, αk are coefficients, and Λ is a diagonal matrix containing the
eigenvalues of L. Conversely, any spectral filter can be represented as a Laplacian polynomial
with order up to n (Thanou et al., 2014; Sandryhaila & Moura, 2014).

The advantage of expressing spectral convolutions as Laplacian polynomials is that this formula-
tion eliminates the need for computing the O(n3) eigendecomposition of the graph Laplacian.
Furthermore, computing a polynomial filter at a node vi (i.e., computing (

∑K
k=1 αkL

kX)i) only
requires the K-hop neighborhood of vi, making Laplacian polynomials strictly localized filters.

To enhance computational efficiency in graph convolutional networks, Chebyshev polynomials
have been proposed as a class of orthogonal polynomials that can be efficiently computed
(Shuman et al., 2011; Defferrard et al., 2016). The use of Chebyshev polynomials allows for a
low-order approximation of the spectral filters in the Fourier domain, which can be computed
efficiently using only the graph structure and a few parameters.

It is important to note that the distinction between spectral and spatial networks is not always
clear-cut. In fact, any polynomial can be recursively formulated as

∑K
k=0 αkx

k = (βKx +

γK1)(βK−1x+γK−11)...(β1x+γ1) for a sequence (βk, γk)k ≤ K. For Laplacian polynomials,
this means that any

∑
k = 1KαkL

kX can be expressed as the recursive application of operators
of the form βL+ γI to a matrix X̃ .

In the case of the combinatorial Laplacian, we have:

[(βL+ γI)X̃]i = [(γI − βD + βA)X̃]i = (γ − βdi)xi + γ
∑

vj∈N(vi)

βx̃j

Here, we observe that applying a Laplacian polynomial of degree one to a signal can be interpreted
and implemented as a message-passing step. Laplacian polynomials, which are defined spectrally,
can therefore be implemented as MPNNs. This spatial implementation is commonly used in
practice, as it allows for leveraging the potential sparsity of the adjacency matrix.

As a result, the distinction between spatial and spectral methods is not always clear, and spectral
methods tend to be applied spatially in practice. Moreover, any linear message-passing neural
network (MPNN) admits a spectral interpretation. This interpretation has been used to build
efficient graph neural networks that can be trained without the use of graph libraries (Gasteiger
et al., 2018; Wu et al., 2019) and to demonstrate that standard architectures tend to favor
homophily (Nt & Maehara, 2019), as acted earlier.

Finally, it is important to mention the limitations of the Graph Fourier Transform. Although the
eigenbasis of the Laplacian for Euclidean data is the Fourier Transform, the GFT was introduced
as the eigenbasis of the graph Laplacian. However, the Laplacian operator is a second-order
real-valued operator, which means that it does not depend on the phase of a complex signal. As a
result, the graph Fourier Transform is real-valued, and not all properties of the Fourier transform
apply to graphs. For instance, translation on a graph is not invertible. These issues arise because
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the Fourier transform is fundamentally not defined as the eigenbasis of the Laplacian, but rather
as the irreps corresponding to a symmetry group (Kondor, 2008). Unfortunately, it is not easy to
extend this definition to graphs since there is no symmetry group that plays the exact same role
as translations for Euclidean data. In summary, the GFT is not a perfect analog of the Fourier
transform for graphs. It is still a very useful tool in many settings, but its limitations should be
kept in mind.

Conclusion

In this chapter, we have seen that Message-Passing Neural Networks can be introduced in several
ways. They can be seen as local permutation equivariant operators, as extensions of CNNs
that implement a message-passing scheme on graphs, or as fast graph spectral filters. In all
cases, a similar constraint arises, which is the fact that MPNNs need to feature a symmetric
aggregation function. This function is required to achieve permutation equivariance, but it also
has a strong impact on the expressive power of graph neural networks. First, kernels learned with
a permutation invariant aggregation are isotropic, and they cannot learn to favor one direction
over others. Second, when the nodes do not have unique identifiers, it is not possible for a node
to know where incoming messages come from. This results in several local structures that are
mapped to the same rooted subtree, which explains why MPNN are not more powerful than the
Weisfeiler-Lehman test.

In the next chapter, we will therefore introduce identifiers to alleviate the expressivity limitations
of MPNNs. We will show that it is possible to do so without losing permutation equivariance, at
the cost of manipulating higher-order tensors.
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3.1 Introduction

In previous chapter, we have seen that MPNNs are able to exploit the sparsity of graphs, have
an inductive bias that is considered as well-suited to relational reasoning (Xu et al., 2020a), and
satisfy permutation equivariance. As a result, they have become very popular on tasks such
as such as tractable relational inference (Yoon et al., 2019; Satorras et al., 2019), problems in
combinatorial optimization (Khalil et al., 2017; Li et al., 2018b; Joshi et al., 2019; Karalias &
Loukas, 2020) or the simulation of physical interactions between objects (Battaglia et al., 2016;
Sanchez-Gonzalez et al., 2018).

Despite their success, equivariant MPNNs possess limited expressive power (Xu et al., 2019;
Morris et al., 2019), and cannot detect whether a graph is connected or if it contains cycles (Chen
et al., 2020). For tasks where the graph structure is important, such as the prediction of chemical
properties of molecules (Elton et al., 2019; Sun et al., 2019) and the solution to combinatorial
optimization problems, more powerful graph neural networks are necessary.

Aiming to address these challenges, this work puts forth structural message-passing (SMP)—a
new type of graph neural network that is strictly more powerful than MPNNs, while also sharing
the attractive inductive bias of message-passing architectures. SMP inherits its power from its
ability to manipulate node identifiers. However, in contrast to previous studies that relied on
identifiers (Murphy et al., 2019; Loukas, 2020a), it does so in a permutation equivariant way
without introducing new sources of randomness. As a result, SMP can be powerful without
sacrificing its ability to generalize to unseen data. In particular, we show that if SMP is built out
of powerful layers, the resulting model is computationally universal over the space of equivariant
functions.

Concretely, SMP maintains at each node a matrix called “local context” (instead of a feature
vector as in MPNNs) that is initialized with a one-hot encoding of the nodes and the node features.
These local contexts are then propagated in such a way that a permutation of the nodes or a
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change in the one-hot encoding will reorder the lines of each context without changing their
content, which is key to efficient learning and good generalization.

We evaluate SMP on a diverse set of structural tasks that are known to be difficult for message-
passing architectures, such as cycle detection, connectivity testing, diameter and shortest path
distance computation. In all cases, our approach compares favorably to previous methods: for
example, SMP solves cycle detection in all evaluated configurations, whereas other powerful
networks struggle when the graphs become larger, and MPNNs do not manage to solve the task
completely.

Finally, we evaluate our method on the ZINC chemistry dataset and achieve state-of-the-art
performance among methods that do not use expert features. It shows that SMP is able to
successfully learn both from the features and from topological information, which is essential in
chemistry applications. Overall, our method is able to overcome a major limitation of MPNNs,
while retaining their ability to process features with a bias towards locality.

3.2 Related work

3.2.1 Permutation equivariant graph neural networks

In order to build equivariant networks that are more expressive than the 1-WL test, (Morris
et al., 2019) proposed to exploit the hierarchy of higher-dimensional k-WL tests. However, these
higher-order networks are global, in the sense that they iteratively update the state of a k-tuple of
nodes based on all other nodes (and not only neighbours), a procedure which is very costly both in
time and memory. While a faster procedure was proposed in Morris et al. (2020) concurrently to
our work, key differences with SMP remain: we propose to learn richer embeddings for each node
instead of one embedding per k-tuple of nodes, and build our theoretical analysis on distributed
algorithms rather than vertex refinement methods.

Recent studies have also characterized the expressive power of MPNNs from other perspectives,
such as the ability to approximate continuous functions on graphs (Chen et al., 2019) and solutions
to combinatorial problems (Sato et al., 2019), highlighting similar limitations of MPNNs — see
also (Barceló et al., 2019; Geerts et al., 2020; Sato, 2020; Garg et al., 2020; Magner et al., 2020).

Beyond higher-order message-passing architectures, there have been efforts to construct more
powerful equivariant networks. One way to do so is to incorporate hand-crafted topological
features (such as the presence of cliques or cycles) Bouritsas et al. (2022), which requires expert
knowledge on what features are relevant for a given task. A more task-agnostic alternative is
to build networks by arranging together a set of simple permutation equivariant functions and
operators. These building blocks are:

• Linear equivariant functions between tensors of arbitrary orders: a basis for these func-
tions was computed by Maron et al. (2018), by solving the linear system imposed by
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equivariance.
• Element-wise functions, applied independently to each feature of a tensor.
• Operators that preserve equivariance, such as +, −, tensor and elementwise products,

composition and concatenation along the dimension of the channels.

Similarly to Morris et al. (2019), networks built this way obtain a better expressive power than
MPNN by using higher-order tensors (Kondor et al., 2018; Maron et al., 2018). Since k-th order
tensors can represent any k-tuple of nodes, architectures manipulating them can exploit more
information to compute structural properties (and be as powerful as the k-WL test). Unfortunately,
memory requirements are exponential in the tensor order, which makes these methods of little
practical interest. More recently, Maron et al. (2019a) proposed provably powerful graph networks
(PPGN) based on the observation that the use of matrix multiplication can make their model more
expressive for the same tensor order. This principle was also used in the design of Ring-GNN
(Chen et al., 2019), which has many similarities with PPGN. Key differences between such
methods and ours are that (i) SMP can be parametrized to have a lower time complexity, due to
the ability of message-passing to exploit the sparsity of adjacency matrices, (ii) SMP retains the
message-passing inductive bias, which is different from PPGN and, as we will show empirically,
makes it better suited to practical tasks such as the detection of substructures in a graph.

3.2.2 Non-equivariant graph neural networks

In order to better understand the limitations of current graph neural networks, analogies with
graph theory and distributed systems have been exploited. In these fields, a large class of problems
cannot be solved without using node identifiers (Alon et al., 1995; Suomela, 2013). The reasoning
is that, in message-passing architectures, each node has access to a local view of the graph created
by the reception of messages. Without identifiers, each node can count the number of incoming
messages and process them, but cannot tell from how many unique nodes they come from. They
are therefore unable to reconstruct the graph structure.

This observation has motivated researchers to provide nodes with randomly selected identifiers
(Murphy et al., 2019; Loukas, 2020a; Dasoulas et al., 2019; Sato et al., 2020). Encouragingly, by
showing the equivalence between message-passing and a model in distributed algorithms, Loukas
(2020a) proved that graph neural networks with identifiers and sufficiently expressive message
and update functions can be Turing universal, which was also confirmed on small instances of
the graph isomorphism problem (Loukas, 2020b).

Nevertheless, the main issue with these approaches is sample efficiency. Identifiers introduce a
dependency of the network on a random input and the loss of permutation equivariance, causing
poor generalization. Although empirical evidence has been presented that the aforementioned
dependency can be overcome with large amounts of training data or other augmentations (Mur-
phy et al., 2019; Loukas, 2020b), overfitting and optimization issues can occur. In this work,
we propose to overcome this problem by introducing a network which is both powerful and
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Figure 3.1 – In the SMP model, each local contextU (l)
i is an n× cl matrix, with each row storing

the cl-dimensional representation of a node (denoted by color). The figure shows the local context
in the output of the first layer and blank rows correspond to nodes that have not been encountered
yet. Upon node reordering, the lines of the local context are permuted but their content remains
unchanged.

permutation equivariant.

3.3 Structural message-passing

We present the structural message-passing neural networks (SMP), as generalization of MPNNs
that follows a similar design principle. However, rather than processing vectors with permutation
invariant operators, SMP propagates matrices and processes them in a permutation equivariant
way. This subtle change greatly improves the network’s ability of to learn information about the
graph structure.

3.3.1 Method

In SMP, each node of a graph maintains a local context matrix Ui ∈ Rn×c rather than a feature
vector xi ∈ Rdx as in MPNN. The j-th row of Ui contains the c-dimensional representation that
node vi has of node vj . Intuitively, equivariance means that the lines of the local context after
each layer are simply permuted when the nodes are reordered, as shown in Fig. 3.1.

Initialization The local context is initialized as a one-hot encoding U (0)
i = 1i ∈ Rn×1 for

every vi ∈ V , which corresponds to having initially a unique identifier for each node. In addition,
if there are features xi associated with node vi, they are appended to the same row of the local
context as the identifiers: U (0)

i [i, :] = [1,xi] ∈ R1+dx . Later, we will show that when SMP
is parameterized in the proper way, the ordering induced by the one-hot encoding is actually
irrelevant to the output.

Layers At layer l + 1, the state of each node is updated as in standard MPNNs (Battaglia et al.,
2018): messages are computed on each edge before being aggregated into a single matrix via a
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symmetric function. The result can then be updated using the local context of previous layer at
this node:

U
(l+1)
i = u(l)

(
U

(l)
i , Ũ

(l)
i

)
∈ Rn×cl+1 with Ũ

(l)
i = φ

({
m(l)(U

(l)
i ,U

(l)
j ,yij)

}
vj∈N(vi)

)
Above, u(l), m(l), φ are the update, message and aggregation functions of the (l + 1)-th layer,
respectively, whereas cl+1 denotes the layer’s width.

It might be interesting to observe that, starting from a one-hot encoding and using the update rule
U

(l+1)
i =

∑
vj∈N(vi)

U
(l)
j , SMP iteratively compute powers ofA. SinceAl[i, j] corresponds to

the count of walks of length l between vi and vj , there is a natural connection between the propa-
gation of identifiers and the detection of topological features: even with simple parametrizations,
SMP can manipulate polynomials in the adjacency matrix and therefore learn spectral properties
(Sandryhaila & Moura, 2014) that MPNNs cannot detect. In the following, it will be convenient
to express each SMP layer f (l) in a tensor form:

U(l+1) = f (l)(U(l),Y,A) = [U
(l+1)
1 , . . . ,U (l+1)

n ] ∈ Rn×n×cl+1

Pooling After all L message-passing layers have been applied, the aggregated contexts U(L)

can be pooled to a vector or to a matrix (e.g, for graph and node classification, respectively). To
obtain an equivariant representation for node classification, we aggregate each U (L)

i ∈ Rn×cL
into a vector using an invariant neural network for sets σ (Zaheer et al., 2017; Qi et al., 2017)
applied simultaneously to each node vi:

feq(U(0),Y,A) = σ ◦ f (L) ◦ · · · ◦ f (1)(U(0),Y,A) ∈ Rn×c,

whereas a permutation invariant representation is obtained after the application of a pooling
function pool. It may be a simple sum or average followed by a soft-max, or a more complex
operator (Ying et al., 2018):

finv(U(0),Y,A) = pool ◦ feq(U(0),Y,A) ∈ Rc

3.3.2 Analysis

The following section characterizes the equivariance properties and representation power of SMP.

Equivariance Before providing sufficient conditions for permutation equivariance, we define
it formally. A change in the ordering of n nodes can be described by a permutation π of the
symmetric group Sn. π acts on a tensor by permuting the axes indexing nodes (but not the other
axes):

(π . U)[i, j, k] = U[π−1(i), π−1(j), k], where U ∈ Rn×n×c
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For vector and matrices, the action of a permutation is more easily described g the matrix
π canonically associated to π: π.z = z for z ∈ Rc, π.X = πTX for X ∈ Rn×c, and
π.A = πTA π for A ∈ Rn×n. An SMP layer f is said to be permutation equivariant if
permuting the inputs and applying f is equivalent to first applying f and then permuting the
result:

∀π ∈ Sn, π . f(U,Y,A) = f(π.U, π.Y, π.A))

We stress that an equivariant SMP network should yield the same output (up to a permutation) for
every one-hot encoding used to construct the node identifiers. We can now state some sufficient
conditions for equivariance:

Theorem 1 (Permutation equivariance). Let functions m, φ and u be permutation equivariant,
that is, for every permutation π ∈ Sn we have u(π.U , π.U ′) = π.u(U ,U ′), φ({π.Uj}vj∈N(vi)) =

π.φ({Uj}vj∈N(vi)), and m(π.U , π.U ′,y) = π.m(U ,U ′,y).
Then, SMP is permutation equivariant.

Proof. Let f be a layer of SMP:

f(U,Y,A)[i, :, :] = u(Ui, φ({m(Ui,Uj ,yij)}vj∈N(vi))) = u(Ui, φ({m(Ui,Uj ,yij)}vj :A[i,j]>0))

The action of a permutation π on the inputs is defined as f(π.(U,Y,A)) = f(π.U, π.Y, π.A).
In order to simplify notation, we will consider π−1 instead of π. We have for example
(π−1.A)[i, j] = A[πi, πj ] and (π−1.U)[i, j, k] = U[πi, πj , k], which can be written as

(π−1.U)[i, :, :] = π Uπi .

As shown next, the theorem’s conditions suffice to render SMP equivariant:

f(π−1.(U,Y,A))i:: = u(π Uπi , φ({m(π Uπi , π Uπj , yπiπj )}vj :A[πi,πj ]>0))

= u(π Uπi , φ({m(π Uπi , π Uk, yπik)}vk:A[πi,k]>0)) (π bijective)

= u(π Uπi ,π φ({m(Uπi ,Uk,yπik)}vk:A[πi,k]>0)) (φ, m equivariant)

= π u(Uπi , φ({m(Uπi ,Uk,yπik)}vk:A[πi,k]>0)) (u equivariant)

= π f(U,Y,A)[πi, :, :]

= (π−1.f(U,Y,A))[i, :, :],

which matches the definition of equivariance.

This theorem defines the class of functions that can be used in our model. For example, if the
message and update functions are operators applied simultaneously to each row of the local
context, the whole layer is guaranteed to be equivariant. However, more general functions can

40



Structural message-passing Chapter 3

be used: each Ui is a n× c matrix which can be viewed as the representation of a set of nodes.
Hence, any equivariant neural network for sets can be used, which allows the network to have
several desirable properties:

• Inductivity: as an equivariant neural network for sets can take sets of different size as input,
SMP can be trained on graphs with various sizes as well. Furthermore, it can be used in
inductive settings on graphs whose size has not been seen during training, which we will
confirm experimentally.
• Invariance to local isomorphisms: SMP learns structural embeddings, in the sense that

it yields the same result on isomorphic subgraphs. More precisely, if the subgraphs Gki
and Gkj induced by G on the k-hop neighborhoods of vi and vj are isomorphic, then on
node classification, any k-layer SMP f will yield the same result for vi and vj . This is in
contrast with several popular methods (Zhang & Chen, 2018; You et al., 2019) that learn
positional embeddings which do not have this property.

Representation and expressive power The following theorem characterizes the representation
power of SMP when parametrized with powerful layers. Simply put, Theorem 2 asserts that it is
possible to parameterize an SMP network such that it maps non-isomorphic graphs to different
representations:

Theorem 2 (Representation power – informal). Consider the class S of simple graphs with
n nodes, diameter at most ∆ and degree at most dmax. We assume that these graphs have
respectively dx and dy attributes on the nodes and the edges. Then, there exists a SMP network f
of depth at most ∆ + 1 and width at most 2dmax + dx + n dy such that the full structure of any
graph in S (with the attributes) can be recovered from the output of f at any node.

The formal statement and the proof are detailed in Appendix A.1. We first show the result for the
simple case where f can pass messages of size n× n, and then consider the case of n× 2dmax

matrices using the following lemma:

Lemma 1 (Maehara & Rödl (1990)). For any simple graphG = (V,E) of n nodes and maximum
degree dmax, there exists a unit-norm embedding of the nodesX ∈ Rn×2dmax such that for every
vi, vj ∈ V, (vi, vj) ∈ E ⇐⇒ 〈Xi,Xj〉 = 0 .

The universality of SMP is a direct corollary: since each node can have the ability to reconstruct
the adjacency matrix from its local context, it can also employ a universal network for sets (Zaheer
et al., 2017) to compute any equivariant function on the graph. Interestingly, this result shows that
propagating matrices instead of vectors might be a way to solve the bottleneck problem (Alon &
Yahav, 2020): while MPNNs need feature maps that exponentially grow with the graph size in
order to recover the topology, SMPs can do it with O(dmaxn

2) memory.

Corollary 1 (Expressive power). Let G be a simple graph of diameter at most ∆ and degree at
most dmax. Consider an SMP f = f (L) ◦ · · · ◦ f (1) of depth L = ∆ and width 2dmax + dx + n dy
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satisfying the properties of Theorem 4. Then, any equivariant function can be computed as
feq = σ ◦ f , where σ is a universal function of sets applied simultaneously to each node.
Similarly, any permutation invariant function can be computed as fin = 1

n

∑
vi∈V σ ◦ f .

Proof. Lemma 1 proves the existence of an injective mapping from adjacency matrices of simple
graphs to features for a set of nodes. Therefore, any permutation equivariant function heq(A) on
adjacency matrices can be expressed by an equivariant function on sets

∀vi ∈ V, heq(A) = h′eq(U) with U [i, :] = ui ∈ R2dmax+dx+n dy

as long as the node embeddings u1, . . . ,un allow the reconstruction ofA, e.g., through orthogo-
nality conditions. It was proven in Theorem 4 that, under the corollary’s conditions, the local
context U (L)

i of any node vi yields an appropriate matrix U . In order to compute heq, each node
can then rely on the universal σ to compute the invariant function:

h′′inv(U ,1i) = h′eq(U)[i, :] = heq(A)[i, :] ∈ Rc.

For invariant functions hin(A) ∈ Rc, it suffices to build the equivariant function heq(A) =

[hin(A), . . . , hin(A)] ∈ Rn×c. Then, if each node vi computes heq(A)[i, :] = hin(A), averaging
will yield 1

n

∑
vi∈V heq(A)[i, :] = hin(A), as required.

These results show that two components are required to build a universal approximator of
functions on graphs. First, one needs an algorithm that breaks symmetry during message passing,
which SMP manages to do in an equivariant manner. Second, one needs powerful layers to
parameterize the message, aggregation and update functions. Here, we note that the proofs of
Theorem 2 and Corollary 1 are not constructive and that deriving practical parametrizations
that are universal remains an open question (Keriven & Peyré, 2019). Nevertheless, we do
constructively prove the following more straightforward claim using a simple parametrization:

Proposition 1. SMP is strictly more powerful than MPNN: SMP can simulate any MPNN with
the same number of layers, but MPNNs cannot simulate all SMPs.

First part of the proof: SMPs are at least as powerful as MPNNs We will show by induction
that any MPNN can be simulated by an SMP:

Lemma 2. For any MPNN mapping initial node features (x
(0)
i )vi∈V to (x

(L)
i )vi∈V , there is an

SMP with the same number of layers such that

∀ vi ∈ V, ∀ l ≤ L, U(l)[i, i, :] = x
(l)
i and ∀j 6= i, U(l)[i, j, :] = 0.

Proof. Consider a graph with node features (x
(0)
i )vi∈V and edge features (yij)(vi,vj)∈E .
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Initialization: The context tensor is initialized by mapping the node features on the diagonal of
U: U(0)[i, i, : ] = x

(0)
i . The desired property is then true by construction.

Inductive step: Denote by (x
(l)
i )vi∈V the features obtained after l layers of the MPNN. Assume

that there is a k-layer SMP such that the local context after l layers contains the same features in
its diagonal elements: U(l)[i, i, :] = x

(l)
i and 0 in the other entries. Consider one additional layer

of MPNN:
x

(l+1)
i = u(x

(l)
i , φ({m(x

(l)
i ,x

(l)
j ,yij)}j∈N(vi)))

and the following SMP layer:

U
(l+1)
i = diag(ũ(U

(l)
i , φ̃({m̃(11T U

(l)
i ,11T U

(l)
j ,yij)}j∈N(vi)))),

where m̃, φ̃ and ũ respectively apply the functions m,φ and u simultaneously on each line of
the local context Ui. As the only non-zero line of Ui is Ui[i, :], 11TU

(l)
i replicates the i-th line

of U (l)
i on all the other lines, so that they all share the same content x(l)

i . After the application of
the message passing functions m̃, φ̃ and ũ, all the lines of Ui therefore contain x(l+1)

i .

Finally, the function diag extracts the main diagonal of the tensor U along the two first axes. Let
δi,j be the function that is equal to 1 if i = j and 0, otherwise. We have: diag(U)[i, j, :] = U[i, j, :

] δi,j . Note that this function can equivalently be written as an update function applied separately
to each node: diag(Ui)[j, :] = Ui[j, :]δi,j . We now have U(l+1)[i, i; :] = xl+1

i and U equal to 0

on all the other entries, so that the induction hypothesis is verified at layer l + 1. As any MPNN
can be computed by an SMP, we conclude that SMPs are at least as powerful as MPNNs.

Second part: SMP networks are strictly more powerful than MPNNs To prove that SMPs
are strictly more powerful than MPNNs, we use a similar argument to Chen et al. (2019); Maron
et al. (2019a):

Lemma 3. There is an SMP network which yields different outputs for the two graphs of Fig. 3.2,
while any MPNN will view these graphs are isomorphic.

Figure 3.2 – While MPNNs cannot distinguish between two regular graphs such as these ones,
SMPs can.

Proof. The two graphs of Fig. 3.2 are regular, which implies that they cannot be distinguished by
the Weisfeiler-Lehman test or by MPNNs without special node features (Maron et al., 2019a).
On the contrary, consider an SMP f made of three layers computing U (l+1)

i =
∑

vi∈N(vi)
U

(l)
i ,

followed by the trace of U (3) as a a pooling function. As each layer can be written U (l+1) =
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AU (l) and U (0) = In, we have f(A) = tr(A3). In particular f(A) = 2 for the graph on the
left, while f(A) = 0 on the right.

3.4 Implementation

SMP offers a lot of flexibility in its implementation, as any equivariant function that combines the
local context of two nodes and the edge features can be used. We propose two implementations
that we found to work well, but our framework can also be implemented differently. In both
cases, we split the computation of the messages in two steps. First, the local context of each
node is updated using a neural network for sets. Then, a standard message passing network is
applied separately on each row of the local contexts. For the first step, we use a subset of the
linear equivariant functions computed by Maron et al. (2018):

∀vi ∈ V, Û
(l)
i = U

(l)
i W

(l)
1 +

1

n
1n 1Tn U

(l)
i W

(l)
2 + 1n(c(l))> +

1

n
1i1

TU
(l)
i W

(l)
3 ,

where 1n ∈ Rn×1 is a vector of ones, 1i ∈ Rn×1 the indicator of vi, whereas (W
(l)
k )1≤k≤5

and c(l) are learnable parameters. As for the message passing architecture, we propose two
implementations with different computational complexities:

Default SMP This architecture corresponds to a standard MPNN, where the message and
update functions are two-layer perceptrons. We use a sum aggregator normalized by the average
degree davg over the graph: it retains useful properties of the sum (Xu et al., 2019), while also
avoiding the exploding-norm problem (Velickovic et al., 2020). This network can be written:

m
(l)
def(Û

(l)
i , Û

(l)
j ,yij) = MLP(Û

(l)
i , Û

(l)
j ,yij) (3.1)

U
(l+1)
i = MLP(Û

(l)
i ,
∑

vj∈N(vi)
m

(l)
def(U

(l)
i ,U

(l)
j ,yij)/davg),

Fast SMP For graphs without edge features, we propose a second implementation with a
message function that uses a point-wise multiplication �:

m
(l)
fast(Û

(l)
i , Û

(l)
j ) = Û

(l)
j +

(
Û

(l)
i W

(l)
4

)
�
(
Û

(l)
j W

(l)
5

)
,

whereW4 andW5 are learnable matrices. The aggregation is the same, and the update is simply
a residual connection, so that the l-th SMP layer updates each node’s local context as

U
(l+1)
i = Û

(l)
i + 1

davg

∑
vj∈N(vi)

m
(l)
fast(U

(l)
i ,U

(l)
j )

= Û
(l)
i +

(∑
vj∈N(vi)

Û
(l)
j + Û

(l)
i W

(l)
4 �

∑
vj∈N(vi)

Û
(l)
j W

(l)
5

)
/davg

In this last equation, the arguments of the two sums are only functions of the local context of
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node vj . This allows for a more efficient implementation, where one message is computed per
node, instead of one per edge as in default SMP. One might notice that Fast SMP can be seen as a
local version of PPGN:

Proposition 2. A Fast SMP with k layers can be approximated by a 2k-block PPGN.

Proof. We will prove by induction that any Fast SMP layer can be approximated by two blocks
of PPGN. It implies that the expressive power of Fast SMP is bounded by that of PPGN.

Recall that a block of PPGN is parameterized as:

T(l+1) = m4(m3(T(l))‖m1(T(l)) @ m2(T(l))),

where mk are MLPs acting over the third dimension of T ∈ Rn×n×c: ∀(i, j), mk(T)[i, j, :] =

mk(T[i, j, :]). Symbol ‖ denotes concatenation along the third axis and @ matrix multiplication
performed in parallel on each channel: (T @ T′)[:, :, c] = T[:, :, c] T′[:, :, c].

To simplify the presentation, we assume that:

• At each layer l, one of the channels of T(l) corresponds to the adjacency matrixA, another
contains a matrix full of ones 1n1

>
n and a third the identity matrix In, so that each PPGN

layer has access at all times to these quantities. These matrices can be computed by the
first PPGN layer and then kept throughout the computations using residual connections.
• The neural network can compute entry-wise multiplications �. This computation is not

possible in the original model, but it can be approximated by a neural network.
• U and T have only one channel (so that we write them U and T ). This hypothesis is not

necessary, but it will allow us to manipulate matrices instead of tensors.

Initialization Initially, we simply use the same input for PPGN as for SMP (U (0) = T (0) = In).

Induction Assume that at layer l we have U (l) = T (l). Consider a layer of Fast SMP:

U
(l+1)
i =

1

davg

 ∑
vj∈N(vi)

Û
(l)
j + Û

(l)
i W

(l)
4 �

∑
vj∈N(vi)

Û
(l)
j W

(l)
5

 ,

where

Û
(l)
i = U

(l)
i W

(l)
1 +

1

n
1n 1Tn U

(l)
i W

(l)
2 + 1n(c(l))> +

1

n
1i1

TU
(l)
i W

(l)
3 .

A first PPGN block can be used to compute Û (l)
i for each node. This block is parameterized by:

m1(U (l)) =
1

n
1n 1Tn, m2(U (l)) = U (l),

m3(U (l)) = U (l) W1 + 1cT + (In � U (l))W3, m4(Û , Ũ) = Û + Ũ W2 + In � (Ũ W3)
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Table 3.1 – Time and space complexity of the forward pass expressed in terms of number of
nodes n, number of edges m, number of node colors χ, and width c. For connected graphs, we
trivially have χ ≤ n ≤ m+ 1 ≤ n2.

Method Memory per layer Time complexity per layer

GIN (Xu et al., 2019) Θ(n c) Θ(m c+ n c2)
MPNN (Gilmer et al., 2017) Θ(n c) Θ(m c2)

Fast SMP (with coloring) Θ(n χ c) Θ(m χ c+ n χ c2)
Fast SMP Θ(n2 c) Θ(m n c+ n2 c2)
SMP Θ(n2 c) Θ(m n c2)
PPGN (Maron et al., 2019a) Θ(n2 c) Θ(n3 c+ n2 c2)
Local order-3 WL (Morris et al., 2019) Θ(n3 c) Θ(n4 c+ n3 c2)

The output of this block exactly corresponds to Û (l). Then, a second PPGN block can be used to
compute the rest of the Fast SMP layer. It should be parameterized as:

m1([Û (l)]) = A / d̄, m2([Û (l)]) = Û (l),

m3([Û (l)]) = Û (l), m4(Û (l), Ũ) = Ũ + (Û (l) W4) � (Ũ W5)

By plugging these expressions into the definition of a PPGN block, we obtain that the output of
this block corresponds to U (l+1) as desired.

Despite not being more powerful, Fast SMP has the advantage of being more efficient than PPGN,
as it can exploit the sparsity of adjacency matrices. Furthermore, as we will see experimentally,
our method manages to learn topological information much more easily than PPGN, a property
that we attribute to the inductive bias carried by message-passing.

Complexity Table 3.1 compares the per-layer space and time complexity induced by the
forward pass of SMP with that of other standard graph networks. Whereas local order-3 Weisfeiler-
Lehman networks need to store all triplets of nodes, both PPGN and SMP only store information
for pairs of nodes. However, message-passing architectures (such as SMP) can leverage the
sparsity of the adjacency matrix and hence benefit from a more favorable time complexity than
architectures which perform global updates (as PPGN).

An apparent drawback of SMP (shared by all equivariant powerful architectures we are aware of)
is the need for more memory than MPNN. This difference is partially misleading since it is known
that the width of any MPNN needs to grow at least linearly with n (for any constant depth) for it
to be able to solve many graph-theoretic problems (Loukas, 2020a; Corso et al., 2020; Loukas,
2020b). However, for graphs with a large diameter, the memory requirements of SMP can be
relaxed by using the following observation: if each node is colored differently from all nodes in
its 2k-hop neighborhood, then no node will see the same color twice in its k-hop neighborhood.
It implies that nodes which are far apart can use the same identifier without conflict. We propose
below a procedure (Fast SMP with coloring) based on greedy coloring which can replace the
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Figure 3.3 – (left) Architecture for cycle detection. The graph extractor computes the trace and the
sum along the two first axes of U, and passes the result into a two-layer MLP in order to produce
a set of global features. (right) Architecture for multi-task learning: after each convolution, node
features are extracted using a two-layer MLP followed by three pooling methods (mean, max, and
the extraction of U[i, i, :] for each vi ∈ V ), and a final linear layer. The rest of the architecture is
similar to Corso et al. (2020): it uses a Gated Recurrent Unit (GRU) and a Set-to-set network
(S2S).

initial one-hot encoding, so that each node can manipulate smaller matrices Ui. This method
allows to theoretically improve both the time and space complexity of SMP, although the number
of colors needed usually grows fast with the number of layers in the network.

Fast SMP with coloring In SMP, the initial local context is a one-hot encoding of each node:
U

(0)
i = δi ∈ Rn. When the graph diameter ∆ is large compared to the number of layers

L, the memory requirements of this one-hot encoding can be reduced by attributing the same
identifiers to nodes that are far away from each other. In particular, no node should see twice
the same identifier in its L-hop neighborhood. To do so, we propose to build a graph G′ where
all 2L-hop neighbors of G are connected, and to perform a greedy coloring of G′ (Algorithm
1). Although the number of colors χ used by the greedy coloring might not be optimal, this
procedure guarantees that identifiers do not conflict.

Algorithm 1: Node coloring
Input: A graph G = (V,E) with n nodes, L ∈ N (number of layers.)
Output: A binary matrix U0

i ∈ Rn×χ, where χ is the number of colors.
Create the graph G′ = (V, {(i, j), d(i, j}) ≤ 2L)
c ∈ Rn ← greedy_coloring(G′)
return one_hot_encoding(c)

The one-hot encoding of the colorsU0
i ∈ Rχ is then used to initialize the local context of vi. The

only change in the SMP network is that in order to update the representation that node i has of
node j, we now update Ui[cj , :] instead of Ui[j, :], where cj is the color associated to node vj .
Note however that the coloring is only useful if the graph has a diameter ∆ > 2L. This is usually
the case in geometric graphs such as meshes, but often not in scale-free networks.
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Table 3.2 – Experiments on cycle detection, viewed as a graph classification problem.

(a) Test accuracy on the detection of cycles of various length with 10,000 training samples. (Best seen in
color.) Only SMP solves the problem in all configurations.

Cycle length 4 6 8

Graph size 12 20 28 36 20 31 42 56 28 50 66 72

MPNN 98.5 93.2 91.8 86.7 98.7 95.5 92.9 88.0 98.0 96.3 92.5 89.1
GIN 98.3 97.1 95.0 93.0 99.5 97.2 95.1 92.7 98.5 98.8 90.8 92.5
GIN + degree 99.3 98.2 97.3 96.7 99.2 97.1 97.1 94.5 99.3 98.7 95.4
GIN + rand id 99.0 96.2 94.9 88.3 99.0 97.8 95.1 96.1 98.6 98.0 97.2 95.3
RP Murphy et al. (2019) 100 99.9 99.7 97.7 99.0 97.4 92.1 84.1 99.2 97.1 92.8 80.6
PPGN 100 100 100 99.8 98.3 99.4 93.8 87.1 99.9 98.7 84.4 76.5
Ring-GNN 100 99.9 99.9 99.9 100 100 100 100 99.1 99.8 74.4 71.4
SMP 100 100 100 100 100 100 100 100 100 100 100 99.9

(b) Test accuracy (%) when evaluating the generalization ability of inductive networks. Each network
is trained on one graph size (“In-distribution”), validated on a second size, then tested on a third (“Out-
of-distribution”). SMP is the only powerful network evaluated that generalizes well. OOM = out of
memory.

Setting In-distribution Out-of-distribution

Cycle length 4 6 8 4 6 8
Graph size 20 31 50 36 56 72

GIN 93.9 99.7 98.8 81.1 85.8 88.8
PPGN 99.9 99.5 98.7 50.0 50.0 50.0
Ring-GNN 100 100 99.9 50.0 50.0 OOM
SMP 100 99.8 99.5 99.8 87.8 79.5

(c) Test accuracy (%) on the detection of 6 cycles for graphs with 56 nodes trained on less data. Thanks to
its equivariance properties, SMP requires much less data for training.

Train samples 200 500 1000 5000

GIN + random identifiers 65.8 70.8 80.6 96.4
SMP 87.7 97.4 97.6 99.5

3.5 Experiments

Cycle detection

We first evaluate different architectures on the detection of cycles of length 4, 6 and 8 (for several
graph sizes), implemented as a graph classification problem1. Models are retrained for each cycle
length and graph size on 10k samples with balanced classes, and evaluated on 10, 000 samples
as well. The same architecture (detailed in Figure 3.3) is used for all models, as we found it to
perform better than the original implementation of each method: the methods under comparison
thus only differ in the definition of the convolution, making comparison easy. We use the fast
implementation of SMP, as we find its expressivity to be sufficient for this task.

1Our implementation with PyTorch Geometric (Fey & Lenssen, 2019) is available at github.com/cvignac/
SMP.
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Figure 3.4 – Training curves of SMP, PPGN and Ring-GNN for different cycle lengths k. NLL
stands for negative log-likelihood. Red dots indicate the epoch when SMP training was stopped.
The training loss sometimes exhibits peaks of very high value which last one epoch – they were
removed for readability. Provably powerful graph networks are much more difficult to train than
SMP: their failure is not due to a poor generalization, but to the difficulty of optimizing them.
Ring-GNN works well for small graphs, but we did not manage to train it with the largest graphs
(66 or 72 nodes). We attribute this phenomenon to an inductive bias that is less suited to the
task. PPGN and SMP training time per epoch are approximately the same, while RING-GNN is
between two and three times slower.

Results are shown in Tab 3.2. For a given cycle length, the task becomes harder as the number of
nodes in the graph grows: the bigger the graph, the more candidate paths that the network needs
to verify as being cycles. SMP is able to solve the task almost perfectly for all graph and cycle
sizes. For standard message-passing models, we observe a correlation between accuracy and
the presence of identifiers: random identifiers and weak identifiers (a one-hot encoding of the
degree) tend to perform better than the baseline GIN and MPNN. PPGN and RING-GNN solve
the task well for small graphs, but fail when n grows. Perhaps due to a miss-aligned inductive
bias, we encountered difficulties with training them, whereas message-passing architectures
could be trained more easily. We provide a more detailed comparison between SMP, PPGN and
Ring-GNN in Figure 3.4. We also compare the generalization ability of the different networks
that can be used in inductive settings. GIN generalizes well, but SMP is the only one that achieves
good performance among the powerful networks. This may be imputable to the inductive bias
of message passing architectures, shared by GIN and SMP. Finally, we compare SMP and GIN
with random identifiers in settings with less training data: SMP requires much fewer samples
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Table 3.3 – Log MSE on the test set (lower is better). Baseline results are from Corso et al.
(2020).

Model Average Dist. Ecc. Lap. Conn. Diam. Rad.

GIN −1.99 −2.00 −1.90 −1.60 −1.61 −2.17 −2.66
GAT −2.26 −2.34 −2.09 −1.60 −2.44 −2.40 −2.70
MPNN (sum) −2.53 −2.36 −2.16 −2.59 −2.54 −2.67 −2.87
PNA −3.13 −2.89 −2.89 −3.77 −2.61 −3.04 −3.57

Fast MPNN (Ablation) −2.37 −2.47 −1.99 −2.83 −1.61 −2.40 −2.93
MPNN (Ablation) −2.77 −3.18 −2.05 −3.27 −2.24 −2.88 −2.97

Fast SMP −3.53 −3.31 −3.36 −4.30 −2.72 −3.65 −3.82
SMP −3.59 − 3.59 −3.67 −4.27 −2.97 −3.58 −3.46

to achieve good performance, which confirms that equivariance is important for good sample
efficiency.

Multi-task detection of graph properties

We further benchmark SMP on the multi-task detection of graph properties proposed in Corso
et al. (2020). The goal is to estimate three node-defined targets: geodesic distance from a given
node (Dist.), node eccentricity (Ecc.), and computation of Laplacian features Lx given a vector
x (Lap.), as well as three graph-defined targets: connectivity (Conn.), graph diameter (Diam.),
and spectral radius (Rad.). The training set is composed of 5120 graphs with up to 24 nodes,
while graphs in the test set have up to 19 nodes. Several MPNNs are evaluated as well as PNA
(Corso et al., 2020), a message-passing model based on the combination of several aggregators.
Importantly, random identifiers are used for all these models, so that all baseline methods are
theoretically powerful (Loukas, 2020a), but not equivariant.

All models are benchmarked using the same architecture, apart from the fact that SMP manipulates
local contexts. In order to pool these contexts into node features and use them as input to the Gated
Recurrent Unit (Cho et al., 2014), we use an extractor described in Figure 3.3. As an ablation
study, we also consider for each model a corresponding MPNN with the same architecture.

The results are summarized in Table 3.3. We find that both SMPs are able to exploit the local
contexts, as they perform much better than the corresponding MPNN. SMP also outperforms
other methods by a significant margin. Lastly, standard SMP tends to achieve better results than
fast SMP on tasks that require graph traversals (shortest path computations, eccentricity, checking
connectivity), which may be due to a better representation power.

Constrained solubility regression on ZINC

The ZINC database is a large scale dataset containing molecules with up to 37 atoms. The
task is to predict the constrained solubility of each molecule, which can be seen as a graph
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Table 3.4 – Mean absolute error (MAE) on ZINC, trained on a subset of 10k molecules.

Model No edge features With edge features
Gated-GCN Fey et al. (2020) 0.435 0.282
GIN Fey et al. (2020) 0.408 0.252
PNA Corso et al. (2020) 0.320 0.188
DGN Beaini et al. (2021) 0.219 0.168
MPNN-JT Fey et al. (2020) – 0.151

MPNN (ablation) 0.272 0.189
SMP (Ours) 0.219 0.138

regression problem. We follow the setting of Dwivedi et al. (2023): we train SMP on the same
subset of 10,000 molecules with a parameter budget of around 100k, reduce the learning rate
when validation loss stagnates, and stop training when it reaches a predefined value. We use an
expressive parametrization of SMP, with 12 layers and 2-layer MLPs both in the message and
the update functions. In order to reduce the number of parameters, we share the same feature
extractor after each layer (cf Fig. 3.3). Results are presented in Table 3.4. They show that in both
cases (with or without edge features, which are a one-hot encoding of the bond type), SMP is able
to achieve state of the art performance. Note however than even better results (0.108 MAE using
a MPNN with edge features (Bouritsas et al., 2022)) can be achieved by augmenting the input
with expert features. We did not use them in order to compare fairly with the baseline results.

3.6 Discussion

We now discuss open problems and advances in powerful graph neural networks that are subse-
quent to the publication of this chapter:

Expressivity A natural question is whether SMP, which is strictly more powerful than the 2-WL
test, can be as expressive as the 3-WL test which considers triplets of nodes. To show this, one
would like to establish the equivalence between SMP and the Folklore 2-WL test, which is as
powerful as 3-WL but only manipulates tensors of size n × n × d (and not triplets of nodes).
However, proving or disproving this equivalence is not straightforward due to the differences
in the definition of the neighborhood in the two tests. Specifically, in the Folklore 2-WL test,
propagation happens simultaneously on the rows and the columns of the tensor U ∈ Rn×n×d at
each message-passing update, whereas in each SMP layer, message-passing propagation occurs
only on the rows, while the columns are updated in the message function using a more affordable
neural network for sets. It remains an open question whether this strategy is sufficient to achieve
the expressive power of the Folklore 2-WL test.

Empirically, we also observed that SMP cannot distinguish between certain graphs that are
indistinguishable by the 3-WL test (Bouritsas et al., 2022). This is unsurprising given its
parametrization, as no message-passing architecture that manipulates n× n× d embeddings is
known to be superior to the Folklore 2-WL test.
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Expressive graph neural networks Since the publication of our work, many other powerful
graph neural networks have been proposed. Various strategies have been adopted, including the
use of message-passing on larger substructures than one-hop neighborhood (de Haan et al., 2020),
and neural networks that operate on bag-of-subgraphs (Bevilacqua et al., 2021; Frasca et al.,
2022). However, these methods seem to suffer from similar trade-offs: networks that achieve
high expressive power tend to be computationally more costly or introduce randomness, making
them harder to train.

Currently, powerful neural networks find their main applications in the prediction of quantum
properties of molecules. Expressive architectures are particularly suited for these tasks that
feature very large datasets and where high accuracy is required. However, atomic coordinates
are often available in molecular datasets, and the architectures used in practice leverage not only
graph structures but also (potentially high-order) representations of the SE(3) group (Joshi et al.,
2023).

For purely graph-based tasks, positional encoding (Beaini et al., 2021; Dwivedi et al., 2021) has
become a popular alternative to the use of provably powerful networks. These methods typically
cannot prove equivalence to higher-order WL tests, but they allow for improved expressive power
with a moderate overhead.

Random graph analysis An interesting application of SMP is the analysis of graph networks
in the limit of infinitely many nodes (Keriven et al., 2020; 2021). In the case of MPNNs, over-
smoothing occurs when the graph and the number of layers grow, and the limit representation is
not particularly interesting. In contrast, the one-hot encoding of the nodes in SMP enables the
embeddings to scale with the graph size, which leads to more insightful analysis. Keriven et al.
(2021) has in particular shown that the SMP model is universal on some random graph models
such as the stochastic block model.

3.7 Conclusion

In this chapter, we introduced structural message-passing (SMP), a new architecture that is
both powerful and permutation equivariant, solving a major weakness of previous message-
passing networks. Empirically, SMP significantly outperforms previous models in learning
graph structural properties, but retains the inductive bias of MPNNs and their good ability to
process node features. We believe that our work paves the way to graph neural networks that
efficiently manipulate both node and topological features, with potential applications to chemistry,
computational biology and neural algorithmic reasoning.
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4 Set and graph generation from a
latent vector

4.1 Introduction

In the preceding chapters, we have established that message-passing neural networks can be
viewed as local permutation equivariant networks. Through their iterative propagation scheme,
these networks have a prior towards locality, which is effective on many tasks. However, the
limited expressive power of MPNNs remains a key limitation. We have demonstrated that this
constraint is not inherent to the message-passing scheme itself, but instead arises due to the
difficulty of learning rich permutation equivariant functions of graphs. To address this issue, we
have proposed a more powerful architecture that retains the inductive bias of message-passing,
and that outperforms other high-capacity architectures. Overall, we can therefore consider that
the implications of permutation equivariance on graph representation learning are relatively well
understood. While it is not clear how to build equivariant and powerful graph neural networks
that maintain the linear computational complexity of MPNNs, we know that universal function
approximation on graphs is as hard as isomorphism testing, and there is little hope to obtain
universal models without additional assumptions on the data.

We now extend our investigation to the domain of set and graph generation, exploring the
implications of permutation equivariance in this context. On generative tasks, very different
architectures can be used. In particular, one can consider using a latent space that contains
vectors, that contains sets, or that contains latent graphs. In this chapter, we consider probabilistic
decoders that map a low-dimensional vector prior to graphs. This architecture is probably the
most natural, as it factors out permutation equivariance by representing each set or graph as one
single vector.

Set and graph generation are very similar problems, and one can navigate between set and graph
representations using Set2Graph functions (Serviansky et al., 2020) or graph neural networks.
We therefore generally treat them together in this paper, but only use the terminology of sets
to avoid overly abstract notations. The distinctive properties of graph generation (e.g., graph
matching problems) are discussed when needed.
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There are two main classes of probabilistic decoders for sets: recursive and one-shot. Recursive
generators are conceptually simpler, since they add points one by one (Liu et al., 2018; Liao et al.,
2019; Sun et al., 2020b; Nash et al., 2020). They are however slow and introduce an order in
the points that does not exist in the data. In this work, we instead focus on one-shot generation,
which allows for more principled designs. By definition, one-shot models feature a layer that
maps a vector to an initial set. We group all layers until this one into a creation module, and
the subsequent layers into an update module. The design of the update is well understood: as it
maps a set to another set, any permutation equivariant network suits this task. In contrast, the
creation step poses two major challenges, which are i) the need to generate sets of various sizes,
and ii) the generation of different points from a single prior vector, which cannot be done with a
permutation equivariant function.

In more details, set creation is typically performed by first sampling points independently from
a normal distribution, and then appending the latent vector to each point. This design allows
the generation of any number of points and decouples the set cardinality from the number of
trainable parameters. Furthermore, it generates exchangeable distributions (all permutations of
a set are equally likely), a property which is commonly held as the equivalent of equivariance
for generative models. However, it was empirically observed that VAEs based on independent
sampling are hard to train, which results in limited performance (Krawczuk et al., 2021).

We first propose a theoretical argument to this empirical observation, by showing that VAEs
that use independent sampling only optimize a proxy to the evidence lower bound (ELBO). As
the standard definition of equivariance cannot be used in generative settings, we then propose
a generalization of this notion called (F, l)-equivariance: informally, an architecture is (F, l)-
equivariant if the parameter updates do not depend on the group elements used to represent training
data. We derive sufficient conditions for equivariance in this setting. They reveal that (F, l)-
equivariance explains the loss functions commonly used both in generative and discriminative
tasks, and suggest that exchangeability may not be useful in GANs and VAEs.

Based on these results, we finally propose a non-exchangeable set creation method called Top-n
creation. Our method relies on a trainable reference set where each point i has a representation
ri ∈ Rc and an angle φi ∈ Ra. To generate a set with n elements, we select the n points whose
angles have the largest cosine with the latent vector. In order to make this process differentiable,
we build upon the Top-K pooling mechanism initially proposed for graph coarsening (Gao & Ji,
2019). Top-n can eventually be integrated in any VAE or GAN to form a complete generative
model for sets or graphs. Our method is easier to train than stochastic generators, and has better
generalization performance than other existing methods.

We benchmark Top-n on both set and graph generation tasks: it is able to reconstruct the data
more accurately on a set version of MNIST, generalize better on the CLEVR object detection
dataset, fit more closely the true distribution on a dataset of synthetic molecule-like structures in
3D, and generate realistic molecular graphs on QM9.
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4.2 The one-shot set generation problem

We consider the problem of learning a probabilistic decoder f that maps latent vectors z ∈ Rl to
multi-sets1 X = {x1, ...,xn} that contain a varying number n of points xi in Rd. Given sample
sets from an unknown distributionD, f should be such that, if z is drawn from a prior distribution
pZ(z), then the push-forward measure f#(pZ) (i.e., the law of f(z)) is close to D. In practice,
representing sets is not convenient on standard hardware, and sets are internally represented by
matrices X ∈ X =

⋃
n∈NRn×d where each row represents a point xi ∈ Rd. Algorithms that

return a set implicitly assume the use of a function mat-to-set that mapsX to the corresponding
set X .

Figure 4.1 – The graphical models for set generation. The number of points can either be sampled
from the dataset distribution (a), or learned from the latent vector (b). While any equivariant
function can be used for the update h, the set creation g concentrates the challenges of set
generation. For graph generation, edge weights are generated in addition to the node features
matricesX0 andX .

Existing architectures for one-shot generation use one of the graphical models described in Figure
4.1. First, a number of points for the set has to be sampled. Most works assume that the set
cardinalities are known during training. At generation time, they sample n from the distribution of
set cardinalities in the training data. This method assumes that the latent vector z is independent
of the number of points n, so that the generative mechanism writes p(X|n, z) p(n) p(z).

Kosiorek & Kim (2020) instead propose to learn the value of n from the latent vector using a
MLP. This layer is trained via an auxiliary loss, but the predicted value is used only at generation
time (the ground truth cardinality is used during training). The generative model is in this case
p(X|z, n) p(n|z) p(z), i.e., z and n are not independent anymore.

Once n is sampled, one-shot generation models can formally be decomposed into several com-
ponents: a first function g (that we call creation function) maps the latent vector to an initial
set X0 ∈ Rn×c. This function is usually simple, and is therefore not able to model complex
dependencies within each set. For this reason,X0 may then be refined by a second function h
that we call update, so that the whole model can be written f = mat-to-set ◦ h ◦ g. We now
review the parametrizations that have been proposed for the creation and update modules.

1For the sake of simplicity, we will refer to sets instead of multi-sets in the rest of the chapter.
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Figure 4.2 – Existing creation methods for mapping a latent vector z to a set of pointsX0. First-n
creation empirically gives the best performance. It learns a reference set represented by a matrix
Xref, and concatenates the latent vector to each point of this set.

4.2.1 Methods for set creation

MLP based
Many existing methods (Achlioptas et al. (2018); Zhang et al. (2020; 2021b) for sets, Guarino
et al. (2017); De Cao & Kipf (2018); Simonovsky & Komodakis (2018) for graphs) learn a MLP
from Rl to Rnmaxc, where nmax is the largest set size in the training data. The output vector is
then reshaped as a nmax × c matrix, and masked to keep only the first n rows (Figure 4.2). MLPs
ignore the symmetries of the problem and are only trained to generate up to nmax points, with
no ability to extrapolate to larger sets. Despite these limitations, they often perform on par with
more complex methods for small graphs (Madhawa et al., 2019; Mitton et al., 2021). We explain
in Section 4.3 this surprising phenomenon.

Independent sampling
Along with MLP based generation, the most popular method for set and graph creation is to draw
n points i.i.d. from a low dimensional normal distribution, and to concatenate the latent vector to
each sample (Köhler et al., 2020; Yang et al., 2019b; Kosiorek & Kim, 2020; Stelzner et al., 2020;
Satorras et al., 2021b; Zhang et al., 2021a; Liu et al., 2021). The main advantage of independent
sampling is that it does not constrain the number of points that can be generated. Furthermore,
it is exchangeable, i.e., all permutations of the rows of X0 are equally likely. This property is
widely considered as the equivalent of equivariance for generative models (Yang et al., 2019a;
Biloš & Günnemann, 2021; Kim et al., 2021; Köhler et al., 2020; Li et al., 2020).

However, it was empirically observed that VAEs built with a i.i.d. creation mechanism fail to
fit the training data correctly (Krawczuk et al., 2021), which reflects in the poor quality of the
sampled sets. To understand why, consider a VAE made of an encoder qφ(z|X) and a decoder
fθ(X|z) parametrized by φ and θ. Variational autoencoders maximize the evidence lower bound
(ELBO) L, which is a proxy for the data likelihood under the model:

L(X) = Eqφ(z|X)[log pθ(X, z)− log qφ(z|X)] ≤ pθ(X) (4.1)

Probabilistic decoders fθ(z) based on independent sampling are stochastic, so that log pθ(X, z)

cannot be computed in close form. By conditioning on the initial set X0 and using Jensen’s
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inequality, we have:

log pθ(X, z) = logEX0∼p(X0) pθ(X, z|X0) ≥ EX0∼p(X0) log pθ(X, z|X0) (4.2)

which gives in expectation

L(X) ≥ EX0,z [log pθ(X, z|X0)− log qφ(z|X)] := L′(X). (4.3)

Methods based on independent sampling use a Monte-Carlo estimate for∇θ,φL′(X) that lever-
ages the reparametrization trick. They therefore only optimize a lower bound of the ELBO, which
could explain why they are difficult to train.

First-n
Instead of sampling points, Zhang et al. (2019) and Krawczuk et al. (2021) propose to always
start from the same learnable set Xref ∈ Rnmax×c, and mask this matrix to keep only the first
n rows: we therefore call this method First-n creation. Similarly to the independent sampling
method, the latent vector is then concatenated to each point of this set.

Empirically, First-n converges much faster than sampling-based methods (Krawczuk et al., 2021),
but the network is only trained to generate up to nmax points and has no ability to extrapolate
to larger sets. Furthermore, selecting the first n rows of the reference setXref introduces a bias
because the first rows are selected more often than the last ones.

Creation methods for graph generation
For graph generation, edge weights (or edge features) also need to be learned. To the best of our
knowledge, First-n creation has not been used for this purpose yet, and the weights are generated
either by a MLP or by sampling normal entries i.i.d. An alternative is to first generate a set, and
then use a Set2Graph update function in order to learn the graph adjacency matrix as in (Bresson
& Laurent, 2019; Krawczuk et al., 2021).

4.2.2 Methods for set update

Since all creation methods except MLPs can only generate very simple sets and adjacency
matrices, additional layers are usually used to refine these objects – we gather these layers into
the update module. Because these layers map a set or a graph to another set/graph, the update
module falls into the standard framework of permutation equivariant representation learning
and all existing equivariant layers can be used: Deep sets (Zaheer et al., 2017), self-attention
(Vaswani et al., 2017; Lee et al., 2019), Set2Graph (Serviansky et al., 2020), graph neural
networks (Battaglia et al., 2018) or higher-order neural networks (Morris et al., 2019). Recently,
Transformer layers have constituted the most popular method for set and graph update (Bresson
& Laurent, 2019; Kosiorek & Kim, 2020; Stelzner et al., 2020; Krawczuk et al., 2021) – we also
use such layers in our experiments.
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4.3 A permutation equivariance view on set generation

Whereas exchangeability is usually considered as a key feature of independent sampling, we have
seen that this method empirically does not outperform other strategies. To understand why, we
need to study equivariance in generative models and propose a relevant definition in this setting.

As set and graphs are unordered, the symmetric group S =
⋃
n∈N∗ Sn containing all permutations

is a symmetry of these tasks. A permutation π ∈ Sn acts on a n× n matrixA by permuting its
rows and columns (which we write π.A = π A πT ), on a n× c matrix by permuting its rows
(π.X = πX), and leaves a vector z ∈ Rh unchanged (π.z = z). This symmetry constitutes a
useless factor of variation in the data that should be factored out in the latent space (i.e., π.z = z).

In discriminative models, symmetries are accounted for when a neural network f is equivariant
to the action of a group, which writes π.f(X) = f(π.X) (Kondor, 2008). When the input
of f is a vector, imposing π.f(z) = f(π.z) = f(z) however only allows for solutions where
all rows are equal, which is too restrictive. To solve this issue, we propose a definition called
(F, l)-equivariance which generalizes the common one, but provides more relaxed conditions in
generative settings.

Our proposition is based on the assumption that the main role of equivariance is to make
data augmentation useless. In discriminative settings, this is normally done by combining an
equivariant model with an invariant loss function. For example, the l2 loss is commonly used
to learn the future state of a n-body system, but not the l1 loss, as it is not rotation invariant.
Formally, if FΘ = {fθ : X→ Y; θ ∈ Θ} is an hypothesis class of G-equivariant functions from
X to Y (for example a neural architecture parameterized by θ), then the loss functions l should
satisfy

∀f ∈ F, ∀g ∈ G, ∀(X,Y ) ∈ X× Y, l(g.f(X), g.Y ) = l(f(X),Y ) (4.4)

Furthermore, we observe that when l satisfies Eq. 4.4, the gradients with respect to the parameters
satisfy∇θ l(f(g.X), g.Y ) = ∇θ l(f(X),Y ), i.e., each parameter update is independent of the
group elements that are used to represent X and Y . It follows that the training dynamics as a
whole become independent of the group elements used to represent the data. We propose to use
this property to define equivariance:

Definition 1 ((F, l)-equivariance). Consider an hypothesis class FΘ ⊂ YX, a group G that acts
on X and Y and a loss function l defined on Y. We say that the pair (FΘ, l) is equivariant to the
action of G if the dynamics of θ ∈ Θ trained with gradient descent on l do not depend on the
group elements that are used to represent the training data.

By construction, using an equivariant architecture and an invariant loss is sufficient for (F, l)-
equivariance in discriminative settings. For standard generative architectures for sets and graphs,
we derive the following sufficient conditions:
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Lemma 4 (Sufficient conditions for (F, l)-equivariance). 1. GANs: if F is a GAN architec-
ture with a permutation invariant discriminator, and l the standard GAN loss, then (F, l) is
permutation equivariant. No constraint is imposed on the generator.

2. VAEs: if F is an encoder-decoder architecture with a permutation invariant encoder,
and the reconstruction loss l satisfies ∀π ∈ S, l(π.X, X̂) = l(X, X̂), then (F, l) is
permutation equivariant. No constraint is imposed on the decoder function.

3. Normalizing flows: if F is an architecture such that the set creation yields an exchangeable
distribution, the update is permutation equivariant and invertible, and pθ denotes the model
likelihood, then (F,− log pθ) is permutation equivariant (proved in Köhler et al. (2020)).

Proof. Generative adversarial networks Given a set generator f , a discriminator function d,
andX1, ...,Xm a training dataset, the standard loss function for GANs is formulated as

l(f, d,X1, ...,Xm) =
1

m

m∑
i=1

log(d(Xi))] + EZ[log(1− d(f(z))).

In order to obtain l(f, d,X1, ...,Xm) = l(f, d, π1.X1, ..., πm.Xm) for every choice of πi, it is
therefore sufficient to choose a permutation invariant discriminator.

Auto-encoder based models We assume that the autoencoder is made of a permutation invariant
encoder enc and an arbitrary decoder f . For any set size n, set X ∈ Rn×d and permutation
π ∈ Sn we have

l(π.X, X̂) = l(X, X̂) =⇒ l(π.X, f(enc(X)) = l(X, f(enc(X))

=⇒ l(π.X, f(enc(π.X)) = l(X, f(enc(X)) (enc is invariant)

=⇒ ∇θ l(π.X, f(enc(π.X))) = ∇θ l(X, f(enc(X)))

As desired, (F, l)-equivariance does not impose π.f(z) = f(π.z) in generative architectures, but
still makes data augmentation unnecessary. Furthermore, the constraints of Lemma 4 are satisfied
by most existing architectures, including early ones (Simonovsky & Komodakis, 2018; De Cao &
Kipf, 2018; Köhler et al., 2020). In particular, the constraint on the loss for VAEs is satisfied by the
two loss functions commonly used for sets, namely Chamfer loss and the Wasserstein-2 distance.
Our definition, introduced by observing common practice in discriminative settings, is therefore
able to explain common practice for generative tasks as well. Chamfer and Wasserstein-2 d are
defined as:

dCham =
∑

1≤i≤n
min
j≤n′
||xi − x′j ||22 +

∑
1≤j≤n′

min
i≤n
||xi − x′j ||22

dW2 = inf
u∈{Γ(X,X′)}

∑
1≤i≤n
1≤j≤n′

u(xi,x
′
j) ‖xi − x′j‖22
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where Γ is the set of couplings (i.e., bistochastic matrices) between X and X ′. Both loss
functions solve a matching problem over the space of permutations, which makes them invariant
to permutations of one argument, as required by Lemma 4. Chamfer’s loss runs in quadratic time,
while the standard implementation of Wasserstein distance runs in O(n3) if both sets have the
same size. However, efficient algorithms exist for approximating the Wasserstein distance, and
the computations can be parallelized on GPUs (Cuturi, 2013; Feydy et al., 2019). Note however
that the equation l(π.X, X̂) = l(X, X̂) is may be difficult to satisfy in other settings: matching
graphs up to permutations, or sets up to the SE(3) group, leads to difficult problems for which
no polynomial time algorithm is known (Mémoli, 2007). In these settings, the design of VAE is
harder and other architectures may be better suited.

We finally observe that exchangeability does not appear in the sufficient conditions for GANs
and VAEs. To understand why, recall that in GANs and VAEs a mat-to-set function is implicitly
applied to the model output: a method that generates matrices that are always permuted in the
same way is therefore equivalent to one that generates exchangeable matrices. In other words, the
fact that the output of the model is not a matrix but a set is an assumption, not something that needs
to be proved2. This observation explains why independent sampling creation does not outperform
non-exchangeable set creation methods such as MLPs and First-n. In the following section, we
therefore design a new creation mechanism without worrying about the model exchangeability.

4.4 The Top-n creation mechanism

We have seen in Section 4.2 that existing set creations methods suffer from important limitations:
independent sampling makes it hard to train the model, while MLPs and First-n use a fixed mask
to select the correct number of points and cannot extrapolate to larger sets. In order to solve these
limitations, we propose a new method called Top-n creation, which is summarized in Figure 4.3.

Similarly to First-n, Top-n also uses a reference set, but in Top-n this set can have an arbitrary
size n0. Each point in this set is a pair (φ, r) : the angle φ ∈ Ra is used to decide when to select
the point, and r ∈ Rc contains the representation of the point. Given a latent vector z ∈ Rl×1, a
reference set made of angles Φ ∈ Rn0×a and representations R ∈ Rn0×c, as well as learnable

2On the contrary, normalizing flows cannot use the non-invertible mat-to-set function, and typically compute
probability distributions on the space of matrices rather than multisets. It is therefore natural that exchangeability
appears for normalizing flows and not for the other architectures.
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Figure 4.3 – Top-n creation learns to select the most relevant points in a trainable reference set
based on the value of the latent vector. To obtain gradients and train the angles and the MLP
despite the non-differentiable argsort operation, we modulate the selected representations with
the values of the cosines – in practice, we use a FiLM layer (Perez et al., 2018) rather than
multiplication.

matricesW1 toW4 (respectively of sizes 1× c, 1× c, l × c, l × c), Top-n creation computes:

a = MLP1(z) ∈ Ra (4.5)

c = Φ a / vec((||φi||2)1≤i≤n0) ∈ Rn0 (4.6)

s = argsort↓(c)[: n] ∈ Nn (4.7)

c̃ = softmax(c[s]) ∈ Rn×1 (4.8)

X0 = R[s]� c̃ W1 + c̃ W2 ∈ Rn×c (4.9)

X0 = X0 � 1n z
T W3 + 1n z

T W4 ∈ Rn×c (4.10)

The crux of the Top-n creation module is to select the points that will be used to generate a
set based on the value of the latent vector (Eq. 5, 6 ,7). Unfortunately, the gradient of the
argsort operation is 0 almost everywhere (∂R[s]/∂Φ = 0), and a mechanism has to be used in
order to train the angles Φ and the MLP of Eq. (5). In Top-n, we modulate the representation
of the selected points R[s] with the cosines c (Eq. 8). This operation provides a path in the
computational graph that does not go through the argsort, so that the gradients of Φ and a are
not always 0. For example:

dX0

dΦ
=

∂X0

∂R[s]

dR[s]

dΦ
+
∂X0

∂c̃

dc̃

dΦ
=
∂X0

∂c̃

dc̃

dΦ
,

Equations (5) to (9) build upon the Top-K pooling mechanism used by Gao & Ji (2019) for graph
coarsening, but differ in several aspects. First, Gao & Ji (2019) compute cosines between the
angle a and the representations R. This method tends to select points that are similar. On the
contrary, we parameterize the angles and the representations independently, so that two points
can have similar angles (in which case they will usually be selected together) but very diverse
representations at the same time. Second, Gao & Ji (2019) uses a multiplicative modulation
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(X0 = Xref[s]� c̃) in Eq. (9) while we use a more expressive FiLM layer (Perez et al., 2018)
that combines both additive and multiplicative modulation.

Finally, while previous works usually append the latent vector to each point, we exploit the
equivalence between summation and concatenation when a linear layer is applied, which writes

cat(X0, 1nz
T )W = X0W1 + 1n(zTW2), (4.11)

for W = cat(W1,W2). Contrary to the concatenation (left-hand side), the sum (right-hand
side) does not compute zTW2 several times, which reduces the complexity of this layer from
O(n(c+ l)c) to O(nc2 + cl+ nl). Again, we combine the sum and multiplicative modulation in
a FiLM layer to build a more expressive model in Eq. (10).

Our algorithm retains the advantages of First-n creation, but replaces the arbitrary selection of the
first n points by a mechanism that learns to select the most relevant points for each set. Since it
also decouples the number of points in the reference set from the number of points in the training
examples, the size of the reference set becomes a hyper-parameter of the model. Empirically,
we observe a tradeoff: when using more points in the reference set, each point is updated less
often which makes training slower; however, the model tends to avoid overfitting and generalize
better. Top-n creation can be used in any GAN or VAE architecture as a replacement for other set
creation methods. It is however not suited to normalizing flows, because it is based on a hard
selection process which is not invertible (the value of the reference points that are not selected is
not used).

Since First-n and Top-n use a fixed set of reference points, one may wonder if they restrict the
model expressivity. We however show that it is not the case: used with a two-layer MLP, the
First-n and Top-n modules are universal approximators over sets.

Proposition 3 (Expressivity). For any set size n, maximal norm M and precision parameter
ε, there is a 2-layer row-wise MLP f and reference points {x1, ...,xn} such that, for any set
{y1, ...,yn} of points in Rd with ∀i, ||yi|| ≤ M there is a latent vector z of size nd × 1 that
satisfies:

||f(cat(X,1nz
T ))− Y ||W2 ≤ ε (4.12)

whereW2 denotes the Wasserstein-2 distance.

Proof. We first give the proof for First-n creation:

First-n Given a set Y = {y1, ...,yn} of points in Rd, we propose to sort the points yi by
alphanumeric sort (sort the values using the first feature, then sort points that have the same first
features along the second feature, etc.). We denote the resulting matrix by Y ′. We choose as
a latent vector z = flatten(Y ′) ∈ Rnd. It is the vector that contains the representation of y′1
in the first d features, y′2 is the next d features... By construction, z is a permutation invariant
representation of the set Y (this reflects the fact that there are canonical ordering for sets, which
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is not the case for general graphs).

We choose as a reference set the canonical basis in Rn (R = In). After the latent vector is
appended to the representation of each point, we have ri = (ei, z). We are now looking for a
function f that allows to approximate the set Y , i.e., that satisfies ∀i ≤ n, f(ei, z) = z[i d :

(i+ 1)d]. We can choose f(ei, z) = eTi W1W2z, where

W1 =

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 ... 0 0 0

0 0 0 0 0 0 1 1 1

 ∈ Rn×nd and W2 =



1 0 0

0 1 0

0 0 1

...

1 0 0

0 1 0

0 0 1


∈ Rnd×d

.

This function is continuous, and its output is Y ′ = reshapen×d(z). Y ′ is equal to Y up to a
permutation of the rows, so that ||Y − Y ′||W2 = 0. If the entries of z are bounded, we can use
standard approximation results for continuous functions over a compact space (Cybenko, 1989)
to conclude that it be uniformly approximated by a 2-layer MLP.

Top-n Consider a Top-n network with n reference points such that:

• The angles of the reference points are 2d vectors such that φi = (cos( in
π
4 ), sin( in

π
4 )).

• The representations are ri = ei/ cos( i
n0

π
4 ), where (ei) is the canonical basis in Rn.

• The MLP of equation 1 (that predicts an angle from the latent vector) always outputs (1, 0).

Then this Top-n creation module is equivalent to the First-n module build previously: for any set,
it selects the first n points and returns X0[i] = ei. The same MLP that is built for First-n can
therefore be used for this network.

4.5 Experiments

We compare Top-n to other set and graph creation methods on several tasks: autoencoding a set
version of MNIST, detecting objects on CLEVR, generating realistic 3D structures on a synthetic
molecule-like dataset, and generating varied valid molecules on the QM9 chemical dataset3. All
training curves are available in Appendix B.2.

3Source code is available at github.com/cvignac/Top-N
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Table 4.1 – Mean Chamfer loss and 95% confidence interval over 6 runs. Methods in italic are
those used in the original papers for TSPN (Kosiorek & Kim, 2020) and DSPN (Zhang et al.,
2019) Result differ from the original papers due to a difference in the loss computation (cf.
Appendix B.1).

Method Set creation Chamfer (e-5) Method Set creation Chamfer (e-5)
TSPN i.i.d. sampling 16.42±0.53 DSPN i.i.d. sampling 28.56±1.23

First-n 15.45±1.41 First-n 26.61±0.54

Top-n 14.98±0.59 Top-n 22.59±1.71

Set MNIST We first perform experiments on the SetMNIST benchmark, introduced in Zhang
et al. (2019). The task consists in autoencoding point clouds that are built by thresholding the
pixel values in MNIST images, adding noise on the locations and normalizing the coordinates.
Our goal is to show that Top-n can favorably replace other set creation methods without having
to tune the rest of the architecture extensively. For this purpose, we use existing implementations
of DSPN (Zhang et al., 2019) TSPN (Kosiorek & Kim, 2020)4, which are respectively a sort
of diffusion model and a transformer-based autoencoder. Experiment details can be found in
Appendix B.1.

The results for both methods are very similar (Figure 4.1): the model based on independent
sampling has poor performance and needs more epochs to be trained than First-n and Top-n.
Top-n performs consistently better for both DSPN and TSPN, which shows that it is able to select
the most relevant reference points for each set.

Object detection on CLEVR We further benchmark Top-n on object detection with the
CLEVR dataset, made of 70k training images and 15k validation images representing sim-
ple objects. Again, we use the implementation of DSPN and the setting proposed in (Zhang
et al., 2019). Two tasks are evaluated. In the first one, the goal is to predict bounding boxes in
each image. In the second one, the full scene should be predicted (with the shape, color, size
and material of the objects). Images are encoded using a pretrained ResNet34 architecture – the
resulting vector is used as input to the set generation model. The model is trained on 10 DSPN
iterations and evaluated on 30, which is the setting that gave the best results in (Zhang et al.,
2019).

Results are presented in Tables 4.2 and 4.3. For bounding box prediction (which is a simpler
task), independent sampling and Top-n outperform MLP and First-n creation. As the metrics are
computed for test data (which is not the case in SetMNIST), these results suggest that MLP and
First-n creation may overfit the training images. On the full scene prediction, Top-n outperforms
all other methods.

4 github.com/LukeBolly/tf-tspn (reimplementation by someone else) and github.com/Cyanogenoid/dspn
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Table 4.2 – Bounding box prediction on CLEVR. The metric is the average precision on the test
set for different intersection-over-union thresholds, computed over 6 runs (higher is better).

Model Generator AP50 AP60 AP70 AP80 AP90

DSPN MLP 93.7±1.8 82.8±3.2 59.6±4.8 26.2±4.5 1.8±0.8

i.i.d. sampling 97.3±2.0 93.2±3.7 80.6±5.4 51.8±5.5 11.6±2.3

First-n 88.2±5.1 77.1±7.3 57.3±8.2 29.0±6.1 4.0±1.3

Top-n 97.3±1.3 93.0±2.8 80.8±5.0 53.0±7.0 12.5±3.9

Table 4.3 – Full scene prediction on CLEVR. The metric is the average precision on the test
set, computed over 6 runs (higher is better). While MLP and i.i.d. sampling have better training
metrics, Top-n generalizes much better to new images.

Model Generator AP10 AP20 AP50 AP100 APinf

DSPN MLP 2.7±1.4 17.9±8.6 42.1±16.8 54.5±19.4 71.2±3.0

i.i.d. sampling 2.6±1.3 26.0±9.1 60.5±11.1 76.6±5.2 80.4±4.3

First-n 0.7±0.4 11.7±4.3 50.3±9.1 81.2±5.3 84.8±5.0

Top-n 8.3±1.9 48.2±6.4 86.4±3.8 93.0±2.6 94.1±2.3

Table 4.4 – Mean and 95% confidence interval over 5 runs on synthetic molecule-like data in 3d.

Train Test Generation Extrapolation
W2 W2 Valency Incorrect Diversity Valency Incorrect Diversity

distance distance loss valency score loss valency score
MLP 0.47±.07 0.42±.03 0.73±.06 22.4±2.2 4.6±.1 1.06±.14 26.6±1.9 4.3±.2
i.i.d. 1.20±.01 0.81±.12 1.40±.07 36.8±20.9 5.0±.3 0.24±.06 7.8±0.5 4.9±.2
First-n 0.43±.08 0.50±.07 0.84±.06 24.6±2.1 5.1±.3 0.81±.19 22.5±3.0 4.6±.3
Top-n 0.58±.05 0.44±.03 0.37±.12 13.9±3.7 4.8±.2 0.80±.10 17.0±1.8 4.5±.2

Synthetic dataset As previous datasets do not measure generation quality, we further bench-
mark the different set generators on a synthetic dataset for which the quality of the generated
sets can be assessed. This dataset is a simplified model of molecules in 3D, and retains some
of its characteristics: i) atoms are never too close to each other ii) there is a bond between two
atoms if and only if they are closer than a given distance (that depends on the atom types) iii) if
formal charges are forbidden, each atom has a predefined valency. The generation procedure is
described in Appendix B.1.

The goal is to reconstruct the atom positions and generate new realistic sets. During training, we
measure the Wasserstein (W2) distance between the input and reconstructed sets. At generation
time, we compute theW2 distance between the distribution of valencies in the dataset and in
the generated set, the proportion of generated atoms with valency 0 or more than 4, as well as a
diversity score to ensure that a method does not always generate the same set. We also measure
the same metrics in an extrapolation setting where sets have on average 10 more points.

We train a VAE with different creation methods on this dataset. Details about the model and
the loss function can be found in Appendix B.1, as well as an ablation study on the number of
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Table 4.5 – Molecular graph generation on QM9. Baseline results are from the original authors.
Our architecture provides an effective approach to one-shot molecule generation. Apart from
independent sampling creation, the different set creation methods seem to be equivalent in this
setting.

Method Generator Valid (%) Unique and valid
Graph VAE (Simonovsky & Komodakis, 2018) MLP 55.7 42.3
Graph VAE + RL (Kwon et al., 2019) MLP 94.5 32.4
MolGAN (De Cao & Kipf, 2018) MLP 98.0 2.3
GTVAE (Mitton et al., 2021) MLP 74.6 16.8

Set2GraphVAE (ours) MLP 60.5± 2.2 55.4±2.3

i.i.d. sampling 34.9±15.2 29.9±10.0

First-n 59.9± 2.7 56.2±2.7

Top-n 59.9± 1.4 56.2±1.1

points in the reference set. The results are shown in Table 4.4. We observe that the independent
sampling generator generalizes well but reconstructs the training sets very poorly, which reflects
the fact that the model is hard to train due to the stochastic i.i.d. generation. They tend to generate
points that are too far apart, an issue which disappears when generating more points. On the
contrary, MLP and First-n overfit the training data at the expense of generation quality. Finally,
Top-n is able to generate points that have the right valency and generates the best new samples.

Finally, we evaluate Top-n on a graph generation task. We train a graph VAE (detailed in Appendix
B.1) on QM9 molecules and check its ability to generate a wide range of valid molecules. As a
generation metric, we simply report the validity (i.e., the proportion of molecules that satisfy a
set of basic chemical rules) and uniqueness (the proportion non-isomorphic graphs among valid
ones) of the generated molecules. We do not report novelty, as QM9 is an enumeration of all
possible molecules up to 9 heavy atoms that satisfy a predefined set of constraints (Ruddigkeit
et al., 2012; Ramakrishnan et al., 2014): in this setting, generating novel molecules is therefore
not an indicator of good performance, but rather a sign that the distribution of the training data
has not been properly captured. Note that most recently proposed methods proposed on this task
use a non-learned validity correction code to generate almost 100% of valid molecules, which
obfuscates the real performance of the learned model. We therefore only compare to works that
do not correct validity. We also note that recursive methods such as Li et al. (2018a) can often
generate higher rates of valid molecules because they can easily check at each step that the added
edge will not break valency constraints. They have therefore an unfair advantage over one-shot
models which do not incorporate these checks.

While MolGAN and GraphVAE+RL both suffer from mode collapse, our method is able to
generate a higher rate of valid and unique molecules. We observe that the independent sampling
method is not able to obtain a good train loss (Appendix B.2), which reflects in the poor
generation performance as well. The three other set creation methods seem to perform similarly.
Our interpretation is that almost all molecules in QM9 have the same size (9 heavy atoms, since
hydrogens are not represented), which makes it less important to properly handle varying graph
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sizes as in Top-n.

4.6 Discussion

While the Top-n creation layer is able to favorably replace other creation layers in diverse
architectures, some limitations can be identified:

The Modulation Mechanism of Top-n Creation. While several methods had been proposed
for learning sets and graphs from vectors, the set creation mechanisms had not been studied
before. An important contribution of this work is to highlight the crucial role of this layer in the
neural network and emphasize the need for careful selection. With respect to First-n creation,
the proposed Top-n creation module introduces a differentiable mechanism for selecting the
most relevant points inside a reference set. However, the modulation mechanism used to obtain
gradients for backpropagation could probably be improved. In Top-n creation, the representation
of each point is modulated by the cosine with the latent vector. As a result, the magnitude of the
selected points depend on the value of the cosines, which allows to train the angle associated to
each point in the reference set. However, the magnitude of the selected points constitutes limited
information, there might be better mechanisms that allow to train the point selection process
more effectively.

Curse of dimensionality. We note that most of our experiments feature only small sets, which is
in line with existing literature (Meldgaard et al., 2021; Satorras et al., 2021b; Mitton et al., 2021).
This raises the important question of whether set and graph generation methods can overcome the
curse of dimensionality. For MLP-based generators, the answer is likely no, as they learn vectors
of size nmaxd, and standard universal approximation results suggest a sample complexity that
is exponential in nmax. Whether other set generators can overcome this issue remains an open
question that has implications for the scalability of one-shot models for larger sets and graphs.

Vector-shaped latent spaces. Another reason for the difficulty to to generate large graphs might
be related to the use of vector-shaped latent spaces. Consider, for example, an autoencoder for
graph generation that uses a latent space of size Rl. If there was a way to perfectly encode a
graph to a vector using a permutation invariant function, and then to decode this vector back
to a graph, then this function would perform graph canonization. As canonization is at least as
hard as isomorphism testing, it is not surprising that such a function is hard to build in practice.
In the next section, we will define models that bypass this limitation by defining a generative
mechanism that does not use a latent space.

4.7 Conclusion

Overall, we strengthened in this chapter the theoretical foundations of one-shot set and graph
generation. We showed that, contrary to common belief, exchangeability is not a required property
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in GANs and VAE. We then proposed Top-n, a non-exchangeable layer for one-shot set and
graph creation which is able to select the most relevant points for each set. Our method can be
incorporated in any GAN or VAE architecture and replace favorably other set creation methods.
In next chapter, we will study a very different class of generative models, that do not require
compressing the data to a lower dimensional space. We will show that viewing graph generation
as the denoising of a random graph allows to significantly boost performance.
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5.1 Introduction

In previous chapter, we studied generative settings in which the latent space has a vector structure.
We proposed the Top-n creation mechanism, which was able to improve the performance of
several architectures. Yet, the experiments mostly featured very small sets and graphs. With larger
data, we observed that it was very difficult to design autoencoders that are able to reconstruct the
data, and the scaling abilities seemed very limited. This is unsurprising given that a deterministic
encoder-decoder architecture for graphs with a permutation invariant encoder would be able to
solve graph canonization.

In this chapter, we consider denoising diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020), a class of architectures that operates very differently. Denoising diffusion models are
trained to denoise corrupted data points, and generate new data by iteratively denoising pure
noise. Diffusion models have been used successfully in a variety of settings, outperforming all
other methods on image and video (Dhariwal & Nichol, 2021; Ho et al., 2022). These successes
raise hope for building powerful models for point clouds and graphs as well.

Furthermore, diffusion models seem particularly suited to permutation equivariant learning: they
do not define a latent space, and do not require compressing the data into a low-dimensional
object. Consequently, these models avoid graph coarsening, graph pooling, and graph decoding
from a vector. Instead, they simply use node and edge-level prediction, which is something
that graph networks typically excel at. We will see that this results in drastic improvements
in generation quality, which paves the way to many interesting applications in drug discovery,
computational biology and material science.

In this chapter, we present the DiGress model for graph generation, and its follow-up MiDi for
graphs whose nodes also have 3D coordinates. For the sake of brevity, we will not present the
EDM model1, which defines a diffusion model for attributed point cloud generation. EDM has

1Equivariant Diffusion for Molecule Generation in 3D, ICML 2022 – Hoogeboom*, Satorras*, Vignac* & Welling
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been used to build the continuous baseline of DiGress, and its limitations serve as a motivation
for the MiDi model.

Our first model, DiGress, is designed to generate graphs with categorical node and edge attributes.
DiGress leverages discrete diffusion, which was previously applied successfully to text, images,
audio, and attributed point clouds (Austin et al., 2021; Yang et al., 2022; Luo et al., 2022a). In
discrete diffusion, the noise model is a Markov process consisting of successive graphs edits
(edge addition or deletion, node or edge category edit) that can occur independently on each node
or edge.

We propose several algorithmic enhancements to DiGress, including utilizing a noise model
that preserves the marginal distribution of node and edge types during diffusion, introducing
a novel guidance procedure for conditioning graph generation on graph-level properties, and
augmenting the input of our denoising network with auxiliary structural and spectral features.
These features, derived from the noisy graph, aid in overcoming the limited representation power
of graph neural networks (Xu et al., 2019). Their use is made possible by the discrete nature of
our noise model, which, in contrast to Gaussian-based models, preserves sparsity in the noisy
graphs. These improvements enhance the performance of DiGress on a wide range of graph
generation tasks.

We then propose the Mixed Graph+3D Denoising Diffusion (MiDi) model to simultaneously
generate a molecular graph and its corresponding 3D coordinates. When both data modalities are
simultaneously available, they can be considered together to better capture the chemical space.
The molecular graph (or 2D structure) determines the existence and type of the chemical bonds,
and allows the identification of functional groups in a compound. This provides information
about its chemical properties and enables to predict synthetic pathways. On the other hand, the
3D conformation of a compound plays a key role in its interaction with other molecules, and
governs in particular its biological activity and binding affinity to proteins.

Previous EDM model, and other models that built upon it, were trained to generate conformers
only, thus ignoring bond information. They relied on a subsequent step to predicts the 2D structure
using either interatomic distances (Satorras et al., 2021a; Hoogeboom et al., 2022) or chemical
software such as OpenBabel (Gebauer et al., 2019). As a result, these models are not end-to-end
differentiable, which hampers their ability to be fully optimized for various downstream tasks.
This severely limits the potential of 3D molecule generators, particularly for complex tasks like
pocket-conditioned generation.

In constrast, MiDi is trained to denoise both the graph and 3D coordinates in tandem, it is able
to produce stable molecular graphs that are consistent with the generated conformers. It uses
Gaussian noise for the 3D coordinates, while the other components use discrete diffusion. To
further enhance the quality of the generated samples, we introduce a noise schedule whose
parameters are adjusted to each component. Specifically, we add noise to the atom types and
formal charges at a faster rate than to the coordinates and bond types. This encourages the
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denoising network to first focus on generating a realistic 3D conformation and corresponding
bond types, before refining the atom types and formal charges.

The second contribution of MiDi considers the denoising network: the Transformer architecture
we propose incorporates a novel rEGNN layer, which improves upon the popular EGNN layers
Satorras et al. (2021b) by leveraging features that are not translation-invariant. We show that, due
to the use of Gaussian noise in the zero center-of-mass subspace of the molecules, the resulting
model is nevertheless equivariant to translations and rotations, which is crucial for achieving high
performance.

5.2 Related Work

5.2.1 Graph generation

Our work, DiGress, is the first discrete diffusion model for graphs. Concurrently, Haefeli et al.
(2022) designed a model limited to unattributed graphs, and similarly observed that discrete
diffusion is beneficial for graph generation. Previous diffusion models for graphs were based
on Gaussian noise: Niu et al. (2020) generated adjacency matrices by thresholding a continuous
value to indicate edges, and Jo et al. (2022) extended this model to handle node and edge attributes,
and (Luo et al., 2022b) applied Gaussian noise to the graph eigenvalues. Gaussian noise can also
easily be considered in the time continuous limit, as done in (Huang et al., 2022a).

In addition to diffusion models, many other classes of architectures have been proposed for graph
generation. They can be divided in autoregressive methods and one-shot methods. Autoregressive
methods (Liu et al., 2018; You et al., 2018a; Liao et al., 2019) add one node at a time, therefore
artificially creating a node ordering that does not exist in the data. These methods typically check
for validity at each sampling step, so that they tend to score very high on validity metrics. Further-
more, they can quite naturally incorporate domain knowledge through the use of reinforcement
learning (Mercado et al., 2021).

On the contrary one-shot approaches generate the graphs at once, resulting in much faster
sampling. Examples of these architectures are VAEs (Simonovsky & Komodakis, 2018), GANs
(De Cao & Kipf, 2018; Krawczuk et al., 2021; Kosiorek & Kim, 2020) and normalizing flows.
We refer the reader to (Zhu et al., 2022) for a survey of these methods. While many of these
models operate on continuous tensor, (Madhawa et al., 2019; Lippe & Gavves, 2021; Luo et al.,
2021c) are examples of discrete models using categorical normalizing flows.

In contrast to the proposed method, which operates at the node level, fragment-based methods
(Hajduk & Greer, 2007; Jin et al., 2020; Maziarz et al., 2022) learn to combine chemically-
relevant substructures from a fixed or learned dictionary (Wang et al., 2022). These methods
are often very effective, as they only have to combine a limited number of fragments to build a
molecule. They could constitute an interesting extension to the models proposed in this chapter.
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5.2.2 Molecule generation in 3D

Some recent methods directly generate molecules in 3D without learning the connectivity struc-
ture: (Gebauer et al., 2019; Luo & Ji, 2021; Luo et al., 2021a; Gebauer et al., 2021) define an
order-dependent autoregressive distribution from which atoms are iteratively sampled. (Ragoza
et al., 2020) maps atoms to a fixed grid and trains a VAE using 3D convolutions. E-NF (Satorras
et al., 2021a) defines an equivariant normalizing flow that integrates a differential equation.
Instead, the proposed methods learn to denoise a diffusion process, which scales better during
training. Our model EDM (Hoogeboom et al., 2022) was later extended by limiting the message-
passing computations to neighboring nodes (Huang et al., 2022b) and using a more expressive
denoising network (Morehead & Cheng, 2023).

All these diffusion models can be conditioned on molecule-level properties using guidance
mechanisms (Bao et al., 2022) or on another point cloud. Conditioning on a second point cloud
has been employed to generate molecules that bind to a specific protein (Corso et al., 2022;
Schneuing et al., 2022) and to generate linkers between molecular fragments (Igashov et al.,
2022). The main drawback of these models is that they do not learn the connectivity structure of
the molecule. It needs to be obtained in a second stage using interatomic distances (Satorras et al.,
2021a; Hoogeboom et al., 2022) or specialized software such as Open Babel (O’Boyle et al.,
2011). This results in limited performance for complex molecules, but also prevents end-to-end
differentiability for downstream applications.

Conformer generation A related branch of literature is concerned by solely predicting coordi-
nates from molecular graphs, referred to as the conformation. Examples of such methods utilize
conditional VAEs (Simm & Hernández-Lobato, 2019), Wasserstein GANs (Hoffmann & Noé,
2019), and normalizing flows (Noé et al., 2019), with adaptions for Euclidean symmetries in
(Köhler et al., 2020; Xu et al., 2021; Simm et al., 2021; Ganea et al., 2021; Guan et al., 2022)
resulting in performance improvements. In recent works (Shi et al., 2021; Luo et al., 2021b;
Xu et al., 2022) it was shown that score-based and diffusion models are effective at coordinate
prediction, especially when the underlying neural network respects the symmetries of the data.
In particular, as conformer generation models assume that the graph is known, they are able
to exploit symmetries of the molecule such as rotatable bonds (Corso et al., 2022). This is
unfortunately more difficult for unconditional generation tasks, which do not have access to an
input graph structure.

Protein generation While existing diffusion models for molecules operate on molecules of
moderate size (up to 180 atoms), recent diffusion models for proteins have managed to scale to
much larger structures (Trippe et al., 2022; Watson et al., 2022; Ingraham et al., 2022; Wu et al.,
2022; Shi et al., 2022). These methods leverage the chain structure of proteins, which implies
that the adjacency matrix does not need to be predicted. Furthermore, instead of predicting
3D coordinates for each atom, they only predict the angles between successive Cα carbons,
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which significantly reduces the degrees of freedom and encodes roto-translation invariance in the
representation. Those improvements are unfortunately specific to chain graphs, and cannot be
used for arbitrary molecules.

5.3 Background on diffusion models

Diffusion models consist of two essential elements: a noise model and a denoising neural network.
The noise model q takes as input a data point x and generates a trajectory of increasingly corrupted
data points (z1, ..., zt). The corruption process is chosen to be Markovian, i.e.,

q(z1, . . . , zT |x) = q(z1|x)
T∏
t=2

q(zt|zt−1).

The denoising network φθ takes noisy data zt as input, and learns to invert the diffusion trajectories.
A key property of diffusion models is that they do not directly try to predict zt−1, which constitutes
a noisy targets that depends on the sampled diffusion trajectory. Instead, modern diffusion models
(Song & Ermon, 2019; Ho et al., 2020) predict the clean input x from zt, or equivalently, the
noise added to it. The diffusion sequences are then inverted by marginalizing over the network
predictions pθ(x|zt):

pθ(zt−1|zt) =

∫
x
pθ(zt−1 | x, zt) dpθ(x|zt) (5.1)

Although Eq. 5.1 leads to more efficient training, it requires the use of a noise model that satisfies
several properties:

1. The distribution q(zt|x) should have a closed-form formula, to allow for parallel training
on different time steps.

2. The posterior pθ(zt−1|zt) =
∫
q(zt−1|zt, x)dpθ(x) should have a closed-form expression,

so that x can be used as the target of the neural network.
3. The limit distribution q∞ = limT→∞ q(z

T |x) should not depend on x, so that we can use
it as a prior distribution for inference.

Two main frameworks have been proposed under which these properties are satisfied: Gaussian
noise, which is suitable for continuous data, and discrete state-space diffusion for categorical
data. Table 5.1 summarizes the main properties of the two related noise models.
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Table 5.1 – Gaussian and categorical distributions enable the efficient computation of the key
quantities involved in training diffusion models and sampling from them. Formulas for all
parameters can be found in Section 5.3.1.

Noise model Gaussian diffusion Discrete diffusion

q(zt|zt−1) N (αtzt−1, σ
2
t I) zt−1 Qt

q(zt|x) N (ᾱtx, σ̄
2
t I) x Q̄t∫

x pθ(zt−1|x, zt)dpθ(x|zt) N (µtx̂+ νtzt, σ̃
2
t I) ∝

∑
x pθ(x)(ztQ

′
t � xQ̄t−1)

5.3.1 Gaussian Diffusion

Given a vector-shaped data point x, a Gaussian diffusion process that adds noise to zt for
t = 0, . . . , T is defined by the multivariate normal distribution:

q(zt|x) = N (zt|αtxt, σ2
t I), (5.2)

where αt ∈ R+ controls how much signal is retained and σt ∈ R+ controls how much noise is
added. In general, αt is modelled by a function that smoothly transitions from α0 ≈ 1 towards
αT ≈ 0. A special case of noising process is the variance preserving process (Sohl-Dickstein
et al., 2015; Ho et al., 2020) for which αt =

√
1− σ2

t . Following Kingma et al. (2021), we
define the signal to noise ratio SNR(t) = α2

t /σ
2
t , which simplifies notations.

This diffusion process is Markov and can be equivalently written with transition distributions as:

q(zt|zs) = N (zt|αt|szs, σ2
t|sI), (5.3)

for any t > s with αt|s = αt/αs and σ2
t|s = σ2

t − α2
t|sσ

2
s . The entire noising process is then

written as:
q(z0, z1, . . . ,zT |x) = q(z0|x)

∏T

t=1
q(zt|zt−1). (5.4)

The posterior of the transitions conditioned on x gives the inverse of the noising process, the true
denoising process. It is also normal and given by:

q(zs|x, zt) = N (zs|µt→s(x, zt), σ2
t→sI), (5.5)

where the definitions for µt→s(x, zt) and σt→s can be analytically obtained as

µt→s(x, zt) =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

x and σt→s =
σt|sσs

σt
.

The Generative Denoising Process In contrast to other generative models, in diffusion models,
the generative process is defined with respect to the true denoising process. The variable x,
which is unknown to the generative process, is replaced by an approximation x̂ = φ(zt, t) given
by a neural network φ. Then the generative transition distribution p(zs|zt) is chosen to be
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q(zs|x̂(zt, t), zt). Similarly to Eq. C.3, it can be expressed using the approximation x̂ as:

p(zs|zt) = N (zs|µt→s(x̂, zt), σ2
t→sI). (5.6)

With the choice s = t − 1, a variational lower bound on the log-likelihood of x given the
generative model is given by:

log p(x) ≥ L0 + Lbase +
∑T

t=1
Lt, (5.7)

whereL0 = log p(x|z0) models the likelihood of the data given z0,Lbase = −KL(q(zT |x)|p(zT ))

models the distance between a standard normal distribution and the final latent variable q(zT |x),
and

Lt = −KL(q(zs|x, zt)|p(zs|zt)) for t = 1, . . . , T.

While in this formulation the neural network directly predicts x̂, Ho et al. (2020) found that
optimization is easier when predicting the Gaussian noise instead. Intuitively, the network is
trying to predict which part of the observation zt is noise originating from the diffusion process,
and which part corresponds to the underlying data point x. Specifically, if zt = αtx+ σtε, then
the neural network φ outputs ε̂ = φ(zt, t), so that:

x̂ = (1/αt) zt − (σt/αt) ε̂ (5.8)

As shown in (Kingma et al., 2021), with this parametrization Lt simplifies to:

Lt = Eε∼N (0,I)

[1

2
(1− SNR(t− 1)/SNR(t))||ε− ε̂||2

]
(5.9)

In practice the term Lbase is close to zero when the noising schedule is defined in such a way that
αT ≈ 0.

Furthermore, if α0 ≈ 1 and x is discrete, then L0 is close to zero as well.

5.3.2 Discrete diffusion

Recent works have considered the discrete diffusion problem for text, image and audio data
(Hoogeboom et al., 2021; Johnson et al., 2021; Yang et al., 2022). We follow here the setting
proposed by Austin et al. (2021). It considers a data point x that belongs to one of d classes and
x ∈ Rd its one-hot encoding. The noise is now represented by transition matrices (Q1, ...,QT )

such that [Qt]ij represents the probability of jumping from state i to state j: q(zt|zt−1) =

zt−1Qt.

As the process is Markovian, the transition matrix from x to zt reads Q̄t = Q1Q2...Qt. As
long as Q̄t is precomputed or has a closed-form expression, the noisy states zt can be built from
x using q(zt|x) = xQ̄t without having to apply noise recursively (Property 1). The posterior
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distribution q(zt−1|zt, x) can also be computed in closed-form using Bayes rule (Property 2):

q(zt−1|zt, x) ∝ zt (Qt)′ � x Q̄t−1 (5.10)

where � denotes a pointwise product andQ′ is the transpose ofQ.

Proof. By Bayes rule, we have:

q(zt−1|zt, x) ∝ q(zt|zt−1, x) q(zt−1|x)

Since the noise is Markovian, q(zt|zt−1, x) = q(zt|zt−1). A second application of Bayes rule
gives q(zt|zt−1) ∝ q(zt−1|zt)q(zt).

By writing the definition of Qt, we then observe that q(zt−1|zt) = zt (Qt)′. We also have
q(zt−1|x) = x Q̄t−1 by definition.

Finally, we observe that q(zt) does not depend on zt−1. It can therefore be seen as a part of the
normalization constant. By combining the terms, we have q(zt−1|zt, x) ∝ zt (Qt)′ �x Q̄t−1 as
desired.

Finally, the limit distribution of the noise model depends on the transition model. The simplest
and most common one is a uniform transition (Hoogeboom et al., 2021; Austin et al., 2021; Yang
et al., 2022) parametrized by Qt = αtI + (1 − αt)1d1′d/d with αt transitioning from 1 to 0.
When limt→∞ α

t = 0, q(zt|x) converges to a uniform distribution independently of x (Property
3).

The above framework satisfies all three properties in a setting that is inherently discrete. However,
while it has been applied successfully to several data modalities, graphs have unique challenges
that need to be considered: they have varying sizes, permutation equivariance properties, and to
this date no known tractable universal approximator. The models we propose in the next sections
aim to address these specific challenges.

5.3.3 SE(3)-Equivariance with Diffusion Models

Molecules are dynamic entities that can undergo translation and rotation, and the arrangement of
their atoms does not have a predetermined order. To effectively model molecules using generative
models and avoid augmenting the data with random transformations, it is essential to ensure that
the models are equivariant to these inherent symmetries.

To study equivariance with diffusion models, we first need to define invariant and equivariant
distributions. In our setting, a conditional distribution p(y|x) is equivariant to the action of a
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Figure 5.1 – Overview of DiGress. The noise model is defined by Markov transition matrices
Qt whose cumulative product is Q̄t. The denoising network φθ learns to predict the clean graph
from Gt. During inference, the predicted distribution is combined with q(Gt−1|G,Gt) in order to
compute pθ(Gt−1|Gt) and sample a discrete Gt−1 from this product of categorical distributions.

group G when
∀g ∈ G, p(g.y|g.x) = p(y|x) (5.11)

A distribution is invariant to the action of G if

∀g ∈ G, p(g.y) = p(y) (5.12)

In diffusion models, equivariance to a transformation group G can be achieved through several
conditions. First, the noise model must be equivariant to the action of G: ∀g ∈ G, q(g.zt|g.x) =

q(zt|x). Second, the prior distribution q∞ used at inference should be invariant to the group
action, i.e., q∞(g.zT ) = q∞(zT ), and this noise should be processed by an equivariant neural
network in order to ensure that pθ(g.zt−1|g.zt) = pθ(zt−1|zt). Finally, the network should be
trained with a loss function that satisfies l(pθ(g.x|g.zt), g.x) = l(pθ(x|zt), x). Together, these
requirements create an architecture that is agnostic to the group elements used to represent the
training data (Köhler et al., 2020; Xu et al., 2022).

5.4 DiGress: Discrete Denoising diffusion for graph generation

In this section, we present the Discrete Graph Denoising Diffusion model (DiGress) for graph
generation. Our model handles graphs with categorical node and edge attributes, represented by
the spaces X and Y, respectively, with cardinalities dx and dy. We use xi to denote the attribute
of node i and xi ∈ Ra to denote its one-hot encoding. These encodings are organised in a matrix
X ∈ Rn×dx where n is the number of nodes. Similarly, a tensor Y ∈ Rn×n×dy groups the
one-hot encoding yij of each edge, treating the absence of edge as a particular edge type. We use
A′ to denote the matrix transpose ofA, whileAT is the value ofA at time T .
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5.4.1 Diffusion process and inverse denoising iterations

Similarly to diffusion models for images, which apply noise independently on each pixel, we
diffuse separately on each node and edge feature. As a result, the state-space that we consider is
not that of graphs (which would be too large to build a transition matrix), but only the space of
node types X and edge types Y. For any node (resp. edge), the transition probabilities are defined
by the matrices [Qt

X ]ij = q(xt = j|xt−1 = i) and [Qt
Y ]ij = q(yt = j|yt−1 = i). Adding noise

to form Gt = (Xt,Yt) simply means sampling each node and edge type from a categorical
distribution defined by:

q(Gt|Gt−1) = (Xt−1Qt
X ,Y

t−1Qt
Y ) and q(Gt|G) = (XQ̄t

X ,YQ̄
t
Y ) (5.13)

for Q̄t
X = Q1

X ...Q
t
X and Q̄t

Y = Q1
Y ...Q

t
Y . When considering undirected graphs, we apply

noise only to the upper-triangular part of Y and then symmetrize the matrix.

The second component of the DiGress model is the denoising neural network φθ parametrized
by θ. It takes a noisy graph Gt = (Xt,Yt) as input and aims to predict the clean graph G, as
illustrated in Figure 5.1. To train φθ, we optimize the cross-entropy loss l between the predicted
probabilities p̂G = (p̂X , p̂Y ) for each node and edge and the true graph G:

l(p̂G, G) =
∑

1≤i≤n
cross-entropy(xi, p̂

X
i ) + λ

∑
1≤i,j≤n

cross-entropy(yij , p̂
Y
ij) (5.14)

where λ ∈ R+ controls the relative importance of nodes and edges. It is noteworthy that, unlike
architectures like VAEs which solve complex distribution learning problems that sometimes
requires graph matching, our diffusion model simply solves classification tasks on each node and
edge.

Once the network is trained, it can be used to sample new graphs. To do so, we need to estimate
the reverse diffusion iterations pθ(Gt−1|Gt) using the network prediction p̂G. We model this
distribution as a product over nodes and edges:

pθ(G
t−1|Gt) =

∏
1≤i≤n

pθ(x
t−1
i |G

t)
∏

1≤i,j≤n
pθ(y

t−1
ij |G

t) (5.15)

To compute each term, we marginalize over the network predictions:

pθ(x
t−1
i |G

t) =

∫
xi

pθ(x
t−1
i | xi, Gt) dpθ(xi|Gt) =

∑
x∈X

pθ(x
t−1
i | xi = x,Gt) p̂Xi (x)

where we choose

pθ(x
t−1
i | xi = x, Gt) =

{
q(xt−1

i | xi = x, xti) if q(xti|xi = x) > 0

0 otherwise.
(5.16)
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Similarly, we have pθ(yt−1
ij |ytij) =

∑
y∈Y pθ(y

t−1
ij | yij = y, ytij) p̂

Y
ij(y). These distributions are

used to sample a discreteGt−1 that will be the input of the denoising network at the next time step.
These equations can also be used to compute an evidence lower bound on the likelihood, which
allows for easy comparison between models. We now recall the corresponding computations.

Figure 5.2 – The graphical model of DiGress and ConGress.

The graphical model associated to our problem is presented in figure 5.2: the graph size is sampled
from the training distribution and kept constant during diffusion. One can notice the similarity
between this graphical model and hierarchical variational autoencoders (VAEs): diffusion models
can in fact be interpreted as a particular instance of VAE where the encoder (i.e., the diffusion
process) is fixed. The likelihood of a data point x under the model writes:

log pθ(G) = log
∑
n∈N

p(n)

∫
p(GT | n) pθ(G

t−1, . . . , G1|GT ) pθ(G|G1) d(G1, . . . , GT )

(5.17)

= log p(nG) + log

∫
p(GT | nG)

T∏
t=2

pθ(G
t−1 | Gt) pθ(G|G1) d(G1, . . . , GT )

(5.18)

As for VAEs, an evidence lower bound (ELBO) for this integral can be computed (Sohl-Dickstein
et al., 2015; Kingma et al., 2021). It writes:

log pθ(G) ≥ log p(nG)+DKL[q(GT |G) || qX(nG)× qY (nG)]︸ ︷︷ ︸
Prior loss

+

T∑
t=2

Lt(x)︸ ︷︷ ︸
Diffusion loss

+Eq(G1|G)[log pθ(G|G1)]︸ ︷︷ ︸
Reconstruction loss

(5.19)
with

Lt(G) = Eq(Gt|G)

[
DKL[q(Gt−1|Gt, G) || pθ(Gt−1|Gt)]

]
(5.20)

All these terms can be estimated: log p(nG) is computed using the frequencies of the number of
nodes for each graph in the dataset. The prior loss and the diffusion loss are KL divergences be-
tween categorical distribution, and the reconstruction loss is simply computed from the predicted
probabilities for the clean graph given the last noisy graph G1.

5.4.2 Denoising network parametrization

The denoising network takes a noisy graph Gt = (X,Y) as input and outputs tensorsX ′ and Y′

which represent the predicted distribution over clean graphs. To efficiently store information, our
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Figure 5.3 – The self-attention module of our graph transformer network. It takes as input node
featuresX , edge features Y and global features y, and updates their representation. These features
are then passed to normalization layers and a fully connected network, similarly to the standard
transformer architecture. FiLM(M1,M2) = M1W1 + (M1W2) �M2 +M2 for learnable
weight matricesW1 andW2, and PNA(X) = cat(max(X),min(X),mean(X), std(X))W .

layers also manipulate graph-level featuresw. We chose to extend the graph transformer network
proposed by Dwivedi & Bresson (2021), as attention mechanisms are a natural model for edge
prediction. The proposed transformer layer is depicted in 5.3. At a high-level, it first updates
node features using self-attention, incorporating edge features and global features using FiLM
layers (Perez et al., 2018). The edge features are then updated using the unnormalized attention
scores, and the graph-level features using pooled node and edge features. Our transformer layers
also feature residual connections and layer normalization. To incorporate time information, we
normalize the timestep to [0, 1] and treat it as a global feature inside w. The overall memory and
time complexity of our network is Θ(n2) per layer, due to the attention scores and the predictions
for each edge.

5.4.3 Improving DiGress with marginal probabilities and structural features

Choice of the noise model

The choice of the Markov transition matrices (Qt)t≤T defining the graph edit probabilities is
arbitrary, and it is a priory not clear what noise model will lead to the best performance. A
common model is a uniform transition over the classesQt = αtI + (1− αt)(1d1′d)/d, which
leads to limit distributions qX and qY that are uniform over categories. Graphs are however
usually sparse, meaning that the marginal distribution of edge types is far from uniform. Starting
from uniform noise, we observe in Figure 5.4 that it takes many diffusion steps for the model
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Figure 5.4 – Reverse diffusion chains generated from a model trained on uniform transition noise
(top) and marginal noise (bottom). When noisy graphs have the right marginals of node and edge
types, they are closer to realistic graphs, which makes training easier.

to produce a sparse graph. To improve upon uniform transitions, we propose the following
hypothesis: using a prior distribution which is close to the true data distribution makes training
easier.

This prior distribution cannot be chosen arbitrarily, as it needs to be permutation invariant to
satisfy exchangeability. A natural model for this distribution is therefore a product

∏
i u×

∏
i,j v

of a single distribution u for all nodes and a single distribution v for all edges. We propose the
following result to guide the choice of u and v:

Theorem 3. (Optimal prior distribution)
Consider the class C = {

∏
i u×

∏
i,j v, (u, v) ∈ P(X)×P (Y)} of distributions over graphs that

factorize as the product of a single distribution u over X for the nodes and a single distribution
v over Y for the edges. Let P be an arbitrary distribution over graphs (seen as a tensor of
order n + n2) and mX ,mY its marginal distributions of node and edge types. Then πG =∏
imX ×

∏
i,jmY is the orthogonal projection of P on C:

πG ∈ arg min
(u,v)∈C

|| P −
∏

1≤i≤n
u×

∏
1≤i,j≤n

v||22

Proof. We first prove the following result:

Lemma 5. Let p be a discrete distribution over two variables. It is represented by a matrix
P ∈ Ra×b. Let m1 and m2 the marginal distribution of p: m1

i =
∑b

j=1 pij and m2
i =

∑a
i=1 pij .

Then
(m1,m2) ∈ arg min

u,v
u≥0,

∑
ui=1

v≥0,
∑
vj=1

||P − u v′||22

Proof. We define L(u,v) := ||P −uv′||22 =
∑

i,j(pij−uivj)2. We derive this formula to obtain
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optimality conditions:

L

∂ui
= 0 ⇐⇒

∑
j

(pij − uivj)vi = 0

⇐⇒
∑
j

pijvj = ui
∑
j

v2
j

⇐⇒ ui =
∑
j

pijvj /
∑
j

v2
j

Similarly, we have ∂L
∂vj

= 0 ⇐⇒ vj =
∑

i pijui /
∑

j u
2
i .

Since p, u and v are probability distributions, we have
∑

i,j pi,j = 1,
∑

i ui = 1 and
∑

j vj = 1.
Combining these equations, we have:

ui =

∑
j pijvj∑
j v

2
j

=⇒
∑
i

ui = 1 =

∑
i,j pijvj∑
j v

2
j

⇐⇒
∑
j

v2
j =

∑
j

(
∑
i

pij)vj

⇐⇒
∑
j

v2
j =

∑
j

bjvj

So that:
ui0 =

∑
j pi0jvj∑
j bjvj

=

∑
j pi0j

∑
i pijui∑
i aiui∑

j bj
∑
i pijui∑
i aiui

=
∑
j

pi0j = m1
i0

and similarly vj0 = bi0 . Conversely,m1 andm2 belong to the set of feasible solutions.

We have proved that the product distribution that is the closest to the true distribution of two
variables is the product of marginals (for l2 distance). We need to extend this result to a product∏n
i=1 u×

∏
1≤i,j≤n v of a distribution for nodes and a distribution for edges.

We now view p as a tensor in dimension anbn
2
. We denote pX the marginalisation of this tensor

across the node dimensions (pX ∈ Ran), and pY the marginalisation across the edge dimensions
(pY ∈ Rbn×n). By flattening the n first dimensions and the n2 next, p can be viewed as a
distribution over two variables (a distribution for the nodes and a distribution for the edges). By
application of our Lemma, pX and pY are the optimal approximation of p. However, pX is a
joint distribution for all nodes and not the product

∏n
i=1 u of a single distribution for all nodes.
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We then notice that:

||
n∏
i=1

u− pX ||22 =
∑
i

||u||2 − 2
∑
i

〈u, pXi 〉+
∑
i

||pXi ||2

= n (||u||2 − 2 〈u, 1

n

∑
i

pXi 〉+
1

n

∑
i

||pXi ||2)

= ||u− 1

n

∑
i

pXi ||22 + f(pX)

for a function f that does not depend on u. As
∑

i p
X
i /n is exactly the empirical distribution

of node types, the optimal u is the empirical distribution of node types as desired. Overall,
we have made two orthogonal projections: a projection from the distributions over graphs to
the distributions over nodes, and a projection from the distribution over nodes to the product
distributions u× · · · × u. Since the product distributions forms a linear space contained in the
distributions over nodes, these two projections are equivalent to a single orthogonal projection
from the distributions over graphs to the product distributions over nodes. A similar reasoning
holds for edges.

This result means that to get a prior distribution qX × qY close to the true data distribution, we
should define transition matrices such that ∀i, limT→∞ Q̄

T
X1i = mX (and similarly for edges).

To achieve this property, we propose to use

Qt
X = αtI + βt 1dxm

′
X and Qt

Y = αtI + βt 1dym
′
Y (5.21)

With this model, the probability of jumping from a state i to a state j is proportional to the
marginal probability of category j in the training set. Since (1m′)2 = 1m′, we still have
Q̄t = ᾱtI + β̄t1m′ for ᾱt =

∏t
τ=1 α

τ and β̄t =
∏t
τ=1(1− ατ ). We follow the popular cosine

schedule ᾱt = cos (0.5π(t/T + s)/(1 + s))2 with a small s. Experimentally, these marginal
transitions improves over uniform transitions (Appendix B.1).

Structural features augmentation

Generative models for graphs inherit the limitations of graph neural networks, and in particular
their limited representation power (Xu et al., 2019; Morris et al., 2019). One example of this
limitation is the difficulty for standard message passing networks (MPNNs) to detect simple
substructures such as cycles (Chen et al., 2020), which raises concerns about their ability to
accurately capture the properties of the data distribution. While more powerful networks have
been proposed such as SMP in Chapter 3, they are slower to train and therefore not well suited to
large-scale data. Another strategy to overcome this limitation is to augment standard MPNNs with
features that they cannot compute on their own. For example, Bouritsas et al. (2022) proposed
adding counts of substructures of interest, and Beaini et al. (2021) proposed adding spectral
features, which are known to capture important properties of graphs (Chung & Graham, 1997).
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DiGress operates on a discrete space and its noisy graphs are not complete, allowing for the
computation of various graph descriptors at each diffusion step. These descriptors can be input
to the network to aid in the denoising process, resulting in Algorithms 2 and 3 for training
DiGress and sampling from it. The inclusion of these additional features experimentally improves
performance, but they are not required for building a good model. The choice of which features
to include and the computational complexity of their calculation should be considered, especially
for larger graphs. In practice, the structural features that we use can be divided in two types:
graph-theoretic (cycles and spectral features) and domain specific (molecular features).

Cycles Since message-passing neural networks are unable to detect cycles (Chen et al., 2020),
we add cycle counts to our model. Because computing traversals would be impractical on GPUs
(all the more as these features are recomputed at every diffusion step), we use formulas for cycles
up to size 6. We build node features (how many k−cycles does this node belong to?) for up to
5-cycles, and graph-level features (how many k−cycles does this graph contain?) for up to k = 6.
We use the following formulas, where d denotes the vector containing node degrees and ||.||F is
Frobenius norm:

X3 = diag(A3)/2

X4 = (diag(A4)− d(d− 1)−A(d1Tn )1n)/2

X5 = (diag(A5)− 2 diag(A3)� d−A(diag(A3)1Tn )1n + diag(A3))/2

y3 = XT
3 1n/3

y4 = XT
4 1n/4

y5 = XT
5 1n/5

y6 = Tr(A6)− 3 Tr(A3 �A3) + 9||A(A2 �A2)||F − 6 〈diag(A2),diag(A4)〉
+ 6 Tr(A4)− 4 Tr(A3) + 4 Tr(A2Ȧ2 �A2) + 3||A3||F − 12 Tr(A2 �A2) + 4 Tr(A2)

Spectral features We also add the option to incorporate spectral features to the model. While
this requires a O(n3) eigendecomposition, we find that it is not a limiting factor for the graphs
that we use in our experiments (that have up to 200 nodes). We first compute some graph-
level features that relate to the eigenvalues of the graph Laplacian: the number of connected
components (given by the multiplicity of eigenvalue 0), as well as the 5 first nonzero eigenvalues.
We then add node-level features relative to the graph eigenvectors: an estimation of the biggest
connected component (using the eigenvectors associated to eigenvalue 0), as well as the two first
eigenvectors associated to non zero eigenvalues.

5.4.4 Conditional generation

While good unconditional generation is a prerequisite, the ability to condition generation on
graph-level properties is crucial for many applications. For example, in drug design, molecules
that are easy to synthesize and have high activity on specific targets are of particular interest. One
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Algorithm 2: Training DiGress
Input: A graph G = (X,E)

Sample t ∼ U(1, ..., T )

Sample Gt ∼XQ̄t
X × YQ̄t

Y . Sample a (discrete) noisy graph

z ← f(Gt, t) . Structural and spectral features

p̂X , p̂Y ← φθ(G
t, z) . Forward pass

optimizer. step(lCE(p̂X ,X) + λ lCE(p̂Y ,Y)) . Cross-entropy

Algorithm 3: Sampling from DiGress
Sample n from the training data distribution
Sample GT ∼ qX(n)× qY (n) . Random graph

for t = T to 1 do
z ← f(Gt, t) . Structural and spectral features

p̂X , p̂Y ← φθ(G
t, z) . Forward pass

pθ(x
t−1
i |Gt)←

∑
x q(x

t−1
i |xi = x, xti) p̂

X
i (x) i ∈ 1, . . . , n . Posterior

pθ(y
t−1
ij |Gt)←

∑
y q(y

t−1
ij |yij = y, ytij) p̂

Y
ij(y) i, j ∈ 1, . . . , n

Gt−1 ∼
∏
i pθ(x

t−1
i |Gt)

∏
ij pθ(y

t−1
ij |Gt) . Categorical distr.

end
return G0

way to perform conditional generation is to train the denoising network using the target properties
(Hoogeboom et al., 2022), but it requires to retrain the model when the conditioning properties
changes.

To overcome this limitation, we propose a new discrete guidance scheme inspired by the classifier
guidance algorithm (Sohl-Dickstein et al., 2015). Our method uses a regressor gη which is trained
to predict target propertieswG of a clean graph G from a noisy version of G: gη(Gt) = ŵ.This
regressor guides the unconditional diffusion model φθ by modulating the predicted distribution at
each sampling step and pushing it towards graphs with the desired properties. The equations for
the conditional denoising process are given by the following lemma:

Lemma 6. (Conditional reverse noising process) (Dhariwal & Nichol, 2021)
Denote q̇ the noising process conditioned onwG, q the unconditional noising process, and assume
that q̇(Gt|G,wG) = q̇(Gt|G). Then we have q̇(Gt−1|Gt,wG) ∝ q(Gt−1|Gt) q̇(wG|Gt−1).

While we would like to estimate q(Gt−1|Gt) q̇(wG|Gt−1) by pθ(Gt−1|Gt) pη(wG|Gt−1), pη
cannot be evaluated for all possible values of Gt−1. To overcome this issue, we view G as a
continuous tensor of order n+n2 (so that∇G can be defined) and use a first-order approximation.
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Algorithm 4: Sampling from DiGress with discrete regressor guidance.
Input: Trained model φθ, property regressor g, target w, guidance scale λ, graph size n
Sample GT ∼ qX(n)× qY (n) . Random graph
for t = T to 1 do

z ← f(Gt, t) . Structural and spectral features
p̂X , p̂Y ← φθ(G

t, z) . Forward pass
ŵ ← gη(G

t) . Regressor model
pη(ŵ|Gt−1) ∝ exp(−λ 〈∇Gt ||ŵ −w||2, Gt−1〉) . Guidance distribution
Sample Gt−1 ∼ pθ(Gt−1|Gt) pη(ŵ|Gt−1) . Reverse process

end
return G0

It gives:

log q̇(wG|Gt−1) ≈ log q̇(wG|Gt) + 〈∇G log q̇(wG|Gt), Gt−1 −Gt〉

≈ c(Gt) +
∑

1≤i≤n
〈∇xi log q̇(wG|Gt),xt−1

i 〉+
∑

1≤i,j≤n
〈∇yij log q̇(wG|Gt),yt−1

ij 〉

for a function c that does not depend on Gt−1. We make the additional assumption that
q̇(wG|Gt) = N (g(Gt), σ2

wI), where g is estimated by gη, so that∇Gt log q̇η(w|Gt) ∝ −∇Gt ||ŵ−
wG||2. The resulting procedure is presented in Algorithm 4.

In addition to being conditioned on graph-level properties, our model can be used to extend an
existing subgraph – a task called molecular scaffold extension in the drug discovery literature
(Maziarz et al., 2022). In Appendix C.2, we explain how to do it and demonstrate it on a simple
example.

5.4.5 Experiments

In our experiments, we compare the performance of DiGress against several state-of-the-art one-
shot graph generation methods on both molecular and non-molecular benchmarks. We compare
its performance against the Set2GraphVAE proposed in Chapter 4, SPECTRE (Martinkus et al.,
2022), GraphNVP (Madhawa et al., 2019), GDSS (Jo et al., 2022), GraphRNN (You et al.,
2018b), GRAN (Liao et al., 2019), JT-VAE (Jin et al., 2018), NAGVAE (Kwon et al., 2020)
and GraphINVENT (Mercado et al., 2021). We also build Congress, a model that has the same
denoising network as DiGress but Gaussian diffusion (Appendix C.1). Our results are presented
without validity correction2.

2Code is available at github.com/cvignac/DiGress.
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General graph generation

Table 5.2 – Unconditional generation on SBM and
planar graphs. VUN: valid, unique & novel graphs.

Model Deg ↓ Clus ↓ Orb↓ V.U.N. ↑

Stochastic block model
GraphRNN 6.9 1.7 3.1 5 %
GRAN 14.1 1.7 2.1 25%
GG-GAN 4.4 2.1 2.3 25%
SPECTRE 1.9 1.6 1.6 53%
ConGress 34.1 3.1 4.5 0%
DiGress 1.6 1.5 1.7 74%

Planar graphs
GraphRNN 24.5 9.0 2508 0%
GRAN 3.5 1.4 1.8 0%
SPECTRE 2.5 2.5 2.4 25%
ConGress 23.8 8.8 2590 0%
DiGress 1.4 1.2 1.7 75%

Figure 5.5 – Samples from DiGress
trained on SBM and planar graphs.

We first evaluate DiGress on the benchmark proposed in Martinkus et al. (2022), which consists
of two datasets of 200 graphs each: one drawn from the stochastic block model (with up to 200
nodes per graph), and another dataset of planar graphs (64 nodes per graph). We evaluate the
ability to correctly model various properties of these graphs, such as whether the generated graphs
are statistically distinguishable from the SBM model or if they are planar and connected. We refer
to Appendix B.1 for a description of the metrics. In Table 5.2, we observe that DiGress is able to
capture the data distribution very effectively, with significant improvements over baselines on
planar graphs. In contrast, our continuous model, ConGress, performs poorly on these relatively
large graphs.

Small molecule generation

We then evaluate our model on the standard QM9 dataset (Wu et al., 2018) that contains molecules
with up to 9 heavy atoms. We use a split of 100k molecules for training, 20k for validation
and 13k for evaluating likelihood on a test set. We report the negative log-likelihood of our
model, validity (measured by RDKit sanitization) and uniqueness over 10k molecules. Novelty
results are discussed in Appendix B.1. 95% confidence intervals are reported based on five runs.
Results are presented in Figure 5.3. Since ConGress and DiGress both obtain close to perfect
metrics on this dataset, we also perform an ablation study on a more challenging version of QM9
where hydrogens are explicitly modeled in Appendix B.1. It shows that the discrete framework is
beneficial and that marginal transitions and auxiliary features further boost performance.
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Table 5.3 – Molecule generation on QM9. Training time is the time needed to reach 99% validity.
On small graphs, DiGress achieves similar results to the continuous model but is faster to train.

Method NLL Valid Unique Training time (h)

Dataset – 99.3 100 –

Set2GraphVAE – 59.9 93.8 –
SPECTRE – 87.3 35.7 –
GraphNVP – 83.1 99.2 –
GDSS – 95.7 98.5 –
ConGress (ours) – 98.9±.1 96.8±.2 7.2
DiGress (ours) 69.6±1.5 99.0±.1 96.2±.1 1.0

Table 5.4 – Molecule generation on MOSES. DiGress is the first one-shot graph model that scales
to this dataset. While all graph-based methods except ours have hard-coded rules to ensure high
validity, DiGress outperforms GraphInvent on most other metrics.

Model Class Val ↑ Unique↑ Novel↑ Filters↑ FCD↓ SNN↑ Scaf↑

VAE SMILES 97.7 99.8 69.5 99.7 0.57 0.58 5.9
JT-VAE Fragment 100 100 99.9 97.8 1.00 0.53 10
GraphINVENT Autoreg. 96.4 99.8 – 95.0 1.22 0.54 12.7
ConGress (ours) One-shot 83.4 99.9 96.4 94.8 1.48 0.50 16.4
DiGress (ours) One-shot 85.7 100 95.0 97.1 1.19 0.52 14.8

Conditional generation experiments

Figure 5.6 – Mean absolute error on condi-
tional generation with discrete regression guid-
ance on QM9.

Target µ HOMO µ & HOMO

Uncondit. 1.71±.04 0.93±.01 1.34±.01

Guidance 0.81±.04 0.56±.01 0.87±.03

To measure the ability of DiGress to condition
the generation on graph-level properties, we pro-
pose a conditional generation setting on QM9.
We sample 100 molecules from the test set and
retrieve their dipole moment µ and the highest
occupied molecular orbit (HOMO). The pairs
(µ,HOMO) constitute the conditioning vector
that we use to generate 10 molecules. To evaluate the ability of a model to condition correctly,
we need to estimate the properties of the generated samples. To do so, we use RdKit (Landrum
et al., 2006) to produce conformers of the generated graphs, and then Psi4 (Smith et al., 2020) to
estimate the values of µ and HOMO. We report the mean absolute error between the targets and
the estimated values for the generated molecules (Fig. 5.6).

Molecule generation at scale

We finally evaluate our model on two much more challenging datasets made of more than a million
molecules: MOSES (Polykovskiy et al., 2020), which contains small drug-like molecules, and
GuacaMol (Brown et al., 2019), which contains larger molecules. DiGress is to our knowledge
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Table 5.5 – Molecule generation on GuacaMol. We report scores, so that higher is better for all
metrics. While SMILES seem to be the most efficient molecular representation, DiGress is the
first general graph generation method that achieves correct performance, as visible on the FCD
score.

Model Class Valid↑ Unique↑ Novel↑ KL div↑ FCD↑

LSTM Smiles 95.9 100 91.2 99.1 91.3
NAGVAE One-shot 92.9 95.5 100 38.4 0.9
MCTS One-shot 100 100 95.4 82.2 1.5
ConGress (ours) One-shot 0.1 100 100 36.1 0.0
DiGress (ours) One-shot 85.2 100 99.9 92.9 68.0

the first one-shot generative model that is not based on molecular fragments and that scales to
datasets of this size. The metrics used as well as additional experiments are presented in App.
C.3. For MOSES, the reported scores for FCD, SNN, and Scaffold similarity are computed on
the dataset made of separate scaffolds, which measures the ability of the networks to predict
new ring structures. Results are presented in Tables 5.4 and 5.5: they show that DiGress does
not yet match the performance of SMILES and fragment-based methods, but performs on par
with GraphInvent, an autoregressive model fine-tuned using chemical software and reinforcement
learning. DiGress thus bridges the important gap between one-shot methods and autoregressive
models that previously prevailed.

5.5 MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule
Generation

We now present the Mixed Graph+3D denoising diffusion (MiDi) model. We represent each
molecule as a graph G = (x, c,R,Y ), where x and c are vectors of length n containing the
type of each atom and its formal charge, respectively. The n× 3 matrixR = [ri]1≤i≤n contains
the coordinates of each atom, and Y is an n × n matrix containing the bond types. Similarly
to previous diffusion models for graphs, we consider the absence of a bond as a particular bond
type and generate dense adjacency tensors. We denote the one-hot encoding of x, c, and Y by

Figure 5.7 – Samples from our model. MiDi generates graphs embedded in 3D, therefore
producing realistic 2D structures that are consistent with the 3D conformation.
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X , C, and Y, respectively. Time steps are denoted by superscripts, so, for example, rti denotes
the coordinates of atom i at time t. The transpose of matrixX is denoted byX ′.

5.5.1 Noise Model

Our noise model corrupts the features of each node and edge independently, using a noise model
that depends on the data type. For the positions, we use a Gaussian noise within the zero center-of-
mass (CoM) subspace of the molecule ε ∼ N CoM(αtRt−1, (σt)2I), which is required to obtain
a roto-translation equivariant architecture (Xu et al., 2022). This means that the noise follows a
Gaussian distribution on the linear subspace of dimension 3(n− 1) that satisfies

∑n
i=1 εi = 0.

For atom types, formal charges and bond types, we use discrete diffusion, where the noise model
is a sequence of categorical distributions. We choose the marginal transition model proposed in
DiGress. For instance, whenm ∈ Ra represents the marginal distribution of atom types in the
training set, we define Qt

x = αtI + βt 1am
′. We similarly define Qt

c and Qt
y. The resulting

noise model is given by:

q(Gt|Gt−1) ∼ N CoM(αtRt−1, (σt)2I)× C(Xt−1Qt
x)× C(Ct−1Qt

c)× C(Yt−1Qt
y).

When generating new samples, we define the posterior as a product as well:

pθ(G
t−1|Gt) =

∏
1≤i≤n

pθ(r
t−1
i |G

t)pθ(x
t−1
i |G

t)pθ(h
t−1
i |G

t)
∏

1≤i,j≤n
pθ(Y

t−1
ij |G

t),

We calculate each term by marginalizing over the network predictions. For instance,

pθ(x
t−1
i |G

t) =

∫
xi

pθ(x
t−1
i | xi, Gt) dpθ(xi|Gt)

=
∑
x∈X

q(xt−1
i |xi = x,Gt) pXθ (xi = x),

where pXθ (xi = x) is the neural network estimate for the probability that node vi in the clean
graph G is of type x.

Adaptive Noise Schedule

Although the MiDi model corrupts the coordinates, atom types, bond types and formal charges
simultaneously, these components do not play a symmetrical role. For instance, while the 2D
connectivity structure can be predicted relatively well from the 3D conformation, the converse is
not true as the conformation is not unique for a given structure. Similarly, the formal charges
serve as an adjustable variable used to match the valency of each atom with its electronic structure,
but they do not constitute a very fundamental property of the molecules.
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Figure 5.8 – The noise schedule is tuned separately for each component. The atom coordinates
and bond types are denoised earlier during sampling, while the atom types and formal charges
are mostly tuned afterwards.

Based on these observations, we propose an adaptation of the noise model in order to encourage
the denoising network to first generate correctly the most important components, namely the
atom coordinates and bond types, before moving on to predict the atom types and formal charges.
To achieve this, we modify the noise schedule to vary according to the component. We modify
the popular cosine schedule by adding an exponent ν that controls the rate at which the noise is
added to the model:

ᾱt = cos

(
π

2

(t/T + s)ν

1 + s

)2

where the parameter ν can take the form of νr, νx, νy and νc for the atom coordinates, types,
bond types, and charges, respectively. By tuning ν on the QM9 dataset, we find that the following
configuration works best: νr = 2.5, νy = 1.5, νx = νc = 1. The corresponding noise schedule
is shown in Fig. 5.8. This choice implies that rough estimates for the atom coordinates and
the bond types are first generated during inference, before the other components start to play a
significant role. This aligns with previous work on 2D molecular graph generation which found
that predicting the bond types before the atom types is beneficial (Madhawa et al., 2019), which
we also observed in Chapter 4.

5.5.2 Denoising Network

The denoising network takes a noisy graph as input and learns to predict the corresponding clean
graph. It manipulates graph-level features w, node coordinates R, node features (atom types
and formal charges, treated together in the matrix X), and edge features Y. Coordinates are
treated separately from the other node features in order to guarantee SE(3) equivariance. The
neural network architecture is summarized in Figure 5.9. It consists of a Transformer architecture
(Vaswani et al., 2017), with a succession of self-attention module followed by normalization
layers and feedforward networks. We give more details about the different blocks below.
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Figure 5.9 – The denoising neural network of MiDi jointly predicts the 2D graph and 3D
coordinates of the clean graph from a noisy input. It follows a graph Transformer architecture
with layers tailored to maintain SE(3) equivariance. In the update block, each component is
updated using the other features. While the graph-level features w do not play a direct role in the
final prediction, they serve as an effective means of storing and organizing pertinent information
throughout the transformer layers.

Relaxed Equivariant Graph Neural Networks (rEGNNs)

In our proposed method, we leverage the effective yet affordable EGNN layers (Satorras et al.,
2021b) for processing the coordinates. However, we enhance these layers by exploiting the fact
that, when the data and the noise reside in the zero Center-Of-Mass subspace, it is not necessary
for the neural network to be translation invariant. This can be interpreted as defining a canonical
pose for the translation group, which is a valid way to achieve equivariance (Jaderberg et al.,
2015; Kaba et al., 2022).

Rather than simply relying on pairwise distances ||ri − rj ||2, we can therefore use other ro-
tation invariant descriptors such as ||ri||2 or cos(ri, rj). We therefore propose the following
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relaxedEGNN (rEGNN) layer:

[∆r]ij = cat(||ri − rj ||2, ||ri||2, ||rj ||2, cos(ri, rj))

ri ← ri +
∑
j

φm(Xi,Xj , [∆r]ij ,Yij) (rj − ri)

Similar to EGNN layers, the rEGNN layer combines a rotation-invariant message function with a
linear update in rj − ri, which guarantees rotation equivariance. Notably, the additional features
||ri||2, ||rj ||2, and cos(ri, rj) are computed relative to the center-of-mass of the molecule, which
is set to 0 by definition. In our experiments, we have observed that these features facilitate the
generation of a higher proportion of connected molecules, thereby mitigating an issue previously
observed with both the EDM model and DiGress

Update Block To improve our model’s ability to process node features, edge features, graph
level features and coordinates, our new rEGNN layer is integrated into a larger update block.
The edge features are first updated using ∆r, the node features, and the global features. The
node features are updated using a self-attention mechanism, where the attention coefficients also
use the edge features and ∆r. After the attention heads have been flattened, the obtained values
are modulated by the pooled edge features, the norm of the coordinates and the global features.
The global features are updated by pooling all other features at the graph level. Finally, the
coordinates are updated using a rEGNN update, where the message function takes as input ∆r

and the updated edge features Y′. Note that we do not use the normalization term of EGNN: our
layers are integrated in a Transformer architecture as discussed next, and we empirically found
SE(3) normalization layers to be more effective than the EGNN normalisation term at controlling
the magnitude of the activations.

Integration into a Transformer Architecture Transformers have proved to be a very efficient
way to stabilize the self-attention mechanism over many layers. We describe below the changes
to the feed-forward neural network and normalization layers that are required to ensure SE(3)-
equivariance.

Our feed-forward neural network processes each component using MLPs applied in parallel
on each node and each edge. As the coordinates cannot be treated separately (it would break
SE(3)-equivariance), we define

PosMLP(R) = ΠCoM(MLP(||R||) R

||R||+ δ
) ∈ Rn×3,

where ||R|| ∈ Rntimes1 contains the norm ||ri||2 of each point, MLP(||R||) ∈ Rn×1 as well, δ
is a small positive constant, and ΠCoM is the projection of the coordinates on the linear subspace
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with center-of-mass at 0:

ΠCoM(R)i = ri −
1

n

n∑
i=1

ri.

The choice of the normalization layer also depends on the problem symmetries: while batch
normalization (Ioffe & Szegedy, 2015) is used in some graph transformer models (Dwivedi &
Bresson, 2021), this layer is not equivariant in contrast to Set Normalization (Zhang et al., 2022)
or Layer Normalization (Ba et al., 2016). For SE(3) equivariance, the normalization of (Liao &
Smidt, 2022) should be used. Applied to 3D coordinates, it writes

E3Norm(R) = γ
||R||
n̄+ δ

R

||R||
= γ

R

n̄+ δ
with n̄ =

√√√√ 1

n

n∑
i=1

||ri||2,

with a learnable parameter γ ∈ R initialized at 1.

Training Objective

The denoising network of MiDi is trained to predict the clean molecule from a noisy input Gt,
which is reflected in the choice of loss function used during model training. The estimation of
the coordinates R is a regression problem that can simply be solved with mean-squared error,
whereas the prediction pXθ for the atom types, pCθ for the formal charges and pYθ for the bond
types corresponds to a classification problem which can be addressed through a cross-entropy loss
(CE in the equations). Note that the network’s position predictions result in pointwise estimates
R̂, while for the other terms, the prediction is a distribution over classes. The final loss is a
weighted sum of these components:

l(G, p̂G) = λr||R̂−R||2 + λx CE(X, pXθ ) + λc CE(C, pCθ ) + λy CE(Y, pYθ )

The (λi) were initially chosen in order to balance the contribution of each term and cross-validated
starting from this initial value. Our final experiments use λr = 3, λx = 0.4, λc = 1, λy = 2.

5.5.3 Experiments

Settings

We evaluate MiDi’s performance on unconditional molecule generation tasks. To the best of
our knowledge, MiDi is the first method to generate both the graph structure and the conformer
simultaneously, leaving no end-to-end differentiable method to compare to. We therefore compare
MiDi to 3D models on top of which a bond predictor is applied. We consider two such predictors:
either a simple lookup table, as used in Hoogeboom et al. (2022), or the optimization procedure of
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OpenBabel3 O’Boyle et al. (2011) used in other works such as Igashov et al. (2022); Schneuing
et al. (2022). The latter algorithm optimizes the bond orders of neighboring atoms in order
to create a valid molecule, removing all control on the generated graphs. In terms of dataset
comparison, EDM Hoogeboom et al. (2022) was previously the only method that could scale up
to the large GEOM-DRUGS dataset, so it is our only direct competitor in that case. For the QM9
dataset, we also compare MiDi’s performance to that of the GSchNet method (Gebauer et al.,
2019), which employed the OpenBabel algorithm and achieved good results.

To facilitate comparison with previous methods, such as (Satorras et al., 2021a) and Hoogeboom
et al. (2022), we benchmark our models on the full molecular graphs that include explicit
hydrogens atoms. However, we acknowledge that, for most practical applications, hydrogen
atoms can be inferred from the heavy atoms in the structure, and thus can be removed. In fact,
methods trained solely on heavy atoms usually perform better since they consider smaller graphs.

We measure validity using the success rate of RDKit sanitization over 10,000 molecules. Unique-
ness is the proportion of valid molecules with different canonical SMILES. Atom and molecule
stability are metrics proposed in Satorras et al. (2021a) – they are similar to validity but, in
contrast to RDKit sanitization, they do not allow for adding implicit hydrogens to satisfy the
valency constraints. Novelty is the proportion of unique canonical SMILES strings obtained
that are not in the training set. Since all the molecules that we consider have a single connected
component, we also measure the proportion of the generated molecules that are connected.

We also compare the histograms of several properties of the generated set with a test set. The
atom and bond total variations (AtomTV and BondTV) measure the l1 distance between the
marginal distribution of atom types and bond types, respectively, in the generated set and test
set. The Wasserstein distance between valencies is a weighted sum over the valency distributions
for each atom types: ValencyW1 =

∑
x∈atom types p(x)W1(D̂val(x), Dval(x)), where pX(x) is

the marginal distribution of atom types in the training set, D̂val(x) is the marginal distribution of
valencies for atoms of type x in the generated set, Dval(x) the same distribution in the test set.
Here, the Wasserstein distance between histograms is used rather than total variation, as it allows
to better respect the structure of ordinal data.

In previous methods, graph-based metrics were predominantly used. However, in our approach,
we also introduce 3D metrics based on histograms of bond lengths and bond angles. This allows
us to evaluate the efficacy of our approach not only in terms of the graph structure but also in
generating accurate conformers. To this end, we report a weighted sum of the distance between
bond lengths for each bond type:

BondLenghtsW1 =
∑

y∈bond types

p(y)W1(D̂dist(y), Ddist(y)),

where pY (y) is the proportion of bonds of type y in the training set, D̂dist(y) is the generated

3http://openbabel.org/wiki/Bond_Orders
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Table 5.6 – Unconditional generation on QM9 with explicit hydrogens with uniform and adaptive
noise schedules. While MiDi outperforms the base EDM model on graph-based metrics, the
Open Babel optimization procedure is very effective on this simple dataset, as the structures are
simple enough for the bonds to be determined unambiguously from the conformation.

Metrics (↑) Mol stable At stable Validity Uniqueness Novelty Connected
Data 98.7 99.8 98.9 99.9 – 100.0

GSchNet 92.0 98.7 98.1 94.5 80.5 97.1
EDM 90.7 99.2 91.7 98.5 76.0 99.3
EDM + OBabel 97.9 99.9 99.0 98.5 77.8 99.7
MiDi (uniform) 96.1±.2 99.7±.0 96.6±.2 97.6±.1 64.9±.5 99.8±.0
MiDi (adaptive) 97.5±.1 99.8±.0 97.9±.1 97.6±.1 67.5±.3 99.9±.0

Metrics (↓) Valency(e-2) Atom(e-2) Bond(e-2) Angles Bond Lengths (e-2)
Data 0.1 0.3 ∼ 0 0.12 ∼ 0

GSchNet 4.9 4.2 1.1 1.68 0.5
EDM 1.1 2.1 0.2 0.44 0.1
EDM + OBabel 1.1 2.1 0.1 0.44 0.1
MiDi (uniform) 0.4±.0 0.9±.0 0.1±0.0 0.67±.02 1.6±.7
MiDi (adaptive) 0.3±.0 0.3±.1 0.0±.0 0.62±.02 0.3±.1

distribution of bond lengths for bond of type y, and Ddist(y) is the same distribution computed
over the test set. The output is value in Angstrom.

Finally, BondAnglesW1 (in degrees) compares the distribution of bond angles (in degrees) for
each atom type. We compute a weighted sum of these values using the proportion of each atom
type in the dataset. This calculation is restricted to atoms with two or more neighbors to ensure
that angles can be defined:

BondAnglesW1(generated, target) =
∑

x∈atom types

p̃(x)W1(D̂angles(x), Dangles(x)),

where p̃X(x) denotes the proportion of atoms of type x in the training set, restricted to atoms
with two neighbors or more, and Dangles(x) is the distribution of geometric angles of the form
∠(rk − ri, rj − ri), where i is an atom of type x, and k and j are neighbors of i. The reported
metrics are mean and 95% confidence intervals on 5 different samplings from the same checkpoint.

QM9

We first evaluate our model on the standard QM9 dataset Wu et al. (2018) containing molecules
with up to 9 heavy atoms. We split the dataset into 100k molecules for training, 20k for validation,
and 13k for testing. Results are presented in Table 5.6. The data line represents the results of the
training set compared with the test set, while the other entries compare the generated molecules
to the test molecules. As we observe in Table 5.6, predicting the bonds only from the inter-atomic
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Table 5.7 – Unconditional generation on GEOM-Drugs with explicit hydrogens with uniform
and adaptive noise schedules. EDM was previously the only method that scaled to this dataset.
On this complex dataset, the benefits of an integrated models are very clear, as MiDi generates
a much higher proportion of stable molecules. All models achieve 100% uniqueness rate over
10,000 molecules. For MiDi (adaptive), 95% confidence intervals are reported on five checkpoints
of the same run.

2D metrics Mol stable At stable Validity AtomTV BondTV Valency W1
Data 99.9 99.9 99.8 0.001 0.025 0.001

EDM 5.5 92.9 34.8 0.212 0.049 0.112
EDM + OBabel 40.3 97.8 35.3 0.212 0.048 0.285
MiDi (uniform) 66.5 98.9 66.9 0.060 0.024 0.032
MiDi (adaptive) 81.0±1.4 99.4±.0 71.4±1.4 0.086±.009 0.024±.000 0.032±.002

3D metrics Bond Lengths W1 (Å) Bond Angles W1(deg)
Data ∼ 0 0.05

EDM (3D) 0.002 6.23
EDM + O. Babel 0.002 6.42
MiDi (uniform) 0.006 5.42
MiDi (adaptive) 0.006±.003 3.60±.016

distances and atom types has limited performance. Therefore, MiDi outperforms EDM on 2D
metrics, while obtaining similar 3D metrics for the generated conformers. It is worth noting that
our list of allowed bonds is not identical to that used in Satorras et al. (2021a); Hoogeboom et al.
(2022), which may explain why our results for EDM Hoogeboom et al. (2022) do not match
those of the original paper perfectly. Nonetheless, the optimization algorithm of Open Babel
performs very well on this dataset of simple molecules. As QM9 contains molecules with only up
to 9 atoms, the molecular conformations are easy to understand and the bonds can be determined
easily.

GEOM-DRUGS

We then assess our model on the much larger GEOM-DRUGS dataset (Axelrod & Gomez-
Bombarelli, 2020) which comprises 430,000 drug-sized molecules with an average of 44 atoms
and up to 181 atoms. As this dataset features drug-like compounds, it is therefore better suited
for downstream applications than QM9. We split the dataset into 80% for training, 10% for
validation, and 10% for testing. For each molecule, we extract the 5 lowest energy conformations
to build the dataset. Results are presented in Table 5.7.

As this dataset contains molecules that are much more complex than those in QM9, the bonds
in the molecules cannot be determined solely from pairwise distances. This explains why
EDM, which performs relatively well on 3D-based metrics, produces very few valid and stable
molecules. Furthermore, many structures in this dataset are too complex for the Open Babel
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algorithm. While the latter achieves good atom stability, there is at least one invalid atom in
most molecules, leading to low molecular stability. The advantages of an end-to-end model that
generates both a graph structure and its conformation are evident on this dataset: MiDi not only
generates better molecular graphs, but also predicts more realistic conformers that better reflect
the real angles between molecular bonds.

5.6 Discussion

While most previous graph generation methods were limited to small point clouds and graphs, we
have seen that the proposed architectures scale significantly better. In this discussion, we propose
explanations to this phenomenon, but also describe limitations of our current models.

What makes denoising diffusion models superior to other architectures?

As shown in this study, denoising diffusion models demonstrate superiority over other archi-
tectures such as VAEs, GANs, and normalizing flows for generating large-scale graphs. In
comparison to GANs, diffusion models exhibit a more stable training process since they maxi-
mize the evidence lower bound (ELBO) instead of using a min-max objective. This is very clear
experimentally, as little hyper-parameter tuning is needed to make diffusion models work well.
Additionally, diffusion models use an iterative denoising process that allows them to correct
their own predictions, which is not possible with GANs. This feature is particularly useful for
generating high-quality outputs.

In contrast to normalizing flows, such as those used in (Satorras et al., 2021a), diffusion models are
more efficient thanks to their better training process. Normalizing flows require a computationally
expensive change of variable formula, which requires to either constrain the function class they
learn or rely on neural ordinary differential equations (Neural ODEs). While both diffusion
models and Neural ODEs iteratively apply a neural network to approximate the data distribution,
diffusion models are trained on a single time step, which allows for easy parallelization, whereas
Neural ODEs apply the network recursively many times before back-propagating. As a result,
training Neural ODEs is slower and more challenging, particularly for early time steps.

In summary, the success of denoising diffusion models for large-scale graph generation can
be attributed to their stable training process, iterative denoising scheme, and efficient training
compared to other generative models. However, it is important to note that the success of
denoising diffusion models also comes at a cost: they require a large number of diffusion steps,
which can make them computationally expensive for large graphs.
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What makes denoising diffusion suited to equivariant learning

While diffusion models have demonstrated superiority over GANs on other data modalities such
as images (Dhariwal & Nichol, 2021), the gap in performance is even more impressive for graphs.
To understand why, we need to consider the specificity of permutation equivariant generation.

In contrast to the models used in previous chapter, denoising diffusion models maintain a fixed
number of nodes throughout the diffusion process, preserving the identity of each node and
obviating the need for graph matching in computing the loss function. This is a significant
advantage, as no polynomial-time algorithm for graph matching is currently known. Furthermore,
we have seen that encoding and decoding graphs in a permutation equivariant way is as difficult
as graph canonization. In contrasts, denoising diffusion models only operate at the node and
edge-level, therefore avoiding all the complications of graph pooling and up-sampling.

Moreover, the iterative denoising scheme employed in denoising diffusion models acts as a power-
ful symmetry-breaking mechanism. When working with graphs without continuous features, such
as the graphs used in DiGress, automorphisms are likely to be present. This can be problematic
for equivariant graph neural networks, as they cannot distinguish between automorphic nodes,
potentially leading to label noise during training. However, this issue is mitigated in denoising
diffusion models because node and edge types are repeatedly sampled throughout the diffusion
process. While symmetries may be present at certain points in the process, they should eventually
be broken by the sampling steps.

Scalability

One limitation of the proposed diffusion models is their O(n2) complexity, which hinders their
scalability to graphs and point clouds with thousands of nodes. In the case of EDM, this limitation
can be overcome by restricting the message-passing updates to neighboring nodes, rather than
using a fully-connected graph as done in EDM. This avoids the need to compute predictions for
all pairs of nodes.

However, for DiGress, the limitation is more severe. DiGress operates on dense tensors and
computes predictions for all pairs of nodes. Without breaking permutation equivariance, it is
difficult to restrict the message-passing computations, as there is no clear notion of locality. This
makes it challenging to scale non-auto-regressive graph generation models, and to our knowledge,
no sub-quadratic permutation equivariant model has been proposed.

In the case of MiDi, sub-quadratic models could be obtained more easily. While MiDi currently
makes a prediction for all pairs of atoms, in practice, atoms that are far enough are disconnected.
Therefore, there is no need to make these predictions, and a cutoff could be used to improve
model scalability.
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Internal symmetries

Although EDM and MiDi are both equivariant to SE(3) transformations, these transformations
do not account for all possible symmetries of molecules. One prominent example is the existence
of rotatable bonds, which allow parts of the molecule to rotate freely, leading to non-unique
conformations that cannot be captured by SE(3) transformations alone. Incorporating internal
symmetries in the model is a challenging task, as computing the locations of rotatable bonds
requires information about both the connectivity structure and bond types. One possible approach
is to first generate the graph structure and then generate the conformer afterwards, but this
approach would break the overall differentiability of the model and limit its performance.

Conclusion

In summary, we have introduced in this chapter two diffusion models for graph generation. These
models operate in a similar fashion: they are trained on corrupted data to predict the clean data,
and sample new objects by iteratively denoising pure noise. At each step, these diffusion models
require to marginalize over the network predictions in order to sample the next time step. This is
only possible for some noise models, but is important for efficient training.

The noise models needs to be chosen depending on the data modality. In this chapter, we have
shown that there is a clear advantage to using discrete diffusion for the generation of categorical
features. Gaussian noise is well suited to continuous features, but it needs to be slightly adapted
in the case of coordinates in order to account for SE(3) equivariance.

The network parametrization also depends on the data modality. For example, DiGress uses
additional features to overcome the limited expressive power of graphs networks, while the MiDi
model, which additionally has access to 3D coordinates, does not need such features.

Overall, these models outperform previous architectures by a large margin. In addition to the
general benefits of denoising diffusion models, which define a very stable training procedure
that is easy to parallelize, casting generation as an iterative denoising problem is particularly
interesting for unordered data. In denoising diffusion models, there is no need to perform graph
coarsening, graph pooling or graph up-sampling, which are three tasks that are difficult for
existing models. The denoising networks simply operate at the node and edge level, which lifts
the challenges of permutation equivariance.
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6.1 Conclusion

This thesis has contributed to the development of deep generative models and graph neural
networks by exploring the concept of permutation equivariance and its implications on graph
representation learning, especially in applications related to point cloud and graph generation.

With the Structural Message-Passing model, we have shown how to build higher order message-
passing schemes that have a better representation power without sacrificing on the inductive bias
of MPNNs. In SMP, we have shown that it is not the message-passing scheme that limits the
expressive power of graph networks, but rather the order of the tensors that are used to manipulate
the data. Despite a representation power that is similar to other architectures, SMP is much more
effective at learning structural information of graphs, which makes it well suited to tasks with
few node attributes.

We have then investigated equivariance in set and graph generation tasks, showing the constraints
that equivariance impose on the probabilistic decoder of different architectures. We have reviewed
layers that map vectors to sets, and proposed a novel effective layer for this task.

Unfortunately, learning to generate graphs with a vector-shaped latent space is difficult, as it
require to compress graphs into a single vector and learn to decode them. This problem does not
exist in diffusion models, which perform node and edge-level predictions without compressing
the data representation. We presented DiGress, a diffusion model for graph generation, and its
extension MiDi for nodes that additionally have 3D coordinates. These models achieve state-
of-the-art performance, outperforming previous architectures such as GANs or VAEs by a large
margin. While previous methods could only consider very small graphs, drug-sized molecules
can now be generated. This opens the way for many applications, particularly in drug discovery
and computation biology. In addition, diffusion models for graphs are still at their infancy, and
there are many avenues of research to develop these models further. We discuss below some
future directions that we would like to explore in the future.
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6.2 Future directions

6.2.1 Directions for graph representation learning

Understanding the inductive bias of graph neural networks

In Chapter 2, we have explored the relationship between the iterative propagation scheme of
MPPNs and the Weisfeiler-Lehman test, which has allowed us to gain insights into the expressive
power of MPNNs. However, understanding the effectiveness of different graph neural networks
requires us to not only comprehend their expressive power but also their inductive bias. To this
end, it may be more relevant to consider continuous Weisfeiler-Lehman iterations (Togninalli
et al., 2019) rather than the standard Weisfeiler-Lehman test, which employs hash functions at
each step. Although all MPNN architectures share the same discrete Weisfeiler-Lehman test, the
variations in their aggregation factors and normalization terms could be captured by continuous
Weisfeiler-Lehman iterations. By defining an embedding for each node in a graph, these iterations
provide a means to compare the embeddings learned by different graph networks.

6.2.2 Graph generation extensions

Diffusion models with indefinite time horizons

The idea of applying iteratively a denoising neural network has been proposed outside of diffusion
models. In the context of molecule generation, Mahmood et al. (2021) proposed a model that
iteratively masks part of a molecule and learns to recover the masked part. However, this model
lacks a fundamental property of diffusion models, which is the ability to parallelize the training
on different time steps, which is key to good performance. Nevertheless, the idea of viewing
the denoising network as an agent that updates a graph until it is satisfied with the result is very
interesting. It calls for the development of denoising diffusion models that do not have a fixed
horizon but can still be trained efficiently. These models would enable the diffusion process to
continue until convergence, instead of being limited by a fixed number of steps, thus allowing for
more flexibility and potentially better performance.

Scaling denoising diffusion models

As discussed in previous chapter, the ability to scale diffusion models to point clouds and graphs
with thousands of points is crucial for many applications. Currently, the quadratic complexity
of the proposed models limits their scalability. One way to achieve sub-quadratic generation is
to develop a hierarchical diffusion model that utilizes graph coarsening and graph up-sampling
operators such as those proposed in (Ying et al., 2018; Gao & Ji, 2019). The main challenge
probably lies in the design of a noise model that compresses the clean graph into a smaller,
noisy graph, while preserving the closed-form formula required for efficient training of diffusion
models.
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Diffusion models for particular classes of graphs

In certain applications, it may be necessary to generate only particular subclasses of graphs, such
as trees or planar graphs. To achieve this, diffusion models with specialized architectures can be
developed to exploit the unique properties of these graphs. By combining established results in
graph theory with diffusion models, it may be feasible to identify the appropriate representation
of the data, which ensures that all generated graphs conform to the desired properties, such as
being trees or planar graphs. The development of such specialized architectures requires the
integration of insights from various domains, such as graph theory, combinatorics, and geometry.

6.2.3 Directions for molecule generation

Fragment-based diffusion

In the context of molecule generation, the use of fragment-based diffusion models, such as those
proposed in (Jin et al., 2020) and (Maziarz et al., 2022), has proved to be very effective. By fo-
cusing on substructures, these models can effectively generate drug-like molecules by combining
only a few fragments. While these models generally utilize autoregressive architectures, it may
be worthwhile to explore other types of models. For instance, discrete diffusion models could be
a useful alternative, as some expert knowledge on the similarity between molecular fragments
could be incorporated in the Markov transition matrices.

Molecule generation with rich representations

In recent years, there has been a growing interest in the development of large-scale generative
models for molecules which can perform well on a range of tasks. While MiDi considers
molecules represented by their 2D connectivity structure and 3D arrangement of atoms, other
representations such as SMILES strings have proven to be effective for various molecular tasks.
One potential avenue for further research is therefore to consider different data modalities
simultaneously. In addition to SMILES, we could for example consider multiple conformers of a
molecule and their corresponding energies, which would provide additional information for the
generative models.

Dynamics modeling

While existing models for generating physical systems such as molecule in 3D assume that the
systems have a unique stable state (up to symmetries), this is not the case in practice. For example,
molecules in 3D should not be defined by one single conformation, but rather by a probability
distribution over the conformations. Moreover, the true systems evolve in time, which is currently
not taken into account. Designing models that do not output one single state is a challenging
direction for the future. It probably requires to integrate some physical knowledge to reduce the
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size of the search space.

6.2.4 General directions

In contrast to text or image data, we have yet to develop large-scale architectures for few-shot
learning on graphs that can be fine-tuned. Such architectures would be particularly useful for
datasets with limited data, such as those commonly encountered in medical applications. However,
current graph neural network architectures are highly task-specific, and the choice of aggregation
function can have significant ramifications on downstream performance. Thus, the development
of more flexible architectures is a necessary precondition for the creation of large-scale graph
models.

In summary, our research has contributed to the exciting and rapidly evolving field of graph
machine learning. As we have discussed, this area encompasses a broad range of research
directions, and, in addition to the topics discussed in this thesis, there are still many open
questions to be addressed in self-supervised learning, knowledge graphs, and large-scale graphs.
However, we are confident that the graph machine learning community will continue to make
significant progress in these areas and beyond, and we are proud to have been a part of this
thriving and dynamic research community.
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A.1 Proof of Theorem 2

We first present the formal version of the theorem:

Theorem 4 (Representation power – formal ). Consider the class S of simple graphs with n nodes,
diameter at most ∆ and degree at most dmax. We assume that these graphs have respectively
dx and dy attributes on the nodes and the edges. There exists a permutation equivariant SMP
network f : Rn×n 7→ Rn×n×c of depth at most ∆ + 1 and width at most 2dmax + dx + n dy
such that, for any two graphs G and G′ in S with respective adjacency matrices, node and edge
featuresA,X,Y andA′,X ′,Y′, the following statements hold for every vi ∈ V and vj ∈ V ′:

• If G and G′ are not isomorphic, then for all π ∈ Sn,

ΠT f(A,X,Y)[i, :, :] 6= f(A′,X ′,Y′)[j, :, :].

• If G and G′ are isomorphic, then for some π ∈ Sn independent of i and j,

ΠT f(A,X,Y)[i, :, :] = f(A′,X ′,Y′)[j, :, :].

The fact that embeddings produced by isomorphic graphs are permutations one of another is a
consequence of equivariance, so we are left to prove the first point. To do so, we will first ignore
the features and prove that there is an SMP that maps the initial one-hot encoding of each node to
an embedding that allows to reconstruct the adjacency matrix. The case of attributed graphs and
the statement of the theorem will then follow easily.

Consider a simple connected graph G = (V,E). For any layer l ∈ N and node vi ∈ V , we
denote by G(l)

i = (V,E
(l)
i ) the graph with node set V and edge set

E
(l)
i = {(vp, vq) ∈ E, d(vi, vp) ≤ l, d(vi, vq) ≤ l, d(vi, vp) + d(vi, vq) < 2l}.
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These edges correspond to the receptive field of node vi after l layers of message-passing. We
denote byA(l)

i the adjacency matrix of G(l)
i .

Warm up: nodes manipulate n x n matrices

To build intuition, it is useful to first consider the case where Ui are n× n matrices (rather than
n× c as in SMP). In this setting, messages are n× n matrices as well. If the initial state of each
node vi is its one-hop neighbourhood (U (1)

i = A
(1)
i ), then each node can easily recover the full

adjacency matrix by updating its internal state as follows:

U
(l+1)
i = max

vj∈N(vi) ∪ vi
{U (l)

j }, (A.1)

where the max is taken element-wise.

Lemma 7. Recursion A.1 yields U (l)
i = A

(l)
i .

Proof. We prove the claim by induction. It is true by construction for l = 1. For the inductive
step, suppose that U (l)

i = A
(l)
i . Then,

U l+1
i [p, q] = 1 ⇐⇒ ∃ vj ∈ {N(vi) ∪ vi} such that A

(l)
j [p, q] = 1

⇐⇒ (vp, vq) ∈ E and ∃ vj ∈ {N(vi) ∪ vi}, d(vj , vp) ≤ l, d(vj , vq) ≤ l, d(vj , vp) + d(vj , vq) < 2l

=⇒ (vp, vq) ∈ E, d(vi, vp) ≤ l + 1, d(vi, vq) ≤ l + 1, d(vi, vp) + d(vi, vq) < 2(l + 1)

=⇒ A
(1+1)
i [p, q] = 1

Conversely, ifA(l+1)
i [p, q] = 1, then there exists either a path of length l of the form (vi, vj , . . . , vp)

or (vi, vj , . . . , vq). This node vj will satisfy U (l)
j [p, q] = 1 and thus U (l+1)

i [p, q] = 1.

It is an immediate consequence that, for every connected graph of diameter ∆, we have U (∆)
i =

A.

SMP: nodes manipulate node embeddings

We now shift to the case of SMP. We will start by proving that we can find an n×2dmax embedding
matrix (rather than n× n) that still allows to reconstructA(l)

i . For this purpose, we will use the
following result:

Lemma 8 (Maehara & Rödl (1990)). For any simple graphG = (V,E) of n nodes and maximum
degree dmax, there exists a unit-norm embedding of the nodesX ∈ Rn×2dmax such that

∀(vi, vj) ∈ V 2, (vi, vj) ∈ E ⇐⇒ Xi ⊥Xj .
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In the following we assume the perspective of some node vi ∈ V . Let U (l)
i ∈ Rn×cl be the

context of vi. Further, write u(l)
j = U

(l)
i [j, :] ∈ Rcl to denote the embedding of vj at layer l from

the perspective of vi. Note that, for simplicity, the index i is omitted.

Lemma 9. There exists a sequence (fl)l≥1 of permutation equivariant SMP layers defining
U

(l+1)
i = f (l+1)(U

(l)
i , {U (l)

j }j∈N(vi)) such that u(l)
j ⊥ u

(l)
k ⇐⇒ (vj , vk) ∈ E

(l)
i for every

layer l and nodes vj , vk ∈ V . These functions do not depend on the choice of vi ∈ V .

Proof. We use an inductive argument. An initialization (layer l = 1), we have U (0)
j = δj for

every vj . We need to prove that there exists U (1)
i = f (1)(U

(0)
i , {U (0)

j }vj∈N(vi)) which satisfies

∀(vj , vk) ∈ V 2, u
(1)
j ⊥ u

(1)
k ⇐⇒ (vj , vk) ∈ E

(1)
i .

Rewritten in matrix form, it is sufficient to show that there exists U (1)
i such that U (1)

i (U
(1)
i )> =

11> −A(1)
i , with 1 being the all-ones vector. A(1)

i is the adjacency matrix of a star consisting
of vi at the center and all its di neighbors at the spokes. Further, it can be constructed in an
equivariant manner from the layer’s input as follows:

A
(1)
i =

∑
vj∈N(vi)

δiδ
>
j +

∑
vj∈N(vi)

δjδ
>
i .

Since the rank of A(1)
i is at most di (there are di non-zero rows), the rank of 11> −A(1)

i is at
most di + 1 ≤ 2di ≤ 2dmax. It directly follows that there exists a matrix U (1)

i of dimension
n×2dmax which satisfiesU (1)

i (U
(1)
i )> = 11>−A(1)

i . Further, as the construction of this matrix
is based on the eigendecomposition ofA(1)

i , it is permutation equivariant as desired.

Inductive step. According to the inductive hypothesis, we suppose that:

u
(l)
j ⊥ u

(l)
k ⇐⇒ (vj , vk) ∈ E

(l)
i for all vj , vk ∈ V

The function f (l+1) builds the embedding U (l+1)
i from (U

(l)
i , {U (l)

j , vj ∈ N(vi)}) in three
steps:

Step 1. Each node vj ∈ N(vi) sends its embeddingU (l)
j to node vi. This is done using the message

function m(l).
Step 2. The aggregation function φ reconstructs the adjacency matrix A(l)

j of G(l)
j from U

(l)
j

for each vj ∈ N(vi) ∪ {vi}. This is done by testing orthogonality conditions, which
is a permutation equivariant operation. Then, it computes A(l+1)

i as in Lemma 7 using
A

(l+1)
i = max({A(l+1)

j }vj∈N(vi)∪{vi}), with the maximum taken entry-wise.

Step 3. The update function u(l) constructs an embedding matrixU (l+1)
i ∈ Rn×2dmax that allows to

reconstructA(l+1)
i through orthogonality conditions. The existence of such an embedding

is guaranteed by Lemma 1. This operation can be performed in a permutation equivariant
manner by ensuring that the order of the rows of U (l+1)

i is identical with that ofA(l+1)
i .
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Therefore, the constructed embedding matrix U (l+1)
i satisfies

u
(l+1)
j ⊥ u(l+1)

k ⇐⇒ (vj , vk) ∈ E
(l+1)
i for all vj , vk ∈ V

and the function f (l+1) is permutation equivariant (as a composition of equivariant functions).

It is a direct corollary of Lemma 1 that, when the depth is at least as large as the graph diameter,
such that E(l)

i = E for all vi and the width is at least as large as 2dmax, then there exist a
permutation equivariant SMP f = f (L) ◦ . . . ◦ f (1) that induces an injective mapping from
the adjacency matrix A to the local context Ui of each node vi. As a result, given two graphs
G and G′, if there are two nodes vi ∈ V and v′j ∈ V ′ and a permutation π ∈ Sn such

that U (L)
i = πT U

′(L)
j , then the orthogonality conditions will yield A = πT A′ π. The

contraposition is that if two nodes belong to graphs that are not isomorphic, their embedding will
belong to two different equivalence classes (i.e. they will be different even up to permutations).

Extension for attributed graphs

For attributed graphs, the reasoning is very similar: we are looking for a SMP network that maps
the attributes to a set of local context matrices such that all the attributes of the graph can be
recovered from the context matrix at any node. We treat the case of node and edge attributes
separately:

Node attributes Using dx extra channels in SMP is sufficient to create the desired embedding.
We recall that the input to the SMP is a local context such that the i-th row of vi contains [1,xi],
where xi is the vector of attributes of vi, while the other rows are zero. Ignoring the first entry of
this vector (which was used to reconstruct the topology), we propose the following update rule:

U
(l+1)
i = U

(l)
j0

where j0 = argmax({|U (l)
j |}j∈{vi∪N(vi)}) (A.2)

where the max is taken element-wise on each entry of the matrix. This function is simply an
extension of the max aggregator that allows to replace the zeros of the local context by non zero
values, even if they are negative. Using it, each node can progressively fill the rows corresponding
to nodes that are more and more distant. With the assumption that the graph is connected, each
node will eventually have access to all node features.

Edge attributes As each edge attribute can be seen as a n × n matrix, edges attributes are
handled in a very similar way as the adjacency matrix of unattributed graphs. If nodes could
send n× n matrices as messages, they would be able to recover all the edge features using the
previous update rule (equation A.2). However, SMP manipulates embeddings that transform
under the action of a permutation as π . Ui = πTUi, whereas a n × n matrix M transforms
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as π .M = πTM π. As a result, we cannot directly pass the incomplete edge features as
messages, and we need to embed them into a matrix that permutes in the right way.

The construction of a SMP that embeds the input to local contexts that allow to reconstruct an
edge feature matrix E is the same as for the adjacency matrix, except for one difference: lemma
1, which was used to embed adjacency matrices into a smaller matrix cannot be used anymore, as
it is specific to unweighted graphs. Therefore, we propose another way to embed each matrix
E

(l)
i obtained at node vi after l message passing layers:

• For undirected graphs, E(l)
i is symmetric. We can therefore compute its eigendecomposi-

tion E(l)
i = V ΛV T .

• We add a given value λ to the diagonal of Λ to make sure that all coefficients are non-
negative.

• We compute the square root matrix U = V (Λ + λI)1/2. This matrix permutes as desired
under the action of a permutation: π . U = πTU . In addition, it allows to reconstruct the
matrix E(l)

i = UUT , so that it constitutes a valid embedding for the rest of the proof.

Note that the square root matrix permutes as desired, but that it does not compress the representa-
tion of E(l)

i : for each edge features, n additional channels are needed, so that a SMP should have
n× dy more channels to be able to reconstruct all edge features.

Conclusion

We have shown that there exists an SMP that satisfies the conditions of the theorem, and
specifically, we demonstrated that each layer can be decomposed in a message, aggregation and
update functions that should be able to internally manipulate n× n matrices in order to produce
embeddings of size n× 2dmax + dx + n dy.

The main assumption of our proof is that the aggregation and update functions can exactly
compute any function of their input — this is impossible in practice. An extension of our
argument to a universal approximation statement would entail substituting the aggregation and
update functions by appropriate universal approximators. In particular, the aggregation function
manipulates a set of n× c matrices, which can be represented as a n× n× c tensor with some
lines zeroed out. Some universal approximators of equivariant functions for these tensors are
known (Keriven & Peyré, 2019), but they have large memory requirements. Therefore, proving
that a given parametrization of an SMP can be used to approximately reconstruct the adjacency
matrix hinges on the identification of a simple universal approximator of equivariant functions on
n× n× c tensors.
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B.1 Details about the experimenal setting of Top-n

Set MNIST and CLEVR

Since we use existing code for this task, we refer to the respective papers (Zhang et al., 2019) and
(Kosiorek & Kim, 2020) for details on the model used and the loss function. The code used for
TSPN is not the original code (which is not available) but a reimplementation (not by one of the
authors of the present paper). The reader will notice that our results for DSPN are approximately
3 times worse than in the original paper. The reason is that we fixed what we believe to be a bug
in the implementation of Chamfer’s loss in DSPN: a mean over channels was used instead of
a sum, which explains this difference of a factor 3. We also note that the results for TSPN are
around 3 times worse than the original paper. One possible reason could be that the authors of
TSPN used the code of DSPN and had a similar bug.

For Top-n generation, we set the number of points in the reference set to twice the cardinality n of
the generated sets. We also experimented with n0 = n which resulted in better performance for
DSPN (with a Chamfer loss of 6.14± 0.56 e-5), but not for TSPN (16.07± 0.47). We observed
that reducing the learning rate improves results for all methods: TSPN was therefore trained for
100 epochs with a learning rate of 5e-4, and DSPN with a learning rate of 1e-4 for 200 epochs.
No other hyper-parameter was tuned.

Synthetic set generation

Dataset generation procedure Each set is created via rejection sampling: points are drawn
iteratively from a uniform distribution within a bounding box in R3. The first point is always
accepted, and the next ones are accepted only if they satisfy a predefined set of constraints: i)
they are not closer to any other point than a given threshold min-distance. ii) they are connected
to the rest of the set, i.e., have at least one neighbor than a distance neighbor-distance iii) they
do not have too many neighbors. Our dataset is made of 2000 sets that have between 2 and 35
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points, with 9 points per set on average. It is a simplification of real molecules in several aspects:
there are only single bonds, angles between bonds are not constrained and the atom types are
only defined by the valency, which reflects the fact that atoms with the same valency tend to play
a similar role and be more interchangeable.

Model The set encoder is made of a 2-layer MLP, 3 transformer layers followed by a PNA
global pooling layer (that computes the sum, mean, max and standard deviation over each channel)
(Corso et al., 2020) and a 2-layer MLP. The decoder is made of a set generator followed by a
linear layer, 3 transformer layers and a 2-layer MLP. We use residual connections when possible
and batch normalization between each layer. The reference set contains 35 points.

We experimented with the two ways to sample the number of points presented in Section 4.2, but
we found the results to be quite similar. We therefore opted sampling the number of points from
the data distribution, which is the simplest method.

Loss function We use a standard variational autoencoder loss with a Wasserstein reconstruction
term and two additional regularizers. Given an input setX and its reconstruction X̂ , the loss can
be written:

L(X, X̂) = dW2(X, X̂) + λ1 KL(p(z |X),N (0, Il)) + λ2reg2 (X̂) + λ3 reg3(X̂)

where
reg2(X) =

∑
1≤i<j≤n

(d0 − ||xi − xj ||2)+ with d0 = 1

prevents atoms from being generated too close to each other. reg3(X) penalizes atoms that have
either no neighbor, or a too large valency. It is computed in the following way:

• for each point i, compute si = sort((dij)j≤n, j 6=i). This vector contains the sorted distances
between i and all other points. Points that are at distance less than d1 = neighbor-distance
from i are considered as its neighbours.

• Compute l1(i) = (si0 − d1)+. This term penalizes atoms that have no neighbour.

• Compute l2(i) =
∑n−1

j=max-valency(d1 − sij)+. This term penalizes atoms that have too many
neighbors.

• reg3(X) is defined as
∑

1≤i≤n l1(i) + l2(i).

Training details In order to train the model efficiently, mini-batches have to be used. This
may not be easy when dealing with sets and graphs, since they do not have all the same shape.
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Table B.1 – Train reconstruction error and valency loss in the generated sets over 5 runs for
a modified version of our dataset, where the cardinality varies less across sets. We observe a
tradeoff between reconstruction performance and generalization.

Reference points 11 13 15 20 30 50
W2 train loss 0.75±.04 0.78±.03 0.79±.04 0.87±.05 0.93±.04 1.03±.06

Valency loss (e-1) 2.8±.7 2.2±0.7 2.1±.9 2.4±1.2 1.6±.2 2.8±.8

To circumvent this issue, we reorganise the training data in order to ensure that all sets inside a
mini-batch have the same size. At generation time, this method cannot be applied, so we simply
generate sets one by one.

The optimizer is Adam with its default parameters. We use a learning rate of 2e−4 and a scheduler
that halves it when reconstruction performance does not improve significantly after 750 epochs.
Experimentally, we found the learning rate decay to be important to achieve good reconstruction.

We also run a study with different reference set sizes. For this purpose, we slightly modify our
dataset so that each set has only up to 11 points (still with 9 points on average). The reason is
that there is more flexibility in the choice of the reference size if the maximal size is not too large.
By training a Top-n network with several reference set sizes, we obtain the results of Table B.1.

Molecular graph generation on QM9

Model Our encoder is a graph neural network is made of 3 message-passing layers followed
by a PNA global pooling layer and a final MLP. For the decoder, we use a set creation method
followed by transformer layers. The resulting representation is then processed by i) a Set2Graph
layer (Serviansky et al., 2020) followed by two MLPs to generate edge probabilities and edge
features a MLP which generates node features ii) a MLP that takes as input the set representation
and the valencies predicted for each atom, and returns an atom type.

Graph matching and loss function As explained in Section 4.3, the loss function of the
variational autoencoder should solve a graph matching problem, which is hard in general. Instead
of using a proper graph matching method, we propose to use the atom types to perform an
imperfect but much cheaper alignment between the target and the predicted molecules.

For both molecules, we compute a score for each atom i defined as:

s(i) = 105atom-type(i) + 104num-edges(i) +
∑

j∈N (i)

edge-type(i, j) ∗ atom-type(j)

This score cannot differentiate between all atoms in each molecule, but it reduces drastically
the number of permutations that can represent the same input. It is motivated by the fact that
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empirically, we observe that our method quickly learns to reconstruct the molecular formula very
well. Once they are all computed, we use these scores to sort the atoms reorder the adjacency
matrix and the atom and edge types.

Our model learns to predict a probabilistic model for the atom types, edge presence and edge
types. For this purpose, we use standard cross entropy loss between the predicted probabilities
and the ground truth. However, these metrics can be hard to optimize because of the imperfect
graph matching algorithm. We therefore regularize these metrics with several other measures at
the graph level, that do not depend on matching:

• The mean squared error between the real atomic formula and the predicted one.

• The mean squared error between the average number of edges per atom in the input and
predicted molecule.

• The mean squared error between the distribution of edge types in the real and predicted
molecule.

Finally, we add a matching dependent term, which is the mean squared error between the valencies
of the input and the target molecule.

Training details The model is trained over 600 epochs with a batch size of 512 and a learning
rate of 2e−3. It is halved after 100 epochs when the loss does not improve anymore. The optimizer
is Adam with default parameters. The reference set has 12 points. When using more points, we
obtained overall similar results, but with a larger variance.

B.2 Training curves
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(a) DSPN training on Set-MNIST (b) TSPN training on Set-MNIST

(c) DSPN training on CLEVR for bounding box
prediction.

(d) DSPN training on Set-MNIST for full state
prediction.

(e) Molecule generation on QM9. First-n, Top-n
and MLP mostly overlap. (f) Synthetic molecule-like dataset in 3d.

Figure B.1 – Training curves for all models. We observe that random i.i.d. generation is in general
harder to train than the other models, while the differences between the other methods are smaller.
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C.1 Continuous Graph Denoising Diffusion Model (ConGress)

In this section we present a diffusion model for graphs that uses Gaussian noise rather than a
discrete diffusion process. Its denoising network is the same as the one of our discrete model.
Our goal is to show that the better performance obtained with DiGress is not only due to the
neural network design, but also to the discrete process itself.

Diffusion process

Consider a graph G = (X,Y). Similarly to the discrete diffusion model, this diffusion process
adds noise independently on each node and each edge, but this time the noise considered is
Gaussian:

q(Xt|Xt−1) = N (αt|t−1Xt−1, (σt|t−1)2I) and q(Yt|Yt−1) = N (αt|t−1Yt−1, (σt|t−1)2I)

(C.1)
This process can equivalently be written:

q(Xt|X) = N (Xt|αtX, σtI) q(Yt|Y) = N (Yt|αtY, σtI) (C.2)

where αt|t−1 = αt/αt−1 and (σt|t−1)2 = (σt)2 − (αt|t−1)2(σt−1)2.

The variance is chosen as (σt)2 = 1 − (αt)2 in order to obtain a variance-preserving process
(Kingma et al., 2021). Similarly to DiGress, when we consider undirected graphs, we only apply
the noise on the upper-triangular part of Y without the main diagonal, and then symmetrize the
matrix. The true denoising process can be computed in closed-form:

q(Xt−1|X,Xt) = N (µt→t−1(X,Xt), (σt→t−1)2 I) (and similarly for Y), (C.3)
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Algorithm 5: Training ConGress
Input: A graph G = (X,Y)
Sample t ∼ U(1, ..., T )
Sample εX ∼ N (0, In)
Sample εY ∼ N (0, In(n−1)/2) and symmetrize if needed
zt ← αt(X,Y) + σt (εX , εY ) . Add noise
Minimize ||(εX , εY )− φθ(zt, t)||2

Algorithm 6: Sampling from ConGress
Sample n from the training data distribution
Sample εX ∼ N (0, In)
Sample εY ∼ N (0, In(n−1)/2) and symmetrize if needed
zT ← (εX , εY )
for t = T to 1 do

Sample εX ∼ N (0, In)
Sample and symmetrize εY ∼ N (0, In(n−1)/2)

zt−1 ← 1
αt|t−1

zt −
σ2
t|t−1

αt|t−1σ
tφθ(z

t, t) + σt→t−1(εX , εY ) . Reverse iterations

end
return argmax(X0), argmax(Y0)

with

µt→t−1(X,Xt) =
αt|t−1 (σt−1)2

σ2
t

Xt +
αt−1 (σt|t−1)2

(σt)2
X and σt→t−1 =

σt|t−1 σt−1

σt
.

(C.4)
As commonly done for Gaussian diffusion models, we train the denoising network to predict
the noise components ε̂X , ε̂Y instead of X̂ and Ŷ themselves (Ho et al., 2020). Both relate as
follows:

αt X̂ = Xt − σtε̂X and α̂tY = Yt − σt ε̂Y (C.5)

To optimize the network, we minimize the mean squared error between the predicted noise and
the true noise, which results in Algorithm 5 for training ConGress. Sampling is done similarly to
standard Gaussian diffusion models, except for the last step: since continuous valued features are
obtained, they must be mapped back to categorical values in order to obtain a discrete graph. For
this purpose, we then take the argmax ofX0,Y0 across node and edge types (Algorithm 6).

Overall, ConGress is very close to the GDSS model proposed in Jo et al. (2022), as it is also a
Gaussian-based diffusion model for graphs. An important difference is that we define a diffusion
process that is independent for each node and edge, while GDSS uses a more complex noise
model that does not factorize. We observe empirically that a simple noise model does not hurt
performance, since ConGress outperforms GDSS on QM9 (Table 4.5).
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Figure C.1 – An example of molecular scaffold extension. We sometimes observe long-range
consistency issues in the generated samples, which is in line with the observations of (Lugmayr
et al., 2022) for image data. A resampling strategy similar to theirs could be used to solve this
issue.

C.2 Substructure conditioned generation

Given a subgraph S = (XS ,YS) with ns nodes, we can condition the generation on S by
masking the generated node and edge feature tensor at each reverse iteration step (Lugmayr et al.,
2022). As our model is permutation equivariant, it does not matter what entries are masked: we
therefore choose the first ns ones. After sampling Gt−1, we updateX and Y using

Xt−1 = MX �Xs + (1−MX)�Xt−1 and Yt−1 = MY �Es + (1−MY )� Yt−1,

whereMX ∈ Rn×a andMY ∈ Rn×n×b are masks indicating the ns first nodes. In Figure C.1,
we showcase an example for molecule generation: we follow the setting proposed by (Maziarz
et al., 2022) and generate molecules starting from a particular motif called 1,4-Dihydroquinoline1.

C.3 Experimental details and additional results

Abstract graph generation

Metrics The reported metrics compare the discrepancy between the distribution of some metrics
on a test set and the distribution of the same metrics on a generated graph. The metrics measured
are degree distributions, clustering coefficients, and orbit counts (it measures the distribution of
all substructures of size 4). We do not report raw numbers but ratios computed as follows:

r = MMD(generated, test)2 /MMD(training, test)2

The denominator MMD(training, test)2 is taken from the results table of SPECTRE (Martinkus
et al., 2022). Note that what the authors report as MMD is actually MMD squared.

Community-20 In Table C.1, we also provide results for the smaller Community-20 dataset
which contains 200 graphs drawn from a stochastic block model with two communities. We

1https://pubchem.ncbi.nlm.nih.gov/compound/1_4-Dihydroquinoline
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Table C.1 – Results on the small Community-20 dataset.

Degree↓ Clustering↓ Orbit↓ Ratio↓
GraphRNN 4.0 1.7 4.0 3.2
GRAN 3.0 1.6 1.0 1.9
GG-GAN 4.0 3.1 8.0 5.5
SPECTRE 0.5 2.7 2.0 1.7
DiGress 1.0 0.9 1.0 1.0

Table C.2 – Ablation study on QM9 with explicit hydrogens. Marginal transitions improve over
uniform transitions, and spectral and structural features further boost performance.

Model Valid↑ Unique↑ Atom stable↑ Mol stable↑

Dataset 97.8 100 98.5 87.0

ConGress 86.7±1.8 98.4±0.1 97.2±0.2 69.5±1.6

DiGress (uniform) 89.8±1.2 97.8±0.2 97.3±0.1 70.5±2.1

DiGress (marginal) 92.3±2.5 97.9±0.2 97.3±0.8 66.8±11.8

DiGress (marg. + features) 95.4±1.1 97.6±0.4 98.1±0.3 79.8±5.6

observe that DiGress performs very well on this small dataset.

QM9

Metrics Because it is the metric reported in most papers, the validity metric we report is
computed by building a molecule with RdKit and trying to obtain a valid SMILES string out of it.
As explained by Jo et al. (2022), this method is not perfect because QM9 contains some charged
molecules which would be considered as invalid by this method. They thus compute validity
using a more relaxed definition that allows for some partial charges, which gives them a small
advantage.

Ablation study We perform an ablation study in order to highlight the role of marginal transi-
tions and auxiliary features. In this setting, we also measure atom stability and molecule stability
as defined in (Hoogeboom et al., 2022). Results are presented in Figure C.2.

Novelty As in Chapter 4 and don’t report novelty for QM9 in the main table. The reason is
that since QM9 is an exhaustive enumeration of the small molecules that satisfy a given set of
constrains, generating molecules outside this set is not necessarily a good sign that the network
has correctly captured the data distribution. For the interested reader, DiGress achieves on average
a novelty of 33.4% on QM9 with implicit hydrogens, while ConGress obtains 40.0%.
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MOSES and GuacaMol

Datasets For both MOSES and GuacaMol, we convert the generated graphs to SMILES using
the code of Jo et al. (2022) that allows for some partial charges.

We note that GuacaMol contains complex molecules that are difficult to process, for example
because they contain formal charges or fused rings. As a result, mapping the train smiles to a
graph and then back to a train SMILES does not work for around 20% of the molecules. Even
if our model is able to correctly model these graphs and generate graphs that are similar, these
graphs cannot be mapped to SMILES strings to be evaluated by GuacaMol. More efficient
tools for processing complex molecules as graphs are therefore needed to truly achieve good
performance on this dataset.

Metrics Since MOSES and Guacamol are benchmarking tools, they come with their own set
of metrics that we use to report the results. We briefly describe this metrics: Validity measures
the proportion of molecules that pass basic valency checks. Uniqueness measures the proportion
of molecules that have different SMILES strings (which implies that they are non-isomorphic).
Novelty measures the proportion of generated molecules that are not in the training set. The filter
score measures the proportion of molecules that pass the same filters that were used to build the
test set. The Frechet ChemNetDistance (FCD) measures the similarity between molecules in the
training set and in the test set using the embeddings learned by a neural network. SNN is the
similarity to a nearest neighbor, as measured by Tanimoto distance. Scaffold similarity compares
the frequencies of Bemis-Murcko scaffolds. The KL divergence compares the distribution of
various physicochemical descriptors.

Likelihood Since other methods did not report likelihood for GuacaMol and MOSES, we did
not include our NLL results in the table neither. We obtain a test NLL of 129.7 on QM9 with
explicit hydrogens, 205.2 on MOSES (on the separate scaffold test set) and 308.1 on GuacaMol.

Size extrapolation While the vast majority of molecules in QM9 have the same number of
atoms, molecules in MOSES and Guacamol have varying sizes. On these datasets, we would like
to know if DiGress can generate larger molecules than it has been trained on. This problem is
usually called size extrapolation in the graph neural network literature.

To measure the network ability to extrapolate, we set the number of atoms to generate to nmax +k,
where nmax is the maximal graph size in the dataset and k ∈ [5, 10, 20]. We generate 24 batches
of 256 molecules (=6144 molecules) in each setting and measure the proportion of valid and
unique molecules – all these molecules are novel since they are larger than the training set.

The results are presented in Table C.3. We observe an important discrepancy between the two
datasets: DiGress is very capable of extrapolation on GuacaMol, but completely fails on MOSES.
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Table C.3 – Proportion of valid and unique molecules obtained when sampling larger molecules
than the maximal size in the training set. Interestingly, DiGress performs very well on GuacaMol
and poorly on MOSES. We hypothesize that this is due to GuacaMol being a more diverse dataset,
which forces the network to learn to generate good molecules of all sizes.

Dataset statistics Valid and unique (%)
nmin naverage nmax nmax + 5 nmax + 10 nmax + 20

MOSES 8 21.7 27 2.6 2.2 0.0
GuacaMol 2 27.8 88 87.3 85.6 80.5

Figure C.2 – Non curated samples generated by DiGress trained on planar graphs (top) and
graphs drawn from the stochastic block model (bottom).

This can be explained by the respective statistics of the datasets: MOSES features molecules
that are relatively homogeneous in size. On the contrary, GuacaMol features molecules that are
much larger than the dataset average. The network is therefore trained on more diverse examples,
which we conjecture is why it learns some size invariance properties. The major difference in
extrapolation ability that we obtain clearly highlights the value of large and diverse datasets.

We finally note that our denoising network was not designed to be size invariant, as it for example
features sum aggregation functions at each layer. Specific techniques such as SizeShiftReg
(Buffelli et al., 2022) could also be used to improve the size-extrapolation ability of DiGress if
needed for downstream applications.

C.4 Samples from our model
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Figure C.3 – Non curated samples generated by DiGress, trained on QM9 with implicit hydrogens
(top), and explicit hydrogens (bottom).

Figure C.4 – Non curated samples generated by Guacamol (top) and Moses (bottom). While
there are some failure cases (disconnected molecules or invalid molecules), our model is the first
non autoregressive method that scales to these datasets that are much more complex than the
standard QM9.
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D.1 Additional Results

QM9 with Implicit Hydrogens

The results are presented in Table D.1. Overall, all methods achieve good metrics on this small
dataset. Part of the reason why MiDi achieves higher validity than EDM is because it can handle
formal charges.

The results are presented in Table D.1 for 5 samplings of the same checkpoint. While all methods
overall achieve good results on this simple dataset, we observe that the lookup table of EDM
sometimes fails to predict the bond type, resulting in much more invalid molecules than our
model. Interestingly, the adaptive noise schedule that allowed for important improvements on the
GEOM-DRUG dataset is not effective on this simpler dataset, and the uniform schedule seems
to perform better. The reasons for this phenomenon. We finally observe that the bond length
predictions are overall good for all methods, but that MiDi is not as precise as EDM, which can
be explained by the fact that EDM uses both learning rate decay and an exponential moving
average.

D.2 Samples from our models
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Table D.1 – Unconditional generation on QM9 with implicit hydrogens. On this simple dataset,
all methods acheve very good results, although the lookup table of EDM sometimes fail to
generate correct edge types, resulting in invalid molecules.

Metric (↑) Validity Uniqueness Novelty Connected
Data 99.5 99.9 – 100

EDM 96.8 96.6 45.5 100.0
EDM + OBabel 100.0 96.1 45.4 100.0
MiDi (uniform) 99.5±.1 95.8±.2 49.2±0.4 100±.0
MiDi (adaptive) 99.7±.0 93.9±.2 44.7±.5 100±.0

Metric (↓) Valency(e-2) Atom(e-2) Bond(e-2) Bond Lengths(e-2)
Data 0.6 0.1 0.1 0.3

EDM 4.3 2.9 0.9 0.2
EDM + OBabel 3.8 2.9 0.3 0.2
MiDi (uniform) 2.3±1.7 3.1±3.7 0.4±.1 0.8±.3
Midi (adaptive) 5.9±.2 11.7±0.2 1.1±.0 1.6±.7

Figure D.1 – Non-curated samples on QM9 with implicit hydrogens.
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Figure D.2 – Non-curated samples on QM9 with explicit hydrogens.

Figure D.3 – Non-curated samples on GEOM-drugs with implicit hydrogens.
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Figure D.4 – Non-curated samples on GEOM-drugs with explicit hydrogens. This dataset contains
large graphs and is used to challenge the limits of our model: although our model performs better
than previous methods (Table 5.7), we observe that many conformations are not realistic. For
practical applications, we recommend using the model with implicit hydrogens when possible.
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