
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Universal and adaptive methods for robust stochastic 
optimization

Ali KAVIS

Thèse n° 9077

2023

Présentée le 22 août 2023

Prof. M. Jaggi, président du jury
Prof. V. Cevher, directeur de thèse
Prof. Y. Nesterov, rapporteur
Prof. S. Wright, rapporteur
Prof. N. Flammarion, rapporteur

Faculté informatique et communications
Laboratoire de systèmes d’information et d’inférence
Programme doctoral en informatique et communications 





To my lovely wife Pınar,

and my parents Melike & Şadi . . .
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Abstract

Within the context of contemporary machine learning problems, efficiency of optimization

process depends on the properties of the model and the nature of the data available, which

poses a significant problem as the complexity of either increases ad infinitum. An overarch-

ing challenge is to design fast, adaptive algorithms which are provably robust to increasing

complexities and unknown properties of the optimization landscape, while ensuring scalable

implementation at scale.

Having that said, there are two main perspectives to consider: (i) standard proof techniques

require precise knowledge of the model and loss function parameters, which are usually

prohibitively expensive to estimate; (ii) state-of-the-art methods which show superior perfor-

mance in practice are mostly heuristics, lacking theoretical basis.

In this dissertation, the reader will be presented with several fundamental problem formu-

lations in machine learning which will be studied from the aforementioned perspectives.

Specifically, the focus of this dissertation will be on two fundamental concepts; (i) adaptivity:

ability of an algorithm to converge without knowing the problem-dependent parameters and

(ii) universality: ability of an algorithm to converge adaptively under multiple problem settings

simultaneously without any modifications.

In the light of this terminology, the goal is to unify the discrepancy between the theory of

adaptive algorithms and the heuristic approaches employed in practice. To this end, the

results are presented in three chapters based on the properties of the optimization problem;

convex minimization, non-convex optimization and monotone variational inequalities.

We begin with a universal and adaptive algorithm for compactly constrained convex mini-

mization, which achieves order-optimal convergence rates for smooth/non-smooth problems

under deterministic/stochastic oracles, simultaneously. We identify an alternative accelera-

tion scheme together with an appropriate adaptive step-size that enables optimal convergence

rates without knowing, a priori, neither the problem parameters nor the problem setting at

hand. Then, we propose the first noise-adaptive second-order algorithm which individually

adapts to noise in gradient and Hessian estimates.

Moving on non-convex minimization, we have two set of results to present; high probability

convergence of adaptive gradient method and adaptive variance reduction methods under

two scenarios. For the former, we analyze the AdaGrad algorithm under two noise models;

bounded variance and sub-Gaussian noise. We provide order-optimal high probability rates

while establishing a set of side results on the boundedness of the iterate sequence. For the

latter setting of variance reduction, we study both the more generic setting of streaming
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data and the more practical sub-setting of finite-sum minimization. Under both scenarios,

we develop the first parameter-free variance reduction methods with optimal rates in their

respective problem settings.

Finally, we study the problem of solving monotone variational inequalities under two noise

models; standard bounded variance and the relative noise model in which the error in operator

computation is proportional to its norm at the evaluation point. With a compatible, mild set

of assumptions, we prove that a class of extra-gradient algorithms with a particular adaptive

step-size universally adapts to both models of noise without knowing the setting, a priori.

Key words: stochastic optimization, adaptive methods, convex minimization, non-convex

minimization, variational inequalities, parameter-free methods, variance reduction, high-

probability convergence, first and second-order methods, noise-adaptive algorithms.
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Résumé

Dans le cadre des problèmes d’apprentissage automatique contemporains, l’efficacité du

processus d’optimisation dépend des propriétés du modèle et de la nature des données

disponibles, ce qui pose un problème important lorsque la complexité de l’un ou l’autre

augmente drastiquement. Un défi primordial consiste à concevoir des algorithmes rapides

et adaptatifs qui sont prouvablement robustes aux complexités croissantes et aux propriétés

inconnues du paysage d’optimisation, tout en garantissant une mise en oeuvre efficace à

grande échelle.

Ceci étant dit, il y a deux perspectives principales à considérer : (i) les techniques de preuve

standard nécessitent une connaissance précise des paramètres du modèle et de la fonction de

perte, qui sont généralement très couteux à estimer ; (ii) les méthodes de pointe qui montrent

des performances supérieures dans la pratique sont pour la plupart heuristiques, dépourvues

de base théorique.

Dans cette thèse, il sera présenté au lecteur plusieurs formulations de problèmes fondamen-

taux en apprentissage automatique qui seront étudiées à partir des perspectives susmen-

tionnées. Plus précisément, l’accent de cette thèse sera sur deux concepts fondamentaux; (i)

adaptabilité : capacité d’un algorithme à converger sans connaître les paramètres dépendant

du problème et (ii) universalité : capacité d’un algorithme à converger de manière adaptative

sous plusieurs paramètres de problème simultanément sans aucune modification.

À la lumière de cette terminologie, l’objectif est d’unifier l’écart entre la théorie des algorithmes

adaptatifs et les approches heuristiques utilisées dans la pratique. À cet effet, les résultats sont

présentés en trois chapitres basés sur les propriétés du problème d’optimisation ; minimisation

convexe, optimisation non convexe et inégalités variationnelles monotones.

Nous commençons avec un algorithme universel et adaptatif pour la minimisation convexe

contrainte de manière compacte, qui atteint des taux de convergence optimaux pour des

problèmes lisses/non lisses sous des oracles déterministes/stochastiques, simultanément.

Nous identifions un schéma d’accélération alternatif avec une taille de pas adaptative appro-

priée qui permet des taux de convergence optimaux sans connaître, a priori, ni les paramètres

du problème ni le problème à résoudre. Ensuite, nous proposons le premier algorithme de

second ordre adaptatif au bruit qui s’adapte individuellement au bruit dans les estimations de

gradient et de Hessienne.

Pour ce qui est de la minimisation non convexe, nous avons deux ensembles de résultats à

présenter ; convergence avec probabilité élevée de la méthode du gradient adaptatif et des

méthodes de réduction adaptative de variance dans deux scénarios. Pour le premier, nous
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Résumé

analysons l’algorithme AdaGrad sous deux modèles de bruit ; variance bornée et bruit sous-

Gaussien. Nous fournissons des taux de convergence optimaux avec grande probabilité tout en

établissant un ensemble de résultats secondaires sur la délimitation de la séquence d’itérations.

Pour ce dernier cadre de réduction de variance, nous étudions à la fois le cadre plus générique

des données en continu et le sous-ensemble plus pratique de la minimisation à somme finie.

Dans les deux scénarios, nous développons les premières méthodes de réduction de variance

sans paramètre avec des taux optimaux dans leurs paramètres de problème respectifs.

Enfin, nous étudions le problème de résolution des inégalités variationnelles monotones

sous deux modèles de bruit ; le modèle standard de variance bornée et le modèle de bruit

relatif dans lequel l’erreur de calcul de l’opérateur est proportionnelle à sa norme au point

d’évaluation. Avec un ensemble d’hypothèses compatibles et faibles, nous prouvons qu’une

classe d’algorithmes extra-gradient avec une taille de pas adaptative particulière s’adapte

universellement aux deux modèles de bruit sans connaître le réglage, a priori.

Mots clés : optimisation stochastique, méthodes adaptatives, minimisation convexe, mini-

misation non convexe, inégalités variationnelles, méthodes sans paramètres, réduction de

la variance, convergence à haute probabilité, méthodes du premier et du second ordre, algo-

rithmes adaptatifs au bruit.
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1 Introduction

Machine learning has gained overwhelming and rapid popularity thanks to vast availability of

processed data, accessibility of tremendous compute power and development of innovative

learning models. From simple regression problems to image classification via convolutional

neural networks, from generative adversarial networks to large language models, there lies an

optimization algorithm at the heart of the training process. Training a machine learning model

is essentially equivalent to optimizing an appropriate objective function using an iterative

optimization algorithm.

While machine learning research benefits from the advancements in the theory of mathemati-

cal optimization, the practical developments and the state-of-the-art approaches predomi-

nantly employ heuristic techniques which are not completely verified by the theory. In order to

provide meaningful and interpretable conclusions, we sometimes need to make fundamental

assumptions on the optimization/learning problem at hand. However, those assumptions

might fall short of the reality as they might not be representative of the complexity and gener-

ality of what is studied in practice. This creates a gap between the theoretical understanding

of the optimization process and heuristics-based state-of-the-art results in practice.

The main objective of my research as presented in this dissertation is taking a step to bridge

this gap by designing algorithms that

(i) are capable of solving different optimization problems simultaneously without any

modifications,

(ii) could adapt to the local variations on the loss landscape,

(iii) adjust to different levels and types of noise in the computation of the value, gradient

and/or Hessian of the objective function necessary for the optimization algorithm.

With increasing complexity and scale of learning models and data dimensions, it becomes

more difficult to asses and estimate basic, mathematical properties of the objective func-

tion to be optimized. This is crucial as many classical algorithms and the standard analysis

approaches require the knowledge of certain problem-dependent parameters to ensure con-
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vergence. However more often than not, it is significantly difficult to even estimate such

parameters in practice. An important reflection of this in practice is the so-called tuning

process. We need to execute several test runs to find a good combination of parameter values

for the optimization algorithms, complexity of which grows exponentially with the increasing

number of algorithm parameters.

My research provides partial answers to this fundamental problem by designing adaptive and

robust algorithms that automatically adjust to the problem formulation at hand, noise in the

optimization process and local variations in the loss landscape along the optimization path.

The particular design approaches adopted in the development process not only yields more

flexible algorithms but also less parameters to tune. In this dissertation, the notions of adap-

tivity and robustness are investigated under three main problem formulations; constrained

convex minimization, smooth non-convex minimization and monotone variational inequal-

ities. Each problem setting will be studied from particular perspectives in their respective

chapters.

1.1 Problem formulation

In the whole of this manuscript, we will consider two fundamental optimization problems.

First, we will investigate the following generic minimization problem

min
x∈X

f (x) (Min)

where f :Rd → R is a proper, continuous function and X ⊆Rd is a closed, convex subset of Rd .

Predominantly, this dissertation focuses on this problem setting, studying it under different

structural and regularity assumptions on the objective, and various sets of assumptions on the

black-box oracles that provides us with zeroth, first or second-order information with respect

to the objective function at hand. We will mostly consider the case when the objective f is

first-order L-Lipschitz smooth such that

∥∇ f (x)−∇ f (y)∥ ≤ L∥x − y∥, ∀x, y ∈X .

This is equivalent to saying f has L-Lipschitz continuous gradient. In the sequel, we will also

consider the scenarios where objective f or its Hessian is Lipschitz continuous, as well. The

second type of problem we will study is the so-called variational inequality problem [FP03],

Find x∗ ∈Rd s.t. 〈A(x∗), x −x∗〉 ≥ 0 (VI)

where the operator A is a monotone, continuous vector field. The (VI) problem intersects

with (Min) when f is a differentiable convex function and A =∇ f is the vector field induced

by the gradient of f . Beyond that, (VI) is a versatile framework that covers many interesting

problems in machine learning, e.g., adversarial training, multi-agent games and reinforcement

learning [Ant+21].
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Now, let us formalize the metrics for evaluating performance of optimization algorithm,

running under each problem setup. For the (Min) problem with convex objectives, we are

interested in finding an ϵ-optimal point x̂ with respect to objective sub-optimality gap,

f (x̂)−min
x∈X

f (x) ≤ ϵ. (1.1)

In the case of non-convex objectives, our focus would in turn be finding a first-order ϵ-

stationary point x̂ with respect to the norm of the objective’s gradient,

∥∇ f (x̂)∥ ≤ ϵ. (1.2)

Last but not least, for the (VI) problem, our metric of choice is the (restricted) gap [Nes07],

GapX (x̂) = sup
x∈X

〈A(x), x̂ −x〉 ≤ ϵ, (1.3)

where x̂ is a candidate solution of the problem returned by the algorithm at hand.

1.2 Background and challenges

Our aim in the sequel is to present the reader with a set of representative machine learning

and optimization problems under standard sets of assumptions in the literature for (Min) and

(VI), respectively identify challenges for the analysis of adaptive and universal methods and

exhibit our appropriately-designed algorithms with the key novelties and contributions.

Indeed, (Min) and (VI) formulations embrace a great majority of contemporary and popular

learning problems; (non-negative) matrix factorization and completion [GLM16; Hoy04],

training convolutional neural networks for image classification [He+16; Den+09a] or attention

models for natural language processing [Dev+19], adversarial reinforcement learning [Pin+17]

and generative adversarial networks [Goo+14] (GANs) among others. Essentially, with ever-so-

increasing model complexity and data sizes, such large-scale problems raise efficiency and

scalability concerns. Therefore, we are interested in developing scalable, robust and efficient

algorithms to be able to solve such complex and large-scale problems.

Naturally, the first-order methods, which basically have access to the gradient of the objective

∇ f (·) for (Min) or operator value A(·) for (VI) at the point of query, have recently been the at

the forefront of solving many machine learning problems. Due to their efficient per-iteration

complexity, global convergence guarantees and easy extensions to stochastic problems, they

have risen to recent fame. Considering the exemplary setting of convex programming, first-

order methods have slower, sub-linear convergence rates in comparison to their predecessors

interior-point methods [NN94], however, they are also significantly more efficient with respect

to per-iteration complexity. Interior-point methods use the Newton’s methods as a subsolver,

hence they trade-off fast convergence rates with heavier per-iteration cost and non-existance

of global gurantees. This poses efficiency issues in the presence of large-scale problems.
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In fact, even the simplest first-order, deterministic method raises scalability concerns for

optimizing models with billions of parameters over datasets with million dimensions because

the algorithm must make a complete pass over the whole dataset just to compute a single

gradient. This is exactly where the stochastic methods come to rescue. By appropriately

sampling a smaller batch of the data we could compute much cheaper estimates with lighter

memory overhead at the cost of slower O(1/
p

T ) convergence rate [NYD83; JNT11].

Now, we will take a look into the thereotical properties of first-order methods and pinpoint

some of its shortcomings within the particular context of this dissertation. Let us consider the

problem setting (Min) for first-order L-smooth objective for the sake of brevity and take the

gradient descent (GD) algorithm as an example;

X t+1 = X t −γt∇ f (X t ). (1.4)

The smoothness condition could easily be verified for many applications such as empirical risk

minimization with least-squares and neural networks with sigmoid activations. This regularity

condition essentially bounds the variation of the gradient/operator by the distance between

the query points, eliminating abrupt changes in the optimization landscape. In turn, standard

algorithms must know the smoothness modulus and set their step-sizes respectively small

enough to guarantee convergence to a solution. In addition, such algorithms must know a

priori the nature of the oracle and even the precise variance bounds for solving the problem at

the optimal rates [NYD83; Nes18; Lan12].

Specifically, analysis of gradient descent hinges on the (expected) descent of the objective

value to verify monotonic convergence to the solution of the problem. Let us provide an

abridged proof of GD with a constant step-size γt = γ for the problem at hand when objective

f is convex (for a detailed display, see [TM13]). Note that this is one of the many proofs of

gradient descent, which is more suitable for the techniques we will present in this manuscript.

First, we show that the objective value decreases every iteration using the update rule and

smoothness:

[ f (X t+1)− f (x∗)]− [ f (X t )− f (x∗)] ≤ 〈∇ f (X t ), X t+1 −X t 〉+ L

2
∥X t+1 −X t∥2

≤
(
γL

2
−1

)
γ∥∇ f (X t )∥2

≤− 1

2L
∥∇ f (X t )∥2,

where we set γ = 1/L to make sure progress every step. Then, by combining the so-called

descent lemma with convexity of the objective and using the quadratic expansion (a +b)2 =
a2 +2ab +b2,

f (X t+1)− f (x∗) ≤ L

2

(∥X t −x∗∥2 −∥X t+1 −x∗∥2)
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Now we sum up for t = 1, · · · ,T and telescope the (RHS) of the expression,

T∑
t=1

f (X t+1)− f (x∗) ≤ L

2
∥X1 −x∗∥2

Then, by using the monotonic decrease of the objective f (X t )− f (x∗) ≤ f (Xs)− f (x∗), for all

s ≤ t , we get the rate

f (XT+1)− f (x∗) ≤ L∥X1 −x∗∥2

T
.

In order to verify monotonic decrease in sub-optimality gap, and apply the quadratic expan-

sion, we need to set our step-size as γ≤ 1/L [Nes03]. In general, the classical algorithms must

know not only the smoothness constant, but also whether the function is smooth or not. When

the objective itself is L-Lipschitz continuous, not the gradient, then the step-size should either

decrease over time at a rate of γt =O(1/
p

t ) [Nes03], or we compute it with respect to the fixed

time horizon.

A similar issue arises in the presence of stochasticity. Let us consider the same setting as above

under bounded variance assumption [Lan20, Chapter 4.1];

E
[∥∇ f (x,ξ)−∇ f (x)∥|σ(x)

]≤σ2 and E
[∇ f (x,ξ)|σ(x)

]=∇ f (x),

where ∇ f (x,ξ) is a stochastic gradient estimate with respect to a random vector ξ∼D, drawn

from some distribution D andσ(x) denotes the sigma algebra generated by the randomness in

the computation of vector x. To achieve respective, order-optimal rates, the stochastic gradient

descent (SGD) algorithm not only requires the smoothness constant but also needs to set a

decreasing step-size as γ1 ≤ 1
L and γt =O

(
1p

t

)
[Nem+09, Eq. (2.25)], [Lan12, Theorem 1]. All

in all, standard techniques rely on the precise knowledge of the structure and regularity of the

objective as well as the nature of oracle information to ensure convergence of the algorithms

at the best possible rates. Similar approaches exist for different variations of both (Min) and

(VI) problems and the following question is a natural consequence of this observation:

To what extend we could design adaptive and universal algorithms which are oblivious to

problem dependent parameters and also robust to changes along the optimization path and

oracle information?

This dissertation aims at answering this question by studying different problem formulations

that falls under (Min) and (VI). More specifically, we will identify possible shortcomings of

the classical techniques, and propose new algorithmic design approaches with compatible

analysis techniques for the particular problem formulation in question. The chapters are

separated with respect to the problem formulations they study and we essentially examine

different proof techniques that enables us to go beyond the standard analysis under different

sets of problem definitions and assumptions.
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1.3 Organization

We will study the answer(s) of the foregoing question under three problem settings: convex

minimization with compact constraints; smooth, non-convex minimization under different

noise models and structure of the objective; monotone variational inequalities with cocoerciv-

ity. In each of these chapters, we identify the steps in the analysis that requires the knowledge

of problem parameters and develop alternative techniques. Besides, we describe new method-

ologies in accordance with adaptive algorithm design paradigms in online learning [DHS11]

and appropriately modify them for the particular problem formulation(s) at hand. While

doing so, we try to establish modular and methodical proof techniques which are extendable

to various problems in optimization and machine learning.

Chapter 2: Universal and robust optimization methods for convex minimization. In this

first chapter, we focus on the relatively more fundamental setting of convex minimization as

described in the following formulation,

min
x∈X

f (x)

where f : Rd → R is a proper, closed, convex function and X ⊆ Rd is a compact and convex

subset of Rd . We will study this problem under two main scenarios; first-order smooth setting

in which f has L-Lipschitz continuous gradient and second-order smooth setting in which f

has L-Lipschitz continuous Hessian. We study this problem from two aspects; adaptation to

levels of noise in first and second-order oracles, and universality across smoothness of the

objective in the first-order smooth setting.

For the case of first-order methods, Levy, Yurtsever, and Cevher [LYC18] propose the first

adaptive algorithm with accelerated rate of O
(

GD+LD2

T 2

)
where D = maxx,y∈X ∥x − y∥ is the

diameter of the constraint set and G = maxx∈dom∇ f ∥∇ f (x)∥ is a known bound on the gradients.

We identify three weak points of their results:

(i) Although they study unconstrained minimization setting, their algorithm requires to

know a compact set to which the global minimizer of f belongs.

(ii) They need to know the upper bound for the gradients in order to set the step size.

(iii) Their algorithm does not achieve the optimal rate interpolation O
(

LD2

T 2 + Dσp
T

)
.

To remedy the aforementioned drawbacks, we study the same problem in the compactly-

constrained setting and developed the first noise-adaptive and universal algorithm. Essentially,

our method takes the EXTRAGRADIENT algorithm [Kor76] as a starting point and combines it

with the adaptive step-size strategies in Duchi, Hazan, and Singer [DHS11] and Levy, Yurtsever,

and Cevher [LYC18] and Rakhlin and Sridharan [RS13]. While doing so, we developed a new

acceleration mechanism that is compatible with the adaptive step-size construction. This

mechanism combines weighted averaging with step-size scaling.
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The analysis of our algorithm is carefully designed to be modular; we separate the analysis into

regret analysis and accelerated conversion scheme. The offline regret analysis aptly exploits

the smoothness of the objective and that all the losses are computed with respect to the same

objective function f . Then, we analyze a new accelerated conversion scheme for the offline

regret (concurrrently with Cutkosky [Cut19]) which only uses the convexity of the objective

function and quantifies the rate of convergence with respect to the weights in the averaging.

In the second part of this chapter, we further extend our results to second-order methods and

achieve faster rates of order O(1/T 3), going beyond the accelerated first-order rate of O(1/T 2).

This is mainly due to identifying a one-to-one mapping between the order of smoothness

and the degree of weights in the averaging mechanism of the acceleration template. We

generalize the conversion scheme to handle different averaging weights and scaling factor for

the step-sizes. Our algorithm achieves the first noise-adaptive rate of O
(
σgp

T
+ σH

T 1.5 + LD3

T 3

)
by

independently adapting to noise in the gradient (σG ) and the Hessian (σH ) computations.

With regards to the proof techniques, a key paradigm is to characterize the error due to not

knowing the Lipschitz constant. As we displayed in the beginning of this section, setting the

step-size with respect to the global Lipschitz constant guarantees descent at every iteration.

Our strategy for designing adaptive step-sizes are inspired by the AdaGrad algorithm:

γt = α√
β+∑t

s=1∥∇ f (xs)∥2
.

We modify this template construction according to the problem setting, algorithmic framework

and the set of assumptions. In simple terms, this monotonically-decreasing step-size gives

us an approximation error for the worst-case optimal step-size as a function of the observed

gradients. In our analysis we prove that the total approximation error across the whole of the

execution is upper bounded by a constant that depends on α,β as well as L and D. By the

foregoing regret-to-rate conversion schemes, the amortized error due to the approximation

decreases at the optimal convergence rate for the respective problem setting.

Speaking of adaptive, parameter-free step-sizes, we have to briefly talk about line-search

methods [Arm66; NW06]. As a very well-known and well-studied technique to adaptively

set the step-size, it is basically an iterative sub-routine that finds a step-size to guarantee

descent with respect to a sufficient decrease condition. The main drawback for such methods

is that they require access to objective value oracle and they are usually not designed to handle

stochastic feedback. Therefore, we especially deal with data-adaptive step-size in the sense of

AdaGrad.

Chapter 3: Adaptive methods and variance reduction for smooth, non-convex optimization.

In this chapter, we turn our attention to the more general stochastic, smooth, non-convex
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minimization problem formulation,

min
x∈Rd

f (x) := Eξ∼D

[
f (x,ξ)

]
where f is a continuous, smooth and possibly non-convex function and the random vector

ξ is drawn from the probability distribution D. One can imagine the above formulation as a

generalization of the empirical risk minimization problem. We will investigate three settings

that falls under this generic formulation.

We begin with the original formulation as above and focus on the high-probability convergence

of the AdaGrad. The literature on probabilistic behavior of adaptive methods is significantly

sparser than the in-expectation convergence results. The existing results in this context either

achieve sub-optimal dependence on probability margin [WWB19] or analyze a modified

version of the algorithm [LO20] to avoid fundamental measurability problems. We propose

an alternative analysis approach which enables us to prove high-probability convergence of

AdaGrad with (almost) optimal convergence rate of Õ(1/
p

T ) with respect to the expectation

of the squared gradient norm, and best-known dependence of log(1/δ) on probability margin.

In the meantime, we prove that sub-optimality gap with respect to a global minimizer grows

no faster than O(log(T )), proving pseudo-boundedness of iterates/objective values with high

probability.

In the second part of the chapter, we delve into two special cases of the above problem setting

and describe adaptive variance reduction methods that take advantage of the underlying

structures to achieve faster rates beyond O(1/
p

T ). The first sub-setting is the streaming

data regime in which we have access to an oracle that returns a stochastic gradient ∇ f (x,ξ)

when queried at the iterate x. The main assumption is that each stochastic feedback ∇ f (x,ξ)

is smooth itself: ∥∇ f (x,ξ)−∇ f (y,ξ)∥ ≤ L∥x − y∥. We make use of the recursive momentum

estimator of Cutkosky and Orabona [CO19] which requires only 2 oracle calls per iteration

and identify a dynamic, adaptive relationship between the step-size and the momentum

parameters. Our parameter-free variance reduction method achieves the optimal noise-

adaptive rate of O
(

1p
T
+ σ1/3

T 1/3

)
with respect to expectation of the gradient norm.

We finally study the more specialized finite-sum minimization setting where D represents a

sampling strategy over the fixed-sized dataset and ξ is a sample data point. Variance reduction

has been studied extensively for the case of (strongly) convex minimization [JZ13; Ngu+17;

DBL14] and more recently for non-convex problems [AH16b; All17b; Fan+18]. We propose

the first parameter-free variance reduction algorithm for smooth, non-convex finite-sum

problems. Our algorithm relies on a recursive estimator called SPIDER and combines it with

an AdaGrad-type step-size to achieve optimal sample complexity up to logarithmic factors.

We identify the correct balance between fast convergence rates and small gradient complexity

and prove that the cumulative variance of the whole process grows no faster than O(log(T )).

The proof of the high-probability analysis borrows some techniques from that of Chapter 2,

however, we needed to develop new approaches for the variance reduction methods. The
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main difference is that the existing work on non-convex variance reduction hinges on showing

that the variance at each step monotonically decreases. Then, by validating that this decrease

is fast enough, one could show faster rates under these more specialized settings. Note that

the monotonic decrease of the variance depends on setting the step-size with respect to the

Lipschitz constant [Wan+19] and sometimes a bound on the gradient norms [Cut19]. Our

adaptive methods do not guarantee sufficient decrease of the variance at each iteration, but

we could show that the cumulative variance could be kept under control. For the finite-sum

setting, we show that cumulative variance grows as O(log(T )) while for the streaming data

setting, we prove that cumulative variance is comparable to the sum of gradient norms.

Chapter 4: Efficient and robust algorithms for min-max problems and games. In the final

chapter, we focus on a different problem than the minimization; solving monotone variational

inequalities.

Find x∗ ∈Rd s.t. 〈A(x∗), x −x∗〉 ≥ 0

The variational inequalities have recently been popularized due to an increasing interest in

min-max optimization, reinforcement learning, games and GANs. Naturally, the study of

adaptive methods are limited [ABM19; Lin+20; ABM21; HAM21; Hsi+22a] and there remians

several open problems in different fronts.

In this section we investigate monotone, (1/L)-cocoercive variational inequality problem such

that the operator satisfies

〈A(x)− A(y), x − y〉 ≥ 1

L
∥A(x)− A(y)∥,

which also implies that A is L-Lipschitz continuous. We analyze a generalized extra-gradient

algorithm (GEG) with a suitable data-adaptive step-size which recovers extra-gradient, dual

averaging and dual extrapolation as its special case. Our goal is to study this template algo-

rithm, without any modifications, under the standard bounded variance regime as well as the

relative noise setting,

E
[∥A(x,ξ)− A(x)∥2 ]≤ c∥A(x)∥2,

where the noise vanishes as the operator converges to its zero. It is known that under stochastic,

monotone setting the best possible convergence rate is O(1/
p

T ) [JNT11] and we identify a

connection between cocoercivity and relative noise to improve this rate to O(1/T ). Our

adaptive GEG template achieves O(1/
p

T ) and O(1/T ) rates for bounded variance and relative

noise models, respectively, without any prior knowledge of the setting. We finally show that

the last iterate of the GEG template converges to a solution almost surely.

At the heart of the adaptive analysis lies a different technique than previous chapters; we

recognize that the rate of convergence is roughly governed by the growth of the inverse step-
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size and
∑T

t=1∥A(X t )∥2. Showing that the foregoing quantities are bounded by O(
p

T ) and O(1)

implies the O(1/
p

T ) and O(1/T ) rates, respectively.
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2 Universal and robust optimization
methods for convex minimization

2.1 A Universal Algorithm with Optimal Guarantees for Constrained

Minimization

2.1.1 Bibliographic Note

This section (Section 2.1) is based on the published work Kavis et al. [Kav+19], published in

the NeurIPS 2019 conference.

Author list of the published work.

• Ali Kavis

• Kfir Y. Levy

• Francis Bach

• Volkan Cevher

Description of contributions. The idea of using optimistic mirror descent algorithm and the

adaptive step-size construction by Rakhlin and Sridharan [RS13] comes from Kfir Y. Levy. The

candidate designed the final version of Algorithm 2. All the theoretical results and numerical

experiments are due to the candidate, while the candidate and Kfir Y. Levy worked jointly for

the proof of Theorem 2.1.4.

2.1.2 Introduction

Stochastic constrained optimization with first-order oracles (SCO) is critical in machine

learning. Indeed, the scalability of classical machine learning tasks, such as support vector

machines (SVMs), linear/logistic regression and Lasso, rely on efficient stochastic optimization

methods. Importantly, generalization guarantees for such tasks often rely on constraining the
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set of possible solutions. The latter induces simple solutions in the form of low norm or low

entropy, which in trun enables to establish generalization guarantees.

In the SCO setting, the optimal convergence rates for the cases of non-smooth and smooth

objectives are given by O (G/
p

T ) and O (L∥X1 −x∗∥2/T 2+σ/
p

T ), respectively [Lan12; Lan20];

where T is the total number of (noisy) gradient queries, L is the smoothness constant of

the objective, σ2 is the variance of the stochastic gradient estimates, and G is a bound on

the magnitude of gradient estimates. These rates cannot be improved without additional

assumptions.

The optimal rate for the non-smooth case may be obtained by the current optimization

algorithms, such as stochastic gradient descent (SGD), (stochastic) mirror descent [NYD83],

AdaGrad [DHS11], Adam [KB15], and AmsGrad [RKK18b]. However, in order to obtain the

optimal rate for the smooth case, one is required to use more involved accelerated methods

such as [HPK09; Lan12; Xia10; DO18; CDO18; DCL18]. Unfortunately, all of these accelerated

methods require a-priori knowledge of the smoothness parameter L, and in some cases the

variance of the gradients σ2, creating a setup barrier for their use in practice.

This work develops a new universal method for constrained SCO that obtains the optimal rates

in both smooth and non-smooth cases, without any prior knowledge regarding the smoothness

of the problem L, nor the noise magnitude σ. Such universal methods that implicitly adapt to

the properties of the learning objective may be very beneficial in practical large-scale problems

where these properties are usually unknown. To our knowledge, this is the first work that

achieves this desiderata in the (compactly-)constrained SCO setting.

Our contributions in the context of related work. For the unconstrained setting, Levy,

Yurtsever, and Cevher [LYC18] and Cutkosky [Cut19] have recently presented a universal

scheme that obtains (almost) optimal rates for both smooth and non-smooth cases.

More specifically, Levy, Yurtsever, and Cevher [LYC18] designs AcceleGrad—a method that

obtains respective rates of O
(
GD

√
logT /

p
T

)
and O

(
L logLD2/T +σD

√
logT /

p
T

)
. Note

that D denotes the diameter of the constraint set in the rest of this section, however, for the

guarantees of AcceleGrad, D denotes an auxiliary, compact set, which is known to contain the

global minimizer of the objective.Unfortunately, this result only holds for the unconstrained

setting, and the authors leave the truly constrained case as an open problem. An important

progress towards this open problem is achieved only recently by Cutkosky [Cut19], who

proves sub-optimal respective rates of O
(
1/
p

T
)

and O
(
D2L/T 3/2 +σD/

p
T

)
for SCO in the

constrained setting.

Our work completely resolves the open problem in Levy, Yurtsever, and Cevher [LYC18] and

Cutkosky [Cut19], and proposes the first universal method that obtains respective optimal

rates of O
(
GD/

p
T

)
and O

(
D2L/T 2 +σD/

p
T

)
for the constrained setting. When applied to

the unconstrained setting, our analysis tightens the rate characterizations by removing the
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unnecessary logarithmic factors appearing in [LYC18; Cut19].

Our method is inspired by the Mirror-Prox (MP) method [Nem04; RS13; DO18; BL19], and

builds on it using additional techniques from the online learning literature. Among, is an

adaptive learning rate rule [DHS11; RS13], that is married with a suitable acceleration mecha-

nism for the MP template. We also adopt an online-to-batch conversion techniques, which

was concurrently discovered by [Cut19].

The current part of the chapter is organized as follows. We specify the problem setup, and give

the necessary definitions and background information. Then, we motivate our framework

and explain the general mechanism. We also introduce the convergence theorems with proof

sketches to highlight the technical novelties. We share numerical results in comparison with

other adaptive methods and baselines for different machine learning tasks in Section 2.1.6,

followed up with conclusions and future proposals.

2.1.3 Setting and preliminaries

Preliminaries. Let ∥ · ∥ be a general norm and ∥ · ∥∗ be its dual. A function f : X 7→ R is

µ-strongly convex over a convex set X , if for any x ∈X and a,ny subgradient of f at x ∇ f (x),

f (x)− f (y)−〈∇ f (y), x − y〉 ≥ µ

2
∥x − y∥2, ∀x, y ∈X (2.1)

A function f : X 7→R is L-smooth over X if it has L-Lipschitz continuous gradient, i.e.,

∥∇ f (x)−∇ f (y)∥∗ ≤ L∥x − y∥, ∀x, y ∈X . (2.2)

Consider a 1-strongly convex differentiable function h : X →R. The Bregman divergence with

respect to a distance-generating function h is defined as follows ∀x, y ∈X ,

Dh(x, y) = h(x)−h(y)−〈∇h(y), x − y〉 . (2.3)

An important property of Bregman divergence is that Dh(x, y) ≥ 1
2∥x − y∥2 for all x, y ∈X , due

to the 1-strong convexity of h. In the sequel we define the diameter of the constraint set X via

the Bregman divergence; D := maxx,y∈X

√
Dh(x, y).

Setting. This paper focuses on (approximately) solving the following constrained problem,

min
x∈X

f (x) (Prob)

where f : X 7→R is a proper, closed, convex function, and X ⊂Rd is a compact, convex set.

We assume the availability of a first order oracle for f (·), and consider two settings: a deter-

ministic setting where we may access exact gradients, and a stochastic setting where we could
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only access unbiased (noisy) gradient estimates. Concretely, we assume that by querying this

oracle with a point x ∈X , we receive the gradient estimate ∇ f (x,ξ) ∈Rd , such that

E
[∇ f (x,ξ)

∣∣σ(x)
]=∇ f (x) , (2.4)

where ξ is the random vector that denotes the noise in the process, and σ(x) is the sigma-

algebra generated by the (possibly) random vector x. We assume that the random vectors ξ

are drawn independently for each call and they are also independent of the iterate sequence

generated by the algorithms. We define that a gradient estimate has bounded variance if

E[∥∇ f (x,ξ)−∇ f (x)∥2
∗|σ(x)] ≤σ2, ∀x ∈X . (2.5)

Only in the case of the objective being non-smooth, we define it to be G-Lipschitz continuous.

Under the same setting, we assume the sub-gradient estimates have bounded norm,

∥∇ f (x,ξ)∥∗ ≤G , ∀x ∈X .

We abuse the notation ∇ to denote both gradient and the sub-gradient. We make it clear in the

text what ∇ refers to depending on the context.

2.1.4 Method

In this section, we present and analyze our Universal eXtra Gradient (UniXGrad) method. We

first discuss the Mirror-Prox (MP) algorithm of [Nem04], and the Optimistic Mirror Descent

(OMD) algorithm of [RS13]. Later we present our algorithm which builds on top of both of the

aforementioned algorithms with appropriate modifications. Then, we present and analyze

the guarantees of our method in non-smooth and smooth settings, respectively.

Our goal is to optimize a convex function f over a compact domain X , and Algorithm 1 offers

a well-known framework for solving (Prob). Let us motivate this particular template. Basically,

the algorithm takes a step from X t to X t+ 1
2

, using first order information based on X t . Then,

it goes back to X t and takes another step, but this time, gradient information relies on X t+ 1
2

.

Each step is a generalized projection with respect to Bregman divergence Dh(·, ·).

Algorithm 1: Mirror-Prox Template

Input: Number of iterations T , X0 ∈X , learning rate
{
γt

}
t∈[T ]

for t = 0 to T do
X t+ 1

2
= argmin

x∈X
〈Mt , x〉+ 1

γt
Dh(x, X t )

X t+1 = argmin
x∈X

〈g t , x〉+ 1
γt

Dh(x, X t )

end for

Now, let us explain the salient differences between UniXGrad and MP as well as OMD using

the particular choices of Mt , g t and the distance-generating function X . Optimistic Mirror

14



2.1 A Universal Algorithm with Optimal Guarantees for Constrained Minimization

Descent takes g t =∇ f (X t+ 1
2

) and computes Mt =∇ f (X t− 1
2

), i.e., based on gradient informa-

tion from previous iterates. This vector is available at the beginning of each iteration and

the “optimism” arises in the case where Mt ≈ g t . When Mt =∇ f (X t ) and g t =∇ f (X t+ 1
2

), the

template is known as the famous Mirror-Prox algorithm. One special case of Mirror-Prox is

Extra-Gradient scheme [Kor76] where the projections are with respect to Euclidean norm, i.e.

h(x) = 1/2∥x∥2
2, instead of general Bregman divergences.

MP has been well-studied, especially in the context of variational inequalities and convex-

concave saddle point problems. It achieves fast convergence rate of O (1/T ) for this class of

problems, however, in the context of smooth convex optimization, this is the standard slow

rate [Nes03]. To date, MP is not known to enjoy the accelerated rate of O (1/T 2) for smooth

convex minimization. We propose three modifications to Algorithm 1, which are the precise

choice of g t and Mt , the adaptive learning rate and the gradient weighting scheme.

The notion of averaging. In different interpretations of acceleration [Nes83a; Nes88; Tse08;

AO16], the notion of averaging is always central and we incorporate this notion via gradients

taken at weighted average of iterates. Let us define the weight αt = t , At = ∑t
s=1αs and the

following sequence

X̄ t+ 1
2
=
αt X t+ 1

2
+∑t−1

s=1αs Xs+ 1
2

At
, X̃ t =

αt X t +∑t−1
s=1αs Xs+ 1

2

At
. (2.6)

Then, UniXGrad algorithm takes g t = ∇ f (X̄ t+ 1
2

) and Mt = ∇ f (X̃ t ), which provides a naive

interpretation of averaging. Our choice of g t and Mt coincide with that of the accelerated

Extra-Gradient scheme of Diakonikolas and Orecchia [DO18]. While their decision relies on

implicit Euler discretization of an accelerated dynamics, we arrive at the same conclusion as a

direct consequence of our convergence analysis.

Adaptive learning rate. A key ingredient of our algorithm is the choice of adaptive learning

rate γt . In light of [RS13], we define our lag-one-behind learning rate as

γt = 2D√
1+

t−1∑
s=1

α2
s∥g t −Mt∥2∗

, (2.7)

where D2 = supx,y∈X Dh(x, y) is the diameter of the compact set X with respect to Bregman

divergences.

Gradient weighting scheme. We introduce the weights αt in the sequence updates. One can

interpret this as separating step size into learning rate and the scaling factors. It is necessary

that αt =Θ(t ) in order to achieve optimal rates, in fact we precisely choose αt = t . Also notice

that they appear in the learning rate, compatible with the update rule. Algorithm 2 summarizes
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Chapter 2. Universal and robust optimization methods for convex minimization

our framework.

Algorithm 2: UniXGrad

Input: # of iterations T , X0 ∈ K , diameter D , weight αt = t , learning rate
{
γt

}
t∈[T ]

for t = 1 to T do
X t+ 1

2
= argmin

x∈X
αt 〈Mt , x〉+ 1

γt
Dh(x, X t ) (Mt =∇ f (X̃ t ) or ∇ f (X̃ t ,ξt ))

X t+1 = argmin
x∈X

αt 〈g t , x〉+ 1
γt

Dh(x, X t ) (g t =∇ f (X̄ t+ 1
2

) or ∇ f (X̄ t+ 1
2

,ξt+ 1
2

))

end for
return X̄T+ 1

2

In the next section, we will present our convergence theorems and provide proof sketches to

emphasize the fundamental aspects and novelties. With the purpose of simplifying the analy-

sis, we borrow classical tools in the online learning literature and perform the convergence

analysis in the sense of bounding “weighted regret”. Then, we use a simple yet essential conver-

sion strategy which enables us to directly translate our weighted regret bounds to convergence

rates.

2.1.5 Analysis

First off, we will present the conversion scheme from offline, weighted regret to convergence

rate, by deferring the proof to the appendix of this chapter. In a concurrent work, [Cut19]

proves a similar online-to-offline conversion bound.

Lemma 2.1.1. Consider weighted average X̄ t+ 1
2

as in Eq. (2.6). Let REGT(x∗) =∑T
t=1αt 〈g t , X t+ 1

2
−x∗〉

denote the weighted regret after T iterations,αt = t and g t =∇ f (X̄ t+ 1
2

). Let x∗ = argminx∈X f (x).

Then,

f (X̄T+ 1
2

)− f (x∗) ≤ 2REGT(x∗)

T 2 .

For the stochastic setting with g t =∇ f (X̄ t+ 1
2

,ξt+ 1
2

), the same bound holds in expectation.

E
[

f (X̄T+ 1
2

)− f (x∗)
]
≤ 2E [REGT(x∗)]

T 2 .

This lemma provides a principled way to convert offline regret to accelerated rates; when the

offline, weighted regret is constant, then the respective algorithm achieves the celebrated

O(1/T 2) rate. Note that we strictly consider the offline case in which the first-order information

is generated with respect to a single, fixed objective function f and we could exploit the

smoothness of the objective to obtain a constant regret.
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Non-smooth setting

First, we will focus on the convergence analysis in the case of non-smooth objective functions

with deterministic/stochastic first-order oracles. We will follow the regret analysis as in [RS13]

with essential adjustments that suit our weighted scheme and particular choice of adaptive

step-size.

Theorem 2.1.1. Consider the constrained optimization setting in Problem (Prob), where f :

X → R is a proper, convex and G-Lipschitz function defined over compact, convex set X .

Let x∗ ∈ argminx∈X f (x), and define g t = ∇ f (X̄ t+ 1
2

), Mt = ∇ f (X̃ t ) where ∇ f (·) represents a

sub-gradient of the objective f at the query point. Then, Algorithm 2 guarantees

f (X̄T+ 1
2

)− f (x∗) ≤
7D

√
1+∑T

t=1α
2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗

T 2 ≤O

(
D

T 2 + GDp
T

)
.

We establish the basis of our analysis through Lemma 1 and Corollary 2 of [RS13]. Then, we

build upon this base by exploiting the structure of the adaptive step-size, the weights αt and

the bound on gradient norms to give adaptive convergence bounds.

Due to the acceleration machinery through the weighted averaging and scaled step-sizes,

the offline cumulative regret of UniXGrad in the non-smooth case grows as O(T 3/2), which is

counter intuitive compared to standard results in online convex optimization. However, the

offline structure of the problem, together with the acceleration mechanism itself enables a

faster conversion scheme, resulting in the standard O(1/
p

T ) convergence rate in the average

iterate.

Remark 2.1.1. It is important to point out that we do not completely exploit the precise

definitions of g t and Mt in the presence of non-smooth objectives. As far as the regret analysis

is concerned, it suffices that these quantities are functions of ∇ f (·) and that, as a corollary,

their dual norm is upper bounded. However, in order to bridge the gap between weighted

regret and the objective sub-optimality, i.e. f (X̄T+ 1
2

)− f (x∗), we require g t =∇ f (X̄ t+ 1
2

) and

Mt =∇ f (X̃ t ).

Now, we further consider the case of stochastic gradients. We assume that the first-order

oracles are unbiased (see Eq. (??)). We want to emphasize that our stochastic setting is not

restricted to the notion of additive noise, i.e. gradients corrupted with zero-mean noise. It

essentially includes any estimate that recovers the full gradient in expectation, e.g. estimat-

ing gradient using mini batches. Additionally, we propagate the bounded gradient norm

assumption to the stochastic oracles, such that ∥∇ f (x,ξ)∥∗ ≤G , ∀x ∈X .

Theorem 2.1.2. Consider the optimization setting in Problem (Prob), where f is non-smooth,

convex and G-Lipschitz. Let {X t+ 1
2

}t=1,..,T be a sequence generated by Algorithm 2 such that

g t =∇ f (X̄ t+ 1
2

,ξt+ 1
2

), Mt =∇ f (X̃ t ,ξt ) and Assumptions in Eq. (2.4) and (2.5) hold. With αt = t
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and step-size as in Eq. (2.7), it holds that

E
[

f (X̄T+ 1
2

)
]
− f (x∗) ≤O

(
D

T 2 + GDp
T

)
.

The analysis in the stochastic setting is similar to deterministic setting. The difference is

up to replacing g t and Mt with their stochastic counterparts. With the additional bound on

stochastic sub-gradients, the same rate is achieved.

Smooth setting

In terms of theoretical contributions and novelty, the case of L-smooth objective is of greater

interest. In the non-smooth analysis, we ignore a particular negative summation term. When

coupled with smoothness of the objective and a particular characterization of the growth

of step-size γt , we will obtain a constant component of the regret. Hence, we achieve the

accelerated rates both in deterministic and stochastic settings. We will first start with the

deterministic oracle scheme and then introduce the convergence theorem for the noisy setting.

Theorem 2.1.3. Consider the constrained optimization setting in Problem (Prob), where f :

X → R is a proper, convex and L-smooth function defined over compact, convex set X . Let

x∗ ∈ minx∈X f (x). Then, Algorithm 2 run with g t = ∇ f (X̄ t+ 1
2

) and Mt = ∇ f (X̃ t ) ensures the

following

f (X̄T+ 1
2

)− f (x∗) ≤O

(
LD2

T 2

)
. (2.8)

Remark 2.1.2. In the non-smooth setting, we assume that gradients have bounded norms.

Our algorithm does not need to know this information, but it is used in the analysis in that

case. However, when the function is smooth, neither the algorithm nor the analysis requires

bounded gradients.

Proof Sketch (Theorem 2.1.3). We follow the proof of Theorem 2.1.1 until the point where we

obtain

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x∗〉 ≤ 1

2

T∑
t=1

γt+1α
2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗−
1

2

T∑
t=1

1

γt+1
∥X t+ 1

2
−X t∥2

+D2
(

3

γT+1
+ 1

γ1

)
.

By smoothness of the objective function, we have ∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥∗ ≤ L∥X̄ t+ 1
2
− X̃ t∥,
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which implies − 1
γt+1

∥X t+ 1
2
−X t∥2 ≤− α2

t

4L2γt+1
∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗. Hence,

≤ 1

2

T∑
t=1

(
γt+1 − 1

4L2γt+1

)
α2

t ∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥2
∗+D2

(
3

γT+1
+ 1

γ1

)
.

Now we will introduce a time variable to characterize the growth of the step-size. Define

τ∗ = max
{

t ∈ {1, ...,T } : 1
γ2

t+1
≤ 7L2

}
such that ∀t > τ∗, γt+1 − 1

4L2γt+1
≤−3

4γt+1. Then,

≤ D
τ∗∑

t=1

α2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗√

1+∑t
s=1α

2
s∥∇ f (X̄s+ 1

2
)−∇ f (X̃s)∥2∗

+ D

2︸ ︷︷ ︸
(A)

+ 3D

2


√√√√1+

T∑
t=1

α2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗−

T∑
t=τ∗+1

α2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗√

1+∑t
s=1α

2
s∥∇ f (X̄s+ 1

2
)−∇ f (X̃s)∥2∗


︸ ︷︷ ︸

(B)

,

where we wrote γt+1 in open form and used the definition of τ∗. To complete the proof, we

will need the following lemma.

Lemma 2.1.2. Let {ai }i=1,...,n be a sequence of non negative numbers. Then, it holds that√
n∑

i=1
ai ≤

n∑
i=1

ai√∑i
j=1 a j

≤ 2

√
n∑

i=1
ai .

Please refer to [MS10; LYC18] for the proof. We jointly use Lemma 2.1.2 and the bound on

γτ∗+1 to upper bound terms (A) and (B) with 4
p

7D2L and 6
p

7D2L, respectively. Lemma 2.1.1

immediately establishes the convergence bound. ■

Next, we will present our results for the stochastic extension. The analysis proceeds along

similar lines as its deterministic counterpart. However, we execute the analysis using auxiliary

terms and attain the optimal accelerated rate without the log factors.

Theorem 2.1.4. Consider the optimization setting in Problem (Prob), where f is L-smooth and

convex. Let {X t+ 1
2

}t=1,..,T be a sequence generated by Algorithm 2 such that g t =∇ f (X̄ t+ 1
2

,ξt+ 1
2

),

Mt =∇ f (X̃ t ,ξt ) and the stochastic estimates satisfy the Assumptions in Eq. (2.4) and (2.5). With

αt = t , x∗ ∈ argminx∈X f (x) and step-size as in (2.7), it holds that

E
[

f (X̄T+ 1
2

)
]
− f (x∗) ≤O

(
LD2

T 2 + σDp
T

)
.

Proof Sketch (Theorem 2.1.4). We start in the same spirit as the stochastic, non-smooth set-
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ting,

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x∗〉 =

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

,ξt+ 1
2

), X t+ 1
2
−x∗〉︸ ︷︷ ︸

(A)

+
T∑

t=1
αt 〈∇ f (X̄ t+ 1

2
)−∇ f (X̄ t+ 1

2
,ξt+ 1

2
), X t+ 1

2
−x∗〉︸ ︷︷ ︸

(B)

.

Recall that term (B) is zero in expectation conditioned on σ(X t+ 1
2

) =σ(ξ1,ξ1+1/2, ...,ξt− 1
2

,ξt ).

Then, we follow the proof steps of Theorem 2.1.1,

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x∗〉 ≤ 7D

2

√√√√1+
T∑

t=1
α2

t ∥∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̃ t ,ξt )∥2∗

− 1

2

T∑
t=1

1

γt+1
∥X t+ 1

2
−X t∥2.

(2.9)

Observe that using the smoothness of the objective and the compactness of the constraint

set, the first summation on the RHS grows roughly as O(
p

T ), which translates to a conver-

gence rate of O(1/T 1.5). Although this is faster than the gradient method it is still sub-optimal.

The negative summation on the RHS is the key to control this term. First, we will obtain

∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥2∗ from ∥X t+ 1
2
−X t∥2 due to smoothness and the challenge is to relate

∥∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̃ t ,ξt )∥2∗ and ∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥2∗ with each other using the variance

bound. So let’s denote, B 2
t := min{∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗,∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)−∇ f (X̃ t ,ξt )∥2∗}. Us-

ing this definition, we could declare an auxiliary step-size which we will only use for the

analysis,

ηt = 2D√
1+∑t−1

s=1α
2
s B 2

s

. (2.10)

Clearly, for any t ∈ [T ] we have γt ≤ ηt , which indeed implies − 1
γt+1

∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥2∗ ≤
− 1
ηt+1

B 2
t . Let us define the shorthand notation for the noise in gradient evaluation,

ϵt+ 1
2
=∇ f (X̄ t+ 1

2
,ξt+ 1

2
)−∇ f (X̄ t+ 1

2
) and ϵt =∇ f (X̃ t ,ξt )−∇ f (X̃ t ).

Then, we have the following ineqaulities,

∥∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̃ t ,ξt )∥2
∗ ≤ 2∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗+2∥ϵt+ 1
2
−ϵt∥2

∗, (2.11)

and,

∥∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̃ t ,ξt )∥2
∗ ≤ 2B 2

t +2∥ϵt+ 1
2
−ϵt∥2

∗. (2.12)
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Therefore, we could rewrite Eq. (2.9) as,

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x∗〉 ≤ 7

2

T∑
t=1

(
ηt+1 − 1

28L2ηt+1

)
α2

t B 2
t +

7D

2︸ ︷︷ ︸
(A)

+ 7Dp
2

√√√√ T∑
t=1

α2
t ∥ϵt+ 1

2
−ϵt∥2∗︸ ︷︷ ︸

(B)

.

Using Lemma 2.1.2 and defining a time variable τ∗ in the sense of Theorem 2.1.3 (with correct

constants), term (A) is upper bounded by 112
p

14D2L. By taking expectation conditioned

on x̄t and using Jensen’s inequality, we could upper bound term (B) as 14σDT 3/2/
p

2, which

leads us to the optimal rate of 224
p

14D2L/T 2 +14
p

2σD/
p

T through Lemma 2.1.1. ■

2.1.6 Experiments

We compare performance of our algorithm for two different tasks against adaptive methods of

various characteristics, such as AdaGrad, AMSGrad and AcceleGrad, along with a recent non-

adaptive method AXGD. We consider a synthetic setting where we analyze the convergence

behavior, as well as a SVM classification task on some LIBSVM dataset. In all the setups,

we tuned the hyper-parameters of each algorithm by grid search. In order to compare the

adaptive methods on equal grounds, AdaGrad is implemented with a scalar step size based

on the template given by Levy [Lev17]. We implement AMSGrad exactly as it is described by

Reddi, Kale, and Kumar [RKK18b].

Convergence behavior. We take the least squares problem with L2-norm ball constraint for

this setting, i.e., min∥x∥2<r
1

2n ∥Ax −b∥2
2, where A ∈Rn×d , A ∼N (0,σ2I ) and b = Ax♮+ϵ such

that ϵ is a random vector ∼N (0,10−3) and x♮ is the original signal before perturbation. We

pick n = 500 and d = 100. For the rest of this section, we refer to the solution of constrained

problem as x∗.
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Figure 2.1: Convergence rates in the deterministic oracle setting when x∗ ∈ Boundary(X )
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Figure 2.2: Convergence rates in the stochastic oracle setting when x∗ ∈ Boundary(X )

In Figure 2.1 and 2.2, we present the convergence rates under deterministic and stochastic

oracles, and we pick a problem in which the solution is on the boundary of the constraint

set, i.e., x∗ ∈ Boundary(X ). In this setting, our algorithm shows matching performance in

comparison with other methods. AXGD has convergence issues in the stochastic setting, as

it only handles additive noise and their step size routine does not seem to be compatible

with stochastic gradients. Another key observation is that AMSGrad suffers a decrease in its

performance when the solution is on the boundary of the set.

SVM classification. In this section, we will tackle SVM classification problem on “breast-

cancer” data set taken from LIBSVM. We try to minimize squared Hinge loss with L2 norm

regularization. We split the data set as training and test sets with 80/20 ratio. The models

are trained using random mini batches of size 5. Figure 2.3 demonstrates convergence rates

and test accuracies of the methods. They represent the average performance of 5 runs, with

random initializations. For UniXGrad, AcceleGrad and AXGD, we consider the performance

with respect to the average iterate X t+ 1
2

as it shows a more stable behavior, whereas AdaGrad

and AMSGrad are evaluated based on their last iterates. AXGD, which has poor convergence

behavior in stochastic setting due to its step size rule, shows the worst performance both in

terms of convergence and generalization. UniXGrad, AcceleGrad, AdaGrad and AMSGrad

achieve comparable generalization performances to each other. AMSGrad achieves a slightly

better performance as it has diagonal preconditioner which translates to per-coordinate

learning rate. It could possibly adapt to the geometry of the optimization landscape better.
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Figure 2.3: Convergence behavior with respect to training data and resulting test accuracies for binary
classification task on breast-cancer dataset from LIBSVM [CL11]

2.1.7 Conclusion

In this paper we presented an adaptive and universal framework that achieves the optimal

convergence rates in constrained convex optimization setting. To our knowledge, this is the

first method that achieves O
(
GD/

p
T

)
and O

(
LD2/T 2 +Dσ/

p
T

)
rates in the constrained

setting, without log dependencies. Without any prior information, our algorithm adapts to

smoothness of the objective function as well as the variance of the possibly noisy gradients.

One would interpret that our guarantees are extensions of [LYC18] to the constrained setting

through a completely different algorithm and a simpler analysis. Our study of their algorithm

and proof strategies concludes that:

• It does not seem possible to remove logT dependency in non-smooth setting for their

algorithm, due to their Lemma A.3

• Extending their algorithm to constrained setting (via projecting y sequence) is not trivial, as

the analysis requires y sequence to be unbounded (refer to their Appendix A, Eq. (16)).

As a follow up, we would like to investigate three main extensions:

• Proximal version of our algorithm that could handle composite problems in a unified

manner. It seems like a rather simple extension as the main difference would be replacing

optimality condition for constrained updates with that of proximal operator.

• Extending scalar adaptive learning rate to per-coordinate matrix-like preconditioner. This

direction of research would help us create a robust algorithm that is applicable to non-

convex problems, such as training deep neural networks.

• Adaptation to strong convexity along with smoothness and noise variance, simultaneously.

A first step towards tackling this open problem is proving an improved rate of O(1/T 2+σ/T )

for smooth and strongly convex problems, with stochastic gradients.
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2.2 A First Approach to Noise-Adaptive Accelerated Second-Order

Methods

2.2.1 Bibliographic Note

This section (Section 2.2) is based on the published work Antonakopoulos, Kavis, and Cevher

[AKC22], published in the NeurIPS 2022 conference.

Author list of the published work.

• Kimon Antonakopoulos

• Ali Kavis

• Volkan Cevher

Description of contributions. The candidate and Kimon Antonakopoulos equally and jointly

contributed to all the theoretical results in this work. The candidate implemented all the

numerical experiments.

2.2.2 Introduction

Over the last few decades, first-order (convex) minimization methods have gained popularity

for modern machine learning and optimization problems due to their efficient per-iteration

cost and global convergence properties. The literature on first-order methods is rather dense

and extensive with a concrete, thorough understanding of the optimal global convergence

behavior. Focusing on the settings of smooth, convex minimization, the lower bounds have

been well-established; O(σ/
p

T ) when the gradient feedback is noisy with variance σ2, and

O(1/T 2) under deterministic first-order oracles [NYD83; Nes03]. Under slight variations of

the aforementioned problem setting, there exists an extensive amount of work that enjoys

the latter, “accelerated” rate [Nes83a; Nes88; Nes05; Tse08; Xia10; Lan12; AO16; LYC18; WA18;

DO18; Cut19; Kav+19; Jou+20; Ant+22; Liu+23].

On the contrary to its first-order analogue, the literature on global convergence of second-order,

smooth methods is notably sparse with many open questions standing even in the simplest

problem formulations. Following the pioneering works of Bennett [Ben16] and Kantorovich

[Kan48], Newton’s method and its variations [Lev44; Mar63] are considered as the staple of

second-order methods in optimization. Although its powerful local convergence behavior has

been repeatedly demonstrated [CGT00; KMR19], studies on its global behavior are relatively

limited. Prior attempts at tackling global convergence mostly make additional structural

assumptions on the objective function [Pol06; MBR19; KMR19] or assume extra regularity

conditions on the Hessian [KSJ18] beyond the simplest smooth and convex setting. Over

the last decade, we have witnessed important progress towards a more complete theory of
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2.2 A First Approach to Noise-Adaptive Accelerated Second-Order Methods

globally-convergent second-order methods, and yet there remains many important questions

unanswered, which we will delve into in this part of the chapter.

To motivate the perspective in our technical endeavour, we take a small detour to introduce

the idea of universality, which we particularly characterize as adaptation to the level of noise

in oracle feedback. Our designation of this concept is relevant to that of Nesterov [Nes15]

but is fundamentally different in its essence; while Nesterov [Nes15] defines it as continuous

adaptation to levels of Hölder smoothness [NYD83], we particularly characterize it as continous

adaptation to the variance.

Enabled by the recent advances in online optimization, universal first-order algorithms essen-

tially attain the O(σ/
p

T +1/T 2) convergence for convex minimization problems, interpolating

between stochastic and deterministic rates. There exist a plethora of algorithms that enjoy

this rate under different sets of assumptions for both minimization scenarios (for convex

and non-convex settings, we refer the reader to [Lan12; Kav+19; ENV21; Jou+20; Ant+22] and

[WWB19; LKC21; KLC22; Liu+22b], respectively), and the more general framework of varia-

tional inequalities [BL19; Ant+21; VAM21; HAM21; Hsi+22b; ABM21]. However, we observe

that such universal results do not exist in second-order literature, hence, it is only natural to

ask,

Can we design a simple second-order method that will achieve

accelerated universal rates beyond O(σ/
p

T +1/T 2)?

More recently, global sub-linear convergence rates for second-order methods have been

characterized by [NP06] for second-order smooth setting. Essentially, the so-called Cubic Reg-

ularized Newton’s Method combines the quadratic Taylor approximation in the typical Newton

update with a cubic regularization term. The main challenge of this scheme is efficiently solv-

ing the cubic sub-problem, which is possible by explicitly representing it as a one-dimensional

convex problem [NP06]. The proposed method achieves O(1/T 2) convergence rate when the

objective function is convex. Shortly after, Nesterov [Nes08] proposes an accelerated version

of the cubic regularization idea with O(1/T 3) value convergence, pioneering a new direction

of research in the study of globally-convergent second-order methods [Mis21]. This idea has

been studied further for different settings in convex optimization [JLZ17; JLZ20] with the same

accelerated O(1/T 3) rate and extended to non-convex realm [CGT11a; CGT11b], obtaining the

analogous rates of O(1/T 2/3) and O(1/T 1/3) for finding first-order and second-order stationary

points, respectively, leading the way for further investigations [BGM20; DO21; Che+22].

Notice that accelerated cubic regularization is sub-optimal such that recent studies prove

a respective lower-bound for second-order smooth, convex problems as O(1/T 7/2) [AH18;

ASS19]. The first line of research that shrinks the gap between the upper and lower bounds

for achieving an almost-optimal (more on this shortly) convergence [Nes18] is the so-called

“bisection-type” methods. Pioneered by Monteiro and Svaiter [MS13], these class of algorithms

propose a conceptual method where the step-size of the algorithm implicitly depends on
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the next iterate. To resolve, the authors propose a bisection procedure that simultaneously

finds a step-size/next iterate pair that satisfies the conditions of the iterative update, which

enables the convergence rate of O(1/T 7/2), modulo the complexity of bisection procedure.

This idea was very recently generalized for higher-order tensor methods [Gas+19]. Not so

surprisingly, the same construction finds application in variational inequality (VI) and min-

max optimization literature [BL22; JM22]. Very recently and concurrently to our work, [Car+22]

propose the first bisection free acceleration for second-order methods, that achieves the

optimal O(1/T 7/2). The authors define an explicit, deterministic procedure called MS oracle

and compute the step-size using a line-search procedure enabling them to achieve optimal

rates while adaptively computing the step-size without needing to know the smoothness

constant.

Although there are promising results with an increasing interest into second-order –and also

higher-order– methods, we identify three main shortcomings in the literature, which we will

systematically address in the sequel. First, bisection-type methods achieve the optimal con-

vergence rate however, the search procedure is computationally very prohibitive [Nes18; LJ22]

and the resulting algorithms are complicated with many interconnected components. On the

other hand, cubic regularization-based ideas propose a simple construction that achieves

acceleration beyond O(1/T 2) however, similar to previous methods, they either require the

knowledge of smoothness constant or need to execute a standard line-search procedure to esti-

mate it locally. A common drawback for both approaches is that the algorithmic constructions

are designed for handling only deterministic oracles and it is an open question whether such

frameworks could immediately accommodate stochastic first and second-order information.

Our contributions. To address the aforementioned issues, we developed the first univer-

sal and adaptive second-order algorithm, EXTRA-NEWTON, for convex minimization. We

summarize our contributions as follows:

1. We prove EXTRA-NEWTON achieves the global convergence rate of O(
σgp

T
+ σH

T 3/2 + LD3

T 3 ) that

adapts simultaneously to the variance in the gradient oracle (σg ) and Hessian oracle (σH )

achieving the first universal convergence result in the literature.

2. Our method is completely oblivious to any problem-dependent parameters including

smoothness modulus, variance bounds on stochastic oracles, diameter of the constraint

set and any possible bounds on the gradient and Hessian.

3. We design the first adaptive step-size, in the sense of [DHS11; RS13], that successfully in-

corporates second-order information “on-the-fly”. While doing so, we bypass any bisection

or linesearch procedure, and propose a simple, intuitive algorithmic framework.

From a technical point of view, what will allow us to achieve these results is the combination of

three principal ingredients: (i) proposing appropriate adjustments to Extra-Gradient [Kor76]

that was originally designed for solving variational inequalities and min/max problems; (ii ) an

“optimistic” weighted iterate averaging scheme accompanied by an appropriate gradient rescal-
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Table 2.1: A survey on first and second-order algorithms with key properties

AGD
[Nes83a]

UniXGrad
[Kav+19]

Reg.
Newton
[Mis21]

Accel.
Cubic Reg.

[Nes08]

ANPE1

[MS13]
OptMS

[Car+22]

Extra
Newton

[AKC22][ours]
Rate 1

T 2

σgp
T
+ 1

T 2
1

T 2
1

T 3
1

T 7/2
1

T 7/2

σgp
T
+ σH

T 3/2 + 1
T 3

Bisection-free ✓ ✓ ✓ ✓ ✗ ✓ ✓

Adapts to L ✗ ✓ ✗ Partial ✗ ✓ ✓

Noise-adaptive ✗ ✓ ✗ ✗ ✗ ✗ ✓

ing strategy in the spirit of [WA18; DO18; Kav+19] which allows us to obtain an accelerated

rate of convergence by means of a generalized online-to-batch conversion (Theorem 2.2.3),

and (iii) the glue that holds these elements together is an adaptive learning rate inspired by

[RS13; Kav+19; ABM21] which automatically rescales aggregated gradients and second order

information. In what follows, we shall explicate these arguments.

2.2.3 Problem setup

Throughout this section of Chapter 2, we will be focusing on solving the (constrained) convex

minimization problems of the general form:

minimize f (x)

subject to x ∈X .
(Opt)

Formally, in the above X is a convex and compact subset of a d- dimensional normed space

V ∼= Rd with diameter D = maxx,y∈X ∥x − y∥, and f : V → R∪ {+∞} is a proper, lower semi-

continuous, convex function with dom f = {x ∈ Rd : f (x) <+∞} ⊂X . To that end, we make

a set of blanket assumptions for (Opt). Following the vast literature of constrained convex

minimization [NES06; BT09], we consider “simple” constraint sets, i.e.,

Assumption 2.2.1. The constraint set X of (Opt) possesses favorable geometry which facilitates

a tractable projection operator.

In order to avoid trivialities, we also assume that the said problem admits at least a solution,

i.e.

Assumption 2.2.2. The solution set X ∗ = argminx∈X f (x) of (Opt) is non-empty.

Furthermore, we assume that there exists a Lipschitz continuous selection x 7→ ∇2 f (x) ∈Rd×d ,

i.e.,

∥∇2 f (x)−∇2 f (y)∥ ≤ L∥x − y∥ ∀x, y ∈X (H-smooth)

1Note that the bisection procedure is computationally prohibitive, we defer the reader to [Nes18], p.304-305.
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and in addition it satisfies the second order approximation:

f (x) = f (y)+〈∇ f (y), x − y〉+ 1

2
〈∇2 f (y)(x − y), x − y〉+O

(∥x − y∥3) (Taylor)

To that end, combining (H-smooth) and (Taylor) we readily get the following inequality:

∥∇ f (x)−∇ f (y)−∇2 f (y)(x − y)∥ ≤ L

2
∥x − y∥2 (2.13)

The above equivalences are well-established and hence we omit their proofs (we defer for a

panoramic view to [Nes19])

Oracle feedback structure. From an algorithmic point of view, we aim to solve (Opt) by using

methods that require access to a (stochastic) first and second order-oracle. Before we move

forward with the methodology, we shall introduce the definitions and short-hand notation

for this oracle model which we will use in algorithm definitions and technical discussions.

Let ∇ f (x,ξ) denote the stochastic gradient evaluated at x with randomness defined by ξ and

∇2 f (x,ξ) be the stochastic Hessian at x with ξ describing the randomness of the oracle, such

that

E
[∇ f (x,ξ) |σ(x)

]=∇ f (x), E
[∥∇ f (x,ξ)−∇ f (x)∥2 |σ(x)

]≤σ2
g

E
[∇2 f (x,ξ) |σ(x)

]=∇2 f (x), E
[∥∇2 f (x,ξ)−∇2 f (x)∥2 |σ(x)

]≤σ2
H ,

(2.14)

whereσ(x) denotes the sigma-algebra generaed by the random variable/iterate x. Due to space

constraints, we will also define an operator that accommodates second-order information

and its respective stochastic counterpart.

F(x; y) =∇ f (y)+ 1

2
∇2 f (y)(x − y)

F̃(x; y,ξ) =∇ f (y,ξ)+ 1

2
∇2 f (y,ξ)(x − y)

(2.15)

where F is essentially the gradient (with respect to x) of the second-order Taylor polynomial.

By definition, the operator F satisfies the second-order smoothness property in Eq. (2.13) We

present a complete list of definitions and parameter descriptions to make it easier for the

reader to follow the technical arguments in the whole of this section.

28



2.2 A First Approach to Noise-Adaptive Accelerated Second-Order Methods

Table 2.2: A complete list of parameters and expressions, their definitions and descriptions

Formal Definition Description

f f :Rd →R+ {+∞} objective function

X X ⊂Rd convex and compact constraint set

x∗ = argminx∈X f (x) solution of the constrained problem (Opt)

D = supx,y∈X ∥x − y∥ diameter of the constraint set X

L ∥∇2 f (x)−∇2 f (y)∥ ≤ L∥x − y∥ second-order smoothness constant of f

∇ f (·,ξ) E
[∇ f (x,ξ) |σ(x)

]=∇ f (x), x ⊥⊥ ξ unbiased gradient estimate

∇2 f (·,ξ) E
[∇2 f (x,ξ) |σ(x)

]=∇2 f (x), x ⊥⊥ ξ unbiased Hessian estimate

Ft =σ(ξ1,ξ1+ 1
2

, · · · ,ξt ) σ-algebra generated by random variables up to ξt

Ft+ 1
2

=σ(ξ1,ξ1+ 1
2

, · · · ,ξt ,ξt+ 1
2

) σ-algebra generated by random variables up to ξt+ 1
2

σg E
[∥∇ f (x)−∇ f (x)∥2 | x

]≤σ2
g variance bound for gradient estimate

σH E
[∥∇2 f (x)−∇2 f (x)∥2 | x

]≤σ2
H variance bound for Hessian estimate

σ = max
{
σg ,σH

}
maximum variance of oracles

γt Eq. (2.19) and Eq. (2) adaptive step-size

at = t 2 gradient weights

At =∑t
s=1 as normalization factor for gradient weights at

bt = t p , where p ≥ 2 averaging weights

Bt =∑t
s=1 bs normalization factor for averaging weights bt

2.2.4 Method

In this section, we shall establish our universal second-order framework. Our presentation

evolves around three key components: choosing the appropriate algorithmic template with

the key motivations behind it, solving implementability issues that commonly arise in higher-

order methods and finally designing a universal algorithm that can handle deterministic and

noisy oracle feedback simultaneously without having prior knowledge. Our point of departure

is the popular Extra-Gradient (EG) template; originally introduced by Korpelevich [Kor76] and

further developed in Nemirovski [Nem04],

X t+ 1
2
=ΠX

(
X t −γt∇ f (X t )

)
X t+1 =ΠX

(
X t −γt∇ f (X t+ 1

2
)
)

,
(EG)

where ΠX (x) = argminz∈X ∥x − z∥2 is the standard Euclidean projection onto the set X . In

terms of output, the candidate solution returned by (GEG) after T iterations is the so-called
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“ergodic average”

X̄T+ 1
2
=

∑T
t=1 bt X t+ 1

2∑T
t=1 bt

(2.16)

Then, taking bt = γt and assuming the method’s step-size γt is chosen appropriately, X̄T+ 1
2

enjoys the following universal guarantee [JNT11; RS13]:

E[ f (X̄T+ 1
2

)− f (x∗)] =O

(
1

T
+ σp

T

)
(2.17)

where σ signifies the effect of the noisy feedback. However, as it becomes apparent, the vanilla

(GEG) template is not capable of matching the iconic 1/T 2 for the smooth deterministic case.

It is well-established in the literature of smooth, convex minimization that iterate averaging

(or momentum in the sense of Nesterov [Nes83a]) is essential for matching the O(1/T 2) lower

bounds. In fact, plain uniform averaging is not sufficient; one needs to introduce new iterates

with increasing weights. Precisely, this is equivalent to computing an average by taking

bt = O(t). However, we cannot fully characterize the acceleration machinery without what

we like to call “gradient weighting”. On top of (weighted) iterate averaging, gradients must be

multiplied by the same order of weights to achieve acceleration, which is a recurring theme in

the literature of accelerated and universal optimization [Tse08; Xia10; Lan12; AO16; LYC18;

WA18; Cut19; Kav+19; Jou+20].

Going back to discussion on (GEG), Wang and Abernethy [WA18] and Kavis et al. [Kav+19]

provide useful insights into acceleration within the context of (GEG). Wang and Abernethy

[WA18] identifies a 2-player game with a particular structure called FENCHELGAME framework,

which essentially reduces to minimizing a smooth, convex function when the players cooper-

ate. By introducing an “optimistic” weighted iterate averaging along with a complementary

gradient weighting strategy, the framework recovers different acceleration schemes of Nesterov

[Nes83a; Nes88; Nes05]. On a related front, Diakonikolas and Orecchia [DO18] proposes the

first acceleration of (GEG) by appropriately integrating the optimistic averaging idea [WA18]

into the (GEG) template as follows:

X̃ t =
bt X t +∑t−1

s=1 bs Xs+ 1
2∑t

s=1 bs
, X̄ t+ 1

2
=

∑t
s=1 bs Xs+ 1

2∑t
s=1 bs

(2.18)

where bt =O(t ) is the “iterate averaging” parameter. Later on, Kavis et al. [Kav+19] designs an

adaptive, universal variant of accelerated Mirror-Prox following the same optimistic averaging

idea as in Eq. (2.18) (see Eq. (2.6) for the equivalent definition). All in all, it is a recurring theme

among accelerated algorithms to adopt weighted iterate averaging (bt =O(t)) with propor-

tionate gradient weighting, and not so surprisingly, prior work establishes clear connections

between the degree of weighting and convergence rate. Cutkosky [Cut19] designs a black-box

reduction that accelerates a class of online algorithms and proves that the rate of convergence

of the reduction is O(1/
∑T

t=1 bt ) for bt ∈ [1, t ]. In retrospect, we aim at answering the following

question;
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What algorithmic construction would enable acceleration beyond O(1/T 2)?

Implicit algorithm

We give a first affirmative answer to the above question by presenting our implicit accelerated

algorithm which is constructed upon (GEG), and establish its convergence properties. Note

that the implicitness of the scheme serves as a gentle introduction to the actual explicit

second order acceleration, which shall follow. Formally, our scheme is given via the following

recursion:

X t+ 1
2
=ΠX

(
X t −γt at F(X̄ t+ 1

2
; X̃ t )

)
= argmin

x∈X
at 〈∇ f (X̃ t )+ 1

2
∇2 f (X̃ t )(X̄ t+ 1

2
− X̃ t ), x −X t 〉+ ∥x −X t∥2

2γt

X t+1 =ΠX

(
X t −γt at∇ f (X̄ t+ 1

2
)
)

= argmin
x∈X

at 〈∇ f (X̄ t+ 1
2

), x −X t 〉+ ∥x −X t∥2

2γt

(Implicit)

withΠX (x) denoting the Euclidean projection of x onto X , average sequences X̃ t and X̄ t+ 1
2

defined as in (2.18) and the adaptive step-size γt defined as (for some γ,β0 > 0):

γt = γ√
β0 +∑t−1

s=1 a2
s ∥∇ f (X̄s+ 1

2
)−F(X̄s+ 1

2
; X̃s)∥2

. (2.19)

The implicit nature of (Implicit) originates from X t+1/2 update (which we shall refer to as

(corrected) extrapolation step at times) since X̄ t+ 1
2

depends upon X t+ 1
2

itself. However, this

scheme exhibits several key differences from the vanilla (GEG), which constitute the funda-

mental parts of our second-order acceleration machinery. In particular, we have:

(i) integration of second-order updates for sharper extrapolation steps - first step of accel-

eration.

(ii) interplay between averaging (bt ) and gradient weighting (at ) which allows more aggres-

sive averaging - second step of acceleration.

(iii) adaptive step-size in the sense of Rakhlin and Sridharan [RS13] - key to adaptivity and

universality.

Second-order updates. First, we will consider the particular interpretation of (GEG) as an

approximation to the Proximal Point method [Roc76] which serves as motivation for the

accommodation of second-order information in our scheme.

X t+1 = X t −γt∇ f (X t+1). (PP)

31



Chapter 2. Universal and robust optimization methods for convex minimization

In particular, (GEG) tries to approximate X t+1 by generating the extrapolated point X t+ 1
2

, and

make use of the gradient at X t+ 1
2

to take a step from X t to X t+1. Therefore, if the algorithm

is able to compute a sharper estimate in the extrapolation step, it should be able live up to

the fame of (PP) and display faster convergence. To this end, we augment the extrapolation

step by introducing second-order term. Essentially, our algorithm makes use of second-order

Taylor approximation, as opposed to first-order expansion, only for the extrapolation step,

trading-off sharper approximation with second-order information.

Iterate averaging and gradient weighting. Now, we turn our attention to the second com-

ponent in our acceleration machinery; averaging and weighting. Recall that the acceleration

framework of Cutkosky [Cut19] guarantees a value convergence rate of O(1/t p+1) when weight-

ing factor satisfies bt =O(t p ) with p ∈ [0,1]. We take this result one step beyond in two fronts;

our algorithm exploits higher-order smoothness in order to extend this bound for p ∈ [0,2],

implying the accelerated rate of O(1/T 3). Second, we observe that previous work restricts

the choice of gradient weights and averaging weights by taking at ≈ bt . We decouple those

weights by allowing the sequences at and bt to be different, which in turn equips us with more

aggressive iterate averaging when necessary.

Adaptive step-size. As the final component, we study the adaptive step-size (2.19) from the

parameter adaptation perspective (i.e., adaptation to the Lipschitz modulus) and expand on

its universal properties in the next section. The vast literature on adaptive methods predomi-

nantly rely on constructions of AdaGrad-like decreasing step-size policies by accumulating the

observed gradient norms in its denominator. The intuition behind this choice is that whenever

the method approaches a solution, the vanishing gradients bring about stabilization, ensuring

progress around the solution’s neighborhood. However, this idea fails for (compactly) con-

strained problems; when the solution lies on the boundary. So inspired by [RS13], we design a

constraint-aware step-size by accumulating ∥∇ f (X̄ t+ 1
2

)−F(X̄ t+ 1
2

; X̃ t )∥2 which converges to 0

as X̄ t+ 1
2
− X̃ t → 0; which in turn implies convergence of the algorithm. To our knowledge, this

is the first adaptive step-size that accommodates second order information.

Having established the core components of our design, we are in position to present the first

accelerated convergence rate guarantee for (Implicit). Formally, this is given by the following.

Theorem 2.2.1. Let {X t+ 1
2

}T
t=1 be generated by (Implicit) run with the adaptive step-size policy

(2.19) where at = t 2, bt = t p with p ≥ 2. Assume that f satisfies (H-smooth) then, it is ensured

f (X̄T+ 1
2

)− f (x∗) ≤O

max
{√

β0
D2

γ ,L D4+Dγ3

γ

}
T 3



When γ= D, we obtain the converge rate O

(
max

{
LD3,

p
β0D

}
T 3

)
.

Remark 2.2.1. We emphasize that the above rate does not require any prior knowledge of
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problem paramaters such as L, D, time-horizon T and any bounds on gradient/Hessian

norms. In order to have better dependence on D one could set γ= D , and our rate of O(1/T 3)

holds irrespective of γ.

Explicit algorithm

Despite the fact that (Implicit) improves upon the accelerated rate of O(1/T 2), one may easily

observe that it exhibits the following drawbacks:

1. (Implicit) is a conceptual algorithm and therefore, not implementable in practice.

2. A fortiori, it cannot provide rate interpolation guarantees as it does not have the machinery

to simultaneously cope with deterministic and stochastic feedback.

As discussed earlier, a common strategy for overcoming this implicit construction is using

a bisection/line-search procedure [JM22; MS13; BL22]. Depending on the context, this pro-

cedure serves two distinct purposes. Primarily, it tackles the implicit nature of the update

rule by simultaneously finding a pair of (γt , X t+ 1
2

) and secondly, it enables adaptation to the

second-order smoothness. However, one may identify major setbacks with these approaches;

first, it is not clear how to handle stochastic oracles for executing the search procedure, so it is

not capable of satisfying any universal guarantees. Moreover, it yields a rather complicated

procedure as a byproduct that has many moving parts. To that end, we propose an alternative

approach which not only yields a simple scheme, but also provides a universal algorithm that

is able to handle noisy feedback on-the-fly. Without further ado, we display our explicit algo-

rithm, EXTRA-NEWTON, with appropriate modifications. Having defined our main scheme,

Algorithm 3, we will provide a more detailed description of its components.

Algorithm 3: EXTRA-NEWTON

Input: X1 ∈X , at = t 2 and At =∑t
s=1 as , bt = t p (p ≥ 2) and Bt =∑t

s=1 bs , γ> 0, ξt ∼ i.i.d.

1: for t = 1 to T do

2: γt = γ√
β0 +∑t−1

s=1 a2
s ∥∇ f (X̄s+ 1

2
,ξs+ 1

2
)− F̃(X̄s+ 1

2
; X̃s ,ξs)∥2

3: X t+ 1
2
= argminx∈X 〈at∇ f (X̃ t ,ξt ), x〉+ at bt

2Bt
〈∇2 f (X̃ t ,ξt )(x −X t ), x −X t 〉+ 1

2γt
∥x −X t∥2

4: X t+1 = argminx∈X 〈at∇ f (X̄ t+ 1
2

,ξt+ 1
2

), x〉+ 1
2γt

∥x −X t∥2

5: end for

Universal step-size. We modify our step-size (see Line 2, Algorithm 3) in order to operate in

the stochastic regime while making it noise-adaptive for rate interpolation. Using the same

weighted averaging scheme in Eq. (2.18), we define the universal counterpart of the adaptive

step-size. Note that γt is independent of any variable/randomness generated at iteration

t ; it accumulates a2
t ∥∇ f (X̄s+ 1

2
,ξs+ 1

2
)− F̃(X̄s+ 1

2
; X̃s ,ξt )∥2 up to t −1. Therefore, the step-size is

decoupled from the explicit update, a priori.
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Now, what remains is a new algorithmic design that will retain the accelerated convergence

properties demonstrated by (Implicit) while having an explicit construction that is capable

of automatically adjusting to noise level in the oracle feedback. Before expanding upon the

technical details of our strategy, let us take our time to explain the consequences of our explicit

design compared to (Implicit).

From implicit to explicit. To obtain the explicit algorithm, (i) we write the projection

sub-problem in the argmin form; (ii) introduce stochastic oracle feedback; (iii) for the sec-

ond-order term, replace X t+ 1
2

in X̄ t+ 1
2

with the free variable x; then, (iv) simplify as follows:

at

2
〈∇2 f (X̃ t ,ξt )(X̄ t+ 1

2
− X̃ t ), x −X t 〉

⇓
at

2

〈
∇2 f (X̃ t ,ξt )

(bt X t+ 1
2
+∑t−1

s=1 bs Xs+ 1
2

Bt
−

bt X t +∑t−1
s=1 bs Xs+ 1

2

Bt

)
, x −X t

〉
⇓

at

2

〈
∇2 f (X̃ t ,ξt )

(bt x +∑t−1
s=1 bs Xs+ 1

2

Bt
−

bt X t +∑t−1
s=1 bs Xs+ 1

2

Bt

)
, x −X t

〉
⇓

at bt

2Bt
〈∇2 f (X̃ t ,ξt )(x −X t ), x −X t 〉

Given the bisection-type conceptual methods [MS13; JM22; BL22], it is surprising how smoothly

we could transition from implicit to explicit once we decouple the step-size from the current

iteration apriori. Moreover, the resulting update rule for the extrapolation step retains the

quadratic structure as the X t+1 update rule. Having analyzed the components of the explicit

scheme, we will first present the universal convergence rates then provide a concise expla-

nation of the proof strategy with particular emphasis on the principal components of the

analysis.

Theorem 2.2.2. Let {X t+ 1
2

}T
t=1 be a sequence generated by Algorithm 3, run with the adaptive

step-size policy (2) and at = t 2,bt = t p with p ≥ 2. Assume that f satisfies (H-smooth), and

that Assumptions (2.14) hold. Then, the following universal guarantee holds:

E[ f (X̄T+ 1
2

)]− f (x∗) =O

 D2+γ2

γ σg
p

T
+

D3+Dγ2

γ σH

T 3/2
+

max
{

L D4+Dγ3

γ ,
√
β0

D2+γ2

γ

}
T 3



When γ= D, we obtain the target rate O

(
Dσgp

T
+ D2σH

T 3/2 + max
{

LD3,
p
β0D

}
T 3

)
.

Remark 2.2.2. Similar to Theorem 2.2.1, EXTRA-NEWTON achieves the preceding convergence

rate independent of the knowledge of problem parameters.
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Compatible with the (GEG)-based algorithmic design, our proof has the following main steps

1. We perform an offline regret analysis of Algorithm 3 and show adaptive regret bounds - see

Proposition 2.2.1.

2. We prove an anytime online-to-batch conversion framework, which generalizes that of

Cutkosky [Cut19] and Lemma 2.1.1, through decoupling iterate averaging from gradient

weighting - see Theorem 2.2.3.

3. Combining the adaptive regret bound with the conversion theorem immediately implies

universal, accelerated value convergence of O(
Dσgp

T
+ D2σH

T 3/2 + max
{

LD3,
p
β0D

}
T 3 ) - see Theo-

rem 2.2.2.

Let us begin with clarifying what offline regret means for Algorithm 3. We define the (linear)

regret considering the convention in both online learning [RS13; Cut19] and first-order accel-

eration literature [WA18; Kav+19; Jou+20]. We measure the performance of our decisions for

the extrapolation sequence such that after playing X t+ 1
2

, our algorithm observes and suffers

the linear (weighted) loss with respect to at∇ f (X̄ t+ 1
2

). Hence, we define the regret as

REGT(x) =
T∑

t=1
at 〈∇ f (X̄ t+ 1

2
), X t+ 1

2
−x〉 (Reg)

where we run the algorithm for T rounds. Next up, we provide our generalized conversion

result.

Theorem 2.2.3. Let REGT(x∗) denote the anytime regret for the decision sequence {X t+ 1
2

}T
t=1 as

in (Reg), and define two sequences of non-decreasing weights at and bt such that at ,bt ≥ 1. As

long as at /bt is ensured to be non-increasing,

f (X̄T )− f (x∗) ≤ REGT(x∗)

aT
BT
bT

Remark 2.2.3. This conversion result holds independent of the order of smoothness of the

objective as long as f is convex. Moreover, it allows averaging parameter bt to be asymptot-

ically larger than gradient weights at , enabling a more aggressive averaging strategy when

necessary.

To complement the lower bound to the regret REGT(x∗), we present an upper bound that helps

us explain how we exploit second-order smoothness for a more aggressive weighting, hence

the rate O(1/T 3).

Proposition 2.2.1. Let {X t+ 1
2

}T
t=1 be generated by Algorithm 3, run with a non-increasing step-

size sequence γt and non-decreasing sequences of weights at ,bt ≥ 1 such that at /bt is also

non-increasing. Then, the following guarantee holds:

E
[
REGT(x∗)

]≤ 1

2
E

[
3D2

γT+1
+

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)− F̃(X̄ t+ 1

2
; X̃ t ,ξt )∥2 −

∥X t+ 1
2
−X t∥2

γt+1

]
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Observe that the inequality in Proposition 2.2.1 is agnostic to the design of our step-size in

Algorithm 3 (line 2) as well as the selection of the weights as described in Theorem 2.2.2. It

essentially applies to any non-increasing sequence of step-sizes and non-decreasing gradient

weight sequence at ≥ 1. To obtain it, we neither used convexity nor the smoothness of

the objective. In fact, the structure of the objective function, i.e., its convexity, will not be

needed for upper-bounding the regret expression, and required only for the conversion in

Theorem 2.2.3.

Now, let us explain how we make use of second-order smoothness for enjoying faster rates, and

give a brief discussion of how the regret bound will look in its final form. First, we decompose

the stochastic term ∥∇ f (X̄ t+ 1
2

,ξt+ 1
2

)− F̃(X̄ t+ 1
2

; X̃ t ,ξt )∥2 into deterministic feedback and noise.

Then, we argue that the noisy component grows as O(σH T 3/2 +σg T 5/2). On the other hand,

achieving the accelerated O(1/T 3) component of the universal rate amounts to showing that

the regret has a constant, O(1), component. In the worst-case sense, however, the deterministic

component itself grows as O(T 5/2). Fortunately, we identify that the negative term is “large

enough” in magnitude to control the growth of the deterministic term, permitting a constant

component O(LD2) for the regret. The intuition behind using the negative summation term is

of the same spirit as we discussed in Section 2.1.5. However, the main challenge is understand-

ing the correct use of higher-order smoothness in conjunction with acceleration mechanism

and adaptive step-size design.

Although the regret bound of O(LD3+D2σH T 3/2+Dσg T 5/2) seems counter-intuitive from an

online-learning perspective, we discuss how second-order smoothness leads to “faster” con-

version through more aggressive averaging compared to the result presented in Lemma 2.1.1.

As a matter of fact, we will continue our discussion with how second-order smoothness

helps us accelerate. It turns out that using (H-smooth), iterate averaging as in Eq.(2.18) and

compactness of X , we can bound the negative term as,

− 1

γt+1
∥X t+ 1

2
−X t∥2 ≤− 1

L2D2γt+1
t 4∥∇ f (X̄ t+ 1

2
)−F(X̄ t+ 1

2
; X̃ t )∥2

Observe that to seamlessly combine the positive and negative terms, our analysis enforces that

at =O(t 2) and bt =Ω(t 2). Then, the conversion implies a convergence rate of REGT(x∗)/T 3,

hence the recipe for acceleration. Therefore, the constant component of the regret amounts to

O(1/T 3) convergence rate, while the stochastic component of the regret implies O(σH /T 3/2 +
σg /

p
T ) rate, giving us the first universal acceleration beyond first-order smoothness.

Let us conclude by discussing the intricate relationship between the universal step-size and the

regret bounds. Simply put, growth of the summation in the denominator of γt is of the same

order as the regret bound. Under stochastic gradient and Hessian oracles, the regret bound is

of order O(T 5/2), and we can trivially show using variance bounds that the step-size is lower

bounded by O(T −5/2). On the other extreme, the regret bound described in Proposition 2.2.1 is

bounded by a constant under deterministic oracles, which implies that the summation in the

denominator of the step-size is in turn summable, i.e., the step-size has a positive, constant
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2.2 A First Approach to Noise-Adaptive Accelerated Second-Order Methods

lower bound. This adaptive behavior of our step-size enables automatic adaptation to noise

levels and thus the universal rates.

2.2.5 Experiments

In this section, we will present practical performance of EXTRA-NEWTON against a set of first-

order algorithms, e.g., GD, SGD, ADAGRAD [DHS11], ACCELEGRAD [LYC18], UNIXGRAD [Kav+19];

and second-order methods, e.g., NEWTON’S, Optimal Monteiro-Svaiter (OPTMS) [Car+22],

Cubic Regularization of Newton’s method (CRN) [NP06] and Accelerated CRN (ACRN) [Nes08]

for least squares and logistic regression problems over a LIBSVM datasets, a1a, a9a and w1a.

Our objective is three-folds. First, we compare the performance of our algorithm against

first-order methods for least-squares and logistic regression problems (Figure 2.4). Second,

we demonstrate the behavior of algorithm against first-order methods under stochastic ora-

cles (Figure 2.5). Finally, we want to understand how our algorithm compares against other

second-order methods and we test multiple algorithms for optimizing a regularized logistic

regression problem (Figure 2.6). Note that we consider the black-box oracle model in which

the algorithms only have access to gradient and Hessians without knowing the actual objective

function.

In the whole of Figure 2.4, the statement # of oracle calls on the x-axis counts any gradient

or Hessian computation as one oracle call. When the problem is suitable, second-order

methods show promising performance with truly superior run time. In Figure 2.4a and 2.4c,

we display the result for least squares setting under deterministic oracles using a1a, w1a

datasets from LibSVM. Second-order methods are known to be suitable for quadratic prob-

lems, and our method exploits its hybrid construction to converge faster than first-order

methods, (almost) matching the behavior of NEWTON’S. For the logistic regression problem in

Figure 2.4b and 2.4d, we regularize it with g (x) = 1/2∥x∥2, but use a very small regularization

constant to render the problem ill-conditioned, making things slightly more difficult for the

algorithms [MBR19; Mis21]. The difference between ours and the first-order methods is less

pronounced for this objective, but the faster sublinear rate is still observable especially in

Figure 2.4b.

Although we implement NEWTON’S with line-search, we actually observed a sporadic con-

vergence behavior; when the initial point is close to the solution it converges similarly to

EXTRA-NEWTON, in fact even faster, however when we initialize further away it doesn’t con-

verge. This non-convergent behavior has been known for NEWTON’S, even with line-search

present [JT16]. On the contrary, EXTRA-NEWTON consistently converges; even if we perturb

the initial step-size and make it adversarially large, it manages to recover due to its adaptive

construction. Next, we have the experiments under stochastic oracles in Figure 2.5. We com-

pute mini-batch gradient estimates with a batch-size of 50 samples. We plot the mean of

5 trials for all the methods under mini-batch gradients and also display the variance as the

shaded region around the mean curve. The x-axis displays the progress with respect to epochs
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(c) Least-squares, w1a
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(d) Logistic regression, w1a

Figure 2.4: Comparison of value convergence for regression problems with deterministic oracle access

such that one complete pass over the dataset denotes 1 epoch. In terms of performance in

the stochastic setting, our method does not offer a significant performance improvement

against the others but has faster convergence in the early iterations. ACCELEGRAD seem to

have the best performance overall, followed by our EXTRA-NEWTON. We essentially present

these results for two main reasons; to show that our method works seamlessly with stochastic

gradients without any modifications, and to demonstrate that EXTRA-NEWTON achieves the

O(1/
p

T ) rate (same as other methods we compare against) when the gradient information is

noisy.
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Figure 2.5: Comparison of value convergence for regression problems with stochastic oracle access

We complement our numerical tests by comparing EXTRA-NEWTON with a set of second-

order methods. To that end, we implemented our method within the framework presented

in [Car+22]. Using the implementation and the experimental setup provided in their GitHub

repository [Hau22], we implemented our method in their code and compared against NEW-

TON’S, CRN, ACRN and OPTMS algorithms. Figure 2.6 shows that EXTRA-NEWTON has

comparable performance to OPTMS, which has the theoretically faster rate O(1/T 7/2), and

marginally outperforms with respect to number of linear system solutions since the linesearch

procedure of OPTMS might require multiple system solutions per iteration. While CRN and

ACRN has worse convergence than EXTRA-NEWTON, NEWTON’S seems to have the fastest.

Note that the initialization favors NEWTON’S as it lies in a close neighborhood of the solution,

and NEWTON’S performance sporadically deteriorates when initialized arbitrarily. We observe

that the main advantage of our approach, and in general that of second-order methods, be-

comes apparent when the problem at hand has a compatible structure such as least-squares.

Intuitively, second-order methods should benefit when the cost of computing the Hessian is

comparable to gradient computation. In fact, quadratic problems like least-squares yield a

constant Hessian for any point in the domain, granting a significant advantage to second-order

methods. We exemplify this behavior for least-squares problem with deterministic oracles.
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(a) Value convergence w.r.t # Hessian oracle calls (b) Value convergence w.r.t. # linear system solutions

Figure 2.6: EXTRA-NEWTON vs. second-order methods. Logistic regression with a9a dataset

With w1a dataset, we couldn’t get Newton’s method to converge once again. On the contrary,

our method shows significant performance upgrade compared to first-order methods while

converging consistently in all our trials.

2.2.6 Conclusion

In this work, we present the first universal, second-order algorithm, FINEGRAD, which enjoys

the value convergence rate of O(σg /
p

T+σH /T 3/2+1/T 3). By extending the notion of bounded

variance on stochastic gradients to stochastic Hessian, we prove adaptation to the noise in first

and second-order oracles, simultaneously, while showing accelerated rates matching that of

Nesterov [Nes08] under the fully deterministic oracle model. To that end, an important open

question is whether we could design a method that achieves an improved rate interpolation

guarantee O(σg /
p

T +σH /T 3/2 +1/T 7/2) without depending on any line-search/bisection

mechanism. We defer this to a future work.
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2.3 APPENDIX: Proofs of Chapter 2

2.3.1 Proofs for Section 2.1

First, we discuss a generic scheme that enables us to relate our weighted regret bounds to

optimality gap, hence the convergence rate. Once again, note that our analysis borrows tools

and techniques from online learning literature and applies them to offline optimization setup.

In essence, our conversion scheme applies to a special setting, where the convex loss is fixed

across iterations. Let us give the respective Lemma and its proof.

Lemma 2.1.1. Consider weighted average X t+ 1
2

as in Eq. (2.6). Let REGT(x∗) =∑T
t=1αt 〈g t , X t+ 1

2
−x∗〉

denote the weighted regret after T iterations, αt = t and g t =∇ f (X̄ t+ 1
2

). Then,

f (X̄T+ 1
2

)− f (x∗) ≤ 2REGT(x∗)

T 2 .

Proof. Let’s define At =∑t
s=1αs . Then, by definition, we could express X t+ 1

2
as

X t+ 1
2
= At

αt
X̄ t+ 1

2
− At−1

αt
X̄ t− 1

2
. (2.20)

Then, use Eq. (2.29) and replace g t by ∇ f (X̄ t+ 1
2

) in the weighted regret expression, i.e.

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x∗〉 =

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

),
At

αt
X̄ t+ 1

2
− At−1

αt
X̄ t− 1

2
−x∗〉

=
T∑

t=1
αt 〈∇ f (X̄ t+ 1

2
),

At

αt

(
X̄ t+ 1

2
−x∗

)
− At−1

αt

(
X̄ t− 1

2
−x∗

)
〉

=
T∑

t=1
At 〈∇ f (X̄ t+ 1

2
), X̄ t+ 1

2
−x∗〉− At−1〈∇ f (X̄ t+ 1

2
), X̄ t− 1

2
−x∗〉

=
T∑

t=1
αt 〈∇ f (X̄ t+ 1

2
), X̄ t+ 1

2
−x∗〉+ At−1〈∇ f (X̄ t+ 1

2
), X̄ t+ 1

2
− X̄ t− 1

2
〉

≥
T∑

t=1
αt

(
f (X̄ t+ 1

2
)− f (x∗)

)
+ At−1

(
f (X̄ t+ 1

2
)− f (X̄ t− 1

2
)
)

=
T∑

t=1
At

(
f (X̄ t+ 1

2
)− f (x∗)

)
− At−1

(
f (X̄ t− 1

2
)− f (x∗)

)
= AT f (X̄T+ 1

2
)− f (x∗)

where we used gradient inequality in the last line. As the final step, we telescope the terms in

the summation and take α0 = 0 and A0 = 0. Finally, observe that AT ≥ T 2

2 ,

AT ( f (X̄T+ 1
2

)− f (x∗)) ≤
T∑

t=1
αt 〈∇ f (X̄ t+ 1

2
), X t+ 1

2
−x∗〉
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f (X̄T+ 1
2

)− f (x∗) = 1

AT

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x∗〉

f (X̄T+ 1
2

)− f (x∗) ≤ 2REGT(x∗)

T 2

■

As we have mentioned previously, for the weighted regret analysis in the non-smooth case, i.e.,

f is only G-Lipschitz, please observe that we do not exploit the precise definitions of g t and

Mt . As far as the regret analysis is concerned, their dual norm should be bounded. However,

we especially rely on the fact that g t =∇ f (X̄ t+ 1
2

) since it is necessary to obtain converge rates

from regret-like bounds using Lemma 2.1.1.

Let us bring up the following relation which we will require for the regret analysis of both

smooth and non-smooth objective.

Lemma 2.1.2. Let {ai }i=1,...,n be a sequence of non negative numbers. Then, it holds that√
n∑

i=1
ai ≤

n∑
i=1

ai√∑i
j=1 a j

≤ 2

√
n∑

i=1
ai .

Please refer to [LYC18; MS10] for the proof of Lemma 2.1.2, which is due to induction. We will

also make use of the following bound (due to Young’s Inequality)

αt∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥∗∥X t+ 1
2
−X t+1∥ = inf

ρ>0

{
ρ

2
∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗+
α2

t

2ρ
∥X t+ 1

2
−X t+1∥2

}
.

(2.21)

Next, we have the proof for the case of non-smooth, deterministic setting.

Theorem 2.1.1. Consider the constrained optimization setting in Problem (Prob), where f :

X → R is a proper, convex and G-Lipschitz function defined over compact, convex set X .

Let x∗ ∈ argminx∈X f (x), and define g t = ∇ f (X̄ t+ 1
2

), Mt = ∇ f (X̃ t ) where ∇ f (·) represents a

sub-gradient of the objective f at the query point. Then, Algorithm 2 guarantees

f (X̄T+ 1
2

)− f (x∗) ≤
7D

√
1+∑T

t=1α
2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗

T 2 ≤ 6D

T 2 + 14GDp
T

=O

(
D

T 2 + GDp
T

)
.

Proof.

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x∗〉

=
T∑

t=1
αt 〈∇ f (X̄ t+ 1

2
)−∇ f (X̃ t ), X t+ 1

2
−X t+1〉︸ ︷︷ ︸

(A)

+αt 〈∇ f (X̃ t ), X t+ 1
2
−X t+1〉︸ ︷︷ ︸

(B)

+αt 〈∇ f (X̄ t+ 1
2

), X t+1 −x∗〉︸ ︷︷ ︸
(C)

.
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Bounding (A)

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

)−∇ f (X̃ t ), X t+ 1
2
−X t+1〉

≤
T∑

t=1
αt∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥∗∥X t+ 1

2
−X t+1∥ (Hölder’s Inequality)

≤
T∑

t=1

ρ

2
∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗+
α2

t

2ρ
∥X t+ 1

2
−X t+1∥2 (Equation (2.21)).

By setting ρ =α2
tγt+1, we get the following upper bound for term (A),

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

)−∇ f (X̃ t ), X t+ 1
2
−X t+1〉

≤
T∑

t=1

α2
tγt+1

2
∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗+
1

2γt+1
∥X t+ 1

2
−X t+1∥2

Bounding (B)

T∑
t=1

αt 〈∇ f (X̃ t ), X t+ 1
2
−X t+1〉 ≤

T∑
t=1

1

γt
∇x Dh(X t+ 1

2
, X t )T (X t+1 −X t+ 1

2
) (Optimality for X t+ 1

2
)

=
T∑

t=1

1

γt

(
Dh(X t+1, X t )−Dh(X t+ 1

2
, X t )−Dh(X t+1, X t+ 1

2
)
)

.

Bounding (C)

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

), X t+1 −x∗〉 ≤
T∑

t=1

1

γt
∇x Dh(X t+1, X t )T (x∗−X t+1) (Optimality for X t+1)

=
T∑

t=1

1

γt

(
Dh(x∗, X t )−Dh(X t+1, X t )−Dh(x∗, X t+1)

)
.

Final Bound

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x∗〉

≤
T∑

t=1

α2
tγt+1

2
∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗+
1

2γt+1
∥X t+ 1

2
−X t+1∥2

+ 1

γt

(
Dh(x∗, X t )−Dh(x∗, X t+1)−Dh(X t+ 1

2
, X t )−Dh(X t+1, X t+ 1

2
)
)

≤
T∑

t=1

α2
tγt+1

2
∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗+
1

2γt+1
∥X t+ 1

2
−X t+1∥2

43



Chapter 2. Universal and robust optimization methods for convex minimization

+ 1

γt

(
Dh(x∗, X t )−Dh(x∗, X t+1)

)− 1

2γt

(
∥X t+ 1

2
−X t+1∥2 +∥X t+ 1

2
−X t∥2

)
≤

T∑
t=1

α2
tγt+1

2
∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗+
T−1∑
t=1

(
1

γt+1
− 1

γt

)
Dh(x∗, X t+1)

+ 1

2

T∑
t=1

(
1

γt+1
− 1

γt

)
∥X t+ 1

2
−X t+1∥2 + 1

γ1
D2

≤
T∑

t=1

α2
tγt+1

2
∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗+
1

2

T∑
t=1

(
1

γt+1
− 1

γt

)
∥X t+ 1

2
−X t+1∥2 + D2

γT
+ D

2

≤
T∑

t=1

α2
tγt+1

2
∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗+D2
(

2

γT+1
+ 1

γT

)
+ D

2

≤ D
T∑

t=1

α2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗√

1+∑t
s=1α

2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗

+ 3

2
D

√√√√1+
T∑

t=1
α2

t ∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥2∗+
D

2

≤ 7

2
D

√√√√1+
T∑

t=1
α2

t ∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥2∗−
D

2

≤ 3D +7GD

√√√√ T∑
t=1

α2
t

≤ 3D +7GDT 3/2.

We obtain the rate by applying Lemma 2.1.1 to the weighted regret bound above. ■

We now complement the previous result with the analysis in the non-smooth, stochastic

setting.

Theorem 2.1.2. Consider the optimization setting in Problem (Prob), where f is non-smooth,

convex and G-Lipschitz. Let {X t+ 1
2

}t=1,..,T be a sequence generated by Algorithm 2 such that

g t =∇ f (X̄ t+ 1
2

,ξt+ 1
2

), Mt =∇ f (X̃ t ,ξt ) and Assumptions in Eq. (2.4) and (2.5) hold. With αt = t

and step-size as in Eq. (2.7), it holds that

E
[

f (X̄T+ 1
2

)
]
− f (x∗) ≤ 6D

T 2 + 14GDp
T

=O

(
D

T 2 + GDp
T

)
.

Proof. Note that x∗ ∈ minx∈X f (x). We start with weighted regret bound,

REGT(x∗) =
T∑

t=1
αt 〈∇ f (X̄ t+ 1

2
), X t+ 1

2
−x∗〉.

We separate ∇ f (X̄ t+ 1
2

) =∇ f (X̄ t+ 1
2

,ξt+ 1
2

)+ (∇ f (X̄ t+ 1
2

)−∇ f (X̄ t+ 1
2

,ξt+ 1
2

)) and re-write the above

term as

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x∗〉
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=
T∑

t=1
αt 〈∇ f (X̄ t+ 1

2
,ξt+ 1

2
), X t+ 1

2
−x∗〉︸ ︷︷ ︸

(A)

+
T∑

t=1
αt 〈∇ f (X̄ t+ 1

2
)−∇ f (X̄ t+ 1

2
,ξt+ 1

2
), X t+ 1

2
−x∗〉︸ ︷︷ ︸

(B)

.

Due to unbiasedness of the gradient estimates, expected value ofαt 〈X t+ 1
2
−x∗,∇ f (X̄ t+ 1

2
)−∇ f (X̄ t+ 1

2
,ξt+ 1

2
)〉,

conditioned on the sigma-algebra σ(X̄ t+ 1
2

) = σ(ξ1,ξ1+1/2, ...,ξt− 1
2

,ξt ) evaluates to 0. We will

only need to bound the first summation whose analysis is identical to its deterministic coun-

terpart up to replacing ∇ f (X̄ t+ 1
2

) with ∇ f (X̄ t+ 1
2

,ξt+ 1
2

), and ∇ f (X̃ t ) with ∇ f (X̃ t ,ξt ). Hence,

term (A) is upper bounded by 6D +14GDT 3/2.

In addition to the setup in the deterministic setting, we put forth the assumption that stochas-

tic gradients have bounded norms, which is natural in the constrained optimization framework.

Using Lemma 2.1.1, we translate the regret bound into the convergence rate, i.e,

E
[

f (X̄T+ 1
2

)
]
−min

x∈X
f (x) ≤ 6D

T 2 + 14GDp
T

.

■

We will now introduce the L-smooth setting (see Eq. (2.2)). In the sequel, we provide the

weighted regret analysis for smooth functions in the presence of deterministic and stochastic

oracles and convert these bound into sub-optimality gap via our regret-to-rate scheme.

Theorem 2.1.3. Consider the constrained optimization setting in Problem (Prob), where f :

X → R is a proper, convex and L-smooth function defined over compact, convex set X . Let

x∗ ∈ minx∈X f (x). Then, Algorithm 2 run with g t = ∇ f (X̄ t+ 1
2

) and Mt = ∇ f (X̃ t ) ensures the

following

f (X̄T+ 1
2

)− f (x∗) ≤ 20
p

7D2L

T 2 =O

(
LD2

T 2

)
. (2.22)

Proof. Recall the regret analysis for the non-smooth, convex objective

REGT(x∗)

≤ 1

2

T∑
t=1

γt+1α
2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗+
1

γt+1
∥X t+ 1

2
−X t+1∥2

+
T∑

t=1

1

γt

(
Dh(x∗, X t )−Dh(x∗, X t+1)

)− 1

2γt

(
∥X t+ 1

2
−X t+1∥2 +∥X t+ 1

2
−X t∥2

)
≤ 1

2

T∑
t=1

γt+1α
2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗−
1

γt
∥X t+ 1

2
−X t∥2

+ 1

2

T∑
t=1

(
1

γt+1
− 1

γt

)
∥X t+ 1

2
−X t+1∥2 +

T−1∑
t=1

(
1

γt+1
− 1

γt

)
Dh(x∗, X t+1)+ D2

γ1

= 1

2

T∑
t=1

γt+1α
2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗−
1

γt+1
∥X t+ 1

2
−X t∥2 + 1

2

T∑
t=1

(
1

γt+1
− 1

γt

)
∥X t+ 1

2
−X t∥2
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+ 1

2

T∑
t=1

(
1

γt+1
− 1

γt

)
∥X t+ 1

2
−X t+1∥2 +

T−1∑
t=1

(
1

γt+1
− 1

γt

)
Dh(x∗, X t+1)+ D2

γ1

≤ 1

2

T∑
t=1

γt+1α
2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗−
1

2

T∑
t=1

1

γt+1
∥X t+ 1

2
−X t∥2 +D2

(
2

γT+1
+ 1

γT
+ 1

γ1

)
.

The key challenge in this analysis is to exploit the negative term, i.e., −1
2

∑T
t=1

1
γt+1

∥X t+ 1
2
−X t∥2,

such that we could tighten the regret bound from non-smooth analysis. Using the smoothness

of f and that αt = t , At =∑t
s=1αs , g t =∇ f X̄ t+ 1

2
and Mt =∇ f X̃ t

∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥2
∗ ≤

L2α2
t

A2
t

∥X t+ 1
2
−X t∥2

= 4L2t 2

t 2(t +1)2 ∥X t+ 1
2
−X t∥2

= 4L2

α2
t+1

∥X t+ 1
2
−X t∥2

≤ 4L2

α2
t

∥X t+ 1
2
−X t∥2.

Hence,

− 1

γt+1
∥X t+ 1

2
−X t∥2 ≤− α2

t

4L2γt+1
∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗.

After applying this upper bound and regrouping the terms we have

REGT(x∗) ≤ 1

2

T∑
t=1

(
γt+1 − 1

4L2γt+1

)
α2

t ∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥2
∗+D2

(
2

γT+1
+ 1

γT
+ 1

γ1

)
.

Define that τ∗ = max
{

t ∈ {1, ...,T } : 1
γ2

t+1
≤ 7L2

}
such that ∀t > τ∗, γt+1 − 1

4L2γt+1
≤−3

4γt+1. We

can rewrite the above term as

REGT(x∗)

≤ 1

2

τ∗∑
t=1

(
γt+1 − 1

4L2γt+1

)
α2

t ∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥2
∗+

D2

γ1

+ 1

2

T∑
t=τ∗+1

(
γt+1 − 1

4L2γt+1

)
α2

t ∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥2
∗+

3D2

γT+1

≤ 1

2

τ∗∑
t=1

γt+1α
2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗+
D

2︸ ︷︷ ︸
(A)

+ 3D2

γT+1
− 3

4

T∑
t=τ∗+1

γt+1α
2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗︸ ︷︷ ︸
(B)

.
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Bounding (A). We will simply need to use the definition of τ∗ and Lemma 2.1.2

1

2

τ∗∑
t=1

γt+1α
2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗+
D

2
= D

τ∗∑
t=1

α2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗√

1+∑t
s=1α

2
s∥∇ f (X̄s+ 1

2
)−∇ f (X̃s)∥2∗

+ D

2

≤ 2D

√√√√1+
τ∗∑

t=1
α2

t ∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥2∗

= 4D2

γτ∗+1

≤ 4
p

7D2L.

Bounding (B).

(B) ≤ 3D

2


√√√√1+

T∑
t=1

α2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗−

T∑
t=τ∗+1

α2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗√

1+∑t
s=1α

2
s∥∇ f (X̄s+ 1

2
)−∇ f (X̃s)∥2∗


≤ 3D

2
+ 3D

2

 T∑
t=1

α2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗√

1+∑t
s=1α

2
s∥∇ f (X̄s+ 1

2
)−∇ f (X̃s)∥2∗

−
T∑

t=τ∗+1

α2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗√

1+∑t
s=1α

2
s∥∇ f (X̄s+ 1

2
)−∇ f (X̃s)∥2∗


≤ 3D

2
+ 3D

2

τ∗∑
t=1

α2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2∗√

1+∑t
s=1α

2
s∥∇ f (X̄s+ 1

2
)−∇ f (X̃s)∥2∗

≤ 3D

√√√√1+
τ∗∑

t=1
α2

s∥∇ f (X̄s+ 1
2

)−∇ f (X̃s)∥2∗

= 6D2

γτ∗+1

≤ 6
p

7D2L.

Final Bound. What remains is to simply bring the term (A) and (B) together.

REGT(x∗) ≤ 1

2

τ∗∑
t=1

γt+1α
2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗+
D

2
+ 3D2

γT+1
− 3

4

T∑
t=τ∗+1

γt+1α
2
t ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗

≤ 10
p

7D2L.

We conclude the proof by applying Lemma 2.1.1 and get f (X̄T+ 1
2

)− f (x∗) ≤ 20
p

7D2L
T 2 . ■

Finally, we are at a position to present convergence of Algorithm 2 in the smooth convex

minimization setting under stochastic oracle information.

Theorem 2.1.4. Consider the optimization setting in Problem (Prob), where f is L-smooth and

convex. Let {X t+ 1
2

}t=1,..,T be a sequence generated by Algorithm 2 such that g t =∇ f (X̄ t+ 1
2

,ξt+ 1
2

)
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and Mt =∇ f (X̃ t ,ξt ). With αt = t , x∗ = argminx∈X f (x) and learning rate as in (2.7), it holds

that

E
[

f (X̄T+ 1
2

)
]
− f (x∗) ≤ 224

p
14D2L

T 2 + 14
p

2σDp
T

=O

(
LD2

T 2 + σDp
T

)
.

Proof. We start out with weighted regret, the same way as in Theorem 2.1.2

T∑
t=1

αt 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x∗〉

≤
T∑

t=1
αt 〈∇ f (X̄ t+ 1

2
,ξt+ 1

2
), X t+ 1

2
−x∗〉︸ ︷︷ ︸

(A)

+
T∑

t=1
αt 〈∇ f (X̄ t+ 1

2
)−∇ f (X̄ t+ 1

2
,ξt+ 1

2
), X t+ 1

2
−x∗〉︸ ︷︷ ︸

(B)

.

We already know that term (B) is zero in expectation conditioned onσ(X t+ 1
2

) =σ(ξ1,ξ1+1/2, ...,ξt− 1
2

,ξt ).

Following the proof steps of Theorem 2.1.2, we could upper bound term (A) as

≤ 1

2

T∑
t=1

γt+1α
2
t ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)−∇ f (X̃ t ,ξt )∥2

∗−
1

2

T∑
t=1

1

γt+1
∥X t+ 1

2
−X t∥2 +D2

(
3

γT+1
+ 1

γ1

)

= D

2
+D

T∑
t=1

α2
t ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)−∇ f (X̃ t ,ξt )∥2∗√

1+∑t
s=1α

2
s∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)−∇ f (X̃ t ,ξt )∥2∗

+ 3D

2

√√√√1+
T∑

t=1
α2

t ∥∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̃ t ,ξt )∥2∗−
T∑

t=1

∥X t+ 1
2
−X t∥2

2γt+1

≤ 7D

2

√√√√1+
T∑

t=1
α2

t ∥∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̃ t ,ξt )∥2∗−
1

2

T∑
t=1

1

γt+1
∥X t+ 1

2
−X t∥2.

Now lets denote,

B 2
t := min{∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗,∥∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̃ t ,ξt )∥2
∗},

as well as an auxiliary learning rate which we will only use for the analysis

ηt = 2D√
1+

t−1∑
s=1

α2
s B 2

s

. (2.23)

Clearly, for any t ∈ [T ] we have 1/ηt ≤ 1/γt , and therefore,

− 1

γt+1
∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗ ≤− 1

ηt+1
B 2

t . (2.24)

Recall the bounded variance assumption in Eq. (2.5) and let us define

ϵt+ 1
2
=∇ f (X̄ t+ 1

2
,ξt+ 1

2
)−∇ f (X̄ t+ 1

2
) and ϵt =∇ f (X̃ t ,ξt )−∇ f (X̃ t ).
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Hence, we use the shorthand notation,

∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̃ t ,ξt ) =∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )+ϵt+ 1
2
−ϵt .

Now, let us quantify the variance bound with respect to ϵt+ 1
2

and ϵt .

E
[
∥ϵt+ 1

2
−ϵt∥2

∗
]
≤ E

[
2∥ϵt+ 1

2
∥2 +2∥ϵt∥2

]
(2.25)

= E
[

2E
[
∥ϵt+ 1

2
∥2 |σ(X t+ 1

2
)
]
+2E

[∥ϵt∥2 |σ(X t )
]]≤ 4σ2. (2.26)

Using the above definitions we can write,

∥∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̃ t ,ξt )∥2
∗ ≤ 2∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗+2∥ϵt+ 1
2
−ϵt∥2

∗. (2.27)

Thus,

∥∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̃ t ,ξt )∥2
∗

= B 2
t +

(
∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)−∇ f (X̃ t ,ξt )∥2

∗−min{∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥2
∗,∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)−∇ f (X̃ t ,ξt )∥2

∗}
)

= B 2
t +max{0,∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)−∇ f (X̃ t ,ξt )∥2

∗−∥∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )∥2
∗}

≤ 2B 2
t +2∥ϵt+ 1

2
−ϵt∥2

∗.

To explain how we obtain the last inequality, consider the following,

∥∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̃ t ,ξt )∥2
∗ ≥ ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗ =⇒ B 2
t = ∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗.

Also, Eq. (2.27) implies that,

∥∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̃ t ,ξt )∥2
∗−∥∇ f (X̄ t+ 1

2
)−∇ f (X̃ t )∥2

∗ ≤ B 2
t +2∥ϵt+ 1

2
−ϵt∥2

∗,

and we obtain the last line. In the other case with ∥∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̃ t ,ξt )∥2∗ ≤ ∥∇ f (X̄ t+ 1
2

)−
∇ f (X̃ t )∥2∗, we have Bt = ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)−∇ f (X̃ t ,ξt )∥2∗ and the last line hold with strict in-

equality. We will take conditional expectation after we simplify the expression. Now, we plug

Eq. (2.24) and (2.27) into above bound,

≤ 7D

2

√√√√1+2
T∑

t=1
α2

t B 2
t +α2

t ∥ϵt+ 1
2
−ϵt∥2∗−

1

2

T∑
t=1

1

4L2ηt+1
α2

t B 2
t

≤ 7Dp
2

√√√√ T∑
t=1

α2
t ∥ϵt+ 1

2
−ϵt∥2∗+

7D

2

√√√√1+2
T∑

t=1
α2

t B 2
t −

1

2

T∑
t=1

1

4L2ηt+1
α2

t B 2
t

≤ 7D

2
+ 7Dp

2

√√√√ T∑
t=1

α2
t ∥ϵt+ 1

2
−ϵt∥2∗+7D

T∑
t=1

α2
t B 2

t√
1+2

∑t
s=1α

2
s B 2

s

− 1

2

T∑
t=1

1

4L2ηt+1
α2

t B 2
t (Lem 2.1.2)
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≤ 7D

2
+ 7Dp

2

√√√√ T∑
t=1

α2
t ∥ϵt+ 1

2
−ϵt∥2∗+7D

T∑
t=1

α2
t B 2

t√
1+∑t

s=1α
2
s B 2

s

− 1

2

T∑
t=1

1

4L2ηt+1
α2

t B 2
t

≤ 7

2

T∑
t=1

(
ηt+1 − 1

28L2ηt+1

)
α2

t B 2
t +

7D

2︸ ︷︷ ︸
(A)

+ 7Dp
2

√√√√ T∑
t=1

α2
t ∥ϵt+ 1

2
−ϵt∥2∗︸ ︷︷ ︸

(B)

.

Bounding (A). We will make use of the exact same approach as we did in Theorem 2.1.3,

where we defined an auxiliary time variable τ∗ to characterize the behavior of the learning

rate.

Now, let us denote τ∗ = max
{

t ∈ {1, ...,T } : 1
η2

t+1
≤ 56L2

}
. It implies that

ηt+1 − 1

28L2ηt+1
≤−ηt+1, ∀t > τ∗. (2.28)

Then, we could proceed as

(A) = 7

2

τ∗∑
t=1

(
ηt+1 − 1

28L2ηt+1

)
α2

t B 2
t +

7

2

T∑
t=τ∗+1

(
ηt+1 − 1

28L2ηt+1

)
α2

t B 2
t +

7D

2

≤ 7

2

τ∗∑
t=1

ηt+1α
2
t B 2

t −
7

2

T∑
t=τ∗+1

ηt+1α
2
t B 2

t +
7D

2

≤ 7

2

τ∗∑
t=1

ηt+1α
2
t B 2

t +
7D

2

= 7D
τ∗∑

t=1

α2
t B 2

t√
1+∑t

s=1α
2
s B 2

s

+ 7D

2

≤ 14D

√√√√1+
τ∗∑

t=1
α2

t B 2
t

≤ 28D2

η̃τ∗+1

≤ 112
p

14D2L.

Bounding (B). Following bounded variance definition in Eq. (2.5), we can write E[∥ϵt+ 1
2
−

ϵt∥2∗] ≤ 4σ2. After taking expected value of the whole expression,

E

7Dp
2

√√√√ T∑
t=1

α2
t ∥ϵt+ 1

2
−ϵt∥2∗

≤ 7Dp
2

√√√√E

[
T∑

t=1
α2

t ∥ϵt+ 1
2
−ϵt∥2∗

]
(Jensen’s ineq.)

= 7Dp
2

√√√√ T∑
t=1

α2
t E

[
∥ϵt+ 1

2
−ϵt∥2∗

]
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≤ 7Dp
2

√√√√ T∑
t=1

4α2
tσ

2 (Eq. (2.25))

≤ 14Dσp
2

√
T 3

= 14σDT 3/2

p
2

.

Finally, we combine all these bounds together and feed them through Lemma 2.1.1 to obtain

the final rate.

E
[

f (X̄T+ 1
2

)
]
− f (x∗) ≤ 224

p
14D2L

T 2 + 14
p

2σDp
T

.

■
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2.3.2 Proofs for Section 2.2

This section is dedicated for the proofs of Lemma and Theorems in Section 2.2. We being

with the generalized online-to-batch conversion scheme which connects the optimality gap

f (X̄T+ 1
2

)− f (x∗) with the "weighted" regret REGT(x∗) =∑T
t=1 at 〈∇ f (X̄ t+ 1

2
), X t+ 1

2
−x∗〉. This is

a generalization of Lemma 2.1.1 and the proof follows the same arguments.

Theorem 2.2.3. Let REGT(x∗) denote the anytime regret for the decision sequence {X t+ 1
2

}T
t=1 as

in (Reg), and define two sequences of non-decreasing weights at and bt such that at ,bt ≥ 1. As

long as at /bt is ensured to be non-increasing,

f (X̄T+ 1
2

)− f (x∗) ≤ REGT(x∗)

aT
BT
bT

Proof. First, recall the definition of the offline regret:

REGT(x∗) =
T∑

t=1
at 〈∇ f (X̄ t+ 1

2
, X t+ 1

2
−x∗〉

Devising our analysis in the spirit of [Cut19; Kav+19], we need to relate X t+ 1
2

to the average

iterate X̄ t+ 1
2

in order to exploit the convexity of the objective function. Notice that we could

write the iterate X t+ 1
2

as the difference of consecutive average iterates,

at X t+ 1
2
= at

Bt

bt
X̄ t+ 1

2
−at

Bt−1

bt
X̄ t− 1

2
. (2.29)

Also, we could subsequently express at x∗ = at
Bt
bt

x∗−at
Bt−1

bt
x∗. Combining them together,

REGT(x∗) =
T∑

t=1
at 〈∇ f (X̄ t+ 1

2
, X t+ 1

2
−x∗〉

=
T∑

t=1
at

Bt

bt
〈∇ f (X̄ t+ 1

2
), X̄ t+ 1

2
−x∗〉−at

Bt−1

bt
〈∇ f (X̄ t+ 1

2
, X̄ t− 1

2
−x∗〉

=
T∑

t=1
at 〈∇ f (X̄ t+ 1

2
), X̄ t+ 1

2
−x∗〉+at

Bt−1

bt
〈∇ f (X̄ t+ 1

2
), X̄ t+ 1

2
− X̄ t− 1

2
〉

where we added and subtracted at
Bt−1

bt
〈∇ f (X̄ t+ 1

2
), X̄ t+ 1

2
〉 to obtain the second equality. Having

expressed both inner products in the form we want, we could apply convexity and telescope.

T∑
t=1

at 〈∇ f (X̄ t+ 1
2

, X t+ 1
2
−x∗〉

≥
T∑

t=1
at

(
f (X̄ t+ 1

2
)− f (x∗)

)
+at

Bt−1

bt

(
f (X̄ t+ 1

2
)− f (X̄ t− 1

2
)
)
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=
T∑

t=1
at

(
f (X̄ t+ 1

2
)− f (x∗)

)
+at

Bt−1

bt

(
f (X̄ t+ 1

2
)− f (x∗)

)
−at

Bt−1

bt

(
f (X̄ t− 1

2
)− f (x∗)

)
=

T∑
t=1

at
Bt

bt

(
f (X̄ t+ 1

2
)− f (x∗)

)
−at

Bt−1

bt

(
f (X̄ t− 1

2
)− f (x∗)

)
= aT

BT

bT

(
f (X̄T+ 1

2
)− f (x∗)

)
−a1

B0

b1

(
f (X̄−1/2)− f (x∗)

)+T−1∑
t=1

Bt

(
at

bt
− at+1

bt+1

)(
f (X̄ t+ 1

2
)− f (x∗)

)
Setting B0 = 0 eliminates the second term. To conclude the proof, we need to show that the

summation term in the above expression is always non-negative. This is ensured when the

sequence at
bt

is monotonically non-increasing, which is specified in the theorem statement

(and subsequently satisfied by the algorithms). Hence,

T∑
t=1

at 〈∇ f (X̄ t+ 1
2

, X t+ 1
2
−x∗〉

= aT
BT

bT

(
f (X̄T+ 1

2
)− f (x∗)

)
+

T−1∑
t=1

Bt

(
at

bt
− at+1

bt+1

)(
f (X̄ t+ 1

2
)− f (x∗)

)
≥ aT

BT

bT

(
f (X̄T+ 1

2
)− f (x∗)

)
.

Rearranging the terms gives us the final result

f (X̄T+ 1
2

)− f (x∗) ≤
∑T

t=1 at 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x∗〉

aT
BT
bT

= REGT(x∗)

aT
BT
bT

.

■

As the next step, we will prove the template inequality in Proposition 2.2.1 in the case of

stochastic oracles. This inequality will give us the main departure point for both Theorem 2.2.1

and Theorem 2.2.2. We will prove a corollary of the following result later on, specifically for

the deterministic setup, which will follow the same steps as Proposition 2.2.1.

For ease of navigation, we present EXTRA-NEWTON once more.

EXTRA-NEWTON

Input: X1 ∈X , at = t 2 and At =∑t
s=1 as , bt = t p (p ≥ 2) and Bt =∑t

s=1 bs , γ> 0, ξt ∼ i.i.d.

1: for t = 1 to T do

2: γt = γ√
β0 +∑t−1

s=1 a2
s ∥∇ f (X̄s+ 1

2
,ξs+ 1

2
)− F̃(X̄s+ 1

2
; X̃s ,ξs)∥2

3: X t+ 1
2
= argminx∈X 〈at∇ f (X̃ t ,ξt ), x〉+ at bt

2Bt
〈∇2 f (X̃ t ,ξt )(x −X t ), x −X t 〉+ 1

2γt
∥x −X t∥2

4: X t+1 = argminx∈X 〈at∇ f (X̄ t+ 1
2

,ξt+ 1
2

), x〉+ 1
2γt

∥x −X t∥2

5: end for
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Proposition 2.2.1. Let {X t+ 1
2

}T
t=1 be generated by Algorithm 3, run with a non-increasing step-

size sequence γt and non-decreasing sequences of weights at ,bt ≥ 1 such that at /bt is also

non-increasing. Then, the following guarantee holds:

EREGT(x∗) ≤ 1

2
E

[
3D2

γT+1
+

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)− F̃(X̄ t+ 1

2
; X̃ t ,ξt )∥2 −

∥X t+ 1
2
−X t∥2

γt+1

]

Proof. We take off from the optimality conditions associated with each update sequence for

our explicit algorithm EXTRA-NEWTON (Algorithm 3). Optimality condition for X t+ 1
2

implies

for any z0 ∈X ,

〈at∇ f (X̃ t ,ξt )+at
bt

Bt
∇2 f (X̃ t ,ξt )(X t+ 1

2
−X t ), X t+ 1

2
− z0〉

= 〈at∇ f (X̃ t ,ξt )+at∇2 f (X̃ t ,ξt )(X̄ t+ 1
2
− X̃ t ), X t+ 1

2
− z0〉

= 〈at F̃(X̄ t+ 1
2

; X̃ t ,ξt ), X t+ 1
2
− z0〉

≤ 1

γt
〈X t+ 1

2
−X t , z0 −X t+ 1

2
〉

= 1

2γt

(
∥X t − z0∥2 −∥X t+ 1

2
− z0∥2 −∥X t+ 1

2
−X t∥2

)
(2.30)

Similarly, optimality of X t+1 update yields for any z1 ∈X ,

〈at∇ f (X̄ t+ 1
2

,ξt+ 1
2

), X t+1 − z1〉 ≤ 1

2γt
〈X t+1 −X t , z1 −X t+1〉

= 1

2γt

(∥X t − z1∥2 −∥X t+1 − z1∥2 −∥X t+1 −X t∥2) (2.31)

First, we will set z1 = x∗ to establish the telescoping summation over ∥X t −x∗∥2−∥X t+1 −x∗∥2.

Then, we will simply align the above expression with the regret as follows,

〈at∇ f (X̄ t+ 1
2

,ξt+ 1
2

), X t+ 1
2
−x⋆〉

= 〈at∇ f (X̄ t+ 1
2

,ξt+ 1
2

), X t+ 1
2
−X t+1〉+〈at∇ f (X̄ t+ 1

2
,ξt+ 1

2
), X t+1 −x⋆〉

≤ 〈at∇ f (X̄ t+ 1
2

,ξt+ 1
2

), X t+ 1
2
−X t+1〉

+ 1

2γt

(∥X t −x⋆∥2 −∥X t+1 −x⋆∥2 −∥X t+1 −X t∥2)
(2.32)

Now, observe that setting z0 = X t+1 in Eq. (2.30) and rearranging we have

− 1

2γt
∥X t+1 −X t∥2

≤−〈at F̃(X̄ t+ 1
2

; X̃ t ,ξt ), X t+ 1
2
−X t+1〉− 1

2γt

(
∥X t+ 1

2
−X t+1∥2 +∥X t+ 1

2
−X t∥2

)
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Plugging the above expression into Eq. (2.32) and summing over t = 1, ...,T , we will obtain,

T∑
t=1

〈at∇ f (X̄ t+ 1
2

,ξt+ 1
2

), X t+ 1
2
−x⋆〉

≤
T∑

t=1
at 〈∇ f (X̄ t+ 1

2
,ξt+ 1

2
)− F̃(X̄ t+ 1

2
; X̃ t ,ξt ), X t+ 1

2
−X t+1〉

+
T∑

t=1

1

2γt

(
∥X t −x⋆∥2 −∥X t+1 −x⋆∥2 −∥X t+ 1

2
−X t+1∥2 −∥X t+ 1

2
−X t∥2

)
First off, we bound the inner product term using Cauchy-Schwarz and a slight generalization

of Young’s inequality [RS13]

T∑
t=1

at 〈∇ f (X̄ t+ 1
2

,ξt+ 1
2

)− F̃(X̄ t+ 1
2

; X̃ t ,ξt ), X t+ 1
2
−X t+1〉

≤
T∑

t=1
at∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)− F̃(X̄ t+ 1

2
; X̃ t ,ξt )∥∥X t+ 1

2
−X t+1∥

≤ 1

2

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)− F̃(X̄ t+ 1

2
; X̃ t ,ξt )∥2 + 1

γt+1
∥X t+ 1

2
−X t+1∥2.

We merge the expressions together,

T∑
t=1

〈at∇ f (X̄ t+ 1
2

,ξt+ 1
2

), X t+ 1
2
−x⋆〉

≤ 1

2

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)− F̃(X̄ t+ 1

2
; X̃ t ,ξt )∥2 + 1

γt+1
∥X t+ 1

2
−X t+1∥2

+
T∑

t=1

1

2γt

(
∥X t −x⋆∥2 −∥X t+1 −x⋆∥2 −∥X t+ 1

2
−X t+1∥2 −∥X t+ 1

2
−X t∥2

)
It is important that we invoke generalized Young’s inequality with step-size at time t +1. Since

the step-size lags one iteration behind, γt does not include ∥∇ f (X̄ t+ 1
2

,ξt+ 1
2

)− F̃(X̄ t+ 1
2

; X̃ t ,ξt )∥2

and this would pose some problems in the later stages of the proof. Hence, we add/subtract
1

γt+1
∥X t+ 1

2
−X t∥2 and regroup the terms,

T∑
t=1

〈at∇ f (X̄ t+ 1
2

,ξt+ 1
2

), X t+ 1
2
−x⋆〉

≤ 1

2

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)− F̃(X̄ t+ 1

2
; X̃ t ,ξt )∥2 − 1

γt+1
∥X t+ 1

2
−X t∥2

+ 1

2

T∑
t=1

(
1

γt+1
− 1

γt

)(
∥X t+ 1

2
−X t+1∥2 +∥X t+ 1

2
−X t∥2

)
+ 1

2

T∑
t=1

1

γt

(∥X t −x⋆∥2 −∥X t+1 −x⋆∥2)
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≤ 1

2

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)− F̃(X̄ t+ 1

2
; X̃ t ,ξt )∥2 − 1

γt+1
∥X t+ 1

2
−X t∥2

+ ∥X1 −x∗∥2

2γ1
+ 1

2

T−1∑
t=1

(
1

γt+1
− 1

γt

)
∥X t+1 −x⋆∥2 +D2

T∑
t=1

(
1

γt+1
− 1

γt

)
≤ 3D2

2γT+1
+ 1

2

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)− F̃(X̄ t+ 1

2
; X̃ t ,ξt )∥2 − 1

2

T∑
t=1

1

γt+1
∥X t+ 1

2
−X t∥2

where we have rewritten the telescoping summation for ∥X t −x⋆∥2 −∥X t+1 −x⋆∥2 and used

that D2 = supx,y∈X ∥x − y∥2 (diameter of the constraint set) to obtain the second inequality.

The final line follows from telescoping the summations, plugging in the diameter D and

rearranging the resulting terms.

Now, what remains is to obtain the (expected) regret from
∑T

t=1〈at∇ f (X̄ t+ 1
2

,ξt+ 1
2

), X t+ 1
2
−

x⋆〉. Recall the definitions of Ft =σ(ξ1,ξ1+ 1
2

, · · · ,ξt ) and Ft+ 1
2
=σ(ξ1,ξ1+ 1

2
, · · · ,ξt ,ξt+ 1

2
) from

Table 2.2. Taking expectation over all randomness,

E

[
T∑

t=1
〈at∇ f (X̄ t+ 1

2
,ξt+ 1

2
), X t+ 1

2
−x⋆〉

]

= E
[

T∑
t=1

at 〈∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̄ t+ 1
2

), X t+ 1
2
−x⋆〉+at 〈∇ f (X̄ t+ 1

2
), X t+ 1

2
−x⋆〉

]

= E
[

T∑
t=1
E
[

at 〈∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̄ t+ 1
2

), X t+ 1
2
−x⋆〉 |Ft

]]

+E
[

T∑
t=1

at 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x⋆〉

]

= E
[

T∑
t=1

at 〈E
[
∇ f (X̄ t+ 1

2
,ξt+ 1

2
) |Ft

]
−∇ f (X̄ t+ 1

2
), X t+ 1

2
−x⋆〉

]

+E
[

T∑
t=1

at 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x⋆〉

]

= E
[

T∑
t=1

at 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x⋆〉

]

We used towering property of expectation (equivalently total law of expectation) to have the

second inequality, and the last line from the unbiasedness assumption of gradient oracles in

Eq. (2.14) such that E
[
∇ f (X̄ t+ 1

2
,ξt+ 1

2
) |Ft

]
=∇ f (X̄ t+ 1

2
). Hence, we obtain that

E
[

REGT(x∗)
]= E[

T∑
t=1

at 〈∇ f (X̄ t+ 1
2

), X t+ 1
2
−x⋆〉

]

= E
[

T∑
t=1

〈at∇ f (X̄ t+ 1
2

,ξt+ 1
2

), X t+ 1
2
−x⋆〉

]
,
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which concludes the target result,

E
[

REGT(x∗)
]≤ 1

2
E

[
3D2

γT+1
+

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)− F̃(X̄ t+ 1

2
; X̃ t ,ξt )∥2 −

∥X t+ 1
2
−X t∥2

γt+1

]

■

Theorem 2.2.2. Let {X t+ 1
2

}T
t=1 be a sequence generated by Algorithm 3, run with the adaptive

step-size policy (2) and at = t 2,bt = t p for p ≥ 2. Assume that f satisfies (H-smooth), and that

Assumptions (2.14) hold . Then, the following universal guarantee holds:

E
[

f (X̄T+ 1
2

)
]
− f (x∗) ≤O

 D2+γ2

γ σg
p

T
+

D3+Dγ2

γ σH

T 3/2
+

max
{

L D4+Dγ3

γ ,
√
β0

D2+γ2

γ

}
T 3



When γ= D, we obtain the target rate O

(
Dσgp

T
+ D2σH

T 3/2 + max
{

LD3,
p
β0D

}
T 3

)
.

Proof. We take Proposition 2.2.1 as our departure point for the analysis. After proving an

offline regret bound, we will use Theorem 2.2.3 to obtain the optimality gap from the regret

bound. Recall the template regret bound,

EREGT(x∗) ≤ 1

2
E

[
3D2

γT+1
+

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)− F̃(X̄ t+ 1

2
; X̃ t ,ξt )∥2 −

∥X t+ 1
2
−X t∥2

γt+1

]

Now, we want to unify the first two terms through numerical inequalities. We will write the

second term in terms of the first term. Due to Lemma 2.1.2, we can upper the bound second

term as,

1

2

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)− F̃(X̄ t+ 1

2
; X̃ t ,ξt )∥2

= γ

2

T∑
t=1

a2
t ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)− F̃(X̄ t+ 1

2
; X̃ t ,ξt )∥2√

β0 +∑t
s=1 a2

s ∥∇ f (X̄s+ 1
2

,ξs+ 1
2

)− F̃(X̄s+ 1
2

; X̃s ,ξs)∥2

≤ γ
√√√√β0 +

T∑
t=1

a2
t ∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)− F̃(X̄ t+ 1

2
; X̃ t ,ξt )∥2 − γ

2
√
β0

Plugging this back into the original expression gives us

E
[

REGT(x∗)
]≤ (

3D2

2γ
+γ

)√√√√β0 +
T∑

t=1
a2

t ∥∇ f (X̄ t+ 1
2

,ξs)− F̃(X̄ t+ 1
2

; X̃ t ,ξt )∥2 −
T∑

t=1

∥X t+ 1
2
−X t∥2

2γt+1

Next up, we will handle the negative term in the above expression. As we have discussed in

the main text, the key for faster rates beyond O(1/T 2) is understanding how to manipulate
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the negative term in the above expression. A crucial part of our analysis is understanding the

implications of second-order smoothness and how to unlock its potential. This next derivation

will demonstrate how (H-smooth) allows for a more aggressive gradient weighting and in turn

faster convergence rate implied by our generalized conversion technique. Next, we will relate

the negative term to the positive terms using smoothness and primal averaging, similar to the

approaches in [WA18; Kav+19].

−
∥X t+ 1

2
−X t∥2

γt+1
=− D2

D2γt+1
∥X t+ 1

2
−X t∥2

≤− 1

D2γt+1
∥X t+ 1

2
−X t∥4

=− 1

D2γt+1

B 4
t

b4
t

∥bt

Bt
X t+ 1

2
− bt

Bt
X t∥4

=− 1

D2γt+1

B 4
t

b4
t

∥
bt X t+ 1

2
+∑t−1

s=1 bs Xs+ 1
2

Bt
−

bt X t +∑t−1
s=1 bs Xs+ 1

2

Bt
∥4

=− 1

D2γt+1
c4t 4∥X̄ t+ 1

2
− X̃ t∥4

≤− 4c4t 4

L2D2γt+1
∥∇ f (X̄ t+ 1

2
)−F(X̄ t+ 1

2
; X̃ t )∥2

First, notice that for any sequence bt = O(t p ) with p ≥ 0, we have Bt = ∑t
s=1 bs = O(t p+1),

which implies Bt
bt

≤ ct , where c > 0 is an absolute constant depending on how bt is defined.

Then, we use the definitions of average sequences X̄ t+ 1
2

and X̃ t to go from ∥X t+ 1
2
−X t∥4 to

∥X̄ t+ 1
2
− X̃ t∥4 to obtain equalities 3-5, and apply smoothness to obtain the last line. On a

related note, we want to highlight the importance of optimistic weighted averaging that is

central for obtaining the above expression. Since the averaged pairs X̄ t+ 1
2

and X̃ t differ by only

the last element, we can seamlessly relate ∥X t+ 1
2
−X t∥ to ∥X̄ t+ 1

2
− X̃ t∥.

Now, we are at a position to explain how we will go beyond O(1/T 2) convergence rate, which

fundamentally depends on the gradient weights at and jointly relies on our generalized online-

to-batch conversion in Theorem 2.2.3. The negative term above is monotonically decreasing

(increases in magnitude) which is essential to (partially) control the growth of remaining

positive term. More specifically, one can notice that in order to align the summands of the

positive and negative term, the algebra dictates that we need to select at = O(t 2), which

implies bt =Ω(t 2). Notice that our averaging and weighting parameters grow at least O(t)

faster than the existing accelerated schemes for first-order smoothness, which grants the

improved O(1/T 3) rate. On the contrary, first-order smoothness would only allow t 2 factor

in front of the norm, leading to the slower rate. This is what we have observed precisely in

Section 2.1 with the conversion scheme in Lemma 2.1.1 and the choice of weighting factors in

the Theorem 2.1.3 and 2.1.4.

Due to (margin-wise) space constraints, we will use a slightly more compact notation for

certain expressions. Let us first define a shorthand notation for noise in gradient and Hessian
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evaluations, respectively.

ϵt = [∇ f (X̄ t+ 1
2

,ξt+ 1
2

)−∇ f (X̃ t ,ξt )]− [∇ f (X̄ t+ 1
2

)−∇ f (X̃ t )]

δt =∇2 f (X̃ t ,ξt )−∇2 f (X̃ t )
(2.33)

Then, we define following deterministic/stochastic placeholders:

∇t =∇ f (X̄ t+ 1
2

)−F(X̄ t+ 1
2

, X̃ t )

∇̃t =∇ f (X̄ t+ 1
2

,ξt+ 1
2

)− F̃(X̄ t+ 1
2

, X̃ t ,ξt ) =∇t +ϵt −δt (X̄ t+ 1
2
− X̃ t )

(2.34)

Setting at = t 2, combining all the terms and introducing the compact notation,

T∑
t=1

〈at∇ f (X̄ t+ 1
2

,ξt+ 1
2

), X t+ 1
2
−x⋆〉

≤
(

3D2

2γ
+γ

)√√√√β0 +
T∑

t=1
a2

t ∥∇̃t∥2 −
T∑

t=1

2c4

L2D2γt+1
a2

t ∥∇t∥2

Now, we describe how to relate ∥∇t∥2 and ∥∇̃t∥2 while treating the step-size γt+1 accordingly.

From the perspective of step-size, we need to find a relevant, if not matching, lower bound

for ∥∇t∥2 and ∥∇̃t∥2. Indeed, we follow the ideas presented in the proof of Theorem 2.1.4, and

begin by (trivially) lower bounding both terms with the same expression,

∥∇̃t∥2 ≥ min
{∥∇̃t∥2,∥∇t∥2}

∥∇t∥2 ≥ min
{∥∇̃t∥2,∥∇t∥2} (2.35)

Now, we will decompose ∥∇̃t∥2 into ∥∇t∥2 and the noise terms. Using the definitions in

Eq. (2.33) and (2.34) and applying triangular inequality with quadratic expansion,

∥∇̃t∥2 ≤ 2∥∇t∥2 +4∥δt (X̄ t+ 1
2
− X̃ t )∥2 +4∥ϵt∥2 (2.36)

We can also have the following trivial upper bound,

∥∇̃t∥2 ≤ 2∥∇̃t∥2

≤ 2∥∇̃t∥2 +4∥δt (X̄ t+ 1
2
− X̃ t )∥2 +4∥ϵt∥2 (2.37)

We simplify Eq. (2.36) and Eq. (2.37) using the same arguments in Theorem 2.1.4; if ∥∇t∥2 ≤
∥∇̃t∥2, then Eq. (2.36) is tighter, otherwise Eq. (2.37) is tighter. Hence, we could select the

minimum of ∥∇t∥2 and ∥∇̃t∥:

∥∇̃t∥2 ≤ 2min
{∥∇̃t∥2,∥∇t∥2}+4∥δt (X̄ t+ 1

2
− X̃ t )∥2 +4∥ϵt∥2 (2.38)
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Using this intuition, we can construct a variable ηt that always upper bounds the step-size.

ηt = γ√
β0 +∑t−1

s=1 a2
s min

{∥∇̃s∥2,∥∇s∥2
} (2.39)

It is immediate that γt ≤ ηt . Essentially, we will replace the terms ∥∇t∥2 and ∥∇̃t∥2 with

min
{∥∇̃t∥2,∥∇t∥2

}
, ∥δt (X̄ t+ 1

2
− X̃ t )∥2 and ∥ϵt∥2.

E
[

REGT(x∗)
]

≤ E
[

3D2 +2γ2

2γ

√√√√β0 +
T∑

t=1
a2

t ∥∇̃t∥2 −
T∑

t=1

2c4

L2D2γt+1
a2

t ∥∇t∥2

]

≤ E
[

3D2 +2γ2

2γ

√√√√β0 +
T∑

t=1
2a2

t min
{∥∇̃t∥2,∥∇t∥2

}+4a2
t ∥δt (X̄ t+ 1

2
− X̃ t )∥2 +4a2

t ∥ϵt∥2

−
T∑

t=1

2c4

L2D2ηt+1
a2

t min
{∥∇̃t∥2,∥∇t∥2}]

≤ E
[

3D2 +2γ2

p
2γ

√√√√β0 +
T∑

t=1
a2

t min
{∥∇̃t∥2,∥∇t∥2

}− T∑
t=1

2c4a2
t

L2D2ηt+1
min

{∥∇̃t∥2,∥∇t∥2}

+2

(
3D2

2γ
+γ

)√√√√ T∑
t=1

a2
t ∥δt (X̄ t+ 1

2
− X̃ t )∥2 +2

(
3D2

2γ
+γ

)√√√√ T∑
t=1

a2
t ∥ϵt∥2

]

≤ E
[

3D2 +2γ2

p
2γ2

(
γ
√
β0 +

T∑
t=1

ηt+1a2
t min

{∥∇̃t∥2,∥∇t∥2})− T∑
t=1

2c4a2
t

L2D2ηt+1
min

{∥∇̃t∥2,∥∇t∥2}
+2

(
3D2

2γ
+γ

)√√√√ T∑
t=1

a2
t ∥δt (X̄ t+ 1

2
− X̃ t )∥2 +2

(
3D2

2γ
+γ

)√√√√ T∑
t=1

a2
t ∥ϵt∥2

]

≤ 3D2 +2γ2

p
2γ

√
β0 +E

[
T∑

t=1

(
3D2 +2γ2

p
2γ2

− 2c4

L2D2η2
t+1

)
ηt+1a2

t min
{∥∇̃t∥2,∥∇t∥2}

+2

(
3D2

2γ
+γ

)√√√√ T∑
t=1

a2
t ∥δt (X̄ t+ 1

2
− X̃ t )∥2 +2

(
3D2

2γ
+γ

)√√√√ T∑
t=1

a2
t ∥ϵt∥2

]

Next, we will simplify the first summation and eventually show that it has a finite, constant

upper bound. First off, notice that
(

3D2+2γ2
p

2γ2 − 2c4

L2D2η2
t+1

)
is a decreasing quantity and we are

interested in the time point at which it changes signs. Let us define,

T0 = max

{
t ∈Z |

(
3D2 +2γ2

p
2γ2

− 2c4

L2D2η2
t+1

)
≥ 0

}
.
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This immediately implies that for any t ≤ T0,

1

ηt+1
≤ LD

√
3D2 +2γ2

23/4γc2
. (2.40)

There is a critical cut-off point for the possible values of T0 depending on the value of β0.

When the initial step-size is small enough, i.e., β0 is too large, then T0 < 0. This occurs when

β0 ≥ L2D2(3D2+2η2)
23/2η2c4 , which implies,

E

[
T∑

t=1

(
3D2 +2γ2

p
2γ2

− 2c4

L2D2η2
t+1

)
ηt+1a2

t min
{∥∇̃t∥2,∥∇t∥2}]

≤ 0

We get the same bound when T0 = 0. For any other value of T0, i.e., T0 > 0, observe that the

way we define T0 enables us to upper bound the summation up to T , with the summation up

to T0. Hence,

3D2 +2γ2

p
2γ

√
β0 +E

[
T∑

t=1

(
3D2 +2γ2

p
2γ2

− 2c4

L2D2η2
t+1

)
ηt+1a2

t min
{∥∇̃t∥2,∥∇t∥2}]

≤ 3D2 +2γ2

p
2γ

√
β0 +E

[
T0∑

t=1

(
3D2 +2γ2

p
2γ2

− 2c4

L2D2η2
t+1

)
ηt+1a2

t min
{∥∇̃t∥2,∥∇t∥2}]

≤ 3D2 +2γ2

p
2γ

√
β0 + 3D2 +2γ2

p
2γ

T0∑
t=1

a2
t min

{∥∇̃t∥2,∥∇t∥2
}√

β0 +∑t−1
s=1 a2

s min
{∥∇̃s∥2,∥∇s∥2

}
≤ 3

p
2D2 +2

p
2γ2

γ

√√√√β0 +
T0∑

t=1
a2

t min
{∥∇̃t∥2,∥∇t∥2

}
=

(
3
p

2D2 +2
p

2γ2
) 1

λT0+1

≤ LD
(
3D2 +2γ2

)3/2

21/4γc2

To make sure we incorporate the effect of the initial step-size, we combine the bounds to get

3D2 +2γ2

p
2γ

√
β0 +E

[
T∑

t=1

(
3D2 +2γ2

p
2γ2

− 2c4

L2D2η2
t+1

)
ηt+1a2

t min
{∥∇̃t∥2,∥∇t∥2}]

≤ 3D2 +2η2

21/4η
max

{√
β0

21/4
,

LD
√

3D2 +2η2

c2

}

This gives us the constant part of the regret, which will lead to the O(1/T 3) part of the conver-

gence rate. Now, what remains is to handle the “stochasticity”. We will bound the remaining

stochastic terms with respect to the stochastic gradient and the stochastic Hessian. Plugging

the expected regret in to the bound and combining all the expressions together,

E
[

REGT(x∗)
]
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≤ 3D2 +2γ2

γ
E


√√√√ T∑

t=1
a2

t ∥δt (X̄ t+ 1
2
− X̃ t )∥2 +

√√√√ T∑
t=1

a2
t ∥ϵt∥2

+ 3D2 +2γ2

21/4γ
max

{√
β0

21/4
,

LD
√

3D2 +2γ2

c2

}

≤ 3D2 +2γ2

21/4γ
max

{√
β0

21/4
,

LD
√

3D2 +2γ2

c2

}
+ 3D2 +2γ2

γ


√√√√ T∑

t=1
E
[

a2
t ∥δt∥2∥(X̄ t+ 1

2
− X̃ t )∥2

]
+ 3D2 +2γ2

γ

√√√√ T∑
t=1
E
[

a2
t [∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)−∇ f (X̄ t+ 1

2
)∥2 +∥∇ f (X̃ t ,ξt )−∇ f (X̃ t )∥2]

]

= 3D2 +2γ2

21/4γ
max

{√
β0

21/4
,

LD
√

3D2 +2γ2

c2

}
+ 3D2 +2γ2

γ

√√√√D2
T∑

t=1
E

[
a2

t

b2
t

B 2
t

E
[∥δt∥2 |Ft

]]

+ 3D2 +2γ2

γ

√√√√ T∑
t=1

a2
t E

[
E
[
∥∇ f (X̄ t+ 1

2
,ξt+ 1

2
)−∇ f (X̄ t+ 1

2
)∥2 |Ft

]
+E

[
∥∇ f (X̃ t ,ξt )−∇ f (X̃ t )∥2 |Ft− 1

2

]]

≤ 3D2 +2γ2

γ


√√√√D2σ2

H

T∑
t=1

a2
t

b2
t

B 2
t

+
√√√√4σ2

g

T∑
t=1

a2
t

+ 3D2 +2γ2

21/4γ
max

{√
β0

21/4
,

LD
√

3D2 +2γ2

c2

}

≤ 3D2 +2γ2

γ


√√√√D2σ2

H

c2

T∑
t=1

at +2σg T 5/2

+ 3D2 +2γ2

21/4γ
max

{√
β0

21/4
,

LD
√

3D2 +2γ2

c2

}

≤ 3D2 +2γ2

21/4γ
max

{√
β0

21/4
,

LD
√

3D2 +2γ2

c2

}
+ 3D3 +2Dγ2

cγ
σH T 3/2 + 6D2 +4γ2

γ
σg T 5/2

Before concluding the convergence proof, we would like to have a quick detour on the value

of c. The value of c is roughly between [1/p,1], where p is the exponent of the averaging

weight, bt = t p . For instance, when we pick bt = t 2, we have t 3/3 ≤ Bt ≤ t 3; and when bt = t 3,

t 4/4 ≤ Bt ≤ t 4. Hence, we can avoid its effect in the final bound. Running the above expression

through Theorem 2.2.3 and taking the full expectation we obtain,

E
[

f (X̄T+ 1
2

)
]
− f (x∗) ≤O

 D2+γ2

γ σg
p

T
+

D3+Dγ2

γ σH

T 3/2
+

max
{

L D4+Dγ3

γ ,
√
β0

D2+γ2

γ

}
T 3


■

Having established the main components of our analysis in the more general case of stochastic

minimization, we will provide the analysis of the implicit algorithm (Implicit) under determin-

istic oracles. To do so, we will first start with a corollary result based on Proposition 2.2.1 that

essentially proves the same template inequality under deterministic oracle model. In fact, one

could easily show that Proposition 2.2.1 holds exactly up to replacing stochastic evaluations

∇ f (·) and F̃(·; ·) with ∇ f (·) and F(·; ·). For completeness, we will formalize the aforementioned

result in Proposition 2.3.1 which follows the same steps as the proof of Proposition 2.2.1.

Proposition 2.3.1. Let {X t+ 1
2

}T
t=1 be generated by (Implicit), run with a non-increasing step-
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size sequence γt and non-decreasing sequences of weights at ,bt ≥ 1 such that at /bt is also

non-increasing. Then, the following guarantee holds:

REGT(x∗) ≤ 1

2

(
3D2

γT+1
+

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
)−F(X̄ t+ 1

2
; X̃ t )∥2 −

∥X t+ 1
2
−X t∥2

γt+1

)
.

Proof. The proof of this theorem is analogous to that of Proposition 2.2.1 in Section ??, up to

replacing the stochastic feedback with the deterministic oracle calls. ■

Theorem 2.2.1. Let {X t+ 1
2

}T
t=1 be a sequence generated by (Implicit), run with the adaptive

step-size policy (2.19) where at = t 2, bt = t 3. Assume that f satisfies (H-smooth) and denote

the diameter of the set as D. Then, the following guarantee holds:

f (X̄T+ 1
2

)− f (x∗) ≤O

max
{√

β0
D2

γ ,L D4+Dγ3

γ

}
T 3



When γ= D, we obtain the converge rate O

(
max

{
LD3,

p
β0D

}
T 3

)
.

Proof. We will initiate our proof at template regret inequality as we proved in Proposition 2.3.1.

Our overall strategy is straightforward; we first prove a constant upper bound for the of-

fline weighted regret, then make use of the conversion result in Theorem 2.2.3 to obtain a

convergence rate of order O(1/T 3).

Due to Proposition 2.3.1 we have,

REGT(x∗) ≤ 1

2

(
3D2

γT+1
+

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
)−F(X̄ t+ 1

2
; X̃ t )∥2 −

∥X t+ 1
2
−X t∥2

γt+1

)

We will merge the first two terms and express the first term in the form of the second one using

Lemma 2.1.2. Observe that for the proof of Theorem 2.2.2, we did the opposite and converted

the summation into the form of the first term, 3D2

2γ .

REGT(x∗)

≤ 3D2

2γ

√√√√β0 +
T∑

t=1
a2

t ∥∇ f (X̄ t+ 1
2

)−F(X̄ t+ 1
2

; X̃ t )∥2

+ 1

2

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
)−F(X̄ t+ 1

2
; X̃ t )∥2 −

∥X t+ 1
2
−X t∥2

γt+1

≤ 3D2
√
β0

2γ
+ 3D2

2γ

T∑
t=1

a2
t ∥∇ f (X̄ t+ 1

2
)−F(X̄ t+ 1

2
; X̃ t )∥2√

β0 +∑t
s=1 a2

s ∥∇ f (X̄s+ 1
2

)−F(X̄s+ 1
2

; X̃s)∥2
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+ 1

2

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
)−F(X̄ t+ 1

2
; X̃ t )∥2 −

∥X t+ 1
2
−X t∥2

γt+1

= 3D2
√
β0

2γ
+ 3D2

2γ2

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
)−F(X̄ t+ 1

2
; X̃ t )∥2

+ 1

2

T∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
)−F(X̄ t+ 1

2
; X̃ t )∥2 −

∥X t+ 1
2
−X t∥2

γt+1

= 3D2
√
β0

2γ
+ 1

2

T∑
t=1

3D2 +γ2

γ2 γt+1a2
t ∥∇ f (X̄ t+ 1

2
)−F(X̄ t+ 1

2
; X̃ t )∥2 −

∥X t+ 1
2
−X t∥2

γt+1
,

where we obtain the second inequality due to Lemma 2.1.2 and the last two lines follow from

the definition of the step-size in Eq. (2.19) and appropriate regrouping. Similar to the proof

in the explicit algorithm, we upper bound the negative term using appropriate averaging

constants and smoothness.

−
∥X t+ 1

2
−X t∥2

γt+1
≤− 4c4

L2D2γt+1
t 4∥∇ f (X̄ t+ 1

2
)−F(X̄ t+ 1

2
; X̃ t )∥2

Setting at = t 2, plugging the bound on the negative term into the original expression we have,

≤ 3D2
√
β0

2γ
+ 1

2

T∑
t=1

(
3D2 +γ2

γ2 − 4c4

L2D2γ2
t+1

)
γt+1a2

t ∥∇ f (X̄ t+ 1
2

)−F(X̄ t+ 1
2

; X̃ t )∥2 (2.41)

Our main objective is to show that the above summation is summable so we could show

the constant upper bound for the offline regret, hence the acceleration. First off, notice that(
3D2+γ2

γ2 − 4c4

L2D2γ2
t+1

)
is a non-increasing quantity and we are interested in the time point at

which this quantity becomes negative. For that reason, we define the following time point,

T0 = max

{
t ∈Z |

(
3D2 +γ2

γ2 − 4c4

L2D2γ2
t+1

)
≥ 0

}
.

This immediately implies that for any t ≤ T0,

1

γt+1
≤ LD

√
3D2 +γ2

2γc2 . (2.42)

To paint a complete picture, we would like to have a brief discussion on the possible values for

T0.

1. T0 ≤ 0 implies that the step-size is small enough from the very beginning and that the

summation term in Eq. (2.41) is always bounded by a constant, which immediately implies

constant regret and O(1/T 3) rate.

2. T0 =∞ implies that the step-size is always lower bounded by the inverse of the constant on

the right-hand side of Eq.(2.42). This is equivalent to saying
∑∞

t=1 a2
t ∥∇ f (X̄ t+ 1

2
)−F(X̄ t+ 1

2
; X̃ t )∥2 ≤
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C for some constant C , which in turn ensures that the summation in Eq. (2.41) is summable.

Once again, we will have the constant regret and O(1/T 3) rate.

3. When T0 is a finite positive integer, we can upper bound the summation in Eq. (2.41) with

the same summation up to iteration T0. Note that it is not important whether T is larger or

smaller than T0, as the summands change sign and become negative after T0.

Same as in the proof of EXTRA-NEWTON, we need to understand the effect of the initial step-

size choice due to β0. Imagine the case
√
β0 ≥ LD

p
3D2+γ2

2γc2 . This implies that T0 < 0 and that

the step-size is already small enough to make the summation negative from the first step

onwards. In that scenario, the condition in Eq. (2.42) doesn’t hold so we should consider the

effect of this initial setup for the final bound. For the case when T0 > 0, we can safely unify

all the 3 cases above and simply upper bound the expression in Eq. (2.41) by rewriting the

summation up to T0. Therefore,

≤ 3D2
√
β0

2γ
+ 1

2

T∑
t=1

(
3D2 +γ2

γ2 − 4c4

L2D2γ2
t+1

)
γt+1a2

t ∥∇ f (X̄ t+ 1
2

)−F(X̄ t+ 1
2

; X̃ t )∥2

≤ 3D2 +γ2

2γ

√
β0 + 3D2 +γ2

2γ2

T0∑
t=1

γt+1a2
t ∥∇ f (X̄ t+ 1

2
)−F(X̄ t+ 1

2
; X̃ t )∥2

= 3D2 +γ2

2γ

√
β0 + 3D2 +γ2

2γ

T0∑
t=1

a2
t ∥∇ f (X̄ t+ 1

2
)−F(X̄ t+ 1

2
; X̃ t )∥2√

β0 +∑t
s=1 a2

s ∥∇ f (X̄s+ 1
2

)−F(X̄s+ 1
2

; X̃s)∥2

≤ 3D2 +γ2

γ

√√√√β0 +
T0∑

t=1
a2

t ∥∇ f (X̄ t+ 1
2

)−F(X̄ t+ 1
2

; X̃ t )∥2

= (
3D2 +γ2) 1

γT0+1

≤ LD
(
3D2 +γ2

)3/2

2γc2

We combine the case for T0 < 0 with the one above to established the constant regret bound

REGT(x∗) ≤O

(
max

{√
β0

D2

γ
,L

D4 +Dγ3

γ

})
Plugging this result in its place we obtain the convergence rate,

f (X̄T+ 1
2

)− f (x∗) ≤O

max
{√

β0
D2

γ ,L D4+Dγ3

γ

}
T 3


■
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3 Adaptive methods and variance re-
duction for smooth, non-convex
optimization

3.1 High Probability Bounds for a Class of AdaGrad-type Non-convex

Algorithms

3.1.1 Bibliographic Note

This section (Section 3.1) is based on the published work Kavis, Levy, and Cevher [KLC22],

published in the ICLR 2022 conference.

Author list of the published work.

• Ali Kavis

• Kfir Y. Levy

• Volkan Cevher

Description of contributions. The candidate and Kfir Y. Levy jointly proved an earlier version

of Theorem 3.1.2 for which Kfir Y. Levy proposed to use the alternative approach in Eq. (3.9)

by assuming bounded function values. The candidate removed the restrictive bounded ob-

jective value assumption (due to Proposition 3.1.2) and obtained the final version of the

results in Theorem 3.1.2. The candidate further extended the proof technique for Algorithm 5

(Theorem 3.1.4) and proved the noise-adaptive rates under sub-Gaussian noise model (Propo-

sition 3.1.3 and Theorem 3.1.3). Numerical experiments are due to the candidate.
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3.1.2 Introduction

In this section, we will focus on solving the following, simple minimization problem, which

slightly generalizes the setting considered in the whole of Chapter 2,

min
x∈Rd

f (x) := Eξ∼D

[
f (x,ξ)

]
, (P)

where the objective f (x) is continuous and possibly non-convex, and D is a probability

distribution from which the random vector ξ is drawn. Problem (P) captures, for instance,

empirical risk minimization or finite-sum minimization [SB14] problems, where ξ represents

the mini-batches and D corresponds to the distribution governing the data generation process

or the sampling strategy.

Within the context of large-scale problems, including streaming data, computing full gradients

is extremely costly, if not impossible. Hence, stochastic iterative methods are the main opti-

mizer choice in these scenarios. The so-called adaptive methods such as AdaGrad [DHS11],

Adam [KB15] and AmsGrad [RKK18a] have witnessed a surge of interest both theoretically

and practically due to their off-the-shelf performance. For instance, adaptive optimization

methods are known to show superior performance in various learning tasks such as machine

translation [Zha+20; Vas+17].

From a theoretical point of view, existing literature provides a quite comprehensive under-

standing regarding the expected behaviour of existing stochastic optimization algorithm, in-

cluding adaptive methods. Nevertheless, these results inherently cannot capture the behavior

of the algorithms for a single run, which is related to the probabilistic nature of the opti-

mization process. While there exists high probability analysis of vanilla SGD for non-convex

problems [GL13], adaptive methods have received limited attention in this context.

Our main goal in the first part of this section is to understand the probabilistic convergence

properties of adaptive algorithms, specifically AdaGrad, while focusing on their problem pa-

rameter adaptation capabilities in the non-convex setting. This result essentially complements

the well-documented, expected convergence behavior of various adaptive algorithms. Com-

patible with Chapter 2, adaptivity refers to the ability of an algorithm to ensure convergence

without requiring the knowledge of quantities such as smoothness modulus or variance of

noise. Studies along this direction largely exist for the convex objectives [LYC18; Kav+19;

Jou+20; AKC22]; for instance, Levy, Yurtsever, and Cevher [LYC18] shows that AdaGrad can

(implicitly) exploit smoothness and adapt to the magnitude of noise in the gradients when

f (x) is convex in (P).

This particular perspective to adaptivity is crucial because most existing analysis, both for

classical and adaptive methods, assume to have access to smoothness constant, bound on

gradients [RKK18a] and even noise variance [GL13]. In practice, it is difficult, if not impossible,

to compute or even estimate such quantities. For this purpose, in the setting of (P) we study a

class of adaptive gradient methods that enable us to handle noisy gradient feedback without
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requiring the knowledge of the objective’s smoothness modulus, noise variance or a bound on

gradient norms.

We summarize the contributions of this section as follows:

1. We provide a modular, simple high probability analysis for AdaGrad-type adaptive methods.

2. We present the first optimal high probability convergence result of the original AdaGrad

algorithm for non-convex smooth problems. Concretely,

(a) we analyze a fully adaptive step-size, oblivious to Lipschitz constant and noise vari-

ance,

(b) we obtain the best known dependence of log(1/δ) on the probability margin δ.

(c) we show that under sub-Gaussian noise model, AdaGrad adapts to noise level with

high probability, i.e, as variance σ→ 0, convergence rate improves, 1/
p

T → 1/T .

3. We present a new extension of AdaGrad that include averaging and momentum primitives,

and prove similar high probability bounds for this framework, as well. Concretely, we study

a general adaptive template which individually recovers AdaGrad and (adaptive) RSAG

[GL16] for different parameter choices.

In the next section, we will provide a broad overview of related work with an emphasis on

the recent developments. Section 3.1.4 formalizes the problem setting and states our blanket

assumptions. Section 3.1.5 introduces the building blocks of our proposed proof technique

while proving convergence results for AdaGrad. We generalize the convergence results of

AdaGrad for a class of nonconvex, adaptive algorithms in Section 3.1.6.

3.1.3 Related Work

Adaptive methods for stochastic optimization and online learning As an extended version

of the online (projected) GD [Zin03], AdaGrad [DHS11] is the pioneering work behind most of

the contemporary adaptive optimization algorithms Adam, AmsGrad and RmsProp [TH12] to

name a few. Simply put, adaptive methods compute step-sizes on-the-fly by accumulating gra-

dient information and achieve data-dependent regret bounds as a function of gradient history

[TP19; Ala+20; LXL19; HWD19]. Through standard online-to-offline conversions [CL06; Sha12],

the resulting regret bounds imply order-optimal convergence rates of O(1/
p

T ) when the envi-

ronment is stochastic and the online losses are generated randomly, i.e., the environment is

not adversarial.

Universality, adaptive methods and acceleration. We call an algorithm universal if it achieves

optimal rates under different settings, simultaneously, without any modifications. For convex

minimization problems, Levy, Yurtsever, and Cevher [LYC18] showed that AdaGrad attains

a rate of O(1/T +σ/
p

T ) by implicitly adapting to smoothness and noise levels; here T is

the number of oracle queries and σ is the noise variance. They also proposed an acceler-
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ated AdaGrad variant with scalar step-size. The latter result was extended for compactly

constrained problems via accelerated Mirror-Prox algorithm [Kav+19], and for composite ob-

jectives [Jou+20]. Recently, Ene, Nguyen, and Vladu [ENV21] have further generalized the latter

results by designing a novel adaptive, accelerated algorithm with per-coordinate step-sizes.

Convergence properties of such algorithms under smooth, non-convex losses are unknown as

the acceleration mechanism is not necessarily compatible with non-convex problems.

Adaptive methods for nonconvex optimization. Following the popularity of neural networks,

adaptive methods have attracted massive attention due to their favorable performance in

training and their ease of tuning. The literature is quite vast, which is impossible to cover

exhaustively here [Che+19; Zah+18; LO19; Zou+19; Def+20; AMC21; Che+21; LKC21]. The

majority of the existing results on adaptive methods for nonconvex problems focus on in

expectation performance.

High probability results. The literature on high probability behavior of stochastic algorithms

is relatively thin for first-order methods. For non-smooth optimization, Harvey et al. [Har+19]

verifies that SGD, converges with the rates O(log(T ) log(1/δ)/
p

T ) and O(log(T ) log(1/δ)/T )

for convex and strongly-convex problems, respectively, while Rakhlin, Shamir, and Sridharan

[RSS12] proves a rate of O(log(log(T )/δ)/T ) for strongly-convex objectives. Under smooth

objectives satisfying Polyak-Lojasiewicz condition, Madden, Dall’Anese, and Becker [MDB21]

proves a complementary O(σ2 log(1/δ)/T ) rate.

For the more relevant non-convex realm, Ghadimi and Lan [GL13] are the first to analyze

probabilistic convergence of SGD and provide tight bounds. Nevertheless, their method

requires prior knowledge of the smoothness modulus and noise variance. In the context

of adaptive methods, Li and Orabona [LO20] considers delayed AdaGrad (with lag-one-

behind step-size) for smooth, non-convex losses under sub-Gaussian noise and proved

O(σ
√

log(T /δ)/
p

T ) rate. Under similar conditions, Zhou et al. [Zho+18] proves convergence

of order O((σ2 log(1/δ))/T +1/
p

T ) for AdaGrad. However, both works require the knowledge

of smoothness to set the step-size. Moreover, Ward, Wu, and Bottou [WWB19] guarantees

that AdaGrad with scalar step-size convergences at O((1/δ) log(T )/
p

T ) rate with high prob-

ability. Although their framework is oblivious to smoothness constant, their dependence of

probability margin is 1/δ.

More recently, under heavy-tailed noise having bounded pth moment for p ∈ (1,2), Cutkosky

and Mehta [CM21] proves a rate of O(log(T /δ)/T (p−1)/(3p−2)) for clipped normalized SGD with

momentum; nevertheless their method requires the knowledge of (a bound on) the behavior

of the heavy tails.
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3.1.4 Setup and preliminaries

As we stated in the introduction, we consider the unconstrained minimization setting

min
x∈Rd

f (x) := Eξ∼D

[
f (x,ξ)

]
,

where the differentiable function f :Rd →R is a smooth and (possibly) non-convex function.

We are interested in finding a first-order ϵ-stationary output point satisfying ∥∇ f (X̂ )∥2 ≤ ϵ,

where ∥·∥ denotes the Euclidean norm for the sake of simplicity and X̂ ∈ Rd is a candidate

solution. As the standard measure of convergence in the literature, we will quantify the

performance of algorithms with respect to average gradient norm, 1
T

∑T
t=1∥∇ f (X t )∥2. It imme-

diately implies convergence in the minimum gradient norm across the whole of the execution,

mint∈[T ]∥∇ f (X t )∥2. Moreover, the algorithm could compute a particular output X̂ which is

selected uniformly at random from the set of iterates generated by the algorithm {X1, . . . , XT }.

Then, any bound on the average gradient norm, 1
T

∑T
t=1∥∇ f (X t )∥2, ensures a convergence

guarantee of the form E
[∥∇ f (X̂ )∥2

]
, where the expectation is computed with respect to the

randomness in oracle information and the uniform selection of the output point [GL13]. This

is a notation we will use to simplify the presentation.

A function is called G-Lipschitz continuous if it satisfies∣∣ f (x)− f (y)
∣∣≤G∥x − y∥, ∀x, y ∈ dom( f ), (3.1)

which immediately implies that

∥∇ f (x)∥ ≤G , ∀x ∈ dom( f ). (3.2)

A differentiable function is called L-smooth if it has L-Lipschitz gradient

∥∇ f (x)−∇ f (y)∥ ≤ L∥x − y∥, ∀x, y ∈ dom(∇ f ). (3.3)

An equivalent characterization is also referred to as the “descent lemma” [WWB19; Bec17],∣∣ f (x)− f (y)−〈∇ f (y), x − y〉∣∣≤ (L/2)∥x − y∥2. (3.4)

Assumptions on oracle model. We denote stochastic gradients with ∇ f (x,ξ), for some

random vector drawn from distribution ξ ∼ D. Since our template embraces single-call

algorithms for this section of the manuscript, we might use the shorthand notation ∇̃ f (x) =
∇ f (x,ξ) for simplicity, at times. An oracle is called unbiased if

E
[∇ f (x,ξ)|σ(x)

]=∇ f (x), ∀x ∈ dom(∇ f ). (3.5)
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Gradient estimates generated by a first-order oracle have bounded variance if they satisfy

E
[∥∇ f (x,ξ)−∇ f (x)∥2|σ(x)

]≤σ2, ∀x ∈ dom(∇ f ). (3.6)

Finally, we assume that the stochastic gradients are bounded almost surely, i.e.,

∥∇ f (x,ξ)∥ ≤ G̃ , ∀x ∈ dom(∇ f ). (3.7)

Remark 3.1.1. Bounded variance assumption (3.16) is standard in the analysis of stochastic

methods [Lan20] for non-convex problems with the general form as in (P). Similarly, for the

analysis of adaptive methods in the nonconvex realm, it is common to assume bounded

stochastic gradients (see [Zah+18; Zho+18; Che+19; LO20] and references therein). It is of

independent interest to investigate to what extent these assumptions could be relaxed.

3.1.5 Method and Analysis

We will now introduce our proposed proof technique as well as our main theoretical results for

AdaGrad with proof sketches and discussions on the key elements of our theoretical findings.

We will present a high-level overview of our simplified, modular proof strategy while proving a

complementary convergence result for AdaGrad under deterministic oracles. In the sequel,

we refer to the name AdaGrad as the scalar step-size version (also known as AdaGrad-Norm)

as presented in Algorithm 4.

Algorithm 4: AdaGrad

Input: time horizon T , X1 ∈Rd , step-size
{
γt

}
t∈[T ], G0 > 0

1: for t = 1 to T do

2: Generate ∇ f (X t ,ξt )

3: γt = 1√
G2

0 +
∑t

s=1∥∇ f (Xs ,ξs)∥2

4: X t+1 = X t −γt∇ f (X t ,ξt )

5: end for

Before moving forward with the analysis, let us first establish the notation we will use to

simplify the presentation. In the sequel, we use [T ] as a shorthand expression for the set

{1,2, ...,T }. We will use ∆t = f (X t )−minx∈Rd f (x) as a concise notation for objective sub-

optimality and ∆max = maxt∈[T+1]∆t will denote the maximum over ∆t .

Notice that AdaGrad (Alg. 4) does not require any prior knowledge regarding the smoothness

modulus nor the noise variance. The main results in this section is Theorem 3.1.2, where we

show that with high probability AdaGrad obtains the convergence rate Õ(log(1/δ)/
p

T ) for

finding an approximate stationary point. Moreover, Theorem 3.1.1 shows that in the determin-
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istic case AdaGrad achieves the optimal rate of O(1/T ), thus establishing its universality.

Technical Lemmas

We make use of a few technical lemmas while proving our main results, which we refer to in our

proof sketches. We present them all at once before the main theorems for completeness. We

have previously introduced Lemma 2.1.2 in Section 2.1 which was crucial to bound the terms

of the form
∑T

t=1γt∥∇ f (X t )∥ ≤ 1
γT

when the adaptive step-size is constructed in accordance

with the algorithm at hand. Besides, we introduce a new numerical inequality3.1.1 which is

another well-known result from online learning, essential for handling adaptive stepsizes. We

restate Lemma 2.1.2 for ease of navigation.

Lemma 2.1.2. Let a1, ..., an be a sequence of non-negative real numbers. Then, it holds that√
n∑

i=1
ai ≤

n∑
i=1

ai√∑i
k=1 ak

≤ 2

√
n∑

i=1
ai

Lemma 3.1.1. Let a1, ..., an be a sequence of non-negative real numbers. Then, it holds that

n∑
i=1

ai∑i
k=1 ai

≤ 1+ log

(
1+

n∑
i=1

ai

)

In order to achieve high probability bounds, we need to quantify the probabilistic behavior

of the cumulative noise. The next lemma is the key for achieving this relationship; roughly

speaking, it enables us to upper bound the cumulative noise via the square root of cumulative

variance.

Lemma 3.1.2 (Lemma 3 in [KT08]). Let X t be a martingale difference sequence such that

|X t | ≤ b. Let us also define

Vart−1(X t ) = Var (X t |σ(X1, ..., X t−1)) = E[
X 2

t |σ(X1, ..., X t−1)
]

,

and VT =∑T
t=1 Vart−1(X t ) as the sum of variances. For δ< 1/e and T ≥ 3, it holds that

P

(
T∑

t=1
X t > max

{
2
√

VT ,3b
√

log(1/δ)
}√

log(1/δ)

)
≤ 4log(T )δ (3.8)

Overview of proposed analysis

We will start by presenting the individual steps of our proof and provide insight into its

advantages. In the rest of this section, we solely focus on AdaGrad, however, the same intuition

applies to the more general Algorithm 5 as we will make clear in the sequel. The classical
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analysis begins with,

f (X t+1)− f (X t ) ≤−γt∥∇ f (X t )∥2 −γt 〈∇ f (X t ),ζt 〉+
Lγ2

t

2
∥∇ f (X t ,ξt )∥2.

which is due to the smoothness property in Eq. (3.4), and we define ζt =∇ f (X t ,ξt )−∇ f (X t )

as the noise vector. Re-arranging and summing over t ∈ [T ] yields,

T∑
t=1

γt∥∇ f (X t )∥2 ≤ f (X1)− f (x∗)+
T∑

t=1
−γt 〈∇ f (X t ),ζt 〉+ L

2

T∑
t=1

γ2
t ∥∇ f (X t ,ξt )∥2.

The main issue in this expression is the γt 〈∇ f (X t ),ζt 〉 term, which creates measurability

problems due to the fact hat γt and ζt are dependent random variables. On the left hand

side, the mismatch between γt and ∥∇ f (X t )∥2 prohibits the use of technicals lemmas as

we accumulate stochastic gradients for γt . Moreover, we cannot make use of Holder-type

inequalities as we deal with high probability results. Instead, we divide both sides by γt , then

sum over t and re-arrange to obtain a bound of the form,

T∑
t=1

∥∇ f (X t )∥2 ≤ ∆1

γ1
+

T∑
t=2

(
1

γt
− 1

γt−1

)
∆t +

T∑
t=1

−〈∇ f (X t ),ζt 〉+ L

2

T∑
t=1

γt∥∇ f (X t ,ξt )∥2

≤ ∆max

γT
+

T∑
t=1

−〈∇ f (X t ),ζt 〉+ L

2

T∑
t=1

γt∥∇ f (X t ,ξt )∥2 (3.9)

This modification solves the two aforementioned problems, but we now need to ensure

boundedness of function values, specifically the maximum distance to the optimum, ∆max. In

fact, neural networks with bounded activations (e.g. sigmoid function) in the last layer and

some objective functions in robust non-convex optimization (e.g. Welsch loss [Bar19]) satisfy

bounded function values. However, this is a restrictive assumption to make for general smooth

problems and we will prove that it is bounded or at least it grows no faster than O(log(T )). As a

key element of our approach, we show that it is the case for Algorithms 4 & 5. Now, we are at a

position to state an overview of our proof:

1. Show that ∆max ≤O(log(T )) with high probability or ∆max ≤O(1) (deterministic).

2. Prove that
∑T

t=1−〈∇ f (X t ),ζt 〉 ≤ Õ(
p

T ) with high probability using Lemma 3.1.2.

3. Show that L
2

∑T
t=1γt∥∇ f (X t ,ξt )∥2 ≤O(

p
T ) by using Lemma 2.1.2.

For completeness, we will propose a simple proof for AdaGrad in the deterministic setting.

This will showcase advantages of our approach, while providing some insight into the theo-

retical behavior of the algorithm. We provide a sketch of the proof, whose full version will be

accessible in the appendix at the end of the chapter.

Theorem 3.1.1. Let {X t } be a sequence generated by Algorithm 4 with G0 = 0 for simplicity.
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Then, it holds that

1

T

T∑
t=1

∥∇ f (X t )∥2 ≤O

(
(∆1 +L)2

T

)
.

Proof Sketch (Theorem 3.1.1). In the presence of only deterministic oracle, we have∇ f (X t ,ξt ) =
∇ f (X t ) in Eq. (3.9). By replacing the stochastic gradient with the true gradient we obtain,

T∑
t=1

∥∇ f (X t )∥2 ≤ ∆max

γT
+ L

2

T∑
t=1

γt∥∇ f (X t )∥2 ≤ (∆max +L)

√√√√ T∑
t=1

∥∇ f (X t )∥2,

where we obtain the final inequality using Lemma 2.1.2. Now, we show that ∆T+1 is bounded

for any T . Using the descent lemma and summing over t ∈ [T ],

f (XT+1)− f (x∗) ≤ f (X1)− f (x∗)+
T∑

t=1

(
Lγt

2
−1

)
γt∥∇ f (X t )∥2.

Notice that the step-size is monotonically-decreasing, and we want to identify the time point

at which we will have Lγt

2 −1 ≤ 0 the terms in the summation on the RHS becomes negative.

Now, define t0 = max
{

t ∈ [T ] | γt > 2
L

}
, such that

(
Lγt

2 −1
)
≤ 0 for any t > t0. Then,

f (XT+1)− f (x∗) ≤∆1 +
t0∑

t=1

(
Lγt

2
−1

)
γt∥∇ f (X t )∥2 +

T∑
t=t0+1

(
Lγt

2
−1

)
γt∥∇ f (X t )∥2

≤∆1 + L

2

t0∑
t=1

γ2
t ∥∇ f (X t )∥2 ≤∆1 + L

2

(
1+ log

(
1+L2/4

))
,

where we use the definition of t0 and Lemma 3.1.1 for the last inequality. Since this is true for

any T , the bound holds for ∆max, as well. Then, we will represent the resulting inequality as a

quadratic inequality and optimize respectively. Defining X =
√∑T

t=1 ∥∇ f (X t )∥2, the original

expression reduces to X 2 ≤ (∆max +L) X . Solving for X , plugging in the bound for ∆max and

dividing by T results in

1

T

T∑
t=1

∥∇ f (X t )∥2 ≤
(
∆1 + L

2

(
3+ log

(
L2/4

)))2

T
.

■

Remark 3.1.2. To our knowledge, the most relevant analysis was provided by Ward, Wu, and

Bottou [WWB19], which achieves O (log(T )/T ) convergence rate. Our new approach enables

us to remove log(T ) factor.
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High probability convergence under stochastic oracle

Having introduced the building blocks, we will now present the high probability convergence

bound for AdaGrad (Algorithm 4). Let us begin by the departure point of our proof, which is

Eq. (3.9)

T∑
t=1

∥∇ f (X t )∥2 ≤ ∆max

γT︸ ︷︷ ︸
(∗)

+
T∑

t=1
−〈∇ f (X t ),ζt 〉︸ ︷︷ ︸

(∗∗)

+ L

2

T∑
t=1

γt∥∇ f (X t ,ξt )∥2

︸ ︷︷ ︸
(∗∗∗)

. (3.10)

We can readily bound expression (∗∗∗) using Lemma 2.1.2. Hence, what remains is to argue

about high probability bounds for expressions (∗) and (∗∗), which we do in the following

propositions.

Proposition 3.1.1. Using Lemma 3.1.2, with probability 1−4log(T )δ and δ< 1/e, we have

T∑
t=1

−〈∇ f (X t ),ζt 〉 ≤ 2σ
√

log(1/δ)

√√√√ T∑
t=1

∥∇ f (X t )∥2 +3(G2 +GG̃)log(1/δ).

The last ingredient of the analysis is the bound on ∆t . The following proposition ensures a

high probability bound of order O(log(t )) on ∆t under Algorithm 4.

Proposition 3.1.2. Let {X t } be generated by AdaGrad for G0 > 0. With probability at least

1−4log(t )δ,

∆t+1 ≤∆1 +2L
(
1+ log

(
max{1,G2

0}+G̃2t
))+G−1

0 (M1 +σ2) log(1/δ)+M2,

where M1 = 3(G2 +GG̃) and M2 =G−1
0 (2G2 +GG̃).

As an immediate corollary, since the statement of Proposition 3.1.2 holds for any t , it holds for

∆max by definition. Hence, we have that maxt∈[T ]∆t =∆max ≤ O
(
∆1 +L log(T )+σ2 log(1/δ)

)
with high probability for any time horizon T . In the light of the above results, we are now able

to present our high probability bound for AdaGrad.

Theorem 3.1.2. Let {X t } be the sequence of iterates generated by AdaGrad. Under Assump-

tions 3.2, 3.6, 3.7, for∆max ≤O
(
∆1 +L log(T )+σ2 log(1/δ)

)
, with probability at least 1−8log(T )δ,

1

T

T∑
t=1

∥∇ f (X t )∥2 ≤ (∆max +L)G0 +3(G2 +GG̃)log(1/δ)

T
+ (∆max +L)G̃ +2Gσ

√
log(1/δ)p

T
.

Proof Sketch (Theorem 3.1.2). By Eq. (3.10),

T∑
t=1

∥∇ f (X t )∥2 ≤ ∆max

γT
+

T∑
t=1

−〈∇ f (X t ),ζt 〉+ L

2

T∑
t=1

γt∥∇ f (X t ,ξt )∥2.
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Invoking Lemma 2.1.2 on the last sum and using Proposition 3.1.1 for the second expression,

we have with probability at least 1−4log(T )δ

T∑
t=1

∥∇ f (X t )∥2 ≤ (∆max +L)

√√√√G2
0 +

T∑
t=1

∥∇ f (X t ,ξt )∥2 +2σ
√

log(1/δ)

√√√√ T∑
t=1

∥∇ f (X t )∥2 +3(G2 +GG̃)log(1/δ)

Finally, we use the bounds on the gradient norms ∥∇ f (X t )∥ ≤ G and ∥∇ f (X t ,ξt )∥ ≤ G̃ , re-

arrange the terms and divide both sides by T . Due to Proposition 3.1.2, with probability at

least 1−8log(T )δ,

1

T

T∑
t=1

∥∇ f (X t )∥2 ≤ (∆max +L)G0 +3(G2 +GG̃)log(1/δ)

T
+ (∆max +L)G̃ +2Gσ

√
log(1/δ)p

T
,

where ∆max ≤O
(
∆1 +L log(T )+σ2 log( 1

δ )
)
. We keep ∆max in the bound due to lack of space.

■

Noise adaptation under sub-Gaussian noise model

To our knowledge, under the standard setting we consider (unbiased stochastic gradients

with bounded variance), noise adaptation is not achieved for high probability convergence

to first-order stationary points, specifically for AdaGrad-type adaptive methods. We call an

algorithm noise adaptive if the convergence rate improves 1/
p

T → 1/T as variance σ→ 0.

Following the technical results and approach proposed by Li and Orabona [LO20], we will

prove that high probability convergence of AdaGrad (Algorithm 4) exhibits adaptation to noise

under sub-Gaussian noise model. First, we will introduce the additional assumption on the

noise. We assume that the tails of the noise behaves as sub-Gaussian if,

E
[

exp(∥∇ f (x,ξ)−∇ f (x)∥2) |σ(x)
]≤ exp(σ2). (3.11)

This last assumption on the noise is more restrictive than standard assumption of bounded

variance. Indeed, Eq. (3.11) implies bounded variance (Eq. (3.16)), but the converse is not true.

Finally, we conclude with the main theorems. We first present the compatible concentration

inequality that we will use under sub-Gaussian noise (Lemma 3.1.3), which is due to Li and

Orabona [LO20, Lemma 1]. Then, we establish a new high probability bound on ∆max before

presenting the noise-adaptive rates for AdaGrad.

Lemma 3.1.3 (Lemma 1 from Li and Orabona [LO20]). Let Z1, · · · , ZT be a martingale difference

sequence (MDS) with respect to random vectors ξ1, · · · ,ξT and Yt be a sequence of random

variables which is σ(ξ1, · · · ,ξt−1)-measurable. Given that E
[

exp(Z 2
t /Y 2

t ) | ξ1, · · ·ξt−1
]≤ exp(1),

for any λ> 0 and δ ∈ (0,1) with probability at least 1−δ,

T∑
t=1

Zt ≤ 3

4
λ

T∑
t=1

Y 2
t + 1

λ
log(1/δ)
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3.1 High Probability Bounds for a Class of AdaGrad-type Non-convex Algorithms

Let us explain the difference between the above concentration inequality and the one we used

for the bounded variance setting in Lemma 3.1.2. The MDS Zt defined in the above statement

corresponds to the noise term (equivalent to X t in Lemma 3.1.2), and observe that we do not

have any almost-sure bound on Zt sequence. This helps us remove the dependence on a

bound on stochastic gradients in the final convergence rate in Theorem 3.1.3. Moreover, we

are also able to achieve the noise adaptation by using the above Lemma thorugh sub-Gaussian

tail assumption. Next, we prove the high probability boundedness of sub-optimality gap.

Proposition 3.1.3. Let {X t } be generated by AdaGrad and define ∆t = f (X t )−minx∈Rd f (x).

Under sub-Gaussian noise assumption as in Eq. (3.11), with probability at least 1−3δ,

∆t+1 ≤∆1 +3G−1
0 G2 +2G−1

0 σ2 log

(
et

δ

)
+ 3

4G0
σ2 log(1/δ)

+ L

2

(
1+ log

(
max

{
1,G2

0

}+2G2t +2σ2t log

(
et

δ

)))
.

A fundamental difference between Proposition 3.1.2 and 3.1.3 is that the latter does not

depend on a bound on the stochastic gradients, which is a direct consequence of the fact that

concentration inequality in Lemma 3.1.3 does not assume boundedness of the MDS Zt . This

implies that we will not need an almost-sure bound on the noise vector. Combining the above

results yields the noise-adaptive high probability convergence of AdaGrad.

Theorem 3.1.3. Let {X t } be generated by AdaGrad and define ∆t = f (X t )−minx∈Rd f (x). Under

sub-Gaussian noise assumption as in Eq. (3.11) and considering high probability boundedness

of ∆max due to Proposition 3.1.3, with probability at least 1−5δ,

1

T

T∑
t=1

∥∇ f (X t )∥2 ≤ 32(∆max +L)2 +8(∆max +L) (G0 +σ
√

2log(1/δ))+8σ2 log(1/δ)

T
+ 8

p
2(∆max +L)σp

T
.

Remark 3.1.3. By introducing the sub-Gaussian noise model, we manage to achieve a high

probability convergence bound that is adaptive to noise, while removing the dependence on a

bound on stochastic gradients in the final result. As explained previously, this noise assumption

helps us use a more general concentration inequality (without boundedness assumption).

3.1.6 Generalized Method and Analysis

Having proven the high probability convergence for AdaGrad, we will now present an extension

of our analysis to the more general accelerated gradient (AGD) template, which corresponds

to a specific reformulation of Nesterov’s acceleration [GL16].
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Algorithm 5: Generic AGD Template

Input: Horizon T , X̃1 = X1 ∈Rd ,αt ∈ (0,1], step-sizes
{
ηt

}
t∈[T ],

{
γt

}
t∈[T ]

1: for t = 1 to T do
2: X̄ t =αt X t + (1−αt )X̃ t

3: Set g t =∇ f (X̄ t ,ξt ) (or g t =∇ f (X̄ t ))
4: X t+1 = X t −ηt g t

5: X̃ t = X̄ t −λt g t

6: end for

Algorithm 5 is a small modification of Nesterov’s optimal scheme for smooth convex minimiza-

tion [Nes05]. A reformulation of the aforementioned optimal scheme was recently referred to

as linear coupling [AO16], which is an intricate combination of mirror descent (MD), gradient

descent (GD) and averaging. In the sequel, we focus on two aspects of the algorithm; aver-

aging parameter αt and selection of (adaptive) step-sizes ηt and λt . We could recover some

well-known algorithms from this generic scheme depending on parameter choices, which we

display in Table 3.1.

Our reason behind choosing this generic algorithm is two-fold. First, it helps us demonstrate

flexibility of our simple, modular proof technique by extending it to a generalized algorithmic

template. Second, as an integral element of this scheme, we want to investigate the notion of

averaging (equivalently momentum [Def21]), which is an important primitive for machine

learning and optimization problems. For instance, it is necessary for achieving accelerated

convergence in convex optimization [Nes83a; Kav+19], while it helps improve performance

in neural network training and stabilizes the effect of noise [Def21; Sut+13; LGY20]. We will

analyze in what scenarios it plays in our favor and what are the possible limitations in terms

of theoretical behavior of the algorithms.

Let us briefly introduce some instances of Algorithm 5, their properties and the corresponding

parameter choices; specifically the averaging parameter αt and step sizes ηt and λt . The

averaging parameterαt has two main forms: αt = 2/(t +1) for weighted averaging andαt = 1/t

for uniform averaging. We take αt = 2/(t +1) by default in our analysis, as it is a key element

in achieving acceleration in the convex setting. Our convergence results could immediately

be extended to uniform averaging, too, at the expense of an additional log(T ) factor. Let us

define the AdaGrad step size once more, which we use to define ηt and λt ,

γt = 1√
G2

0 +
∑t

s=1∥gs∥2
, G0 > 0. (3.12)

The first instance of Algorithm 5 is the AdaGrad itself, i.e. X t+1 = X t −γt g t . Since X̃1 = X1 by

initialization, we have X̄1 = X̃1 = X1. The fact that ηt =λt = γt implies the equivalence X̃ t = X t

for any t ∈ [T ], which ignores the averaging step. The second instance we obtain is AdaGrad
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3.1 High Probability Bounds for a Class of AdaGrad-type Non-convex Algorithms

with averaging,
X̄ t =αt X t + (1−αt )X̄ t−1

X t+1 = X t −αtγt g t ,
(3.13)

where we set ηt = γt and λt = 0 in Algorithm 5. For the initialization X1 = X̃1, we can obtain by

induction that X̃ t = X̄ t−1, hence the scheme above. For the reasons we will make clear in the

sequel, our analysis will not apply to plain AdaGrad with averaging. Introducing the gradients

evaluated at averaged iterates into the algorithm requires more intricate design and analyzing

convergence of the algorithm in Eq. (3.13) proves to be a challenge that we could not manage

to do.

The final scheme we will analyze is (adaptive) RSAG algorithm proposed by Ghadimi and

Lan [GL16], which keeps track of multiple sequences to handle gradients at averaged iterates.

It selects a step size pair that satisfies λt ≈ (1+αt )γt and ηt = γt , generating a 3-sequence

algorithm as in the original form of Algorithm 5.

Table 3.1: Example methods covered by the generic AGD template. We analyze the algorithms in
boldface, and italized algorithms are not analyzed with our technique.

ALGORITHM WEIGHTS (αt ) STEP-SIZE (ηt ,λt )

AdaGrad N/A ηt = γt , λt = γt

Adaptive RSAG[GL16] αt = 2
t+1 ηt = γt , λt = (1+αt )γt

AdaGrad w/ Averaging αt = 2
t+1 or 1

t ηt =αtγt , λt = 0

AcceleGrad[LYC18] αt = 2
t+1 ηt ≈ 1

αt
γt , λt ≈ γt

Before moving on to convergence results, we have an observation concerning time-scale

difference between step sizes for the aforementioned algorithms. Precisely, λt is always only a

constant factor away from ηt for AdaGrad and RSAG; as t →∞, ηt →λt and limt→∞ηt /λt =
1. On the contrary, AdaGrad with averaging and AcceleGrad exhibits a different behavior;

limt→∞ηt /λt ̸= 1. This phenomenon has an immediate connection to acceleration in the

convex realm, and we will independently expand upon it at the end of this section.

Having defined instances of Algorithm 5, we will present high probability convergence rates for

them. Similar to Eq. (3.10) for AdaGrad, we first define a departure point of similar structure in

Proposition 3.1.4, then apply Proposition 3.1.1 and 3.1.2 in the same spirit as before to finalize

the bound.

Following the notation in [GL16], let us define the following geometric sequence,

Γt = (1−αt )Γt−1 where Γ1 = 1.
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Now, we can begin with the departure point of the proof, which is due to Ghadimi and Lan

[GL16].

Proposition 3.1.4. Let {X t } be generated by Algorithm 5. Then, it holds that

T∑
t=1

∥∇ f (X̄ t )∥2

≤ ∆max +2L

ηT
+ L

2ηT

T∑
t=1

[
T∑

k=t
(1−αk )Γk

]
αt

Γt︸ ︷︷ ︸
(∗)

(ηt −λt )2

α2
t

∥∇ f (X̄ t ;ξt )∥2 +
T∑

t=1
−〈∇ f (X̄ t ),ζt 〉︸ ︷︷ ︸

(∗∗)

.

Next, we will deliver the complementary bound on term (∗) in Proposition 3.1.4.

Proposition 3.1.5. Using the recursive definition of Γ, we have

[
T∑

k=t
(1−αk )Γk

]
αt

Γt
≤


2 if αt = 2

t+1 ;

log(T +1) if αt = 1
t .

Finally, we present the high probability convergence rates for Algorithm 5, specifically adaptive

RSAG.

Theorem 3.1.4. Let {X t } be the sequence generated by adaptive RSAG. Under Assumptions 3.2, 3.6, 3.7,

with probability 1−8log(T )δ,

1

T

T∑
t=1

∥∇ f (X̄ t )∥2 ≤ G0(∆max +3L+L log(max{1,G−2
0 }+G̃2T ))+3(G2 +GG̃)log(1/δ))

T

+ G̃(∆max +3L+L log(max{1,G−2
0 }+G̃2T ))+2Gσ

√
log(1/δ)p

T
,

where ∆max ≤O
(
∆1 +L log(T )+σ2 log(1/δ)

)
.

this results is a mere generalization of the main result in the previous section (Theorem 3.1.2).

The core challenge is to handle the additional error introduced due to the gradient computa-

tion at the averaged iterates. There are multiple mechanisms in place to make up for this extra

error term, one of which is the correct choice of time-scale difference between the step-sizes.

Let us focus on the first summation in Proposition 3.1.4, and let us take αt = 2/(t +1) so that

the summation becomes L
ηT

∑T
t=1

(ηt−λt )2

α2
t

∥∇ f (X̄ t ,ξt )∥2. Recall that we recover AdaGrad itself

when ηt =λt , which immediately eliminates this error term. In the other case of ηt ̸=λt , we

are required to eliminate 1
α2

t
=O(t 2). RSAG eliminates it by selecting ηt = γt and λt = (1+αt )γt .

Finally, applying Lemma 3.1.1, the auxiliary error incurred by the averaged gradients amounts

to O(log(T )).
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On the contrary, AdaGrad with averaging (Eq. (3.13)) selects ηt =αtγt and λt = 0 and achieve

O(log(T )) error for the same summation term. However, the first term on the RHS of the

inequality in Proposition 3.1.4 now has the form ∆max+2L
αT γT

, which now suffers the additional
1
αT

=O(T ) factor. This is the very reason that we cannot handle AdaGrad with averaging using

our analysis. In fact, it is of independent interest to analyze the convergence of the scheme in

Eq. (3.13) for general smooth problems.

A discussion on acceleration and nonconvex analysis. AGD and its variants are able to con-

verge at the fast rate of O (1/T 2) [Nes03] for smooth, convex objectives. It has been established

that the accelerated gradient template in Algorithm 5 can achieve the O(1/T ) rate for smooth,

non-convex objectives under deterministic oracles, however, the set of parameters under

which the Algorithm 5 is run for the non-convex setting is fundamentally different than that

of the convex case [GL16]. In fact, the mechanism that allows the accelerated algorithms to

converge faster could even prhibit convergence when convexity assumption is lifted. We will

conclude this section with a brief discussion on this phenomenon.

As we mentioned previously, step-sizes for AdaGrad and RSAG have the same time-scale up to

a constant factor. However, AcceleGrad, an accelerated algorithm, has a time-scale difference

of O (t ) between ηt =α−1
t γt and λt = γt , such that it runs with a modified step-size

γt = 1√
1+∑t

s=1α
−2
s ∥gs∥2

.

This scale difference is not possible to handle with standard approaches or our proposed analy-

sis, to the best of our knowledge. Specifically, if we look at the second term in Proposition 3.1.4,

it roughly evaluates to

L

2ηT

T∑
t=1

η2
t

α2
t

∥g t∥2 ≤ LαT

2γT

T∑
t=1

γ2
t

α2
t

α−2
t ∥g t∥2,

where each summand is O(t 4) orders of magnitude larger compared to non-accelerated

methods. A factor of α−2
t = O(t 2) is absorbed by the modified step-size, but this term still

grows faster than we can manage. Moreover, the scaling factor 1
αT

in the step-size ηT = 1
αT
γT

amounts to an additional O(T ) error multiplying the summation. We aim to understand it

further in our future work.

3.1.7 Conclusion

We propose a simple and modular high probability analysis for a class of AdaGrad-type al-

gorithms. Bringing AdaGrad into the focus, we show that our new analysis techniques goes

beyond and generalizes to the accelerated gradient template (Algorithm 5) which individually

recovers AdaGrad and the adaptive version of RSAG [GL16]. By proposing a modification
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over standard analysis and relying on concentration bounds for martingale difference se-

quences, we achieve high probability convergence bounds for the aforementioned algorithms

without requiring the knowledge of smoothness L and variance σ while having best-known

dependence of log(1/δ) on δ. Futhermore, through a more refined notion of variance, i.e.,

assuming that noise has sub-Gaussian tail, we prove noise-adaptive high probability rates that

interpolate between 1/T and 1/
p

T .
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3.2 Fully-adaptive SGD with Recursive Momentum for Non-convex

Minimization

3.2.1 Bibliographic Note

This section (Section 3.2) is based on the published work Levy, Kavis, and Cevher [LKC21],

published in the NeurIPS 2021 conference.

Author list of the published work .

• Kfir Y. Levy

• Ali Kavis

• Volkan Cevher

Description of contributions. The candidate worked on the earlier version of Algorithm 6 in

which the step-size was defined as γt = 1

(
∑t

s=1∥ds∥2)1/3 and proved noise-adaptive rates without

parameter-free properties. Kfir Y. Levy identified the adaptive connection between step-size

and the momentum and achieved the final parameter-free, noise-adaptive rates in Theo-

rem 3.2.1. The candidate has complementary contributions via the auxiliary, intermediate

results used in the proof of the main theorem. Numerical experiments are due to the candidate.

3.2.2 Introduction

Over the past decade non-convex models have attracted significant attention in machine

learning (ML), and in data-science. This predominantly includes deep models, as well as

phase retrieval [CLS15], non-negative matrix factorization [Hoy04], and matrix completion

problems [GLM16] among others.

The main workhorse for training such machine learning models is SGD and its numerous

variants. One parameter that has fundamental effect on the performance is the step-size,

which often requires a careful and costly hyper-parameter tuning due to the complext problem

lanscape. Adaptive approaches to setting the step-size proposed in AdaGrad [DHS11] and

Adam [KB15], as well as non-adaptive heuristics [LH17; He+19] are very popular in modern ML

applications, yet these methods also require some tuning of hyper-parameters like momentum

and the scale of the step-size (initial step-size) schedule.

A popular SGD heuristic that has proven to be crucial in many applications is the use of

momentum, i.e., the use of a weighted average of past gradients instead of only the current

gradient [Sut+13; KB15]. Although adaptive approaches to setting the momentum have been

investigated in the past [SSB18; HKS16], principled and theoretically-grounded approaches to

doing so are less investigated. Another aspect that has not been extensively studied, which we
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take into account in this section, is the interplay between step-size and momentum. To this

end, we will explore momentum-based adaptive and parameter-free methods for stochastic

non-convex optimization problems. Concretely, we focus on the setting where the objective

is an expectation over smooth losses (see Eq. (3.17)), and the goal is to find an approximate

stationary point.

In the general case of smooth non-convex objectives it is known that one can approach

a stationary point at a rate of O(1/T 1/4), where T is the total number of samples [GL13].

While this rate is optimal in the general case, it is known that one can obtain an improved

rate of O(1/T 1/3) if the objective is an expectation over smooth losses [Fan+18; ZXG18; CO19;

Tra+19]. One could interpret this structure as a generalization of the finite-sum structure to

the scenarios in which the data arrives at a streaming fashion. Besides, this rate was recently

shown to be tight [Arj+19].

Nevertheless, most of the methods developed for this setting rely on variance reduction

techniques [JZ13; ZMJ13; MZJ13; Wan+13], which require careful maintenance of anchor

points in conjunction with appropriately selected large batch-sizes. This leads to a challenging

hyper-parameter tuning problem, weakening their practicality. One exception is the recent

STORM algorithm of [CO19].

STORM does not require large batches nor anchor points; instead, it uses a corrected momentum-

based gradient update that leads to implicit variance reduction, which in turn facilitates fast

convergence. Unfortunately, none of the aforementioned methods (including STORM) is

parameter-free. Indeed, the knowledge of smoothness parameter together with either the

noise variance or a bound on the norm of the gradients are crucial to establish their guarantees.

In this work, we essentially develop a parameter-free variant of STORM algorithm. We summa-

rize our contributions as follows,

• We present STORM+, a parameter-free momentum-based method that ensures the optimal

O(1/T 1/3) rate for the expectation over smooth losses setting. Similarly to STORM, our method

requires neither large-batches nor anchor points.

• STORM+ implicitly adapts to the variance of the gradients. Concretely, it obtains the conver-

gence rate of O(1/
p

T +σ1/3/T 1/3), which recovers the optimal O(1/
p

T ) rate in the noiseless

case. We also improve over STORM by shaving off a (logT )3/4 factor from the 1/
p

T term at

the expense of an assumption on the range of sub-optimality gap.

• We demonstrate a novel way to set the step-size by introducing an adaptive interplay be-

tween step-size and momentum parameters.

3.2.3 Related Work

In the context of stochastic non-convex optimization with general smooth losses, it was

shown in Ghadimi and Lan [GL13] that SGD with an appropriately selected step-size can
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obtain a rate of O(1/T 1/4) for finding an approximate stationary point, which is known to

match the respective lower bound [Arj+19]. While the method of Ghadimi and Lan [GL13]

requires knowledge of the smoothness and variance parameters, recent works have shown

that adaptive methods like AdaGrad are able to obtain this bound in a parameter free manner,

while adapting to the noise levels of the first-order oracles [LO19; WWB19; RKK18b]. These

results, in a sense, explain the success of adaptive methods like AdaGrad [DHS11], Adam

[KB15], and RMSProp [TH12] in handling non-convex problems.

The idea of using variance reduction techniques for non-convex problems was first suggested

in the context of finite-sum problems [AH16b; Red+16], showing a rate of O(1/T 1/4). This

was later improved [Lei+17] to a rate of O(1/T 3/10). The first works that have obtained the

optimal O(1/T 1/3) for this setting were Fang et al. [Fan+18] and Zhou, Xu, and Gu [ZXG18].

Additionally, Fang et al. [Fan+18] shows that the same convergence behavior applies to the

more general expectation over smooth losses setting (see Eq. (3.17)) – a setting that captures

finite-sum problems as a private case.

The STORM algorithm suggested in Cutkosky and Orabona [CO19] is the first algorithm to

obtain the optimal O(1/T 1/3) for this setting without the need to maintain anchor points and

large batches. Instead, it relies on a clever correction of the momentum by making only one

extra call to the oracle, which leads to an implicit variance reduction effect. Moreover, STORM

adapts to the variance of the problem by obtaining a rate of O((logT )3/4/
p

T +σ1/3/T 1/3)

without any prior knowledge of variance parameter. However, it needs to know the smooth-

ness and a bound on the gradient norms to set the step size and momentum parameters.

Simultaneously to the work of [CO19], another paper [Tra+19] have obtained the same optimal

bound by proposing a similar update rule. Note that [Tra+19] does calculate a single anchor

point, and it still requires the knowledge of the smoothness and variance parameters.

3.2.4 Preliminaries

We discuss stochastic non-convex optimization problems where the objective f :Rd 7→R is of

the following form,

f (x) := Eξ∼D[ f (x;ξ)] ,

and D is an unknown distribution from which we may draw i.i.d. samples. Our goal is to

find an approximate stationary point of f , i.e. after T draws from D we should output a point

x̂ ∈Rd such that E∥∇ f (x)∥ ≤ Poly(1/T ).

We focus on first order methods, i.e., methods that may access the gradients of f (·,ξ), and

make the following assumptions regarding the noisy gradients and function values.

Bounded values: There exists an absolute constant B > 0 such that,

max
x,y∈Rd

| f (x)− f (y)| ≤ B. (3.14)
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Bounded gradients: There exists an absolute constant G > 0 such that,

∥∇ f (x;ξ)∥2 ≤G2 ; ∀x ∈Rd , ξ ∈ supp{D}. (3.15)

Bounded variance: There exists σ> 0 such that,

E
[∥∇ f (x;ξ)−∇ f (x)∥2 |σ(ξ)

]≤σ2 ; ∀x ∈Rd . (3.16)

Expectation over smooth losses: There exists L > 0 such that,

∥∇ f (x;ξ)−∇ f (y ;ξ)∥ ≤ L∥x − y∥ ; ∀x, y ∈Rd , ξ ∈ supp{D} . (3.17)

The last assumption also implies that the expected loss f (·) is L-smooth. A property of smooth

functions that we will exploit throughout the paper is the following,

f (y) ≤ f (x)+〈∇ f (x), y −x〉+ (L/2)∥y −x∥2 ; ∀x, y ∈Rd (3.18)

In the rest of this manuscript, ∇ f (x;ξ) relates to gradients with respect to x, i.e., ∇ := ∇x .

We use ∥ · ∥ to denote the Euclidean norm, and x∗ denotes a global minima of f (·), i.e.,

x∗ = minx∈Rd f (x).

3.2.5 Method

In this section we present STORM+ (STochastic Recursive Momentum +); a parameter-free

stochastic optimization method that finds approximate stationary points at an optimal rate.

We describe our method in Algorithm 6 and Eq. (3.22), and state its guarantees in Theo-

rem 3.2.1. We will build towards the ultimate result by first analyzing a simplified version

which will help us explain the individual roles of adaptive step-size and the adaptive momen-

tum term. We also aim to describe the dependence between the step-size and momentum,

which helps use prove the noise-adaptive convergence rates without needing to know the

smoothness parameter.

The original STORM algorithm. The original STORM template of [CO19] relies on an SGD-

style update with a corrected momentum. Concretely, the idea is to maintain a gradient

estimate dt which is a corrected weighted average of past stochastic gradients, and then update

the iterates similarly to SGD,

X t+1 = X t −γt dt . (3.19)

Standard momentum is a weighted average of past gradients,

dt = at∇ f (X t ,ξt )+ (1−at )dt−1 ; where at ∈ [0,1] .
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Under this construction, dt is generally a biased estimate of ∇ f (X t ). In STORM it is suggested

to add a correction term ,(1−at )(∇ f (X t ,ξt )−∇ f (X t−1,ξt )), which leads to the following update

rule (again, at ∈ [0,1]),

dt =∇ f (X t ,ξt )+ (1−at )(dt−1 −∇ f (X t−1,ξt )) , (3.20)

The correction term plays a crucial role here: it exploits the smoothness of f (·,ξ) in a way

that leads to a variance reduction effect. To see this effect one can inspect the error of the

momentum dt compared to the exact gradient at X t ,

ϵt := dt −∇ f (X t ) .

The STORM update rule induces the following error dynamics,

ϵt = (1−at )ϵt−1 +at (∇ f (X t ,ξt )−∇ f (X t ))+ (1−at )Zt

where Zt := (∇ f (X t ,ξt )−∇ f (X t−1,ξt ))− (∇ f (X t )−∇ f (X t−1)). Roughly speaking, we want to

argue that the error has some decreasing behavior; whether in sequence or on average. To do

so, we want to argue that the second term and the third term either show some decreasing

behavior as we iterate the algorithm and hopefully converge to a stationary point. First, the

second term in the above dynamics, at (∇ f (xt ,ξt )−∇ f (xt )), which is the variance term, can

be controlled by correctly choosing the momentum term at . As at decreases, the contribution

of the variance term shrinks. For the last term, Lipschitz continuity of stochastic gradients

with respect to the same sample (Eq. (3.17)) immediately implies ∥Zt∥ ≤ O(∥X t − X t−1∥) =
O(γt−1∥dt−1∥). Intuitively, as we approach a stationary point (and use a small enough step-

size) then γt−1∥dt−1∥ should decrease, which in turn reduces the magnitude of Zt . Thus,

carefully controlling the step-size and momentum parameters leads to a variance reduction

effect which facilitates fast convergence. The novelty of our approach is identifying the

relationship between the step-size and momentum while ensuring parameter-free algorithm

design.

The original STORM paper [CO19] makes the following choices,

γt = θ/

(
w +

t∑
s=1

∥gs∥2
)1/3

& at = cL2γ2
t−1 , (3.21)

where we denote g t := ∇ f (xt ,ξt ). The above choice of step-size is inspired by AdaGrad

[DHS11], which also sets the step-size inversely proportional to the cumulative square norms

of past gradients. Note that θ and w are constants that depend on the smoothness of the objec-

tive L, as well as on the bound on the gradients G , and c is an absolute constant independent

of the problem’s characteristics. These choices of the constants and especially the choice of

at ∝ L2γ2
t−1 is crucial for the analysis of the original STORM. In fact, the convergence proof for

STORM breaks down unless we encode this prior knowledge into γt and at . Next, we describe

our parameter-free version.
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Algorithm 6: STORM+

Input: # of iterations T , X1 ∈Rd

1: Sample ξ1 and set d1 = g1 =∇ f (X1,ξ1)
2: for t = 1, ...,T do

3: at+1 = 1(
1+∑t

s=1 ∥gs∥2
)2/3

& γt = 1(∑t
s=1 ∥ds∥2/as+1

)1/3

4: X t+1 = X t −γt dt

5: Sample ξt+1 and set g t+1 :=∇ f (X t+1;ξt+1), and g̃ t :=∇ f (X t ;ξt+1)

6: dt+1 = g t+1 + (1−at+1)(dt − g̃ t )

7: end for
8: return X̂T by choosing uniformly at random from {X1, . . . , XT }

STORM+ relies on the original STORM template described in Equations (3.19) and (3.20), with

the following parameter-free choices of step-size and momentum parameter,

γt = 1/

( t∑
s=1

∥ds∥2/as+1

)1/3

& at = 1/

(
1+

t−1∑
s=1

∥gs∥2

)2/3

, (3.22)

where, again, we denote g t := ∇ f (X t ,ξt ). Note that in contrast to the original STORM, our

adaptive step-size builds on history of estimates {d1, . . . ,dt } as well as on the momentum

parameters {a1, . . . , at+1}. Our momentum term is similar to the adaptive choice of STORM,

yet it does not require a bound on the gradients nor on the smoothness parameter, which

was crucial for the original analysis. Finally, note that the above choice ensures at ∈ [0,1]. For

completeness we present our method in Algorithm 6, where it can be seen that STORM+ is a

combination of the original STORM template (Equations (3.19) and (3.20)) together with the

specific choices of γt and at appearing in Eq. (3.22). Similar to the discussion in Section 3.1.4,

the solution that STORM+ outputs is a point chosen uniformly at random among all iterates,

which is quite standard in (stochastic) non-convex optimization.

A note on notation: In Algorithm 6 and throughout the rest of the paper we will employ the

following notation due to margin-wise (horizontal) space constraints

g t :=∇ f (X t ,ξt ) ; g̃ t :=∇ f (X t ,ξt+1) ; ḡ t :=∇ f (X t ) .

One could interpret g t as the standard stochastic oracle feedback, the “tilde” on g̃ t denotes

the correction oracle call and the “bar” on ḡ t signifies the exact oracle information. Now, we

are at a position to present our main theorem regarding STORM+ (Algorithm 6):

Theorem 3.2.1. Under the assumption in Eq. (3.14), (3.15), (3.16) and (3.17) STORM+ ensures,

E
[∥∇ f (X̂T )∥]≤O

(
Mp

T
+ κσ1/3

T 1/3

)
,

where κ=O(1+B 3/4+L3/2); M =O(1+L9/4+B 9/8+G5+(LG4)3/2), and the expectation is with
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respect to the randomization of the samples as well as the selection of the output point.

Theorem 3.2.1 demonstrates that in the stochastic case STORM+ achieves the optimal O(1/T 1/3)

rate for our setting. Moreover, it can be seen that STORM+ implicitly adapts to the variance

of the noise; in the noiseless case where σ= 0, STORM+ recovers the optimal O(1/
p

T ) rate.

We note that scaling the step-size by some (absolute) constant factor may enable us to obtain

better dependence on L and B .

3.2.6 Analysis

In this section we provide the convergence analysis of the STORM+ algorithm. We begin with

the analysis in the offline case where σ = 0, and establish a convergence rate of O(1/
p

T )

for completeness. Then, we introduce a simplified version of STORM+, with a non-adaptive

momentum parameter of the form at+1 := 1/t 2/3. Due to simplicity and space limitations, this

simplified version enables us to illustrate the main steps of the original proof. We show that

this version achieves a convergence rate of O(1/T 1/3) in the stochastic case, though it does

not adapt to the variance. Finally, we provide a proof sketch for STORM+ in Algorithm 6 that

establishes the result in Theorem 3.2.1.

Offline Case

Here we analyze STORM+ in the case where σ= 0, and demonstrate a rate of O(1/
p

T ) for

finding an approximate stationary point.

Theorem 3.2.2. Let f satisfy Eq. (3.14), (3.17) and X̂T be generated after running Algorithm 6

for T iterations under deterministic oracle. Then it holds that,

E
[∥∇ f (X̂T )∥]≤O(

√
1+L3 +B 9/4/

p
T ) .

where we take expectation due to the selection of X̂T , uniformly at random among the iterate

sequence {X t } generated by the algorithm (see line 8 in Algorithm 6).

Proof. In the case where σ= 0 one can directly show by induction that dt = ḡ t =∇ f (X t ). So

the update rule becomes X t+1 = X t −γt∇ f (X t ). Now, using the smoothness of the objective

implies,

∆t+1 −∆t = f (X t+1)− f (X t ) ≤−γt∥∇ f (X t )∥2 +Lγ2
t ∥∇ f (X t )∥2/2 ,

here we denoted∆t := f (X t )− f (x∗), where x∗ ∈ argminx∈Rd f (x). Dividing by γt , re-arranging

and summing gives,

T∑
t=1

∥∇ f (X t )∥2 ≤ ∆1

γ1
− ∆T+1

γT
+

T∑
t=2

(
1

γt
− 1

γt−1

)
∆t + L

2

T∑
t=1

γt∥∇ f (X t )∥2
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≤ B

γ1
+B

T∑
t=2

(
1

γt
− 1

γt−1

)
+ L

2

T∑
t=1

∥∇ f (X t )∥2(∑t
s=1 ∥ḡs∥2

)1/3

≤ B

γT
+L

(
T∑

t=1
∥ḡ t∥2

)2/3

≤ B

(
T∑

t=1
∥∇ f (X t )∥2/at+1

)1/3

+L

(
T∑

t=1
∥∇ f (X t )∥2

)2/3

≤ B

(
1+

T∑
t=1

∥∇ f (X t )∥2

)2/9 (
T∑

t=1
∥∇ f (X t )∥2

)1/3

+L

(
T∑

t=1
∥∇ f (X t )∥2

)2/3

(3.23)

where the second inequality uses γt =
(∑t

s=1 ∥ḡs∥2/as+1
)−1/3 ≤ (∑t

s=1 ∥ḡs∥2
)−1/3

which holds

since dt = ∇ f (X t ) and at ≤ 1. We also use that ∆t ∈ [0,B ] together with γ−1
t −γ−1

t−1 ≥ 0. The

third inequality uses Lemma 3.4.3 below; and the last inequality uses 1/at+1 ≤ (1/aT+1) =(
1+∑T

t=1 ∥∇ f (X t )∥2
)2/3

, which holds since at is monotonically non-increasing.

To solve the above system, we want to represent it as a root finding for polynomia inequalities.

First, add 1 to both sides and define x9 = 1 +∑T
t=1 ∥∇ f (X t )∥2. Treating the inequality in

Eq. (3.23) as a polynomial of x results in the equivalent expression

x9 −Lx6 −B x5 −1 ≤ 0.

Using the same arguments as we did before, one coudl verify that setting x = O((1+L3 +
B 9/4)1/9) satisfies the polynomial inequality. This implies that

T∑
t=1

∥∇ f (X t )∥2 ≤ 1+
T∑

t=1
∥∇ f (X t )∥2 ≤O(1+L3 +B 9/4) .

Using the definition of X̂T as well as Jensen’s inequality gives us the final result,

E
[∥∇ f (X̂T )∥]= E[∥ḡ (X̂T )∥]≤√

E
[∥ḡ (X̂T )∥2

]=
√√√√ T∑

t=1
∥∇ f (X t )∥2/T ≤O(

√
1+L3 +B 9/4/

p
T ) ,

which establishes the bound. In the proof we have used the technical lemma below, which is

a generalization of Lemma 2.1.2 for any exponent 0 < p < 1.

Lemma 3.2.1. Let b1 > 0, b2, ...,bn ≥ 0 be a sequence of real numbers, p ∈ (0,1) be a real number.

n∑
s=1

bi(∑i
j=1 b j

)p ≤ 1

1−p

( n∑
s=1

bi

)1−p

■

Stochastic Case for Simplified STORM+

Here we analyze a simplified version of STORM+ in the stochatic setting. While this version

does not adapt to the noise variance, it exhibits the optimal rate of O(1/T 1/3) in the stochastic
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case, and its analysis illustrates some of the main ideas that we employ in the proof of the fully

adaptive STORM+ (which is more involved).

The version that we analyze here differs from STORM+ in the choice of the momentum pa-

rameters. Here we choose a1 = 1 and at+1 = 1/t 2/3 ;∀t ≥ 1, in contrast to the adaptive

choice that we make in Algorithm 6. Note that we keep the same expression for the step

size, γt = 1/
(∑t

s=1 ∥ds∥2/as+1
)1/3

.

Theorem 3.2.3. Under Assumptions in Eq. (3.14), (3.15), (3.16) and (3.17), simplified STORM+

ensures,

E
[∥∇ f (X̂T )∥]=O(

√
L3 +σ2 +B 3/2/T 1/3) ,

Note that the estimator dt is not (conditionally) unbiased. This eliminates a standard SGD-

type analysis. Similar to the proof technique in Cutkosky and Orabona [CO19], our approach

hinges on bounding the cumulative error E
[∑T

t=1∥ϵt∥2
]
, where ϵt is the difference between

the corrected momentum dt and the exact gradient ḡ t , i.e. ϵt = dt − ḡ t . On top of that, we go a

step further and understand the behavior of the cumulative error with respect to the sum of

exact gradients, E
[∑T

t=1 ∥ḡ t∥2
]
.

Before we proceed with the proof sketch of the simplified version, let us present an intermedi-

ate result, which provides us with the main departure point for the main results (Theorem 3.2.1)

and the analysis of the simplified algorithm (Theorem 3.2.3).

Lemma 3.2.2. Let {X t } be generated by STORM+ (Algorithm 6) under the assumptions in

Theorem 3.2.1. Then, it holds that

T∑
t=1

∥ḡ t∥2 ≤
T∑

t=1
∥ϵt∥2 +2B a−1/3

T+1 (
T∑

t=1
∥dt∥2)1/3 + 3

2
L(

T∑
t=1

∥dt∥2)2/3

Proof Sketch (Theorem 3.2.3). We divide the analysis into two cases:

• First, we take into account the large error regime where the cumulative error is greater than

the sum of exact gradients.

• Second, we analyze the more involved small error regime where we make additional use of

the Lipschitzness of individual stochastic gradients.

Bounding E
[∑T

t=1 ∥ϵt∥2
]
.

Let us mention the notation once more for completeness:

g t :=∇ f (X t ,ξt ) ; g̃ t :=∇ f (X t ,ξt+1) ; ḡ t :=∇ f (X t ) ; ϵt = dt − ḡ t .

Also, recall that the update rule for dt induces the following error dynamics,

ϵt = (1−at )ϵt−1 +at (g t − ḡ t )+ (1−at )Zt (3.24)
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where Zt := (g t−g̃ t−1)−(ḡ t−ḡ t−1). Letting Ft be the sigma-algebra defined by the randomness

up to and including time t , i.e., Ft := σ(x1,ξ1,ξ2, . . . ,ξt ) and recalling that both at and X t

depend on history up to t −1, i.e., Ft−1, immediately implies that

E
[

at (g t − ḡ t )|Ft−1
]= 0 & E [ (1−at )Zt |Ft−1 ] = 0.

Similarly, we have the following conditionally independent expression, E [ (1−at )ϵt−1|Ft−1 ] =
(1−at )ϵt−1. Thus, taking the square of the above equation and then computing the expected

value gives,

E
[∥ϵt∥2 ]≤ (1−at )2E

[∥ϵt−1∥2 ]+E[∥(1−at )Zt +at (g t − ḡ t )∥2 ]
≤ (1−at )2E

[∥ϵt−1∥2 ]+2(1−at )2E
[∥Zt∥2 ]+2a2

t E
[∥g t − ḡ t∥2 ]

≤ (1−at )E
[∥ϵt−1∥2 ]+8L2E

[
γ2

t−1∥dt−1∥2 ]+2a2
tσ

2 , (3.25)

where the second line uses ∥b + c∥2 ≤ 2∥b∥2 +2∥c∥2, and the last line uses E
[∥g t − ḡ t∥2

]≤σ2

and (1−at ) ∈ [0,1], as well as the smoothness assumption that implies

∥Zt∥ ≤ ∥g t − g̃ t−1∥+∥ḡ t − ḡ t−1∥ ≤ 2L∥X t −X t−1∥ = 2Lγt−1∥dt−1∥.

Dividing Eq. (3.25) by at and re-arranging implies,

E
[∥ϵt−1∥2 ]≤ 1

at
(E

[∥ϵt−1∥2 ]−E[∥ϵt∥2 ]
)+8L2E

[
γ2

t−1∥dt−1∥2/at
]+2atσ

2 .

Summing the above, and using ϵ0 := 0 gives,

E

[
T∑

t=1
∥ϵt−1∥2

]
≤−E

[∥ϵT ∥2
]

aT︸ ︷︷ ︸
(A)

+
T−1∑
t=1

(
1

at+1
− 1

at
)E

[∥ϵt∥2 ]
︸ ︷︷ ︸

(B)

+8L2E

[
T∑

t=1
γ2

t−1∥dt−1∥2/at

]
︸ ︷︷ ︸

(C)

+2σ2
T∑

t=1
at︸ ︷︷ ︸

(D)

(3.26)

Next, we bound all the term on the RHS of the above equation.

Bounding (A). Since aT ≤ 1 we can bound −E[∥ϵT ∥2
]
/aT ≤−E[∥ϵT ∥2

]

Bounding (B). Note that G(z) = z2/3 is a concave function in R+. Thus, the gradient inequality

for concave functions implies that ∀z1, z2 ≥ 0, we have (z1 + z2)2/3 − z2/3
1 ≤ 2

3 z−1/3
1 z2. Hence,

for all t ≥ 2,

1/at+1 −1/at = t 2/3 − (t −1)2/3 ≤ 2(t −1)−1/3/3 ≤ 2/3 .

Moreover, 1/a2−1/a1 = 0. Combining the above expressions together, we have (B) ≤ (2/3)E
[∑T

t=1∥ϵt∥2
]
.
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Bounding (C). By the definition of γt we have,

(C) = E
[

T∑
t=1

∥dt−1∥2/at(∑t−1
s=1 ∥ds∥2/as+1

)2/3

]

≤ 3E

[(
T−1∑
t=1

∥dt∥2/at+1

)1/3 ]

≤ 3T 2/9

(
E

[
T∑

t=1
∥dt∥2

])1/3

.

where the first inequality uses Lemma 3.4.3, and the second inequality uses 1/at ≤ 1/aT+1 ≤
T 2/3 as well as Jensen’s inequality with respect to the concave function U (z) = z1/3 defined

over R+.

Bounding (D). Lemma 3.4.3 immediately implies that (D) = 1+∑T−1
t=1 1/t 2/3 ≤ 1+ 3T 1/3 ≤

4T 1/3.

Plugging these bounds into Eq. (3.26) and re-arranging yields,

E

[
T∑

t=1
∥ϵt∥2

]
≤ 72L2T 2/9

(
6E

[
T∑

t=1
∥dt∥2

])1/3

+24σ2T 1/3 . (3.27)

Now, we use the bound of Eq. (3.27) in order to bound the sum of square gradients. Let us

divide the analysis into two cases.

Case 1 (Large error regime): E
[∑T

t=1∥ϵt∥2
]≥ 1

2E
[∑T

t=1 ∥ḡ t∥2
]
.

Combining the condition of Case 1 with ∥dt∥2 ≤ 2∥ḡ t∥2 +2∥ϵt∥2, implies that E
[∑T

t=1 ∥dt∥2
]≤

6E
[∑T

t=1∥ϵt∥2
]
. Plugging this inside Eq. (3.27) yields,

E

[
T∑

t=1
∥ϵt∥2

]
≤ 72 ·61/3L2T 2/9E

[
T∑

t=1
∥ϵt∥2

]1/3

+24σ2T 1/3 .

Let us denote x = E[∑T
t=1∥ϵt∥2

]1/3
, then the above expression could be represented as a cubic

polynomial of the form (ignoring the absolute constants for simplicity),

x3 − (LT 1/9)2x −σ2T 3/9 ≤ 0.

One could easily see that taking x = O(LT 1/9) satisfies the inequality. However, this is not

satisfactory as we would lose the dependence on σ. By a bit more involved analysis, we end

up taking x = O((L3 +σ2)1/3T 1/9), which immediately implies that E
[∑T

t=1∥ϵt∥2
] ≤ O((L3 +

σ2)T 1/3). Finally, due to the condition of Case 1 we therefore have,

E

[
T∑

t=1
∥ḡ t∥2

]
≤ E

[
T∑

t=1
∥ϵt∥2

]
≤O((L3 +σ2)T 1/3),

93



Chapter 3. Adaptive methods and variance reduction for smooth, non-convex optimization

concluding the first part of the proof under Case 1.

Case 2 (Small error regime): E
[∑T

t=1∥ϵt∥2
]≤ 1

2E
[∑T

t=1 ∥ḡ t∥2
]
.

Once again, ∥dt∥2 ≤ 2∥ḡ t∥2+2∥ϵt∥2 and the condition of Case 2 together imply that E
[∑T

t=1 ∥dt∥2
]≤

3E
[∑T

t=1∥ḡ t∥2
]
.

Now using the update rule X t+1 = X t −γt dt together with smoothness of f (·), one can show in

a similar manner to the derivation of Eq. (3.23) the following bound,

T∑
t=1

∥ḡ t∥2 ≤
T∑

t=1
∥ϵt∥2 +2BT 2/9

(
T∑

t=1
∥dt∥2

)1/3

+ 3

2
L

(
T∑

t=1
∥dt∥2

)2/3

(3.28)

which is due to Lemma 3.2.2 by replacing the adaptive definition of momentum parameter

with at+1 = t−2/3. Taking the expectation of the above equation and plugging in E
∑T

t=1 ∥dt∥2 ≤
3E

∑T
t=1∥ḡ t∥2 as well as E

[∑T
t=1∥ϵt∥2

]≤ 1
2E

[∑T
t=1 ∥ḡ t∥2

]
gives,

E

[
T∑

t=1
∥ḡ t∥2

]
≤ 1

2
E

[
T∑

t=1
∥ḡ t∥2

]
+2 ·31/3BT 2/9E

[
T∑

t=1
∥ḡ t∥2

]1/3

+ 34/3

2
LE

[
T∑

t=1
∥ḡ t∥2

]2/3

(3.29)

where we also used Jensen’s inequality with respect to the concave functions z1/3 and z2/3

defined over R+. Using the same arguments regarding cubic polynomials in the Case 1, one

could realize that the above immediately implies, E
[∑T

t=1∥ḡ t∥2
] ≤ O((L3 +B 3/2)T 1/3). This

concludes Case 2.

Final bound: Combining case 1 and 2.

By summing up the two possible bounds, we have shown that E
[∑T

t=1∥ḡ t∥2
]≤O((L3 +σ2 +

B 3/2)T 1/3), combining this with the definition of X̂T and using Jensen’s inequality similarly to

what we did in the offline analysis provides,

E
[∥∇ f (X̂T )∥]=O(

√
L3 +σ2 +B 3/2/T 1/3) ,

which concludes the proof. ■

So far in this sectiion, the techniques which enabled us to adapt to the smoothness and vari-

ance bounds is fundamentally different than what we have seen in Chapter 2 and Section 3.1

of this chapter. The main goal of the previous sections was to primarily show that the error

with respect to not knowing the smoothness or the variance could be compensated on average.

By using the data-adaptive, monotonically decreasing step-sizes in the sense of AdaGrad, the

step-size approximates the (inverse) smoothness constant well enough, and we can argue

that the cumulative error of such an approximation is bounded by a constant. This, in turn,

implies that the additional error term subsequently decreases in the same order as the optimal

convergence rate.

In this section, we go down a different route, and try to understand how the cumulative
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variance behaves. Essentially, knowing the smoothness and gradient bounds enables to

have an expected decrease in the variance. Our solution is to understand the growth of the

cumulative variance with respect to the sum of exact gradients, which helps us relate the

cumulative error and noise in the estimator directly to the convergence metric. This approach

is fundamentally different than what we have presented so far within the context of analyzing

parameter-free, data-adaptive algorithms. The next section will make use of similar arguments

to prove convergence rates in the more specific (non-convex) finite-sum minimization.

Stochastic Case for the Original STORM+ (Algorithm 6)

Finally, we provide a sketch of the proof for the main theorem with respect to our original

algorithm. At a high level, the analysis follows similar lines to that of the simplified STORM+ in

the previous section. There are two extra challenges we need to handle:

1. Now at is a random variable that depends on the noisy samples. This introduces additional

measurability problems.

2. The differences 1/at+1 −1/at are not necessarily smaller than 1.

Among the tools that we use to address the first challenge is a version of Young’s inequality. It

is essential to identify the correct exponents and constants for different terms that appear on

the right-hand side. We will defer the details to the appendix and focus on the handling of the

resulting terms.

Recall that in the simplified version of our algorithm, we have shown that 1/at+1 −1/at ≤ 2/3,

which was crucial in bounding the term (B). To cope with the second challenge, we bound the

expectation of
∑T

t=1 ∥ϵt∥2 by splitting the summation into two regimes,

T∑
t=1

∥ϵt∥2 =
τ∗∑

t=1
∥ϵt∥2 +

T∑
t=τ∗+1

∥ϵt∥2

where τ∗ is a time-step after which we can ensure that 1/at+1 −1/at ≤ 2/3. This technique is

similar to what we have done in Chapter 2; we tried to identify a point in time beyond which

the step-size is going to be smaller than C /L, where C is some positive constant that depends

on the algorithm and the problem setting at hand. In the proof sketch, we delve into the details

of how we handle the two aforementioned challenges.

Before we proceed with the proof sketch of the main theorem, we would like to present a

complementary numerical inequality, which considers the case of Lemma 3.4.3 when the

exponent is p = 4/3, simultaneously going beyond the context of Lemma 3.1.1.

Lemma 3.2.3. For any non-negative real numbers a1, . . . , an ∈ [0, amax],

n∑
i=1

ai

(1+∑i−1
j=1 a j )4/3

≤ 12+2amax .
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Proof Sketch of Theorem 3.2.1. The proof is composed of three parts:

1. In the first part we bound the cumulative expectation of errors E
[∑τ∗

t=1 ∥ϵt∥2
]
, where ϵt :=

dt − ḡ t , and τ∗ is a stopping time after which we can ensure that 1/at+1 −1/at ≤ 2/3. This

solves the first challenge.

2. In the second part we use our bound on E
[∑τ∗

t=1 ∥ϵt∥2
]

in order to bound the total sum of

square errors, E
[∑T

t=1 ∥ϵt∥2
]
.

3. Then, in the last part, we divide into two sub-cases as we did in the simpflified proof sketch

such that we first analyze the setting if E
[∑T

t=1 ∥ϵt∥2
] ≤ (1/2)E

[∑T
t=1 ∥ḡ t∥2

]
and then its

complement. We also use the smoothness of the objective together with the update rule,

similarly to what we do in Eq. (3.23).

Part (1): Bounding E
[∑τ∗

t=1 ∥ϵt∥2
]
.

Recall the error dynamics of STORM+ in Eq. (3.24). Taking the square and summing up to some

τ∗ ∈ [T ] enables us to bound,

τ∗∑
t=1

∥ϵt∥2 ≤
τ∗∑

t=1
(1−at )∥ϵt−1∥2 +2

τ∗∑
t=1

∥Zt∥2 +2
τ∗∑

t=1
a2

t ∥g t − ḡ t∥2 +
τ∗∑

t=1
Mt ,

where Mt = 2〈(1−at )ϵt−1, at (g t − ḡ t )+(1−at )Zt 〉 is a martingale difference sequence such that

E[Mt |Ft−1] = 0, where Ft is the history upto and including iteration t , i.e., Ft := {x1,ξ1,ξ2,ξ3 . . . ,ξt }.

Also, recall that we have defined Zt := (g t − g̃ t−1)− (ḡ t − ḡ t−1).

Now let us define β := min{1,1/G4}, and τ∗ = max{t ∈ [T ] : at ≥ β}. Recalling that at+1 is

measurable with respect to Ft implies that τ∗ ∈ [T ] is a stopping time adapted to the same

sigma-algebra sequence, {Ft }. Re-arranging the above and using the definition of τ∗ implies,

β
τ∗∑

t=1
∥ϵt∥2 ≤ ∥ϵτ∗∥2 +

τ∗−1∑
t=1

at+1∥ϵt∥2 ≤ 2
T∑

t=1
∥Zt∥2

︸ ︷︷ ︸
(i)

+2
T∑

t=1
a2

t ∥g t − ḡ t∥2

︸ ︷︷ ︸
(ii)

+
τ∗∑

t=1
Mt︸ ︷︷ ︸

(iii)

where we used τ∗ ≤ T , as well as β≤ 1. Note that we haven’t used the particular definition of β

yet. Next we bound the expected value of the above terms.

Bounding (i). As in the previous section, the smoothness property implies that ∥Zt∥2 ≤ 4L2γ2
t−1∥dt−1∥2.

Using the expression for γt−1 together with Lemma 3.4.3 enables to show,

(i) ≤ 4L2
T∑

t=1

∥dt−1∥2

(
∑t−1

s=1 ∥ds∥2)2/3
≤ 12L2(

T∑
t=1

∥dt∥2)1/3 .

Bounding (ii). Observe that at and g t are conditionally independent given Ft . Therefore, one

can directly show that E[a2
t ∥g t − ḡ t∥2] ≤ E[a2

t ∥g t∥2] by quadratic expansion. Together with the
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expression for at , it is possible to show that,

E [ (ii) ] ≤ E
T∑

t=1

∥g t∥2

(1+∑t−1
s=1 ∥gs∥2)4/3

≤C1 .

where C1 is a constant, and the second inequality is due to Lemma 3.2.3, proof of which we

describe in the appendix.

Bounding (iii). Since τ∗ ∈ [T ] is a bounded stopping time, and Mt is a martingale difference

sequence, then Doob’s optional stopping theorem [LP17] implies E [ (iii) ] = E[∑τ∗
t=1 Mt

]= 0.

Final bound. Combining all three bounds above, and applyting Jensen’s inequality for U (z) =
z1/3 the concave function defined over R+ gives us the first part of the proof,

E

[
τ∗∑

t=1
∥ϵt∥2

]
≤ 2C1/β+24(L2/β)E

[
T∑

t=1
∥dt∥2

]1/3

. (3.30)

Part (2): Bounding E
[∑T

t=1 ∥ϵt∥2
]
.

Recall the error dynamics of STORM+ in Eq. (3.24). Dividing by
p

at , taking the square and

summing up to some T enables to bound,

1

at
∥ϵt∥2 ≤ (

1

at
−1)∥ϵt−1∥2 +2

∥Zt∥2

at
+2at∥g t − ḡ t∥2 +Yt

where Yt = 2〈1−atp
at
ϵt−1,

p
at (g t − ḡ t )+ 1−atp

at
Zt 〉 is a martingale difference sequence such that

E [Yt |Ft−1 ] = 0. Re-arranging the above and summing over t yields,

T∑
t=1

∥ϵt−1∥2 ≤− 1

aT
∥ϵT ∥2︸ ︷︷ ︸

(A)

+
T∑

t=1
(

1

at+1
− 1

at
)∥ϵt∥2

︸ ︷︷ ︸
(B)

+2
T∑

t=1

∥Zt∥2

at︸ ︷︷ ︸
(C)

+2
T∑

t=1
at∥g t − ḡ t∥2

︸ ︷︷ ︸
(D)

+
T∑

t=1
Yt︸ ︷︷ ︸

(E)

First off, due to the martingale property for Yt , we have E [ (E)] = 0. Terms (A),(C), (D) will

be bounded using the same arguments and techniques as we have done in the proof of the

simplified algorithm. The challenge is bounding (B) in the case where at is data-adaptive and

hence a random variable.

Bounding (B). Using the definition of τ∗ one can show that 1/at+1 ≤ 1/β̃ ;∀t ≤ τ∗, where

1/β̃ := (1/β3/2 +G2)2/3 due to boundedness of stochastic gradients. Moreover, by using the

gradient inequality for the function U (z) = z2/3 where z = 1+∑t
s=1∥i ter [g ]∥2 and the definition

of τ∗ we can show,

1/at+1 −1/at ≤ 2/3 ; ∀t ≥ τ∗+1
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This enables to decompose and bound (B) according to τ∗,

T∑
t=1

(
1

at+1
− 1

at
)∥ϵt∥2 =

τ∗∑
t=1

(
1

at+1
− 1

at
)∥ϵt∥2 +

T∑
t=τ∗+1

(
1

at+1
− 1

at
)∥ϵt∥2

≤ 1

β̃

τ∗∑
t=1

∥ϵt∥2 + 2

3

T∑
t=τ∗+1

∥ϵt∥2 ≤ 1

β̃

τ∗∑
t=1

∥ϵt∥2 + 2

3

T∑
t=1

∥ϵt∥2 . (3.31)

Then, by plugging the expression in Eq. (3.30) into the above expression, the expected value of

term (B) is bounded.

From here the analysis of the other terms and bounding E
[∑T

t=1 ∥ϵt−1∥2
]

is done similarly to

our analysis of simplified STORM+.

Part (3): BoundingE
[∑T

t=1 ∥ḡ t∥2
]
. Finally, we analyze the growth of cumulative error E

[∑T
t=1∥ϵt∥2

]
with respect to (1/2)E

[∑T
t=1 ∥ḡ t∥2

]
in two cases; E

[∑T
t=1∥ϵt∥2

]≤ (1/2)E
[∑T

t=1 ∥ḡ t∥2
]

and its

complement expression. The rest is very similar to our analysis in the simplified setting, details

of which is presented in the appendix. ■

3.2.7 Experiments

In this section we provide numerical performance of STORM+ for a multi-class classification

task. Specifically, we train ResNet34 architecture on CIFAR10 dataset using SGD with mo-

mentum, STORM and STORM+, as well as AdaGrad and Adam. We implemented the whole

setup in pytorch [Pas+19] retrieving the model and the dataset from torchvision package. We

executed the experiments on NVIDIA DGX infrastructure. Specifically, our code ran on NVIDIA

A100-SXM4-40GB graphics card. We use mini-batches of 100 samples both for training and

testing, while using the default train/test data split provided in the package.

To be fair to all methods, we fixed all the parameters to their default value except for the

step-size. Then, we executed an initial step-size sweep over the same logarithmic range for all

the algorithms. All methods use a constant step-size schedule without any heuristic strategies.

All methods are run with the best performing initial step-size after tuning and the results for a

single run are presented in Figure 3.1. In the plots, epoch refers to the number of passes over

dataset, not number of gradient calls. Per iteration cost of STORM and STORM+ are twice that

of other methods with respect to forward/backward passes.

The results do not exhibit a noticeable practical advantage for STORM+, however, they verify

that it achieves comparable performance with respect to other adaptive methods. The perfor-

mance of STORM and STORM+ are quite close to each other under all 4 metrics. In the training

phase, STORM and STORM+ seem to outperform other methods by a small margin, both in

training accuracy and training loss. Adam and SGD seem to achieve a relatively small training

accuracy and relatively large training loss compared to other methods. In the test phase,

we observe a different picture where Adam generalizes slightly better than other methods,

followed by STORM and STORM+ as we could see in Figure 3.1d.
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(d) Test accuracy

Figure 3.1: Comparison of SGD and adaptive methods, Resnet34 on CIFAR10

In terms of ease of tuning, provably, STORM+ does not require the knowledge of any problem

parameters to operate and only initial step-size tuning suffices, while STORM additionally

needs to tune the initial momentum parameter as, in theory, it requires the knowledge of

smoothness and bound on the gradients. Adam would need tuning for its moving average

parameters β1 and β2, while SGD has a momentum parameter which is subject to a search

over admissible values. Similar to STORM+, AdaGrad does not require tuning beyond initial

step-size.

3.2.8 Conclusion

We have presented a novel parameter-free and adaptive algorithm for non-convex optimiza-

tion that obtains the optimal rate in the setting of expectation over smooth losses while

adapting to variance in gradient estimates. Our approach suggests a new way to set the step-

size and momentum jointly and adaptively throughout the learning process. We also present

a new analysis approach for the study of parameter-free methods, specifically applicable for

the case of expectation over smooth losses, and variance-reduced estimator dt with corrected
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momentum as in Cutkosky and Orabona [CO19]. Different than the techniques used in Chap-

ter 2, we especially focus on the growth of cumulative variance/error, and quantify its growth

with respect to the sum of exact gradients. Instead of guaranteeing a monotonic decrease

in variance ∥ϵt∥2 (in expectation), we control its evolution for the whole of the execution on

average. We believe that our alternative approaches will open up new avenues to both practical

and theoretical developments in the study of non-convex machine learning problems and

variance reduction techniques.

100



3.3 Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization

3.3 Adaptive Stochastic Variance Reduction for Non-convex Finite-

Sum Minimization

3.3.1 Bibliographic Note

This section (Section 3.3) is based on the published work Kavis et al. [Kav+22], published in

the NeurIPS 2022 conference.

Author list of the published work.

• Ali Kavis

• Stratis Skoulakis

• Kimon Antonakopoulos

• Leello Tadesse Dadi

• Volkan Cevher

Description of contributions. The candidate worked on the earlier version of Algorithm 7

and proved parameter-free rates with Õ
(
1/
p

T
)

iteration complexity. However, the depen-

dence on number of components n in the sample complexity was sub-optimal. Stratis Sk-

oulakis identified a different n-dependence in the adaptive step-size (as in line 9 in Algo-

rithm 7) and improved the sample complexity to its final form in Theorem 3.3.1. The candi-

date and Stratis Skoulakis jointly contributed to all the theoretical results in this work. Leello

Tadesse Dadi implemented the neural network experiments (see Figure 3.3 and Table 3.3)

while the rest of the experimental results under “Convex loss with non-convex regularizer” are

due to the candidate (Figure 3.2).

3.3.2 Introduction

In this last section, we will study smooth, non-convex minimization problems with the follow-

ing finite-sum structure:

min
x∈Rd

f (x) := 1

n

n∑
i=1

fi (x), (Prob)

where each component function fi :Rd →R is L-smooth and is possibly non-convex, and we

further assume f is also non-convex. We seek to find an ϵ-approximate first-order stationary

point x̂ of f , such that ∥∇ f (x̂)∥ ≤ ϵ, where ϵ> 0 is the accuracy of the desired solution.

This structure captures many interesting learning problems from empirical risk minimiza-

tion to training of neural networks. First-order methods have been the standard choice for

solving (Prob), due to their efficiency and favorable practical behavior. In that regard, while
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gradient descent (GD) requires O(n/ϵ2) gradient computations, stochastic gradient descent

(SGD) requires O(1/ϵ4) overall gradient computations. In many interesting machine learning

applications n tends to be large, e.g., training a neural network for image classification with

very big image datasets [Den+09b], hence SGD typically leads to better practical performance.

To leverage the best of both regimes, GD and SGD, the so-called variance reduction (VR) frame-

work combines the faster convergence rate of GD with the low per-iteration complexity of SGD.

Originally proposed for solving strongly-convex problems [JZ13; DBL14; Ngu+17], variance

reduction frameworks essentially generate low-variance gradient estimates by maintaining a

balance between periodic full gradient computations and stochastic (mini-batch) gradients.

VR methods and their theoretical behavior for convex problems have been well-studied un-

der various problem setups and assumptions, including µ-strongly convex functions with

O(n + (L/µ) log(1/ϵ)) complexity [JZ13; Ngu+17; DBL14]; µ-strongly convex functions with

accelerated O(n +√
L/µ log(1/ϵ)) complexity [All17a; LLZ19; SJM20] and smooth, convex

functions with Õ(n +1/ϵ) complexity [AY16; SJM20; Dub+22].

For non-convex minimization, earlier attempts extended the existing VR frameworks, achiev-

ing the first rates of order O(n +n2/3/ϵ2) with sub-optimal dependence on n [Red+16; ZXG18;

All17b; LL18]. The most recent non-convex VR methods [Fan+18; Wan+19; Li+21; Pha+20;

LHR21] close this gap and achieve the optimal gradient oracle complexity of O(n+pn/ϵ2) [Fan+18].

Adaptivity and First-order Optimization

The selection of the step-size is of great importance in both the theoretical and practical

performance of first-order methods, including the aforementioned VR methods. In the case

of L-smooth minimization, first-order methods need the knowledge of L so as to adequately

select their step-size [Nes03], otherwise the method is not guaranteed to be convergent and

might even diverge [Dub+22; Liu+22a]. To elucidate, classical analysis relies on the (expected)

descent property and guarantees that the algorithm monotonically makes progress every

iteration. To enforce this property everywhere on the optimization landscape, one needs to

pick the step-size as γt ≤O(1/L), which restricts the step length of the algorithm with respect

to the worst-case constant L. On the other hand, estimating the smoothness constant for

an objective of interest, such as neural networks, is a very hard task [GRC20]. At the same

time, using crude bounds on the smoothness constant leads to very small step-sizes and

consequently to poorer convergence. In practice the step-size is tuned through an empirical

search over a range of hand-picked values that adds a considerable computational overhead

and burden. In order to alleviate the burden of tuning process, we need step-sizes that adjust

in accordance with the optimization path.

A popular line of research studies first-order methods that adaptively select their step-size by

taking advantage of the previously produced point. In many settings of interest, these adaptive

methods are able to guarantee optimal convergence rates without requiring the knowledge

of the smoothness constant L while they often admit superior empirical performance due to

their ability to decrease the step-size according to the local geometry of the objective function.
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Inspired by AdaGrad introduced in the concurrent seminal works of [DHS11; MS10], a recent

line of works [LYC18; Kav+19; Jou+20; ENV21] propose adaptive gradient methods that given

access to noiseless gradient-estimates achieve accelerated rates in the case of L-smooth convex

minimization without requiring the knowledge of smoothness constant L. Similarly, Ene,

Nguyen, and Vladu [ENV21] and Antonakopoulos, Belmega, and Mertikopoulos [ABM21] pro-

pose adaptive methods with optimal convergence rates for monotone variational inequalities

while Antonakopoulos et al. [Ant+21] provide adaptive methods for monotone variational

inequalities assuming access to relative noise gradient-estimates. Hsieh, Antonakopoulos,

and Mertikopoulos [HAM21] and Vu, Antonakopoulos, and Mertikopoulos [VAM21] study the

convergence properties of adaptive first-order methods for routing and generic games.

Adaptive non-convex methods for general noise. Related to our work is a recent line of

papers studying adaptive first-order methods under the general noise model. In this setting,

a method is assumed to access unbiased stochastic estimate of the gradient with bounded

variance. This is a more general setting than finite-sum optimization that comes with worse

lower bounds, i.e. Ω(1/ϵ4) gradient-estimates are needed so as to compute an ϵ-stationary

point. We remark that in the case of finite-sum minimization there exist variance reduction

methods with O(n +p
n/ϵ2) gradient complexity [Fan+18; Wan+19]. A recent line of works

study adaptive first-order methods that are able to achieve near-optimal oracle-complexity

while being oblivious to the smoothness constant L and the variance of the estimator [WWB19;

Faw+22; LO19; KLC22]. For example, Ward, Wu, and Bottou [WWB19] established that the

adaptive method called AdaGrad-Norm is able to achieve Õ(1/ϵ4) gradient-complexity in the

general noise model. In their recent work, Faw et al. [Faw+22] significantly extended the results

of Ward et al. [WWB19] by showing that AdaGrad-Norm achieves the same rates even in case

the gradient admits unbounded norm (a restrictive assumption in [WWB19]) while their result

persists even if the variance increases with the gradient norm. In a slightly more restrictive

setting in which the objective function admits the form f (x) := Eξ∼D f (x,ξ) and individual

components f (x,ξ) are L-smooth with respect to x for all ξ, Levy, Kavis, and Cevher [LKC21]

proposed an adaptive method called STORM+ that achieves O(1/ϵ3) gradient-complexity. Their

result simultanesouly removes the requirement of the knowledge on problem parameters (e.g.,

smoothness constant, absolute bounds on gradient norms) that the original STORM method

[CO19] requires. The latter gradient-complexity matches theΩ(1/ϵ3) lower bound of Arjevani

et al. [Arj+19].

Adaptivity and finite-sum minimization. In parallel with what we discussed earlier, existing

variance-reduction methods (VR) crucially need to know the smoothness constant L to select

their step-size appropriately to guarantee their convergence. To this end, the following natural

question arises

Can we design adaptive VR methods that achieve the optimal gradient computation

complexity?

103



Chapter 3. Adaptive methods and variance reduction for smooth, non-convex optimization

Table 3.2: In the following table we present the gradient computation complexity of the existing
non-adaptive and adaptive variance reduction methods for both convex and non-convex finite-sum
minimization. Since for there are multiple non-adaptive VR methods, we present the earliest-proposed
method matching up to logarithmic factors the respective lower bounds.

f (x) Non-Adaptive VR Adaptive VR Lower Bound

convex Õ
(
n +

√
n
ϵ

)
Õ

(
n +

√
n
ϵ

)
Ω(n +

√
n
ϵ )

(ϵ-optimal solution) [LLZ19] [Liu+22a] [WS16]

convex Õ
(
n + 1

ϵ

)
Õ

(
n + 1

ϵ

)
Ω(n +

√
n
ϵ )

(ϵ-optimal solution) [ZY16] [Dub+22] [WS16]

non-convex O
(
n +

p
n
ϵ2

)
Õ

(
n +

p
n
ϵ2

)
Ω

(
n +

p
n
ϵ2

)
(ϵ-stationary point) [Fan+18] [This work] [Fan+18]

Li, Wang, and Giannakis [LWG20] and Tan et al. [Tan+16] were the first to propose adaptive

variance-reduction methods by using the Barzilai-Borwein step-size [BB88]. Despite their

promising empirical performance, these methods do not admit formal convergence guar-

antees. When the objective function f in (Prob) is convex, [Dub+22] recently proposed an

adaptive VR method requiring O(n +1/ϵ) gradient computation while, shortly after, [Liu+22a]

proposed an accelerated adaptive VR method requiring O(n +p
n/

p
ϵ) gradient computations.

To the best of our knowledge, there is no adaptive VR method in the case where f is non-convex.

We remark that f being non-convex captures the most interesting settings such as minimizing

the empirical loss of deep neural network where each fi stands for the loss with respect to

i -th data point and thus is a non-convex function in the parameters of the neural architecture.

Through this particular example, we could motivate adaptive VR methods in two fronts: first,

even estimating the smoothness constant L of a deep neural network is prohibitive [GRC20],

and at the same time, the parameter n in (Prob) equals the number of data samples, which

can be very large in practice and is prohibitive for the use of deterministic methods.

Contribution and Techniques. In this work we present an adaptive VR method, called

ADASPIDER, that converges to an ϵ-stationary point for (Prob) by using Õ(n+pnL2/ϵ2) gradient

computations. Our gradient complexity bound matches the existing lower bounds up to

logarithmic factors [Fan+18]. ADASPIDER combines an adaptive step-size schedule in

the lines proposed by ADAGRAD [DHS11] with the variance-reduction mechanism based on

the stochastic path integrated differential estimator of the SPIDER algorithm [Fan+18]. More

precisely, ADASPIDER selects the step-size by aggregating the norm of its recursive estimator,

while following a single-loop structure as in Fang et al. [Fan+18].

Our contributions and techniques can be summarized as follows:

• To our knowledge, ADASPIDER is the first parameter-free VR method for smooth, non-
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convex problems with finite-sum structure in the sense that it is both accuracy-independent

and is oblivious to the knowledge of any problem parameters including L. Moreover, ϵ-

independence enables us to provide any-iterate guarantees. While SPIDER needs both ϵ

and L to set its step-size as min( ϵ
L
p

n∥∇t∥,
, 1

2
p

nL
) to achieve optimal gradient complexity

[Fan+18], all other existing non-convex methods must know at least the value of L in order

to guarantee convergence [AH16a; Wan+19].

• We introduce a novel step-size schedule γt := n−1/4
(p

n +∑t
s=0∥∇s∥2

)−1/2
where ∇s is the

recursive variance-reduced estimator at round s. By identifying a unique additive/multi-

plicative form for integrating n, we manage to achieve optimal dependence on the number

of components. We note that Adaspider can be viewed as SPIDER with the step-size of

AdaGrad-Norm [Faw+22; WWB19; SM10; OP15] where the parameters are respectively

selected as η := n1/4 and b2
0 :=p

n [Faw+22].

• We show how to combine the above adaptive step-size schedule with the recursive SPIDER

estimator in order to ensure that the average variance 1
T

∑T−1
t=0 E

[∥∇t −∇ f (X t )∥] decays at

a rate Õ
(
n1/4/

p
T

)
. This might be of independent interest for other variance reduction

techniques.

We follow a novel technical path that uses the adaptivity of the step-size to bound the overall

variance of the process. This fact differentiates our approach from the previous adaptive and

non-adaptive VR approaches and provides us with a surprisingly concise analysis.

Remark 3.3.1. Our convergence results do not require bounded gradients that is typically a

restrictive assumption that the analysis of the adaptive methods for stochastic optimization

requires. We overcome this obstacle by using the fact ∥X t −X t−1∥ ≤ 1 (due to the step-size

selection) and thus ∥∇ f (X t )−∇ f (X t−1)∥ ≤ L∥X t −X t−1∥ ≤ L. The latter leads to the following

upper bound on the gradient norm, ∥∇ f (X t )∥ ≤ LT +∥∇ f (X0)∥ that leads to only a logarithmic

overhead in the final bound (see Lemma 3.3.2). A similar idea is used by Faw et al. [Faw+22]

(Lemma 2) in order to remove the bounded gradient assumption on the convergence rates of

AdaGrad-Norm under general noise.

3.3.3 Setup and Preliminaries

During the whole of this manuscript, we consider that the non-convex objective function

f :Rd 7→R possesses a finite-sum structure

f (x) = 1

n

n∑
i=1

fi (x)

where each component function fi is L-smooth (or alternatively has L-Lipschitz gradient) and

(possibly) non-convex. To quantify the performance of our algorithm within the context of

non-convex minimization, we want to find an ϵ-first order stationary point x̂ ∈Rd such that

∥∇ f (x̂)∥ ≤ ϵ.

105



Chapter 3. Adaptive methods and variance reduction for smooth, non-convex optimization

For notational simplicity we define ∥·∥ as the Euclidean norm. Then, we say that a continuously

differentiable function f is L-smooth if

∥∇ f (x)−∇ f (y)∥ ≤ L∥x − y∥, (3.32)

which admits the following equivalent form,

f (x) ≤ f (y)+∇ f (y)⊤(x − y)+ L

2
∥x − y∥2 for all x, y ∈Rd . (3.33)

Observe that smoothness of each component immediately suggests that objective f is L-

smooth itself. Since we are studying randomized algorithms for finite-sum minimization

problems, we do not consider any variance bounds on the gradients of components. We only

assume that we have access to an oracle which returns the gradient of individual components

when queried.

3.3.4 Method

In this section, we present our adaptive variance reduction method, called ADASPIDER (Al-

gorithm 7) which exploits the variance reduction properties of the stochastic path integrated

differential estimator proposed in [Fan+18] while combining it with an AdaGrad-type step-size

construction [DHS11]. Unlike the original SPIDER method [Fan+18], our algorithm admits

anytime guarantees, i.e., we don’t need to specify the accuracy ϵ a priori. Additionally, our

algorithm does not need to know the smoothness parameter L and guarantees convergence

without any tuning procedure.

Algorithm 7: Adaptive SPIDER (ADASPIDER)

Input: x0 ∈Rd ,β0 > 0,G0 > 0

1: G = 0
2: for t = 0, ...,T −1 do
3: if t mod n = 0 then

4: ∇t =∇ f (X t )
5: else
6: pick it ∈ {1, . . . ,n} uniformly at random

7: ∇t =∇ fi t (X t )−∇ fi t (X t−1)+∇t−1

8: end if

9: γt = 1/
(
n1/4β0

√
n1/2G2

0 +
∑t

s=0∥∇s∥2
)

10: X t+1 = X t −γt ·∇t

11: end for

12: return uniformly at random {X0, . . . , XT−1}.

As Algorithm 7 indicates, ADASPIDER performs a full-gradient computation every n iterations
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and in the remaining steps it updates the variance-reduced gradient estimator in a recursive

manner, ∇t ←∇ fi t (X t )−∇ fi t (X t−1)+∇t−1. The adaptive nature of ADASPIDER comes from the

selection of the step-size at Algorithm 7, line 9 that only depends on the norms of estimators

produced by the algorithm in the previous steps.

Before presenting the formal convergence guarantees of ADASPIDER (stated in Theorem 3.3.1),

we present the cornerstone idea behind its design and motivate the analysis for controlling

the overall variance of the process through the adaptivity of the step-size. This conceptual

novelty differentiates our work form the previous adaptive VR methods [Dub+22; Liu+22a]

for which the adaptive step-size only helps with adapting to the smoothness constant L, and

their constructions come with additional challenges in bounding the (cumulative) variance in

the whole of the execution. As a result, the following challenge is the first to be tackled by the

design of a VR method.

Challenge 1. Does the average variance of the estimator, 1
T

∑T−1
t=0 E

[∥∇t −∇ f (X t )∥], diminishes

at a sufficiently fast rate?

Up next we explain why combining the variance-reduction estimator of Step 7 with the adap-

tive step-size of Step 9 provides a surprisingly concise answer to Challenge 1. We remark that

SPIDER is able to control the variance at any iterations by choosing γt := min( ϵ
L
p

n∥∇t∥,
, 1

2
p

nL
)

as step-size. The latter enforces the method to make tiny steps, ∥X t −X t−1∥ ≤ ϵ/L
p

n which re-

sults in ϵ-bounded variance at any iteration. The latter proposed SPIDERBOOST [Wan+19] pro-

vides the same gradient-complexity bounds with SPIDER but through the accuracy-independent

step-size γ= 1/L. SPIDERBOOST handles Challenge 1 by using a dense gradient-computations

schedule1 combined with amortization arguments based on the descent inequality (this is

why the knowledge of L is necessary in its analysis). We remark that ADASPIDER, despite

being oblivious to L and accuracy ϵ, admits a significantly simpler analysis by exploiting the

adaptability of its step-size.

In the rest of the section we present our approach to Challenge 1 and we conclude the section

with Theorem 3.3.1 stating the formal convergence guarantees of ADASPIDER.

Handling the variance with adaptive step-size We start with the following variance aggrega-

tion lemma that is folklore in (VR) literature (e.g. [AH16a]).

Lemma 3.3.1. Define the gradient estimator at current point x+ as ∇x+ :=∇ fi (x+)−∇ fi (x)+∇x

where x denotes the previous step of the execution and i is sampled uniformly at random from

{1, . . . ,n}. Then,

E
[∥∇x+ −∇ f (x+)∥2]≤ L2∥x+−x∥2 +E[∥∇x −∇ f (x)∥2]

Now, let us apply Lemma 3.3.1 on SPIDER estimator, ∇t := ∇ fi t (X t )−∇ fi t (X t−1)+∇t−1 to

1SPIDERBOOST computes a full-gradient every
p

n steps and at the intermediate steps uses batches of size
p

n.
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measure its variance at step X t .

E
[∥∇t −∇ f (X t )∥2]≤ L2E

[∥X t −X t−1∥2]+E[∥∇t−1 −∇ f (X t−1)∥2]
≤ L2E

[
γ2

t−1∥∇t−1∥2]+E[∥∇t−1 −∇ f (X t−1)∥2]
≤ L2E

[
γ2

t−1∥∇t−1∥2]+ . . .+E[∥∇t−(t mod n) −∇ f (X t−(t mod n))∥2]
=

t−1∑
τ=t−(t mod n)+1

L2E
[
γ2
τ · ∥∇τ∥2]

where the last equality follows by the fact E
[∥∇t−(t mod n) −∇ f (X t−(t mod n))∥2

] = 0 since Al-

gorithm 7 performs a full-gradient computations for every t with t mod n = 0 (Line 3, Algo-

rithm 7). By telescoping the summation we get,

T−1∑
t=0

E
[∥∇t −∇ f (X t )∥2]≤ T−1∑

t=0

t−1∑
τ=t−(t mod n)+1

L2E
[
γ2
τ · ∥∇τ∥2]≤ L2n ·

T−1∑
t=0

E
[
γ2

t · ∥∇t∥2]

where the n factor on the right-hand side is due to the fact that each term E
[
γ2

t ∥∇t∥2
]

appears

at most n times in the total summation. To this end, using the structure of the stochastic path

integrated differential estimator we have been able to bound the overall variance of the process

as follows,

T−1∑
t=0

E
[∥∇t −∇ f (X t )∥2]≤ L2n ·

T−1∑
t=0

E
[
γ2

t · ∥∇t∥2] (3.34)

However, it is not clear at all why the above bound is helpful. At this point the adaptive

selection of the step-size (Step 9 in Algorithm 7) comes into play by providing the following

surprisingly simple answer,

T−1∑
t=0

E
[∥∇t −∇ f (X t )∥2]≤ L2n E

[
T−1∑
t=0

γ2
t · ∥∇t∥2

]

= L2pn

β2
0

E

[
T−1∑
t=0

∥∇t∥2/G2
0p

n +∑t
s=0∥∇s∥2/G2

0

]
≤ L2pn

β2
0

log

(
1+E

[
T−1∑
t=0

∥∇t∥2/G2
0

])

where the last inequality comes from Lemma 3.1.1. To finalize the bound, we require the

following expression that follows by the fact that γt ≤ 1/∥∇t∥ and thus ∥X t −X t−1∥ ≤ 1.

Lemma 3.3.2. Let {X t } be the points produced by Algorithm 7. Then,

T−1∑
t=0

∥∇t∥2 ≤O

(
n2T 3 ·

(
L2

β2
0

+∥∇ f (X0)∥2

))

In simple terms, Lemma 3.3.2 helps us avoid the bounded gradient norm assumption that is

common among in the literature of adaptive methods for smooth non-convex optimization
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(both stochastic and randomized). We trade-off the removal of bounded gradient assumption

with the O(log(T )) dependence as we will see in Eq. (3.35). As a result, ADASPIDER admits the

following cumulative variance bound,

T−1∑
t=0

E
[∥∇t −∇ f (X t )∥2]≤O

(
L2pn

β2
0

log

(
1+nT ·

(
L

β0G0
+ ∥∇ f (X0)∥

G0

)))
. (3.35)

Remark 3.3.2. To this end one might notice that using a more aggressive n dependence on

γt leads to smaller variance of the estimator which is obviously favorable (see Eq. (3.34) and

the effect of step-size to the variance bound). However more aggressive dependence on n

leads to smaller step-sizes and thus to sub-optimal overall gradient complexity with respect

to the dependence on n. In the analysis section, we explain why the optimal way to inject

the n dependence into the step-size is through the simultaneous multiplicative/additive

way as described in Step 9 of ADASPIDER. Even though it may seem counter-intuitive at the

first sight, we claim it is necessary for the correct balance between gradient complexity and

n-dependence for the final rate.

We will conclude this discussion with a complementary remark on the interplay between our

adaptive step-size and the convergence rate. As we demonstrated in Eq. (3.35), using a data-

adaptive step-size leads to a decreasing variance bound in an amortized sense as opposed

to any iterate variance bound of SPIDER. The trade-off in our favor is the parameter-free

step-size that is independent of ϵ and L. For a fair exposition of our results, notice that the

aforementioned advantages of an adaptive step-size comes at an additional log(T ) term in

our final bound due to Eq. (3.35). This has a negligible effect on the convergence as even in

the large iteration regime when T is in the order billions, it amounts to a small constant factor.

We conclude the section with Theorem 3.3.1 that formally establishes the convergence rate of

ADASPIDER. The proof of Theorem 3.3.1 is deferred to the next section.

Theorem 3.3.1. Let {X t } be the sequence of points produced by Algorithm 7 in case f (·) is

L-smooth. Let us also define ∆0 := f (X0)− f ∗. Then,

1

T

T−1∑
t=0

E
[∥∇ f (X t )∥]≤O

(
n1/4 · Θp

T
· log

(
1+nT ·

(
L

β0G0
+ ∥∇ f (X0)∥

G0

)))

whereΘ=∆0 ·β0 +G0 +L/β0 +L2/(β2
0G0). Overall, Algorithm 7 with β0 := 1 and G0 := 1 needs

at most Õ
(
n +p

n · ∆
2
0+L4

ϵ2

)
oracle calls to reach an ϵ-stationary point.
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3.3.5 Analysis

In this section we present the key steps for proving Theorem 3.3.1. We first use the triangle

inequality to derive,

T−1∑
t=0

E
[∥∇ f (X t )∥]≤ T−1∑

t=0
E
[∥∇t −∇ f (X t )∥]+T−1∑

t=0
E [∥∇t∥] (3.36)

We have previously discussed how to bound the first term, cumulative variance previous

section. More precisely, by the Jensen’s inequality and the arguments presented in the previous

part, we obtain the following variance bound.

Lemma 3.3.3. Let {X t } be a sequence of points produced by Algorithm 7. Then,

T−1∑
t=0

E
[∥∇t −∇ f (X t )∥2]≤O

(
Ln1/4

β0

√
log

(
1+nT

(
L

β0G0
+ ∥∇ f (X0)∥

G0

)))
.

We continue with presenting how to treat the term
∑T−1

t=0 E [∥∇t∥]. By the smoothness of the

function and through a telescopic summation one can easily establish the following bound,

E

[
T−1∑
t=0

γt∥∇t∥2

]
≤ 2( f (X0)− f ∗)+LE

[
T−1∑
t=0

γ2
t ∥∇t∥2

]
+E

[
T−1∑
t=0

γt∥∇ f (X t )−∇t∥2

]

As we already explained, the term E
[∑T−1

t=0 γ
2
t ∥∇t∥2

]
can be upper bounded by the data-

adaptive construction of the step-size γt through Lemma 3.1.1. There remains two main

technical challenges to establish the bound in Lemma 3.3.3;

1. Showing that E
[∑T−1

t=0 ∥∇t∥2
]

could be upper bounded by O
(
n1/4

p
TE

[∑T−1
t=0 γt∥∇t∥2

])
so

that we could upper bound the E
[∑T−1

t=0 ∥∇t∥
]

in Eq. (3.36). Note that the challenge arises

due to the fact that γt and ∥∇t∥ are dependent random variables.

2. Due to the same measurability problem between γT and ∇t , the scaled cumulative vari-

ance term E
[∑T−1

t=0 γt∥∇ f (X t )−∇t∥2
]

in the above inequality should be treated separately;

Lemma 3.3.1.

Handling the first challenge requires the use of numerical inequality in Lemma 2.1.2 and the

derivation exploits the particular dependence on n in our step-size γt to establish the neces-

sary bound. Specifically, we formalize our solution to the first challenge in Lemma 3.3.4, which

provides a bound on E
[∑T−1

t=0 ∥∇t∥
]

which we will eventually use to bound
∑T−1

t=0 E
[∥∇ f (X t )∥]

in Eq. (3.36).

Lemma 3.3.4. Let {X t } be the sequence of points produced by Algorithm 7 and ∆0 := f (X0)− f ∗.

Then,

E

[
T−1∑
t=0

∥∇t∥
]
≤ Õ

(
∆0β0 +G0 + L

β0
+E

[
T−1∑
t=0

γt∥∇ f (X t )−∇t∥2

])
n1/4

p
T .
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We simply use the data-adaptive structure of the step-size together with Lemma 3.1.1. To cope

with the second challenge, we will prove a complementary result for the scaled cumulative

variance in the presence of adaptive step-sizes. As γT and ∇t are dependent random objects,

the weighted variance term E
[∑T−1

t=0 γt∥∇ f (X t )−∇t∥2
]

cannot be handled by Lemma 3.3.1. To

overcome this challenge, we use the monotonic behavior of the step-size γt to establish the

following refinement.

Lemma 3.3.5. Let {X t } be the sequence of points produced by Algorithm 7. Then,

E

[
T−1∑
t=0

γt∥∇t −∇ f (X t )∥2

]
≤ L2nE

[
T−1∑
t=0

γ3
t ∥∇t∥2

]

Having established the main ingredients, we are now ready to summarize the importance of

simultaneous additive/multiplicative n dependence of γt . This selection permits us to do

achieve two orthogonal goals at the same time;

• Bounding the variance of the process, E
[∑T−1

t=0 ∥∇t −∇ f (xt )∥]≤ Õ
(
n1/4

p
T

)
(see Lemma 3.3.3).

• Bounding the sum, E
[∑T−1

t=0 ∥∇t∥
] ≤ Õ

(
n5/4

p
TE

[∑T−1
t=0 γ

3
t ∥∇t∥2

])
(see Lemma 3.3.4 and

Lemma 3.3.5).

Another important thing that the selection of γt does is that it enables us to upper bound the

term Õ
(
n5/4 E

[∑T−1
t=0 γ

3
t ∥∇t∥2

])
by Õ

(
n1/4

)
, the derivation of which can be found in the proof

of Theorem 3.3.1.

3.3.6 Experiments

We complement our theoretical findings with an evaluation of the numerical performance of

the algorithm under different experimental setups. We aim to highlight the sample complexity

improvements over simple stochastic methods, while displaying the advantages of adaptive

step-size strategies. For that purpose we design two setups; first, we consider the minimization

of a convex loss with a non-convex regularizer in the sense of Wang et al. [Wan+19] and in a

second part we consider an image classification task with neural networks.

Convex loss with a non-convex regularizer

We consider the following problem:

min
x∈Rd

1

n

n∑
i=1

ℓ(x, (ai ,bi ))+λg (x)

where ℓ(x, (ai ,bi )) is the loss with respect to the decision variable/weights x with (ai ,bi )

denoting the (feature vector, label) pair. We select g (x) = ∑d
i=1

x2
i

1+x2
i

, similar to Wang et al.

[Wan+19], where the subscript denotes the corresponding dimension of x. We compare
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ADASPIDER against the original SPIDER, SPIDERBOOST, SVRG, ADASVRG and two non-VR

methods, SGD and ADAGRAD. We picked two datasets from LibSVM, namely a1a, mushrooms.

We initialize each algorithm from the same point and repeat the experiments 5 times, then

report the mean convergence with standard deviation as the shaded region around the mean

curves. We tune the algorithms by executing a parameter sweep for their initial step-size over

an interval of values which are exponentially scaled as
{
10−3,10−2, ...,102,103

}
. After tuning

the algorithms on one dataset, we run them with the same parameters for the others.
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Figure 3.2: Logistic regression with non-convex regularizer on LibSVM datasets

First, we clearly observe the difference between SGD & ADAGRAD, and the rest of the pack,
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which demonstrates the superior sample complexity of VR methods in general. Among VR al-

gorithms, there does not seem to be any concrete differences with similar convergence, except

for SPIDER. The performance of ADASPIDER is on par with other VR methods, and superior to

SPIDER. The unexpected behavior of SPIDER algorithm has previously been documented in

Wang et al. [Wan+19]. From a technical point of view, this behavior is predominantly due to

the accuracy dependence in the step-size, making the step-size unusually small. We had to run

SPIDER beyond its prescribed setting and tune the step-size with a large initial value to make

sure the algorithm makes observable progress.

Experiments with neural networks

In our second setup, we train neural networks with our variance reduction scheme. Our focus

is on standard image classification tasks trained with the cross entropy loss [Bri89; Bri90].

Denoting by C the number of classes, the considered datasets in this section consist of n pairs

(ai ,bi ) where ai is a vectorized image and bi ∈RC is a one-hot encoded class label. A neural

network is parameterized with weights x ∈ Rd and its output on is denoted net(x, a) ∈ RC ,

where a is the input image. The training of the network consists of solving the following

optimization problem: minx∈Rd
1
n

∑n
i=1

(−b⊤
i net(x, ai )+logsumexp(net(x, ai ))

)
. This is the

default setup for doing image classification and we test our algorithm on two benchmark

datasets : MNIST[Lec+98] and FashionMNIST[XRV17]. We choose 3-layer fully connected

network with dimensions [28∗28,512,512,10]. The activation function is the ELU [CUH16].

Initialization. The initialization of the network is a crucial component to guarantee good per-

formance. We find that a slight modification of the Kaiming Uniform initialization [He+15]

improves the stability of the tested variance reduction schemes. For each layer in the network

with di n inputs, the original method initializes the weights with independent uniform random

variables with variance 1
di n

. Our modification initializes with a smaller variance of cinit
di n

with

cinit in the order of 0.01. With this choice, we observed that fewer variance reductions schemes

diverged, and standard algorithms like SGD and AdaGrad(for which the original method was

tuned), were not penalized and performed well. This often overlooked initialization heuristic

is the only “tuning" needed for AdaSpider.

MNIST FashionMNIST
Batch Size = 32, cinit = 0.03 Batch Size = 128, cinit = 0.01

Algorithm Parameters Test Accuracy Parameters Test Accuracy
AdaGrad[DHS11] η= 0.01, ϵ= 10−4 97.86 η= 0.01, ϵ= 10−4 86.19

SGD[RM51] η= 0.01 98.11 η= 0.01 85.83
KatyushaXw[All18] η= 0.005 97.93 η= 0.01 86.27
AdaSVRG[Dub+22] η= 0.1 98.03 η= 0.1 86.82
Spider[Fan+18] ϵ= 0.01, L = 100.0, n0 = 1 97.53 ϵ= 0.01, L = 50.0, n0 = 1 82.22

SpiderBoost[Wan+19; Ngu+17] L = 200 97.01 L = 120 84.42
AdaSpider n = 60000 97.49 n = 60000 84.09

Table 3.3: Algorithm parameters and test accuracies (average of 5 runs, in %)
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Figure 3.3: Gradient norms throughout the epochs for image classification with neural networks
(curves are averaged over 5 independent runs and the shaded region are the standard error).

Observations. We observe (Figure 3.3) that AdaSpider performs as well as other variance

reduction methods in terms of minimizing the gradient norm. The key message here is that it

does so without the need for extensive tuning. This diminished need for tuning is a welcome

feature for deep learning optimization, but, often the true metric of interest is not the gradient

norm, but the accuracy on unseen data, and on this metric variance reduction schemes are not

yet competitive with simpler methods like SGD. With AdaSpider, the focus can go to finding

the right initialization scheme and architecture to ensure good generalization without being

distracted by other parameters like the step-size choice.
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3.4 APPENDIX: Proofs of Chapter 3

3.4.1 Proofs of Section 3.1

Lemma 3.1.1. Let a1, ..., an be a sequence of non-negative real numbers. Then, it holds that

n∑
s=1

ai∑i
s=1 ai

≤ 1+ log

(
1+

n∑
s=1

ai

)

Proof. We will follow the proof steps of Levy, Yurtsever, and Cevher [LYC18] with a slight

modification. The proof is due to induction.

For the base case of n = 1:

a1

a1
= 1 ≤ 1+ log(1+a1)

Assume that the statement holds up to and including n −1 > 1. Then, for n:

n∑
s=1

ai∑i
j=1 a j

≤ 1+ log

(
1+

n−1∑
s=1

ai

)
+ an∑n

s=1 ai

?≤ 1+ log

(
1+

n∑
s=1

ai

)

We want to show that for any an , the second inequality with the question mark (?) holds. Let

us define x = an∑n−1
s=1 ai

. Focusing on the second inequality and re arranging the terms we get,

an∑n
s=1 ai

≤ log

(
1+∑n

s=1 ai

1+∑n−1
s=1 ai

)

= log

(
1+ an

1+∑n−1
s=1 ai

)

≤ log

(
1+ an∑n−1

s=1 ai

)

Notice that

an∑n
s=1 ai

= an∑n−1
s=1 ai

·
∑n−1

s=1 ai∑n
s=1 ai

= an∑n−1
s=1 ai

· 1∑n
s=1 ai∑n−1
s=1 ai

= an∑n−1
s=1 ai

· 1(
1+ an∑n−1

s=1 ai

)
= x

1

1+x

Combining both expressions,

x

1+x
≤ log(1+x)

which always holds whenever x ≥ 0. ■
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Lemma 3.1.2 (Lemma 3 in [KT08]). Let X t be a martingale difference sequence such that

|X t | ≤ b. Let us also define

Vart−1(X t ) = Var (X t |σ(X1, ..., X t−1)) = E[
X 2

t |σ(X1, ..., X t−1)
]

,

and define VT =∑T
t=1 Vart−1(X t ) as the sum of variances. For δ< 1/e and T ≥ 3, it holds that

P

(
T∑

t=1
X t > max

{
2
√

VT ,3b
√

log(1/δ)
}√

log(1/δ)

)
≤ 4log(T )δ (3.37)

Proof. The proof of this lemma could be found at the beginning of the Appendix section of

Kakade and Tewari [KT08], which is their Lemma 3 in the main text.

■

Theorem 3.1.1. Let {X t } be a sequence generated by Algorithm 4 with G0 = 0 for simplicity.

Then, it holds that

1

T

T∑
t=1

∥∇ f (X t )∥2 ≤O

(
(∆1 +L)2

T

)
.

Proof (Theorem 3.1.1). In the presence of only deterministic oracle, we have ∇ f (X t ,ξt ) =
∇ f (X t ) in Eq. (3.9). By replacing the stochastic gradient with the true gradient we obtain,

T∑
t=1

∥∇ f (X t )∥2 ≤ ∆max

γT
+ L

2

T∑
t=1

γt∥∇ f (X t )∥2 ≤ (∆max +L)

√√√√ T∑
t=1

∥∇ f (X t )∥2,

where we obtain the final inequality using Lemma 2.1.2. Now, we show that ∆T+1 is bounded

for any T . Using descent lemma and the update rule for X t ,

f (X t+1)− f (X t ) ≤ 〈∇ f (X t ), X t+1 −X t 〉+ L

2
∥X t+1 −X t∥2

≤−γt∥∇ f (X t )∥2 + Lγ2
t

2
∥∇ f (X t )∥2

Summing over t ∈ [T ], telescoping function values and re-arranging right-hand side,

f (XT+1)− f (X t ) ≤
T∑

t=1

(
Lγt

2
−1

)
γt∥∇ f (X t )∥2

f (XT+1)− f (x∗) ≤ f (X1)− f (x∗)+
T∑

t=1

(
Lγt

2
−1

)
γt∥∇ f (X t )∥2

where x∗ = argminx∈Rd f (x). Now, define t0 = max
{

t ∈ [T ] | γt > 2
L

}
, such that

(
Lγt

2 −1
)
≤ 0 for
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any t > t0. Then,

f (XT+1)− f (x∗) ≤∆1 +
t0∑

t=1

(
Lγt

2
−1

)
γt∥∇ f (X t )∥2 +

T∑
t=t0+1

(
Lγt

2
−1

)
γt∥∇ f (X t )∥2

≤∆1 + L

2

t0∑
t=1

γ2
t ∥∇ f (X t )∥2 (Lemma 3.1.1)

≤∆1 + L

2

(
1+ log

(
1+

t0∑
t=1

∥∇ f (X t )∥2

))
(Definition of γt )

≤∆1 + L

2

(
1+ log

(
1+ 1

γ2
t0

))
(Definition of t0)

≤∆1 + L

2

(
1+ log

(
1+ L2

4

))
,

where we use the definition of t0 and Lemma 3.1.1 for the last inequality. Since this is true

for any T , the bound holds for ∆max such that ∆max ≤ ∆1 + L
2

(
1+ log

(
L2/4

))
. Now, define

X =
√∑T

t=1 ∥∇ f (X t )∥2, then the original expression reduces to X 2 ≤ (∆max +L) X . Solving for

X trivially yields

X ≤ (∆max +L) =⇒ X 2 =
T∑

t=1
∥∇ f (X t )∥2 ≤ (∆max +L)2 .

Plugging in the bound for ∆max and dividing by T gives,

1

T

T∑
t=1

∥∇ f (X t )∥2 ≤
(
∆1 + L

2

(
3+ log

(
1+ L2

4

)))2

T

■

Proposition 3.1.1. Using Lemma 3.1.2, with probability 1−4log(T )δ with δ< 1/e, we have

T∑
t=1

−〈∇ f (X t ),ζt 〉 ≤ 2σ
√

log(1/δ)

√√√√ T∑
t=1

∥∇ f (X t )∥2 +3(G2 +GG̃)log(1/δ).

Proof. We have to show that the random variable −〈∇ f (X t ),ζt 〉 is a martingale difference

sequence and satisfies the conditions in Lemma 3.1.2. Recall that ∇ f (X t ,ξt ) is the stochastic

gradient evaluated at X t where ξt represents the randomness in oracle feedback, and we

use the shorthand notation ζt = ∇ f (X t ,ξt )−∇ f (X t ). Let us define Ft = σ(ξt , ...,ξ1) as the

σ-algebra generated by randomness up to, and including ξt . Notice that Ft is the natural

filtration of −〈∇ f (X t ),ζt 〉. Then, we need to show that

1. −〈∇ f (X t ),ζt 〉 is integrable,

2. martingale (difference) property holds, E
[−〈∇ f (X t ),ζt 〉|Ft−1

]= 0.

117



Chapter 3. Adaptive methods and variance reduction for smooth, non-convex optimization

First off, we show that −〈∇ f (X t ),ζt 〉 is integrable:

E
[∣∣〈∇ f (X t ),ζt 〉

∣∣]≤ E[∥∇ f (X t )∥∥ζt∥
]

= E[∥∇ f (X t )∥2 +∥ζt∥2 ]
≤G2 +E [E [∥ζt∥|Ft−1 ] ]

≤G2 +σ2 <+∞,

where the second inequality is due to the towering property of expectation. Then, the martin-

gale property:

E
[−〈∇ f (X t ),ζt 〉|Ft−1

]=−〈∇ f (X t ),E [ζt |Ft−1 ]〉
=−〈∇ f (X t ),0〉 = 0

Before applying Lemma 3.1.2, we need to verify that
∣∣−〈∇ f (X t ),ζt 〉

∣∣ is bounded:∣∣−〈∇ f (X t ),ζt 〉
∣∣= ∣∣−〈∇ f (X t ),∇ f (X t ,ξt )−∇ f (X t )〉∣∣
= ∣∣∥∇ f (X t )∥2 −〈∇ f (X t ),∇ f (X t ,ξt )〉∣∣
≤ ∥∇ f (X t )∥2 + ∣∣−〈∇ f (X t ),∇ f (X t ,ξt )〉∣∣
≤ ∥∇ f (X t )∥2 +∥∇ f (X t )∥∥∇ f (X t ,ξt )∥
≤G2 +GG̃ ,

where we used G-Lipschitzness of f and almost sure boundedness of stochastic gradients

∇ f (X t ,ξt ). Now, we are able make the high probability statement. By Lemma 3.1.2, with

probability 1−4log(T )δ for δ< 1/e, we have

T∑
t=1

−〈∇ f (X t ),ζt 〉 ≤ max

2

√√√√ T∑
t=1
E
[〈∇ f (X t ),ζt 〉2|Ft−1

]
,3(G2 +GG̃)

√
log(1/δ)

√
log(1/δ)

(1)≤
√

log(1/δ)

2

√√√√ T∑
t=1
E
[∥∇ f (X t )∥2∥ζt∥2|Ft−1

]+3(G2 +GG̃)
√

log(1/δ)


(2)≤

√
log(1/δ)

2

√√√√σ2
T∑

t=1
∥∇ f (X t )∥2 +3(G2 +GG̃)

√
log(1/δ)


≤ 2σ

√
log(1/δ)

√√√√ T∑
t=1

∥∇ f (X t )∥2 +3(G2 +GG̃)log(1/δ)

where we used Cauchy-Schwarz inequality for the inner product to obtain inequality (1) and

bounded variance assumption to obtain (2). ■

Proposition 3.1.2. Let {X t } be generated by AdaGrad for G0 > 0. With probability at least
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1−4log(t )δ,

∆t+1 ≤∆1 +2L
(
1+ log

(
max{1,G2

0}+G̃2t
))+G−1

0 (M1 +σ2) log(1/δ)+M2,

where M1 = 3(G2 +GG̃) and M2 =G−1
0 (2G2 +GG̃).

Proof. We will handle this bound in two cases. First, we show the bound for AdaGrad, and

then for RSAG. Indeed, the bounds for the two cases differ by a factor of constants, hence we

will use the larger bound for all algorithms.

Case 1 (AdaGrad)

First off by smoothness,

f (X t+1)− f (X t ) ≤−γt 〈∇ f (X t ),∇ f (X t ,ξt )〉+ Lγ2
t

2
∥∇ f (X t ,ξt )∥2

=−γt∥∇ f (X t )∥2 −γt 〈∇ f (X t ),ζt 〉+
Lγ2

t

2
∥∇ f (X t ,ξt )∥2

Defining x∗ = minx∈Rd f (x) as the global minimizer of f and summing over t ∈ [T ],

f (XT+1)− f (x∗) ≤ f (X1)− f (x∗)+
T∑

t=1
−γt∥∇ f (X t )∥2

︸ ︷︷ ︸
(A)

+ L

2

T∑
t=1

γ2
t ∥∇ f (X t ,ξt )∥2

︸ ︷︷ ︸
(B)

+
T∑

t=1
−γt 〈∇ f (X t ),ζt 〉︸ ︷︷ ︸

(C)

(3.38)

Term (A) At this point, we will keep this term as it will be coupled with the sum-of-conditional-

variances term which will be obtained through martingale concentration.

Term (B)

L

2

T∑
t=1

γ2
t ∥∇ f (X t ,ξt )∥2 = L

2

T∑
t=1

∥∇ f (X t ,ξt )∥2

G2
0 +

∑t
s=1∥gi∥2

(Lemma 3.1.1)

≤ L

2

(
1+ log

(
max{1,G2

0}+
T∑

t=1
∥∇ f (X t ,ξt )∥2

))
(Bounded gradients)

≤ L

2

(
1+ log

(
max{1,G2

0}+G̃2T
))
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Bounding term (C)

T∑
t=1

−γt 〈∇ f (X t ),ζt 〉 ≤
T∑

t=1
−γt−1〈∇ f (X t ),ζt 〉︸ ︷︷ ︸

(C.1)

+
T∑

t=1
(γt−1 −γt )〈∇ f (X t ),ζt 〉︸ ︷︷ ︸

(C.2)

We will make use of Lemma 3.1.2 to achieve high probability bounds on term (C.1). To do so,

we need to prove that X t =−γt−1〈∇ f (X t ),ζt 〉 is a martingale difference sequence and validate

some of its properties:

1. −γt−1〈∇ f (X t ),ζt 〉 is absolutely integrable:

E[
∣∣−γt−1〈∇ f (X t ),ζt 〉

∣∣] ≤G−1
0 E[

∣∣〈∇ f (X t ),ζt 〉
∣∣]

≤G−1
0 E[∥∇ f (X t )∥2 +∥ζt∥2]

≤G−1
0 (G2 +σ2) <+∞

2. −γt−1〈∇ f (X t ),ζt 〉 is adapted to its natural filtration Ft =σ(ξ1, ...,ξt )

3. It satisfies the martingale (difference) property:

E
[−γt−1〈∇ f (X t ),ξt 〉 |Ft−1

]=−γt−1〈∇ f (X t ),E [ζt |Ft−1 ]〉 = 0

4. X t =−γt−1〈∇ f (X t ),ζt 〉 is bounded:

−γt−1〈∇ f (X t ),ζt 〉 ≤G−1
0

∣∣〈∇ f (X t ),ζt 〉
∣∣≤G−1

0 (∥∇ f (X t )∥2 +∥∇ f (X t )∥∥∇ f (X t ,ξt )∥) ≤G−1
0 (G2 +GG̃)

5. Conditional variance of X t =−γt−1〈∇ f (X t ),ζt 〉:

Vart−1(X t ) = E[
(γt−1〈∇ f (X t ),ζt 〉)2 |Ft−1

]
≤G−2

0 E
[

(〈∇ f (X t ),ζt 〉)2 |Ft−1
]

≤G−2
0 ∥∇ f (X t )∥2E

[∥ζt∥2 |Ft−1
]

≤G−2
0 σ2∥∇ f (X t )∥2

Term (C.1) Now, we are at a position to apply Lemma 3.1.2 on term (C.1). With probability

1−4log(T )δ,

T∑
t=1

−γt−1〈∇ f (X t ),ζt 〉 ≤ max

2

√√√√ T∑
t=1
E
[

(γt−1〈ḡ t ,ξt 〉)2 |Ft−1
]
,3G−1

0 (G2 +GG̃)
√

log(1/δ)

√
log(1/δ)

≤ max

2

√√√√ T∑
t=1

σ2γ2
t−1∥∇ f (X t )∥2,3G−1

0 (G2 +GG̃)
√

log(1/δ)

√
log(1/δ)
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≤ 2σ
√

log(1/δ)

√√√√ T∑
t=1

γ2
t−1∥∇ f (X t )∥2

︸ ︷︷ ︸
(D)

+ 3G−1
0 (G2 +GG̃)log(1/δ)

Term (C.2):

T∑
t=1

(γt−1 −γt )〈∇ f (X t ),ζt 〉 ≤
T∑

t=1
(γt−1 −γt )

∣∣〈∇ f (X t ),ζt 〉
∣∣

≤ (G2 +GG̃)
T∑

t=1
(γt−1 −γt )

≤ (G2 +GG̃)γ0

Terms (A) + (D). All the underbraced term but expression (D) either grows as O
(
log(T )

)
, or

is upper bounded by a constant. The worst-case growth of term (D) is O(
p

T ), which we will

keep under control via term (A).

(A) + (D) ≤ 2σ
√

log(1/δ)

√√√√ T∑
t=1

γ2
t−1∥∇ f (X t )∥2 −

T∑
t=1

γt∥∇ f (X t )∥2

≤ 2σ
√

log(1/δ)

√√√√ T∑
t=1

γ2
t−1∥∇ f (X t )∥2 −G0

T∑
t=1

γ2
t ∥∇ f (X t )∥2

≤ 2σ
√

log(1/δ)

√√√√ T∑
t=1

γ2
t−1∥∇ f (X t )∥2 −G0

T∑
t=1

γ2
t−1∥∇ f (X t )∥2 +G0

T∑
t=1

(γ2
t−1 −γ2

t )∥∇ f (X t )∥2

≤ 2σ
√

log(1/δ)

√√√√ T∑
t=1

γ2
t−1∥∇ f (X t )∥2 −G0

T∑
t=1

γ2
t−1∥∇ f (X t )∥2 +G0G2γ2

0

In order to characterize the growth of this expression, let us define f (x) = 2σ
√

log(1/δ)
p

x −
G0x, which is a concave function as its second derivative is non-positive. Now, looking at

derivative of f ,

d

d x
f (x) = σ

√
log(1/δ)p

x
−G0,

which is 0 at x = G−2
0 σ2 log(1/δ). This is indeed the point at which the function attains its

maximum. For the final step of the proof, we define ZT =∑T
t=1γ

2
t−1∥∇ f (X t )∥2. Then,

(A) + (D) ≤ f (ZT )+G0G2γ2
0
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≤ f (G−2
0 σ2 log(1/δ))+G0G2γ2

0

=G−1
0 σ2 log(1/δ)+G0G2γ2

0

Final bound Plugging all the expression together and setting γ0 = γ1, with probability at

least 1−4log(T )δ,

f (XT+1)− f (x∗) ≤ f (X1)− f (x∗)+ L

2

(
1+ log

(
max{1,G2

0}+G̃2T
))

+G−1
0 (3(G2 +GG̃)+σ2) log(1/δ)

+G−1
0 (2G2 +GG̃)

Since this result holds for any T, to make it consistent with the statement of the proposition,

we re-state the bound with t ,

f (X t+1)− f (x∗) ≤ f (X1)− f (x∗)+ L

2

(
1+ log

(
max{1,G2

0}+G̃2t
))

+G−1
0 (3(G2 +GG̃)+σ2) log(1/δ)

+G−1
0 (2G2 +GG̃)

Case 2 (Adaptive RSAG) For consistency, let us re-state the notation and definitions for

Algorithm 5. Let ζt =∇ f (X̄ t ,ξt )−∇ f (X̄ t ). Again, by smoothness and the update rule for X t

sequence,

f (X t+1)− f (X t )

≤ 〈∇ f (X t ), X t+1 −X t 〉+ L

2
∥X t+1 −X t∥2

=−ηt 〈∇ f (X̄ t ),∇ f (X̄ t ,ξt )〉−ηt 〈∇ f (X t )−∇ f (X̄ t ),∇ f (X̄ t ,ξt )〉+ Lη2
t

2
∥∇ f (X̄ t ,ξt )∥2

(Cauchy-Schwarz)

=−ηt∥∇ f (X t )−ηt 〈∇ f (X̄ t ),ζt 〉+∇ f (X̄ t )∥∥∇ f (X̄ t ,ξt )∥+ Lη2
t

2
∥∇ f (X̄ t ,ξt )∥2 (Smoothness)

=−ηt∥∇ f (X̄ t )∥2 −ηt 〈∇ f (X̄ t ),ζt 〉+Lηt∥X̄ t −X t∥∥∇ f (X̄ t ,ξt )∥+ Lη2
t

2
∥∇ f (X̄ t ,ξt )∥2

(Young’s ineq.)

=−ηt∥∇ f (X̄ t )∥2 −ηt 〈∇ f (X̄ t ),ζt 〉+ L

2
∥X̄ t −X t∥2 +Lη2

t∥∇ f (X̄ t ,ξt )∥2
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Using recursive expansion of ∥X̄ t −X t∥2 and summing over t ∈ [T ],

∆T+1 ≤∆1 + L

2

T∑
t=1

[
(1−αt )Γt

t∑
s=1

αs

Γs

(ηs −λs)2

α2
s

∥∇ f (X̄ t ,ξt )∥2
]

+
T∑

t=1
Lη2

t∥∇ f (X̄ t ,ξt )∥2 −ηt∥∇ f (X̄ t )∥2 −ηt 〈∇ f (X̄ t ),ζt 〉

≤∆1 + L

2

T∑
t=1

[
T∑

s=t
(1−αs)Γs

]
αt

Γt

(ηt −λt )2

α2
t

∥∇ f (X̄ t ,ξt )∥2

+
T∑

t=1
Lη2

t∥∇ f (X̄ t ,ξt )∥2 −ηt∥∇ f (X̄ t )∥2 −ηt 〈∇ f (X̄ t ),ζt 〉

First, we plug in αt = 2/(t +1) and invoke Proposition 3.1.5 to obtain
[∑T

s=t (1−αs)Γs
] αt
Γt

≤ 2.

Recognizing that
∣∣λt −ηt

∣∣=αtγt and ηt = γt , where we accumulate ∇ f (X̄ t ,ξt ) in the step-size

γt for RSAG,

∆T+1 ≤∆1 +
T∑

t=1
−γt∥∇ f (X̄ t )∥2

︸ ︷︷ ︸
(A)

+2L
T∑

t=1
γ2

t ∥∇ f (X̄ t ,ξt )∥2

︸ ︷︷ ︸
(B)

+
T∑

t=1
−γt 〈∇ f (X̄ t ),ζt 〉︸ ︷︷ ︸

(C)

Observe that this expression is the same as Eq. (3.38) up to replacing L
2 in term (B) of AdaGrad

with 2L. Hence, the same bounds hold up to incorporating the aforementioned change. With

probability 1−4log(T )δ,

f (XT+1)− f (x∗) ≤ f (X1)− f (x∗)+2L
(
1+ log

(
max{1,G2

0}+G̃2T
))

+G−1
0 (3(G2 +GG̃)+σ2) log(1/δ)

+G−1
0 (2G2 +GG̃)

Similarly, since this holds for any T , we re-state the results with t for consistency,

f (X t+1)− f (x∗) ≤ f (X1)− f (x∗)+2L
(
1+ log

(
max{1,G2

0}+G̃2t
))

+G−1
0 (3(G2 +GG̃)+σ2) log(1/δ)

+G−1
0 (2G2 +GG̃)

■

Now, we are at a position to present the main hig probability convergence result for AdaGrad.

Theorem 3.1.2. Let {X t } be the sequence of iterates generated by AdaGrad. Under Assump-
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tions 3.2, 3.6, 3.7, with probability at least 1−8log(T )δ,

1

T

T∑
t=1

∥∇ f (X t )∥2 ≤ (∆max +L)G0 +3(G2 +GG̃)log(1/δ)

T
+ (∆max +L)G̃ +2Gσ

√
log(1/δ)p

T
.

where ∆max ≤O
(
∆1 +L log(T )+σ2 log(1/δ)

)
.

Proof (Theorem 3.1.2). Let ζt =∇ f (X t ,ξt )−∇ f (X t ). By Eq. (3.10),

T∑
t=1

∥∇ f (X t )∥2 ≤ ∆max

γT
+

T∑
t=1

−〈∇ f (X t ),ζt 〉+ L

2

T∑
t=1

γt∥∇ f (X t ,ξt )∥2

Invoking Lemma 2.1.2 and plugging the bound for the term (∗∗) from Proposition 3.1.1 we

achieve with probability 1−4log(T )δ,

T∑
t=1

∥∇ f (X t )∥2 ≤ (∆max +L)

√√√√G2
0 +

T∑
t=1

∥∇ f (X t ,ξt )∥2

+2σ
√

log(1/δ)

√√√√ T∑
t=1

∥∇ f (X t )∥2 +3(G2 +GG̃)log(1/δ)

≤ (∆max +L)
√

G2
0 +G̃2T +2Gσ

√
log(1/δ)

p
T +3(G2 +GG̃)log(1/δ)

≤ (∆max +L)G0 +3(G2 +GG̃)log(1/δ)+
[

(∆max +2L)G̃ +2Gσ
√

log(1/δ)
]p

T

Dividing both sides by T, we achieve the bound,

1

T

T∑
t=1

∥∇ f (X t )∥2 ≤ (∆max +L)G0 +3(G2 +GG̃)log(1/δ)

T
+ (∆max +L)G̃ +2Gσ

√
log(1/δ)p

T

Now, we will incorporate the high probability bound for ∆max to complete the convergence

proof. Essentially, we are interested in scenarios in which both the statement of Proposi-

tion 3.1.1 and the statement of Proposition 3.1.2 holds, simultaneously, with high probability.

Formally, let the statement of Proposition 3.1.1 be denoted as event A and the statement of

Proposition 3.1.2 as event B . We have already proven that

P (A) ≥ 1−4log(T )δ & P (B) ≥ 1−4log(T )δ

What we want to obtain is a lower bound to P (A∩B), which is

P (A∩B) =P (A)+P (B)−P (A∪B)

≥ 1−4log(T )δ+1−4log(T )δ−P (A∪B)

≥ 2−8log(T )δ−1 = 1−8log(T )δ,

which is the best we could do due to the unknown extent of dependence between events A and
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B . Hence, integrating the results of Proposition 3.1.2, with probability at least 1−8log(T )δ,

1

T

T∑
t=1

∥∇ f (X t )∥2 ≤ (∆max +L)G0 +3(G2 +GG̃)log(1/δ)

T
+ (∆max +L)G̃ +2Gσ

√
log(1/δ)p

T

where

∆max ≤∆1 +2L
(
1+ log

(
max{1,G2

0}+G̃2T
))+G−1

0 (3(G2 +GG̃)+σ2) log(1/δ)+G−1
0 (2G2 +GG̃)

■

Proposition 3.1.4. Let {X t } be generated by Algorithm 5. Then, it holds that

T∑
t=1

∥∇ f (X̄ t )∥2

≤ ∆max +2L

ηT
+ L

2ηT

T∑
t=1

[
T∑

s=t
(1−αs)Γs

]
αt

Γt︸ ︷︷ ︸
(∗)

(ηt −λt )2

α2
t

∥∇ f (X̄ t ;ξt )∥2 +
T∑

t=1
−〈∇ f (X̄ t ),ζt 〉︸ ︷︷ ︸

(∗∗)

.

Proof. This result is due to Ghadimi and Lan [GL16] and Lan [Lan20] up to introducing

adaptive step-sizes. We follow their derivations in the deterministic setting and incorporate it

with our high probability analysis. Then,

f (X t+1)− f (X t ) ≤ 〈∇ f (X t ), X t+1 −X t 〉+ L

2
∥X t+1 −X t∥2

≤−ηt 〈∇ f (X t ),∇ f (X̄ t )+ζt 〉+
Lη2

t

2
∥∇ f (X̄ t ,ξt )∥2

=−ηt∥∇ f (X̄ t )∥2 −ηt 〈∇ f (x̄t ),ζt 〉−ηt 〈∇ f (X t )−∇ f (X̄ t ),∇ f (X̄ t ,ξt )〉+ Lη2
t

2
∥∇ f (X̄ t ,ξt )∥2

≤−ηt∥∇ f (X̄ t )∥2 −ηt 〈∇ f (X̄ t ),ζt 〉+ L

2
∥X̄ t −X t∥2 +Lη2

t∥∇ f (X̄ t ,ξt )∥2

where we used descent lemma (Eq. (3.4)) in the first inequality, and update rule for X t+1

in Algorithm 5, line 4 in the second inequality. For the last line, we use Cauchy-Schwarz,

apply smoothnness definition in Eq. (3.3) and finally use Young’s inequality. Let us define

∆t = f (X t )−minx∈Rd f (x) and ∆max = maxt∈[T ]∆t . Dividing both sides by ηt , rearranging, and

summing over t = 1, ...,T we obtain,

T∑
t=1

∥∇ f (X̄ t )∥2 ≤
T∑

t=1

1

ηt
(∆t −∆t+1)+ L

2

T∑
t=1

1

ηt
∥X̄ t −X t∥2 +L

T∑
t=1

ηt∥∇ f (X̄ t ,ξt )∥2 +
T∑

t=1
−〈∇ f (X̄ t ),ζt 〉

Now, we express the term X̄ t −X t recursively, as a function of gradient norms.

X̄ t −X t = (1−αt )
[

X̃ t −X t
]
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= (1−αt )
[

X̄ t−1 −X t−1 + (ηt−1 −λt−1)∇ f (X̄ t−1,ξt−1)
]

= (1−αt )
[
(1−αt−1)(X̃ t−1 −X t−1)+ (ηt−1 −λt−1)∇ f (X̄ t−1,ξt−1)

]
= (1−αt )

t−1∑
s=1

(
t−1∏

j=s+1
(1−α j )

)
(ηs −λs)∇ f (X̄s ,ξs)

= (1−αt )
t−1∑
s=1

Γt−1

Γs
(ηs −λs)∇ f (X̄s ,ξs)

= (1−αt )Γt−1

t−1∑
s=1

αs

Γs

(ηs −λs)

αs
∇ f (X̄s ,ξs),

Hence, by convexity of squared norm and (absolute) homogeneity of vector norms,

∥X̄ t −X t∥2 = ∥(1−αt )Γt−1

t−1∑
s=1

αs

Γs

(ηs −λs)

αs
∇ f (X̄s ,ξs)∥2

≤ (1−αt )2Γt−1

t−1∑
s=1

αs

Γs

(ηs −λs)2

α2
s

∥∇ f (X̄s ,ξs)∥2

≤ (1−αt )Γt

t∑
s=1

αs

Γs

(ηs −λs)2

α2
s

∥∇ f (X̄s ,ξs)∥2

Finally, we plug this in the original expression,

T∑
t=1

∥∇ f (X̄ t )∥2 ≤
T∑

t=1

1

ηt
(∆t −∆t+1)+ L

2

T∑
t=1

[
(1−αt )

Γt

ηt

t∑
s=1

αs

Γs

(ηs −λs)2

α2
s

∥∇ f (X̄s ,ξs)∥2
]

+L
T∑

t=1
ηt∥∇ f (X̄ t ,ξt )∥2 +

T∑
t=1

−〈∇ f (X̄ t ),ζt 〉

≤ ∆1

η1
+

T−1∑
t=1

(
1

ηt+1
− 1

ηt
)∆t+1 + L

2

T∑
t=1

[
T∑

s=t
(1−αs)

Γs

ηs

]
αt

Γt

(ηt −λt )2

α2
t

∥∇ f (X̄ t ,ξt )∥2

+L
T∑

t=1

∥∇ f (X̄ t ,ξt )∥2√
G2

0 +
∑t

s=1∥∇ f (X̄s ,ξs)∥2
+

T∑
t=1

−〈∇ f (X̄ t ),ζt 〉

≤ ∆max

η1
+∆max

T−1∑
t=1

(
1

ηt+1
− 1

ηt
)+ L

2

T∑
t=1

[
T∑

s=t
(1−αs)

Γs

ηs

]
αt

Γt

(ηt −λt )2

α2
t

∥∇ f (X̄ t ,ξt )∥2

+2L

√√√√G2
0 +

T∑
t=1

∥∇ f (X̄ t ,ξt )∥2 +
T∑

t=1
−〈∇ f (X̄ t ),ζt 〉

≤ ∆max +2L

ηT
+ L

2ηT

T∑
t=1

[
T∑

s=t
(1−αs)Γs

]
αt

Γt︸ ︷︷ ︸
(∗)

(ηt −λt )2

α2
t

∥∇ f (X̄ t ,ξt )∥2 +
T∑

t=1
−〈∇ f (X̄ t ),ζt 〉︸ ︷︷ ︸

(∗∗)

.

We rearranged the summations to obtain the second inequality, used the assumption that

∆t ≤∆max for any t together with Lemma 2.1.2, and we telescope the first summation on the

right hand side to obtain the result.
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■

Next, we provide the proof for term (∗) in Proposition 3.1.4.

Proposition 3.1.5. We have

[
T∑

s=t
(1−αs)Γs

]
αt

Γt
≤


2 if αt = 2

t+1 ;

log(T +1) if αt = 1
t .

Proof. First, we begin with the weighted averaging setting, i.e., αt = 2/(t + 1). Using the

recursive definition of Γ, one could easily show that for any αt ∈ (0,1),

t∑
s=1

αs

Γs
= 1

Γt
=⇒ Γt

t∑
s=1

αs

Γs
= 1.

Defining At =∑t
s=1 s = t (t+1)

2 and A0 = 1, we have that αt = t
At

and

Γt =
t∏

s=1
(1−αs) =

t∏
s=1

(1− s

As
) =

t∏
s=1

As−1

As
= 1

At

Hence, we can express term (∗) as[
T∑

s=t
(1−αs)Γs

]
αt

Γt
≤

[
T∑

s=t

1

As

]
t

=
[

2
T∑

s=t

1

s(s +1)

]
t

=
[

2
T∑

s=t

1

s
− 1

s +1

]
t

= 2

(
1

t
− 1

T +1

)
t

≤ 2

For the uniform averaging setting with αt = 1
t , for t > 1,

Γt =
t∏

s=1
(1−αs) =

t∏
i=2

k −1

k
= 1

k
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Hence, again for t > 1, [
T∑

s=t
(1−αs)Γs

]
αt

Γt
=

T∑
s=t

1

k
≤

T∑
k=2

1

k
≤ log(T +1),

where the last inequality is due to that fact that integral of f (x) = 1/x over the range [1,k]

upper bounds the summation above.

■

Finally, we conclude with the high probability convergence theorem for RSAG.

Theorem 3.1.4. Let {X t } be the sequence generated by adaptive RSAG. Under Assumptions 3.2, 3.6, 3.7,

with probability 1−8log(T )δ,

1

T

T∑
t=1

∥∇ f (X̄ t )∥2 ≤ G0(∆max +3L+L log(max{1,G−2
0 }+G̃2T ))+3(G2 +GG̃)log(1/δ))

T

+ G̃(∆max +3L+L log(max{1,G−2
0 }+G̃2T ))+2Gσ

√
log(1/δ)p

T
,

where ∆max ≤O
(
∆1 +L log(T )+σ2 log(1/δ)

)
.

Proof. Again by Proposition 3.1.4,

T∑
t=1

∥∇ f (X̄ t )∥2 ≤ ∆max +2L

ηT
+ L

2ηT

T∑
t=1

[
T∑

s=t
(1−αs)Γs

]
αt

Γt︸ ︷︷ ︸
(∗)

(ηt −λt )2

α2
t

∥∇ f (X̄ t ,ξt )∥2 +
T∑

t=1
−〈∇ f (X̄ t ),ζt 〉︸ ︷︷ ︸

(∗∗)

.

Recall that we use weighted averaging and the particular step-size choices; ηt = γt and λt =
(1+αt )γt where γt is defined as in Eq. (3.12). Combining with the previous expression we get

T∑
t=1

∥∇ f (X̄ t )∥2 ≤ ∆max +2L

γT
+ L

2γT

T∑
t=1

[
T∑

s=t
(1−αs)Γs

]
αt

Γt︸ ︷︷ ︸
(∗)

γ2
t ∥∇ f (X̄ t ,ξt )∥2 +

T∑
t=1

−〈∇ f (X̄ t ),ζt 〉︸ ︷︷ ︸
(∗∗)

.

We introduce the bounds in Proposition 3.1.5 and Proposition 3.1.1 for the respective marked

term,

T∑
t=1

∥∇ f (X̄ t )∥2 ≤ ∆max +2L+L
∑T

t=1γ
2
t ∥∇ f (X̄ t ,ξt )∥2

γT

+2σ
√

log(1/δ)

√√√√ T∑
t=1

∥∇ f (X̄ t )∥2 +3(G2 +GG̃)log(1/δ)

≤ ∆max +3L+L log
(
max{1,G−2

0 }+∑T
t=1∥∇ f (X̄ t ,ξt )∥2

)
γT
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+2Gσ
√

log(1/δ)
p

T +3(G2 +GG̃)log(1/δ)

≤
(
∆max +3L+L log

(
max{1,G−2

0 }+
T∑

t=1
∥∇ f (X̄ t ,ξt )∥2

))√√√√G2
0 +

T∑
t=1

∥∇ f (X̄ t ,ξt )∥2

+2Gσ
√

log(1/δ)
p

T +3(G2 +GG̃)log(1/δ)

≤
(
G̃

(
∆max +3L+L log

(
max{1,G−2

0 }+G̃2T
))+2Gσ

√
log(1/δ)

)p
T

+G0
(
∆max +3L+L log

(
max{1,G−2

0 }+G̃2T
))+3(G2 +GG̃)log(1/δ)

where we used Lemma 3.1.1 in the second inequality, while boundedness of ∇ f (X̄ t ) and

almost sure boundedness of ∇ f (X̄ t ,ξt ) in the last line. Dividing both sides by T, and using the

same argument as in the proof of Theorem 3.1.2, with probability at least 1−8log(T )δ,

1

T

T∑
t=1

∥∇ f (X̄ t )∥2 ≤ G0
(
∆max +3L+L log

(
max{1,G−2

0 }+G̃2T
))+3(G2 +GG̃)log(1/δ))

T

+ G̃
(
∆max +3L+L log

(
max{1,G−2

0 }+G̃2T
))+2Gσ

√
log(1/δ)p

T

where

∆max ≤∆1 +2L
(
1+ log

(
max{1,G2

0}+G̃2T
))+G−1

0 (3(G2 +GG̃)+σ2) log(1/δ)+G−1
0 (2G2 +GG̃)

■

In this part of the appendix, we focus on the sub-Gaussian noise model and proofs of the

relevant results. Specifically, we present the proof of Proposition 3.1.3 and Theorem 3.1.3

along with the Lemmas that we will require in the proofs. We first prove a bound on ∆max and

then show noise-adaptive rates for AdaGrad; we will argue about high probability bounds on

objective sub-optimality under sub-Gaussian assumption. First, we will present Lemma 1

from Li and Orabona [LO20], as well as our modified version of it that we use in our derivations.

Lemma 3.1.3. Let Z1, · · · , ZT be a martingale difference sequence (MDS) with respect to random

vectors ξ1, · · · ,ξT and Yt be a sequence of random variables which is σ(ξ1, · · · ,ξt−1)-measurable.

Given that E
[

exp(Z 2
t /Y 2

t ) |σ(ξ1, · · ·ξt−1)
]≤ exp(1), for any λ> 0 and δ ∈ (0,1) with probability

at least 1−δ,

T∑
t=1

Zt ≤ 3

4
λ

T∑
t=1

Y 2
t + 1

λ
log(1/δ)
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Next, we present a slightly modified version of the above lemma. Its proof follows the same

lines with Lemma 3.1.3 up to replacing Yt with a deterministic quantity, selecting a particular

choice of λ and dealing with the MDS Zt itself rather than its square, Z 2
t .

Lemma 3.4.1. Let Z1, · · · , ZT be a martingale difference sequence (MDS) with respect to random

vectors ξ1, · · · ,ξT andσ2 ∈R such that E
[

exp(Zt /σ2) |σ(ξ1, · · ·ξt−1)
]≤ 1. Then, with probability

as least 1−δ,

T∑
t=1

Zt ≤σ2 log(1/δ)

We will also make use of another relevant result (Lemma 5 in Li and Orabona [LO20]) regarding

the probabilistic behavior of maximum over norms of noise vectors.

Lemma 3.4.2 (Lemma 5 in Li and Orabona [LO20]). Under assumptions as in Eq. (3.5) and (3.11),

let ζt =∇ f (X t ,ξt )−∇ f (X t ). For δ ∈ (0,1), with probability at least 1−δ,

max
1≤t≤T

∥ζt∥2 ≤σ2 log

(
eT

δ

)

We begin by the high probability bound on the function sub-optimality.

Proposition 3.1.3. Let {X t } be generated by AdaGrad and define ∆t = f (X t )−minx∈Rd f (x).

Under sub-Gaussian noise assumption as in Eq. (3.11), with probability at least 1−3δ,

∆t+1 ≤∆1 +3G−1
0 G2 +2G−1

0 σ2 log

(
et

δ

)
+ 3

4G0
σ2 log(1/δ)

+ L

2

(
1+ log

(
max

{
1,G2

0

}+2G2t +2σ2t log

(
et

δ

)))
.

Proof. Using the initial steps of the proof in the original derivation,

∆T+1 ≤∆1 +
T∑

t=1
−γt∥∇ f (X t )∥2

︸ ︷︷ ︸
(A)

+
T∑

t=1
−γt 〈∇ f (X t ),ζt 〉︸ ︷︷ ︸

(B)

+ L

2

T∑
t=1

γ2
t ∥∇ f (X t ,ξt )∥2

︸ ︷︷ ︸
(C)

Term (A) + (B). In order to deal with measurability issues, we will divide term (B) into two

parts:

T∑
t=1

−γt 〈∇ f (X t ),ξt 〉 =
T∑

t=1
−γt−1〈∇ f (X t ),ζt 〉+

T∑
t=1

(γt−1 −γt )〈∇ f (X t ),ζt 〉

(1)≤
T∑

t=1
−γt−1〈∇ f (X t ),ζt 〉+2(G2 + max

1≤t≤T
∥ζt∥2)

T∑
t=1

(γt−1 −γt )

≤
T∑

t=1
−γt−1〈∇ f (X t ),ζt 〉+2(G2 + max

1≤t≤T
∥ζt∥2)γ0
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where we used Cauchy-Schwarz together with Young’s inequality to obtain inequality (1) and

telescoped in the last line. Moreover, we pick η0 ≥ η1 to make sure monotonicity. Without

loss of generality, a natural choice would be γ0 = G−1
0 , which aligns with the definition in

Algorithm 4. By Lemma 3.4.2, with probability at least 1−δ,

T∑
t=1

−γt 〈∇ f (X t ),ζt 〉 ≤
T∑

t=1
−γt−1〈∇ f (X t ),ζt 〉+2G−1

0

(
G2 +σ2 log

(
eT

δ

))

Now, we will invoke Lemma 3.1.3 on the term
∑T

t=1−γt−1〈∇ f (X t ),ζt 〉by setting Zt =−γt−1〈∇ f (X t ),ζt 〉,
Y 2

t = γ2
t−1∥∇ f (X t )∥2σ2, with probability at least 1−δ,

T∑
t=1

−γt−1〈∇ f (X t ),ζt 〉 ≤ 3

4
λ

T∑
t=1

Y 2
t + 1

λ
log(1/δ)

= 3

4
λσ2

T∑
t=1

γ2
t−1∥∇ f (X t )∥2 + 1

λ
log(1/δ)

Now, summing up the expression above with term (A) and leaving 1
λ log(1/δ) aside for now,

3

4
λσ2

T∑
t=1

γ2
t−1∥∇ f (X t )∥2−

T∑
t=1

γt∥∇ f (X t )∥2

≤ 3

4
λσ2

T∑
t=1

γ2
t−1∥∇ f (X t )∥2 −G0

T∑
t=1

γ2
t ∥∇ f (X t )∥2

≤ 3

4
λσ2

T∑
t=1

η2
t−1∥∇ f (X t )∥2 −G0

T∑
t=1

γ2
t−1∥∇ f (X t )∥2 +G0

T∑
t=1

(
γ2

t−1 −γ2
t

)∥∇ f (X t )∥2

≤
(

3

4
λσ2 −G0

) T∑
t=1

γ2
t−1∥∇ f (X t )∥2 +G0G2γ2

0

where we used G0γ
2
t ≤ γt in the first inequality and added/subtracted

∑T
t=1γ

2
t−1∥∇ f (X t )∥2 in

the second inequality. Since we have a free variable to choose, λ, we could set it to λ= 4G0

3σ2 to

obtain,

3

4
λσ2

T∑
t=1

γ2
t−1∥∇ f (X t )∥2 −

T∑
t=1

γt∥∇ f (X t )∥2 ≤G−1
0 G2

Hence, summing up all the expressions together, with probability at least 1−2δ,

(A)+ (B) ≤ 3G−1
0 G2 +2G−1

0 σ2 log

(
eT

δ

)
+ 3

4G0
σ2 log(1/δ)
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Term (C). This term is easy to prove using online learning lemmas as we did previously, but

we introduce a slight change in order to avoid bounded stochastic gradient assumption.

L

2

T∑
t=1

γ2
t ∥∇ f (X t ,ξt )∥2 ≤ L

2

(
1+ log

(
max

{
1,G2

0

}+ T∑
t=1

∥∇ f (X t ,ξt )∥2

))

≤ L

2

(
1+ log

(
max

{
1,G2

0

}+2
T∑

t=1
∥∇ f (X t )∥2 +2

T∑
t=1

∥ζt∥2

))

≤ L

2

(
1+ log

(
max

{
1,G2

0

}+2G2T +2

(
max

1≤t≤T
∥ζt∥2

)
T

))
We invoked Lemma 3.1.1 to obtain the first inequality. Once again via Lemma 3.4.2, with

probability at least 1−δ,

L

2

T∑
t=1

γ2
t ∥∇ f (X t ,ξt )∥2 ≤ L

2

(
1+ log

(
max

{
1,G2

0

}+2G2T +2σ2T log

(
eT

δ

)))

Finally, merging all the expression, with probability at least 1−3δ,

∆T+1 ≤∆1 +3G−1
0 G2 +2G−1

0 σ2 log

(
eT

δ

)
+ 3

4G0
σ2 log(1/δ)

+ L

2

(
1+ log

(
max

{
1,G2

0

}+2G2T +2σ2T log

(
eT

δ

)))
=O

(
∆1 +σ2 log

(
eT

δ

)
+σ2 log(1/δ)+L log

(
T +σ2T log

(
eT

δ

)))
■

Now, we are at a position to prove noise-adaptive bounds.

Theorem 3.1.3. Let {X t } be generated by AdaGrad and define ∆t = f (X t )−minx∈Rd f (x). Under

sub-Gaussian noise assumption as in Eq. (3.11) and considering high probability boundedness

of ∆max due to Proposition 3.1.3, with probability at least 1−5δ,

1

T

T∑
t=1

∥∇ f (X t )∥2 ≤ 32(∆max +L)2 +8(∆max +L) (G0 +σ
√

2log(1/δ))+8σ2 log(1/δ)

T
+ 8

p
2(∆max +L)σp

T
.

Proof. We take off from the same step of the original analysis by defining ζt = ∇ f (X t ,ξt )−
∇ f (X t ),

T∑
t=1

∥∇ f (X t )∥2 ≤ ∆max

γT
+

T∑
t=1

−〈∇ f (X t ),ζt 〉+ L

2

T∑
t=1

γt∥∇ f (X t ,ξt )∥2

≤ (∆max +L)

√√√√G2
0 +

T∑
t=1

∥∇ f (X t ,ξt )∥2 +
T∑

t=1
−〈∇ f (X t ),ζt 〉
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≤ (∆max +L)

√√√√G2
0 +2

T∑
t=1

(∥∇ f (X t )∥2 +∥ζt∥2 +σ2 −σ2
)+ T∑

t=1
−〈∇ f (X t ),ζt 〉

≤ (∆max +L)

(
G0 +

√√√√2
T∑

t=1
∥∇ f (X t )∥2 +

(
max

{
0,2

T∑
t=1

(∥ζt∥2 −σ2)︸ ︷︷ ︸
(∗)

})1/2

+σ
p

2T

)

+
T∑

t=1
−〈∇ f (X t ),ζt 〉︸ ︷︷ ︸

(∗∗)

We already showed that −〈∇ f (X t ),ζt 〉 is a MDS. Similarly, we could show that martingale

property holds for ∥ζt∥2 −σ2,

E
[∥ζt∥2 −σ2 |σ(ξ1, · · · ,ξt−1)

]= E[∥ζt∥2 |σ(ξ1, · · · ,ξt−1)
]−σ2 ≤σ2 −σ2 = 0. (3.39)

Lemma 3.4.1 immediately implies for term (∗) that with probability at least 1−δ,

T∑
t=1

(∥ζt∥2 −σ2) ≤σ2 log(1/δ)

For term (∗∗), we apply Lemma 3.1.3 with Y 2
t = σ2∥∇ f (X t )∥2 and λ = 1/σ2 to obtain with

probability at least 1−δ,

T∑
t=1

−〈∇ f (X t ),ζt 〉 ≤ 3

4

T∑
t=1

∥∇ f (X t )∥2 +σ2 log(1/δ)

Plugging these values in and re-arranging,

1

4

T∑
t=1

∥∇ f (X t )∥2 ≤p
2(∆max +L)

√√√√ T∑
t=1

∥∇ f (X t )∥2 + (∆max +L)
(
G0 +σ

√
2log(1/δ)+σ

p
2T

)
+σ2 log(1/δ)

We will conclude our proof by treating the above inequality as a quadratic inequality with re-

spect to x =
√∑T

t=1∥∇ f (X t )∥2. Defining c = (∆max +L)
(
G0 +σ

√
2log(1/δ)+σp2T

)+σ2 log(1/δ),

x2 −4
p

2(∆max +L) x −4c ≤ 0,

where the roots of the inequality are

x =
4
p

2(∆max +L)±
√

32(∆max +L)2 +16(∆max +L)
(
G0 +σ

√
2log(1/δ)+σp2T

)+16σ2 log(1/δ)

2

133



Chapter 3. Adaptive methods and variance reduction for smooth, non-convex optimization

Since x > 0 by default, we will take into account the positive root above, which yields,

T∑
t=1

∥∇ f (X t )∥2 ≤ 4

(p
2(∆max +L)+

√
(∆max +L)

(
G0 +2(∆max +L)+σ

√
2log(1/δ)+σ

p
2T

)
+σ2 log(1/δ)

)2

1

T

T∑
t=1

∥∇ f (X t )∥2 ≤ 32(∆max +L)2 +8(∆max +L)
(
G0 +σ

√
2log(1/δ)

)+8σ2 log(1/δ)

T
+ 8

p
2(∆max +L)σp

T

■
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3.4.2 Proofs of Section 3.2

We first present proof of the following lemma, which provides us with a departure point for

our STORM+ and its simplified version.

Lemma 3.2.2. Let {X t } be generated by STORM+ (Algorithm 6) under the assumptions in

Theorem 3.2.1. Then, it holds that

T∑
t=1

∥ḡ t∥2 ≤
T∑

t=1
∥ϵt∥2 +2B a−1/3

T+1 (
T∑

t=1
∥dt∥2)1/3 + 3

2
L(

T∑
t=1

∥dt∥2)2/3

Proof. Using smoothness together with the update rule implies,

∆t+1 −∆t = f (X t+1)− f (X t ) ≤−γt ḡ⊤
t dt +

Lγ2
t

2
∥dt∥2

=−γt∥ḡ t∥2 −γt ḡ⊤
t ϵt +

Lγ2
t

2
∥dt∥2

≤−γt∥ḡ t∥2 + γt

2
∥ḡ t∥2 + γt

2
∥ϵt∥2 + Lγ2

t

2
∥dt∥2 ,

where we defined ∆t := f (xt )− f (x∗). The second line above uses dt = ḡ t +ϵt , and the third

line uses z⊤y ≤ 1
2 (∥z∥2 +∥y∥2).

Re-arranging the above we get,

∥ḡ t∥2 ≤ ∥ϵt∥2 + 2

γt
(∆t −∆t+1)+Lγt∥dt∥2

Summing over t gives,

T∑
t=1

∥ḡ t∥2 ≤
T∑

t=1
∥ϵt∥2 − 2

γT
∆T+1 +2

T∑
t=1

(
1

γt
− 1

ηt−1
)∆t +L

T∑
t=1

γt∥dt∥2

≤
T∑

t=1
∥ϵt∥2 +2B

T∑
t=1

(
1

γt
− 1

ηt−1
)+L

T∑
t=1

∥dt∥2

(
∑t

i=1 ∥dt∥2)1/3

≤
T∑

t=1
∥ϵt∥2 +2B

1

γT
+ 3

2
L(

T∑
t=1

∥dt∥2)2/3

≤
T∑

t=1
∥ϵt∥2 +2B(

T∑
t=1

∥dt∥2/at+1)1/3 + 3

2
L(

T∑
t=1

∥dt∥2)2/3

≤
T∑

t=1
∥ϵt∥2 +2B(1/aT+1)1/3(

T∑
t=1

∥dt∥2)1/3 + 3

2
L(

T∑
t=1

∥dt∥2)2/3 (3.40)

The second line uses ∆t ∈ [0,B ], the third line uses Lemma 3.4.3, and the last line uses the fact

that at is monotonically decreasing. ■

Note that the proof of Equation (3.28) directly follows from Lemma 3.2.2 by taking aT+1 =
1/T 2/3.
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Before we begin with the proof of the main result in Theorem 3.2.1, we present a set of numeri-

cal results, which are critical in handling the adaptive step-size and momentum parameters

under different formulations; different range of exponents of the summations in the denomi-

nator, variation in the limits of the summation etc.

Lemma 3.4.3. Let b1 > 0, b2, ...,bn ≥ 0 be a sequence of real numbers, p ∈ (0,1) be a real number.

n∑
s=1

bi(∑i
j=1 b j

)p ≤ 1

1−p

( n∑
s=1

bi

)1−p

Proof. We will prove the lemma by induction on n. The proof relies on the arguments in

[MS10] and generalizes it for any p ∈ (0,1). For the base case of n = 1, we can easily show that

the hypothesis holds.

b1

bp
1

= b1−p
1 ≤ 1

1−p
b1−p

1

Now, assuming that the hypothesis holds for some arbitrary number n −1 > 1, we want to

show that it holds for n, too. Let us define Z =∑n
t=1 bt and x = bn . Then, using the inductive

hypothesis for n −1,

n∑
t=1

bn(∑t
i=1 bi

)p ≤ 1

1−p

(
n−1∑
t=1

bt

)1−p

+ bn(∑n
t=1 bt

)p

= 1

1−p
(Z −x)1−p + x

Z p

Let us denote h(x) = 1
1−p (Z −x)1−p + x

Z p is concave in x. What we need to show is that, for any

choice of allowable x, h(x) ≤ 1
1−p Z 1−p . Specifically, we want to prove that

max
0≤x<Z

h(x) ≤ 1

1−p
Z 1−p

First, observe that h(x) is a concave function, hence at the maximum the derivative evaluates

to zero. Our aim is to find such x. Taking derivative wrt x,

dh(x)

d x
= 1

Z p − 1

(Z −x)p ,

which evaluates to zero when x = 0. Hence,

max
0≤x<Z

h(x) = h(0) = 1

1−p
Z 1−p = 1

1−p

( n∑
t=1

bt

)1−p
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which implies that the hypothesis is true:

n∑
t=1

bt(∑t
i=1 bi

)p ≤ 1

1−p

( n∑
t=1

bt

)1−p

.

■

Next lemma forms basis of the proof of Lemma 3.2.3 in the main text, which has a sum that lag

one iteration behind. We first prove a version of it iin the next lemma without any time delay

in the summation in the denominator. Then, we use the result of Lemma 3.4.4 in the proof of

Lemma 3.2.3.

Lemma 3.4.4. For any non-negative real numbers a1, . . . , an ∈ [0, amax],

n∑
i=1

ai

(1+∑i
j=1 a j )4/3

≤ 12 .

Proof. Define,

N0 = max

{
i ∈ [n] :

i∑
j=1

a j ≤ 2

}
.

as well as for any k ≥ 1

Nk = max

{
i ∈ [n] : 2k <

i∑
j=1

a j ≤ 2k+1

}
.

Now lets split the sum according to the Nk ’s

n∑
i=1

ai

(1+∑i
j=1 a j )4/3

=
N0∑

i=1

ai

(1+∑i
j=1 a j )4/3

+
∞∑

k=1

Nk∑
i=Nk−1+1

ai

(1+∑i
j=1 a j )4/3

≤
N0∑

i=1
ai +

∞∑
k=1

1

(2k )4/3

Nk∑
i=1

ai

≤ 2+
∞∑

k=1

2k+1

(2k )4/3

= 2+
∞∑

k=1

2k+1

(2k )4/3

= 2+2
∞∑

k=1

(
1

21/3

)k

≤ 2+2 · 1

1−2−1/3

≤ 12 .

■
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Lemma 3.2.3. For any non-negative real numbers a1, . . . , an ∈ [0, amax],

n∑
i=1

ai

(1+∑i−1
j=1 a j )4/3

≤ 12+2amax .

Proof. Lets define,

N0 = min

{
i ∈ [n] :

i−1∑
j=1

a j ≥ amax

}
.

Thus, we can decompose the sum as follows,

n∑
i=1

ai

(1+∑i−1
j=1 a j )4/3

=
N0−1∑
i=1

ai

(1+∑i−1
j=1 a j )4/3

+
n∑

i=N0

ai

(1+∑i−1
j=1 a j )4/3

≤
N0−1∑
i=1

ai +
n∑

i=N0

ai

(1+∑N0−1
j=1 a j +∑i−1

j=N0
ai )4/3

≤ 2amax +
n∑

i=N0

ai

(1+amax +∑i−1
j=N0

ai )4/3

≤ 2amax +
n∑

i=N0

ai

(1+ai +∑i−1
j=N0

ai )4/3

≤ 2amax +12

where the second and third lines use the definition of N0 and definition of amax, the fourth

line uses ai ≤ amax, and the last line uses the helper Lemma 3.4.4. ■

This lemma is the time-shifted version of Lemma 3.4.3, such that the summation lags one

iteration behind.

Lemma 3.4.5. Let b1, ...,bn ∈ (0,b] be a sequence of non-negative real numbers for some positive

real number b, b0 > 0 and p ∈ (0,1) a rational number. Then,

n∑
i=1

bi(
b0 +∑i−1

j=1 b j

)p ≤ b

(b0)p + 2

1−p

(
b0 +

n∑
i=1

bi

)1−p

Proof. The proof of this lemma relies on the arguments of Lemma A.1 from [BL19] and makes

use of Lemma 3.4.3 we proved earlier. We consider two cases for the proof depending on

whether b0 ≤ b or b0 ≥ b.

Case 1 : b0 ≥ b.

n∑
i=1

bi(
b0 +∑i−1

j=1 b j

)p ≤
n∑

i=1

bi(
b +∑i−1

j=1 b j

)p
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≤
n∑

i=1

bi(∑i
j=1 b j

)p

≤ 1

1−p

(
n∑

i=1
bi

)1−p

≤ b

(b0)p + 2

1−p

(
b0 +

n∑
i=1

bi

)1−p

Case 2 : b0 ≤ b.

Let us denote a time variable

T0 = min

{
i ∈ [n] :

i−1∑
j=1

b j ≥ b

}

Then, we could separate the summation as

n∑
i=1

bn

(b0 +∑i−1
j=1 b j )p

=
T0−1∑
i=1

bn

(b0 +∑i−1
j=1 b j )p

+
n∑

i=T0

bn

(b0 +∑i−1
j=1 b j )p

≤ 1

(b0)p

T0−1∑
i=1

bn +
n∑

i=T0

bn

( 1
2

∑i−1
j=1 b j + 1

2

∑i−1
j=1 b j )p

≤ b

(b0)p +
n∑

i=T0

bn

( 1
2 b + 1

2

∑i−1
j=1 b j )p

(Use definition of T0)

≤ b

(b0)p +2
n∑

i=T0

bn

(
∑i

j=1 b j )p
(Use bi ≤ b)

≤ b

(b0)p + 2

1−p

(
n∑

i=T0

bi

)1−p

(Use Lemma 3.4.3)

≤ b

(b0)p + 2

1−p

(
b0 +

n∑
i=1

bi

)1−p

■

The final numerical inequality we will have helps us quantify the behavior of the difference

1/at+1 −1/at for the original STORM+.

Lemma 3.4.6. Let the momentum parameter sequence {at } be generated by Algorithm 6, and

bounded (stochastic) gradient assumption in Eq. (3.15) hold. Also define the stopping time

τ∗ = max
(
t ∈ [T ] : at ≥β

)
where β= min

(
1,G−4

)
. Then, it holds that

1/at+1 −1/at ≤ 2/3 ; ∀t ≥ τ∗+1.
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Moreover,

1/at+1 ≤ 1/β̃ ;∀t ≤ τ∗

where 1/β̃ := (1/β3/2 +G2)2/3 .

Proof. The lemma has two parts. We prove them separately.

Proof of the first part.

First note that the function H(y) := y2/3 is concave over R+. Applying the gradient inequality

for concave functions imply that,

∀y1, y2 ≥ 0 ; H(y2)−H(y1) ≤∇H(y1)⊤(y2 − y1) = 2

3

1

y1/3
1

· (y2 − y1) .

Therefore, for any t ≥ τ∗+1

1

at+1
− 1

at
= (1+

t−1∑
s=1

∥gs∥2 +∥g t∥2)2/3 − (1+
t−1∑
s=1

∥gs∥2)2/3

≤ 2

3

∥g t∥2

(1+∑t−1
s=1 ∥gs∥2)1/3

= 2

3

p
at∥g t∥2

≤ 2

3

√
βG2

≤ 2

3
.

where the fourth line uses the definition of τ∗, and the last line uses the definition of β.

Proof of the second part.

Recalling that τ∗ = max{t ∈ [T ] : at ≥β} for β= min{1,1/G4} implies that 1/at ≤ 1/β ;∀t ≤ τ∗.

Moreover, using the definition of at and boundedness of gradients we obtain,

(1/aτ∗+1)3/2 = (1/aτ∗)3/2 +∥gτ∗∥2 ≤ 1

β3/2
+G2

Defining 1
β̃

:=
(

1
β3/2 +G2

)2/3
implies that,

1/at ≤ 1/β̃ ; ∀t ≤ τ∗+1 .

■

Now, we are at a position to present the proof of the main result of our STORM+. Note that

the proof of the simplified version checks out using the same derivation up to replacing the

non-adaptive version of the momentum parameter.
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Theorem 3.2.1. Under the assumption in Eq. (3.14), (3.15), (3.16) and (3.17) STORM+ ensures,

E
[∥∇ f (X̂T )∥]≤O

(
Mp

T
+ κσ1/3

T 1/3

)
,

where κ=O(B 3/4 +L3/2); M =O(1+L9/4 +B 9/8 +G5 + (LG4)3/2), and the expectation is taken

over the randomization of the (gradient) samples as well as the selection of the output point.

Proof Sketch of Theorem 3.2.1. The proof is composed of three parts:

1. In the first part we bound the cumulative expectation of errors E
[∑τ∗

t=1 ∥ϵt∥2
]
, where ϵt :=

dt − ḡ t , and τ∗ is a stopping time after which we can ensure that 1/at+1 −1/at ≤ 2/3. This

solves the first challenge.

2. In the second part we use our bound on E
[∑τ∗

t=1 ∥ϵt∥2
]

in order to bound the total sum of

square errors, E
[∑T

t=1 ∥ϵt∥2
]
.

3. Then, in the last part, we divide into two sub-cases as we did in the simpflified proof sketch

such that we first analyze the setting if E
[∑T

t=1 ∥ϵt∥2
] ≤ (1/2)E

[∑T
t=1 ∥ḡ t∥2

]
and then its

complement. We also use the smoothness of the objective together with the update rule,

similarly to what we do in Eq. (3.23).

Part (1): Bounding E
[∑τ∗

t=1 ∥ϵt∥2
]
.

Recall the error dynamics of STORM+ in Eq. (3.24). Taking the square and summing up to some

τ∗ ∈ [T ] enables us to bound,

τ∗∑
t=1

∥ϵt∥2 ≤
τ∗∑

t=1
(1−at )∥ϵt−1∥2 +2

τ∗∑
t=1

∥Zt∥2 +2
τ∗∑

t=1
a2

t ∥g t − ḡ t∥2 +
τ∗∑

t=1
Mt ,

where Mt = 2〈(1−at )ϵt−1, at (g t − ḡ t )+(1−at )Zt 〉 is a martingale difference sequence such that

E[Mt |Ft−1] = 0, where Ft is the history upto and including iteration t , i.e., Ft := {x1,ξ1,ξ2,ξ3 . . . ,ξt }.

Also, recall that we have defined Zt := (g t − g̃ t−1)− (ḡ t − ḡ t−1).

Now let us define β := min{1,1/G4}, and τ∗ = max{t ∈ [T ] : at ≥ β}. Recalling that at+1 is

measurable with respect to Ft implies that τ∗ ∈ [T ] is a stopping time adapted to the same

sigma-algebra sequence, {Ft }. Re-arranging the above and using the definition of τ∗ implies,

β
τ∗∑

t=1
∥ϵt∥2 ≤ ∥ϵτ∗∥2 +

τ∗−1∑
t=1

at+1∥ϵt∥2 ≤ 2
T∑

t=1
∥Zt∥2

︸ ︷︷ ︸
(i)

+2
T∑

t=1
a2

t ∥g t − ḡ t∥2

︸ ︷︷ ︸
(ii)

+
τ∗∑

t=1
Mt︸ ︷︷ ︸

(iii)

(3.41)

where we used τ∗ ≤ T , as well as β≤ 1. Note that we haven’t used the particular definition of β

yet. Next we bound the expected value of the above terms.

Bounding (i). Using smoothness property implies that ∥Zt∥ ≤ 2L∥X t −X t−1∥ = 2Lγt−1∥dt−1∥.
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Using the expression for γt−1 together with Lemma 3.4.3 enables to show,

(i) ≤ 4L2
T∑

t=1

∥dt−1∥2

(
∑t−1

s=1 ∥ds∥2)2/3
≤ 12L2(

T∑
t=1

∥dt∥2)1/3 .

where the first inequality uses γt = 1/
(∑t

s=1 ∥ds∥2/ai+1
)1/3 ≤ 1/

(∑t
s=1 ∥ds∥2

)1/3
.

Bounding (ii). Since E[g t |Ht−1] = ḡ t and at is measurable with respect to Ft−1, it follows that

E[a2
t ∥g t − ḡ t∥2] ≤ E[a2

t (∥g t∥2 −∥ḡ t∥2)] ≤ E[a2
t ∥g t∥2]

Using this together with the expression for at , it is possible to show that,

E(ii) ≤ E
[

T∑
t=1

∥g t∥2

(1+∑t−1
s=1 ∥gs∥2)4/3

]
≤C1 .

where C1 := 12+2G2 (recall G is a bound on the gradient norms), and the last inequality is due

to Lemma 3.2.3.

Bounding (iii). Since τ∗ ∈ [T ] is a bounded stopping time, and Mt is a martingale difference

sequence, then Doob’s optional stopping theorem [LP17] implies E(iii) = E[∑τ∗
t=1 Mt

]= 0.

Final bound. Combining the above bounds inside Eq. (3.41) together with Jensen’s inequality

for U (z) = z1/3 defined over R+, yields,

E
τ∗∑

t=1
∥ϵt∥2 ≤ 2C1/β+24(L2/β)(E

T∑
t=1

∥dt∥2)1/3 . (3.42)

Part (2): Bounding E
[∑T

t=1 ∥ϵt∥2
]
.

Recall the error dynamics of STORM+ in Eq. (3.24). Dividing by
p

at , and taking the square

gives,

1

at
∥ϵt∥2 = (

1

at
−2+at )∥ϵt−1∥2 +∥(1−at )

Ztp
at

+p
at (g t − ḡ t )∥2 +Yt

≤ (
1

at
−1)∥ϵt−1∥2 +2

∥Zt∥2

at
+2at∥g t − ḡ t∥2 +Yt ,

where we used at ∈ [0,1], and (1− at ) ∈ [0,1], as well as ∥b + c∥2 ≤ 2∥b∥2 + 2∥c∥2. We also

defined Yt = 2〈1−atp
at
ϵt−1,

p
at (g t − ḡ t )+ 1−atp

at
Zt 〉. Note that E[Yt |Ft−1] = 0; therefore Yt is a

martingale difference sequence. Re-arranging the above and summing gives,

T∑
t=1

∥ϵt−1∥2 ≤− 1

aT
∥ϵT ∥2︸ ︷︷ ︸

(A)

+
T∑

t=1
(

1

at+1
− 1

at
)∥ϵt∥2

︸ ︷︷ ︸
(B)

+2
T∑

t=1

∥Zt∥2

at︸ ︷︷ ︸
(C)

+2
T∑

t=1
at∥g t − ḡ t∥2

︸ ︷︷ ︸
(D)

+
T∑

t=1
Yt︸ ︷︷ ︸

(E)

.

(3.43)
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Next, we bound the expected value of each term separately.

Bounding (A): Since aT ≤ 1 we can bound −E[∥ϵT ∥2
]

/aT ≤−E[∥ϵT ∥2
]

Bounding (B). Lemma 3.4.6 enables to decompose the summation at the stopping time τ∗

and bound (B) as follows,

T∑
t=1

(
1

at+1
− 1

at
)∥ϵt∥2 =

τ∗∑
t=1

(
1

at+1
− 1

at
)∥ϵt∥2 +

T∑
t=τ∗+1

(
1

at+1
− 1

at
)∥ϵt∥2

≤ 1

β̃

τ∗∑
t=1

∥ϵt∥2 + 2

3

T∑
t=τ∗+1

∥ϵt∥2 ≤ 1

β̃

τ∗∑
t=1

∥ϵt∥2 + 2

3

T∑
t=1

∥ϵt∥2 . (3.44)

Thus,

E [ (B)] ≤ 1

β̃
E

[
τ∗∑

t=1
∥ϵt∥2

]
+ 2

3
E

[
T∑

t=1
∥ϵt∥2

]

≤ 2C1

ββ̃
+24

L2

ββ̃
E

[
T∑

t=1
∥dt∥2

]1/3

+ 2

3
E

[
T∑

t=1
∥ϵt∥2

]
(3.45)

where we have used Eq. (3.42) to obtain the last inequality.

Bounding (C). Recall that due to smoothness property ∥Zt∥ ≤ 2L∥X t −X t−1∥ = 2Lγt−1∥dt−1∥,

and using the expression for γt−1 together with Lemma 3.4.3 enables to show,

T∑
t=1

∥Zt∥2

at
≤ 4L2

T∑
t=1

γ2
t−1∥dt−1∥2/at

= 4L2
T∑

t=1

∥dt−1∥2/at(∑t−1
s=1 ∥ds∥2/ai+1

)2/3
(Lemma 3.4.3)

≤ 12L2

(
T−1∑
t=1

∥dt∥2/at+1

)1/3

≤ 12L2 1

a1/3
T

(
T−1∑
t=1

∥dt∥2

)1/3

≤ 12L2

(
1+

T∑
t=1

∥g t∥2

)2/9 (
T∑

t=1
∥dt∥2

)1/3

, (3.46)

where we used the fact that at is non-increasing.

Now, let us recall Young’s inequality which states that for any a,b > 0, and p, q > 1 that satisfies
1
p + 1

q = 1, we have ab ≤ ap /p +bq /q . This implies that for any a,b,ρ > 0 and p = 3
2 , q = 3, we

have,

a2/9b1/3 = (aρ9/2)2/9(b/ρ3)1/3 ≤ (aρ9/2)2p/9

p
+ (b/ρ3)q/3

q
= 2

3
a1/3ρ3/2 + b

3ρ3 (3.47)
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Thus, taking ρ = (512L2)1/3, a = 1+∑T
t=1 ∥g t∥2, b =∑T

t=1 ∥dt∥2, and using Young’s inequality

inside Eq. (3.46) implies,

T∑
t=1

∥Zt∥2

at
≤ 512L3

(
1+

T∑
t=1

∥g t∥2

)1/3

+ 1

128

T∑
t=1

∥dt∥2 (3.48)

Bounding (D). Note that at is measurable with respect to Ft−1, and E[g t |Ft−1] = ḡ t , therefore

using smoothing gives,

E[at∥g t − ḡ t∥2] = E[at (∥g t∥2 −∥ḡ t∥2)] ≤ E[at∥g t∥2]

Thus,

E[(D)] := E
[

T∑
t=1

at∥g t − ḡ t∥2

]

≤ E
[

T∑
t=1

at∥g t∥2

]

= E
[

T∑
t=1

∥g t∥2

(1+∑t−1
s=1 ∥gs∥2)2/3

]

≤G2 +6E

[
1+

T∑
t=1

∥g t∥2

]1/3

,

where the last line is due to Lemma 3.4.5, which is a modified and time-shifted version of

Lemma 3.4.3.

Bounding (E). Since {Yt }t∈[T ] is a martingale difference sequence, as we have argued previ-

ously, we have by definition,

E [ (E)] = E
[

T∑
t=1

Yt

]
= 0 .

Final bound: Combining (A)-(E). Combining the above bounds inside Eq. (3.43) we conclude

that,

1

3
E

T∑
t=1

∥ϵt∥2 ≤ 24L2

ββ̃
E(

T∑
t=1

∥dt∥2)1/3 + 2C1

ββ̃
+2G2

+ (1024L3 +12)E

(
1+

T∑
t=1

∥g t∥2

)1/3

+ 1

64
E

T∑
t=1

∥dt∥2

≤ 24L2

ββ̃
(E

T∑
t=1

∥dt∥2)1/3 + 2C1

ββ̃
+2G2

+ (1024L3 +12)

(
1+E

T∑
t=1

∥g t∥2

)1/3

+ 1

64
E

T∑
t=1

∥dt∥2 (3.49)
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where we have used Jensen’s inequality for the concave function G(z) = z1/3 , z ≥ 0.

Part (3): Bounding E
[∑T

t=1 ∥ḡ t∥2
]
.

We divide the final part of the proof into two cases with respect to the growth of the cumulative

noise:

Case 1 (Large error regime): E
[∑T

t=1 ∥ϵt∥2
]≥ (1/2)E

[∑T
t=1 ∥ḡ t∥2

]
.

Using the statement of Case 1 implies

E

[∑
t
∥dt∥2

]
≤ 2E

[
T∑

t=1
∥ḡ t∥2

]
+2E

[
T∑

t=1
∥ϵt∥2

]
≤ 6E

[
T∑

t=1
∥ϵt∥2

]
.

Plugging this into Eq. (3.49) gives,

1

3
E

[
T∑

t=1
∥ϵt∥2

]
≤ 24L2

ββ̃

(
6E

[
T∑

t=1
∥ϵt∥2

])1/3

+ 2C1

ββ̃
+2G2

+ (1024L3 +12)

(
1+σ2T +E

[
T∑

t=1
∥ḡ t∥2

])1/3

+ 6

64
E

[
T∑

t=1
∥ϵt∥2

]

where the first line uses E∥g t∥2 = E∥ḡ t∥2 +E∥g t − ḡ t∥2 ≤ E∥ḡ t∥2 +σ2.

Re-arranging and using E
∑T

t=1 ∥ḡ t∥2 ≤ 2E
∑T

t=1 ∥ϵt∥2 gives,

1

5
E

[
T∑

t=1
∥ϵt∥2

]
≤ 24L2

ββ̃

(
6E

[
T∑

t=1
∥ϵt∥2

])1/3

+ 2C1

ββ̃
+2G2

+ (1024L3 +12)

(
1+σ2T +2E

[
T∑

t=1
∥ϵt∥2

])1/3

We now want to simplify the expression by freeing the RHS from the term O
(
E
[∑T

t=1 ∥ϵt∥2
]1/3

)
.

Once again, we express thwhole expression as a polynomial inequality. First, we upper bound

the last term as

(1024L3 +12)

(
1+σ2T +2E

[
T∑

t=1
∥ϵt∥2

])1/3

≤ 21/3(1024L3 +12)E

[
T∑

t=1
∥ϵt∥2

]1/3

+ (1024L3 +12)+ (1024L3 +12)σ2/3T 1/3.

Then, defining x = E[∑T
t=1 ∥ϵt∥2

]1/3
and simplifying absolute constants to 1 for ease of naviga-

tion gives us an expression of the form

x3 −
(
1+L3 + L2

ββ̃

)
x −br 1+L3 +G2 + C1

ββ̃
+ (L3 +1)σ2/3T 1/3 ≤ 0

Using the same approach as we have shown in the proof of the offline (deterministic) setting

and that of the simplified STORM+, one can easily validate that the following choice of x
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satisfies the inequality

x = E
[

T∑
t=1

∥ϵt∥2

]1/3

=O

[
1+1+L3 +G2 + C1

ββ̃
+ (L3 +1)σ2/3T 1/3 +

(
L2

ββ̃

)3/2

+L9/2

]1/3


The above selection, together with the statement of Case 1 implies

E

[
T∑

t=1
∥ḡ t∥2

]
≤ 2E

[
T∑

t=1
∥ϵt∥2

]

≤O

(
1+1+L3 +G2 + C1

ββ̃
+ (L3 +1)σ2/3T 1/3 +

(
L2

ββ̃

)3/2

+L9/2

)
(3.50)

Case 2 (Small error regime): E
[∑T

t=1 ∥ϵt∥2
]≤ (1/2)E

[∑T
t=1 ∥ḡ t∥2

]
. Using Lemma 3.2.2 we ob-

tain the departure point of the analysis of this case,

T∑
t=1

∥ḡ t∥2 ≤
T∑

t=1
∥ϵt∥2 +2B(1+

T∑
t=1

∥g t∥2)2/9(
T∑

t=1
∥dt∥2)1/3 + 3

2
L(

T∑
t=1

∥dt∥2)2/3

≤
T∑

t=1
∥ϵt∥2 + 3

2
L(

T∑
t=1

∥dt∥2)2/3 +20B 3/2(1+
T∑

t=1
∥g t∥2)1/3 + 1

64

T∑
t=1

∥dt∥2 (3.51)

where the second line uses a version of Young’s inequality in Eq. (3.47) by selecting a different

set of variables; ρ := (128B/3)1/3, a := 1+∑T
t=1 ∥g t∥2 and b :=∑T

t=1 ∥dt∥2. The condition of this

case implies

E

[∑
t
∥dt∥2

]
≤ 2E

[
T∑

t=1
∥ḡ t∥2

]
+2E

[
T∑

t=1
∥ϵt∥2

]
≤ 3E

[
T∑

t=1
∥ḡ t∥2

]

Taking expectation of Eq. (3.51), plugging in the upper bound for E
[∑

t ∥dt∥2
]

as described

above and upper bounding the cumulative noise term E
[∑T

t=1 ∥ϵt∥2
]

using the condition of

Case 2 gives us,

E

[
T∑

t=1
∥ḡ t∥2

]
≤ E

[
T∑

t=1
∥ϵt∥2

]
+ 3

2
L(E

[
T∑

t=1
∥dt∥2

]
)2/3 +20B 3/2(1+E

[
T∑

t=1
∥g t∥2

]
)1/3 + 1

64
E

[
T∑

t=1
∥dt∥2

]

≤
(

1

2
+ 3

64

)
E

[
T∑

t=1
∥ḡ t∥2

]
+ 3

2
L(3E

[
T∑

t=1
∥ḡ t∥2

]
)2/3 +20B 3/2(1+σ2T +E

[
T∑

t=1
∥ḡ t∥2

]
)1/3

where we have used Jensen’s inequality for the function z1/3 and z2/3 defined over R+. We also

use the fact that E
[∥g t∥2

] = E[∥ḡ t∥2
]+E[∥g t − ḡ t∥2

] ≤ E[∥ḡ t∥2
]+σ2. By re-arranging and

simplifying the above we obtain,

E

[
T∑

t=1
∥ḡ t∥2

]
≤ 18LE

[
T∑

t=1
∥ḡ t∥2

]2/3

+80B 3/2(1+σ2T +E
[

T∑
t=1

∥ḡ t∥2

]
)1/3
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With the same technique as in Case 1, let us denote x = E[∑T
t=1 ∥ḡ t∥2

]1/3
, represents absolute

constants as 1 to obtain the polynomial inequality

x3 −Lx2 −B 3/2x −B 3/2 (
1+σ2/3T 1/3)≤ 0

We recognize that setting

x = E
[

T∑
t=1

∥ḡ t∥2

]1/3

=O
([

B 3/2 +B 9/4 +B 3/2σ2/3T 1/3+L3]1/3
)

satisfies the inequality, which directly translates to

E

[
T∑

t=1
∥ḡ t∥2

]
≤ (

B 3/2 +B 9/4 +B 3/2σ2/3T 1/3 +L3) (3.52)

Final bound: Combining Case 1 and 2.

Combining Eq. (3.50) and (3.53) together with the definitions of C1, β and β̃,

E

[
T∑

t=1
∥ḡ t∥2

]
≤O(M 2 +κ2σ2/3T 1/3) (3.53)

where κ2 := 1+B 3/2 +L3, and M 2 := 1+L9/2 +B 9/4 +G10 + (L2G8)3/2.

Using the definition of X̂T together with Jensen’s inequality gives,

E
[∥∇ f (X̂T )∥]=O

(
Mp

T
+ κσ1/3

T 1/3

)
.

which concludes the proof. ■
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3.4.3 Proofs of Section 3.3

Lemma 3.3.1. Define the gradient estimator at current point x+ as ∇x+ :=∇ fi (x+)−∇ fi (x)+∇x

where x denotes the previous step of the execution and i is sampled uniformly at random from

{1, . . . ,n}. Then,

E
[∥∇x+ −∇ f (x+)∥2]≤ L2∥x+−x∥2 +E[∥∇x −∇ f (x)∥2]

Proof.

E
[∥∇x+ −∇ f (x+)∥2] = E

[∥∇ fi (x+)−∇ fi (x)+∇x −∇ f (x+)∥2]
= E

[∥∇ fi (x+)−∇ fi (x)+∇x −∇ f (x+)+∇ f (x)−∇ f (x)∥2]
= E

[∥∇ fi (x+)−∇ fi (x)−∇ f (x+)+∇ f (x)∥2]
+ 2E

[〈∇ fi (x+)−∇ fi (x)−∇ f (x+)+∇ f (x),∇x −∇ f (x)
〉]

+ E
[∥∇x −∇ f (x)∥2]

Notice that E
[∇ fi (x+)−∇ fi (x)−∇ f (x+)+∇ f (x)

] = 0 due to the fact that i is selected uni-

formly at random in {1, . . . ,n} and thus E
[∇ fi (x+)−∇ fi (x)

]=∇ f (x+)−∇ f (x). The latter im-

plies that,

E
[∥∇x+ −∇ f (x+)∥2] = E

[∥∇ fi (x+)−∇ fi (x)−∇ f (x+)+∇ f (x)∥2]+E[∥∇x −∇ f (x)∥2]
≤ E

[∥∇ fi (x+)−∇ fi (x)∥2]+E[∥∇x −∇ f (x)∥2]
≤ L2E

[∥x+−x∥2]+E[∥∇x −∇ f (x)∥2]
where the first inequality follows by the identity E

[∥X −E [X ]∥2
]= E[∥X ∥2]−∥E [X ]∥2 and the

second inequality by the smoothness of the function fi (·). ■

Lemma 3.3.2. Let {X t } be the points produced by Algorithm 7. Then,

T−1∑
t=0

∥∇t∥2 ≤O

(
n2T 3

(
L2

β2
0

+∥∇ f (X0)∥2

))

Proof. The selection of the step-size in Step 9 of Algorithm 7 implies that ∥X t+1 −X t∥2 =
∥γt∇t∥2 ≤ 1/β2

0. Due to the fact that every n iterations a full-gradient computation is per-

formed, the estimator ∇t :=∇ fi t (X t )−∇ fi t (X t−1)+∇t−1 can be equivalently written as

∇t =
t∑

s=t−(t mod n)+1

(∇ fis (Xs)−∇ fis (Xs−1)
)+∇ f (X t−(t mod n))

As a result,

∥∇t∥2 = ∥
t∑

s=t−(t mod n)+1

(∇ fis (Xs)−∇ fis (Xs−1)
)+∇ f (X t−(t mod n))∥2
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≤ 2∥
t∑

s=t−(t mod n)+1
∇ fis (Xs)−∇ fis (Xs−1)∥2 +2∥∇ f (X t−(t mod n))∥2

≤ 2n
t∑

s=t−(t mod n)+1
∥∇ fis (Xs)−∇ fis (Xs−1)∥2 +2∥∇ f (X t−(t mod n))∥2

≤ 2nL2
t∑

s=t−(t mod n)+1
∥Xs −Xs−1∥2 +2∥∇ f (X t−(t mod n))∥2

≤ 2L2n2

β2
0

+2∥∇ f (X t−(t mod n))∥2

Now, we want to upper bound ∥∇ f (X t )∥ for any t ≤ T with respect to the initial gradient norm.

Using again the step-size selection γt we get,

∥∇ f (X t )∥ = ∥∇ f (X t )−∇ f (X0)+∇ f (X0)∥
≤ ∥∇ f (X t )−∇ f (X0)∥+∥∇ f (X0)∥ (Triangular inequality)

≤ L∥X t −X0∥+∥∇ f (X0)∥ (Smoothness)

≤ L∥X t −X t−1∥+L∥X t−1 −X0∥+∥∇ f (X0)∥ (Triangular inequality)

≤ L
t∑

s=1
∥Xs −Xs−1∥+∥∇ f (X0)∥

≤ Lt

β0
+∥∇ f (X0)∥

As a result,

T−1∑
t=0

∥∇t∥2 ≤
T−1∑
t=0

(
2L2n2

β2
0

+2∥∇ f (X t−(t mod n))∥2

)

≤ 2L2n2

β2
0

T +2
T−1∑
t=0

∥∇ f (X t )∥2

≤ 2L2n2

β2
0

T +2
T−1∑
t=0

(
Lt

β0
+∥∇ f (X0)∥)2

= 2L2n2

β2
0

T +2
T−1∑
t=0

(
L2t 2

β2
0

+2
Lt

β0
∥∇ f (X0)∥+∥∇ f (X0)∥2

)

≤ 2L2n2

β2
0

T + 2L2T 3

β2
0

+ 4LT 2∥∇ f (X0)∥
β0

+2T ∥∇ f (X0)∥2

■

Lemma 3.3.3. Let {X t } be a sequence of points produced by Algorithm 7. Then,

T−1∑
t=0

E
[∥∇t −∇ f (X t )∥2]≤O

(
Ln1/4

β0

√
log

(
1+nT

(
L

β0G0
+ ∥∇ f (X0)∥

G0

)))
.
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Proof.

E

[
T−1∑
t=0

∥∇t −∇ f (X t )∥
]
= E


√√√√(

T−1∑
t=0

∥∇t −∇ f (X t )∥
)2


≤

√√√√
E

[(
T−1∑
t=0

∥∇t −∇ f (X t )∥
)2]

(Jensen’s ineq.)

≤
p

T

√√√√E

[
T−1∑
t=0

∥∇t −∇ f (X t )∥2

]

where the last inequality follows by the fact that ∥∑T−1
t=0 yt∥2 ≤ T

∑T−1
t=0 ∥yt∥2. By applying

Lemma 3.3.1 to the estimator ∇t :=∇ fi t (X t )−∇ fi t (X t−1)+∇t−1 we get,

E
[∥∇t −∇ f (X t )∥2] ≤ L2E

[∥X t −X t−1∥2]+E[∥∇t−1 −∇ f (X t−1)∥2]
≤ L2E

[
γ2

t−1∥∇t−1∥2]+E[∥∇t−1 −∇ f (X t−1)∥2]
≤ L2E

[
γ2

t−1∥∇t−1∥2]+ . . .+E[∥∇t−(t mod n) −∇ f (X t−(t mod n))∥2]
=

t−1∑
τ=t−(t mod n)+1

L2E
[
γ2
τ∥∇τ∥2]

where the last equality follows by the fact that E
[∥∇t−(t mod n) −∇ f (X t−(t mod n))∥2

] = 0 (see

Step 3 of Algorithm 7). As explained in Section 3.3.5, by a telescoping summation over t we get

that
T−1∑
t=0

E
[∥∇t −∇ f (X t )∥2]≤ L2nE

[
T−1∑
t=0

γ2
t ∥∇t∥2

]
.

Now, as discussed in Section 3.3.5, using the step-size selection γt of Algorithm 7 we can

provide a bound on the total variance E
[∑T−1

t=0 ∥∇t −∇ f (X t )∥2
]
.

T−1∑
t=0

E
[∥∇t −∇ f (X t )∥2] ≤ L2n E

[
T−1∑
t=0

γ2
t ∥∇t∥2

]
(3.54)

= L2pn

β2
0

E

[
T−1∑
t=0

∥∇t∥2

p
nG2

0 +
∑t

s=0∥∇s∥2

]
(3.55)

≤ L2pn

β2
0

log

(
1+E

[
T−1∑
t=0

∥∇t∥2/G2
0

])
(3.56)

≤ L2pn

β2
0

O

(
log

(
1+nT

(
L

β0G0
+ ∥∇ f (X0)∥

G0

)))
(3.57)

where the second inequality follows by Lemma 3.1.1 and the third inequality by Lemma 3.3.2.
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Putting everything together we get

1

T
E

[
T−1∑
t=0

∥∇t −∇ f (X t )∥
]
≤ Ln1/4

β0
p

T
O

(√
log

(
1+nT

(
L

β0G0
+ ∥∇ f (X0)∥

G0

)))

■

Lemma 3.3.4. Let {X t } be the sequence of points produced by Algorithm 7 and ∆0 := f (X0)− f ∗.

Then,

E

[
T−1∑
t=0

∥∇t∥
]
≤ Õ

(
∆0β0 +G0 + L

β0
+E

[
T−1∑
t=0

γt∥∇ f (X t )−∇t∥2

])
n1/4

p
T .

Proof. Let Ft denote the filtration at round t , i.e., all the random choices {i0, . . . , it } and the

selection of the initial point X0. By the smoothness of f we get that,

E
[

f (X t+1) | Ft
] ≤ E

[
f (X t )+〈∇ f (X t ), X t+1 −X t 〉+ L

2
∥X t −X t+1∥2 | Ft

]
= E

[
f (X t )−γt 〈∇ f (X t ),∇t 〉+ L

2
γ2

t ∥∇t∥2 | Ft

]
≤ E

[
f (X t )+ γt

2
∥∇t −∇ f (X t )∥2 − γt

2
(1−Lγt )∥∇t∥2 | Ft

]
Thus,

E
[
γt∥∇t∥2]≤ 2E

[
f (X t )− f (X t+1)

]+E[
Lγ2

t ∥∇t∥2]+β0E
[
γt∥∇ f (X t )−∇t∥2] .

and by summing from t = 0 to T −1 and telescoping the function values we get,

T−1∑
t=0

E
[
γt∥∇t∥2]≤ 2∆0 +E

[
T−1∑
t=0

Lγ2
t ∥∇t∥2

]
+E

[
T−1∑
t=0

γt∥∇ f (X t )−∇t∥2

]

Using the fact that γt := n−1/4β−1
0

(
n1/2G2

0 +
∑t

s=0∥∇s∥2
)−1/2

on the second summation term,

E

[
T−1∑
t=0

γt∥∇t∥2

]
≤ 2∆0 +E

[
T−1∑
t=0

Lγ2
t ∥∇t∥2

]
+E

[
T−1∑
t=0

γt∥∇ f (X t )−∇t∥2

]

≤ 2∆0 + L

β2
0

E

[
T−1∑
t=0

∥∇t∥2

p
nG2

0 +
∑t

s=0∥∇t∥2

]

+ E

[
T−1∑
t=0

γt∥∇ f (X t )−∇t∥2

]

≤ 2∆0 + L

β2
0

O

(
log

(
1+nT

(
L

β0G0
+ ∥∇ f (X0)∥

G0

)))
+E

[
T−1∑
t=0

γt∥∇ f (X t )−∇t∥2

]

where the last line is due to Eq. (3.54) in the proof of Lemma 3.3.3. Using again the definition

of the step-size γt := n−1/4β−1
0

(
n1/2G2

0 +
∑t

s=0∥∇s∥2
)−1/2

we lower bound the right-hand side
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as follows,

E

[
T−1∑
t=0

γt∥∇t∥2

]
≥ E

 ∑T−1
t=0 ∥∇t∥2

n1/4β0

√
n1/2G2

0 +
∑T−1

t=0 ∥∇t∥2


≥ G0

β0
E

 ∑T−1
t=0 ∥∇t∥2/

p
nG2

0√
1+∑T−1

t=0 ∥∇t∥2/
p

nG2
0


≥ G0

β0

E


√√√√T−1∑
t=0

∥∇t∥2/
p

nG2
0

−1


≥ 1

β0n1/4
p

T
E

[
T−1∑
t=0

∥∇t∥
]
− G0

β0

By putting everything together we get,

E

[
T−1∑
t=0

∥∇t∥
]

≤ O

(
∆0β0 +G0 + L

β0
log

(
1+nT

(
L

β0G0
+ ∥∇ f (X0)∥

G0

)))

+ O

(
β0E

[
T−1∑
t=0

γt∥∇ f (X t )−∇t∥2

])
n1/4

p
T .

■

Lemma 3.3.5. Let {X t } be the sequence of points produced by Algorithm 7. Then,

E

[
T−1∑
t=0

γt∥∇t −∇ f (X t )∥2

]
≤ L2nE

[
T−1∑
t=0

γ3
t ∥∇t∥2

]

Proof. Let Ft denotes the filtration at round t , i.e., all the random choices {i0, . . . , it } and

the selection of theinitial point X0. At first notice that by the definition of γt in Line 9 of

Algorithm 7, γt ≤ γt−1, which we have to do to circumvent non-measurability issues, and thus

E
[
γt∥∇t −∇ f (X t )∥2 | Ft−1

]≤ E[
γt−1∥∇t −∇ f (X t )∥2 | Ft−1

]
Up next we derive a bound on E

[
γt−1∥∇t −∇ f (X t )∥2 | Ft−1

]
using similar arguments with

the ones used in Lemma 3.3.3. Notice that γt−1 is Ft−1-measurable, hence we can treat in

independent of the conditional expectation.

E
[
γt−1∥∇t −∇ f (X t )∥2 | Ft−1

]
= γt−1E

[∥∇ fi t (X t )−∇ fi t (X t−1)−∇ f (X t )+∇ f (X t−1)+ (∇t−1 −∇ f (X t−1))∥2 | Ft−1
]

= γt−1E
[∥∇ fi t (X t )−∇ fi t (X t−1)−∇ f (X t )+∇ f (X t−1)∥2 | Ft−1

]
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+ γt−1E
[
(∇ fi t (X t )−∇ fi t (X t−1)−∇ f (X t )+∇ f (X t−1))⊤(∇t−1 −∇ f (X t−1)) | Ft−1

]︸ ︷︷ ︸
0

+ γt−1E
[∥∇t−1 −∇ f (X t−1)∥2 | Ft−1

]
= γt−1E

[∥∇ fi t (X t )−∇ fi t (X t−1)∥2 | Ft−1
]+γt−1E

[∥∇t−1 −∇ f (X t−1)∥2 | Ft−1
]

≤ L2γt−1E
[∥X t −X t−1∥2 | Ft−1

]+γt−1E
[∥∇t−1 −∇ f (X t−1)∥2 | Ft−1

]
= L2γ3

t−1E
[∥∇t−1∥2 | Ft−1

]+γt−1E
[∥∇t−1 −∇ f (X t−1)∥2 | Ft−1

]

Taking full expectation over all randomness and by the law of total expctation, we get that,

E
[
γt∥∇t −∇ f (X t )∥2]≤ L2E

[
γ3

t−1∥∇t−1∥2]+E[
γt−1∥∇t−1 −∇ f (X t−1)∥2]

Due to the fact that E
[∥∇t −∇ f (X t )∥]= 0 for t mod n == 0 we get that

E
[
γt∥∇t −∇ f (X t )∥2]≤ L2E

[
t−1∑

s=t−t mod n
γ3

s∥∇s∥2

]

and thus

E

[
T−1∑
t=0

γt∥∇t −∇ f (X t )∥2

]
≤ L2nE

[
T−1∑
t=0

γ3
t ∥∇t∥2

]
■

We are not at a position to prove the main result of Section 3.3.

Theorem 3.3.1. Let {X t } be the sequence of points produced by Algorithm 7 in case f (·) is

L-smooth. Let us also define ∆0 := f (X0)− f ∗. Then,

1

T

T−1∑
t=0

E
[∥∇ f (X t )∥]≤O

(
n1/4 Θp

T
log

(
1+nT

(
L

β0G0
+ ∥∇ f (X0)∥

G0

)))

whereΘ=∆0β0+G0+L/β0+L2/(β2
0G0). Overall, Algorithm 7 with β0 := 1 and G0 := 1 needs at

most Õ
(
n +p

n
∆2

0+L4

ϵ2

)
oracle calls to reach an ϵ-stationary point.

Proof of Theorem 3.3.1. By the triangle inequality we get that

E

[
T−1∑
t=0

∥∇ f (X t )∥
]
≤ E

[
T−1∑
t=0

∥∇t∥
]
+E

[
T−1∑
t=0

∥∇ f (X t )−∇t∥
]

Using the bounds obtained in Lemma 3.3.3 and Lemma 3.3.4 we get that,

E

[
T−1∑
t=0

∥∇ f (X t )∥
]

≤ Õ

(
∆0β0 +G0 + L

β0

)
n1/4

p
T
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+ β0E

[
T−1∑
t=0

γt∥∇ f (X t )−∇t∥2

]
n1/4

p
T

Then by Lemma 3.3.5 we get that,

E

[
T−1∑
t=0

∥∇ f (X t )∥
]

≤ Õ

(
∆0β0 +G0 + L

β0

)
n1/4

p
T

+ β0 n5/4
p

T L2E

[
T−1∑
t=0

γ3
t ∥∇t∥2

]
︸ ︷︷ ︸

(A)

Substituing the selection of γt in term (A) we get,

β0

p
T L2E

[
T−1∑
t=0

n5/4γ3
t ∥∇t∥2

]
=

p
T L2

β2
0

E

T−1∑
t=0

n5/4

n3/4
√

n1/2G2
0 +

∑t
s=0∥∇t∥2

∥∇t∥2

n1/2G2
0 +

∑t
s=0∥∇t∥2


≤

p
T L2

β2
0G0

E

[
T−1∑
t=0

n5/4

n3/4
p

n1/2

∥∇t∥2/G2
0

n1/2 +∑t
s=0∥∇t∥2/G2

0

]

≤
p

T L2

β2
0G0

n1/4E

[
T−1∑
t=0

∥∇t∥2/G2
0

1+∑t
s=0∥∇t∥2/G2

0

]

≤
p

T L2

β2
0G0

n1/4O

(
log

(
1+nT

(
L

β0G0
+ ∥∇ f (X0)∥

G0

)))
where the forth inequality follows by Lemma 3.1.1 and the last by Lemma 3.3.2. Theorem 3.3.1

then follows by dividing both sides with T . ■
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4 Efficient and robust algorithms for
min-max problems and games

4.1 Universal First-Order Methods for Stochastic Variational Inequal-

ities

4.1.1 Bibliographic Note

This section (Section 4.1) is based on the published work Antonakopoulos et al. [Ant+21],

published in the NeurIPS 2021 conference.

Author list of the published work .

• Kimon Antonakopoulos

• Thomas Pethick

• Ali Kavis

• Panayotis Mertikopoulos

• Volkan Cevher

Description of contributions. The convergence proof for the non-adaptive setting in Sec-

tion 4.1.5 (Theorems 4.1.1 and 4.1.2) are due to the candidate. Kimon Antonakopoulos identi-

fied the relationship between cocoercivity and relative noise assumption for achieving fast

rates of order O(1/T ) for monotone variational inequalities. The analysis for the adaptive

algorithm under Section 4.1.5 (Theorems 4.1.3 and 4.1.4) and the almost-sure convergence

proofs in the whole of the manuscript (Propositions 4.1.5, 4.1.7 and 4.2.4) are due to Kimon

Antonakopoulos. Thomas Pethick implemented all the numerical experiments of the paper,

many of which are not included in this manuscript due to space constraints.
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4.1.2 Introduction

In this section, we focus on solving the variational inequality (VI) problem of the form

Find x∗ ∈ V such that 〈A(x∗), x −x∗〉 ≥ 0 for all x ∈ V , (VI)

where A : Rd →Rd is a monotone cocoercive operator, i.e.,

〈A(y)− A(x), y −x〉 ≥ L∥A(y)− A(x)∥2 for some L > 0 and all x, y ∈ V . (CC)

The study of (VI) is a classical topic in optimization that provides a powerful and elegant

unifying framework for a broad spectrum of “convex-structured” problems – including convex

minimization, saddle-point problems, and games [FP03; BC17]. In particular, such problems

have recently attracted considerable attention in the fields of machine learning (ML) and data

science because of their potential applications to generative adversarial networks [Goo+14],

multi-agent and robust reinforcement learning [Pin+17], auction theory [Syr+15], and many

other areas of interest where the minimization of a single empirical loss function does not

suffice.

The golden standard for solving (VI) is provided by first-order methods: these methods can

be run with computationally cheap updates that only require (noisy) access to A, so they are

ideal for problems with very high dimensionality and moderate-to-low precision needs (as

is typically the case in ML). More precisely, when A is monotone cocoercive as above, the

min-max optimal convergence rate for solving (VI) is O (1/T ) after T oracle calls, and it is

achieved by the extra-gradient / mirror-prox algorithm [Kor76; Nem04] with Polyak-Rupert

averaging [PJ92]. However, this method requires access to a perfect oracle; if the method is run

with an imperfect, stochastic first-order oracle, its convergence rate drops to O (1/
p

T ) [JNT11],

and this rate cannot be improved without additional assumptions [Nes03].

One case where the O (1/
p

T ) convergence rate can be improved is when the underlying

operator is strongly monotone – i.e., the RHS of (CC) is replaced by κ∥y −x∥2 for some κ> 0.

In this case, we can obtain a fast O (1/T ) rate with a rapidly decreasing step-size [Hsi+19];

however, this acceleration requires knowledge of the strong monotonicity modulus, and there

is no known way to adapt to it. In particular, if a stochastic method that has been fine-tuned for

strongly monotone operators is run on a merely monotone problem, its rate of convergence

suffers a catastrophic drop to O (1/logT ).

These considerations naturally lead to two key research questions:

1. Are there any conditions for the method’s oracle that would close the stochastic-deterministic

convergence gap outlined above?

2. Is it possible to design a class of methods that are capable of adapting to the quality of

the oracle, and that achieve order-optimal rates without prior knowledge of the problem’s

parameters?
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Our contributions in the context of related work. Our goal in this work is to provide a range

of positive answers to the above questions, both in terms of the required oracle conditions, as

well as methods that are able to gracefully interpolate between an O (1/T ) and an O (1/
p

T )

rate depending on the setting at hand. While doing so, we aim to adopt a parameter-free

approach such that the proposed algorithm runs with a data-adaptive step-size which doesn’t

need to know any problem-dependent parameters, e.g., Lipschitz constant, type of the noise

and the respective variance parameter.

With regard to the first question, our point of departure is the “relative noise” framework of

Polyak [Pol87], in which the variance of the oracle is upper bounded by the square norm of the

operator at the queried point. This noise model is particularly relevant in coordinate descent

methods for unconstrained problems as well as applications to control theory and signal

processing where the operator is calculated based on actual, physical measurements that are

only accurate up to a percentage of their true value. In recent applications to ML, this noise

model has also been studied in the context of overparametrization [OS19] and representation

learning [Zha+17]. Moreover, this oracle model has also been studied under the umbrella

of multiplicative noise [Ius+19] or growth conditions [VBS19; CV19; SR13; XWW20], and it is

known to improve the convergence rate of stochastic gradient algorithms with non-adaptive

step-sizes, even in non-smooth problems [FFF21].

Finally, in the online learning literature (multi-agent learning) the same noise model that we

consider has been studied [Lin+20]. This particular noisy feedback model, as it is called in the

community, allows them to get finite-time last-iterate convergence also in the unconstrained

setting under cocoercivity with unknown constant but for a standard gradient update. How-

ever, crucially, they require the relative noise factor to vanish. We get rid of this requirement

by employing an extragradient scheme with a different adaptivity, obtaining a O (1/T )-rate for

the ergodic average iterate.

With regard to the second question, we introduce a flexible first-order algorithmic template

that includes as special cases the dual averaging [Nes09], dual extrapolation [Nes07] and

optimistic gradient methods [Pop80; RS13], and which accounts for both adaptive and non-

adaptive variants thereof.

To address the last remark on adaptivity, we make use of the tools and design paradigms in the

literature and adapt them to the problem setting at hand. To summarize the relevant, prior

work on adaptive methods, such schemes that achieve optimal rates even without knowing

the noise constant have been considered before in the min-max optimization setting [BL19].

However, [BL19] focuses on the general noise model where only O (1/
p

T ) is possible. It is also

worth pointing out that their step-size relies on the gradient mapping since they consider

constrained min-max problems, while ours is based on the operator difference since we

consider unconstrained VI problems.

In this sense, [BL19] is closer to the scheme in [ABM21], where they focus on adapting to

non-smooth/smooth problems with unbounded domains in the deterministic setting. For
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Lipschitz Cocoercive + rel. noise

Vt Ergodic Last Iterate Ergodic Last Iterate

Adapt. dual averaging 0 1/
p

T [DHS11] Unknown 1/T Asym.

Adapt. dual extrapolation AX t + rel.noise 1/
p

T [RS13] Unknown 1/T Asym.

Adapt. optimistic gradient AX t−1/2 + rel.noise 1/
p

T [EN20] Unknown 1/T Asym.

Table 4.1: The best known convergence rates in stochastic monotone VIs with our contributions
highlighted in gray. Adaptive refers to our particular adaptive step-size choice in (Adapt). We obtain
various schemes with particular choices of Vt . For the nomenclature, please refer to Section 4.1.4.

the stochastic setting, there exists results for a single-call method using the same adaptive

step-size as ours [EN20]. This work allows us to recover the O (T −1/2) convergence in the

general case of Lipschitz operators for the particular instantiation of our algorithmic template.

In the light of related work, let us summarize our contributions as follows:

1. For oracles with bounded variance, we show that the proposed methods achieve an

O (1/
p

T ) rate of convergence if run with a non-adaptive, decreasing step-size.

2. In the relative noise model, this rate improves to O (1/T ), and it is achieved with a constant

step-size that does need to be tuned as a function of T .

3. Finally, we provide an adaptive step-size rule that allows the method to achieve a fast,

O (1/T ) rate under relative noise, and an order-optimal O (1/
p

T ) rate in the absolute noise

case.

Importantly, our work shows that an extra-gradient mechanism is not required to obtain a

fast O (1/T ) rate, as this can be achieved by vanilla dual-averaging methods with a constant

step-size. This is an elegant consequence of the interplay between cocoercivity and the relative

noise model; to the best of our knowledge, the only other work considering these models in

tandem is the recent paper [Lin+20]. Our work closes several open threads in [Lin+20], which

requires a vanishing relative noise level to obtain faster convergence in models with relative

noise. A summary of our results in the context of related work can be found in Table 4.1.

4.1.3 Preliminaries

Examples and motivation. Throughout the sequel, we will focus on solving the variational

inequality problem (VI). For completeness (and a certain degree of posterity), we briefly

mention some examples below, and we defer to [FP03; Scu+10] for a panoramic survey of the

field.

Example 1 (Convex Minimization). If A =∇ f for some convex function f , the solutions of

(VI) are precisely the minimizers of f .

Example 2 (Min-Max Problems). If A = (∇x1 L,−∇x2 L) for some convex-concave function

L(x1, x2), then the solutions of (VI) coincide with the (global) saddle points of L. More precisely,
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x∗ = (x∗
1 , x∗

2 ) is a solution of (VI) if and only if it holds that

L(x∗
1 , x2) ≤ L(x∗

1 , x∗
2 ) ≤ L(x1, x∗

2 ) for all x1 ∈X1, x2 ∈X2. (SP)

In this case, (VI) is sometimes referred to as the “vector field formulation” of (SP).

Example 3 (Monotone games). Going beyond the min-max setting, a continuous game in

normal form is defined as follows: First, consider a finite set of players N = {1, . . . , N }, each with

their own action space Xi =Rdi . During play, each player selects an action xi from Xi with the

aim of minimizing a loss ℓi (xi ; x−i ) determined by the ensemble x := (xi ; x−i ) := (x1, . . . , xN )

of all players’ actions. In this context, a Nash equilibrium is any action profile x∗ ∈X that is

unilaterally stable, i.e.,

ℓi (x∗
i ; x∗

−i ) ≤ ℓi (xi ; x∗
−i ) for all xi ∈Xi and all i ∈N . (NE)

The corresponding operator associated to the game is A(x) = (∇xiℓi (xi ; x−i ))i∈N . If A is

monotone, then the game is itself called monotone, and its Nash equilibria coincide with the

solutions of (VI), cf. [MS17; BLM18; MZ19; LS19; MS18; Mer+19; FP03; Scu+10] and references

therein.

Regularity conditions. As we discussed in the introduction, our blanket regularity assump-

tion for (VI) is that the defining operator A is β-cocoercive in the sense of (CC); for a panoramic

overview of cocoercive operators we refer the reader to [BC17].

Some further comments for the cocoercivity condition are in order. First, one may easily

observe that if A is β-cocoercive, it is also 1/β-Lipschitz. The converse does not hold for the

general setting of operators; however, when A is the gradient of a smooth convex function, this

is indeed the case [BH77]. Moreover, even though cocoercivity implies that A is monotone, it

does not imply that it is strictly monotone – a condition which is usually invoked to ensure the

existence and uniqueness of solutions to (VI). Therefore, to avoid pathologies, we make the

following assumption for our setting:

Assumption 4.1.1. The set X ∗ = {x∗ ∈Rd : x∗ is a solution of (VI)} is non-empty.

Together with cocoercivity, the existence of a solution will be our only blanket assumption in

the sequel.

The gap function. With the above setup in hand, a widely used performance measure in

order to evaluate a candidate solution of (VI) is the so-called restricted gap function:

GapX (x̂) = sup
x∈X

〈A(x), x̂ −x〉, (Gap)

where the "test domain" X is a non-empty compact subset of Rd . The motivation for this

choice of merit function is that it characterizes the solutions of the (VI) via its zeros. Formally,
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we have the following:

Proposition 4.1.1. Let X be a non-empty convex subset of Rd . Then, the following holds

1. GapX (x̂) ≥ 0, whenever x̂ ∈X

2. If GapX (x̂) = 0 and X contains a neighbourhood of x̂, then x̂ is a solution of (VI)

Proposition 4.1.1 is a generalization of an earlier characterization by Nesterov [Nes07]; see

also [ABM19; Nes09] and references therein. Moreover, it provides a formal justification for

the use of GapX (x̂) as a merit function for (VI). To streamline our presentation we defer the

proof of the above proposition to the appendix of this chapter.

Oracle structure and profiles of randomness

From an algorithmic point of view, in order to solve (VI) we will use iterative methods that

require access to a stochastic first-order oracle [Nes03]. Formally, this is a black-box feedback

mechanism which, when called at x, returns a random dual vector g (x;ξ) with ξ drawn from

some (complete) probability space (Ω,F ,P). In practice, the oracle will be called repeatedly at

a (possibly random) sequence of points generated by the algorithm at play. Therefore, once

the iterate of the method is generated at each round, the oracle draws an i.i.d. sample ξ ∈Ω
and returns a dual vector:

g (x;ξ) = A(x)+U (x;ξ) (4.1)

with U (x;ξ) denoting the "measurement error".

In this general setting, we make the following statistical assumptions for the oracle:

Assumption 4.1.2 (Absolute noise). The oracle g (x;ξ) enjoys the following properties:

1. Almost sure boundedness: There exists some strictly positive numbers M > 0 such that:

∥g (x;ξ)∥∗ ≤ M almost surely (4.2)

2. Unbiasedness: E
[
g (x;ξ)

]= A(x)

3. Bounded absolute variance: E
[∥U (x;ξ)∥2∗|σ(x)

]≤σ2

Such type of conditions for the oracle are standard, especially in the context of adaptive

methods cf. [Kav+19; LYC18; BL19]. Also, because the variance of the noise is independent of

the value of the operator at the queried point, this type of randomness in the oracle will be

called absolute.

By contrast, following Polyak [Pol87], the relative noise model is defined as follows:

Assumption 4.1.3 (Relative noise). The oracle g (x;ξ) enjoys the following properties:
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1. Almost sure boundedness: There exists some strictly positive numbers M > 0 such that:

∥g (x;ξ)∥∗ ≤ M almost surely

2. Unbiasedness: E
[
g (x;ξ)

]= A(x)

3. Bounded relative variance: There exists some positive c > 0 such that:

E
[∥U (x;ξ)∥2

∗
]≤ c∥A(x)∥2

∗ (4.3)

Assumption 4.1.2 is standard for obtaining the typical O (1/
p

T ) convergence rate for stochastic

optimization scenarios (see for example [Nem+09; JNT11] and references therein). That said,

Assumption 4.1.3 will prove itself as the crucial statistical condition that will allow us to recover

the well known order-optimal bound O (1/T ) for deterministic settings. For concreteness, we

provide an example below:

Example 4 (Random coordinate descent). Consider a smooth convex function f over Rd ,

as per Example 1. Then the randomized coordinate descent (RCD) algorithm draws one

coordinate it at random at each stage, and calculates the partial derivative vi ,t = ∂ f /∂xi t .

Subsequently, the i -th derivative is updated as Xi ,t+1 = Xi ,t −dγt vi ,t .

This update rule can be written in abstract recursive form as x+ = x−g (x;ξ) where gi (x;ξ) = d ·
∂ f /∂xi ·ξ, d is the dimension of the domain of the objective and ξ is drawn uniformly at random

from the set of basis vectors {e1, . . . ,ed } of Rd . Clearly, E[g (x;ξ)] = ∇ f (x) by construction;

moreover, since ∂ f /∂xi = 0 at the minimum points of f , we also have g (x∗;ξ) = 0 whenever

x∗ is a minimizer of f – i.e., the variance of the estimator g (x;ξ) vanishes at the minimum

points of f . It is then straightforward to verify that E[∥g (x;ξ)−∇ f (x)∥2] =O (∥∇ f (x)∥2), which

is precisely the relative noise condition for A =∇ f .

4.1.4 Method

We now present the generalized extra-gradient (GEG) family of algorithms. More precisely,

given two sequences of dual vectors Vt and Vt+1/2, (GEG) is given by the following recursive

formula:
X t+1/2 = X t −γt Vt

Yt+1 = Yt −Vt+1/2

X t+1 = γt+1Yt+1

(GEG)

Heuristically, the machinery behind (GEG) suggests to first generate a leading state X t+1/2

by taking a step along Vt , then aggregate the vector Vt+1/2 observed at the leading state by

incorporating the second dual sequence Vt+1/2 and finally update the method by applying a

dual averaging step [Nes09; Xia10]. This idea is well-known in the literature of extra-gradient

methods [Kor76; Nem04; Nes07]. However, up to this point, we have not assumed anything

particular for the sequences of Vt and Vt+1/2, except that they are dual vectors (but not

necessarily queries of a stochastic oracle). This generic choice is the building block that will

allow us to include various popular algorithmic schemes and provide a unified framework of
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their analysis.

For simplicity of notation, we denote g (X t ,ξt ) = A(X t )+U (X t ,ξt ) equivalently as g t = A(X t )+
Ut . The same shorthand notation applies to g t−1, g t+ 1

2
and g t− 1

2
, as well. We use the same

notation for the sigma-algebra generated by the random sequence {ξ} as in Table 2.2, such

that Ft =σ(ξ1,ξ1/2, · · · ,ξt− 1
2

,ξt ) and Ft+1/2 =σ(ξ1,ξ1/2, · · · ,ξt− 1
2

,ξt ,ξt+ 1
2

).

To begin with, we provide the following examples that illustrate the fact that Dual Averaging,

Dual Extrapolation and Optimistic Dual Averaging can all be written in the form of (GEG)

under different choices of Vt and Vt+1/2.

Example 5. Stochastic Dual Averaging [Nes09]: Consider the case Vt ≡ 0 and Vt+1/2 ≡ g t+1/2 =
A(X t+1/2)+Ut+1/2. Then, this yields that X t+1/2 = X t and hence g t+1/2 = g t =Vt+1/2. Therefore,

(GEG) reduces to the dual averaging scheme:

Yt+1 = Yt − g t

X t+1 = γt+1Yt+1
(DA)

Example 6. Stochastic Dual Extrapolation [Nes07]: Consider the case now where Vt ≡ g t =
A(X t )+Ut and Vt+1/2 ≡ g t+1/2 = A(X t+1/2)+Ut+1/2 are noisy oracle queries at X t and X t+1/2

respectively. Then (GEG) readily yields Nesterov’s dual extrapolation method [Nes07]:

X t+1/2 = X t −γt g t

Yt+1 = Yt − g t+1/2

X t+1 = γt+1Yt+1

(DE)

Example 7. Stochastic Optimistic Dual Averaging [Pop80; RS13; HAM21; Hsi+22a]: Consider

the case Vt ≡ g t−1/2 = A(X t−1/2)+Ut−1/2 and Vt+1/2 ≡ g t+1/2 = A(X t+1/2)+Ut+1/2 are the noisy

oracle feedback at X t−1/2 and X t+1/2 respectively. We then get the optimistic dual averaging

method:
X t+1/2 = X t −γt g t−1/2

Yt+1 = Yt − g t+1/2

X t+1 = γt+1Yt+1

(OptDA)

The next crucial step is to provide the key ingredient that will allow us to unify the approach

for all algorithms belonging to the family (GEG). This is done by a shared “energy” inequality

satisfied by all (GEG)-type schemes. Formally, this is described by the following proposition:

Proposition 4.1.2. Assume that X t , X t+1/2 are the iterates of (GEG) run with a non-negative,

non-increasing step-size γt . Then, for all x ∈Rd the following inequality holds:

T∑
t=1

〈Vt+1/2, X t+1/2 −x〉 ≤ ∥x∥2

2γT+1
+ 1

2

T∑
t=1

γt ∥Vt+1/2 −Vt∥2
∗−

1

2

T∑
t=1

1

γt
∥X t+1/2 −X t∥2 (4.4)

Proving Proposition 4.1.2 requires tiresome computations, so we defer it to the end of the
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section in order not to disrupt the narrative. The proof strategy follows the same steps as the

proof of Proposition 2.2.1, but takes a slightly generalized approach to accommodate all the

algorithmic instances under (GEG) template. Essentially, this template inequality is the basis

of establishing the “regret” of the algorithms in question which immediately translates to the

Gap function via averaging.

Moving forward, we conclude this section by illustrating the various method-specific template

inequalities:

1. (Stochastic Dual Averaging): For Vt+1/2 = g t+1/2 and Vt = 0, then (4.4) becomes:

T∑
t=1

〈
g t , X t −x

〉≤ ∥x∥2

2γT+1
+ 1

2

T∑
t=1

γt ∥Vt∥2
∗ (4.5)

2. (Stochastic Dual Extrapolation): For Vt = g t for all t = 1,2, . . . then (4.4) becomes:

T∑
t=1

〈
g t+1/2, X t+1/2 −x

〉≤ ∥x∥2

2γT+1
+ 1

2

T∑
t=1

γt
∥∥g t+1/2 − g t

∥∥2
∗−

1

2

T∑
t=1

1

γt
∥X t+1/2 −X t∥2 (4.6)

3. (Stochastic Optimistic Dual Averaging): For Vt = g t−1/2 and Vt+1/2 = g t+1/2 then (4.4) be-

comes:

T∑
t=1

〈
g t+1/2, X t+1/2 −x

〉≤ ∥x∥2

2γT+1
+ 1

2

T∑
t=1

γt
∥∥g t+1/2 − g t−1/2

∥∥2
∗−

1

2

T∑
t=1

1

γt
∥X t+1/2 −X t∥2 (4.7)

4.1.5 Analysis

Non-adaptive algorithm

In this section, we derive a series of tight convergence rates for (GEG) under both oracle/noise

profiles but with a non-adaptive step-size sequences. We defer the full analysis to the appendix;

however, we provide here a proof sketch of our main results via an appropriate “energy

inequality” in Proposition 4.1.2.

Absolute random noise. In the context of monotone VIs, assumptions induced by the ran-

dom oracle model are common and well-understood. Indeed, for the general case of bounded

variance, i.e., E [Ut+1/2|Ft ] ≤ σ, extra-gradient/mirror-prox is known to converge at a rate

O (1/
p

T ) [JNT11], with a decreasing step-size of order O (1/
p

t). The decreasing step-size

is essential in order to drive the effect of the variance to zero at a fast enough rate while

maintaining the correct balance between the bias term and the (bounded) variance.

For completeness, we analyze (GEG) under a random oracle profile, i.e., for Vt+1/2 = g t+1/2 ≡
g (X t+1/2;ξt+1/2) satisfying Assumption 4.1.2 and Vt being an almost surely bounded sequence

of dual vectors. To that end, we employ a decreasing step-size choice, which is summarized in
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the next theorem.

Theorem 4.1.1. Let X t , X t+1/2 be generated by (GEG) with a decreasing step-size γt =O (1/
p

t ).

Then, for every compact neighborhood X ⊂Rd of x∗, with X̄T = 1
T

∑T
t=1 X t+1/2, it holds that:

E
[
GapX

(
X̄T

)]=O (1/
p

T ).

The arguments for the proof of Theorem 4.1.1 are standard and we defer them to the appendix

due to space constraints. Thanks to this result, we can now derive the respective method

specific rates as special instances. More precisely, we have the following proposition:

Proposition 4.1.3. Under Assumption 4.1.2 the iterates of (DA), (DE), (OptDA) enjoy the

following rate:

E
[
GapX

(
X̄T

)]=O (1/
p

T ) (4.8)

Relative random noise We now turn our attention to the relative random oracle framework,

i.e. Vt+1/2 = g t+1/2 satisfying Assumption 4.1.2 along with:

E
[∥Vt∥2

∗|Ft−1/2
]≤ c∥A(X t )∥2

∗ for all t = 1,1/2, . . . (4.9)

In particular, with a carefully chosen constant step-size, under the assumption of relative

variance, it is possible to achieve an accelerated rate of O (1/T ). One needs to depart from

the standard approach to fully exploit the problem setting, i.e., making the correct use of

cocoercivity and understanding the advantages of relative variance. Essentially, it amounts to

ensuring that
∑T

t=1 ∥At∥2∗ and
∑T

t=1 ∥At+1/2∥2∗ are summable. Let us briefly motivate the idea

behind handling the vanishing noise in this setting.

In the standard bounded variance regime, the error due to the noise in the orale information

has, at best, a constant upper bound in expectation. Therefore, the algorithm suffers the same

degree of measurement error no matter how close the iterates get to a solution. In the relative

noise scheme, the error at iteration t is upper bounded by O(A(X t )). Since we would like to

find a solution which is also a zero of the (VI) problem, in the presence of Lipschitz continuity,

our expectation is to observe a decrease in the noise magnitude as we approach to a solution.

Then, what remains is to show that the error vanishes at a fast enough rate that the cumulative

variance is summable, hence the faster rate. In this setting, what also enables us to use the

constant step-size is the fact that cumulative variance is summable, and the algorithm could

take more agressive steps without needing to drive the variance to zero in the limit.

Now, we present our result under the respective setting with a proof sketch that highlights its

main ingredients.

Theorem 4.1.2. Let X t , X t+1/2 be generated by (GEG) with a constant step-size that satisfies

min
{
(2L)−1, (4L2γ)−1}−2γc > 0 with L = 1/β. (4.10)
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Then, for every compact neighbourhood X ⊂Rd of x∗, with X̄T = 1
T

∑T
t=1 X t+1/2, we have:

E
[
GapX

(
X̄T

)]= E[
sup
X∈X

〈
A(X ), X̄T −X

〉]=O (1/T )

Proof. With a constant step-size, Proposition 4.1.2 implies

T∑
t=1

〈Vt+1/2, X t+1/2 −X 〉 = ∥X ∥2

2γ
+ γ

2

T∑
t=1

∥Vt+1/2 −Vt∥2 − 1

2γ

T∑
t=1

∥X t −X t+1/2∥2

We show that using smoothness and cocoercivity of the operator, along with the relative noise

condition,

(
min

{
(2L)−1, (4L2γ)−1}−2γc

) T∑
t=1

(
E
[∥A(X t )∥2]+E[∥A(X t+1/2)∥2])≤ E

[∥X ∥2
]

γ

If constant step-size γ satisfies Eq. (4.42), then there exists some strictly positive real number β,

such that E
[∑T

t=1

(∥A(X t )∥2 +∥A(X t+1/2)∥2
)]≤ E[∥X ∥2/βγ

]<+∞, which concludes that both∑T
t=1 ∥At∥2∗ and

∑T
t=1 ∥At+1/2∥2∗ are summable. Using the same arguments as in the proof of

Theorem 4.1.1 and taking [XT ] = (1/T )
∑T

t=1 X t+ 1
2

, we obtain an upper bound for the gap,

E
[

GapX ([XT ])
]
≤

D2

2γ +2γc
∑T

t=1E
[∥A(X t+1/2)∥2 +∥A(X t )∥2

]+√∑T
t=1E

[∥Vt+1/2∥2∗
]

T
.

By relative variance and summability of operators,

E
[

GapX ([XT ])
]
=O (1/T )

■

Observe that it is important to design the non-adaptive step-size based specifically on the

noise model; without the correct knowledge of the nature and properties of the noise, the

non-adaptive algorithm wouldn’t be able to achieve order-optimal convergence rates. For

instance, using a decreasing step-size of the form O(1/
p

t ) for the relative noise model, yields

the same slow rate of O(1/
p

T ) as in the standard bounded variance model. Exploiting the

vanishing structure of the (stochastic) measurement error requires a more aggressive, constant

step-size that incorporates the relative noise parameter c.

Similar to the setting of absolutely random noise, Theorem 4.1.2 implies algorithm-specific

convergence bounds, which are presented below:

Proposition 4.1.4. Under Assumption 4.1.3 the iterates of (DA), (DE), (OptDA) enjoy the

following rate:

E
[
GapX

(
X̄T

)]=O (1/T ) (4.11)
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An extra appealing feature of the above is that we are able to derive an asymptotic last iter-

ate trajectory result, i.e., the asymptotic convergence of the iterates themselves before any

averaging occurs, almost surely. More precisely, we have the following proposition:

Proposition 4.1.5. Under Assumption 4.1.3 the iterates of (DA), (DE), (OptDA) converge to a

(VI) solution x∗.

The proof Proposition 4.1.5 relies on the fact that the distance of the iterates towards any

solution of (VI) is decreasing almost surely along with the fact that the summability of ∥A(X t )∥2∗
guarantees that every limit point of the iterate is also a solution of (VI). To streamline our

presentation, we defer the detailed proof to the appendix.

Adaptive algorithm

By the results of the previous section on non-adaptive methods, one may easily observe the

interplay between the O (1/
p

T ) to O (1/T ) convergence rates under different noise profiles and

step-sizes policies. Therefore a natural question that arises from this context is the following:

Can we derive a universal step-size policy that is able to optimally adjust the performance of

(GEG) without any prior knowledge of the oracle’s noise profile?

In what follows, this desired property is achieved by running (GEG) with the following adaptive

step-size:

γt = 1√
1+∑t−1

j=1∥V j −V j+1/2∥2∗
(Adapt)

The step-size (Adapt) is inspired by [RS13]; however, in our analysis, we provide a generalized

point of view which does not assume that Vt necessarily is the oracle query at the respective

points as in [RS13]. This allows us to include in the (Adapt) formulation all the adaptive step-

sizes typically used for the archetypical schemes introduced in Section 4.1.4. More precisely,

we have:

1. Adaptive Stochastic Dual Averaging: For Vt ≡ 0 (Adapt) becomes the standard AdaNorm

stepsize, studied in various works [DHS11; MS10]:

γt = 1√
1+∑t−1

j=1∥g j∥2∗
(4.12)

2. Adaptive Stochastic Dual Extrapolation: For Vt = g t+1/2 (Adapt) becomes

γt = 1√
1+∑t−1

j=1∥g j − g j+1/2∥2∗
(4.13)

as used in, e.g., [RS13; Syr+15; ABM21].
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3. Adaptive Stochastic Optimistic Dual Averaging:. For Vt = g t−1/2 (Adapt) becomes the step-

size used in [Hsi+22a; HAM21]:

γt = 1√
1+∑t−1

j=1∥g j+1/2 − g j−1/2∥2∗
(4.14)

Our results in the non-adaptive setting heuristically suggests that the success of γt should

hinge on a simultaneous performance; decreasing roughly at a rate of 1/
p

t for the absolute

random oracle feedback and behaving as a constant step-size whenever the relative random

feedback kicks in. This important interpolation feature is what will show in the sequel.

Absolute random noise. We will first treat oracles subject to absolute random noise. As we

have mentioned above, the main goal of the analysis for this noise regime is to prove that the

step-size decreases at a particular rate, similar to that of the non-adaptive counterpart. In this

case, we have the following result.

Theorem 4.1.3. Assume that X t , X t+1/2 are the iterates of (GEG) run with the step-size (Adapt).

Then, for every compact neighborhood X ⊂Rd of a solution x∗ of (VI), we have:

E
[

GapX (X T )
]
=O (1/

p
T ) (4.15)

with X T = (1/T )
∑T

t=1 X t+1/2

Now let us provide an insight into the elements of the proof. As we have stated earlier, the proof

hinges on quantifying the behavior of the adaptive step-size. Our claim is that in the presence

of absolute noise, the adaptive step-size behaves similary to its non-adaptive counterpart.

This is justified by the fact that the almost sure boundedness conditions for the sequences,

∥Vt∥∗ ≤ M almost surely for all t = 1,1/2, . . . (4.16)

implies that γt = Ω(1/
p

t), which is in line with the respective result for the non-adaptive

algorithm. To handle the adaptive step-sizes, we once again resort to numerical inequalities

presented in Lemma 2.1.2 and 3.1.1. Through our generalized analysis and representations, the

above result implies the same order of convergence for each particular algorithmic instance.

Proposition 4.1.6. Under Assumption 4.1.2 the iterates of (DA), (DE), (OptDA) enjoy the

following:

E
[
GapX (X T )

]
=O (1/

p
T ) (4.17)

Relative random noise. Under the relative random noise condition, we can obtain the

improved rate O (1/T ), going beyond the O (1/
p

T ) rate above. Recall that the faster rate under

the relative noise setting was possible due to the use of a carefully tuned, constant step-size

which depends on the knowledge of smoothness and relative noise parameters of the problem.
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The literature on parameter-free methods and the results we have seen in the preivous chap-

ters suggest that data-adaptive step-sizes of the form (Adapt) are capable of adapting to

smoothness constant. Our goal is to argue that they simultaneously adapt to the relative noise

parameter c as well as the type of the noise model without prior knowledge of the setting. We

will elaborate on the main techniques through a concise sketch of the analysis in the sequel.

Formally, we have the following result which is achieved without making any changes on the

algorithmic framework.

Theorem 4.1.4. Assume that X t , X t+1/2 are the iterates of (GEG) run with the step-size (Adapt).

Then, for every compact neighborhood X ⊂Rd of a solution x∗ of (VI), we have:

E
[
GapX (X T )

]
=O (1/T ) (4.18)

with X T = 1/T
∑T

t=1 X t+1/2

Note that the convergence results under both the absolute noise (Assumption 4.1.2) and rela-

tive noise (Assumption 4.1.3) holds for exactly the same adaptive step-size defined in (Adapt)

without any modification. We identify a delicate relationship between the growth of the adap-

tive step-size and the vanishing nature of the noise. The crucial ingredient for the proof of

Theorem 4.1.4 consists of showing that the adaptive step size stabilizes to a positive constant

γ∞ > 0 when the noise gradually vanishes towards the solution of the VI problem according

to the dynamics defined in Eq. (4.3). In order to obtain this, the first step is to show that the

template inequality of Proposition 4.1.2 yields

E

[
1

γ2
T+1

]
≤

(
8c max

{
L,2L2}(∥x∗−x1∥2

2
+2G2 +1

)
+1

)
E

[
1

γT+1

]
(4.19)

Moreover, due to the definition of (Adapt) and Jensen’s inequality we have:

E

[
1

γT+1

]
= E


√√√√1+

T∑
t=1

∥Vt −Vt+1/2∥2

≤
√√√√E

[
1+

T∑
t=1

∥Vt −Vt+1/2∥2

]
=

√√√√E

[
1

γ2
T+1

]
(4.20)

Therefore, after combining (4.19) and (4.20) we get that E
[

1
γ2

T+1

]
<+∞. This directly implies

(by the monotone convergence theorem) that:

1

γ2
T+1

= 1+
T∑

t=1
∥Vt −Vt+1/2∥2

∗ <+∞ almost surely (4.21)

which in turn yields that
∑T

t=1∥Vt −Vt+1/2∥2∗ is summable almost surely. Therefore due to the

definition of γt we have almost surely the following:

γT+1 = 1√
1+∑T

t=1∥Vt −Vt+1/2∥2∗
→ 1√

1+∑+∞
t=1∥Vt −Vt+1/2∥2∗

= γ∞ > 0 (4.22)
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Finally, we conclude by providing the respective method-specific result.

Proposition 4.1.7. Under Assumption 4.1.3 the iterates of (DA), (DE), (OptDA) enjoy the

following:

1. The convergence rate in terms of the restricted gap function for the time-average:

E
[
GapX (X T )

]
=O (1/T ) (4.23)

2. Their last iterate trajectory converges to a (VI) solution x∗ almost surely.

The last iterate convergence result of Proposition 4.1.7 refers to the asymptotic convergence of

the actual sequences of the methods-before any averaging takes place- and it hinges on the

fact that the (random) sequences ∥Vt −Vt+1/2∥2∗ and ∥A(X t )∥2∗ are summable with probability

1. Having established this, we show that X t is a (stochastic) quasi-Fejér sequence [CP15b]

(with respect to the solution set X ∗) along with the fact that every limit point of X t belongs to

X ∗. These two building blocks are sufficient in order to derive the almost sure convergence of

the iterate’s trajectory.

4.1.6 Experiments

In this section we validate and explore the consequences of the theoretical results. We adopt

the experimental setting considered in [GP19] which is a particular instance of the Kelly

auction with N = 4. In its generality in a single resource Kelly auction, there are N players

sharing a total amount of Q ∈ R>0 resources. At every round, each bidder, p, submits a bid

xp ∈R≥0 and receives proportional resources, ρp = Qxp

Z+∑
p xp , where Z is the auction entry price.

The payoff for player p is then given as up (xp ; x−p ) = Gpρp − xp , where Gp is the marginal

gain in utility for player p. One can easily verify that the vector field associated with the

payoff functions is cocoercive. In addition, the assumption of relative noise can be justified

since each player can be seen as performing a measurement when querying the payoff. In

such settings, it is common to assume that the error is proportional to the measured quantity

and this uncertainty propagates to the gradient information in the form of relative noise.

Since players act without communication in this example, it is particularly important that our

results extends to single-call extragradient variants (see for instance [RS13] for elaboration).

However, note that our proposed adaptive step-size (Adapt) still relies on global information

of all players so our non-adaptive results for known problem constants is also important for

this example.

In order to simulate the presence of relative noise we add a term proportional to the norm

of the operator. In our notation we can thus capture both relative noise and absolute noise

through the error term Ut in the following way,

Ut = ϵrel∥A(X t )∥+ϵabs, (4.24)
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Figure 4.1: (left) Player utility using adaptive DualX for various relative noise levels. Even at relative
high levels of noise do we converge to the optimal depicted with (⋆). (center) Average iterate for
deterministic, absolute noise and relative noise using adaptive DualX. We observe the O (1/

p
T ) rate

under absolute noise while O (1/T ) is achieved both in the noiseless setting and under relative noise. In
addition, as expected, the last iterate only converges under the deterministic and relative noise oracle.
(right) Average iterate comparing various methods for σrel = 0.1. All methods shares convergence
rate with adaptive methods being slightly faster possibly because of difficulty of step-size tuning for
non-adaptive methods. Error bars indicate one standard deviation computed using 10 independent
executions.

where ϵrel ∼ N (0,σ2
rel) and ϵabs ∼ N (0,σ2

abs). To validate the convergence rate we compute

the optimal strategy in the deterministic setting (i.e. σrel =σabs = 0) using Mathematica.

In Fig. 4.1 we illustrate the behavior of the different instantiations of our algorithmic tem-

plate under different choices of σrel and σabs. To denote (DA), (DE) and (OptDA) we use

DualAvg, DualX and DualOpt respectively. In addition we include optimistic gradient (OG)

from [Das+18] for comparison. For higher dimensional experiments see the appendix, where

we additionally apply our adaptive method to the non-convex problem of learning a covariance

matrix [Das+18; Hsi+20].

4.1.7 Conclusion

In this paper we provide rate interpolation guarantees for different noise profiles; namely that

of absolute and relative random noise. That being said our analysis crucially depends on the

cocoercivity of the associated operator that defines the respective (VI). It thus remains open

whether it is possible to achieve the same O (1/T ) rate for monotone (VI) by only assuming

Lipschitz continuity of the said operator and relative noise. Moreover, an additional interesting

direction for future research is investigate the impact of relative noise for adaptive accelerated

methods and whether it is possible to recover the iconic O (1/T 2) rate. We postpone these

questions to the future.
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4.2 APPENDIX: Proofs of Chapter 4

Let us begin with the basic properties of the restricted merit function GapX introduced in

(Gap). For completeness, we provide the proof of Proposition 4.1.1, which itself is an extension

of a similar result by [Nes07]:

Proposition 4.1.1. Let X be a non-empty convex subset of Rd . Then, the following holds

1. GapX (x̂) ≥ 0, whenever x̂ ∈X

2. If GapX (x̂) = 0 and X contains a neighbourhood of x̂, then x̂ is a solution of (VI)

Proof. Let x∗ ∈ X be a solution of (VI) so 〈A(x∗), x − x∗〉 ≥ 0 for all x ∈ X . Then, by mono-

tonicity, we get:

〈A(x), x∗−x〉 ≤ 〈A(x)− A(x∗), x∗−x〉+〈A(x∗), x∗−x〉
=−〈A(x∗)− A(x), x∗−x〉−〈A(x∗), x −x∗〉 ≤ 0, (4.25)

so GapX (x∗) ≤ 0. On the other hand, if x∗ ∈X , we also get Gap(x∗) ≥ 〈A(x∗), x∗−x∗〉 = 0, so

we conclude that GapX (x∗) = 0.

For the converse statement, assume that GapX (x̂) = 0 for some x̂ ∈X and suppose that X

contains a neighborhood of x̂ in X . First, we claim that the following inequality holds:

〈A(x), x − x̂〉 ≥ 0 for all x ∈X . (4.26)

Indeed, assume to the contrary that there exists some x1 ∈X such that

〈A(x1), x1 − x̂〉 < 0. (4.27)

This would then give

0 = GapX (x̂) ≥ 〈A(x1), x̂ −x1〉 > 0, (4.28)

which is a contradiction. Now, we further claim that x̂ is a solution of (VI),i.e.,:

〈A(x̂), x − x̂〉 ≥ 0 for all x ∈X . (4.29)

If we suppose that there exists some z1 ∈X such that 〈A(x̂), z1− x̂〉 < 0, then, by the continuity

of A, there exists a neighborhood U ′ of x̂ in X such that

〈A(x), z1 −x〉 < 0 for all x ∈U ′. (4.30)

Hence, assuming without loss of generality that U ′ ⊂U ⊂X (the latter assumption due to the

assumption that X contains a neighborhood of x̂), and taking λ> 0 sufficiently small so that

x = x̂ +λ(z1 − x̂) ∈U ′, we get that 〈A(x), x − x̂〉 =λ〈A(x), z1 − x̂〉 < 0, in contradiction to (4.26).

We conclude that x̂ is a solution of (VI), as claimed. ■

171



Chapter 4. Efficient and robust algorithms for min-max problems and games

Next, we shall provide the proof of the template inequality of Proposition 4.1.2. As we al-

ready argued in the main, this energy inequality will serve as a template for deriving the

method specific convergence rates in the sequel, in a similar sense to template inequality

(Proposition 2.2.1) in Section 2.2.4. Formally, we have the following:

Proposition 4.1.2. Assume that X t , X t+1/2 are the iterates of (GEG) run with a non-negative,

non-increasing step-size γt . Then, for all x ∈Rd the following inequality holds:

T∑
t=1

〈Vt+1/2, X t+1/2 −x〉 ≤ ∥x∥2

2γT+1
+ 1

2

T∑
t=1

γt ∥Vt+1/2 −Vt∥2
∗−

1

2

T∑
t=1

1

γt
∥X t+1/2 −X t∥2 (4.31)

Proof. By the update rule for X t+1 in (GEG) we get the following:

〈Vt+1/2, X t+1 −x〉 =
〈

1

γt
γt Yt − 1

γt+1
γt+1Yt+1, X t+1 −x

〉
=

〈
1

γt
γt Yt − 1

γt
γt+1Yt+1, X t+1 −x

〉
+

〈
1

γt
γt+1Yt+1 − 1

γt+1
γt+1Yt+1, X t+1 −x

〉
= 1

γt

〈
γt Yt −γt+1Yt+1, X t+1 −x

〉+(
1

γt+1
− 1

γt

)〈
0−γt+1Yt+1, X t+1 −x

〉
.

= 1

γt
〈X t −X t+1, X t+1 −x〉+

(
1

γt+1
− 1

γt

)
〈0−X t+1, X t+1 −x〉

Therefore, by quadratic expansion of the scalar products 〈X t −X t+1, X t+1 −x〉and 〈0−X t+1, X t+1 −x〉
we get:

〈Vt+1/2, X t+1 −x〉 = 1

γt

[
1

2
∥X t+1 −x +X t −X t+1∥2 − 1

2
∥X t −X t+1∥2 − 1

2
∥X t+1 −x∥2

]
+

(
1

γt+1
− 1

γt

)[
1

2
∥X t+1 −x −X t+1∥2 − 1

2
∥X t+1∥2 − 1

2
∥X t+1 −x∥2

]
(4.32)

which in turn yields:

〈Vt+1/2, X t+1 −x〉 ≤ 1

2γt
∥X t −x∥2− 1

2γt
∥X t −X t+1∥2− 1

2γt
∥X t+1 −x∥2+ 1

2

(
1

γt+1
− 1

γt

)
∥x∥2

− 1

2γt+1
∥X t+1 −x∥2 + 1

2γt
∥X t+1 −x∥2

(4.33)

Therefore, after rearranging we have first part of the proof,

1

2γt+1
∥X t+1 −x∥2 ≤ 1

2γt
∥X t −x∥2 + 1

2

(
1

γt+1
− 1

γt

)
∥x∥2 −〈Vt+1/2, X t+1 −x〉− 1

2γt
∥X t −X t+1∥2

= 1

2γt
∥X t −x∥2 + 1

2

(
1

γt+1
− 1

γt

)
∥x∥2 −〈Vt+1/2, X t+1/2 −x〉

+〈Vt+1/2, X t+1/2 −X t+1〉− 1

2γt
∥X t −X t+1∥2 .
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On the other hand, by invoking the update rule of X t+1/2 in (GEG) we have:

γt 〈Vt , X t+1/2 −x〉 = 〈X t −X t+1/2, X t+1/2 −x〉
= 1

2
∥X t+1/2 −x +X t −X t+1/2∥2 − 1

2
∥X t −X t+1/2∥2 − 1

2
∥X t+1/2 −x∥2

= 1

2
∥X t −x∥2 − 1

2
∥X t −X t+1/2∥2 − 1

2
∥X t+1/2 −x∥2 ,

(4.34)

and after dividing with γt and rearranging and setting x = X t+1

1

2γt
∥X t −X t+1/2∥2 + 1

2γt
∥X t+1/2 −X t+1∥2 +〈Vt , X t+1/2 −X t+1〉 = 1

2γt
∥X t −X t+1∥2 . (4.35)

So, combining the above, we get

1

2γt+1
∥X t+1 −x∥2 ≤ 1

2γt
∥X t −x∥2 + 1

2

(
1

γt+1
− 1

γt

)
∥x∥2 −〈Vt+1/2, X t+1/2 −x〉

+〈Vt+1/2, X t+1/2 −X t+1〉−〈Vt , X t+1/2 −X t+1〉
− 1

2γt
∥X t −X t+1/2∥2 − 1

2γt
∥X t+1/2 −X t+1∥2

≤ 1

2γt
∥X t −x∥2 −〈Vt+1/2, X t+1/2 −x〉+ 1

2

(
1

γt+1
− 1

γt

)
∥x∥2

+〈Vt+1/2 −Vt , X t+1/2 −X t+1〉− 1

2γt
∥X t+1/2 −X t+1∥2︸ ︷︷ ︸

(A)

− 1

2γt
∥X t −X t+1/2∥2 .

(4.36)

Now, we handle term (A):

〈Vt+1/2 −Vt , X t+1/2 −X t+1〉− 1

2γt
∥X t+1/2 −X t+1∥2

≤ 1

2
γt ∥Vt+1/2 −Vt∥2

∗+
1

2γt
∥X t+1/2 −X t+1∥2 − 1

2γt
∥X t+1/2 −X t+1∥2

≤ 1

2
γt ∥Vt+1/2 −Vt∥2

∗ .

(4.37)

By integrating the bound on (A) back into the original expresion yields,

1

2γt+1
∥X t+1 −x∥2 ≤ 1

2γt
∥X t −x∥2 −〈Vt+1/2, X t+1/2 −x〉+ 1

2

(
1

γt+1
− 1

γt

)
∥x∥2

+ 1

2
γt ∥Vt −Vt+1/2∥2

∗−
1

2γt
∥X t −X t+1/2∥2.

(4.38)
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So, after rearranging and telescoping over t = 1, . . . ,T we get:

T∑
t=1

〈Vt+1/2, X t+1/2 −x〉 ≤ ∥X1 −x∥2

2γ1
+ ∥x∥2

2γT+1
− ∥x∥2

2γ1

+ 1

2

T∑
t=1

γt ∥Vt −Vt+1/2∥2
∗−

1

2

T∑
t=1

∥X t −X t+1/2∥2

γt
.

(4.39)

The result follows by setting X1 = 0 and simplifying the expression. ■

Before we begin with the proof of the main results, we need to present a lemma which is

crucial in handling the fixed point which essentially depends on the randomness in the whole

of the process due to the definition of the Gap function. We have the following result that will

help us to deal with the martingale difference component of the "noise", which is due to Bach

and Levy [BL19].

Lemma 4.2.1. Let X ⊆Rd be a convex set and h : X →R be a 1-strongly-convex with respect to

a ∥ · ∥ over X . Also, assume that ∀x ∈X , h(x)−minx∈X h(x) ≤ D2

2 . Then, for any martingale

difference (Zt )T
t=1 ∈Rd , and any random vector x ∈X , we have:

E

[〈
T∑

t=1
Zt , x

〉]
≤ D

2

√√√√ T∑
t=1
E
[∥Zt∥2∗

]
(4.40)

The proof of the above lemma could be found in [BL19], where they present the same result

under the label Proposition B.1.

We are now at a position to present the main results, starting with the proofs for the non-

adaptive schemes studied in this chapter.

Theorem 4.1.1. Let X t , X t+1/2 be generated by (GEG) with a decreasing step-size γt =O (1/
p

t ).

Then, for every compact neighborhood X ⊂Rd of x∗, with X̄T = 1
T

∑T
t=1 X t+1/2, it holds that:

E
[
GapX

(
X̄T

)]=O (1/
p

T ).

Proof. Since we adopt a decreasing step-size schedule of O(1/
p

t), Proposition 4.1.2 imme-

diately applies to this setting. Combining this with almost sure boundedness of stochastic

operators,

T∑
t=1

〈Vt+1/2, X t+1/2 −x〉 ≤ ∥X ∥2

2γT+1
+ 1

2

T∑
t=1

γt ∥Vt+1/2 −Vt∥2
∗−

1

2

T∑
t=1

1

γt
∥X t+1/2 −X t∥2

≤ ∥x∥2

2

p
T +1+

T∑
t=1

γt ∥Vt+1/2∥2
∗+γt ∥Vt∥2

∗

≤ ∥x∥2

2

p
T +1+2M 2

p
T .
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By monotonicity, and the definition that Vt+1/2 = A(X t+1/2)+Ut+1/2,

T∑
t=1

〈Vt+1/2, X t+1/2 −x〉 =
T∑

t=1
〈A(X t+1/2), X t+1/2 −x〉+〈Ut+1/2, x −X t+1/2〉

≥
T∑

t=1
〈A(x), X t+1/2 −x〉+〈Ut+1/2, X t+1/2 −x〉

= T
〈

A(x), X̄T −x
〉+ T∑

t=1
〈Ut+1/2, X t+1/2 −x〉

Plugging this lower bound into the first expression,

〈
A(x), X̄T −x

〉≤
( ∥x∥2

2 +2M 2
)p

T +1+∑T
t=1 〈Ut+1/2, x −X t+1/2〉

T

Taking supremum over x ∈X and finally computing expectation with respect to all random-

ness we obtain

E
[
GapX (X̄T )

]≤
E

supx∈X


( ∥x∥2

2 +2M 2
)p

T +1+
T∑

t=1
〈Ut+1/2, x〉︸ ︷︷ ︸

(A)

−
T∑

t=1
〈Ut+1/2, X t+1/2〉︸ ︷︷ ︸

(B)




T

.

For term (A),

E

[
sup
x∈X

T∑
t=1

〈Ut+1/2, x〉
]
≤ E

[
max
x∈X

〈
T∑

t=1
Ut+1/2, x

〉]

= E
[〈

T∑
t=1

Ut+1/2, x̃

〉]
(for some x̃ ∈X which attains the maximum)

= D

2

√√√√ T∑
t=1
E
[∥Ut+1/2∥2∗

]
((by Lemma 4.2.1))

= D

2

√√√√ T∑
t=1
E
[
E
[∥Ut+1/2∥2∗ |Ft

]]
= D

2
σ
p

T (Bounded variance)

Also, for term (B),

E

[
T∑

t=1
〈Ut+1/2, X t+1/2〉

]
=

T∑
t=1
E [〈Ut+1/2, X t+1/2〉]
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=
T∑

t=1
E [E [〈Ut+1/2, X t+1/2〉 |Ft ]]

=
T∑

t=1
E [〈E [Ut+1/2 |Ft ] , X t+1/2〉]

=
T∑

t=1
E [〈0, X t+1/2〉] (unbiasedness of Vt+1/2)

= 0.

Finally recognizing supx∈X ∥x∥ < D and combining the expressions for term (A) and (B),

E
[
GapX (X̄T )

]≤ E
[

supx∈X

{(
D2

2 +2M 2
)p

T +1+ D̃
2 σ

p
T

}]
T

,

which concludes our derivation

E
[
GapX (X̄T )

]=O (1/
p

T )

■

Proposition 4.1.3. Under Assumption 4.1.2 the iterates of (DA), (DE), (OptDA) enjoy the

following rate:

E
[
GapX

(
X̄T

)]=O (1/
p

T ) (4.41)

Proof. Directly obtained by Theorem 4.1.1 by setting Vt = 0 for (DA), Vt = g t+1/2 for (DE) and

Vt = g t−1/2 for (OptDA). ■

Theorem 4.1.2. Let X t , X t+1/2 be generated by (GEG) with a constant step-size that satisfies

min
{
(2L)−1, (4L2γ)−1}−2γc > 0 with L = 1/β. (4.42)

Then, for every compact neighbourhood X ⊂Rd of x∗, with X̄T = 1
T

∑T
t=1 X t+1/2, we have:

E
[
GapX

(
X̄T

)]= E[
sup
X∈X

〈
A(X ), X̄T −X

〉]=O (1/T )

Proof.

T∑
t=1

〈Vt+1/2, X t+1/2 −x〉

=
T∑

t=1
〈Vt+1/2 −Vt , X t+1/2 −X t+1〉+〈Vt , X t+1/2 −X t+1〉+〈Vt+1/2, X t+1 −x〉

≤
T∑

t=1
∥Vt+1/2 −Vt∥∥X t+1/2 −X t+1∥+ 1

γ
〈X t −X t+1/2, X t+1/2 −X t+1〉+ 1

γ

〈
γYt −X t+1, X t+1 −x

〉
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=
T∑

t=1

γ

2
∥Vt+1/2 −Vt∥2 + 1

2γ
∥X t+1/2 −X t+1∥2

+ 1

2γ

(∥X t −X ∥2 −∥X t+1 −X ∥2 −∥X t −X t+1/2∥2 −∥X t+1/2 −X t+1∥2)
= ∥X1 −x∥2

2γ
+ γ

2

T∑
t=1

∥Vt+1/2 −Vt∥2 − 1

2γ

T∑
t=1

∥X t −X t+1/2∥2

= ∥x∥2

2γ
+ γ

2

T∑
t=1

∥Vt+1/2 −Vt∥2 − 1

2γ

T∑
t=1

∥X t −X t+1/2∥2,

where we set X1 = 0. At this point the question is how to introduce the relative noise into the

analysis such that we show that the stochastic/deterministic operator norms are summable.

This would enable us to achieve the anticipated 1/T rate. In other words, we want to show that

E

[
T∑

t=1
∥A(X t+1/2)∥2

]
<+∞

E

[
T∑

t=1
∥A(X t )∥2

]
<+∞

We take expectation with respect to all randomness and lower bound the left hand side with

the norm of the operator using cocoercivity. Setting x = x∗, where x∗ is a solution of (VI),

E

[
T∑

t=1

〈
Vt+1/2, X t+1/2 −x∗〉]= E

[
T∑

t=1
E
[〈

Vt+1/2, X t+1/2 −x∗〉 |Ft
]]

= E
[

T∑
t=1

〈
E [Vt+1/2|Ft ] , X t+1/2 −x∗〉]

= E
[

T∑
t=1

〈
A(X t+1/2)− A(x∗), X t+1/2 −x∗〉]

(Cocoercivity)

≥ 1

L
E

[
T∑

t=1
∥A(X t+1/2)∥2

]

Plugging this into the original expression yields

1

L
E

[
T∑

t=1
∥A(X t+1/2)∥2

]
≤ ∥x∗∥2

2γ
+ γ

2

T∑
t=1

∥Vt+1/2 −Vt∥2 − 1

2γ

T∑
t=1

∥X t −X t+1/2∥2

With a similar approach,

E

[
1

L

T∑
t=1

∥A(X t+1/2)∥2 + 1

2γ

T∑
t=1

∥X t −X t+1/2∥2

]

≥ E
[

1

L

T∑
t=1

∥A(X t+1/2)∥2 + 1

2L2γ

T∑
t=1

∥A(X t )− A(X t+1/2)∥2

]

177



Chapter 4. Efficient and robust algorithms for min-max problems and games

≥ E
[

min

{
1

2L
,

1

4L2γ

} T∑
t=1

2∥A(X t+1/2)∥2 +2∥A(X t )− A(X t+1/2)∥2

]

≥ E
[

min

{
1

2L
,

1

4L2γ

} T∑
t=1

∥A(X t )∥2

]

Hence,

E

[
T∑

t=1
min

{
1

2L
,

1

4L2γ

}
∥A(X t )∥2 + 1

L
∥A(X t+1/2)∥2

]
≤ E

[
∥x∗∥2

γ
+γ

T∑
t=1

∥Vt+1/2 −Vt∥2

]

We now use the relative variance in the expression on the right hand side. Relying on the

towering property of expectation,

E

[
∥x∗∥2

γ
+γ

T∑
t=1

∥Vt+1/2 −Vt∥2

]
≤ E

[
∥x∗∥2

γ
+2γ

T∑
t=1
E
[∥Vt+1/2∥2|Ft

]+E[∥Vt∥2|Ft−1/2
]]

≤ E
[
∥x∗∥2

γ
+2γc

T∑
t=1

∥A(X t+1/2)∥2 +∥A(X t )∥2

]

Combining last two expressions together yields

E

[
T∑

t=1
min

{
1

2L
,

1

4L2γ

}(∥A(X t )∥2 +∥A(X t+1/2)∥2)]≤ E
[
∥x∗∥2

γ
+2γc

T∑
t=1

∥A(X t+1/2)∥2 +∥A(X t )∥2

]

Grouping the same terms on the same side of the inequality,

E

[
T∑

t=1

(
min

{
1

2L
,

1

4L2γ

}
−2γc

)(∥A(X t )∥2 +∥A(X t+1/2)∥2)]≤ E
[∥x∗∥2

γ

]

As long as min
{

1
2L , 1

4L2γ

}
−2γc > 0, we show that sum of operator norms with respect to both

sequences are summable.

To obtain the gap, we will decompose Vt+1/2 into the full operator plus the noise,

T∑
t=1

〈Vt+1/2, X t+1/2 −x〉 =
T∑

t=1
〈A(X t+1/2), X t+1/2 −x〉+

T∑
t=1

〈Ut+1/2, X t+1/2 −x〉

≥
T∑

t=1
〈A(x), X t+1/2 −x〉+

T∑
t=1

〈Ut+1/2, X t+1/2 −x〉 (Monotonicity)

= T
〈

A(x), X̄ t+1/2 −x
〉+ T∑

t=1
〈Ut+1/2, X t+1/2 −x〉
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Rearranging and incorporating into the original bound,

〈A(x), X̄T −x
〉

≤ 1

T

(
∥x∥2

2γ
+

T∑
t=1

γ

2
∥Vt+1/2 −Vt∥2 − 1

2γ
∥X t −X t+1/2∥2 +〈Ut+1/2, x −X t+1/2〉

)
,

We take supremum over x to retrieve the gap function and taking expectation,

E
[
GapX (X̄T )

]
≤ E

[
sup
x∈X

{
1

T

(
∥x∥2

2γ
+

T∑
t=1

γ

2
∥Vt+1/2 −Vt∥2 − 1

2γ
∥X t −X t+1/2∥2 +〈Ut+1/2, x −X t+1/2〉

)}]

≤ 1

T

(
D2

2γ
+

T∑
t=1
E
[
γ∥Vt+1/2∥2 +γ∥Vt∥2]+E[

sup
x∈X

{〈Ut+1/2, x〉}
]
−E [〈Ut+1/2, X t+1/2〉]

)

≤ 1

T

D2

2γ
+γc

T∑
t=1
E
[∥A(X t+1/2)∥2 +∥A(X t )∥2]

︸ ︷︷ ︸
(i)

+
T∑

t=1
E

[
sup
x∈X

{〈Ut+1/2, x〉}
]

︸ ︷︷ ︸
(ii)

−
T∑

t=1
E [〈Ut+1/2, X t+1/2〉]︸ ︷︷ ︸

(iii)

 ,

where we define that supx∈X ∥x∥ ≤ D and use relative variance in the last inequality.

For term (i), we have already proven that this particular summation is finite.

For term (ii),

E

[
sup
x∈X

T∑
t=1

〈Ut+1/2, x〉
]
≤ E

[
max
x∈X

〈
T∑

t=1
Ut+1/2, x

〉]

= E
[〈

T∑
t=1

Ut+1/2, x̃

〉]
(for some x̃ ∈X which attains the maximum)

= D

2

√√√√ T∑
t=1
E
[∥Ut+1/2∥2∗

]
((by Lemma 4.2.1))

= D

2

√√√√ T∑
t=1
E
[∥Vt+1/2 − A(X t+1/2)∥2∗

]
(unbiasedness of Vt+1/2)

= D

2

√√√√ T∑
t=1
E
[∥Vt+1/2∥2∗

]
(Towering property)

= D

2

√√√√ T∑
t=1
E
[
c ∥A(X t+1/2)∥2∗

]<+∞ (Relative variance)
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Finally for term (iii),

E

[
T∑

t=1
〈Ut+1/2, X t+1/2〉

]
=

T∑
t=1
E [〈Ut+1/2, X t+1/2〉]

=
T∑

t=1
E [E [〈Ut+1/2, X t+1/2〉 |Ft ]]

=
T∑

t=1
E [〈E [Ut+1/2 |Ft ] , X t+1/2〉]

=
T∑

t=1
E [〈0, X t+1/2〉] (unbiasedness of Vt+1/2)

= 0.

Since we have shown that either the terms are finite or 0, it immediately implies that

E
[
GapX (X̄T )

]=O (1/T )

■

Proposition 4.1.4. Under Assumption 4.1.3 the iterates of (DA), (DE), (OptDA) enjoy the

following rate:

E
[
GapX

(
X̄T

)]=O (1/T ) (4.43)

Proof. Directly obtained by Theorem 4.1.2 by setting Vt = 0 for (DA), Vt = g t+1/2 for (DE) and

Vt = g t−1/2 for (OptDA). ■

Having concluded the proof for the non-adaptive step-size schedules, we shall now provide

the proof for (GEG) run with adaptive step-sizes for the various noise profiles. We will start

presenting our analysis with the absolute random noise setting.

Theorem 4.1.3. Assume that X t , X t+1/2 are the iterates of (GEG) run with the step-size (Adapt).

Then, for every compact neighborhood X ⊂Rd of a solution x∗ of (VI), we have:

E
[

GapX (X T )
]
=O (1/

p
T ) (4.44)

with X T = (1/T )
∑T

t=1 X t+1/2

Proof. Invoking Proposition 4.1.2 and removing the negative term will give us the following

inequality:
T∑

t=1
〈Vt+1/2, X t+1/2 −x〉 ≤ ∥x∥2

2γT+1
+ 1

2

T∑
t=1

γt ∥Vt+1/2 −Vt∥2
∗ (4.45)
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Then, we replace the definition Vt+1/2 = A(X t+1/2)+Ut+1/2 and rewrite the above expression:

T∑
t=1

〈A(X t+1/2), X t+1/2 −x〉 ≤ ∥x∥2

2γT+1
+ 1

2

T∑
t=1

γt ∥Vt+1/2 −Vt∥2
∗+

T∑
t=1

〈Ut+1/2, x −X t+1/2〉 (4.46)

Now, by applying the monotonicity of A we can bound the (LHS) from below and obtain:

T∑
t=1

〈A(x), X t+1/2 −x〉 ≤ ∥x∥2

2γT+1
+ 1

2

T∑
t=1

γt ∥Vt+1/2 −Vt∥2
∗+

T∑
t=1

〈Ut+1/2, x −X t+1/2〉 (4.47)

By taking suprema on both sides over a compact neighbourhood of a solution x∗ and taking

expectations:

TE

[
sup
x∈X

〈
A(x), X T −x

〉]
≤ D2/2E

[
1

γT+1

]
+ 1

2

T∑
t=1
E
[
γt ∥Vt+1/2 −Vt∥2

∗
]

+
T∑

t=1
E

[
sup
x∈X

〈Ut+1/2, x −X t+1/2〉
]

(4.48)

where we plugged in the definition of XT , and used the fact that ∥x∥ ≤ D for any x ∈X . We

rewrite the (LHS) with respect to the definition of the Gap function to obtain,

TE
[

GapX (X T )
]
≤ D2/2E

[
1

γT+1

]
+ 1

2

T∑
t=1
E
[
γt ∥Vt+1/2 −Vt∥2

∗
]

+
T∑

t=1
E

[
sup
x∈X

〈Ut+1/2, x −X t+1/2〉
] (4.49)

Therefore, we are left to bound from above the (RHS). We will bound each term individually.

Let us begin with the first term D2/2E
[

1
γT+1

]
.

D2/2E

[
1

γT+1

]
= D2/2E


√√√√1+

T∑
t=1

∥Vt −Vt+1/2∥2∗

≤ D2/2
√

1+4M 2T (4.50)

where we used the definition of the step-size and almost-sure boundedness of the sequence

Vt to obtain the last inequality. Secondly, for the term 1
2

∑T
t=1E

[
γt ∥Vt+1/2 −Vt∥2∗

]
we have:

1

2

T∑
t=1
E
[
γt ∥Vt+1/2 −Vt∥2

∗
]= 1

2
E

[
T∑

t=1

(
γt −γt+1

)∥Vt+1/2 −Vt∥2
∗+

T∑
t=1

γt+1 ∥Vt+1/2 −Vt∥2
∗

]

≤ 1

2

[
4M 2E

[
·

T∑
t=1

(
γt −γt+1

)]+E
[

T∑
t=1

γt+1 ∥Vt+1/2 −Vt∥2
∗

]]

≤ 1

2

[
4M 2γ1 +E

[
T∑

t=1
γt+1 ∥Vt+1/2 −Vt∥2

∗

]]
(4.51)
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Notice that γ1 = 1 due to the lag-one-behind step-size. To handle the summation on the (RHS),

we will make use of the same approach as in the previous chapters; use adaptive structure of

the step-size. Now by applying Lemma 2.1.2 we have:

E

[
T∑

t=1
γt+1 ∥Vt+1/2 −Vt∥2

∗

]
= E

 T∑
t=1

∥Vt+1/2 −Vt∥2∗√
1+∑t

j=1

∥∥V j+1/2 −V j
∥∥2
∗


≤ 2E


√√√√1+

T∑
t=1

∥Vt+1/2 −Vt∥2∗


≤ 2

√
1+4M 2T .

The last inequality is once again due to the boundedness of Vt . What remains is to bound

the noise term, which is essentially the same as the proof in the non=adaptive setting as the

expression itself is free of the step-size. Let us divide the term (B) into two and proceed.

E

[
sup
x∈X

T∑
t=1

〈Ut+1/2, x −X t+1/2〉
]
= E

[
sup
x∈X

T∑
t=1

〈Ut+1/2, x〉
]

︸ ︷︷ ︸
(B1)

−E
[

T∑
t=1

〈Ut+1/2, X t+1〉
]

︸ ︷︷ ︸
(B2)

(4.52)

We will handle the term (B2) by the unbiasedness property of the noisy evaluations.

E

[
T∑

t=1
〈Ut+1/2, X t+1/2〉

]
=

T∑
t=1
E [〈Ut+1/2, X t+1/2〉]

=
T∑

t=1
E [E [〈Ut+1/2, X t+1/2〉 |Ft ]]

=
T∑

t=1
E [〈E [Ut+1/2 |Ft ] , X t+1/2〉]

=
T∑

t=1
E [〈0, X t+1/2〉] ((unbiasedness of Vt+1/2))

= 0.

For the term (B1) we will use Lemma 4.2.1 and we get:

E

[
sup
x∈X

T∑
t=1

〈Ut+1/2, x〉
]
≤ E

[
max
x∈X

〈
T∑

t=1
Ut+1/2, x

〉]

= E
[〈

T∑
t=1

Ut+1/2, x̃

〉]
(for some x̃ ∈X attaining the maximum)

≤ D

2

√√√√ T∑
t=1
E
[∥Ut+1/2∥2∗

]
(by Lemma 4.2.1)

≤ Dσ

2

p
T
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Observe that all the terms on the (RHS) grow as O(
p

T ). By dividing both sides by T and

combining the individual bounds together gives us the following, which concludes the proof.

E
[

GapX (X T )
]
=

4M 2 +
(

D2

2 +2
)p

1+4M 2T + Dσ
2

p
T

T
=O

(
1p
T

)
■

Next, we have the proof of Proposition 4.1.6. Similar to the non-adaptive counterpart, the

proof immediately follows by Theorem 4.1.3 upto replacing Vt+1/2 and Vt with the respective

definitions.

Proposition 4.1.6. Under Assumption 4.1.2 the iterates of (DA), (DE), (OptDA) enjoy the

following:

E
[
GapX (X T )

]
=O (1/

p
T ) (4.53)

Proof. Directly obtained by Theorem 4.1.3 by setting Vt = 0 for (DA), Vt = g t+1/2 for (DE) and

Vt = g t−1/2 for (OptDA). ■

Now, we turn our attention towards the relative random noise in the adaptive step-size setting,

which requires a bit more involved analysis than its non-adaptive counterpart. In particular,

in order to show our main results for this context we will need the following proposition as a

stepping stone. As a prelude, we point out that the following result will also play a crucial role

for establishing the last iterate convergence results at the end of the appendix.

Proposition 4.2.1. Assume that X t , X t+1/2 are the iterates of (GEG) run with (Adapt). Then, we

have:

E

[
1

γ2
T+1

]
= E

[
1+

T∑
t=1

∥Vt −Vt+1/2∥2
∗

]
<+∞ (4.54)

and

E

[
T∑

t=1
∥A(X t+1/2)∥2

∗

]
<+∞ (4.55)

and

E

[
T∑

t=1
∥A(X t )∥2

∗

]
<+∞ (4.56)

and

E

[
T∑

t=1
∥X t+1/2 −X t∥2

]
<+∞ (4.57)
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Proof. Applying Proposition 4.1.2 and for x = x∗ with x∗ being a solution of (VI), we have

T∑
t=1

〈
Vt+1/2, X t+1/2 −x∗〉≤ ∥x∗∥2

2γT+1
+ 1

2

T∑
t=1

γk ∥Vt+1/2 −Vt∥2
∗︸ ︷︷ ︸

(A)

−1

2

T∑
t=1

1

γt
∥X t+1/2 −X t∥2 (4.58)

First, we shall bound the term (A).

1

2

T∑
t=1

γt ∥Vt+1/2 −Vt∥2
∗ =

1

2

[
T∑

t=1

(
γt −γt+1

)∥Vt+1/2 −Vt∥2
∗+

T∑
t=1

γt+1 ∥Vt+1/2 −Vt∥2
∗

]

≤ 1

2

[
4G2 ·

T∑
t=1

(
γt −γt+1

)+ T∑
t=1

γt+1 ∥Vt+1/2 −Vt∥2
∗

]

≤ 2G2 + 1

2

T∑
t=1

γt+1 ∥Vt+1/2 −Vt∥2
∗

≤ 2G2

√√√√1+
T∑

t=1
∥Vt+1/2 −Vt∥2∗+

1

2

T∑
t=1

∥Vt+1/2 −Vt∥2∗√
1+∑t

j=1

∥∥V j+1/2 −V j
∥∥2
∗

≤ 2G2

√√√√1+
T∑

t=1
∥Vt+1/2 −Vt∥2∗+2 · 1

2

√√√√1+
T∑

t=1
∥Vt+1/2 −Vt∥2∗

= (
2G2 +1

)√√√√1+
T∑

t=1
∥Vt+1/2 −Vt∥2∗

= (
2G2 +1

) 1

γT+1

(4.59)

We plug the above expression into the original inequality, take expectation on both sides to

obtain,

(B) = E
[

T∑
t=1

〈
Vt+1/2, X t+1/2 −x∗〉]≤ ∥x∗∥2

2
·E

[
1

γT+1

]
+ (

2G2 +1
) ·E[

1

γT+1

]

− 1

2
E

[
T∑

t=1

1

γt
∥X t+1/2 −X t∥2

]

=
[∥x∗∥2

2
+2G2 +1

]
E

[
1

γT+1

]
− 1

2
E

[
T∑

t=1

1

γt
∥X t+1/2 −X t∥2

]
(4.60)

Now, we will focus on the (LHS) of this expression. We make use of the (conditional) unbiased-
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ness of the oracle information and subsequently apply cocoercivity.

E

[
T∑

t=1

〈
Vt+1/2, X t+1/2 −x∗〉]=

T∑
t=1
E
[〈

Vt+1/2, X t+1/2 −x∗〉]
=

T∑
t=1
E
[
E
[〈

Vt+1/2, X t+1/2 −x∗〉 |Ft+1/2
]]

=
T∑

t=1
E
[〈
E [Vt+1/2 | ξt+1/2] , X t+1/2 −x∗〉]

=
T∑

t=1
E
[〈

A (X t+1/2) , X t+1/2 −x∗〉]
(4.61)

Recall that the continuous operator A is 1/L-cocoercive by definition, which enables us to

obtain,

E

[
T∑

t=1

〈
Vt+1/2, X t+1/2 −x∗〉]≥

T∑
t=1

1

L
E
[∥A (X t+1/2)∥2

∗
]

(4.62)

By combining (4.60) and (4.62) we have

1

L

T∑
t=1
E
[∥A (X t+1/2)∥2

∗
]≤ [∥x∗∥2

2
+2G2 +1

]
E

[
1

γT+1

]
− 1

2

T∑
t=1
E

[
1

γt
∥X t+1/2 −X t∥2

]
(4.63)

Eq. (4.63) is the first cornerstone inequality, and we will show that the (RHS) is bounded by

a constant, verifying the summability of
∑T

t=1E
[∥A (X t+1/2)∥2∗

]
. Next, we will use the above

inequality to obtain a bound on
∑T

t=1E
[∥A (X t )∥2∗

]
. Rearranging the terms an using the fact

that 1/γt ≥ 1,

(C) = 1

L

T∑
t=1
E
[∥A (X t+1/2)∥2

∗
]+ 1

2

T∑
t=1
E
[∥X t+1/2 −X t∥2]≤ [∥x∗∥2

2
+2G2 +1

]
E

[
1

γT+1

]
. (4.64)

Then, we bound the (LHS) from below using the L-Lipschitz continuity of the operator (implied

by 1/L-cocoercivity) and using quadratic inequality (a +b)2 ≤ 2a2 +2b2.

1

L

T∑
t=1
E
[∥A (X t+1/2)∥2

∗
]+ 1

2

T∑
t=1
E
[∥X t+1/2 −X t |∥2]

≥ 1

L

T∑
t=1
E
[∥A (X t+1/2)∥2

∗
]+ 1

2L2

T∑
t=1
E
[∥A (X t+1/2)− A (X t )∥2

∗
]

≥ min

{
1

L
,

1

2L2

} T∑
t=1
E
[∥A (X t+1/2)∥2

∗+∥A (X t+1/2)− A (X t )∥2
∗
]

= min

{
1

2L
,

1

4L2

} T∑
t=1
E
[
2∥A (X t+1/2)∥2

∗+2∥A (X t+1/2)− A (X t )∥2
∗
]

≥ min

{
1

2L
,

1

4L2

} T∑
t=1
E
[∥A (X t )∥2

∗
]

(4.65)
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To summarize, we get the following inequalities:

1

L

T∑
t=1
E
[∥A (X t+1/2)∥2

∗
]≤ [∥x∗∥2

2
+2G2 +1

]
E

[
1

γT+1

]
min

{
1

2L
,

1

4L2

} T∑
t=1
E
[∥A (X t )∥2

∗
]≤ [∥x∗∥2

2
+2G2 +1

]
E

[
1

γT+1

]
.

(Ineq)

Then, we sum up the two inequalities and proceed with the next step of our analysis.

1

L

T∑
t=1
E
[∥A (X t+1/2)∥2

∗
]+min

{
1

2L
,

1

4L2

} T∑
t=1
E
[∥A (X t )∥2

∗
]≤ 2

[∥x∗∥2

2
+2G2 +1

]
E

[
1

γT+1

]
(4.66)

Now, our goal is to lower bound the expression above via the stochastic operators. This is

where we will make use of the relative noise assumption. The strategy is to lower bound the

(LHS) by O(1/γ2
T ) and ultimately show that limt→∞γt = γ∞ > 0. Then,

1

L

T∑
t=1
E
[∥A (X t+1/2)∥2

∗
]+min

{
1

2L
,

1

4L2

} T∑
t=1
E
[∥A (X t )∥2

∗
]

≥ min

{
1

2L
,

1

4L2

}[
T∑

t=1
E
[∥A (X t+1/2)∥2

∗
]+ T∑

t=1
E
[∥A (X t )∥2

∗
]]

≥ min

{
1

2L
,

1

4L2

}[
T∑

t=1

1

c
E
[∥Vt+1/2∥2

∗
]+ T∑

t=1

1

c
E
[∥Vt∥2

∗
]]

(Assumption 4.1.3)

≥ 1

c max
{
4L,8L2

} [
T∑

t=1
E
[
2∥Vt+1/2∥2

∗+2∥Vt∥2
∗
]]

≥ 1

c max
{
4L,8L2

} T∑
t=1
E
[∥Vt+1/2 −Vt∥2

∗
]

By combining the last inequality with the previous expression Eq. (4.66) gives us,

E

[
T∑

t=1
∥Vt+1/2 −Vt∥2

∗

]
≤ 8c max

{
L,2L2} ·[∥x∗∥2

2
+2G2 +1

]
E

[
1

γT+1

]
(4.67)

Using the definition of the adaptive step-size,

E

[
T∑

t=1
∥Vt+1/2 −Vt∥2

∗

]
= E

[
T∑

t=1
∥Vt+1/2 −Vt∥2

∗+1−1

]

= E
[

T∑
t=1

∥Vt+1/2 −Vt∥2
∗+1

]
−1

= E
[

1

γ2
T+1

]
−1

(4.68)

After combining everything we have so far, we will obtain (through Jensen’s inequality) a
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quadratic inequality with respect to the variable x = E
[

1
γ2

T+1

]
.

E

[
1

γ2
T+1

]
≤ 8c max

{
L,2L2}[∥x∗∥2

2
+2G2 +1

]
E

[
1

γT+1

]
+1

≤ 8c max
{
L,2L2}[∥x∗∥2

2
+2G2 +1

]
E

[
1

γT+1

]
+E

[
1

γT+1

]
=

[
8c max

{
L,2L2}[∥x∗∥2

2
+2G2 +1

]
+1

]
E

[
1

γT+1

]

=
[

8c max
{
L,2L2}[∥x∗∥2

2
+2G2 +1

]
+1

]
E


√√√√1+

T∑
t=1

∥Vt+1/2 −Vt∥2∗


=

[
8c max

{
L,2L2}[∥x∗∥2

2
+2G2 +1

]
+1

]√√√√E

[
1+

T∑
t=1

∥Vt+1/2 −Vt∥2∗

]

=
[

8c max
{
L,2L2}[∥x∗∥2

2
+2G2 +1

]
+1

]√√√√E

[
1

γ2
T+1

]

(4.69)

By simplifying the above expression gives us,

E

[
1

γ2
T+1

]
≤

(
8c max

{
L,2L2}[∥x∗∥2

2
+2G2 +1

]
+1

)2

(4.70)

which proves the first inequality in the proposition. The second and third claim is derived di-

rectly by combining the first claim with (Ineq). To verify the final statement of the proposition,

we go back to (4.63). We rearrange the terms to get,

1

2

T∑
t=1
E

[
1

γt
∥X t+1/2 −X t∥2

]
≤

[∥x∗∥2

2
+2G2 +1

]
E

[
1

γT+1

]
1

2

T∑
t=1
E
[∥X t+1/2 −X t∥2]≤ [∥x∗∥2

2
+2G2 +1

]
E

[
1

γT+1

]
( 1
γt

≥ 1)

The summability of the last expression follows by Eq. (4.70). ■

Finally, we present the proof of the main result under relative random noise

Theorem 4.1.4. Assume that X t , X t+1/2 are the iterates of (GEG) run with the step-size (Adapt).

Then, for every compact neighborhood X ⊂Rd of a solution x∗ of (VI), we have:

E
[
GapX (X T )

]
=O (1/T ) (4.71)

with X T = 1/T
∑T

t=1 X t+1/2
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Proof. Once again, we begin with the template inequality in Proposition 4.1.2.

T∑
t=1

〈Vt+1/2, X t+1/2 −x〉 ≤ ∥x∥2

2γT+1
+

T∑
t=1

γt ∥Vt+1/2 −Vt∥2
∗ (4.72)

which holds for all x ∈Rd . By the definition of Vt+1/2 = A (X t+1/2)+Ut+1/2 the above becomes

T∑
t=1

〈A (X t+1/2) , X t+1/2 −x〉 ≤
T∑

t=1
〈Ut+1/2, x −X t+1/2〉+

∥x∥2

2γT+1
+

1∑
t=1

γ1 ∥Vt+1 −Vt∥2
∗

T∑
t=1

〈A(x), X t+1/2 −x〉 ≤
T∑

t=1
〈Ut+1/2, x −X t+1/2〉+

∥x∥2

2γT+1
+

1∑
t=1

γ1 ∥Vt+1 −Vt∥2
∗

(4.73)

Taking the summation inside the inner produc in the (LHS) and dividing both sides by T ,

〈
A(x), X̄T −x

〉≤ 1

T

[
T∑

t=1
〈Ut+1/2, x −X t+1/2〉+

∥x∥2

2γT+1
+

T∑
t=1

γt ∥Vt+1/2 −Vt∥2
∗

]
(4.74)

Now to obtain the Gap from the above expression, we take suprema on both sides over X

(defining D2 = supx∈X ∥x −x1∥2), and then take the expectation to have,

E
[
GapX

(
X̄T

)]≤ 1

T

[
E

[
sup
x∈X

T∑
t=1

〈Ut+1/2, x −X t+1/2〉
]

︸ ︷︷ ︸
(B)

+ D2

2
E

[
1

γT+1

]
︸ ︷︷ ︸

(C)

+E
[

T∑
t=1

γt ∥Vt+1/2 −V1∥2
∗

]
︸ ︷︷ ︸

(D)

]
(4.75)

Now, we bound each term individually. We leave the proof of term (B) to the end as it is

relatively more involved than the rest.

Bounding (C).

D2

2
E

[
1

γT+1

]
= D2

2
E


√√√√1+

T∑
t=1

∥Vt+1/2 −Vt∥2∗


≤ D2

2

√√√√E

[
1+

T∑
t=1

∥Vt+1/2 −Vt∥2∗

= D2

2

√√√√E

[
1

γ2
T+1

]
<+∞.. ( by Proposition 4.2.1)

Bounding (D).

E

[
T∑

t=1
γt ∥Vt+1/2 −Vt∥2

∗

]
= E

[
T∑

t=1

(
γt −γt+1

)∥Vt+1/2 −Vt∥2
∗

]
+E

[
T∑

t=1
γt+1 ∥Vt+1/2 −Vt∥2

∗

]
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≤ 2G2 +2E


√√√√1+

T∑
t=1

∥Vt+1/2 −Vt∥2∗


≤ 2G2 +2

√√√√E

[
1+

T∑
t=1

∥Vt+1/2 −Vt∥2∗

]

≤ 2G2 +2

√√√√E

[
1

γ2
T+1

]
<+∞. (by Proposition 4.2.1)

Bounding (B).

E

[
sup
x∈X

T∑
t=1

〈Ut+1/2, x −X t+1/2〉
]
= E

[
sup
x∈X

T∑
t=1

〈Ut+1/2, x〉
]

︸ ︷︷ ︸
(B1)

−E
[

T∑
t=1

〈Ut+1/2, X t+1/2〉
]

︸ ︷︷ ︸
(B2)

(4.76)

By working in the same spirit as Theorem 4.1.3, the term (B2) evaluates as

E

[
T∑

t=1
〈Ut+1/2, X t+1/2〉

]
= 0. (4.77)

We will handle term (B1) in a different way than before:

E

[
sup
x∈X

T∑
t=1

〈Ut+1/2, x〉
]
≤ D

2

√√√√ T∑
t=1
E
[∥Ut+1/2∥2∗

]
(4.78)

Due to the definition of Vt+1/2 = A (X t+1/2)+Ut+1/2 we have Ut+1/2 = A (X t+1/2)−Vt+1/2. So,

E

[
sup
x∈e

T∑
t=1

〈Ut+1/2, x〉
]
≤ D

2

√√√√ T∑
t=1
E
[∥A (X t+1)−Vt+1/2∥2∗

]

≤ D

2

√√√√2
T∑

t=1
E
[∥A (X t+1/2)∥2∗

]+2
T∑

t=1
E
[∥Vt+1/2∥2∗

]
<+∞. (by Proposition 4.2.1)

Since all the terms (B), (C) and (D) are bounded, we immediately have the fast rate of order

O(1/T ) with respect to the restricted Gap. ■

Similar to Proposition 4.1.6, Theorem 4.1.4 allows us to obtain the following result.

Proposition 4.1.7. Under Assumption 4.1.3 the iterates of (DA), (DE), (OptDA) enjoy the

following:

E
[
GapX (X T )

]
=O (1/T ) (4.79)
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Proof. Directly obtained by Theorem 4.1.4 by setting Vt = 0 for (DA), Vt = g t+1/2 for (DE) and

Vt = g t−1/2 for (OptDA). ■

We conclude by showing that the iterates X t+1/2, X t of (GEG) run with the adaptive step-size

policy (Adapt) converge towards some (VI) solution x∗ almost surely. In doing so, we will need

the following proposition:

Proposition 4.2.2. Let there be a non-empty closed set F and let a sequence (xt )t ∈Rd . Suppose

that for all z ∈ F there exists
(
βt

)
t sequence of random variables satisfying the following almost

surely:

E
[∥xt+1 − z∥2 |Ft

]≤ ∥xt − z∥2 +βt (4.80)

with
∑∞

t=1βt <+∞ almost surely. Then, the following hold:

1. ∥xt − z∥2 converges almost surely.

2. If the set of almost sure limit points, i.e.

X̂ = {x̂ ∈Rd : there exists a subsequence xtn → x̂ almost surely} (4.81)

is non-empty and X̂ ⊂ F , then xt converges almost surely to some random variable x̂ ∈ F .

Proof. This proposition is a special case of Combettes and Pesquet [CP15a, Proposition 2.3],

and we refer the reader to the respective manuscript for the proof of this result. ■

Moreover, we will also use the following classical convergence theorem.

Proposition 4.2.3 (Monotone Convergence Theorem). Let (Ω,Σ,µ) be a measure space and

X ∈Σ. Consider a pointwise non-decreasing sequence of
(
Σ,BR>0

)
-measurable, non-negative

functions: ft : X → [0,+∞]. Set the pointwise limit of the sequence
(

fn
)

as,

lim
t

ft (x) = f (x) (4.82)

Then, f is
(
Σ,BR>0

)
-measurable and

lim
t→+∞

∫
X

ft dµ=
∫
X

lim
t→+∞ ft dµ=

∫
X

f dµ. (4.83)

Essentially, this is necessary to interchange limit with the expectation (integration) and argue

that the expression at hand satisfies summability of βt sequence in Proposition 4.2.2. Having

all these at hand, we are now in the position to illustrate the last iterate convergence result

for the iterates of (DA)/(DE)/(OptDA). For the ease of presentation we shall provide the

convenience of the general choice for the Vt+1/2.

Proposition 4.2.4. The iterates of (DA)/(DE)/(OptDA) converge towards a (VI) solution x∗.
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Proof. We are left to show that the iterates X t+1/2 satisfies the requirements of Proposition 4.2.2.

In particular, invoking Proposition 4.1.2 we have:

1

2γt+1

∥∥X t+1 −x∗∥∥2 ≤ 1

2γt

∥∥X t −x∗∥∥2−〈Vt+1/2, X t+1/2−x∗〉+D2

2

(
1

γt+1
− 1

γt

)
+γt ∥Vt −Vt+1/2∥2

∗
(4.84)

with D2 = supx∗∈X ∥x∗∥2. Now, by multiplying both sides with 2γt and using the fact that γt is

non-decreasing and γt ≤ 1 we get:

∥∥X t+1 −x∗∥∥2 ≤ ∥X t −x∗∥−γt 〈Vt+1/2, X t+1/2 −x∗〉+ D2

2

(
1

γt+1
− 1

γt

)
+∥Vt −Vt+1/2∥2

∗ (4.85)

Now, by taking conditional expectations we obtain:

E
[∥∥X t+1 −x∗∥∥2 |Ft

]
≤ ∥∥X t −x∗∥∥2 −γtE

[〈Vt+1/2, X t+1/2 −x∗〉 |Ft
]

+ D2

2
E

[(
1

γt+1
− 1

γt

)
|Ft

]
+γtE

[∥Vt −Vt+1∥2
∗ |Ft

]
(4.86)

since γt is Ft−1/2-measurable and Ft−1/2 ⊂Ft , γt is Ft -measurable. Therefore, E
[
γt |Ft

]=
γt almost surely. Also note that X t+ 1

2
is Ft -measurable. Then, we have

γtE
[〈Vt+1/2, X t+1/2 −x∗〉 |Ft

]= γt 〈E[Vt+1/2|Ft ], X t+1/2 −x∗〉
= 〈A(X t+ 1

2
), X t+1/2 −x∗〉

≤ 0.

where we used the fact that Vt+1/2 is an unbiased estimator of A(X t+1/2), conditioned on Ft .

Last line follows from that x∗ is a solution of (VI). Combining all we obtain

E
[∥∥X t+1 −x∗∥∥2 |Ft

]
≤ ∥∥X t −x∗∥∥2 + D2

2
E

[(
1

γt+1
− 1

γt

)
|Ft

]
+E[∥Vt −Vt+1∥2

∗ |Ft
]

(4.87)

Now let us define

βt = D2

2
E

[(
1

γt+1
− 1

γt

)
|Ft

]
+E[∥Vt −Vt+1∥2

∗ |Ft
]

(4.88)

The first step is to show that βt sequence satisfies the summability statement in Proposi-

tion 4.2.2. We will show that E
[∑T

t=1βt
]<+∞ and use the Monotone Convergence Theorem

to argue that this implies
∑T

t=1βt <+∞. Indeed, we have that

E

[
T∑

t=1
βt

]
= D2

2
E

[
T∑

t=1

(
1

γt+1
− 1

γt

)]
+E

[
T∑

t=1
∥Vt −Vt+1∥2

∗

]

≤ D2

2
E

[
1

γT+1

]
+E

[
1

γ2
T+1

]
(Definition of γt )
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≤
(

D2

2
+1

)
E

[
1

γ2
T+1

]
( 1
γt

≤ 1
γ2

t
)

<+∞,

and the last line is due to Proposition 4.2.1. On the other hand,
∑T

t=1βt is a non-decreasing

(random) sequence; therefore is converges almost surely to some random valueβ∞ =∑+∞
t=1βt ∈

(0,∞]. Assume that β∞ =+∞. Then, by applying Proposition 4.2.3 we get:

+∞= E
[+∞∑

t=1
βt

]
= lim

T
E

[
T∑

t=1
βt

]
<+∞ (4.89)

which is a contradiction. Therefore
∑+∞

t=1βt <+∞ almost surely. Therefore, we are left to show

that every almost sure limit point of X t is a (VI) solution. Let x̂ ∈Rd be a limit point of X t . Then,

there exists a subsequence X tn which converges almost surely towards x̂. Then, by invoking

Proposition 4.2.1 (Eq. (4.56)), we have that:

E

[
T∑

t=1
∥A(X t )∥2

∗

]
<+∞ (4.90)

Therefore by the same reasoning as above, Proposition 4.2.3 ensures that:

T∑
t=1

∥A(X t )∥2
∗ <+∞ almost surely (4.91)

which yields a fortiori that ∥A(X t )∥2∗ → 0 almost surely. On the other hand, we have that:

∥A(X tn )∥∗ →∥A(x̂)∥∗. Thus, by limit uniqueness we get that that ∥A(x̂)∥∗ = 0 , so x̂ is a (VI)

solution, hence the result follows by Proposition 4.2.2. Finally, in order to show that X t+1/2

converges also towards a solution, we shall invoke Proposition 4.2.1 (Eq. (4.57)) that:

E

[
T∑

t=1
∥X t −X t+1/2∥2

]
<+∞ (4.92)

Hence, by the same reasoning we obtain that:

∥X t −X t+1/2∥2 → 0 almost surely (4.93)

and so our proof is completed. ■

192
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5.1 Summary of the thesis

In this dissertation, we have studied adaptive and universal algorithms for three main opti-

mization problems; constrained convex minimization, smooth non-convex minimization and

monotone variational inequalities. Particularly, we have developed parameter-free, simple

algorithms and suitable, novel analysis techniques that are oblivious to problem-dependent

parameters, e.g., Lipschitz constant, noise levels in the oracle feedback. When possible, we

demonstrate universal properties of our proposed frameworks in the sense that the algorithms

could achieve (optimal) convergence under different problem settings simultaneously without

knowing the problem at hand a priori. Let us summarize the contributions with respect to the

chapters.

In Chapter 2, we have designed adaptive first and second-order methods for compactly

constrained convex minimization setting. We have answered an open problem in the field

by developing the first adaptive and universal algorithm UNIXGRAD, which achieves optimal

convergence rates for smooth/non-smooth problems under deternistic/stochastic oracles,

simultaneously. The proposed algorithm accomplishes these results without knowing neither

the smoothness of the problems nor the nature of the oracle ahead of time. This result is

possible due to an alternative accelerated scheme based on the extra-gradient template and we

complete it with a modular proof which consists of an offline regret analysis and (accelerated)

regret-to-rate conversion.

We further extend these results for second-order methods and propose the first noise-adaptive,

accelerated second-order method EXTRA-NEWTON. Under the bounded variance condition

for stochastic gradient and the Hessian oracles, we generalize the noise adaptation capabilities

of universal first-order methods to the second-order realm, which is a direction that has not

been studied to the best of our knowledge. We generalize the conversion scheme and the

regret analysis for our first-order scheme and identified a delicate connection between the

order of smoothness, adaptive step-size design and averaging parameters that enables faster

sublinear rates beyond O(1/T 2). Moreover, the techniques we use to handle approximation
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error due to not knowing L for setting the step-size are easily extensible for other problem

formulations, including monotone VIs.

In Chapter 3, we turned our attention to smooth, non-convex minimization. We initially

focused on the high-probability convergence analysis for the AdaGrad, and proved optimal

convergence up to logarithmic factors with best known dependence on the probability margin.

Under the standard bounded variance setting, we show that the scalar step-size version of

the original AdaGrad achieves O

(
L log(T )+σ

p
l og (1/δ)p

T

)
with probability at least O(1−δ). Un-

der the finer model of sub-Gaussian noise, we obtain the celebrated noise-adaptive rate of

O
(

L2+σ2 log(1/δ)
T + Lσp

T

)
. We propose an alternative proof strategy by showing the sub-optimality

gap grows no faster than log(T ) with high probability, which verifies pseudo-boundedness of

the iterates. We combine the best of existing results [WWB19; LO20] by keeping the original

construction of the adaptive step-size while achieving best known dependence on probability

margin.

The second focus of this chapter is the variance reduction algorithms under two main problem

structures. For the more general case of expectation over smooth losses, i.e., minx Eξ∼D

[
f (x,ξ)

]
,

we designed the first parameter-free, noise-adaptive variance reduction algorithm that obtains

the convergence rate of O
(

1p
T
+ σ1/3

T 1/3

)
, with optimal dependence on time horizon T , but sub-

optimal dependence on L, G and initial sub-optimality gap. Our construction relies on the

recursive momentum estimator of Cutkosky and Orabona [CO19] but we identify a concrete

and recursive relationship between the step-size and momentum parameters. For the more

specific case of finite-sum minimization, we design the first parameter-free variance reduction

algorithm with sample complexity Õ
(
n + L4pn

ϵ2

)
, which is optimal in dependence on time

horizon T (up to logarithmic factors) and number of components n, but sub-optimal in L

dependence. Our main finding that made these results possible is the correct quantification

of the cumulative variance across the whole execution. While standard approaches guarantee

that the variance decreases at a particular rate, we show that cumulative behavior of the

variance under adaptive step-size grows roughly in the same rate as in the non-adaptive case.

We deem the additional log factors and sub-optimal parameter dependence is indeed a direct

consequence of the error due to non-monotonic behavior of the variance.

In the last part, Chapter 4, we study the intricate relationship between cocoercivity and

different noise models. We consider a generalized algorithm that recover 3 staple algorithms

in the study of VI problem, and propose a simple adaptive step-size scheme, which is capable

of simultaneously adapting to cocoercivity constant and the type of the noise without knowing

the precise setting a priori. Unlike the previous sections, we have recognized a one-to-one

connection between the cumulative growth of the norm of the operator evaluated at the

decision sequence, and the rate of convergence. Under standard bounded variance setting,

the cumulative quantity grows as O(
p

T ), leading to the O(1/
p

T ), while the vanishing, relative

noise model implies summability of the operator norms, yielding the fast rate of O(1/T ). While

doing so, we provide a generalized analysis technique for different algorithms, and propose an

alternative look into the convergence analysis by identifying a connection between the growth
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of the adaptive step-size and the rate of convergence.

5.2 Future directions

As a follow up to the presented work in the main body of this dissertation, we have several

directions for some of which we have preliminary results or existing attempts.

Per-coordinate step-sizes. The proposed algorithms that we studied in this dissertation all

have a scalar step-size, and in practice it is popular and very common to use per-coordinate

step-sizes. For most of our algorithms, this appears as an immediate and relatively easy

extension. For instance, our preliminary attempts suggest that we could prove a convergence

rate of the same order for UNIXGRAD and EXTRA-NEWTON when the step-size is generalized

to the per-coordinate version.

Indeed, some of the techniques we used in our analysis is not compatible with vector-valued

step-sizes. For instance, in the analysis of high-probability AdaGrad and STORM+ in Sec-

tions 3.1 and 3.2, we divide both sides by the scalar step-size. In the presence of vector-valued

step-sizes, we cannot apply the same technique and need to come up with an appropriate

modification.

Adaptation to approximation and sampling errors: bias-variance trade-offs. A fundamen-

tal concept we have presented in this manuscript, both for the function minimization and

variational inequality setting is adaptation to noise levels and types of oracle errors. To com-

plement our existing results, we would like to investigate the types of biased estimates and

the underlying procedure that generates them. Concrete examples towards this direction

come from offline reinforcement learning [Nac+19], online learning [Str+10] and distributed

stochastic optimization [Bez+22]. As a preliminary result, we have pinpointed a type of bias

called relative bias, which is defined as,

∥E[∇̃ f (x)
]−∇ f (x)∥ ≤β∥∇ f (x)∥,

where ∇̃ f (x) is a biased and possibly stochastic gradient estimate for the true value ∇ f (x). The

motivation comes from the use of importance sampling in reinforcement learning [Met+18],

which yields biased estimates of the above form. Our results show that the AdaGrad algorithm

implicitly adapts to the bias levels, but requires (almost surely) bounded stochastic gradients.

Note that this is barely a first step as there are many open problems to be answered for

displaying a concrete understanding of the bias adaptation.

First, we need to quantify respective lower bounds for convex/non-convex minimization

under the relative bias assumption. It is important to verify the limits with respect to the

iteration count T , as well as the correct dependence on the bias parameter β. Second, we

will focus on the accelerated algorithms in the smooth, convex setting and investigate uni-

195



Chapter 5. Conclusion and future extensions

versal convergence properties with respect to smoothness, noise levels and bias parameter,

simultaneously. The fact that the effect of bias is not eliminated in expectation, our analysis

needs an additional mechanism to handle the systematic error due to the bias. Besides, this is

only one type of bias that appears in application, and we aim to study different bias types and

quantifications to expand the literature towards this direction, taking another step towards

closing the boundary between theoretical works and practical approaches.

Simultaneous adaptation to different problem formulations. When run with the same

decreasing step-size strategy, SGD could achieve the same, and order-optimal, convergence

rate of O(1/
p

T ) for minimizing smooth convex and non-convex problems. The same applies

to gradient descent algorithm with a particular range of fixed step-size. However, in the

presence of accelerated algorithms, this no longer holds. Ghadimi and Lan [GL16] shows

that an accelerated gradient algorithm that achieves the optimal O(1/T 2) rate for smooth,

convex problems, achieves the optimal rate of O(1/T ) for smooth, non-convex minimization

as long as the algorithm parameters are changed according to the non-convex setting. With

the “accelerated” set of parameters, to the best of our knowledge, showing the optimal non-

asymptotic rates is not trivial for non-convex problems.

Motivated by this idea, we have investigated the min-min to min-max adaptation for vari-

ational inequalities. Let us take the UNIXGRAD algorithm we studied as an example, which

achieves the noise adaptive rate of O
(

LD2

T 2 + σp
T

)
. The rate of convergence is deemed by the

averaging scheme and the appropriate scaling of the step-size; computing the averages as

X̄ t+ 1
2
= αt

At
X t+ 1

2
+ At−1

At
X̄ t− 1

2
and the effective step-size as αtγt where αt = t and At = ∑t

s=1αs

yield the desired rate.

If we run this algorithm exactly for solving monotone VIs, then the algorithm diverges. This is

a phenomenon that we observed in practice for simple bilinear games, too. In fact, choosing

αt as any increasing function of t such as αt = log(t) or αt = t 1/p for p > 1, yields the same

divergent behavior. An important qualitative assesment within this context is that the vector

field induced by a monotone operator might have cycles, whereas this is not the case for the

dynamics defined by accelerated algorithms. Our intuitive understanding is that weighted

averaging might be causing unexpected behavior around cycles and lead to divergence away

from the solution set. Given that the gradient descent-ascent diverges for the simple bilinear

setting indicates how important it is to understand the structural difference between the

problem formulations.

Our proposition is to make the averaging scheme itself adaptive. Roughly speaking, αt should

remain constant if the vector field behaves in accordance with a monotone operator, and

should grow linearly when the structure is locally convex. A proposition we have studied

is to form a recursive relationship between the averaging parameter αt and the step-size

γt such that αt = γ2
t−1. However, we couldn’t make the conversion scheme work for this

construction. Moreover, when αt is a random variable, analysis in the stochastic setting runs

into measurability problems.
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Although this is an unorthodox approach in optimization research, we see it as the first

step to understand the transition between convex and non-convex minimization in terms of

universality.

Another direction we want to investigate is the continuous adaptation to degrees of convexity.

The literature on convex minimization validates that accelerated gradient method [Nes83b]

cannot adapt to strong convexity, while gradient descent does and achieves a linear rate of

convergence with sub-optimal constants. A known approach is to use restarts, and setting the

restart period adaptively (such that it doesn’t depend on problem parameters like L and µ) is

one of the goals we have for future publications. Similarly, we want to investigate the effect

of averaging and adaptive step-size selection in achieving optimal linear rates for strongly

convex case, and O(1/T 2) rate for the convex case, simultaneously.

Technically speaking, the biggest challenge for the latter direction is the additive error accu-

mulation for the analysis of adaptive methods. It is not enough to show the summability of

error due to not knowing the Lipschitz constant and the strong convexity parameter to achieve

the linear rate. We also need to prove that such an error decreases exponentially.

Higher-order methods. There has been a recent interest in the study of higher-order meth-

ods for minimization and variational inequalities. While most of such work focus on determin-

istic and non-adaptive algorithm design, there is some decent progress towards parameter-free

algorithm development [DMN22]. We have two main goals towards this direction.

First, we want to extend our results for second-order convex minimization to higher-order

smooth settings. Under the assumption that the higher-order sub-problem in the extrapolation

step (as in Algorithm 3) is efficiently computable, we believe our analysis technique can

accommodate higher-order of smoothness to achieve faster rates. However, we must note

that these faster rates will not match the lower bounds exactly. Hence, we will investigate the

optimal scheme of Carmon et al. [Car+22] and adaptive scheme of [DMN22] in conjunction

with our EXTRA-NEWTON to develop order-optimal strategies for higher-order methods in the

presence of stochastic oracles.

For variational inequalities, acceleration mechanism that enables faster rates for higher-order

formulations is fundamentally different than that of in convex minimization. For the smooth,

convex setting, computing gradient at the weighted averages sits at the heart of the analysis.

On the contrary, such an approach will not work for monotone variational inequalities. If we

take the extra-gradient scheme as a representative example, acceleration of higher-order VIs is

related to the regularization degree in the extrapolation step and the growth of
∑T

t=1
1

∥X t+ 1
2
−X t∥p ,

where p is the degree of smoothness of the operator [BL22; Adi+22]. Under stochastic oracles,

we will need to deal with additional measurability problems due to the aforementioned

terms. Therefore, developing an adaptive and universal scheme for higher-order variational

inequalities is an interesting but challenging problem.
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A second direction we want to investigate is the faster convergence of second-order methods

under third-order smoothness. Inspired by Nesterov [Nes21], we would like to develop a

second-order VI method which approximates the second-order Jacobian (the so-called third-

order term) with lower-order terms. Then, we need to develop a fast sub-solver in the spirit

of Bauschke, Bolte, and Teboulle [BBT17] and Lu, Freund, and Nesterov [LFN18] for solving

the auxiliary VI problem for the extrapolation step. We have made some progress along this

direction up to verifying a fast sub-solver.
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