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Abstract

Virtual Memory (VM) is a critical programming abstraction that is widely used in various

modern computing platforms. With the rise of datacenter computing and the birth of planet-

scale online services, the semantic and capacity requirements from memory have evolved

dramatically and pose various challenges for VM. The traditional VM implementations cannot

scale with the increasing memory capacity present in modern datacenter servers, and the

adoption of heterogeneous memory hierarchies stresses the synchronization mechanisms in

VM implementations. The increasing degree of multi-tenancy in datacenter servers requires

lean virtualization mechanisms built using VM as a foundation, while the adoption of new

paradigms such as microservices and serverless computing lead to increased contention and

performance loss in VM implementations. Finally, the increasing requirement of confidential-

ity in various computing domains also requires improvements in VM implementation as it

forms the basis of modern security mechanisms.

This thesis aims to holistically reinvent the VM implementation using OS, architecture, and

microarchitecture co-design, which can help solve the above challenges. Our redesign of

VM is based on the following key insights: (i) we can use the existing abstraction of Virtual

Memory Areas (VMAs) to optimize address translation while ensuring that the application

programming model is still POSIX-compliant so no changes are required, and reuse of existing

abstractions provides an easy adoption path for the OS developers; (ii) we can divide the

traditional address translation into a fast and slow step where the fast step is required on the

critical path of all memory accesses and thus mandates specialized microarchitectural support,

while the slow step is invoked infrequently and can be supported using the existing resources

present in the cache hierarchy without requiring significant additional silicon; and (iii) instead
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of encapsulating complicated functionalities completely in the microarchitecture, we can

partly offload it to the OS using a simple OS and microarchitecture co-design while helping the

OS developers ensure correctness by providing formal specifications of the required behavior.

We realize the above insights by introducing an intermediate address space called Midgard

between the virtual and physical address spaces. The Midgard address space is used to index

the cache hierarchy and coherence domain while ensuring that the physical address space is

only required when accessing the physical memory device. The introduction of the Midgard

address space enables lean VMA-based virtual-to-Midgard address translation, providing

fast access control and access to cache hierarchy while requiring little microarchitectural

support. The page-based Midgard-to-physical address translation is only required for capacity

management when accessing physical memory and can be performed using the resources

already present in the cache hierarchy instead of requiring specialized microarchitectural

support. To handle the exceptions generated by the delayed Midgard-to-physical address

translation without requiring significant silicon resources, we introduce a novel OS + microar-

chitecture co-design to partly offload complicated microarchitectural functionality to be easily

performed in the OS and provide formalism to help the OS developers ensure correct behavior.

We evaluate the address translation in Midgard using full-system trace simulation and show

that Midgard can eliminate address translation overhead by using incoming large-capacity

cache hierarchies. We also build a full-system RISC-V prototype with Linux to model exception

handling behavior for Midgard and show that the resulting design is both performant and

correct. Overall, Midgard reinvents the traditional VM implementation and allows it to scale

with the increasing memory capacity requirements in modern datacenter servers.

x



Résumé

La mémoire virtuelle (VM) est une abstraction critique pour la programmation et est largement

utilisée dans diverses platesformes informatiques modernes. Avec l’essor de l’informatique

des centres de données et la naissance de services en ligne à l’échelle planétaire, les exigences

sémantiques et de capacité de la mémoire ont considérablement évolué et posent divers

défis à la VM. Les implémentations de VM traditionnelles ne peuvent pas évoluer avec la

capacité de mémoire croissante présente dans les serveurs de centres de données modernes,

et l’adoption de hiérarchies de mémoire hétérogènes met de la pression sur les mécanismes

de synchronisation dans les implémentations de VM. Le degré croissant de multi-location

dans les serveurs de centres de données nécessite des mécanismes de virtualisation allégés

construits à l’aide de VM comme base, et l’adoption de nouveaux paradigmes tels que les

microservices et l’informatique “serverless” entraînent une augmentation des conflits et

une perte de performances dans les implémentations de VM. Enfin, l’exigence croissante de

confidentialité dans divers domaines informatiques nécessite également des améliorations

dans l’implémentation des machines virtuelles car elles constituent la base des mécanismes

de sécurité modernes.

Cette thèse vise à réinventer de manière holistique l’implémentation des VM en co-concevant

le système d’exploitation, l’architecture, et la microarchitecture, ce qui peut aider à résoudre

les défis ci-dessus. Notre refonte de VM est basée sur les idées clés suivantes : (i) nous pouvons

utiliser l’abstraction existante des zones de mémoire virtuelle (VMA) pour optimiser la traduc-

tion d’adresses tout en garantissant que le modèle de programmation pour les applications

est toujours conforme à POSIX de sorte qu’aucune modification logicielle ne soit nécessaire,

et la réutilisation des abstractions existantes fournit un chemin d’adoption facile pour le
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développeurs de système d’exploitation; (ii) nous pouvons diviser la traduction d’adresse

traditionnelle en une étape rapide et une étape lente où l’étape rapide est requise sur le chemin

critique de tous les accès à la mémoire et nécessite donc un support microarchitectural spé-

cialisé, tandis que l’étape lente est invoquée rarement et peut être prise en charge en utilisant

le ressources existantes présentes dans la hiérarchie de cache sans consommer beaucoup plus

d’espace; et (iii) au lieu d’encapsuler complètement des fonctionnalités compliquées dans

la microarchitecture, nous pouvons les décharger en partie sur le système d’exploitation en

utilisant une simple co-conception du système d’exploitation et de la microarchitecture tout

en aidant les développeurs du système d’exploitation à garantir une execution correcte en

fournissant des spécifications formelles du comportement requis.

Nous réalisons les idées ci-dessus en introduisant un espace d’adressage intermédiaire appelé

Midgard entre les espaces d’adressage virtuel et physique. L’espace d’adressage Midgard est

utilisé pour indexer la hiérarchie de cache et le domaine de cohérence tout en garantissant

que l’espace d’adressage physique n’est requis que lors de l’accès au dispositif de mémoire

physique. L’introduction de l’espace d’adressage Midgard permet une traduction allégée

des adresses virtuelles vers Midgard basée sur VMA, offrant un contrôle d’accès rapide et

un accès à la hiérarchie de cache tout en nécessitant peu de support microarchitectural. La

traduction d’adresse Midgard en adresse physique basée sur des pages n’est requise que pour

la gestion de la capacité lors de l’accès à la mémoire physique et peut être effectuée à l’aide

des ressources déjà présentes dans la hiérarchie de cache au lieu de nécessiter un support

microarchitectural spécialisé. Pour gérer les exceptions générées par la traduction retardée

de l’adresse Midgard vers l’adresse physique sans nécessiter beaucoup plus d’espace, nous

introduisons une nouvelle co-conception OS + microarchitecture pour décharger en partie

les fonctionnalités microarchitecturales complexes à exécuter facilement dans le système

d’exploitation et fournir un formalisme pour aider les développeurs de systèmes d’exploitation

à garantir un comportement correct. Nous évaluons la traduction d’adresses dans Midgard à

l’aide d’une simulation de trace complète du système et montrons que Midgard peut éliminer

les frais généraux de traduction d’adresses en utilisant des hiérarchies de cache de grande

capacité prochainement disponibles. Nous construisons également un prototype RISC-V

xii



Résumé

complet avec Linux pour modéliser le comportement de gestion des exceptions pour Midgard

et montrer que la conception résultante est à la fois performante et correcte. Dans l’ensemble,

Midgard réinvente l’implémentation traditionnelle des machines virtuelles et lui permet

d’évoluer avec les besoins croissants en capacité de mémoire dans les serveurs de centres de

données modernes.
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1 Introduction

Our society is undergoing a paradigm-shifting digital transformation where online services

have become an integral part of our daily life, e.g., social media, video streaming, online

shopping, web search, etc. Data is the ultimate currency which is fueling this transformation,

especially in areas such as Artificial Intelligence and Machine Learning, and allows customizing

and automating various services and increasing their usefulness for the end users. The

requirement of storing and processing large amounts of data has given birth to datacenters,

which are large deployments of thousands of servers that work together to host modern online

services. Popular online services today have billions of users spread throughout the planet,

which in turn generate increasing amounts of data that needs to be processed and stored in

datacenters. At the time of writing, Microsoft claims about 100 million while Google claims

more than 1 billion daily active users in the search domain [123]. In the social media domain,

Facebook is the leader with about 3 billion monthly active users, while Youtube closely follows

with about 2.5 billion monthly active users [104]. Similarly, in the online shopping domain,

Amazon claims to have over 300 million active user accounts [31].

Such planet-scale online services also have the requirement of answering the requests received

from their users under a given threshold of time. Such tight latency constraints are important

for providing a high-quality experience to the users, in absence of which the users might turn

to a competitor service, thus resulting in customer loss. For example, for every 100ms increase
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in latency, Amazon has claimed to have lost 1% in sales. Similarly, Google has claimed that a

500ms latency increase in the search results leads to a 20% traffic loss [81]. Therefore, to meet

these latency requirements, the datacenter operators typically host a significant fraction of the

overall data in memory devices such as DRAM to benefit from its low latency. The same can

be illustrated by modern cloud platforms which provide TBs of DRAM per server [59, 112]. As

DRAM is expensive [47], it is important to use the available DRAM capacity efficiently. Virtual

Memory has been used in computing systems for decades to provide ease of development to

the programmers while allowing the OS to efficiently manage the underlying memory capacity.

1.1 Virtual Memory in Datacenters

Virtual Memory (VM) is a classic programming abstraction that provides an abstract rep-

resentation of memory for easier programming without exposing the underlying physical

constraints of memory capacity and technology, and simplifies the programming model by

obviating the need for programmer-orchestrated data movement among memory devices and

persistent storage [19], offers “a pointer is a pointer everywhere" semantics across multiple

CPU cores [95] and accelerators (e.g., GPUs [94], FPGAs [71], NICs [86], and ASICs [69, 96]).

VM also forms the foundation of access control and memory protection mechanisms ubiq-

uitous to modern computer systems security and are the building blocks of other advanced

mechanisms like trusted execution environments.

With the rise of datacenter computing, the services provided by large-scale datacenters are

becoming increasingly popular and are serving up to billions of users across the planet. With

the increasing number of users, the memory requirements of such datacenter services are

increasing as well. Therefore, systems designers are building cache and memory hierarchies

with increasing capacity to capture the ever-increasing working sets of datacenter workloads

and improve the performance of datacenter services [15, 63, 64, 95], as evidenced by recent

work on die-stacking, chiplets, DRAM caches [60, 61, 125], and non-volatile byte-addressable

memories [28, 50]. However, these high-capacity cache and memory hierarchies also shift

the performance bottleneck to virtual-to-physical address translation, which can pose an
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overhead of about 10-30% on the overall system performance [15, 64, 95, 96]. Therefore, VM

today is plagued with crippling performance and complexity challenges that undermine its

programmability benefits.

Hosting the data from online services in memory comes with five key challenges for VM in the

post-Moore era.

1. Increasing memory capacity: as the online services become popular and the number

of users increases, the online services require increasing memory capacity in the data-

center servers hosting the service. Increasing the overall memory capacity in a server

increases both the material and energy cost associated with the server, and also puts

additional performance pressure on the hardware and software subsystems (especially

VM) as they need to manage a larger memory capacity. Finally, with the end of Moore’s

law, increasing the memory capacity using DRAM directly is prohibitive and requires

innovative solutions.

2. Heterogeneous memory hierarchies: with the increasing difficulty in increasing the mem-

ory capacity using DRAM, datacenter operators have started exploring Heterogeneous

memory technologies to supplement the memory capacity. For example, the introduc-

tion of commercial Storage Class Memory [45, 56] has made it possible to increase the

memory capacity for a fraction of the overall memory cost. Similarly, the introduction

of memory pooling technologies such as RDMA and CXL [33, 86, 99] allow using the

memory of neighboring servers as an extension of the local memory. However, such

heterogeneity in the memory hierarchy introduces challenges regarding data movement

and coherence among the memory devices and servers, as now multiple servers are

required to have a coherent view of shared memory using a collection of memory de-

vices. In particular, VM requires introducing new synchronization primitives that can

ensure coherence among the various copies of VM-associated metadata, which might

be present in multiple places in the same server, or even across servers.

3. Virtualization in the cloud: with the increasing demand for resources by third-party
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online service providers, datacenter operators have resorted to hosting multiple user-

s/services per server (multi-tenancy) in order to increase the overall utilization of the

datacenter servers and reduce the total cost per user. However, co-locating multiple

users on the same physical machine results in both performance problems and secu-

rity concerns among the users. Therefore, datacenter operators have tried to build

primitives to provide the illusion of isolation to users. VM is the basis of modern virtual-

ization techniques as it provides isolation among various processes running in the same

physical server, and has been extended to provide isolation among virtual machines

co-located on the same physical server as well. However, such VM-based techniques

have their own performance overheads [15, 39, 64] which scale poorly with the overall

users and resources (such as memory capacity) in the system.

4. Emerging workloads: with the growth in the number of users of online services, and the

increasing cost of datacenter servers, online service providers along with datacenter

operators have started exploring new ways of deploying online services in order to

decrease the cost of hosting the online services and increase the ease of deployment.

This search has led to paradigms such as microservices [137] and serverless comput-

ing [124]. However, these paradigms have their own performance challenges as they

allow co-locating multiple microservices together, or running short-lived serverless jobs

which leads to contention because of tracking increased address translation entries in

the current VM implementations, compared to traditional long-running monolithic

workloads.

5. Confidential computing: the increase in the number of users of online services and the

services/users co-located on a physical datacenter server has accelerated the develop-

ment of confidential computing platforms such as SGX [57] which have already become

key in hosting various sensitive services in the domains of healthcare, finance, streaming

services, etc. All modern confidential computing techniques are built on top of VM, as

VM provides the basic memory isolation primitives among processes running in the

same system. However, as the data processed by such platforms increases, it places
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a significant performance burden due to increased memory capacity when providing

such confidential services using VM.

As the above challenges explicitly rely on VM for functionality, we need to ensure that VM

performance can scale with the increasing demands in modern datacenters. In this thesis, we

focus on the increased memory capacity requirement which is the underlying issue in all the

above challenges. To improve VM performance, computer and system architects continuously

design complex address translation hardware and Operating System (OS) support that requires

significant silicon resources and sophisticated implementation. Such complex support poses

verification burdens despite which design bugs are still common [78]. Individual CPU cores

(and recent accelerators) integrate large two-level TLB hierarchies with thousands of entries,

separate TLBs at the first level for multiple page sizes, and skew/hash-rehash TLBs at the

second level to cache multiple page sizes concurrently [30, 88, 108]. Such large TLB hierarchies

and multiple page sizes necessitate a staggering amount of OS logic to defragment memory

and create huge pages [92, 93, 134, 135] and heuristics to determine when to create, break,

and migrate them [73, 85, 117, 118]. As huge pages can lead to performance pathologies and

hence are not a panacea, processor vendors also integrate specialized MMU cache per core

to accelerate the page-table walk [13, 18]. Specialized per-core TLBs and MMU caches, in

turn, necessitate sophisticated coherence protocols in the OS (i.e., shootdowns) that are slow

and buggy, especially with the adoption of asynchronous approaches to hide shootdown

overheads at a higher core and socket counts in modern servers [10, 72, 79].

1.2 Thesis Goals

The primary goal of this thesis is to remove the performance bottleneck caused by address

translation in case of large memory capacity in datacenter servers. We aim to improve the

performance VM subsystem while ensuring POSIX compatibility, thus making sure that the

developers do not need to rewrite their application code. Moreover, as memory capacity

is both limited and expensive, we do not want to rely exclusively on techniques such as

huge pages which might lead to internal memory fragmentation compared to a fine-grained
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management of memory using fixed-size pages. If we can improve the performance of address

translation for large memory capacities, then it will in turn benefit the overall VM performance

for all the five key challenges explained before.

We intend to introduce a holistic redesign of the VM subsystem while prioritizing software

compatibility and efficient memory capacity utilization. We start by focusing on the man-

agement of both the virtual and physical address spaces as is done in the traditional systems.

We observe that the virtual address space inherently contains data in the form of flexible and

logical data sections called Virtual Memory Areas (VMAs), which are a modern incarnation

of age-old segments [132]. In contrast, the physical address space is managed in terms of

fixed-size pages which allow utilizing the overall memory capacity efficiently. The mapping of

each VMA into multiple fixed-size pages results in the creation of a large amount of address

translation metadata which has to be consulted every time the virtual-to-physical address

translation is required, thus creating a performance bottleneck. To avoid this bottleneck, we

propose dividing the traditional virtual-to-physical address translation logic into a fast and

slow component. The fast component represents only the memory management done in the

logical address spaces (such as virtual address space) and can be used to perform common

case permission checks and cache hierarchy accesses, while the slow component represents

the capacity management performed in the physical address space representing the backing

memory devices. Such a division in the address translation can be caused by introducing an

intermediate address space in the system.

Thesis Statement:

A VMA-based intermediate address space can be used for common case access control and cache

hierarchy accesses while requiring the page-based physical address space for only capacity

management.
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1.3 Thesis Contributions

In this thesis, we aim to circumvent the performance problems of the existing VM implemen-

tations by using the following key insights:

1. Redesign microarchitecture for address translation using existing programming abstrac-

tions such as VMAs that already exist in the traditional OS and application toolchains

in order to maintain POSIX compliance, thus ensuring no effort for the application

developers and quick adoption from the OS developers.

2. Decouple address translation into two steps where the first step is invoked for all mem-

ory accesses, and therefore mandates (lean) specialized microarchitecture for high

performance, while the second step is invoked infrequently and can rely on the existing

cache hierarchy resources instead of requiring specialized structures.

3. Instead of completely delegating complicated functionalities to the microarchitecture

(in particular exception handling), we can offload some of the functionality to the OS

using an OS + microarchitecture co-design. We can also provide formal specifications to

the OS developers to help ensure correctness in order to prevent hard-to-find bugs such

as the ones that have plagued TLB shootdown mechanisms [9] for years.

We propose the Midgard — the original name for the middle realm between Asgard and

Helheim in Norse mythology — as an intermediate address space between the virtual and

physical address spaces, which relies on fusing the existing OS abstraction of VMAs into

hardware for the first time. As applications view memory as a collection of a few flexibly-sized

VMAs with specific permissions, it is possible to create a unique Midgard address space where

VMAs of various processes can be mapped after deduplication. The unique Midgard address

space serves as a namespace for all data in the coherence domain and cache hierarchies,

and thus all cache hierarchy accesses must require a translation from the program’s virtual

address to the unique Midgard address. Translation from Midgard to physical addresses is

only required when the required cache block is not found in the cache hierarchy and has to be

7



Chapter 1. Introduction

fetched from physical memory.

The Midgard idea is inspired in part by prior work on virtual cache hierarchies [23, 24, 43],

which reduce address translation pressure by deferring the need for physical addresses until

physical memory access. Unfortunately, they also create implementation complexity by ex-

posing synonyms/homonyms or compromising programmability due to reliance on inflexible

fixed-size segments. While approaches like single address space OSes [70] tackle some of

these problems (i.e., removal of synonyms/homonyms), they require the recompilation of

binaries to map all data shared among processes into a unified virtual address space. Instead,

to achieve our goal, we provide a programmer-transparent but OS-managed intermediate

address space, where the OS ensures the resolution of any synonym or homonym using the

existing abstraction of VMAs. Thus, the intermediate address space can be used to index

the cache hierarchy without the shortcomings of homonyms/synonyms or segments [132],

and also enables a fast translation from virtual addresses to the intermediate addresses using

VMAs and requires a slow translation from intermediate addresses to physical addresses using

pages only when accessing the physical memory.

With the introduction of Midgard as an intermediate address space, the translation from

virtual to Midgard addresses can be accomplished using translation caching structures much

smaller than TLBs because there are far fewer frequently-used VMAs (∼10) than pages in

real-world workloads. In contrast, the translation from Midgard to physical addresses still

remains slow, but is required infrequently and allows utilizing the trends of increasing cache

hierarchy capacity. Larger cache hierarchies traditionally amplify VM overheads, but instead,

they can mitigate VM overheads by absorbing most of the page-based translation activity and

obviate the requirement of specialized translation hardware. While large 1000-entry (∼16KB

SRAM) per-core TLBs fail to meet the performance requirements for address translation in

traditional systems and require impractically larger structures, Midgard allows the page-based

translation to be performed using zero or very few TLB entries, thus reclaiming the 100KB-

to-MB of SRAM dedicated towards TLBs in modern manycore systems [128] which anyways

fails to meet the performance requirements of address translation today. Therefore, instead of
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amplifying the address translation overheads, larger cache hierarchies can now be leveraged

to reduce them. Our trace-based evaluation shows that for large-capacity cache hierarchies,

Midgard’s address translation overhead drops to near zero as the working sets fit in the cache

hierarchy, while traditional TLBs suffer even higher degrees of address translation overhead.

Overall, the introduction of the Midgard address space can provide the benefits of virtual

cache hierarchies without homonym/synonym problems.

The introduction of the Midgard address space delays the page-based address translation

near memory, which can give rise to complicated exception handling scenarios in infrequent

cases. In particular, the traditional microarchitecture design relies on detecting any VM-

related exceptions in the pipeline itself in a precise manner as the address translation and

permission check is tightly integrated with the pipeline. The same assumption allows the

microarchitecture implementation to retire stores before completion which leads to a sig-

nificant performance boost in the pipeline and forms the basis for modern relaxed memory

consistency models. However, when address translation is performed away from the cores,

then the above assumption breaks and the same optimizations cannot be naively applied.

While there are well-understood post-retirement speculation techniques that can handle such

exceptions without losing performance, they also impose an overhead of 10-20KB SRAM per

core to maintain the state for optimistically retired stores. Unfortunately, such silicon require-

ments will undermine the benefits received from removing the traditional TLBs. Therefore,

to maintain the original system performance using early store retirement without spending

significant silicon resources, we propose handling the exceptions imprecisely while offloading

part of the microarchitectural functionality to the OS which can be carried out easily in the

infrequent cases when exceptions are generated by the page-based translation. As such a

OS + microarchitecture co-design will interact with complicated microarchitectural concepts

such as memory consistency models, ensuring correctness is of primary importance here to

prevent hard-to-find bugs such as the ones that have plagued TLB shootdown mechanisms [9]

for years. Therefore, to help the OS developers ensure correct behavior, we develop a complete

formalism and proofs to show that the design for imprecise exceptions is compatible with

popular memory consistency models such as Processor Consistency (PC) and Weak Consis-
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tency (WC). We then describe the detailed hardware-software co-design required to bring the

imprecise exception idea to fruition. However, the formalism allows other system designers to

come up with their own design while ensuring correctness.

Overall, this thesis explains the various modifications required to support Midgard in the

OS, requirements for the virtual-to-Midgard address (logic-side) translation, and require-

ments for the Midgard-to-physical address (memory-side) translation, along with the OS

+ microarchitecture co-design for imprecise exception handling. The OS requires tracking

the VMAs for each process, mapping all the unique VMAs as MMAs in the Midgard address

space, maintaining architectural VMA tables that track VMA-to-MMA mappings along with

the application permissions, and maintaining system-wide page tables that track the page-

granularity mappings from the Midgard to physical address space along with the OS-specified

permissions. The logic-side translation requires hardware caching support to store the map-

pings for recently-used VMAs, fast access time for both the address translation mappings

and the cache hierarchy, and supporting precise exceptions in case of faults in the logic-side

and memory-side translations. The memory-side translation instead relies on the cache fil-

tering for infrequent invocations and requires techniques for performing the memory-side

page-table walk with or without specialized address translation caches, along with coherence

among the memory-side page-table entries.

We evaluate Midgard by quantifying its performance characteristics over cache hierarchies

ranging in size from tens of MBs to tens of GBs and show that even modest MB-scale SRAM

cache hierarchies filter the majority of memory accesses, leaving only a small fraction of

memory references for translation from Midgard to physical addresses. We characterize VMA

counts as a function of dataset size and thread count and confirm that low VMA counts mean

a seamless translation from virtual to Midgard addresses. Using average memory access time

(AMAT) analysis, we show that LLC capacities in the tens of MBs comfortably outperform

traditional address translation and that at hundreds of MBs, they even outperform huge

pages. In our evaluation, Midgard reaches within 5% of address translation overhead of

traditional 4KB-page TLB hierarchies for a 16MB LLC and breaks even with 2MB-page TLB
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hierarchies for a 256MB LLC. Unlike TLB hierarchies exhibiting higher overhead with larger

cache hierarchies, Midgard’s overhead drops to near zero as secondary and tertiary data

working sets fit in the cache hierarchies. Finally, we show that even for pessimistic scenarios

with small LLCs, Midgard can be augmented with modest hardware assistance to achieve

competitive performance with traditional address translation. To showcase the imprecise

exception handling idea, we further develop a full-system RISC-V prototype of an out-of-

order core that supports generic imprecise exceptions and runs Linux. We run litmus tests

for memory consistency models to show that our implementation is compatible with the

RISC-V memory consistency model. Then we provide an end-to-end evaluation of various

benchmarks to show that the imprecise exceptions can work successfully, and are able to

maintain similar overall performance as in the traditional system.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 explains the importance of the VM abstraction,

the traditional implementation of the VM subsystem, scaling problems with large memory

capacities, and various classes of previous proposals that have aimed to improve VM perfor-

mance. Chapter 3 to chapter 7 present the contributions of this thesis.

• Chapter 3 provides a brief overview of Midgard along with the high-level design and the

interface required to support Midgard.

• Chapter 4 explains the exception handling logic required in Midgard.

• Chapter 5 explains the VMA-granularity logic-side address translation in Midgard that

provides application-level access control and access to the cache hierarchy.

• Chapter 6 explains the page-granularity memory-side address translation in Midgard

that provides capacity management in the physical address space and provides access

to the memory device.

• Chapter 7 describes our evaluation that quantifies the benefits of Midgard compared to
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traditional systems.

Finally, chapter 8 describes future research directions with Midgard and concludes the thesis.
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2 Virtual Memory

As computing has evolved over the last six decades, Virtual Memory (VM) [19] has played an

essential role as a programming abstraction for computing systems. VM allows programmers

to write programs without being concerned about the underlying memory subsystem, forms

the basis of modern security and virtualization technologies, and is responsible for the ef-

ficient utilization of memory capacity present in a system. VM has been so successful as a

programming abstraction that today it is ubiquitous in computing systems of all scales such as

datacenter servers, desktops, mobile devices, and even various forms of embedded computing.

With the rise of datacenter computing [14] and continued scaling of memory capacity [59,112]

coupled with the end of Moore’s law [32,122], the existing implementation of VM is expected to

result in a high performance overhead [15,39,64] which will dwarf the programming benefits it

provides, therefore requiring a careful redesign to reduce the implementation overhead. This

chapter explains the benefits of VM, its current design and implementation, the overheads

associated with scaling VM implementations along with the growing memory capacity, and

various classes of proposals that have tried to mitigate the overheads associated with VM.

2.1 A Fundamental Programming Abstraction

VM is the de-facto programming abstraction in almost all computing systems today because of

the benefits it provides. We now explain the various features of VM that make it so successful
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as a programming abstraction.

2.1.1 Programmability and Portability

VM allows the programmers to write programs while ignoring the specifics of the underlying

memory subsystem. VM provides the abstraction of a virtual address space to the programmers

which is logical and not tied to the physical memory capacity of the system. The virtual

address space is designed to have a large capacity (e.g., modern CPUs support 57-bit address

spaces [55] that can store up to 257 bytes of data) which is considerably more than the typical

memory usage of programs today. Therefore, the programmer (in co-operation with the linker

and compiler) is able to use the whole virtual address space freely without accounting for

the capacity restrictions of the underlying physical address space dictated by the amount of

physical memory in the system. The availability of more than explicitly-required memory

capacity allows the programmer to easily construct a variety of logical data sections (e.g.,

heap, stack, code, files, libraries) which can be placed in different parts of the virtual address

space. Such a placement also allows special programming properties such as the stack starts

at a high address and grows down while the heap starts at a lower address and grows up,

while being practically ensured to never collide with each other. Finally, as the programs are

written using the virtual addresses, they can be easily ported to other machines without any

memory-addressing-related modifications because every machine can provide the abstraction

of a virtual address space irrespective of the varying physical capacity of memory.

2.1.2 Isolation and Protection

VM forms the basis of modern security mechanisms in computing systems as it provides

memory security inside and among various processes running on the same system. In modern

systems, each process has a private virtual address space and can only generate addresses

belonging to its own virtual address space. Therefore, while multiple processes might be

concurrently running in a system, no process can generate virtual addresses to access data

belonging to another process in the system unless the data is explicitly shared using files or
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shared memory regions, providing every process an isolated environment as if it is the only

process running in the system. However, the bugs present in the code running in a process

can still cause it to malfunction and destroy critical data. Morever, while memory isolation

directly provides security and ease of programming, there are various other interfaces that

allow the processes to interact with other processes in the system, or even those running on

other machines. Such interactions can turn malicious if the external processes try to abuse

the provided interface to exploit bugs and security vulnerabilities present inside a particular

process. To counter such security issues, VM further provides protection mechanisms that can

limit the type of memory operations that can be performed on a particular virtual address. VM

does so by enforcing permission checks with each virtual address, where the permissions can

be provided by the programmer in cooperation with the toolchain. For example, to protect

against attacks that attempt to inject malicious code in the process, the code section of the

process is given only executable and read permissions, thus ensuring that the code can never

be re-written while the process is running. Similarly, the data-containing sections such as heap

and stack are typically not given the executable permissions so that malicious code disguised

as data cannot be executed from such sections. Overall, VM provides security mechanisms

both inside and among virtual address spaces.

The isolation and protection mechanisms provided by VM also form the basis of virtualiza-

tion [22], which is a foundational technology required for cloud computing today. Using

further extensions in OS and hardware, VM provides the foundation of memory virtualization

where the guest virtual machine is given the abstraction of a physical memory device, while

the underlying physical memory is managed only by the host OS. The guest OS runs its own

VM implementation inside the guest virtual machine, maintains its own guest virtual address

spaces and maps them to a guest physical address space which is provided by the host OS.

The host OS treats the guest physical address space similar to its other virtual address spaces

and maps data from it to the actual physical address space. Therefore, while the guest OS sees

an abstract physical address space, only the host OS can control and manipulate the actual

physical address space that represents the physical memory present in the machine. In this

way, VM ensures complete memory isolation even when running multiple virtual machines
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on the same physical machine while sharing the underlying physical memory.

2.1.3 Memory Management and Over-Subscription

With the rise of TB-scale memory hierarchies in datacenter servers [59,112], memory accounts

for a significant portion of overall costs [7], making it even more important to utilize the

memory capacity well and without wastage. VM allows the OS to manage the memory capacity

efficiently without programmer intervention while running a variety of concurrent processes.

Modern VM implementations manage the underlying memory by dividing the overall memory

capacity into small units called pages that can be mapped to virtual addresses when the

process requests additional memory. Using a page-based VM implementation ensures that

even if there is a single unused page present in memory, it can be used independently of

which process or virtual address it has to be mapped to. VM also allows for the over/under-

subscription of memory, which means that processes can both under utilize the memory

capacity, or allocate more memory than the total capacity of memory present in the system. In

the case of memory over-subscription, the extra data that cannot be contained in memory is

transparently spilled to storage devices such as disks, or can be compressed such that it takes

less space [74]. For example, modern OSes use storage devices as swap devices where they

store cold data that has not been accessed from memory in a while. Similarly, the OS allows

processes to memory map a file which might be present in a storage device, and then the data

from the file is transparently brought to memory only on demand when the process wants

to access it. Therefore, the VM abstraction can transparently extend the memory capacity

using storage devices, though at the cost of overall performance as storage devices accesses

are slower than memory accesses.

2.1.4 Performance Optimizations

VM also allows the OS to perform various performance optimizations transparently to the

application. In particular, the OS can detect the data that is frequently used by the applications

and transparently move it to memory, while moving the cold data to storage devices. Doing
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Process 0’s Virtual Address Space

System-wide Physical Address Space
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Figure 2.1: VMAs in the virtual address space consist of fixed-size pages, which may or may
not be mapped to frames in the physical address space by the OS.

so ensures that common case data accesses are served from memory, which provides high

application performance. With the projections of the end of memory scaling [47] and the

expected proliferation of heterogeneous memory devices [33, 47, 54, 113] in future datacenter

servers, such techniques will be heavily used to move data between faster memory devices such

as DRAM, and slower memory devices such as Persistent Memory [45, 134] or Flash [47]. The

OS can also predict the memory access patterns, and prefetch the required data to memory,

thus benefitting performance. Overall, VM allows the application to ignore the layout of

the underlying memory subsystem, while moving data among memory and storage devices

transparently to benefit the application performance.

2.2 Virtual Memory Implementation Today

As explained in section 2.1, existing OSes (Linux, MacOS, Windows) implement VM by pro-

viding a private virtual address space to each process, where the size of the address space

is independent of the actual physical memory capacity present in the system. The memory

capacity of the system is exposed only to the OS as a capacity-constrained physical address

space, and is not directly exposed to the applications, giving them the abstraction of near-

infinite memory capacity. Thus, the VM abstraction is appropriate for programmability as the

typical programmers do not directly need to cater to the resource constraints in the system.
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2.2.1 Virtual Address Space

The OS provides a private virtual address space to each process in the system. The maximum

size of the virtual address space is dictated by the underlying CPU architecture. For example,

modern x64_64 Intel CPUs provide a virtual address space of 57 bits [55] that can contain a

maximum of 257 bytes. The underlying CPU architecture in co-ordination with the OS ensures

that any generated virtual memory addresses are constrained to the address space of the

corresponding process. Therefore, each process can only see one large, private virtual address

space, creating the abstraction that it is the sole process in the entire system, thus providing

isolation. As each process can only access addresses in its own virtual address space and

therefore cannot access the virtual address space of any other process, VM provides security

through isolation among processes. VM also allows the processes to specify access permissions

for data, which are then checked during execution, thus preventing illegal memory accesses

due to bugs or malware.

The OS in co-ordination with the toolchain (e.g., compiler, linker) organizes the data in the

virtual address space in terms of Virtual Memory Areas (VMAs), as shown in Figure 2.1. Every

VMA represents a logical data section that represents semantic data useful to the program.

Here is a list of commonly used VMAs in programs today:

• Code: contains executable instructions

• Text: contains constant data used in the program

• Data: contains initialized data variables

• BSS: contains uninitialized data variables

• Stack: contains data allocated in the scope of an executing function

• Heap: contains data allocated dynamically during program execution

• Files: memory-mapped files that might be in use by the program

• Libraries: each library in use can correspond to multiple VMAs
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Based on the source of the data in the VMAs, they can be classified into two categories: file

and anonymous VMAs. VMAs such as code, text, and files load their data from some file stored

in the system, and therefore are categorized as file VMAs. In contrast, VMAs such as data,

bss, heap, and stack contain data that is generated dynamically and is only relevant to the

execution of the program without any association to a backing file, are called anonymous

VMAs. Every VMA is represented using a base and bound virtual address which indicates its

size and position in the virtual address space. Every VMA also incorporates permission bits (r -

read / w - write / x - execute) specified by the program for its semantic correctness that are

exposed by the OS to the CPU, and are checked for every memory access to the corresponding

VMA. While some VMAs maintain their size and position throughout their lifetime (e.g., code,

text, data, bss), other VMAs can grow during the program execution (e.g., heap, stack, files).

In particular, as most of the data generated by the program is placed in the stack and heap,

they need to be positioned in the virtual address space such that they do not collide while

growing. To achieve the same, the heap is placed at lower virtual addresses and grows towards

high virtual addresses, while the stack starts at high virtual addresses and grows towards lower

virtual addresses. While modern virtual address spaces are large enough to avoid collisions in

most scenarios, collisions can still occur in cases when there are multiple threads associated

with the same process and every thread has its own stack. In such a case, there can be a

collision between the heap and a stack, or two stacks themselves [115]. Modern OS and

compilers try to detect such problems by checking addresses during malloc(), sbrk(), and

mmap() system calls, or by placing guard pages between VMAs to identify overflows. Overall,

placement of VMAs in a logical address space is not a trivial problem, but can be solved using

known heuristics and rigorous checks.

2.2.2 Physical Address Space

In contrast to per-process private virtual address space, there is only one physical address

space in a system as it represents the underlying physical memory devices. The physical

address space is only visible to, and completely controlled by the OS (or both the host and
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guest OS in case of virtualization). The capacity of the physical address space reflects the

aggregate memory capacity present in the system, and therefore is much smaller than the

capacity of the virtual address spaces. For example, a system with 1TB of overall memory

capacity will have a physical address space of 40 bits, which can thus contain a total of 240 bytes

worth of data. As the physical address space is constrained in capacity, it is very important

to efficiently utilize the entire space. However, there are two types of inefficiencies that arise

when managing the physical address space: external and internal fragmentation.

Earlier incarnations of VM implementations featured segments [19, 132] which were data

sections defined by the programmer and toolchain for organizing the virtual address space,

and were conceptually similar to VMAs. In such incarnations, the segments were directly

mapped to the physical address space, therefore requiring that there is enough contiguous

free space present to map the whole segment. However, as the segments can grow and shrink

during the program execution, such an implementation gives rise to external fragmentation.

External fragmentation indicates the wastage of physical memory space when there is a

small space left in between two mapped segments, but that space is not enough to map an

individual segment on its own, and is thus rendered unusable. To avoid the problem of external

fragmentation, VM implementations have now moved towards page-based techniques.

Modern VM implementations use a page-based approach when managing the physical ad-

dress space. In such an approach, the physical address space is divided into fixed-size units

called pages or physical frames, and then every physical page can be mapped to a virtual page

whenever the corresponding application asks for more memory. Page-based VM guarantees

that even if there is a single page free somewhere in the entire physical address space, it can

be mapped to a virtual page when needed and therefore prevents external fragmentation by

design. However, if the page size is chosen to be large, then there might be internal fragmenta-

tion as the program might not be able to use the whole page efficiently. But decreasing the

page size too much to minimize internal fragmentation will result in too many pages which

will lead to a management and bookkeeping issue. In modern platforms, the page size has

been typically adopted to be 4KB [128, 130], while there also exist commercial products which
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use a larger page size such as Apple M1 [1] using 16KB pages. Apart from these standard page

sizes, modern commercial products also support using larger page sizes such as 2MB and 1GB,

both in the OS and in hardware [128, 130].

2.2.3 Address Translation

VM implementations require the program to access data in memory using virtual addresses,

but the CPU must be able to access the corresponding data in memory using physical ad-

dresses. To do so, modern systems incorporate the process of address translation for every

memory access where virtual addresses are translated into corresponding physical addresses,

and the associated permission bits are checked. However, it is the responsibility of the OS to

maintain mappings between virtual and physical addresses which can then be exposed to the

CPU for address translation. To do so, VM allows the OS to perform memory management

without requiring application support.

As mentioned before, the virtual address space contains data in terms of flexible VMAs, where

each VMA represents a logical data section and has the same properties throughout. In

contrast, to efficiently utilize the limited memory capacity in the system, the OS divides the

physical address space into fixed-sized pages to avoid external fragmentation while encoun-

tering very little internal fragmentation. To map the VMAs to physical pages, the VMAs are

further divided into the same fixed-sized pages, while ensuring that the VMA size is always

a multiple of the page size for ease of implementation. Then the OS maps the virtual pages

to physical frames as required (as shown in Figure 2.1). The OS tracks the virtual-to-physical

mapping information for each process separately by using process-private page tables in

existing systems. The page table is constructed as a radix tree where each tree node is itself a

page, and contains entries representing sub-trees in case of intermediate nodes or pages in

case of leaf nodes. The main benefit of the radix tree structure is that it allows saving space

by not representing unallocated virtual addresses in the virtual address space of a process.

Finally, VM also facilitates communication among various devices using memory as different

parts of the virtual address space for each process can be mapped to different memory devices.
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Figure 2.2: Existing systems use physical addresses to index the cache and memory hierarchy.

For example, GPUs today use a unified virtual address space where each virtual address can

either be mapped to the GPU-private memory or the host-CPU memory, and pages can be

moved between these memory devices for faster performance.

Apart from the translation from virtual to physical addresses, the OS also needs to track

the permissions to be enforced for each memory access. In a shared memory system, each

process can have different permissions attached to the same data, therefore the OS tracks

the permissions in the per-process radix page tables as well. In determining the memory

permissions per page, the OS accounts for the permissions associated with the VMA the

physical page is mapped to. However, the OS also requires considering additional memory

permissions that are generated because of the memory management. For example, if the

OS swaps out a page, then the associated permissions become invalid irrespective of the

permissions associated with the VMA. Similarly, if the OS is performing the copy-on-write

optimization with a particular page, then the associated permissions are kept as ro or read-

only, even though the VMA permissions might permit writes using rw or read-write. Therefore,

the final permissions enforced by the OS are the intersection of the VMA permissions and the

memory management permissions. These permissions are represented in the leaf page table

entries along with the physical addresses.

In systems today, while the core only works with virtual addresses (e.g., pointers for loads

and stores), the obtained virtual address needs to be translated to the corresponding physical

address before the cache hierarchy or memory can be accessed (as shown in Figure 2.2).
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Figure 2.3: While 10s of TLB entries were enough to cover KBs and MBs of cache and memory
in the 80s, TLBs today contain 1000s of entries but cannot provide enough coverage for the
GBs and TBs of cache and memory available today.

Therefore, all the components in the cache/memory hierarchy work directly with the physical

addresses, for example, the tags present in the cache hierarchy contain physical addresses. As

the virtual-to-physical address mappings are stored in the radix page tables by the OS, each

translation might require performing page-table walks, thus typically generating up to four or

five [55] memory accesses for each data access. In order to accelerate this translation step, the

CPU employs Translation Lookaside Buffers (TLBs), which are hardware-managed caching

structures to store a subset of virtual-to-physical mappings for fast access. If the TLBs contain

the required translation, the page tables do not need to be consulted; otherwise, a page-table

walk is required to fetch the required entry and obtain the corresponding physical address.

Thus, well-functioning TLBs can eliminate the excessive memory accesses to the page tables

and provide fast translation for most memory accesses.

2.3 Scaling Problems

With the growth in modern data-oriented services, the applications are becoming increasingly

memory-intensive. As online services hosted in the datacenter become popular, they have to

scale to serve billions of users across the planet. As the growing users of such online services

generate data rapidly, the memory capacity of servers operating on these datasets is growing as

well, already reaching 10s of TBs [59, 112]. The cache hierarchy capacity in datacenter servers
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is also increasing proportionally along with the overall memory capacity. As shown in Table 2.1,

Intel Knights Landing [113] features a 16GB off-chip DRAM cache, AMD Zen3 [128] features

256MB of SRAM cache capacity shared among 64 cores, Intel Kabylake [130] features 128MB of

eDRAM cache on the memory side, and AMD Ryzen 7-3D [8] uses 3D integration of SRAM to

provide a 96MB L3 vertically-integrated with the cores. Moreover, the upcoming Intel Sapphire

Rapids [54] promises to provide 64GB of stacked HBM2 memory using 4×16GB HBM2 stacks,

where the HBM2 can be configured as a hardware-managed cache (similar to Intel Knights

Landing) in conjunction with a backing DDR5 memory pool. However, the cache and memory

capacity growth will be futile if the VM implementation cannot scale accordingly to allow fast

access to cache and memory.

As the memory capacity increases, the overall number of pages present in the system increases,

thus requiring more TLB entries to capture the hot translations. Reflecting the increase in

the memory and cache hierarchy capacity, the TLBs present in the existing cores have also

become bigger (as shown in Figure 2.3). While Intel Pentium 4 [2] featured a 64-entry TLB to

cover its 256KB LLC, existing CPUs such as Intel Kabylake [130] and AMD Zen3 [128] provide

1.5K and 2K TLB entries respectively to cover their 128-256MB cache capacity. The Apple

M1 Firestorm [1] provides 3K TLB entries per core. However, when using the standard 4KB

pages, even 3K entries can provide total coverage of only 12MB. Unfortunately, while the cache

hierarchy and memory capacity reach GBs and TBs, the TLBs cannot continue scaling because

of the limited SRAM resources due to the end of Moore’s law [32]. The mismatch between the

memory capacity and resources dedicated to VM results in a significant fraction of time spent

on VM activities (e.g., frequent TLB misses lead to page-table walks, thus wasting CPU cycles),

thus resulting in high a 20-40% overhead [15].

With the increase in the overall memory capacity and the number of pages, the process-private

virtual address spaces also need to grow to accommodate more physical pages. E.g., Intel

has recently announced that they are increasing the virtual address space size from 48 bits to

57 bits [55] to accommodate the emerging TB-scale memory capacity servers. Larger virtual

address spaces require larger page tables with more levels in the radix tree. E.g., going from 48
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Product Year Cores Cache capacity TLB size Coverage

Intel P4 [2] 2000 1 256KB SRAM 64 256KB

Intel KabyLake [130] 2016 4 128MB eDRAM 1536 6MB

Intel Knights Landing [113] 2016 72 (36x2) 16GB HBM 256 1MB

Apple M1 [1] 2020 8 (4+4) 16MB SRAM 3096 48MB*

AMD Zen3 [128] 2021 64 (8x8) 256MB SRAM 2048 8MB

AMD Ryzen 7-3D [8] 2022 8 96MB 3D-SRAM 2048 8MB

Intel Sapphire Rapids [54] 2023 56 (14x4) 64GB HBM2 2048 8MB

Table 2.1: Comparison of cache hierarchy and TLB capacity in various generation of com-
mercial CPU products. *Apple M1 uses 16KB pages that increases its coverage, while all other
products use 4KB pages.

to 57 bits requires five levels instead of four levels, thus resulting in longer page-table walk

latencies and increased miss penalty for under-provisioned TLB hierarchies.

Finally, with the end of Moore’s law, the increase in the memory hierarchy capacity is sustained

by introducing heterogenous memory devices (DRAM, Persistent Memory, High-Bandwidth

Memory, Flash). E.g., the introduction of Intel 3D-Xpoint [45] allows storing data at a lower

price per byte but also results in longer access latency. Therefore, to efficiently use the het-

erogenous memory devices, the applications typically store their overall dataset in slower-

but-cheaper devices and migrate the data to faster devices (such as DRAM) when required for

higher performance. The same principle applies when migrating data to the high-bandwidth

GPU memory for fast access. However, frequent page migrations among memory devices

correspondingly lead to page-table modifications, leading to global broadcast-based TLB

shootdowns. Recent studies have shown that frequent TLB shootdowns can become a critical

performance bottleneck [72].

Unfortunately, scaling physical memory to TBs results in linear growth of the translation

metadata. With 4KB as page size, 1TB of physical memory consists of 256M pages and requires

individual mapping for each page. Even with a high locality in the memory access patterns,

where 3% of the data captures most of the memory accesses, we still require frequent accesses

to 8M mappings. While existing systems already provide thousands of TLB entries per core [1],
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we still fall short by three orders-of-magnitude, with the end of Moore’s law ceasing any further

silicon scaling. Moreover, we cannot provision thousands of TLB entries for every piece of

heterogeneous logic that comes in various sizes (small cores, GPUs, and accelerators). This

mismatch of requirements and availability makes virtual memory one of the most critical

bottlenecks in memory scaling.

2.4 Previous Proposals

With the rise of datacenter computing and continued scaling of memory capacity coupled

with the end of Moore’s law, the existing implementation of VM has become too costly for

the programming benefits it provides, therefore requiring a careful redesign to reduce the

implementation overhead. In this section, we go over the various classes of previous proposals

aimed at optimizing VM to attain a better cost-performance ratio.

2.4.1 Contiguity in the Physical Address Space

As explained in section 2.3, the resources dedicated to VM cannot continue scaling to catch

up with the growing cache and memory capacity. The high overhead of VM implementations

might disrupt the VM tradeoffs, where the VM overheads are much greater than its benefits.

Therefore, to maintain the address translation performance, previous proposals have focused

on increasing the TLB coverage by typically increasing the memory covered per TLB entry.

Increasing the memory coverage per entry requires creating larger blocks that are contiguous

in both the virtual and physical address spaces, namely huge pages or direct segments, as

shown in Figure 2.4.

Huge pages are larger pages with a fixed size and therefore can be understood as a set of

standard pages contiguous in the physical address space where each page has the same

properties. If such a condition holds, then the whole set of pages can be represented by just

one entry, thus utilizing the contiguity in the physical address space (if any). Typically, huge

pages of 2MB and 1GB are naturally supported by the radix page tables [19], while other
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Figure 2.4: Proposals relying on contiguity in the physical address space either require main-
taining (b) huge pages or (c) direct segments / VMAs in the physical address space itself.

proposals and platforms have suggested different page sizes [85, 117, 118]. Recent proposals

also advocate for any-power-of-two size pages [48], which increases flexibility with which huge

pages can be used, at the cost of hardware and software complexity. There are two popular

policies concerning huge pages: when are the huge pages allocated to the application, and

how is the huge page created? While huge-page-aware applications can be helpful where

the application explicitly demands a huge page, existing OSes typically allocate huge pages

transparently (eagerly or lazily) and combine the smaller pages in use by the application to

huge pages. Similarly, while there have been techniques where the total number of huge

pages is predecided and created at boot time, existing OSes create huge pages dynamically by

moving small pages around to create the required contiguous space in the physical address

space. The same huge page can also be disintegrated into smaller pages if required. There also

have been proposals on directly using TLBs to exploit the contiguity present in the physical

address space itself [92, 116], along with techniques to use identity mappings between the

virtual and physical address space to optimize TLB lookups [50].
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Direct segments generalize the huge page idea based on the contiguity in the physical address

space to variably-sized regions. Such segments typically represent a logical region in the

application’s virtual address space, such as VMAs or large allocated regions. Direct segments

can be much bigger depending on the application usage, so successfully creating a segment

provides much more coverage per TLB entry. Direct segments can also be implemented to

evolve (grow or shrink) as the application executes, thus ensuring that the segment mapping

always exploits the maximum contiguity as exposed by the VMA/region in the virtual address

space. Creating a direct segment requires moving standard pages around to create enough

contiguity in the physical address space to accommodate the direct segment. Similar to huge

pages, direct segments can also be maintained statically or dynamically [15, 64, 135], and can

be exposed to the applications as well depending on the OS implementation.

While utilizing the contiguity in the physical address space might help increase the coverage of

each TLB entry, the contiguity constructs such as huge pages and direct segments also cause

memory management issues. Accommodating allocation units of different sizes together in

the physical address space brings us back to a variant of the external fragmentation problem

that we intended to avoid in the first place by using uniform page sizes. Huge pages can cause

external fragmentation as other pages might be occupying the physical space required for

allocating a new huge page even though there is enough physical space available in total. E.g.,

if a small page pollutes a contiguous area in the physical address space, it needs to be moved

elsewhere (causing overheads) to allow the allocation of a huge page. The same problem

applies to direct segments, albeit in a pronounced manner. Therefore, similar to external

fragmentation, it might not always be possible to allocate a huge page because the space

in the physical address space is not cleanly organized and can therefore cause wastage of

space. Finally, huge pages and direct segments also inhibit finer granularity management of

the physical memory, e.g., during migration across memory devices.
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Figure 2.5: Existing systems (a) use physical addresses to index the cache, while virtual cache
hierarchy proposals (b) use virtual addresses to index the cache hierarchy.

2.4.2 Virtual Cache Hierarchies

As seen in subsection 2.4.1, while the majority of the proposals and products today rely on

creating or maintaining contiguity in the physical address space for better address translation

performance, another class of proposals focuses on postponing the requirement of address

translation away from the cores to reduce its overhead. This subsection explains the proposals

on Virtual Cache Hierarchies [23, 24, 43] and Single Address Space Operating Systems [70] as

they attempt to delegate the address translation away from the cores towards memory instead

of requiring it at the cores.

Virtual Cache Hierarchies is a generic term for proposals that require addressing the cache

hierarchy using the virtual address issued by the cores. The translation from virtual to physical

addresses is only required when the cache hierarchy does not contain the required block,

and the block must be fetched from memory (as shown in Figure 2.5b). The main benefit of

such a design is that the slow address translation step is required only for memory accesses

and therefore is not on the critical path of each memory access. For a well-provisioned

cache hierarchy, the memory accesses are rare, thus rarely requiring the translation of virtual

addresses to physical addresses as most memory instructions can access data directly from the

cache hierarchy by simply using the virtual addresses. The long-latency overheads of a page-

table walk required for virtual-to-physical address translation can be better tolerated with
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relaxed latency requirements at the bottom of the memory hierarchy than near the cores where

all the structures are required to be fast and performant. Finally, more silicon resources can

be provided for the virtual-to-physical address translation near memory because of relaxed

power and space constraints compared to the cores.

However, using the virtual address to index the cache hierarchy also comes with problems

regarding synonyms and homonyms. In existing OSes, two different virtual addresses belong-

ing to the same or different virtual address spaces that map to the same physical address

and thus refer to the same data are called synonyms. In contrast, the same virtual addresses

belonging to different virtual address spaces that map to different physical addresses and thus

refer to different data are called homonyms. In Virtual Cache Hierarchies, synonyms create a

coherence problem as they should refer to the same cache block but are present as different

cache blocks with different virtual addresses. Similarly, homonyms also create a coherence

problem as they end up referring to the same cache block while referring to different cache

blocks. The problems in cache coherence because of synonyms and homonyms have been

the main impediment in adopting Virtual Cache Hierarchies. As there is no easy way to get

rid of synonyms and homonyms in the software itself, architecture proposals have focused

on filtering synonyms and homonyms dynamically in the cache hierarchy itself [136], but

such proposals have typically not been adopted because of their implementation complex-

ity. Therefore, while the Virtual Cache Hierarchies have been adopted in some domains with

restricted programming environments, they have not been adopted in mainstream processors.

Single Address Space Operating Systems (SASOS) is an OS-based solution to eliminate synonyms

and homonyms, thus enabling the adoption of Virtual Cache Hierarchies. The main principle

behind SASOS is that instead of providing a separate virtual address space to each process,

the OS only maintains a single virtual address space and accommodates the data from all

the processes in the same address space. Any data shared among processes is thus mapped

to the same virtual address, while private data is mapped to separate virtual addresses. In

this manner, the design eliminates the synonyms and homonyms, thus allowing the virtual

addresses to be directly used to index the cache hierarchy. However, enabling the use of a
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Core side Memory side

Access
Programmability Scalability Implementation

Optimized

Control Page-table Walks

Virtual Cache
✕ ✔ ✔

HW ✕
✕

Hierarchy [23, 24, 43] SW ✔

Single Address
✕ ✔ * ✔

HW ✔
✕

Space OS [70] SW ✕

In-Cache Address
✔ ✕ ✔ ✔ ✔

Translation [132]

Enigma [139] ✔ ✔ ✕ ✔ ✕

Virtual Block
✔ ✕ ✔

HW ✔
✕

Interface [49] SW ✕

Midgard [44] ✔ ✔ ✔ ✔ ✔

Table 2.2: Comparison of core-side and memory-side translation attributes among various
previous proposals and Midgard. (*) indicates that Single Address Space Operating Systems
have restricted programmability because they do not provide a private virtual address space
to each application, therefore, the applications do not have the flexibility to map data at any
required address.

single virtual address space across all the processes requires a significant amount of change

in the applications and the toolchains themselves, which has been a significant hurdle in

the adoption of SASOS. Moreover, SASOS disables the isolation among processes provided

by the VM design by simply not allowing any process to be able to generate a virtual address

belonging to a different process.

2.4.3 Intermediate Address Spaces

As explained in subsection 2.4.2, Virtual Cache Hierarchies can offer many performance bene-

fits for VM implementations but typically face adoption problems because of synonyms and

homonyms. Some previous proposals have introduced mechanisms to counter such problems,

thus allowing to achieve the benefits of Virtual Cache Hierarchies without dealing with the

synonym/homonym problems. These proposals, namely In-Cache Address Translation [132],

Enigma [139], and Virtual Block Interface [49], introduce an intermediate address space to im-

plement a practical version of Virtual Cache Hierarchies and achieve similar benefits without
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the problems. Table 2.2 compares all the discussed proposals in terms of the core-side and

memory-side implementation of various address translation properties.

In-Cache Address Translation assumes a typical segmentation-based system where the virtual

address space of each process consists of four segments, and the baseline system requires

each segment to be further mapped to pages in the physical address space similar to the

existing systems. Their proposal introduces an intermediate address space that is larger than

the private virtual address spaces and can accommodate the segments across all the processes.

The shared segments across processes are mapped to the same segment in the intermediate

address space, resolving any synonyms and homonyms. Finally, each memory access gener-

ated from the cores requires translating the virtual address to the corresponding intermediate

address to access the cache hierarchy, while the intermediate address is translated to the

physical address only if the required cache block is not found in the cache hierarchy. As there

are only limited segments per process, translating the address of a virtual segment to an inter-

mediate segment is significantly easier than the virtual-to-physical address translation. The

intermediate address space also enables optimizations like reading a page-table entry directly

from the cache hierarchy instead of requiring a page-table walk. However, the proposal has

faced adoption problems because of its dependence on segments that are an old programming

abstraction and are not prevalent anymore.

Enigma is another proposal based on intermediate address spaces that relies on dividing

the virtual address space into huge pages (256MB as specified in the proposal) and mapping

these pages to the intermediate address space. The huge pages shared across processes are

mapped to the same huge page in the intermediate address space, resulting in no synonyms

and homonyms. The intermediate addresses are used to index the cache hierarchy, and only

if the cache hierarchy does not contain the required cache block then the intermediate-to-

physical address translation is required for accessing the memory. While huge pages are a

popular abstraction compared to segments, dividing existing 48-64 bit address spaces into

reasonably-sized huge pages will still result in a large number of virtual-to-physical mappings

that do not scale with the memory capacity. Therefore, the core-side translation is still not
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guaranteed to be fast.

Virtual Block Interface is a proposal that provides a new programming abstraction of virtual

blocks instead of using outdated segments in order to create an implicit intermediate ad-

dress space. While using virtual blocks avoids the problem of having too many mappings,

introducing a new programming abstraction requires application developers to significantly

rewrite their application to comply with the new virtual memory implementation. Instead,

we maintain that using an existing programming abstraction to optimize the virtual memory

design will result in an easier adoption as it does not require the application developers to

modify their applications, thus allowing using existing application ecosystems.
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As the cache and memory capacity in servers scales to tens of GBs and TBs, respectively, the

existing VM techniques fail to provide enough coverage and become a critical performance

bottleneck for memory-intensive services as explained in section 2.3. While Virtual Cache

Hierarchies [23, 24, 43] can provide significant performance benefits by delaying the address

translation away from the cores, they suffer from the implementation complexity of synonyms

and homonyms. In this chapter, we introduce Midgard [44] as a novel VM architecture that

introduces an intermediate address space indexed using VMAs and provides the performance

benefits of Virtual Cache Hierarchies without encountering their implementation complexity.

Our evaluation of Midgard shows that it enables the VM overhead to reduce as the cache

hierarchy capacity increases, thus resulting in near-zero VM overhead for GB-scale cache

hierarchy capacity.

3.1 A VMA-Based Intermediate Address Space

As explained in section 2.1, the application address space is organized in terms of Virtual

Memory Areas (VMAs), where every VMA is a logical data section and represents semantic

data useful to the program. Memory permissions required for semantic correctness of the

program are also defined for every VMA, e.g. the code VMA has read-only permissions, while

the heap and stack VMAs have read-write permissions. While data is logically organized in
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Process 0’s Virtual Address Space

System-wide Midgard Address Space

Heap0 Stack1Shared CodeHeap1 Stack0

Process 1’s Virtual Address Space

Heap0 Stack0Shared Code Heap1 Stack1Shared Code
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System-wide Physical Address Space
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Figure 3.1: VMAs in the virtual address space are mapped to Midgard Memory Areas (MMAs) in
the Midgard address space. The protection information is also specified at the VMA granularity.
Finally, the MMAs are divided in pages which might be mapped to physical frames in the
physical address space.

terms of VMAs in the virtual address space, existing systems map the VMAs into pages for

efficient management of the physical memory capacity. As the overall memory capacity in the

system increases, the metadata required for tracking virtual-to-physical address mappings

also increases, and thus cannot be captured by TLBs that are constrained in capacity because

of the end of Moore’s law.

The key insight in Midgard rests on two key observations:

1. Performing address translation at a VMA granularity is the best for performance because

VMAs are the most coarse-grained representation of data. However, representing VMAs

directly in the physical address space is not practical because of the contiguity required

by VMAs, as explained in subsection 2.4.1.

2. Physical addresses are not necessarily required to index the cache hierarchy. Using

another sparse and unique address space will ease the address translation at the cores

and work well with cache coherence protocols, as explained in subsection 2.4.3.

Based on the above observations, we present an insight that if we can introduce a VMA-based

intermediate address space in the system, we can optimize the translation to the intermediate

addresses and delay the translation to the physical addresses. Therefore, we introduce an
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Figure 3.2: Existing systems (a) use physical addresses to index the cache, virtual cache
proposals (b) use virtual addresses to index the cache hierarchy, while Midgard (c) uses the
Midgard addresses to index the cache hierarchy.

intermediate address space (called the Midgard address space) in the system which can be

used to index the cache hierarchy (as shown in Figure 3.2), while the virtual address space

is still used at the cores and the physical address space is used to access the memory device.

The Midgard address space is a logical, unique address space in the system where the data

is organized similarly to the virtual address spaces at a VMA granularity, while each unit is

called a Midgard Memory Area (MMA) and refers to unique data, thus ensuring no synonyms

or homonyms. The main advantage of Midgard is that the frequent virtual-to-Midgard address

translation takes place in terms of VMAs, while the infrequent Midgard-to-physical address

translation takes place in terms of pages (as shown in Figure 3.1). The OS manages the Midgard

address space and maps VMAs from the virtual address spaces to MMAs in the Midgard address

space. The OS also breaks the MMAs into pages and maps them to the physical frames in

the physical address space while allowing the possibility that some pages in the MMAs are

not mapped to physical frames as the data might be unallocated or swapped out to storage

devices (as with demand paging in existing systems). Therefore, the VMA-based translation

that is required in the critical path of every memory access is fast, while the slow page-based

translation is only required in case the cache hierarchy does not contain the required data.
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3.2 Two-Step Address Translation: Logic-side and Memory-side

As shown in Figure 3.2, the virtual-to-Midgard address translation happens at the core side

(called logic-side translation) and is required for each memory instruction before the data can

be accessed from the cache hierarchy. As the virtual-to-Midgard address translation takes

place at a VMA granularity, it is much faster and simpler than page-based address translation

as each application typically only has ∼100 VMAs, while only ∼10 of them are hot and accessed

frequently [80, 135]. The memory access permissions are also represented and checked at a

VMA granularity instead of being replicated for each page. Therefore, only a tiny amount of

silicon resources are required at the core side to represent the hot VMAs, thus reducing the

typical silicon overhead and simplifying the logic-side translation design.

In contrast, the Midgard-to-physical address translation happens at the memory side (called

memory-side translation) and is only required if the cache hierarchy does not contain the

required cache block, which then has to be fetched from memory. As a well-provisioned cache

hierarchy can serve data for the majority of the memory instructions, the Midgard-to-physical

address translation is required infrequently. As the cache hierarchy capacity increases, the

frequency of memory-side translation and memory accesses decreases. Moreover, as the slow

page-based memory-side translation is done away from the cores, it has more latency slack

(10-100 ns) because of infrequent occurrence than typical page-based translations, which

have to work at ns-scale latencies of the cores. As memory-side translation happens away from

cores, it can potentially be provided with more silicon resources with ease than the silicon

resources for existing core-side TLBs because of the power density constraints near cores.

However, as the cache hierarchy absorbs most of the data locality present in the requests,

there is little locality left for memory-side translation, thus requiring only a few resources

for caching translations. Finally, using the logical Midgard address space to index the cache

hierarchy also allows optimizing the page-table walks for the memory-side translation by

directly serving page-table entries from the cache hierarchy (if present) instead of requiring

the complete radix-tree traversals as in existing systems.
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3.3 Challenges and Opportunities

Midgard requires decoupling the traditional address translation process into two parts - the

logic-side address translation, and the core-side address translation. This decoupling is made

possible by the insertion of an intermediate address space in the system that can provide

access control and cache hierarchy access using address translation at a VMA granularity,

thus requiring the capacity management functionality of the physical address space only if

the cache hierarchy does not contain the required data. Designing such a system requires

introducing a new interface for address translation, while solving various challenges in both

the OS and the hardware design.

On the OS side, accommodating Midgard requires decoupling the traditional address transla-

tion and memory management implementation into a logic-side translation that is performed

at a VMA granularity, and a memory-side translation that is performed at a page granularity.

Managing the virtual and Midgard address spaces at a VMA granularity requires tracking the

mappings using new data structures per process that can work well with the variable-sized

VMAs. Also, the OS is required to accommodate the VMAs across all processes in the system-

wide Midgard address space, which requires it to use allocation or memory management

algorithms that can work well with the variable-sized VMAs. Finally, the OS has to map the

MMAs present in the Midgard address space to the required pages present in the physical

address space. While the OS can continue to use the traditional radix page tables for track-

ing these mappings, the overall memory management code in the OS requires considerable

change as there is only a unique system-wide page table instead of the typical per-process page

tables. Along with tracking the mappings, the OS also needs to redesign various other memory

management-related components such as page caches and direct mappings, that currently

work with the page abstraction and make them compatible with the VMA abstraction.

On the hardware side, the microarchitecture needs to be changed to accommodate the two

layer translation. The logic-side translation applies to any units that require VM support to

perform memory operations, such as cores, accelerators, and peripheral devices. Each unit has
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to perform its own logic-side translation to obtain the relevant Midgard address which can then

be used to probe the overall coherence domain. Therefore, Midgard addresses can be used

to fetch data from anywhere in the coherence domain, which can be in the same or remote

socket/chiplet. As the logic-side translation is in the critical path of every memory access, it

needs to be low latency so that it does create a performance bottleneck. The memory-side

translation applies to only memory controllers that grant access to the underlying physical

memory device, such as DRAM, High-Bandwidth Memory, or Persistent Memory. As the

memory-side translation is applicable system-wide, the microarchitecture needs to support

any synchronization mechanisms that might be needed for ensuring correctness in translation.

Finally, while the memory-side translation is not required in the common case, it still requires

performance optimizations such as caching to ensure that it leads to a low overhead.

While there are challenges that need to be mitigated, Midgard also opens up various opportu-

nities to optimize various other components of the system. By supporting an intermediate

address space, Midgard allows decoupling the memory-side translation both logically and

physically. Therefore, we can envision a system where the memory-side translation is not

performed as part of normal OS functionality, but similar to a Flash Translation Layer that

exists as the logic bundled with the memory device itself. Midgard also allows opportunities

to optimize memory pooling across various servers as the Midgard address space does not

need to be necessarily local to just one server, but instead can be shared among various other

servers using coherent interfaces. Finally, the abstraction of the intermediate address space

can also optimize virtualized systems as the translation between the guest and host OSes that

takes place using physical address spaces can instead be done using their Midgard address

spaces. As such translation can take place in terms of VMAs instead of pages, it is expected to

bring significant performance benefits.

3.4 Interface for Address Translation

The address translation interface consists of three components: the address translation tables,

the register containing the address of the address translation tables, and primitives for enforc-
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ing coherence manually. In traditional systems, the address translation tables are presented in

the form of page tables which contain the mappings between VMAs residing in per-process

virtual address spaces and pages present in the system-wide physical address space. The

structure of the page table also influences the design of the MMU which needs to walk the table

to find the required translation, e.g., traditional page tables have a fixed radix-tree structure

which is known to the MMU. To architecturally expose the per-process page tables, each core

contains a register that contains the base address of the page tables, e.g., CR3 in x86, Page

Table Base Register (PTBR) in ARMv8 systems. Finally, while traditional systems have caching

support for page tables in form of TLBs, the per-core TLBs are not coherent with each other,

and therefore require OS support to enforce manual coherence. Therefore, traditional systems

have TLB shootdown primitives which can be used to discard a particular address translation

mappings from all TLBs in the system.

Following the address translation interface in the traditional systems, we would need to

introduce a similar interface in case of Midgard. However, as Midgard has two levels of address

translation, we would require a separate interface for each of those translation levels. In the

case of logic-side translation, as the translation is performed at a VMA granularity, the OS

will need to track VMA-to-MMA translations in a VMA table instead of a traditional page

table. However, as each process has its private virtual address space, it would also need to

have a private VMA table containing the mappings from its private virtual address space to a

system-wide Midgard address space. The structure of the VMA table can be fundamentally

different from the traditional page tables because the page tables track fixed-size pages, while

the VMA tables will track variable-sized VMAs and map them to variable-sized MMAs. As each

core can be running a different process, we need a separate per-core register to indicate the

base address of the VMA table belonging to the running process so that the MMU can walk

the table to find the required translation. Finally, similar to traditional systems, as each core

can have private TLB-like caching structures for the VMA-table entries, we would also need to

provide shootdown primitives to maintain coherence manually. However, as there are much

fewer VMAs than pages, it is also possible to design novel hardware mechanisms to ensure

coherence among all the VMA table caching structures automatically.
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In the case of memory-side translation, the translation is performed at a page granularity,

similar to the translation present in the traditional systems. Therefore, the OS can create

Midgard page tables similar to the traditional page tables based on radix trees to track the

mappings from MMAs present in the Midgard address space to the pages present in the

physical address space. As the Midgard page tables have a well-known radix tree structure,

the MMUs can walk the page tables using the same algorithms as present in the traditional

system. As Midgard page tables contains address translation mappings between a system-wide

Midgard address space and a system-wide physical address space, there is only a unique set of

Midgard page tables in the system. As there is only one set of Midgard page tables in the system,

we logically require only one Page Table Base Register for the entire system, instead of the

per-core registers as required in the traditional systems. Finally, memory-side translation can

also have specialized caching support for the Midgard page tables, and therefore can require a

separate set of shootdown primitives than those required for the logic-side translation.
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As explained in 3.2, the traditional address translation is decoupled into two parts: the logic-

side translation and the memory-side translation. The logic-side translation is a fast VMA-

granularity virtual-to-Midgard address translation performed at the cores similar to the tradi-

tional address translation. In contrast, the memory-side translation is similar to the traditional

page-based translation but is performed away from the cores and closer to the physical mem-

ory. The logic-side translation performs permission checks along with translation, and can

generate protection fault exceptions due to permission mismatch, or segmentation fault ex-

ceptions due to access to unallocated memory addresses. As the logic-side translation is tightly

integrated with the pipeline, any exceptions generated by the same are detected and con-

tained in the speculative window of the pipeline, and thus can be handled precisely [111]. The

memory-side translation also performs permission checks related to capacity management,

and can generate exceptions such as page fault if the referred page is unallocated/unmapped,

or can generate protection fault in case a write was attempted to a page that was temporarily

made read-only, such as in case of copy-on-write or kernel same-page merging optimizations.

However, any exceptions in the memory-side translation are generated away from the cores,

and therefore are not guaranteed to be contained in the speculative window of the core. If the

exceptions cannot be contained in the speculative window, then they are not guaranteed to be

precise, and might be handled imprecisely.
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Such imprecise handling of exceptions is a direct consequence of the traditional implementa-

tion of out-of-order cores. Modern out-of-order cores implement a speculative window which

allows them to execute younger instructions before the older instructions have completed.

Such speculative execution allows hiding the execution latency of arithmetic and floating-

point operations, or memory access latencies with useful work. However, even though the

instructions might be finish executing out of order, they are always retired in order to ensure

that any resulting exceptions or interrupts are handled precisely at the point of detection

with sequential instruction execution semantics. However, modern out-of-order cores also

assume that any exceptions can be generated only by execution units or address translation

units covered in the speculation window. Once the execution units or tightly-integrated ad-

dress translation (logic-side address translation in our case) completes successfully, then it is

assumed that no more exceptions are possible. Building on the same assumption, modern

out-of-order cores retire stores after their address and data is confirmed, and place them in

the store buffer for completion. This optimization allows the pipeline to retire younger instruc-

tions without waiting for the store to complete, thus significantly benefitting performance,

and forms the basis of modern relaxed memory consistency models [84].

However, in case of Midgard, it is possible that the memory-side translation generates excep-

tions even after the logic-side translation has completed successfully. Therefore, if memory-

side exceptions are caused by stores that were retired before completion, it is possible that the

exception is detected by the core when the store has already retired and is awaiting completion

in the store buffer, and the pipeline might have retired further instructions. In such a scenario,

the exception handler cannot be triggered at the PC of the corresponding store as the pipeline

has already moved on, and therefore the exception handling is imprecise. In the rest of this

chapter, section 4.1 will provide more detailed explanation about the conventional precise

handling of exceptions, and what behavior can make the exception handling precise. Then,

section 4.2 will explain that post-retirement speculation techniques can be used to force the

precise handling of such exceptions, but at a prohibitively high silicon cost. The remaining

section 4.3, section 4.4, and section 4.5 explain how we can handle such exceptions impre-

cisely and develop a formalism to prove that the resulting behavior is compatible with modern
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memory consistency models which can be consequently used by OS developers to ensure

correctness, provides an OS + microarchitecture co-design to implement imprecise store

exceptions, and then finally develop a full-system RISC-V prototype to prove the feasibility

and performance implications of our design, along with correctness using litmus tests.

4.1 Exception Handling Background

In this section, we describe the challenges posed by post-retirement store exception detection

on the notion of precise exceptions. We then discuss various “obvious” ways to address these

challenges and their shortcomings, particularly in the context of relaxed memory consistency

models.

4.1.1 Precise exceptions

Precise exceptions [111] are a de-facto abstraction assumed in modern CPUs as they simplify

software at the cost of reasonable hardware complexity. Precise exceptions allow programmers

to assume a simple sequential execution model where only one instruction executes at a time,

and any exceptions are detected and handled before the corresponding instruction executes.

CPUs implementing precise exceptions require exceptions to be triggered precisely at the

corresponding instruction only after older instructions completed and successfully modi-

fied process state, and before younger instructions modified process state. All exceptions

must be detected and handled before instruction retirement. Microarchitecturally, excep-

tions are implemented by 1) executing instructions such that they modify the process state

sequentially, but disabling out-of-order execution and its performance benefits, or 2) employ-

ing speculative execution to discard the effects of any younger instructions along with the

exception-generating instruction, benefiting the performance in the common case without

exceptions. Importantly, this approach extends to interrupts, with the caveat that interrupts

are generated asynchronously by external devices and can be triggered on any instruction.

Virtual memory is an example of a common source of exceptions as it requires every load/store
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Fault

Fetch
Control protection exception, Code page

fault, Code-segment limit violation

Decode Invalid opcode, Device not available, Debug

Execute

Divide by zero, Bound range exceeded,

FP error, Alignment check,

SIMD FP exception, Invalid TSS

Memory

Segment not present, Stack-segment fault,

Page fault, General protection fault,

Virtualization exception

Trap Debug, Breakpoint, Overflow

Abort Double fault, Triple fault, Machine Check

Table 4.1: Classification of x86 exceptions [58].

instruction to perform address translation before it can be applied to the cache/memory

hierarchy. If an exception (e.g., page fault) is detected during address translation, then the

corresponding load/store and all the younger instructions are flushed, and the exception

handler is triggered precisely. After the OS handles the exception and reschedules the process,

the load/store instruction is re-executed and completes successfully.

While precise exceptions are dominant today, there are cases where imprecise exceptions have

been adopted. In the past, imprecise exceptions were generated by long-latency arithmetic

or floating-point operations implemented on co-processors [53, 62, 126]). Today, machine

checks [114] (e.g., ECC errors in the cache/memory hierarchy) are the only example of im-

precise exception in modern CPUs because they are non-restartable and cause the OS to

terminate the process or even crash. Finally, emerging accelerators such as GPUs [119] adopt

imprecise exceptions because precise exceptions pose a dramatic performance overhead or

require significantly more silicon area and power. As computing systems evolve, the cost

of supporting precise exceptions and their programming implications are being gradually

revisited with new constraints. This thesis studies the cost of supporting precise exceptions

coming from compute units embedded in the cache/memory hierarchy.

46



4.1 Exception Handling Background

4.1.2 Long-Latency Exceptions can be Imprecise

Today, cores are the only component in a CPU that can generate exceptions, while all other

components perform simpler operations and cannot generate exceptions. Table 4.1 represents

the x86 exceptions and their point of origin. Except for machine checks, all exceptions are

generated in the fetch, decode, execute, or memory stages and caught synchronously in the

reorder buffer (ROB). But with the integration of compute capabilities in the deep cache/mem-

ory hierarchies [38, 105], the integrated compute units can also generate exceptions when

responding to load/store instructions executed by the cores. As exceptions can originate from

the cache/memory hierarchy, exception detection can even include address translation and

memory latency (100s of cycles and growing).

The above problem generally appears in proposals that require software intervention when

servicing memory requests, such as 1) software handling of cooperative/distributed shared

memory [26, 35, 51, 75, 100, 106, 131]; 2) informing memory operations [52] and software

techniques for cache-miss handling [21, 47, 82]; 3) virtual cache hierarchies [23, 24, 43, 70], or

intermediate address space [44, 49, 132, 139] designs where virtual memory exceptions are

generated in the cache/memory hierarchy; and 4) accelerators that can generate exceptions

when executing additional functionality for memory requests performed by the cores [107].

Fortunately, this problem does not apply to accelerators invoked using an explicit request-

response programming model [4, 76, 137, 138] where any generated exceptions are treated

as interrupts by the cores. While we already illustrated the problem with Midgard in the

beginning of the chapter, we further provide an additional example to broaden the scope of

the problem:

täkō [107] is a semi-general-purpose accelerator connected to the L2 and LLC slice of each

core to perform user-defined data transformations, such as compression and encryption.

Users can configure täkō to compress data when evicting it from the cache and write the

compressed version to memory. Upon reading the compressed data from memory on a cache

miss, täkō will install the decompressed version in the cache. Such a design allows exceptions
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(e.g., page fault, divide-by-zero) to be generated by the accelerator when processing memory

requests received from a core because täkō relies on the virtual memory abstraction to allow

users to define data transformation logic using software-defined callbacks. For example, when

a core executes a store instruction resulting in a cache miss, täkō will fetch and decompress

data from memory and can potentially encounter a page fault. The page fault will result in a

delayed notification of the exception being triggered on the corresponding store instruction.

Modern CPUs use aggressive optimizations [34, 84] that remove the store from the ROB (called

retirement) once it becomes the oldest instruction but is yet to write its value to the L1 cache

(called completion). As stores do not produce a register value for the younger instructions, they

are retired to unblock the pipeline and wait for completion in the store buffer. Subsequently, if

the store triggers an exception as in the examples above, the resulting exception cannot be

precise because it cannot be triggered at the corresponding store instruction as it has already

retired, and the pipeline might have further retired younger instructions. The same problem

was also identified by Qiu and Dubois [97] in the context of out-of-order cores where the

speculative window can cover the exception detection latency in most cases, which is not

the case today. Fortunately, such impreciseness is limited to only store instructions as all the

load instructions produce register values for the younger instructions and cannot retire before

completion.

4.1.3 Forced Precise Exceptions Kill Performance

To imitate the sequential strategy [111], we can disable the store buffer optimization described

above to force precise exceptions. Disabling the store buffer would ensure that all load and

store instructions await completion in the pipeline before they retire, forcing any exception

detection to happen in the ROB itself and enabling triggering the exception handler precisely

at the required instruction. However, the store buffer is the cornerstone of relaxed memory

consistency models [84] such as Processor Consistency (PC) and Weak Consistency (WC), and

even techniques such as end-to-end Sequential Consistency [110].

Relaxed memory consistency models (or memory models) allow memory reorderings to
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significantly improve single-thread performance. Such memory reorderings require the long-

latency stores to be retired and put aside in the store buffer, allowing any younger instructions

to retire, leading to a high pipeline throughput. Disabling the store buffer optimization also

disables such reorderings, effectively reverting to Sequential Consistency (SC) and exposing

the long latency of stores to the pipeline. Doing so voids the typical 20-30% single-thread

performance improvement due to relaxed memory models, thus providing precise exceptions

at a significant performance cost.

In this thesis, we discuss the following two solutions to maintain the performance gains

of relaxed memory models. 1) Using the speculation strategy [111], we demonstrate that

speculation can cover the long latency of memory operations to provide precise exceptions

with the performance of relaxed memory models but at a much greater silicon cost than

required for ROB speculation. 2) We demonstrate that hardware-software co-design can

efficiently implement imprecise handling of store exceptions where the exception handler is

triggered at an unrelated instruction instead of the corresponding store instruction, thereby

imitating an interrupt.

4.2 Precise Exceptions with Speculation

Post-retirement speculation has been shown to match and even exceed the performance of

relaxed memory models at the cost of additional silicon. We now detail how these speculation

techniques can be used to maintain the abstraction of precise exceptions even for long-latency

store operations.

4.2.1 Post-Retirement Speculation

As described in subsection 4.1.3, relaxed memory model implementations utilize the store

buffer to accommodate retired stores without blocking the pipeline. If such a store triggers

an exception after retirement, then the exception handling cannot be precise as the pipeline

has potentially retired younger instructions. For enforcing precise exceptions, the store must
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Core
16× ARM Cortex-A76 [129]

4-way OoO, WC, 128-entry ROB, 32-entry SB

TLB L1(I,D): 48 entries, L2: 1024 entries

L1 Caches

64KB 4-way L1D, 64KB 4-way L1I

64-byte blocks, 2 ports, 32 MSHRs

2-cycle latency (tag+data)

L2 1MB/tile, 16-way, 6-cycle access, non-inclusive

Coherence Directory-based MESI

Interconnect 4×4 2D mesh, 16B links, 3 cycles/hop

Memory 80 cycle access latency (default)

Table 4.2: System parameters for simulation on QFlex [89].

Instruction mix (%) WC

Store Load Sync Others speedup

GAP
[17]

BFS 11 22 <1 67 1.53

SSSP 3 22 1 74 1.06

BC 25 25 0 50 3.24

Tailbench
[68]

Silo 7 13 2 78 1.15

Masstree 14 13 <1 73 1.60

Cloudsuite
[36]

Data Caching 11 24 <1 65 1.12

Media Streaming 9 13 <1 78 1.16

Data Serving 9 24 <1 67 1.10

Table 4.3: We list the evaluated benchmarks, their instruction mix (%), and the WC speedup
over SC.
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Speculation state requirement (KB)

Baseline 2× memory latency 4× latency skew

GAP
[17]

BFS 14 14 17

SSSP 21 21 21

BC 18 18 18

Tailbench
[68]

Silo 18 18 25

Masstree 16 16 16

Cloudsuite
[36]

Data Caching 17 17 22

Media Streaming 14 14 17

Data Serving 14 17 23

Table 4.4: We list the evaluated benchmarks, their speculation state requirements (in KB) to
achieve the full WC performance benefits in the baseline SC system, a system with 2× memory
latency, and a system with 4× store-to-load latency skew.

await completion and detect all exceptions before retiring, forcing the legal execution to obey

SC without a store buffer.

Post-retirement speculation proposals [20, 25, 41, 42, 98, 127] applied to SC can match and

even exceed the performance of relaxed memory models such as PC and WC. These proposals

obtain performance benefits through speculative memory reorderings while ensuring that

other cores cannot observe them by using checkpointing mechanisms to roll back the core to

a legal SC state if there is interaction with other cores. As there is little interaction among cores,

such proposals significantly benefit from speculative reorderings. The same reasoning applies

to exceptions as they are infrequent, and speculative reorderings can provide performance

benefits in the common case, while checkpoints can be used to restore the core to a legal SC

state when triggering exceptions. However, such post-retirement speculation techniques have

a significant silicon cost attached to them.

4.2.2 Case Study: ASO

We adopt ASO [127] for imprecise exceptions. Other designs such as SC++ [42] require more

silicon than ASO, while Invisifence [20] reduces silicon usage by limiting checkpoints, but

also limits the overall achievable performance. In ASO, when the core is stalled due to an
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ordering requirement, it creates a checkpoint that allows it to ignore the ordering requirement

speculatively. ASO uses a scalable store buffer to record the program order of all the speculative

stores while using the L1 cache to store the latest speculatively read and written values which

younger loads can then use, where the speculatively-written values in L1 are not globally

visible. The speculation is successful when the core obtains the write permissions for all

speculatively written blocks and atomically drains all of them to L2, making them globally

visible.

The number of supported checkpoints is pre-decided as part of the ASO implementation.

Each checkpoint requires a map table to record the physical registers representing the core’s

legal state before speculatively executing the checkpointed instruction. While in traditional

ROB-contained speculation, the physical register denoting the state prior to the instruction

execution is freed when the instruction retires, ASO requires keeping the physical registers until

the speculation succeeds and the checkpoint is freed. For imprecise exceptions, each store

miss requires a new checkpoint as the missing store can potentially trigger an exception. Once

the store miss is resolved without exception, the corresponding checkpoint is merged into

the previous checkpoint and the relevant physical registers are freed. Hence, the number of

checkpoints reflects the number of outstanding store misses. Speculation fails if an exception

is detected on a speculated store, causing the core state to be rolled back using checkpoints,

followed by a precise invocation of an exception handler.

4.2.3 Quantifying the Speculation State

We use cycle-accurate full-system simulation with QFlex [89] to measure the performance

benefits of ASO for imprecise exceptions. Table 4.2 details system simulation parameters.

Table 4.4 lists the evaluated server benchmarks from GAP [17], Tailbench [68], and Cloud-

suite [36], along with the instruction mix and the IPC speedup on a WC system. As the PR, CC,

and TC in the GAP benchmark suite have <1% stores and no performance benefits from WC,

we do not evaluate them further.

Table 4.3 shows the amount of speculation state required per core to obtain the speedup
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equivalent to that of WC. The speculation state includes the scalable store buffer, per-word

valid and Speculatively Written (SW) bits in L1D, the Speculatively Read (SR) bits in the L1D

and L2 cache, the additional physical registers required to store the legal SC state before

speculatively-retired instructions, and the map tables to track the physical registers. Each

entry in the scalable store buffer is 16B, while each checkpoint can require up to 32 extra

physical registers (256B), resulting in a larger physical register file. Finally, each map table

contains 32 logical-to-physical register mappings while storing 8-10 bits as the register index

in a 256-1024 entry physical register file. Increasing the number of supported checkpoints

increases the total required speculation state. Table 4.3 demonstrates that post-retirement

speculation can indeed match the performance of corresponding WC implementations. As

most of our workloads have <1% synchronization instructions, we do not achieve better

performance from fence speculation. Unfortunately, the required performance gain comes at

a high silicon cost of up to ∼25 KB per core. Moreover, most of the required speculation state

is part of the physical register file, which is a critical structure in the pipeline and cannot be

scaled easily.

We also perform additional studies to quantify the impact of hardware scaling trends on the

amount of speculation state required. To this end, we quantify the impact of memory latency

and the latency skew between stores and loads on the required speculation state. As the

memory capacity in the system scales, the average memory latency becomes higher because

of frequent remote memory accesses across sockets and due to denser memory technologies

such as persistent memory. Moreover, modern systems feature multiple sockets/chiplets per

CPU [128], which can lead to remote cache accesses from far-off sockets. In such a system,

cache coherence protocols require extra hops for servicing stores than they need for servicing

loads because stores require invalidating all copies of the block, which might reside in far

sockets/chiplets.

Table 4.3 depicts two additional systems with 2x the baseline memory latency, and 4x the

baseline store-vs-load latency skew respectively. As demonstrated, a system with 2x the

memory latency requires about the same amount of speculation state to reach the WC speedup
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as the baseline system. The reason is that increasing the memory latency affects both the loads

and stores, and as loads typically outnumber the stores, they quickly become the performance

bottleneck. In contrast, the required speculation state can increase considerably in a system

where the stores take 4x longer latency to complete than the loads. The reason is that as the

skew between store and load latencies increases, the pending stores in the store buffer take

more time and prevent further stores from retiring, thus blocking the pipeline. Increasing the

time required to drain the store buffer also has performance side effects for other subsystems,

such as the tlbi instruction for performing TLB shootdowns. Overall, while speculation can

indeed provide the performance of WC, it requires a significant amount of SRAM resources

that are not trivially obtained in the post-Moore era.

4.3 Imprecise Store Exceptions

Maintaining precise exceptions with SC either leads to significant performance degradation

or requires post-retirement speculation mechanisms to provide WC performance using tens

of KBs of expensive per-core speculation state. Instead, we propose a hardware-software co-

design to implement PC/WC systems with the relaxed semantics of imprecise store exceptions.

In this section, we provide the formalism for memory models with imprecise store exceptions

and demonstrate that with appropriate hardware and OS support, imprecise store exceptions

are compatible with both PC and WC.

4.3.1 Brief Description

Similar to modern CPUs, we require that the stores are retired and put in the store buffer to

await completion. Subsequently, if they trigger an exception, the exception handler must be

triggered imprecisely on the oldest instruction in the ROB. However, the faulting stores (i.e.,

stores that trigger exceptions) present in the store buffer can neither be drained to the cache

hierarchy nor rolled back to be re-executed later as they have already retired and younger

instructions have further modified the architectural state. With exception handling latencies

of several µs (e.g., lazy memory allocation) to tens of ms (e.g., demand paging), the stores
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cannot stay in the store buffer because they will eventually clog the store buffer and prevent

the core from executing younger instructions.

We create a new architectural interface to supply faulting stores along with their address, data,

byte mask, and the required exception code to the OS so that we can free up the microarchi-

tectural resources occupied by the store. When triggering an imprecise exception handler,

the OS first reads the faulting stores using the architectural interface and then resolves the

exception. If the exception is recoverable (e.g., page fault), the OS applies the obtained faulting

stores to the corresponding addresses, and the program resumes execution. If the exception is

irrecoverable (e.g., segmentation fault), the faulting stores are discarded, and the program is

terminated.

As the OS may take up to tens of ms to resolve the exception and apply the faulting store, the

store is effectively reordered after younger operations in the global memory order, which might

seem to violate the underlying memory model. While previous research proposals [77, 102]

studied the interaction between memory operations executed by the core and MMUs, there

are no studies on such OS-induced reorderings. We claim that we can make these reorderings

transparent to user programs with a formally-defined memory model incorporating store

exceptions and a hardware-software co-design that conforms to required constraints.

4.3.2 Formal Definition of Memory Models

We first describe the standard formalism [84] of PC and WC using notations defined in Table 4.5.

We study PC and WC because they are the prevalent models in ISAs today (x86, AMD, ARM,

RISC-V). We use PC to represent Total Store Order (TSO) as they are identical in modern

cache-coherent systems [3].

PC relaxes the store-to-load ordering and is formally defined with the following rules:

L(A) <p S(B) =⇒ L(A) <m S(B)

L(A) <p L(B) =⇒ L(A) <m L(B)
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Notation Definition

L(A) Load latest value from address A

S(A), S(A, D) Store data D to address A

SOS(A), SOS(A, D) OS stores data D at address A

F Fence as a memory ordering primitive

X <p Y
Operation X happens before operation Y

in program order on the same core

X <m Y
Operation X happens before operation Y

in the global memory order

PUT(S(A)) Send S(A) to the architectural interface.

GET
Retrieve one faulting store from the

architectural interface

DETECT Detect an exception

RESOLVE Resolve the exception and resume execution

MAX<m ({}S(A))
Return the latest value in memory order

from the set of stores to address A

Table 4.5: Memory consistency formalism notations [84].

S(A) <p S(B) =⇒ S(A) <m S(B)

S(A) <p F <p L(B) =⇒ S(A) <m F <m L(B)

L(A) = MAX<m ({S(A, D) | S(A, D) <m/<p L(A)})

WC relaxes various other orderings present in PC and is formally defined with the following

rules:

L(A)/S(A) <p F =⇒ L(A)/S(A) <m F

F <p L(A)/S(A) =⇒ F <m L(A)/S(A)

L(A) <p L’(A)/S(A) =⇒ L(A) <m L’(A)/S(A)

S(A) <p S’(A) =⇒ S(A) <m S’(A)
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L(A) = MAX<m ({S(A, D) | S(A, D) <m/<p L(A)})

where L’(A)/S’(A) depicts another load/store to address A. Overall, WC relaxes all orderings

except the ones involving fences and memory operations to the same address.

We further require additional operations to handle imprecise store exceptions. Assuming that

S(A) triggers an exception, the DETECT operation indicates the detection of the exception.

Once the exception is detected, then S(A) should be supplied to the architectural interface

using PUT(S(A)) operation, and consequently, the OS will read the faulty store using GET

operation and will apply the faulting store to the address A using SOS(A) operation. Finally, the

OS can finish the exception handling and resume the program execution using the RESOLVE

operation. Overall, these new operations strictly happen in the global memory order as:

DETECT <m PUT(S(A)) <m GET <m SOS(A) <m RESOLVE

4.3.3 Observing the Memory Order

Independent of the underlying memory model and the presence of imprecise exceptions,

programs can infer the order among memory operations only by detecting value changes at

the corresponding addresses. Assume that an application applies two stores, S(A,1) and S(B,1),

to two zero-initialized memory locations, A and B. To detect the memory order between S(A)

and S(B), the program requires two observer loads L(A) and L(B) that should be executed on

a different core to detect the change in values at addresses A and B. The only way that the

application can infer S(A,1) <m S(B,1) is if L(A) <m L(B), L(A) reads 1, and L(B) reads 0, corre-

sponding to the execution S(A,1) <m L(A) <m L(B) <m S(B,1). Note that these requirements

create a total order among the four operations.

Similarly, the only way to infer S(B,1) <m S(A,1) is if L(B) <m L(A), L(A) reads 0, and L(B) reads

1, corresponding to the execution S(B,1) <m L(B) <m L(A) <m S(A,1). If any of the above re-

quirements are not fulfilled, then the order between S(A,1) and S(B,1) cannot be inferred solely

based on the value read by observer loads because there is no dependency chain among the
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Core 0 S(A, 1) S(B, 1)FENCE

Core 1 L(B) = 1 FENCE L(A) = 0<p

<p <p

<p

<m <m

Figure 4.1: Violation in the message-passing litmus test.

stores and loads. In summary, the order among memory operations can only be inferred by

the composition of preserved program orders [5] (memory orders enforced from program

order based on the memory model, e.g., program order between two stores in PC) and specific

change in value that loads can detect. Consequently, programs cannot infer the memory order

if the required value changes are not detectable.

Using the above rules, certain combinations of detectable value changes can lead to violations

of the memory model. Consider the message-passing litmus test [84] shown in Figure 4.1,

where Core 0 communicates B to Core 1 by first setting A to indicate the ready status of B.

For simplicity, we explicitly insert two fences between two stores and two loads to make WC

identical to PC. Out of four possible results, only the execution with L(B) reading 1 and L(A)

reading 0 is prohibited because it indicates that both S(A, 1) <m L(A) and L(A) <m S(A, 1) hold

simultaneously, which is impossible. The basis of our formalism is that the applications cannot

detect any violations due to faulting stores because the required value changes to infer the

memory ordering are either presented in the correct order or are not detectable.

4.3.4 Contract Among the Cores, Interface, and OS

Next, we describe the contract required between the cores, the architectural interface, and the

OS to adhere to the underlying memory models, as shown in Table 4.6. Imprecise exception

handling requires an architectural interface to supply the faulting store to the OS, and the

interface is required to guarantee that the OS retrieves the faulting stores in the same order as

the core sends them. While we do not require a total order among the faulting stores from all

cores, we require enforcing a per-core order for PC and do not require any order for WC.
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When using the interface to supply faulting stores, the cores must ensure that the stores are

supplied in the order the underlying memory model prescribes. In PC, the faulting stores in

the store buffer should be supplied to the interface in the FIFO order of the store buffer so

that the OS can apply all the stores to memory in the required order after successful exception

handling. However, in WC, as there is no order required among stores in the store buffer except

for stores to the same address that are already coalesced, the order of supplying the faulting

stores is irrelevant.

After successful exception handling, the OS retrieves the faulting stores using the interface

and applies them to their target addresses. The order in which the faulting stores are applied

is critical for the correctness of the memory model, and requires the OS to obey the following

constraints. First, similar to precise exceptions, the program or thread that triggered the

imprecise exception can only resume after the exception has been successfully handled.

Second, all the retrieved faulting stores must be applied to their target addresses for the

imprecise exception handling to be complete. Third and last, the OS must ensure that the

faulting stores are applied to memory in the same order as retrieved from the interface. The

last rule applies only to PC which requires a strict order among per-core stores. In the case of

WC, the OS does not need to enforce any order among stores as the memory model does not

mandate it.

The above constraints also imply that if there is a precise exception on a load or if an imprecise

exception is pinned on an atomic or a fence instruction because it blocks the ROB waiting for

the store buffer to drain where a store in the store buffer generates the imprecise exception,

then the load/atomic/fence instruction will be re-executed only after successful exception

handling indicated by RESOLVE <m L(A)/Atomic/F . The overall intuition behind these con-

straints is to ensure that the microarchitecture communicates the order required for obeying

the underlying memory model to the OS, which then applies the faulting stores in the required

order to complete exception handling successfully before resuming the program execution.
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Component Requirements for PC

Cores
Supply faulting stores to the interface in the

serial order dictated by the store buffer

Interface
Supply faulting stores to the OS in the same order

as received from the core

OS

1) Program resumes only after exception handling

2) Apply all faulting stores during handling

3) Apply the faulting stores in the interface order

Table 4.6: The contract among the cores, interface, and OS.

Core 1

Core 0

TimeDETECT

DETECT

GET

RESOLVEPUT(S(A)) S(B, 1)

RESOLVE L’(A) = 0 L(B) = 1 L(A) = 0

GET SOS(A, 1)

(a) Execution with split stream.

Core 1

Core 0

TimeDETECT

DETECT

GET

RESOLVEPUT(S(A)) PUT(S(B))

RESOLVE L’(A) = 0 L(B) = 0 L(A) = 0

GET GETSOS(A, 1) SOS(B, 1)

(b) Execution without split stream.

Figure 4.2: Race condition between the GET operation on Core 1 and the PUT(S(A)) operation
on Core 0.

4.3.5 Formalism with Split Stream

When handling imprecise store exceptions, there are two approaches to treat the non-faulting

stores present along with faulting stores in the store buffer. The non-faulting stores can be

directly written to memory or supplied to the interface along with faulting stores. The first

approach results in a formalism that treats non-faulting stores and faulting stores as two

separate streams of operations, while the second approach results in all the stores being

treated as the same stream. We provide the formalism for both approaches and describe their

differences.

When a faulting store is in the store buffer, the other non-faulting stores can still be drained

to memory. We call this case split stream because the stream of faulting stores is treated

differently from that of non-faulting stores. In PC, both streams should obey program order,

while in WC, the order of stores in each stream is irrelevant. In both models, the non-faulting

stores will be drained to memory immediately, while the faulting stores will be applied later by
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the OS, potentially breaking the required global memory order among all the stores. We show

this effect using the following formalism. Assume that S(A) is faulting so that it is supplied

to the interface, while another non-faulting S(B) that happens after S(A) in program order is

drained to memory as usual. Eventually, an exception handler is triggered, which retrieves

S(A) from the interface and applies it to memory, resolving the exception. We can formally

represent the scenario as follows:

S(A) <p S(B) =⇒ DETECT <m PUT(S(A)) <m S(B) <m

GET <m SOS(A) <m RESOLVE

As shown, S(B) can appear before SOS(A) in memory order and violate the memory ordering

requirements for PC. To be compatible with PC, the hardware and software need to ensure that

observer loads cannot observe this violation, which requires that SOS(A) <m RESOLVE <m L(A)

so that L(A) cannot detect the value change on A that leads to the violation. While it might

seem like this condition is easy to satisfy when address A is faulting, a subtle race condition

exists in this case. Consider a program where Core 0 executes S(A,1) <p S(B,1), and Core 1

executes L’(A) <p L(B) <p L(A). Assume that both A and B are zero-initialized, and the accesses

to address A will result in exceptions at both S(A) and L(A), corresponding to the following two

concurrent executions:

Core 0: DETECT <m PUT(S(A)) <m S(B) <m

GET <m SOS(A) <m RESOLVE

Core 1: DETECT <m GET <m RESOLVE <m

L’(A) <m L(B) <m L(A)

There can be a race between PUT(S(A)) on Core 0 and GET on Core 1 such that at the time GET

completes, it cannot see PUT(S(A)). As SOS(A) might not be applied before Core 1 performs

its RESOLVE, it can result in an execution where L(B) reads 1 and L(A) reads 0, as shown in

Figure 4.2a. While such execution is legal in WC, it violates PC because Core 1 can infer that

S(B) has taken place, but S(A) has not, even though it comes earlier in program order. For the
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split stream formalism to work in real designs, the hardware and OS should together ensure

that the core executes PUT(S(A)) before the OS performs the final GET to avoid any data races.

Such a design would require a barrier or synchronization between the hardware and software

so that no further PUT(S(A)) can occur after the GET. Though possible, building such designs

is difficult because of the complexity and performance overhead of implementing such barrier

or synchronization mechanisms.

To prove that S(A) <p S(B) =⇒ S(A) <m S(B), we consider the following four cases:

1. Both S(A) and S(B) are not faulting,

2. Only S(B) is faulting,

3. Both S(A) and S(B) are faulting,

4. Only S(A) is faulting.

Assume that S(B) is in the store buffer when S(A) is drained to memory or supplied to the
architectural interface.

Case 1 is the original PC case. The store buffer drains both S(A) and S(B) to memory in
their program order.

In case 2, the store buffer drains S(A) to memory and supplies S(B) to the interface. The
OS then retrieves S(B) from the interface and applies it. This case represents the following
execution:

S(A) <p S(B) =⇒ S(A) <m DETECT <m PUT(S(B)) <m
GET <m SOS(B) <m RESOLVE

=⇒ S(A) <m SOS(B)

In case 3, the store buffer supplies both S(A) and S(B) to the interface. The OS then retrieves
both stores from the interface and applies them in the retrieved order. This case represents
the following execution:

S(A) <p S(B) =⇒ DETECT <m PUT(S(A)) <m
PUT(S(B)) <m GET <m SOS(A) <m
GET <m SOS(B) <m RESOLVE

=⇒ SOS(A) <m SOS(B)

Case 4 is same as case 3 because S(B) is supplied to and applied by the OS as it follows the
faulting S(A).

If S(B) is not in the store buffer because it has not retired, then S(A) can either be applied
to memory (case 1 and 2), or trigger an exception (case 3 and 4) where the OS applies SOS(A)
to memory and executes the RESOLVE operation. In all cases, S(B) is guaranteed to retire
only after S(A) or SOS(A) has been already applied to memory.

Proof 4.1: Store-store ordering rule of PC.
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4.3.6 Formalism without Split Stream

We now describe the second approach, where the faulting and non-faulting stores are treated

as the same stream. In PC, stores in the store buffer should be applied to memory in program

order. In the presence of faulting stores, instead of sending younger non-faulting stores

to memory as another stream, they are supplied to the architectural interface along with

the faulting stores. The faulting and younger non-faulting stores are still supplied to the

interface in the FIFO order of the store buffer, allowing the OS to retrieve and apply them

in the correct program order when handling the imprecise store exception. The intuition

behind this approach is that if the faulting and any younger non-faulting stores are supplied

to the OS and applied by the OS in their original program order, then there are no potential

PC violations that the OS needs to hide as in the previous case. Assuming that S(A) is faulting

while another younger S(B) is not, the core will supply both stores to the architectural interface

in the program order to be applied by the OS. We can formally specify this scenario as follows:

S(A) <p S(B) =⇒ DETECT <m PUT(S(A)) <m

PUT(S(B)) <m GET <m SOS(A) <m

GET <m SOS(B) <m RESOLVE

As shown, the OS always maintains the correct order between SOS(A) and SOS(B) that comes

from the program order of S(A) and S(B). Considering the race condition discussed in the

previous subsection, even though the race between PUT(S(A)) and GET still exists, as long

as L(B) reads 1, which indicates that SOS(B) <m L(B), L(A) must also read 1 because the OS

enforces the order between SOS(A) and SOS(B) such that SOS(A) <m SOS(B) <m L(B) <m L(A),

as shown in Figure 4.2b. On the other hand, if L(B) reads 0, then L(A) can either read 0 or 1,

both of which are not PC violations. We can formally prove that the same-stream approach

obeys all five rules for PC defined in subsection 4.3.2. Due to space limitations, we only show

the proof for the store-store rule S(A) <p S(B) =⇒ S(A) <m S(B) in Proof 4.1. Other rules can be

proved in a similar manner.
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Figure 4.3: Imprecise store exception handling flow.

4.4 Design

This section presents a detailed hardware-software co-design of the architectural interface to

supply faulting stores to the OS. We assume a generic multicore system as shown in Figure 4.4.

We also assume that the imprecise store exceptions are generated by a generic hardware

component situated in the cache hierarchy and away from the cores.

4.4.1 Exception Detection

Figure 6.4 depicts the detection and handling flow for imprecise store exceptions. When the

store buffer receives a retired store from the ROB, it sends a memory request for the store to the

cache hierarchy. In the case of a faulting store, the memory request cannot find the required

cache block, and eventually reaches the required hardware component which generates an

exception and sends a response with an embedded error code back to the requesting core.

The response message backtracks through the cache hierarchy while freeing the occupied

resources, such as MSHRs allocated for the request. The response is received by the L1-D,

which then relays it to the corresponding store buffer entry, completing the detection of the
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Figure 4.4: Modifications to handle imprecise exceptions in a generic multicore system.

imprecise store exception. Then, the store buffer drains the store address, data, byte mask,

and the error code into the Faulting Store Buffer (FSB), which is the backing storage of the

architectural interface that temporarily accommodates faulting stores before supplying them

to the OS, as specified in subsection 4.3.4.

4.4.2 Faulting Store Buffer and Controller

Similar to the x86 virtualization mechanism where the core drains the architectural state of the

guest virtual machine to the Virtual Machine Control Structure upon #VMExit [58], the store

buffer drains faulting stores to the FSB for imprecise store exceptions. The FSB is a per-core

ring buffer located in the main memory with a head and tail pointer, as shown in Figure 4.4.

The FSB is similar to the ring buffers used in OS/virtualization like io uring [29], XEN [12], and

VirtIO [103], or hardware interfaces/protocols like NVMe [87] and RDMA [99] that facilitate

uni-directional order-preserving communication. The order among faulting stores is encoded

in their relative positions in the FSB. We use a Faulting Store Buffer Controller (FSBC) to control

the order in which the faulting stores are written into the FSB. Each core has a private FSBC

co-located with the store buffer, as shown in Figure 4.4. After detecting an exception, the store

buffer sends the faulting stores to the FSBC in the order mandated by the memory model.

The FSBC then writes them to the tail pointer position of the FSB. After each store draining

completes, the FSBC increments the tail pointer and sends a completion response back to the

store buffer.

The FSBC is exposed to the OS using four per-core system registers in the ISA: base, mask, head

pointer, and tail pointer. The OS configures the base and mask to specify the address of the FSB
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in memory, which is allocated by the OS and is not visible to the application. The tail pointer

is written by the FSBC and read by the OS, specifying the position to drain the next faulting

store. The head pointer is written by the OS and read by the FSBC, specifying the position of

the oldest faulting store in the FSB. The OS can retrieve the oldest faulting store by reading the

entry at the head pointer. The OS increments the head pointer to mark the faulting store as

read and retrieves the next faulting store (if present). Once the head pointer matches the tail

pointer, all faulting stores have been handled. The FSB is sized according to the number of

store buffer entries, representing the maximum number of already retired stores that might

need to be drained. Our proposal does not require any further changes to the existing core

microarchitecture. The load/store queues and store buffer can still have their original design

and capacity. In the common case when there are no imprecise store exceptions, the core

works traditionally with the store buffer providing WC performance benefits over SC. The

control and data paths of FSBC are activated only after the store buffer detects an imprecise

store exception.

4.4.3 Exception Handling

On detecting an imprecise store exception, the core stops the instruction fetch and drains all

unfinished stores present in the store buffer to the private per-core FSB without requiring any

special synchronization or cache coherence transactions. After draining each store, the FSBC

sends a completion response to the store buffer which then discards the corresponding entry.

Once all entries are drained, the FSBC triggers an imprecise exception which is attached to the

oldest uncommitted instruction in the ROB, resembling an interrupt. Consequently, all the

uncommitted instructions, including the one with the attached exception, are flushed, and

the core jumps to the corresponding exception handler.

The store buffer dictates the order of stores and associated imprecise exceptions to obey the

underlying memory model. In PC, after the store buffer detects an imprecise store exception

on a faulting store, all the younger uncompleted stores are drained to the FSB in program

order, even if the coherence requests for those stores are still ongoing and potentially result in
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more imprecise exceptions. Similarly, before handling any precise exception detected in the

pipeline, the core drains the store buffer to detect potential imprecise store exceptions. If such

an exception is detected on an older store, the core flushes the pipeline, forgoes the precise

exception, and handles the imprecise exception instead. Only after the successful handling of

imprecise store exceptions, the instruction that triggered the precise exception is re-executed

and re-generates the precise exception again. Overall, the design ensures that all exceptions

are handled in program order.

The OS can correctly identify an imprecise store exception by the dedicated exception code

reserved in the ISA. In the exception handler, the OS first copies all faulting stores from the

FSB to an OS-managed data structure and then starts the traditional exception handling.

When the handler executes, the effects of all the committed user instructions are present in

registers, memory, or the FSB, but the exact architectural state of the faulting store is lost. To

the best of our knowledge, typical exception handlers do not examine the architectural state

corresponding to past retired instructions but receive the necessary information as part of the

exception. Similarly, for imprecise exceptions, the handler retrieves the necessary information

from the FSB, such as the faulting store’s address and data, and handles the exception. In case

of recoverable exceptions, the OS resolves the exception, applies the faulting stores to memory

in the same order as they were retrieved from the FSB, and then resumes the responsible

application. In case of irrecoverable exceptions, the OS terminates the responsible application

and the faulting stores are discarded.

While exception handling is serialized in time, interrupts can be detected concurrently with

imprecise store exceptions. In current systems, handling interrupts does not require draining

the store buffer, which makes it possible for imprecise store exceptions to be detected while

the interrupt handler is executing. We rely on the Interrupt Enable (IE) bit defined in the ISA to

prevent the exceptions from obstructing the interrupt handler. The IE bit is automatically set

when triggering interrupt and imprecise store exception handlers and by the OS when it enters

a non-interruptable critical section. The OS clears the IE bit when it exits from the critical

section or is ready to handle new interrupts or imprecise store exceptions. By manipulating
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the IE bit, the core and OS can serialize the handling of interrupts/imprecise store exceptions

and the execution of critical sections. Moreover, pending/masked imprecise store exceptions

can stop the OS from resuming user applications because the exception cannot be masked in

user mode as the IE bit is hard-wired to zero and not effective in user mode.

In contrast to precise exceptions, an imprecise store exception can correspond to multiple

faulting stores, allowing the OS to handle them in batches. Consider the case where multiple

faulting stores generate major page faults due to demand paging. In the traditional case, each

major page fault triggers a precise exception to let the OS schedule an IO request to load the

corresponding page back. The next page fault can be triggered only after the last IO request

is done and the application is resumed, forcing all IO requests to take place sequentially.

In contrast, within a single invocation of the imprecise store exception handler, the OS can

schedule multiple IO requests for all the faulting stores covered by the exception, effectively

overlapping IO latencies and improving IO throughput. The batching effect also helps reduce

the overhead of invoking the handler, where the context switch, exception dispatch, and other

miscellaneous costs are only paid once per each handler invocation instead of per faulting

store.

4.4.4 OS Requirements

As the FSBC controls the draining of the faulting stores into the FSB, the OS should always

pin the data pages allocated to FSBs in memory, ensuring no page faults. As the FSB is

sized according to the store buffer, the OS only needs to reserve a few 4K pages per core. As

a minimal requirement, the OS should ensure that the imprecise store exception handler

does not trigger further imprecise exceptions. Otherwise, the handler will need to support

recursive exceptions, which significantly complicates the system design. Such recursion is not

supported in traditional systems as well.

In cases where the OS must send some data to the accelerator (e.g., when invoking copy_-

to_user where the user buffer is allocated from the accelerator), the kernel can also generate

imprecise store exceptions. In such cases, the OS can utilize fence instructions to fully contain
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imprecise store exceptions and limit them from affecting other parts of the kernel. For example,

after invoking copy_to_user, the OS can issue a fence instruction to ensure that any potential

OS imprecise exceptions are properly reported and handled. The OS can enhance any function

that may potentially generate imprecise exceptions in this way. As the OS does not directly use

accelerators, we expect only a few OS functions to require such enhancement. Similarly, the

OS should issue a fence before switching to the user mode to avoid OS imprecise exceptions

affecting user applications.

4.5 Prototype and Evaluation

In this section, we introduce our full-system prototype for imprecise store exceptions and eval-

uate our prototype’s silicon overhead, functional correctness, and performance to demonstrate

the feasibility and benefit of handling store exceptions imprecisely.

4.5.1 Prototype Overview

We use XiangShan [133], an open-source, high-performance, Out-of-Order RISC-V CPU written

in Chisel [11] to build our prototype. XiangShan implements the RISC-V Weak Memory

Ordering (RVWMO) [101] as its memory model. We extend XiangShan’s microarchitecture to

support detecting and handling imprecise store exceptions as described in subsection 4.4.2.

We also port our prototype to AWS cloud FPGAs for fast simulation using FireSim [67]. Due

to the limited capacity of cloud FPGAs, our prototype currently only supports two minimal

XiangShan cores. We use Linux 5.15 as the OS and add various device drivers and handlers to

support injecting and handling imprecise store exceptions as specified in subsection 4.4.3.

We synthesize and implement our prototype using Vivado 2020.2. In the routed design, FSBC

consumes 354 CLB LUTs and 763 CLB registers per core, corresponding to only 0.12% and

0.48% of the total core consumption. As FSBC is tightly integrated into the core, some core

modules (e.g., the CSR module that manages system registers and exceptions) are also changed

accordingly. The silicon overhead of these extra modifications is also minimal.
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4.5.2 Error Injection and Handling

We create a hardware component EInject for error/poison injection to model imprecise store

exceptions that accelerators might generate. EInject monitors each non-coherent TileLink-

UL [109] transaction between the LLC and memory. For transactions whose addresses lie in

the memory region reserved by EInject, it looks up a bitmap to check whether the targeting

physical page is marked as faulting. If so, EInject terminates the transaction and generates a

response to the LLC with a bus error by setting the denied bit.

As an MMIO device, EInject exposes two MMIO registers, set and clr, to the software to manage

the bitmap. Writing an address A to these two registers sets or clears the bit corresponding to

the 4KB page of that address in the bitmap. Thus, the software can dynamically inject faults

into the system by setting some pages as faulting and handle these faults by setting the pages

back to non-faulting. We add a device driver in Linux to allow user-level applications to mmap

the memory reserved by EInject and control the errors on the mapped pages by ioctl.

We implement a minimal OS handler for resolving imprecise store exceptions. Since EInject is

the only source of imprecise exceptions in the system, the handler marks the corresponding

page as non-faulting through the EInject interface for each faulting store, performs the store

using normal store instructions, and then increments the head pointer. The handler continues

this action until the head pointer catches the tail pointer, thus indicating that all the faulting

stores have been served.

4.5.3 Functionality Correctness

We use the litmus tests [37] in the RISC-V specification [101] to verify that our prototype

does not violate RVWMO even with imprecise store exceptions. The test suite targets various

ordering relations and constraints specified in RVWMO, as shown in Table 4.7. We modify

each test to allocate the memory for consistency check from the EInject regions. Before

running each test, we also intercept the main function to mark the allocated memory as

faulting, as described in subsection 4.5.2, to inject bus errors on all load, store, and atomic
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Ordering relation Explanation
Cases

covered

Dependencies
Register dependencies for

2366
addr, data, and ctrl

Program order Rd-Rd or Wr-Wr to same the
368

(same location) address from the same core

Preserved
program order

Instruction pairs maintained

733in program order

(Atomic, LR/SC)

External Wr-Rd to the same address
1544

read-from order from different cores

Internal Wr-Rd to the same address
1304

read-from order from the same cores

Coherence order
Wr-Wr total order to

747
the same address

From-read order Rd-Wr to the same address 976

Barriers
Ordering imposed

1581
by barriers

Table 4.7: Ordering rules [5] covered in litmus tests.
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instructions, which generate many precise and imprecise exceptions that are silently handled

by the minimal handler in Linux. We pick all (1600) 2-core litmus tests that can run successfully

on QEMU and run them in a large batch on our prototype system. Our prototype does not

produce any RVWMO violation for all the litmus tests. Overall, we empirically prove that our

prototype does not break the underlying memory model.

4.5.4 Performance: Microbenchmark

We use a microbenchmark with injected imprecise store exceptions to evaluate the perfor-

mance overhead incurred by both hardware and software of our prototype. The microbench-

mark runs multiple iterations of a loop that applies 10 K stores to a 512 MB array. To stress

the imprecise store exception handling, at the start of each iteration, the microbenchmark

picks a random subset of 4KB pages and marks them as faulting using the EInject interface.

The resulting imprecise store exceptions are then transparently handled by the minimal han-

dler. The microbenchmark uses RISC-V’s performance monitor counters to read clock cycle

numbers from the hardware.

Figure 4.5 shows the breakdown of the overhead of handling a single faulting store. The over-

head consists of three parts: 1) microarchitectural overhead, which contains the time spent

on draining faulting stores to the FSB and ROB/pipeline flush, 2) OS overhead of applying the

faulting store, and 3) other OS overheads such as context switches, exception dispatching, etc.

We can see that in the case of our minimal handler, handling each faulting store consumes

roughly 600 clock cycles, among which the microarchitectural overhead is only a tiny frac-

tion. In more realistic cases where the handler has more complex OS logic, the overhead of

microarchitecture and applying the faulting store can be largely ignored.

As explained in subsection 4.4.3, one imprecise store exception can correspond to multiple

faulting stores if they are simultaneously present in the store buffer. If the exception rate is

sufficiently high, then faulting stores are handled in batch, and the OS overhead per faulting

store is reduced significantly, as shown in Figure 4.5. The microarchitectural overhead de-

creases because the store buffer is drained only once for multiple faulting stores. We anticipate
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Figure 4.5: Overhead breakdown of imprecise exceptions with and without batching.

that the overhead reduction will be more prominent in realistic cases if the handler schedules

batched IO operations.

4.5.5 Performance: Real Workloads

We run BFS, SSSP, and BC from GAP as well as Silo and Masstree from Tailbench to evaluate the

end-to-end performance of our prototype. To inject synthetic imprecise exceptions, we modify

the workloads to allocate memory for the graph (in GAP) or the request packets (in Tailbench)

from the EInject region. All the allocated memory regions are marked as faulting before the

workload starts. For GAP, we configure each workload to process a graph with ∼1M nodes

and ∼8M edges to stress the handling of imprecise exceptions. We use the total execution

time, including both the user and OS parts, of the computing kernel as the performance

metric. For Tailbench, we run each workload in the integrated mode for a fixed duration

and use the aggregated throughput as the performance metric. In both cases, the workloads

run as normal Linux processes, experiencing all normal OS activities, including syscalls,

task scheduling, and the handling of timer interrupts, page faults, and injected imprecise

exceptions. For comparison, we run the workloads with and without imprecise exceptions,

denoted as Imprecise and Baseline, respectively, to obtain the relative performance of each
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Figure 4.6: Relative performance of GAP and Tailbench workloads with imprecise store excep-
tions.

workload with imprecise exceptions.

All the workloads can successfully run from the start to the end. During the execution of

each GAP workload, roughly 16K∼32K injected imprecise store exceptions are transparently

handled by Linux. For each Tailbench workload, thousands of imprecise store exceptions

are injected per second, which is much larger than the frequency at which page faults are

triggered in modern workloads. Our proposed prototype works and interacts flawlessly with

the entire hardware/software system.

Figure 4.6 shows the relative performance of various workloads in the Imprecise case. Our

prototype achieves over 96.5% of the Baseline performance for all GAP workloads. Moreover,

the difference in user execution time between the Imprecise and Baseline cases is below 1%.

For Silo and Masstree, handling extra exceptions absent in the Baseline case reduces the

aggregated throughput by less than 4%, which is likely acceptable for the novel paradigm of

imprecise exceptions. Overall, our approach enables imprecise exceptions while maintaining

WC performance without excessive silicon overhead.
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5 Logic-side Address Translation

As explained in section 3.2, the overall address translation in Midgard is divided into two steps:

logic-side translation and memory-side translation. The logic-side translation is required

to translate the virtual addresses that belong to a process-private virtual address space into

Midgard addresses that belong to a unique system-wide Midgard address space that is shared

by all the processes. The logic-side translation is performed at a VMA granularity and also

enforces permission checks based on the VMA permissions specified by the application

programmer and the toolchain. As there are typically only ∼100 VMAs in typical datacenter

workloads, we can easily provision silicon to capture the ∼10 VMAs that are being frequently

accessed, thus ensuring that the VMA-based logic-side translation attains low latency, and

therefore high performance. Overall, logic-side translation serves as the fast step that is always

required in the address translation process in Midgard.

5.1 OS Support

As explained in section 2.2, data in the per-process virtual address spaces is organized in terms

of VMAs. To perform the logic-side translation in Midgard, the OS needs to map the VMAs

present in the per-process virtual address spaces to a system-wide Midgard address space

while deduplicating shared VMAs. Therefore, the OS needs to (i) track all VMAs present in

the per-process virtual address spaces, (ii) perform memory management of the Midgard
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address space, and (iii) expose the Virtual-to-Midgard mappings using a per-process VMA

table. To perform these responsibilities, the OS needs various changes in its traditional core

implementation of VM along with the design of the required tables. This section describes all

the OS changes required to support the logic-side translation in Midgard.

5.1.1 Virtual Address Space Organization

The per-process virtual address spaces are fundamentally organized in terms of logical data

sections, which are called Virtual Memory Areas (VMAs) in existing OSes such as Linux.

Therefore, applications contain data in terms of the stack, heap, code, file, libraries, which

are all represented as VMAs (as shown in Figure 2.1). Each VMA is a variable-sized region as

its size can change throughout execution based on the application behavior, e.g., the stack

grows in size as the application executes more functions or allocates space on the stack. For

ease of implementation, the VMA size in existing systems is constrained to be a multiple of the

page size, i.e., 4KB. Each VMA also has homogenous properties throughout, such as memory

permissions. In case a logical data entity has multiple properties for different data pieces,

multiple VMAs are used to represent it. For example, standard dynamically-linked libraries

have three data portions, i.e., the execute-only code portion, the read-only initialization data

such as strings, and the read-write data that contains variables to be used and modified by

the application, thus requiring a separate VMA for each of the three parts. The sharing of

data among processes using shared memory is also done using VMAs, i.e., each shared region

is a VMA with homogenous properties. Because of such a design, VMAs are the most basic

coarse-grained unit used for tracking data in the virtual address spaces. In co-ordination with

the compiler and linker, the OS is responsible for managing the application’s virtual address

space and maintaining the list of VMAs along with their location in the virtual address space

and any additional permissions and properties. In order to accommodate Midgard, we intend

to expose the same VMAs as an architectural abstraction along with their virtual addresses,

memory permissions, and other optional properties.
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5.1.2 Midgard Address Space Organization

As explained in section 3.1, the logic-side translation requires mapping the VMAs from the

virtual address spaces as MMAs in the Midgard address space. The OS requires tracking the

VMAs present in each process and then mapping the VMAs across all processes to unique

locations in the Midgard address space. The OS is also responsible for deduplicating shared

VMAs across processes (e.g., libraries, files, or shared memory regions) and mapping them to a

unique MMA in the Midgard address space. This VMA deduplication is possible because VMAs

are the basic logical data blocks, and therefore any sharing explicitly takes place in terms of

VMA itself. As each VMA/MMA can grow and shrink during the execution of the process, the

OS needs to ensure that the MMAs mapped to the Midgard address space will rarely or never

collide with each other while growing during the execution. This requirement also applies

to the VMAs placed in the virtual address space (e.g., heap and stack are placed far apart so

that they do not collide). As the Midgard address space is sparsely populated similar to the

virtual address spaces, we have ample capacity to contain data and can lay out the MMAs with

enough space between them. In rare cases when the MMAs collide while growing, they can be

remapped to a different location in the Midgard address space where more space is available,

or they can be split into multiple VMAs/MMAs in case of a space constraint. On one hand,

remapping an MMA is an expensive operation because it requires changing the VA-to-MA

and MA-to-PA mappings along with flushing the concerned data tagged with stale Midgard

addresses from the cache so that it can be brought in again tagged with correct Midgard

addresses. On the other hand, splitting the VMAs/MMAs will result in tracking more overall

VMAs/MMAs which can potentially slow down the logic-side translation.

Overall, the total required size of the Midgard address space depends on the total size of

unique data present in the system. We expect that in most cases, the total size of data in the

system is bound by the total capacity of the storage devices present in the system. Typically,

the storage capacity is at most 10-100x that of the memory capacity present in the system [6].

Therefore, for a system with 10TB of memory, we expect 1000TB of storage and consequently

require 50 bits worth of total addresses to store/map all the data. To ensure that the Midgard
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address space is sparsely populated and avoid collision between MMAs, we would expect that

the Midgard address space is 10-100x overprovisioned, thus requiring the address space to

be sized to 57 or 64 bits. Recent announcements by Intel [55] about increasing the size of

the virtual address space because of the increasing memory and storage capacity lead us to

believe that they size their virtual address spaces with similar reasoning. Sizing the Midgard

address space is similar to sizing the virtual address space because in systems today, a single

process can directly map all or most of the memory and storage capacity, and thus behave

similar to Midgard. However, with network-attached storage systems prevalent today, large

files can consume unprecedented Midgard address space if mapped. Similar to the virtual

address space, these files require software solutions to be accommodated, e.g., the files can

be split so that only the parts being used are mapped, thus requiring more VMAs/MMAs but

consuming little Midgard space under pressure.

Even if we can ensure that the Midgard address space is sized correctly to accommodate all

the data present in memory and storage, we still need to place the MMAs far apart so that

they do not collide while growing in the common case. Therefore, designing and tuning the

algorithm for MMA placement is important to minimize the MMA collisions. We expect that

a memory management algorithm similar to the buddy allocator can be used to solve the

MMA placement problem in most cases. The algorithm divides the Midgard address space

into regions which will contain VMAs with properties and capacity that can be classified into

various categories. For example, VMAs such as code/text/data/bss which do not grow or

shrink during the program execution can be put compactly together in a region as they are

not going to change. In contrast, VMAs such as stack/heap/files can be classified based on

their capacity, where MMAs with less than 1MB capacity are stored in a particular region of

Midgard that is managed with 1MB blocks. As the VMAs grow or shrink, they can be remapped

to other regions which is managed using larger or smaller blocks, e.g. doubling the block

size in the bigger regions while halving the block size in the smaller regions. As the Midgard

address space is logical and sparse, we do not need to particularly optimize for the internal

fragmentation in these blocks.
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Figure 5.1: A diagram of a hypothetical VMA table where each node has two child nodes. The
VMA Table Base Register is a per-core register that contains the base Midgard address of the
VMA table of the currently scheduled process. Each dotted box represents a node in the VMA
table, while the contained horizontal rectangles represent two entries per node. The grey
boxes signify the stored virtual address, while the red boxes signify the stored Midgard address.
Finally, Si indicates the starting virtual address of the region i, Ei indicates the ending virtual
address of the region i, and Ni or Oi indicates the Midgard address of the child node i, or the
offset of the region i in the Midgard address space respectively. The diagram shows that leaf
nodes directly track the regions corresponding to the VMAs, while the non-leaf nodes track
the regions corresponding to their child nodes.

5.1.3 Tracking Virtual-to-Midgard Mappings in VMA Tables

The OS needs to track virtual-to-Midgard address space mappings per process, where the

tracking structure needs to be architecturally exposed. As the mappings are created at a VMA

granularity, we call this per-process architectural structure a VMA table. The VMA table for each

process tracks all the VMAs present and their mappings to MMAs and memory permissions.

As the VMA size is variable and can change throughout the execution, we implement the VMA

table as a B+ tree which is typically used to track variable-sized regions. Accordingly, the ranges

in Karakostas et al. [64] are tracked using a B+ tree as well. The OS stores the VMA tables for
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each process as separate MMAs in the Midgard address space; therefore, any references to the

nodes in the table are made using Midgard addresses. Each node in the tree contains multiple

entries, where each entry contains the base and bound of the tracked region and the address

of the resulting mapped region. Each entry tracks three addresses, thus resulting in 24B size,

where the memory permissions and other optional hardware-exposed attributes can be stored

in the unused bits.

Each entry in the parent nodes in the B+ tree tracks the total range and address of the child

node, while each entry in the leaf nodes tracks the VMA range, address of the correspondingly

mapped MMA, and memory permissions as shown in Figure 5.1. A tree traversal is required

to find the required VMA mapping, where multiple entries in the same node might need to

be looked up to find the correct entry leading to the child node and consequently to the final

MMA address. For a given number of total VMAs, while fatter nodes can reduce the total

number of levels required in the tree as each node can accommodate more children, fatter

nodes also result in more entry lookups per node, therefore creating a tradeoff between node

size and the number of levels in the tree. Our design selects the node size to be 128B, i.e., two

cache lines, to benefit from the next line prefetching and cache line locality. Therefore, each

node can support five entries, thus enabling tracking up to 125 VMAs with a three-level B+

tree. Each process-private B+ tree needs to be architecturally exposed using per-core VMA

Table Base Register like the CR3 in x86 architecture, which will then contain the (Midgard) root

address of the tree. As the B+ tree is architecturally exposed, a hardware tree walker can be

easily designed to walk the tree when required.

While the B+ tree provides node lookups with O(log n) complexity which is similar to the

radix page tables, it is considerably more sophisticated as data structure compared to the

radix page tables prevalent today. We envision that there can be a use case for a simpler

data structure in case of applications that do require fast lookups, but do not require all the

benefits of maintaining a B+ tree for storing their VMA mappings. Fortunately, we can easily

achieve the O(l og n) lookup complexity using a sorted array to store all the leaf nodes that

are present in the B+ tree, thus simply representing a collection of VMA mappings that are

80



5.2 Microarchitectural Support

sorted based on their starting addresses in the process-private virtual address space. In case

of such a sorted array, we can use the binary search algorithm to find the required VMA with

O(log n) complexity. However, when using the sorted array as a VMA table, inserting a new

VMA mapping entry requires shifting all the following VMA mapping entries. Therefore, such

a sorted array can only be used in cases of applications which do not create or delete VMAs

frequently. Overall, depending on the application VMA-usage pattern, the developer can

indicate the OS to use the VMA table as either a B+ tree or a sorted array, assuming that the

hardware implementation supports both formats.

5.2 Microarchitectural Support

The main advantage of having a VMA-based logic-side translation is that there are only a

small number of total VMAs, while only a few of them are frequently used. Such a significant

reduction in the overall translation state with VMAs allows using very little hardware support

to guarantee fast virtual-to-Midgard translation, along with fast access to the cache hierarchy.

Consequently, this section describes the hardware support required at the cores, accelerators,

devices, and various other logic entities to enable fast logic-side translation and accommodate

the Midgard address space.

5.2.1 Cores and Integrated Accelerators

In order to enable fast cache accesses, we need to ensure fast virtual-to-Midgard address

translations, which are required for every memory instruction. As shown in previous pa-

pers [80, 135], while there are typically around 100 VMAs per process in existing workloads,

only ∼10 are frequently accessed and can be efficiently cached in hardware with little resources.

Similar to the existing caching support for address translation with TLBs, we introduce Virtual

Lookaside Buffers (VLBs), which cache the recently used virtual-to-Midgard mappings with

VMA granularity. With only ∼10 active VMAs, we expect that small but correctly provisioned

VLBs with 10-20 entries can provide almost perfect caching with rare VLB misses, thus ensur-

ing fast translations for most memory instructions. In case there is a VLB miss, or if there is no
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caching support in hardware, a VMA table walk will be required to complete the translation,

as explained in subsection 5.1.3. After the VMA-table walk, the obtained mapping is installed

in the VLB for future accesses, where each entry consists of a base and bound address of the

VMA, along with an offset to locate the corresponding MMA in the Midgard address space.

However, there is a fundamental lookup-latency-based design difference between hardware

caching for page-based translations and VMA-based translations. To check if a page-based

TLB entry matches the input virtual address, we need an equality comparison between the

input and cached address, which can be easily done by using parallel comparators for each bit.

However, in the case of VLB lookups, as each entry caches the VMA base and bound addresses,

we require two inequality comparisons as the input address should fall within the base and

bound addresses. The latency of the inequality comparison is typically greater than that of

the equality comparison and depends on the bit-width of the address and the number of

VLB entries compared simultaneously. As existing processors can typically issue at least one

memory request per cycle, the VLB design should perform each lookup in one cycle as well;

otherwise, we risk introducing additional stalls in the common case. We synthesize a simple

VLB design with 16 entries for a 2GHz clock cycle using a 22nm CMOS library to measure the

VLB lookup latency quantitatively. For 64-bit processors, the base and bound registers can be

a maximum of 52 bits each as the VMA capacity is a multiple of the 4KB page size. The access

time for such a VLB is 0.47ns, thus consuming almost the whole clock cycle. While it might

be possible for the evaluated VLB design to meet the timing requirements in some processor

designs, the VLB access time can worsen with an increase in complexity (e.g., increase in the

number of ports or higher clock rate), thus making it unclear if a VMA-based VLB can perform

lookups at the required rate. Therefore, we conservatively assume that the VMA-based VLB

should not directly interact with the core as it might not keep up with the timing requirements

of the core.

In order to combat the timing constraints, we introduce a two-level VLB design where the first

level contains the existing page-granularity mappings, while the second level contains the

VMA-granularity mappings, as shown in Figure 5.2. The L1 VLB is similar to a sectored cache as
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Figure 5.2: A two-level VLB design to accommodate the long latency of range lookups. The
L1 VLB is similar to an existing page-based TLB where each entry represents a fixed-size
page mapping, allowing fast checks with equality comparisons. The L2 VLB contains VMA
granularity mappings, and therefore each entry check requires two inequality comparisons,
thus incurring relatively high latency. Therefore, we suggest a two-level design where the L1
VLB acts as a sectored cache for the L2 VLB while offering fast latency lookups.

it caches page-based mappings, which are constructed dynamically from the VMA-granularity

mappings present in the L2 VLB if the L1 VLB suffers a miss. As the L1 VLB can offer a high

hit rate, most translation requests can be served with fast L1 latency without requiring L2

lookups. Only when the L1 VLB does not contain the required entry, the L2 VLB is looked

up, and if the corresponding VMA is found, then a page-based entry is dynamically created

and installed in the L1 VLB. If the required VMA is not found in the L2 VLB, then a VMA table

walk is performed, the resulting VMA entry is installed in the L2 VLB, and the corresponding

page-based entry is installed in the L1 VLB.

Similar to the TLBs present in existing systems, the coherence among per-core VLBs requires

software support. As a process with multiple threads can have its VMA mappings cached on

multiple cores, any changes to the relevant mappings require a global shootdown to eliminate

the mapping from all cores. However, VMA mapping modifications (because of application

behavior) are relatively infrequent compared to the page mapping modifications (because

of memory management), resulting in low overhead because of the VLB shootdowns. If

required, most of the proposals [9, 10, 72] for optimizing the TLB shootdown overheads are

also applicable for VLB shootdowns.
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Figure 5.3: Logic-side translation is applicable for logic entities such as cores and integrated
accelerators, along with any PCIe-attached devices that might communicate with the cache
hierarchy and memory. All such entities require using a VLB so that they can translate virtual
addresses to Midgard addresses which are required to index the cache hierarchy.

5.2.2 IO Devices and Discrete Accelerators

While the cores and integrated accelerators need a VLB to translate virtual addresses to

Midgard addresses in order to access data from the cache hierarchy, IO devices and discreet

accelerators also need similar functionality. Typical IO devices and discreet accelerators

today are attached to the CPU using interconnects such as PCIe which has an integrated PCIe

controller called ‘Root Complex’ on the CPU chip. The Root Complex is co-located with an IO

MMU, i.e. an MMU that is specifically used for IO devices and integrated accelerators. There

is only one IOMMU for each PCIe controller, and therefore it is shared across all the cores

and integrated accelerators so that they can interact with the IO devices and vice versa. In

traditional systems, IOMMUs also have their own set of IO TLBs which are used to cache the

address translation mappings frequently used by the IO devices, and commercial IO TLBs

today have thousands of entries. However, in Midgard, even the IO devices need to perform

logic-side translation so that they can translate the required virtual addresses to corresponding

Midgard addresses which can then be used to index the cache hierarchy, and eventually be

translated to physical addresses for memory lookups if required. Therefore, each IOMMU

should be coupled with an IO VLB instead of an IO TLB, as shown in Figure 5.3. As IO VLBs will

perform address translation at a VMA granularity, we need significantly fewer IO VLB entries
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compared to IO TLB entries. We expect that typical IO VLBs will require only tens of entries to

support the frequent interactions with the IO devices.

5.2.3 Accessing the Cache Hierarchy

As the cache hierarchy is indexed using the physical address in the existing address translation

scheme, the cache hierarchy lookups are serially dependent on the virtual-to-physical address

translation. Until recently, processors supported the VIPT (Virtually-Indexed Physically-

Tagged) optimization [90] which enables a partial overlap between the address translation

and the cache lookup by using the virtual address bits to index the cache but using the

physical address bits to check the tag, where only the tag checks are dependent on the address

translation. In existing systems with page-based address translation, the last 12 bits of the

address corresponding to the offset inside the 4KB page do not change after the translation,

thus leading to the VIPT insight of using offset bits to index the cache. The page offset bits are

then used to find the correct set in the cache, requiring the cache index bits to be contained in

the offset bits, while the non-offset bits undergo address translation and are then serially used

for the tag comparison. For cache blocks of 64B size, 6 bits are reserved for block offset, while

the remaining 6 bits in the page offset can be used as set index bits, thus allowing up to 64 sets

in the cache.

As the number of sets is limited by the page offset bits in VIPT, the cache capacity can only be

increased by adding more ways that are expensive as they require extra comparators. However,

because of the increasing demands on cache capacity, existing processors have stopped using

the VIPT optimization to add more sets, thus requiring the address translation to be completed

serially before the cache can be accessed. E.g., the recent ARM cores such as Cortex A76 [129]

support 64KB 4-way associative L1 caches, thus indicating that there are 256 sets requiring

eight set-index bits which cannot be accommodated in the page offset bits. Introducing

the Midgard address space allows decoupling the allocation granularity in the virtual and

Midgard address space from the physical address space (4KB). Therefore, the virtual and

Midgard address space can have a larger allocation granularity, e.g., 2MB, by ensuring that the
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VMA/MMA capacity is always a multiple of 2MB. Even if the VMA/MMA capacity is increased

by 2MB, not all need to be mapped to physical pages until required. A bigger granularity

increases the number of offset bits that do not change after translation, thus allowing more set-

index bits and ensuring that the L1 caches can accommodate more sets with a corresponding

VIMT (Virtually-Indexed Midgard-Tagged) optimization without requiring numerous ways for

higher cache capacity.

One of the main advantages of introducing the Midgard address space is that the logic-side

translation happens at a VMA granularity and therefore is significantly easier to support in

hardware. In contrast, while the memory-side translation still takes place at a page granularity,

it is only required if the requested cache block is not found in the cache hierarchy and must

be retrieved from memory, thus requiring physical addresses. With the trend of increasing

cache hierarchy capacities already visible in existing processors, we believe that the cache

hierarchies will serve cache blocks for the majority of the memory instructions, therefore

requiring the memory-side translation only in rare cases. While Intel Pentium 4 [2] featured

only 256KB of LLC capacity, existing CPUs such as Intel Kabylake [130] provide 128MB of

eDRAM memory-side cache capacity, and AMD Zen3 [128] provides 256MB of SRAM cache

capacity spread across its chiplets with a total of 64 cores. There also are commercial products

such as Intel Knights Landing [113] which features a 16GB multi-channel DRAM cache that

provides data access at high bandwidth. Moreover, the upcoming Intel Sapphire Rapids [54]

promises to provide 64GB of stacked HBM2 memory using 4× 16GB HBM2 stacks, where the

HBM2 can also be configured as a hardware-managed cache (similar to Intel Knights Landing)

in conjunction with a backing DDR5 memory pool.

With such high cache hierarchy capacities, it is most probable that the frequently used data

resides in the cache, and thus most of the memory instructions can retrieve the data from the

cache hierarchy itself instead of requiring physical memory accesses. Thus, well-provisioned

cache hierarchies can avoid memory-side translation in most cases and eliminate the address

translation overhead. Apart from simply filtering most memory accesses, the cache hierarchy

also filters the temporal locality present in the remaining accesses. We expect that most of
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the accesses that miss in the cache hierarchy are targeted towards a recently non-accessed

block but might be located near a recently-accessed block as the spatial locality is still present

in the accesses. As there is no or little temporal locality left in the accesses missing in the

cache hierarchy, there is no significant benefit from provisioning large, specialized caches for

memory-side translation. Assuming that Midgard addresses are 64-bit, there are 12 more bits

per address than existing 52-bit physical addresses, requiring extra bits in the cache hierarchy.

For a 16-core system with 64KB L1 data and instruction caches, along with a 1MB LLC slice

per core, there are a total of ∼320K cache blocks, thus requiring 480KB extra silicon to support

the Midgard-addressed cache hierarchy.
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6 Memory-side Address Translation

As explained in section 3.2, the overall address translation in Midgard is divided into two

steps: logic-side translation and memory-side translation. The memory-side translation is

required to translate the Midgard addresses that belong to a unique system-wide Midgard

address space that is shared by all the processes into physical addresses that belong to a unique

but capacity-constrained address space managed by the OS. The memory-side translation is

performed at a page granularity because it is required for effective capacity management of

the underlying memory device. The memory-side translation also enforces permission checks

based on the page-based permissions specified by the OS for deploying memory management

optimizations such as copy-on-write. The memory-side translation is also responsible for

maintaining page-based usage information using access and dirty bits. While page-based

translations are slow compared to VMA-based translations, the memory-side translation is

performed infrequently as it is only required when a needed cache block is not found in the

cache hierarchy and thus has to be retrieved from the memory. As shown in Table 2.1, modern

datacenter servers feature GB-scale cache hierarchy capacity thus allowing modern online

services to host their working set in the cache hierarchy, leading to only infrequent misses in

the cache hierarchy that ultimately require memory-side translation. Overall, memory-side

translation serves as the slow step that is only infrequently required in the address translation

process in Midgard.
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6.1 OS Support

As explained in section 2.2, data in the system-wide physical address space is organized in

terms of pages to efficiently manage the physical address space capacity while eliminating

external fragmentation. To perform the memory-side translation in Midgard, the OS needs

to map the MMAs present in the system-wide Midgard address space to pages present in a

system-wide physical address space. The mapping from MMAs to pages typically observes a

one-to-many pattern as each MMA is broken down and mapped to various physical pages. The

only exception is observed when the OS performs memory management optimizations such

as copy-on-write, and then parts of multiple MMAs might be mapped to the same physical

pages, thus providing a many-to-many mapping between MMAs and pages. Overall, the OS

breaks down an MMA and maps it to a multitude of pages which can be potentially scattered

throughout the physical address space, thus creating a large amount of metadata that has to be

looked up for each memory-side translation, therefore causing performance concerns similar

to traditional address translation. However, as memory-side translation is only required in case

of infrequent misses in the cache hierarchy, it does not impact performance in the common

case. Therefore, the OS needs to (i) track all MMAs present in the system-wide Midgard address

space, (ii) perform memory management of the physical address space using pages, and (iii)

expose the Midgard-to-physical mappings using a system-wide page table. To perform these

responsibilities, the OS needs various changes in its traditional core implementation of VM

along with the design of the required tables. This section describes all the OS changes required

to support the memory-side translation in Midgard.

6.1.1 Physical Address Space Organization

The system-wide physical address space is organized in terms of pages, which are fixed-

sized units used to efficiently manage the physical memory capacity and eliminate external

fragmentation, as explained in section 2.2. Therefore, while the application organizes its data

in terms of VMAs, the OS transparently manages the underlying physical address space using

pages (as shown in Figure 2.1) while providing various memory management features such as
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over/under-subscription and swapping data to storage devices. 4KB is used as the typical page

size in modern systems today. As the OS performs physical memory management in terms of

pages, each page can have different permissions and attributes depending on which MMA it

belongs to, or what memory management optimizations are being applied by the OS. While in

traditional systems, the data sharing among processes is resolved at a page granularity, in case

of Midgard, the data sharing is resolved at a VMA/MMA granularity, and therefore each page

typically belongs to only one MMA unless the OS applies memory management optimizations

such as copy-on-write.

6.1.2 OS Permissions for Memory Management

Memory permissions today can be conceptually broken down into two classes: permissions

specified by the applications and the OS, respectively. The application permissions are re-

quired for the semantic correctness of the program and are specified by the application and

toolchains together at a VMA granularity. Using Midgard, the application permissions are

architecturally exposed using the VMA tables and perform protection checks for every memory

access at the core side itself. In contrast, the OS permissions are enforced for memory capacity

optimizations at a page granularity by the OS, e.g., in the case of a copy-on-write optimization,

the OS can deduplicate the common data across processes and have the processes use the

same physical pages. In existing systems, the application and OS permissions are merged and

architecturally exposed using the process-private page tables.

However, using Midgard, as the application permissions are specified separately at a VMA

granularity, the page-granularity-based OS permissions cannot be superimposed on the same

anymore. Moreover, as the OS permissions are not specific to any process but are applicable

for the whole system, they should instead be exposed using the system-wide page tables

containing the Midgard-to-physical address mappings. Figure 6.1 shows an example of a

copy-on-write optimization with Midgard in the case of a process fork. First, the VMAs from

the original process are created in the newly created process as well, but as they refer to the

same data, they both point to the same MMA. Moreover, the OS permissions denoted by
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(a) Before Process 0 forks, the OS has marked all pages with rw permissions.

System-wide Physical Address Space

Process 0’s Virtual Address Space

System-wide Midgard Address Space
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Stack0 Stack1
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(b) After Process 0 forks, the OS maps the Stack1 VMA to the Stack MMA and marks all pages with ro permissions.

System-wide Physical Address Space

Process 0’s Virtual Address Space

System-wide Midgard Address Space

Stack0

Process 1’s Virtual Address Space

Stack0 Stack1

rw

rw ro ro ro ro ro

Stack1

rw
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(c) After Process 0 attempts to write to its stack, the OS receives an exception for an attempted write on a page with
ro permissions. The OS then creates a copy of the page and remarks the page with rw permissions.

Figure 6.1: Copy-on-write example using Midgard and memory-side translation permissions.
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memory-side translation change from rw to ro for all the pages so that a write initiated by

any process causes a trap leading to the duplication of the page. Then, when any process

initiates a write, an exception is triggered, and a new MMA is created for the second process

as both the processes will contain different data after the write. Finally, a new physical page

with rw permissions is allocated for the second process, and the permissions of the original

page change from ro to rw enabling both the processes to write to their respective pages. As

in the example, in the case of aggressive OS optimizations for memory capacity, different

addresses in the Midgard address space may point to the same physical page, therefore giving

rise to synonyms. However, it is ensured that when multiple Midgard addresses are mapped to

the same physical page, the physical page is marked as read-only (ro), thus ensuring that the

synonyms do not actively create cache coherence problems. As these synonyms only consume

extra space in the cache hierarchy under different Midgard addresses while being contained

in the same physical page, we consider these synonyms benign and use them to implement

OS-based memory optimizations using Midgard.

Such permissions also allow supporting other memory management optimizations other

than copy-on-write. For example, Linux currently implements Kernel Same-page Merging

(KSM) [121] as an optimization to save memory capacity where the kernel identifies physical

pages with the same content, and then deduplicates them to save space. KSM has been

shown to provide significant benefits especially in virtualized environments where each

virtual machine might be running similar kernel and libraries. Midgard can also accommodate

such memory optimizations in the memory-side translation using the permission bits as for

copy-on-write. For example, in case of KSM, after identifying duplicate pages belonging to

two different MMAs, the OS needs to free one of the pages, and make the other page read-only

while ensuring that both of the original MMAs now point to the same page. Even though

mapping the same page to multiple MMAs can create synonyms in the cache hierarchy, as

the memory-side permissions for the page are marked as read-only, the read-only synonyms

will not create any problems with cache coherence. If the applications try to write to the

concerned page, then the OS will trigger a fault and duplicate the page before modifying the

contents.
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Figure 6.2: A diagram of a hypothetical page table where each node has two child nodes. The
Page Table Base Register is a system-wide register that contains the physical address of the root
of the system-wide Midgard page table. Each dotted box represents a node in the page table,
while the contained boxes represent two entries per node. Every contained box represents an
entry that stores the physical address of the child node, or the page in case of the leaf nodes.
Finally, Ni indicates the physical address of the child node i, while the Pi indicates the physical
address of the page i tracked by the corresponding entry. The diagram shows that leaf nodes
directly track the pages, while the non-leaf nodes track the pages corresponding to their child
nodes.

6.1.3 Tracking Midgard-to-Physical Mappings

As the Midgard and physical address spaces are unique for the whole system, the Midgard-to-

physical address mappings are also maintained at a system level instead of a per-process level.

The OS is responsible for tracking the address mappings for the whole system and storing them

in an architecturally-exposed structure. As the physical address space is managed in fixed-size

pages to utilize the memory capacity efficiently, the Midgard-to-physical address mappings

are also created at page granularity. As in existing systems, these page-based mappings can

be easily tracked with a system-wide radix page table which offers storage benefits by not

allocating space for unmapped regions. We call this system-wide architectural structure a

Midgard page table, as shown in Figure 6.2. The Midgard page table needs to be architecturally
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exposed using a system-wide Page Table Base Register unlike the per-core registers. For a

Midgard address space of 57 bits, we would need a page table with five levels, while for 64

bits, we would need a page table with six levels. Finally, similar to the existing systems, all the

addresses used in the Midgard page tables are physical addresses where the non-leaf nodes

contain the physical address of their child nodes, while the leaf nodes contain the address of

the physical pages containing actual data.

6.2 Microarchitectural Support

After the logic-side translation completes and is followed by the cache hierarchy lookups, if

the requested cache block is not found in the cache hierarchy, then we require a memory-side

translation to convert the Midgard address to the physical address as the latter is required to

index the physical memory and fetch the required cache block. As the memory-side translation

happens away from the cores, there is an inherent resource and latency slack possible due to

its infrequent occurrence because most of the memory instructions are served the requested

data directly from the cache hierarchy. As both the Midgard and physical address spaces are

unique in the system, the memory-side translation also pertains to the whole system instead

of separate processes, allowing a myriad of optimizations as described in this section.

6.2.1 Bottom-Up Page-Table Walk

As explained in subsection 5.2.3, the cache hierarchy filters most of the temporal locality

from the memory accesses that did not find the required cache block in the cache hierarchy.

Therefore, there is little benefit in provisioning specialized caches for memory-side translation.

If there are no specialized caches, or if the required mapping is not present in the specialized

caches, then the memory-side translation requires a Midgard page-table walk similar to

existing systems. However, the introduction of the Midgard address space allows optimizing

the page-table walk by utilizing the logical nature of the address space.

Similar to existing systems, the page-based mappings for memory-side translation are stored
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(a) Layout in Physical Memory. (b) Layout in Midgard.

Base L1MA
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PTBRPA

Figure 6.3: A hypothetical layout of a two-level radix page table with a radix degree of two. In
the diagram, (a) shows the page-table layout in the physical memory, where every page-table
node can be in different parts of the physical address space, while (b) shows the page-table
layout in the Midgard address sapce where all the page-table nodes are placed contiguously,
thus allowing direct offset-based lookups of the page-table entries.

in a radix page table as it provides capacity benefits by not reserving space for unallocated

mappings, as shown in Figure 6.3a. Assuming a hypothetical 64-bit Midgard address space,

the OS might need to track mappings for at most 252 pages where each mapping occupies

8B, thus requiring a total of 255B worth of space. However, as the physical memory capacity

is limited (assuming 16TB, i.e., 44 bits), only 232 pages will be present, thus requiring only

235B worth of space. Therefore, a radix page table is highly beneficial for representing such a

configuration as it wastes only a little space on page-table nodes that are unused and therefore

requires only a little bit more than 235B space. For simplicity, we ignore the space requirement

of the upper levels in the page table as their sizes are much smaller.

However, the space savings in the radix page table come at the cost of lookup latency, as each

leaf node access requires the complete radix tree traversal. As the Midgard address space

is logical and sparse, it allows reserving a large capacity region without being concerned

about the efficient usage of the address space. Therefore, inspired by In-Cache Address

Translation [132], we propose a method of mapping the page tables contiguously in the

Midgard address space such that every entry can be directly looked up in the Midgard address

space and consequently the cache hierarchy without requiring a full radix page-table walk. If

the required page-table entry is not present in the cache hierarchy, a bottom-up page-table

walk is required, which turns into a regular page-table walk as soon as a parent node is found
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in the cache hierarchy.

The Midgard address space allows the existing system-wide Midgard page table to be remapped

in its expanded form, as shown in Figure 6.3b. In the Midgard address space, each page table

level can be completely expanded while also allocating space for nodes that are not allocated

in the default version of the page table resident in the physical memory. Therefore, the last

level will indeed occupy 255B of space in the Midgard address space, but as Midgard is a logical

address space, we can easily spare such space for the page tables. Mapping the page table in

its extended form allows accessing the required page-table entry at any level using a simple

base + offset calculation. E.g., calculating the Midgard address of the Nth entry in a page-table

level would require adding ’N × size of page-table entry’ to the base address of the page-table

level. We can also store all the levels contiguously with each other, therefore eliminating the

need to record each level’s base addresses. Using the calculated Midgard address, we can

directly store and lookup page-table entries in the cache hierarchy, which is already indexed

using Midgard addresses.

If the cache block corresponding to the required page-table entry is present in the cache

hierarchy, then the entry can be directly accessed using the calculated address without re-

quiring the full Midgard page-table walk. However, if the required cache block is not present,

then it should be fetched from physical memory, thus requiring its physical address, which is

contained in the parent page-table entry. Therefore, there will be a recursive attempt to read

the parent page-table entry from the cache hierarchy to obtain the required physical address

for each page-table entry that encounters a miss in the cache hierarchy. If the parent page-

table entry is present in the cache hierarchy, then the physical address of the child page-table

entry will be read, and the child table entry will be brought in the cache hierarchy. If none

of the required parent/child page-table entries are present at any level, then the bottom-up

page-table walk would revert to reading the physical address of the root node of the page

table from the Page Table Base Register (PTBR). After the PTBR is read, a full page-table walk is

required directly from the physical memory similar to existing systems. We observe that the

average Midgard page-table walk requires looking up only one or two page-table levels based
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Figure 6.4: The flowchart depicts all the steps required for the completion of a memory access
while considering hits and misses in the various caches provisioned for address translation
and data.

on typical workload characteristics. Enabling direct accesses to any page-table level allows

short-circuiting the existing page-table walk if the required entry is found, thus providing the

same benefits as the MMU caches present in existing systems. Therefore, the introduction

of the Midgard address space allows the generic cache hierarchy to behave as both the TLB

and the MMU caches as it enables direct lookups of the leaf page-table entries and parent

page-table entries without any specialized structures.

6.2.2 Explicit Caching for Page-Table Entries with MLBs

As explained in subsection 6.2.1, the memory-side translation does not necessarily require

specialized caching structures and can directly read the required page-table entries from the

cache hierarchies. As the memory-side translation happens near the memory, a practical
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design choice would be to use the shared LLC tiles only while caching the page-table entries

in the cache hierarchy. However, existing systems enjoy the fast access of page-table entries by

bringing them even to the private L1 caches. Therefore, specialized fast caches can be provi-

sioned for memory-side translation if the workload requires, which we call Midgard Lookaside

Buffer (MLB). The operations for completing memory access are shown in Figure 6.4.

The introduction of the Midgard address space enables two optimizations in the design of

MLBs. As the Midgard page tables are unique in the whole system, the MLBs that will cache the

recently-used page-table entries will also be a system-wide hardware structure in contrast to

the per-core TLBs in existing systems. Therefore, the MLBs will be implemented as a logically

centralized structure even if they are implemented in physically-distributed slices, similar to

the shared LLC slices present in existing systems. Being a centralized structure, the MLB can

benefit from constructive interference if various cores use the same set of physical pages and,

therefore, share the MLB entries.

Next, the MLB need not be necessarily implemented like existing TLBs, i.e., it does not need to

tag address translation mappings with their Midgard addresses. Because of the direct lookup

of page-table table entries possible in the cache hierarchy, the Midgard address of a page

can be directly transformed into the Midgard address of the corresponding page-table entry.

Therefore, the MLB can use the Midgard address of the page-table entry directly, thus cache

the page-table entry instead of caching a mapping. Such addressing enables the MLB to be

implemented as a generic cache design which is only used for caching the page-table entries.

6.2.3 NUMA Systems and Huge Pages

Implementing the memory-side translation in NUMA systems come with various challenges.

In a single socket system, it is typical for the physical pages to be interleaved among memory

controllers and the corresponding memory devices, as shown in Figure 6.5. For a practical

design with low contention, the Midgard page addresses will also need to be interleaved among

all the memory controllers. If the Midgard page maps to a different memory controller than

the required physical page, it makes little sense to introduce hops among memory controllers.
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Figure 6.5: The diagram shows the application of the Midgard address in a NUMA system.
Each tile consists of a core, VLB, a private L1 cache, and a shared LLC tile. The MLBs are
co-located with the memory controllers (MC) which are connected to the memory devices.

Therefore, a practical design should interleave the Midgard addresses in the same pattern as

the physical addresses, thus requiring that the Midgard-to-physical address mapping also

respects the interleaving. E.g., a Midgard page that maps to memory controller zero should

always be mapped to a physical page that also maps to the memory controller zero. As shown

in previous proposals [95], such a combination requires the VM mappings to be set associative

instead of fully associative. Thus, for each Midgard page, a Home MLB slice is defined based

on its address, e.g., in a system with four memory controllers, bit 12-13 will be used as the

MLB slice index.

If the memory-side translation supports huge pages, the actual 4KB pages will be distributed

among all the memory controllers. The memory-side translation mappings for huge pages will

have their separate interleaving policy across the memory controllers and require a separate

Home MLB slice for each page size [30, 88]. Thus, the memory-side translation mapping can

be read from one MLB slice, but then the data is read from a different memory controller,

which is unavoidable as each mapping refers to multiple small pages spread across memory

controllers. In such a system, Home MLB slices for all the huge page sizes based on the input

Midgard address can either be probed serially or in parallel to find the mapping, and then the

hit/miss decision is communicated to the Home MLB slice for the 4KB page, which will then
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either initiate a page-table entry read in case of a miss, or directly read the physical page in

case of a hit. The hops among the memory controllers can be eliminated at the cost of extra

MLB space as the huge page mapping can be replicated among the MLBs as the contained

pages are accessed. However, such an implementation will require a broadcast-based MLB

shootdown as each page-table entry can be spread across multiple memory controllers.

Finally, if the MLB does not contain the required translation, or if the system does not support

MLBs, a page-table walk is required to complete the memory-side translation. The page-table

entries present in the cache hierarchy are interleaved across LLC slices based on their Midgard

addresses, similar to the standard data interleaving in existing systems. Therefore, the home

MLB slice will need to lookup the page-table entry in the corresponding LLC slice and then

install the entry in the MLB slice.

6.2.4 Memory-side Translation Coherence

The centralized nature of the Midgard page table significantly simplifies the memory-side

translation coherence compared to the TLB coherence [9, 10, 72] in existing systems. If the

system does not support MLBs and the memory-side translation requires directly reading

the page-table entry from the cache hierarchy, then the coherence among page-table entries

is directly managed by the stock cache coherence protocol. If the OS attempts to modify a

page-table entry, then the cache coherence protocol will guarantee that any other copies of

the page-table entry in the cache hierarchy are invalidated before the modifications are made.

Thus, no software support is required for memory-side translation coherence in such a system.

If the system supports MLBs which directly use the Midgard page address as tags (instead of

the Midgard page-table entry address), then the corresponding MLB entry has to be invali-

dated separately as it is not part of the cache coherence protocol. Even in such a situation,

because the MLBs are logically centralized, the translation coherence does not require a global

shootdown broadcast as each page-table entry can only reside in a statically-determined MLB

slice, thus requiring a direct shootdown. Finally, if required, the coherence can be controlled

entirely in hardware as the Midgard address of a page can be directly transformed to the
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Midgard address of its page-table entry and vice versa.

We mathematically analyze the average TLB and MLB shootdown latency. We assume an

N × N mesh system with four memory controllers at the mesh corners. We assume that

the shootdown traffic from each core is uniformly distributed among all the MLB slices. In

Midgard, the MLB slice containing the required entry can be directly determined based on the

address. Therefore, the average latency to access these MLB slices is N −1, as seen in Figure 6.5.

However, a global TLB shootdown is required in traditional systems, which searches all the per-

core TLBs for the required entry. Therefore, the latency is bound by the access to the farthest

possible core for each shootdown. We divide the mesh into four symmetrical quadrants

to calculate the average shootdown latency over all the cores. The farthest core always lies

in the quadrant opposite to the core initiating the shootdown. Assuming the bottom-left

core represents (i=1, j=1), and the top-right core represents (i=N, j=N), we can calculate the

shootdown latency for any (i,j) pair. Let f(i,j) represent the shootdown latency for a core at (i,j)

co-ordinate. Therefore, average shootdown latency:

=∑N /2
i=1

∑N /2
j=1 f (i , j )/(N 2/4)

=∑N /2
i=1

∑N /2
j=1 (N − i )+ (N − j )/(N 2/4)

= 2N − ((N /2)
∑N /2

i=1 i − (N /2)
∑N /2

j=1 j )/(N 2/4)

= 2N − (N
∑N /2

i=1 i )/(N 2/4)

= 2N − (N ∗ (N /2)∗ (N /2+1)/2)/(N 2/4)

= 3N /2−1

Thus, the MLB shootdowns have N /2 lower latency than the traditional global shootdowns.

6.2.5 Access Bits

Access bits are used in modern processors to track which pages have been recently touched

so that the OS can ensure that the recently used pages are not kicked out of memory and
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swapped to storage because they are expected to be used again. If the OS can do a good job of

keeping the recently used pages in memory, then most of the memory accesses performed by

the applications can be directly satisfied from memory while incurring few page faults, thus

benefitting performance. As access bits are required for memory capacity management, they

are required for each page and therefore are included in the leaf page table entries.

Figure 6.6 depicts the flowcharts describing the setting of access bits in traditional systems

and Midgard. In traditional systems, the access bits are set by only the MMU present per

core, while are reset by only the OS. Assuming that the access bit for a particular page is

originally unset, the access bit is set when an application performs a memory request to the

corresponding page which then causes a TLB miss thus triggering a page table walk. At the

end of the page table walk, the MMU uses an atomic memory operation to set the access bit.

This process is repeated every time a TLB miss is encountered for a particular page and the

page table walk is performed. In conjunction with the MMU, the OS periodically resets the

access bit so that it can track which pages were accessed in a particular epoch. Every time the

OS resets an access bit, it also needs to perform a TLB shootdown to ensure that the very next

memory access to the corresponding page will require performing the page table walk, and

thus will set the access bit. Finally, the OS uses various techniques such as the clock algorithm

or the second chance algorithm to identify which pages have been recently used and should

be kept in memory while which pages can be replaced.

However, in Midgard, the access bits require a bit of redesign to ensure the same semantics as

traditional systems. The logic-side translation in Midgard is based on VMAs, and therefore is

not responsible for page-based information such as access bits. Therefore, the access bits can

only be tracked during the memory-side translation. Similar to the traditional systems, the

access bits in Midgard can be set when the first memory access to the page is performed, which

then causes a miss in the cache hierarchy and requires memory-side translation resulting in a

Midgard page table walk. The memory-side MMU can set the access bit using atomic memory

operations every time the memory-side translation is performed, similar to the traditional

system. The OS will also need to reset the access bit periodically to track the recently accessed
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pages. However, every time the OS resets the access bit, it also needs to make sure that the

next access to that page will set the access bit. In Midgard, if the cache block required for

the memory access is present in the cache hierarchy, the memory-side translation will not be

required and thus the access bit will not get set. Therefore, to ensure the exact same semantics

for access bits as in the systems today, the OS needs to flush the corresponding page from the

cache hierarchy as well, thus guaranteeing that the next access will lead to a cache hierarchy

miss and result in memory-side translation which will consequently set the access bit.

Flushing the pages out of the cache hierarchy can have significant performance overheads

because of the cache miss, especially if the page is being frequently used. Moreover, as

the cache hierarchy gets larger in capacity, the flush operations themselves get increasingly

expensive. Previous papers [47, 131] make the observation that as the memory capacity in

the system increases, the overall fraction of data that is cold also increases. Therefore, in

high-capacity memory servers today, it is easier to find cold pages to replace, and therefore

we do not need to refresh the access bits for the hot pages frequently. Based on the above

insight, we can conclude that the access bits are typically only reset for the cold pages which

are anyways not actively being used, and thus are not present in the cache hierarchy.

We can further optimize the performance overheads incurred by the cache flushing operations

caused when resetting the access bits. As we are typically resetting access bits for only cold

pages that are not present in the cache hierarchy, searching the cache hierarchy for corre-

sponding cache blocks is anyways not useful. Therefore, we propose that we can use filtering

and prediction techniques to identify if a particular block is not present in the cache hierarchy,

and thus skip the cache flush operation for the same. The same can be attained by using

mechanisms such as a bloom filter [120], which can monitor the cache insertion and eviction

operations to predict if a particular cache block is present in the cache hierarchy. A bloom

filter is particularly suitable in such a case because it ensure no false negatives, thus ensuring

no risk in case of a ‘cache block not present’ prediction. Overall, using a bloom filter can

significantly reduce the overhead of the cache flush operations, and thus reduce the overheads

of resetting the access bit in Midgard.
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6.2.6 Dirty Bits

Dirty bits are used in modern processors to track which pages have been modified, where

the obtained information can then be used to decide if the page has to be written back to the

backing storage device to update the contained copy, when evicting the page from memory.

Therefore, dirty bits are simply used to reduce the bandwidth consumed by writeback options

when writing pages to the backing storage. Similar to access bits, dirty bits are also tracked per

page, and therefore are contained in every leaf page-table entry.

Figure 6.7 depicts the flowcharts describing the setting of dirty bits in traditional systems

and Midgard. In case of traditional systems, the dirty bit is set by the MMU on the first store

operation to a particular page. Every subsequent store operation then requires checking if the

dirty bit is already set, and sets the dirty bit if it is not already set. Always reading the dirty bit

from the page table entries would consume significant bandwidth from the cache hierarchy.

Therefore, the dirty bit is cached along with the translation information in the TLBs to provide

fast checks for every new store operation, and when the first store operation takes place, the

dirty bit is set in both the TLBs and the page table entries present in the cache hierarchy. While

the MMU is responsible for setting the dirty bit, the OS is responsible for clearing it when it is

evicting the page, or simply writing it back to the storage device for persistence reasons [45].

When the OS resets the dirty bit, it needs to writeback the dirty page to the backing storage

and shootdown the corresponding stale TLB entry.

In case of Midgard, the dirty bit cannot be set or checked for each store operation as done

in the traditional systems. In Midgard, the logic-side translation is performed at the VMA

granularity, and therefore cannot represent dirty bits belonging to contained pages. Therefore,

the dirty bits will be represented in the memory-side translation, similar to the access bits. In

case of Midgard, the knowledge of a store operation to a particular page can only reach the

memory-side translation when the corresponding dirty cache blocks are being evicted from

the cache hierarchy. Therefore, when the first dirty block in a page is evicted and goes through

memory-side translation for writeback to memory, the dirty bit will be updated in the page
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Figure 6.7: Flowcharts describing the setting of bits bits by an MMU in (a) Traditional System,
and (b) Midgard.
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table entry. Similar to traditional systems, the dirty bit can also be cached in the MLBs for

faster lookup, which can benefit workloads with streaming writes. Finally, when the OS wants

to check if a page is dirty or not, it will first need to flush the page from the cache hierarchy to

ensure that the dirty bits present in the page table entry are updated. Fortunately, in case of a

page eviction, such a flush in the cache hierarchy is anyways required, and thus does not pose

any additional performance overhead.

6.2.7 Memory-side Permissions

Memory access permissions are an important component in the virtual memory implemen-

tation and originate from the both the application and the OS. The application along with

the toolchain provides permissions required for semantic correctness of the program at a

VMA granularity. For example, the code VMA is supposed to have only read and execute

permissions. In contrast, the OS provides permissions that are required for memory man-

agement optimizations. For example, swapping out a page renders the permissions invalid,

while optimizations such as copy-on-write and Kernel Same-page Merging require marking

a page as read-only even if the application requires the page with read-write permissions.

Traditional systems coalesce the permissions obtained from both the application and the OS,

and represent the resulting permissions in the page table entries.

In Midgard, the permission checks have to be split between the logic-side and memory-side

translations. As explained in section 5.1, the logic-side translation represents the permissions

specified by the applications at a VMA granularity. However, the permissions specified by the

OS do also need to be represented for the correct implementation of memory management

optimizations. As the OS specifies permissions at a page granularity for capacity management,

these permissions are best represented in memory-side translation, similar to the access and

dirty bits. However, unlike the access and dirty bits, the memory-side permissions need to be

checked for every memory access while ensuring high performance.

While the logic-side permissions are present in the VLBs, as explained in subsection 5.2.1, we

propose that the memory-side de permissions are present along with the cache blocks as part
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of the tags, which is similar to the implementation of memory permissions in Virtual Cache

Hierarchies [23, 24]. Therefore, the cache block tags will now contain the Midgard address, the

memory-side permissions replicated for each cache block, and the bits associated with the

cache coherence protocol. For each memory operation, the logic-side permissions are checked

at the core, while the memory-side permissions present in the tag are checked when the

required cache block is brought and accessed from the L1 cache. An alternate implementation

for memory-side permissions is also possible by restricting the coherence states, e.g., if a

page is not writable, then the corresponding cache blocks should never attain the exclusive or

modified state as in MESI protocol, thus requiring the memory-side permission checks at the

directories. However, such approaches require interaction with the cache coherence protocols

which are an intricately complex system on their own, and therefore such approaches are less

likely to be adopted. Finally, in cases where the memory-side permission check determines

that the required memory operation cannot take place, then an exception is raised as explained

in 4, requiring the OS to step in. For example, if the OS has swapped out a page, then the

memory-side translation for the corresponding page will fail at the MMU, triggering a page

fault exception. Similarly, in case of copy-on-write optimizations, the required cache block

might be present in the cache hierarchy but only with read-only permissions, thus causing

any write operation to fail and trigger an exception.
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7 Evaluation

This section presents our evaluation methodology, followed by an evaluation of Midgard’s

opportunity for future-proofing virtual memory by exposing the already-exiting VMA abstrac-

tion for address translation in hardware. First, we characterize the VMA count and usage

present in modern workloads to show that VMA-based translation can indeed be fast. Then,

we present Midgard’s performance sensitivity to cache hierarchy capacity compared to both

traditional TLB hierarchies and huge pages. We finally present an evaluation of hardware

support required to enhance Midgard’s performance when the aggregate cache hierarchy

capacity is limited.

7.1 Methodology

We implement Midgard on top of QFlex [89], a family of full-system instrumentation tools

built on top of QEMU. Table 7.1 shows the detailed parameters used for evaluation. We model

a server containing 16 ARM Cortex-A76 [129] cores operating at 2GHz clock frequency, where

each core has a 64KB L1 cache and 1MB LLC tile, along with an aggregate 256GB of memory.

Each core has a 48-entry L1 TLB and a 1024-entry L2 TLB that can hold 4KB or 2MB pages

translations. For Midgard, we conservatively model an L1 VLB with the same capacity as

the traditional L1 TLB along with a 16-entry L2 VLB. The cores are arranged in a 4x4 mesh

architecture with four memory controllers at the mesh corners.
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Core 16× ARM Cortex-A76 [129]

Traditional L1(I,D): 48 entries, fully associative, 1 cycle

TLB Shared L2: 1024 entries, 4-way, 3 cycles

L1 64KB 4-way L1(I,D), 64-byte blocks, 4 cycles (tag+data)

LLC Base 1MB/tile, 16-way, 30 cycles, non-inclusive

Memory
256GB capacity (16GB per core)

4 memory controllers at mesh corners

Midgard
VLB: L1(I,D): 48 entries, fully associative, 1 cycle

L2 (VMA-based VLB): 16 VMA entries, 3 cycles

Table 7.1: System parameters for simulation on QFlex [89].

As Midgard directly relies on the cache hierarchy for address translation, its performance

is susceptible to the cache hierarchy capacity and latency. We evaluate cache hierarchies

ranging from MB-scale SRAM LLC to GB-scale DRAM caches and use AMAT to estimate the

overall address translation overhead in various systems. To approximate the impact of latency

across a wide range of cache hierarchy capacities, we assume three ranges of cache hierarchy

configurations modeled based on AMD’s Zen3 Rome systems [128]: 1) a single chiplet system

with an LLC scaling from 16MB to 64MB and latencies increasing linearly from 30 to 40 cycles,

2) a multi-chiplet system with an aggregate LLC capacity ranging from 64MB to 256MB for up

to four chiplets with remote chiplets providing a 50-cycle remote LLC access latency backing

up the 64MB local LLC, and 3) and a single chiplet system with a 64MB LLC backed by a

DRAM cache [113] using HBM with capacities varying from 512MB to 16GB with an 80-cycle

access latency. Our baseline Midgard system directly relies on Midgard page-table walks

for performing memory-side translations. We also evaluate Midgard with optional support

for memory-side translation to filter requests for Midgard page-table walk for systems with

conservative cache hierarchy capacities. We use Average Memory Access Time (AMAT) as a

metric to compare the impact of address translation on memory access time. We use full-

system trace-driven simulation models to extract miss rates for cache and TLB hierarchy

components, assume constant (average) latency based on LLC configuration (as described

above) at various hierarchy levels, and measure memory-level parallelism [27] in benchmarks

to account for latency overlap.
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7.2 Logic-side Translation

Dataset Size (GB) Thread Count

0.2 0.5 1 2 4 8 12 16 24 32

BFS
51 51 52 52 52 60 68 76 84 108

SSSP

Table 7.2: VMA count against dataset size and thread count.

To evaluate the full potential of Midgard, we use graph processing workloads including the

GAP benchmark suite [17] and Graph500 [83] as they provide highly irregular access patterns

and have a high reliance on the address translation performance. The GAP benchmark suite

contains six different graph algorithm benchmarks: Breadth-First Search (BFS), Betweenness

Centrality (BC), PageRank (PR), Single-Source Shortest Path (SSSP), Connected Components

(CC), and Triangle Counting (TC). We evaluate two graph types for these algorithms: uniform-

random (Uni) and Kronecker (Kron). Graph500 is a single benchmark with behavior similar to

BFS in the GAP benchmark suite. The Kronecker graph type uses the Graph500 specifications

in all benchmarks. All graphs evaluated contain ∼200GB worth of graph vertices each for 16

cores [16].

7.2 Logic-side Translation

VMA Usage Characterization: We begin by confirming that the number of unique VMAs

needed for large-scale real-world workloads, which directly dictates the number of VMA

entries required by the L2 VLB, is much lower than the number of unique pages. To evaluate

how the VMA count scales with the dataset size and the number of threads, we pick BFS

and SSSP from the GAP benchmark suite as they exhibit the worst-case performance with

page-based translation. Table 7.2 depicts the change in the number of VMAs used by the

benchmark as we vary the dataset size from 0.2GB to 2GB. Over this range, the VMA count

only increases by one, possibly from the change in algorithm going from malloc to mmap for

allocating large spaces. The VMA count plateaus when scaling the dataset from 2GB to the

total size of 200GB (∼ 225 pages) because larger datasets use larger VMAs without affecting

their count. Table 7.2 also shows the required number of VMAs while increasing the number of
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Benchmark

TLB MPKI
in existing systems

Logic-side translation

Hit rate with L2 VLB capacity (%) Required
VLBUni Kron 1 2 4 8

BFS 22.6 28.9 53.91 79.46 96.89 99.51 16

BC 0.50 0.50 54.49 83.39 97.26 99.99 8

PR 70.8 68.0 45.03 75.71 98.73 99.97 8

SSSP 74.1 70.1 39.52 79.08 89.88 99.93 8

CC 22.5 18.3 60.95 93.68 97.51 100 8

TC 61.6 0.20 76.92 98.87 99.99 100 4

Graph500 - 27.1 55.76 77.76 95.21 99.34 16

Table 7.3: Analysis of the logic-side translation: for each workload, the table depicts the TLB
MPKI in existing systems, the hit rate for different L2 VLB capacities, and the overall required
VLB capacity.

threads in our benchmarks using the full 200GB dataset. The table shows that each additional

thread adds two VMAs comprising a private stack and an adjoining guard page. Because these

VMAs are private per thread, their addition does not imply an increase in the working set of

the number of L2 VLB entries for active threads.

Finally, Table 7.3 depicts the required L2 VLB size for benchmarks. The table presents the

power-of-two VLB size needed for each benchmark to achieve a 99.5% hit rate. In these

benchmarks, >90% accesses are to four VMAs, including the code, stack, heap, and a memory-

mapped VMA storing the graph dataset. TC is the only benchmark that achieves the required

hit rate with four VLB entries. All other benchmarks require more than four entries but

achieve the hit rate with eight, with BFS and Graph500 being the only benchmarks that require

more than eight entries. These results corroborate prior findings [80, 135] showing that ∼10

VLB entries are sufficient even for modern server workloads. We, therefore, conservatively

over-provision the L2 VLB with 16 entries in our evaluation.
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7.3 Memory-side Translation

7.3 Memory-side Translation

7.3.1 Memory-side Translation without MLBs

Address Translation Overhead: Besides supporting VMA translations directly in hardware, a

key opportunity that Midgard exploits is that a well-provisioned cache hierarchy filters the

majority of the memory accesses, requiring memory-side translation for only a minuscule

fraction of the memory requests. Much like in-cache address translation [132], a baseline

Midgard system uses page-table walks to perform the memory-side translation for memory

requests that are not filtered by the cache hierarchy. In contrast, a traditional TLB-based system

typically requires provisioning more resources (e.g., TLB hierarchies, MMU caches) to extend

address translation reach with an increased aggregate cache hierarchy capacity. Figure 7.1

compares the overall address translation overhead as a fraction of AMAT between Midgard

and TLB-based systems. We plot the geometric mean of the address translation overhead

across all benchmarks. We also vary the cache hierarchy configurations (as described in 7.1) in

steps to reflect aggregate capacity in recent products such as Intel Kabylake [130], AMD Zen3

Rome [128], and Intel Knights Landing [113].

Figure 7.1 shows that address translation overhead in traditional 4KB-page systems running

graph workloads with large datasets even for minimally sized 16MB LLCs is relatively high

at around 17%. As shown in Table 7.3, the TLB misses per thousand instructions (MPKI) in

4KB-page systems is overall relatively high in our graph benchmarks (except BC and TC with

Kron graphs). These miss rates are also much higher than those in desktop workloads [65] or

scaled down (e.g., 5GB) server workloads [66]. The figure shows that Midgard achieves only 5%

higher overall address translation overhead as compared to traditional 4KB-page TLB-based

systems for a minimally sized LLC while virtually eliminating the silicon provisioned for per-

core 1K-entry L2 TLBs (i.e., ∼16KB SRAM), obviating the need for MMU caches and hardware

support for memory-side translation and page walks.

As the dataset sizes for server workloads increase, modern servers are now featuring increas-

ingly larger aggregate cache hierarchy capacities [113, 128, 130]. With an increase in aggregate
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Figure 7.1: The graph shows the address translation overhead (%) as part of the overall Average
Memory Access Time (AMAT) for varying cache hierarchy capacity. The X-axis shows the
overall cache hierarchy capacity along with various products such as Intel Kabylake [130],
AMD Zen3 [128], and Intel Knights Landing [113].
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cache capacity, the relative TLB reach in traditional systems decreases while the average time

to fetch data decreases due to higher cache hit rates. Unsurprisingly, the figure shows that the

address translation overhead for traditional 4KB-page TLB-based systems exhibit an overall

increase, thereby justifying the continued increase in TLB-entry counts in modern cores. The

figure also shows that our workloads exhibit secondary and tertiary working set capacities

at 32MB and 512MB where the traditional 4KB-page system’s address translation overhead

increases because of limited TLB reach to 25% and 33% of AMAT, respectively.

In contrast, Midgard’s address translation overhead drops dramatically at both secondary and

tertiary working set transitions in the graph thanks to the corresponding fraction of memory

requests filtered in the cache hierarchy. Table 7.4 also shows the amount of memory-side

traffic filtered by 32MB and 512MB LLCs for the two working sets. The table shows that 32MB

already filters over 90% of the memory-side traffic in most benchmarks by serving data directly

in the Midgard namespace in the cache hierarchy. With a 512MB LLC, all benchmarks have

over 99% of traffic filtered with benchmarks using the Kron graph, (virtually) eliminating all

translation traffic due to enhanced locality. As a result, with Midgard, the resulting address

translation overhead (Figure 7.1) drops to below 10% at 32MB and under 2% at 512MB of LLC.

Next, we compare average page-table walk latency between a 4KB-page TLB-based system and

Midgard. Because Midgard fetches the leaf page-table entries from the cache hierarchy during

a page walk in the common case, on average, it requires only 1.2 accesses per walk to an LLC

tile which is (∼30 cycles) away (Table 7.4). In contrast, TLB-based systems require four lookups

per walk. While these lookups are performed in the cache hierarchy, they typically miss in L1,

requiring one or more LLC accesses. As such, Midgard achieves up to 40% reduction in the

walk latency compared to TLB-based systems. BC stands as the outlier with the high locality in

the four lookups in L1, resulting in a lower TLB-based average page walk latency than Midgard.

Comparison with Huge Pages: To evaluate future-proofing virtual memory with Midgard, we

also compare Midgard’s performance against an optimistic lower bound for address transla-

tion overhead using huge pages. Huge pages provide translation at a larger page granularity

(e.g., 2MB or 1GB), thereby enhancing TLB reach and reducing the overall address transla-
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Benchmark

Traffic filtered by cache hierarchy (%) Average page-table walk cycles

Uni Kron Uni Kron

32MB 512MB 32MB 512MB Existing Midgard Existing Midgard

BFS 95 99 95 100 51 31 30 30

BC 100 100 100 100 20 35 20 35

PR 85 100 89 100 45 30 42 30

SSSP 87 98 90 100 47 31 38 30

CC 98 100 97 100 39 34 44 31

TC 80 92 100 100 48 30 48 30

Graph500 - - 96 100 - - 32 30

Table 7.4: Analysis of the memory-side translation: for each workload, the table depicts the %
of memory operations filtered by the cache hierarchy and the average page-table walk cycles
in memory-side translation.

tion overhead. Prior work [85, 93, 135] indicates that creating and maintaining huge pages

throughout program execution requires costly memory defragmentation and frequent TLB

shootdowns [9, 10]. Huge pages may also inadvertently cause a performance bottleneck, e.g.,

when migrating pages in a NUMA system [91]. We optimistically assume zero-cost memory

defragmentation and TLB shootdown to evaluate a lower bound, thus allowing ideal 2MB

pages for address translation that do not require migration. We also assume the same number

of L1 and L2 2MB TLB entries per core as the 4KB-page system.

Figure 7.1 also depicts a comparison of address translation overhead between Midgard and

ideal 2MB-page TLB-based systems. Not surprisingly, a 2MB-page system dramatically out-

performs both TLB-based 4KB-page and Midgard systems for a minimally sized 16MB LLC

because of the 500x increase in TLB reach. Much like 4KB-page systems, the TLB-based huge

page system also exhibits an increase in address translation overhead with an increase in

aggregate LLC capacity with a near doubling in overall address translation overhead from

16MB to 32MB cache capacity. In contrast to 4KB-page systems, which exhibit a drastic drop in

TLB reach from 256MB to 512MB LLC capacity with the tertiary data working set, huge pages

allow for a 32GB overall TLB reach (i.e., 16 cores with 1K-entry L2 TLB) showing little sensitivity

to the tertiary working set fitting. Instead, because for the DRAM cache configurations, we

assume a transition from multiple chiplets to a single chiplet of 64MB backed up by a slower
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512MB DRAM cache with a higher access latency, a larger fraction of overall AMAT goes to

the slower DRAM cache accesses. As such, the address translation overhead drops a bit for

DRAM caches but increases again with aggregate cache capacity. In comparison to huge pages,

Midgard’s performance continuously improves with cache hierarchy capacity until address

translation overhead is virtually eliminated. Midgard reaches within 2x of huge pages’ perfor-

mance with 32MB cache capacity, breaks even at 256MB, which is the aggregate SRAM-based

LLC capacity in AMD’s Zen3 Rome [128] products, and drops below 1% beyond 1GB of cache

capacity. While Midgard is compatible with and can benefit from huge pages, Midgard does

not require huge page support to provide adequate performance as traditional systems do.

Overall, Midgard provides high-performance address translation for large memory servers

without relying on larger page sizes.

7.3.2 Memory-side Translation with MLBs

While we expect future server systems to continue integrating larger cache hierarchies, our

memory-access intensive workloads exhibit a non-negligible degree of sensitivity to address

translation overhead (i.e., > 5%) with aggregate cache hierarchy capacities of less than 256MB.

In this subsection, we evaluate hardware support for memory-side translation using MLBs.

While MLBs (like TLBs) complicate overall system design, the higher complexity may be

justified by the improvements in address translation overhead for a given range of cache

hierarchy capacity. We first analyze the required aggregate MLB size (i.e., the total number of

MLB entries across the four memory controllers) for the GAP benchmarks for a minimally sized

LLC at 16MB. Figure 7.2a illustrates the MPKI (i.e., the number of memory-side translations

per kilo instruction requiring a page walk) as a function of the log scale of MLB size. The figure

shows that while the MLB size requirements across the benchmarks largely vary, there are

approximately two windows of sizes that exhibit memory-side translation working sets. The

primary working set, on average, appears to be roughly around 64 aggregate MLB entries,

with many benchmarks exhibiting a step function in MPKI. The latter would provision only

four MLB entries per thread, indicating that the memory-side translations result from spatial
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streams to 4KB page frames in memory. Beyond the first window, the second and final working

set of memory-side translations is around 128K MLB entries, which is prohibitive, suggesting

that practical MLB designs require only a few entries per memory controller.

Figure 7.2b illustrates the address translation overhead for cache hierarchies of up to 512MB

while varying the number of aggregate MLB entries from 0 to 128 averaged over all the GAP

benchmarks. Midgard in the figure refers to the baseline system without an MLB. The figure

corroborates the results that, on average, 64 MLB entries are the proper sweet spot for 16MB

LLC. Comparing the figure with Figure 7.1, we see that for a 16MB LLC, Midgard can break

even in address translation overhead with traditional 4KB-page systems with only 32 overall

MLB entries (i.e., eight entries per memory controller). In contrast, practical provisioning for

MLB will not help Midgard break even with an ideal huge page system for a minimally sized

LLC, assuming that the memory-side translation in Midgard does not use huge pages itself.

The figure also shows that with only 32 and 64 MLB entries, Midgard can virtually eliminate

address translation overhead in systems with 256MB and 128MB aggregate LLC, respectively.

Moreover, with 64 MLB entries, Midgard outperforms huge pages for LLC capacity equal to or

greater than 32MB. Finally, for an LLC capacity of 512MB or larger, there is minimal benefit

from hardware support for memory-side translation.
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8 Future Work and Conclusion

The Midgard address space allows for the reduction of the address translation overheads by

providing fast translation at a VMA granularity for the common case cache hierarchy accesses

while requiring slow translation at page granularity only if the required cache block is not

present in the cache hierarchy and has to be fetched from memory. While the Midgard address

space requires the redesign of various OS mechanisms to retain compatibility, it also creates

interesting challenges about various system aspects such as how virtualized systems will work

if the Midgard address space is included in the guest and the host OS, and how Midgard

can work with innovating heterogenous memory hierarchies along with memory pooling

technologies. This chapter will briefly describe the future research directions with Midgard

along with a thesis conclusion.

8.1 Path to Practical Adoption

While our simulator-driven evaluation in chapter 7 shows the potential benefits of Midgard,

there is still a long way to go towards the commercial adoption of Midgard in datacenter-scale

computing systems because significant changes are required on both the hardware and the

OS side. In this thesis, we mainly focused on the traditional processors and applications, but

there are many other cases which require compatibility and can benefit from Midgard.
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On the hardware side, Midgard introduces fast logic-side translation, and a comparatively

heavy-weight memory-side translation. We need to provide logic-side translation for cores,

accelerators, and even IO devices, as explained in subsection 5.2.1 and subsection 5.2.2. All

such logic-side translation implementations need verification in order to ensure that the

hardware is correctly designed, and does not give way to modern security vulnerabilities.

Because logic-side translation does not require maintaining a lot of logic or silicon state, we

expect that the verification can be easily performed in comparison to the traditional TLB-

based translation mechanisms. In contrast, the memory-side translation has to be adopted

to be able to work with multi-socket or multi-chiplet designs, where the responsibility of

performing the translation has to be co-located with either the cache controllers, or the

memory controllers. The memory-side translation also needs to be adopted to the emerging

horizontally or vertically-tiered memory hierarchies [47] built using heterogeneous memory

hierarchies. In such cases, the memory-side translation might have various constraints, such

as aggressive caching requirements in case of extremely slow backing memory devices, but

with built-in latency slack opportunities.

On the OS side, Midgard requires redesigning the support for VM which is a core feature of

modern OSes. Such fundamental changes might touch various subsystems, such as page-

replacement design and algorithms, optimizations such as copy-on-write, support for file

systems and file caches, support for huge pages and memory compaction in conjunction with

Midgard. In particular, because Midgard requires the cache hierarchy to be indexed using the

Midgard address space, we need to ensure that there are no homonyms or synonyms present

in the address space for full compatibility with the traditional cache coherence protocols.

However, in modern OS implementations, there are various practices that can create such a

problem, e.g., the direct mapping of the physical address space in Linux, or the implemen-

tation of the file cache as a collection of random pages which can then generate synonyms

with the file VMAs/MMAs being used by applications. Therefore, the OS designers have to

rethink such subsystems that interact with VM to ensure compatibility with Midgard. While

Midgard requires significant changes on both the hardware and OS front, we expect that it will

provide new opportunities for better performance and simpler design using reduced silicon
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requirements, thus paving the way forward for post-Moore datacenter servers.

8.2 Virtualization

With the increasing number of users of datacenter servers, datacenter operators aim to co-

locate multiple users on the same physical server to increase the overall server utilization and

benefit from a lower cost per user. Virtualization [22] is an important technique to support

such multi-tenancy in modern cloud deployments. Virtualization provides the illusion of

isolation to each virtual machine operated by an individual user, while hosting multiple virtual

machines on the same physical server. The memory isolation provided in virtualization is

fundamentally based on VM. Therefore, as the memory capacity in servers increases and the

traditional VM implementation results in significant performance degradation, virtualized

deployments result in a significantly higher performance degradation compared to native

deployments [39, 40, 80].

The introduction of Midgard promises to reduce the performance overheads of VM in a native

deployment, but it is unclear if similar benefits could be realized in a virtualized deployment as

well. The benefits of Midgard rely on delaying the page-based translation to physical addresses,

and invoking it only when accessing the physical memory. The same optimization should

reap benefits in a virtualized deployment as well where page-table walks for translation to

physical addresses (both guest and host) incurs a higher performance overhead because of the

two-dimensional nature of the page-table walk. However, in order to benefit from the above

optimizations, we require both the guest and host OS to be Midgard compliant because the

underlying processor architecture will be Midgard compliant.

Assuming a hypothetical system where both the guest and host OS support Midgard, we can

adopt the current two-dimensional page-table walk logic to work for the logic-side translation.

Both the guest and host can specify their own logic-side translations, and the hardware is

responsible for performing a two-dimensional VMA-table walk, where it first converts the

guest virtual addresses to guest Midgard addresses, and then consequently converts the
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guest Midgard addresses to host Midgard addresses. Both these translations can happen at

a VMA granularity, and therefore be fast in nature, while the resulting host Midgard address

can be used to index the cache hierarchy as in native systems. Even when performing a

two-dimensional translation with VMAs, we expect the logic-side translation to have high

performance because there are only a limited number of VMAs to consider from both the

guest and host, and therefore the resulting translations can be effectively cached in the mi-

croarchitecture. Overall, the virtualized logic-side translation will perform the permission

check for both the guest and host logic-side translation, and translate the original guest virtual

address to host Midgard address.

However, it is a bit trickier to design the memory-side translation in a virtualized deployment.

Let us assume that the guest OS is operating in a full-virtualization mode where it does not

know that it is being virtualized, and the host OS also supports in maintaining this illusion. In

this case, the two-dimensional memory-side translation needs to pass both the guest and host

memory-side translations (which are equivalent to typical page table walks) before accessing

physical memory. While it seems possible to design a standard two-dimensional page table

walk, there are a few complications that need to be taken care of. For example, as we are using

the host Midgard address to index the cache hierarchy, the two-dimensional memory-side

translation is required to convert the host Midgard address to host physical address (which

is equivalent to the host memory-side translation itself). However, we first need to check

the guest memory-side permissions before performing the physical memory access, which

can be only done by using the guest Midgard access and the guest page-table walk in the

the guest memory-side translation. Therefore, we need to track the guest Midgard address

corresponding to every host Midgard address which is not trivial in hardware.

However, the above complication also encourages the idea of a para-virtualized system where

the guest OS is aware that it is being virtualized, and can cooperate with the host OS to ease

the microarchitecture and benefit the overall performance. The main insight behind such a

para-virtualized system is that the guest does not have a direct control on physical memory,

and it is only the capacity management performed by the host OS that controls the physical
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memory. Therefore, if the guest OS can be made aware that it is being virtualized, then it can

completely skip the capacity management (and guest memory-side translation), and let the

host OS control the physical memory as usual. In such a system, the virtualized memory-side

translation will be equivalent to the typical host memory-side translation, where the host

Midgard address is translated to the host physical address. The guest OS in such a system will

not have a physical address space of its own at all.

Overall, the introduction of Midgard opens up new possibilities to holistically redesign the

virtualization subsystem by removing the redundant capacity management being performed

by the guest. Optimizing the overall virtualization design will lead to performance benefits

which will probably be even higher than those achieved by Midgard in a native deployment. In

summation, the introduction of Midgard indicates a path to possibly eliminate the overhead

of memory virtualization.

8.3 Memory Pooling

As the memory requirements of online services increases, system designers struggle to con-

stantly increase the memory capacity in servers to meet the demand. With the end of Moore’s

law, adding more and more DRAM is no longer an option because DRAM has stopped scaling

in capacity [47], and adding additional DRAM DIMMs is both prohibitively expensive and

limited by the number of pins available in the processor. Therefore, system designers are

looking at supporting heterogenous memory hierarchies which can contain a collection of

various memory technology devices such as storage class memory [45, 56]. Another option

that is being explored is memory pooling.

As a datacenter contains thousands of servers, there exists natural imbalance in the memory

capacity utilization across the servers. Therefore, pooling memory across servers allows servers

with higher memory capacity requirement to use the unutilized memory capacity from other

servers with a slight performance overhead [86]. With the introduction of new technologies

like RDMA and CXL [33, 99], such memory pooling designs are becoming increasingly feasible.
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CXL in particular supports cache coherent memory pooling without requiring any additional

software primitives.

However, when using such memory pooling technologies, VM is an important abstraction

for transparently deploying applications without the applications explicitly controlling the

data residing in local vs remote memory devices. In VM-compliant systems with memory

pooling, the large memory capacity will quickly become a performance bottleneck. However,

as explained in this thesis, Midgard can delay the translation to physical addresses even in

case of pooled memory systems, and thus benefit the overall performance.

Another interesting possibility with Midgard is to share the Midgard address space among

multiple servers, and use the individual OSes running on these servers to collaborate as in a

distributed system. The presence of a shared Midgard address space allows easing coherent

accesses and synchronization primitives among servers, thus leading to the relaxation of

requirements from technologies such as CXL. Overall, the introduction of memory pooling

in servers increases the overall pressure on VM because of the availability of large memory

capacity, and Midgard can help in reducing the performance overheads in such deployments.

8.4 Conclusion

Despite decades of research on building complex TLB and MMU cache hardware and hard-

ware/OS support for huge pages, address translation has remained a vexing performance

problem for datacenter systems with increasing memory demands. As computer systems

designers integrate cache hierarchies with higher capacity, the cost of address translation has

continued to surge.

In this thesis, we realized and evaluated a proof-of-concept design of Midgard, an intermediate

namespace for all data in the coherence domain and cache hierarchy, in order to reduce ad-

dress translation overheads and future-proof the VM abstraction. Midgard decouples address

translation requirements into core-side access control at VMA granularity and memory-side

translation at page granularity for efficient capacity management. Midgard’s decoupling
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enables fast core-side virtual-to-Midgard address translation using leaner hardware support

than traditional TLBs and filtering costlier Midgard-to-physical address translations to only

situations when the cache hierarchy does not contain the required cache blocks. As pro-

cessor vendors increase the cache hierarchy capacities to fit the primary, secondary, and

tertiary working sets of modern workloads, Midgard to physical address translation becomes

infrequent.

We used AMAT analysis to show that Midgard achieves only 5% higher address translation

overhead than traditional TLB hierarchies for 4KB pages when using a 16MB aggregate LLC

while requiring only small hardware caching structures (16 entries) instead of TLB hierarchies

with 1000s of entries. Midgard also breaks even with traditional TLB hierarchies for 2MB pages

when using a 256MB aggregate LLC. For cache hierarchies with higher capacity, Midgard’s

address translation overhead drops to near zero as secondary and tertiary data working sets fit

in the LLC, while traditional TLBs suffer even higher degrees of address translation overhead.

This thesis described the first of several steps needed to demonstrate a fully working sys-

tem with Midgard. We focused on a proof-of-concept software-modeled prototype of key

architectural components. Overall, we showed that Midgard can utilize the increasing cache

hierarchy capacity to directly reduce the address translation overheads, while providing a

variety of opportunities to reduce performance overheads that exist at different levels of the

hardware-software stack in modern datacenter platforms today.
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