
Dynamic Scheduling for Event-Driven Embedded
Industrial Applications

Hossein Taji∗, José Miranda∗, Miguel Peón-Quirós†, Szabolcs Balasi‡, and David Atienza∗
∗Embedded Systems Laboratory (ESL), EPFL, Switzerland, †EcoCloud, EPFL, Switzerland, ‡Nespresso, Switzerland
Email: ∗†,{hossein.taji, jose.mirandacalero, miguel.peon, david.atienza}@epfl.ch, ‡Szabolcs.Balasi@rd.nestle.com

Abstract—This paper addresses the optimization of embedded
platforms to meet the computing and real-time requirements of
cyber-physical systems and IoT applications, including embedded
intelligence. In this context, schedulers are vital in enhancing
processor utilization in industrial contexts. Although existing
research has focused primarily on the schedulability of periodic
tasks, event-driven tasks better represent these new embedded
intelligence scenarios in the real world. This work explores static
and dynamic scheduling policies within a general scenario and
a specific case study based on an actual industrial application.
The proposed dynamic scheduler has been integrated into the
FreeRTOS kernel and has been employed to conduct all of
our experiments on industrial products within the smart home
domain. Our results show that, while we can respect real-time
requirements, our proposed dynamic scheduling can improve
the performance of event-driven applications by reducing missed
task deadlines by up to 60%. Moreover, we have also developed
a lightweight version of our dynamic scheduler for industrial
products that reduces average timing overhead for task selection
and insertion by up to 34.7% and memory overhead for task
creation and list scheduling by up to 74.7% compared to state-
of-the-art static alternatives.
Index Terms—Event-Driven Tasks, Scheduling, RTOS, Embed-

ded Systems, Industrial Applications

I. INTRODUCTION

Cyber-physical systems (CPS) are evolving into increasingly
intelligent entities as they embrace a multitude of advanced
functionalities such as machine learning. However, the integra-
tion of these functionalities also results in higher processing
demands. As a result, it is crucial to fully leverage the
capabilities of the embedded platforms used in these systems.
This is particularly important for CPS deployed in industrial
products, especially considering the growing adoption of in-
telligence by industrial companies in their product offerings
[1]. In fact, optimizing the integrated embedded platforms in
industrial products can result in significant cost savings for
mass production budgets.
In CPS with real-time constraints, the scheduler manages

and synchronizes all tasks, guaranteeing the different time re-
quirements [2]. Generally, schedulers are categorized into two
groups: static and dynamic. The former is based on priority-
assigned tasks. These priorities are established during system
design and remain fixed, leading to consistent scheduling
decisions during operation. While determining these priorities,
especially when managing numerous tasks, is challenging and
their optimality can be constrained in specific scenarios [3]–

[5], even more significant is the struggle faced by static sched-
ulers in handling the dynamic nature of applications where
tasks are triggered by events. In contrast, a dynamic scheduler
makes such a decision based on parameters computed during
run-time. Previous studies have demonstrated that dynamic
scheduling techniques tend to outperform static ones for a
set of periodic tasks when dealing with non-overloaded task
sets [3].
When discussing real-time systems in the state of the art, the

focus has been on handling periodic tasks [3]–[8]. However,
in CPS and especially industrial scenarios, tasks are often
executed in an unpredictable event-driven manner rather than
on a precise periodic schedule. Solely relying on periodic tasks
for system performance assessment oversimplifies analysis and
results in inaccurate conclusions. Therefore, industrial real-
time embedded systems must be defined as event-driven and
more research is needed to deal with event-driven applications.
In this context, low-overhead real-time operating systems

(RTOSes) are commonly used for embedded industrial real-
time applications. However, most of these RTOSes use static
schedulers with preemptive priority-based schemes. This lim-
itation hinders their optimal schedulability performance, par-
ticularly for event-driven industrial applications. The reluc-
tance of RTOSes to implement dynamic scheduling can be
attributed to concerns about high overhead. To address this
issue, we propose a lightweight and low-overhead method to
implement an event-driven dynamic scheduler. This method
demonstrates that dynamic scheduling for event-driven tasksets
can be implemented with lower overhead than typical static
implementations. Moreover, our dynamic scheduler can be
easily integrated into existing RTOS kernels. For instance, we
demonstrate how to integrate our scheduler with FreeRTOS.
The key contributions of the paper are summarized below:

• Novel exploration of schedulers for event-driven em-
bedded industrial applications by comparing static and
dynamic policies.

• Provision of performance results for a real-world indus-
trial application, including the impact in performance of
AI tasks.

• Proposal of a lightweight dynamic scheduler that reduces
both timing and memory overhead compared to its static
counterpart.

The remainder of this paper is structured as follows. Section II
offers a theoretical formulation and a motivational example979-8-3503-2599-7/23/$31.00 ©2023 IEEE

for understanding scheduling processes. Section III discusses
specific related work on real-time and event-driven scheduling,
existing RTOSes, and dynamic scheduling implementation.
The implementation of the dynamic scheduler and its inte-
gration into the RTOS kernel are detailed in Section IV. The
experimental setup and results are presented and discussed in
Section V. Finally, Section VI outlines the key conclusions of
this work.

II. PRELIMINARIES

This section presents a description and formulation of a
system model to facilitate the understanding of the various
parameters involved in the set of tasks of an application. In
addition, a motivational example is provided to illustrate the
timing discrepancies between static and dynamic scheduling.
A. System model
In an event-based system, there is a taskset denoted by
Γ = {τ1, τ2, ..., τN} that comprises N event-driven tasks. Each
task is defined by two main parameters: τn = {Cn, Dn},
where n ∈ 1..N . Here, Cn is the worst-case execution time
of the task and Dn is its relative deadline, which refers to
the time during which a task must be completed after its
release. These τn tasks are exclusively activated and released
through external or internal events. For instance, these events
encompass external interrupts, soft timers, and interactions
with other tasks. Each task’s events arrive at specific issue
times, denoted as in = {in,1, in,2, ..., in,K , ...}. Once a task is
issued, the remaining worst-case execution time is represented
by cn,k. We define slack time as sn,k = Dn − cn,k, which is
the amount of time that a task can be delayed without affecting
the system’s function. Each event in,k is associated with an
absolute deadline, calculated as dn,k = in,k + Dn. Thus, if
a task’s completion time, denoted as fn,k, exceeds dn,k, it
signifies a missed deadline for that particular event. With this
formulation, a periodic task, τM , can be defined as a particular
case of event-driven tasks where their events are issued with
the same interval, denoted by TM = iM,j+1 − iM,j , ∀j.
B. Motivational example
In an event-based system, where tasks can be added to the

ready-list arbitrarily based on the received events, it becomes
crucial to use a dynamic scheduler that considers run-time
parameters. Fig. 1 provides an illustrative example in which
three tasks are defined with execution times and relative
deadlines of τ1 = {800, 1000}, τ2 = {800, 1650}, and
τ3 = {400, 1500} (Fig. 1a). Their respective issue times are
i1,1 = 0, i2,1 = 100, and i3,1 = 700, and their absolute
deadlines are d1,1 = 1000, d2,1 = 1750, and d3,1 = 2200.
Based on the relative deadline values Dn, task priorities should
be set as P1 > P3 > P2 . The scheduling obtained with these
priorities is shown in Fig. 1b, where the static scheduler fails to
meet d2,1. However, a scheduler with dynamic policies such
as EDF or LST, which schedule tasks based on the closest
deadline or the least slack time, meets all deadlines in this
example(Fig. 1c).
In the case of using a different priority assignment (P1 >
P2 > P3) to meet previous deadlines, and different issue

Test1: issue times

𝑖!,! 𝑑!,!𝑖#,! 𝑖$,!

time (ms)0 100 800 1000 1750 2200700
𝜏!

𝜏#
𝜏$

𝐷!
𝐶!

𝑑#,! 𝑑$,!

(a) Task issue times are i1,1 = 0, i2,1 = 100, and i3,1 = 700.

Test1: static

time (ms)0 100 800 1000

𝑑!,! 𝑑#,!

1750 2200700 1200 2100
𝜏$ 𝜏#

𝑑$,!𝑖!,! 𝑖#,! 𝑖$,!
𝜏!

(b) The static scheduler with priorities set as P1>P3>P2 (DM)
does not meet the τ2 deadline.

time (ms)0 100 800 1000

𝑑!,! 𝑑#,!

1750 2200700

Test1: dynamic

1200 2100
𝜏$𝜏#

𝑑$,!𝑖!,! 𝑖#,! 𝑖$,!
𝜏!

(c) The dynamic scheduler, EDF, will meet all deadlines.

Test2: issue times

time (ms)3000 3100 4000 4600 53503700

𝑖!,# 𝑑!,#𝑖$,# 𝑖#,# 𝑑$,# 𝑑#,#

𝜏!
𝜏#

𝜏$

(d) Task issue times are i12=3000, i32=3100, and i22=3700.

Test2: static

𝑑!,#𝑖$,# 𝑖#,# 𝑑$,# 𝑑#,#

time (ms)3000 3100 4000 4600 53503700

𝑖!,#
𝜏! 𝜏# 𝜏$

(e) The static scheduler with the priorities set as P1>P2>P3 fails
to meet τ3 deadline.

Test2: dynamic

𝑑!,#𝑖$,# 𝑖#,# 𝑑$,# 𝑑#,#

time (ms)3000 3100 4000 4600 53503700

𝑖!,#
𝜏! 𝜏#𝜏$

(f) The dynamic scheduler, EDF, will meet all the deadlines.

Fig. 1: The set of tasks includes three tasks of τ1 = {800, 1000},
τ2 = {800, 1650}, and τ3 = {400, 1500} for comparison between
dynamic and static scheduling.

times (i1,2 = 3000, i3,2 = 3100 and i2,2 = 3700) as shown
in Fig. 1d, the static scheduler does not meet d3,2 (Fig. 1e).
However, the dynamic scheduler is still capable of meeting
all task deadlines (Fig. 1f). Therefore, irrespective of priority
assignment or issue times distribution, the dynamic scheduler
can meet all the timing requirements in this motivational
example because it considers the time a task has waited to
be executed after its event is received at run-time.

III. RELATED WORK

The literature on schedulability performance focuses mainly
on periodic tasks [3]–[5], [7]–[9], neglecting the event-driven
nature of tasks, particularly in industrial real-time applications.
To include event-driven tasks in these periodic-based systems,
they are often treated as periodic tasks. For instance, [9]
considers event tasks as periodic tasks with a period equal
to the minimum interval of their events. Similarly, in the de-
ferable server and pooling methods [10], event-driven tasks are
incorporated into the already scheduled system with periodic
tasks. However, the literature lacks a detailed investigation of
event-driven tasksets. The optimality of methods proposing
task priority assignment is limited to special cases. For ex-
ample, Rate Monotonic (RM) [3] and Deadline Monotonic
(DM) [4] scheduling are not optimal if tasks are not issued
together [9]. In [5], the authors proposed an algorithm that
iteratively checks schedulability, which is still optimal in some
scenarios, such as having an offset, where RM and DM fail.
However, these methods are static and do not consider the
dynamic nature of event-driven systems.
Numerous studies showcase the value of embracing the

event-based nature for improved scheduling. Zhu et al. [11]
propose event-driven scheduling for energy-efficient mobile

web applications. Yu et al. [12] introduce an event-driven
sensor scheduling for unstable plants with wireless fading
channels. Kong et al. [13] tackle event-driven scheduling for
EV charging stations in the park-and-charge context. Villa et
al. [14] address the issue of event-driven scheduling in small
and medium-sized enterprises. These works demonstrate the
potential benefits of incorporating event-based considerations
in scheduling problems. However, these works do not target
the scheduling of real-time embedded systems.
To effectively handle event-driven tasksets, the use of dy-

namic schedulers is crucial. Unix-based operating systems
(e.g., LynxOS, TizenRT, OpenWrt, Apache NuttX) are adapted
for embedded systems, offering varied scheduling policies,
including SCHED DEADLINE based on EDF in the Linux
kernel [15]. However, these Unix-based schedulers might
prove resource-intensive for small microcontrollers prevalent
in embedded industrial scenarios. RTOSes, featuring leaner
kernels and therefore less memory footprint, are designed to
perform real-time operations with minimal overhead associ-
ated with managing tasks and system resources. However, a
notable drawback of most RTOSes is the absence of dynamic
scheduling support. For example, ERIKA Enterprise lacks full
dynamic support in its accessible GitHub version. Zephyr
employs two static parameters, namely priority and deadline,
for task scheduling. In fact, most RTOSes use priority-based
preemptive schedulers that support round-robin switching be-
tween tasks of equal priority (e.g., FreeRTOS, RT-Thread,
MBed OS, MIPS Embedded OS (MEOS), Azure RTOS,
DuinOS, SAFERTOS, VxWorks, and WinCE). Several of
those use FIFO for tasks of the same priority (e.g., TI-RTOS,
Deps, MQX RTOS, Huawei LiteOS, and Enea OSE). Notably,
the priority ceiling, supported by some RTOSs to manage
shared resources, is different from dynamic scheduling. Thus,
there is a need to enable RTOSes with dynamic scheduling to
provide optimal performance for event-based applications.
In this study, our aim is to integrate our proposed scheduler

into the FreeRTOS kernel to achieve dynamic scheduling for
event-driven tasksets. Previous research has explored ways
to implement dynamic scheduling in FreeRTOS, such as the
works by Kase et al. [16] and Paez et al. [17], which proposed
a dynamic scheduling integration from an application per-
spective. Meanwhile, Belagali et al. [18] implemented a layer
above the static scheduler that allowed changing the priority
in run time based on dynamic parameters while keeping the
scheduling parts unchanged. Although these are valuable con-
tributions, the proposed methods resulted in a high-overhead
implementation of dynamic scheduling in FreeRTOS. In con-
trast, recent research, such as the works by Salamun et al. [6]
and Oliveira et al. [7], have improved previous approaches by
implementing dynamic scheduling directly into the FreeRTOS
kernel. However, their studies focused on randomly generated
periodic tasks instead of event-driven tasks. Furthermore, their
implementations resulted in higher overheads on the kernel,
either in terms of timing by updating ready tasks in a time-
based manner rather than an event-based manner [6], or in

P=2 P=K P=NP=1

a m

… …

Task
Handler a

m Inserting 𝑃! = 𝐾

Picking P=2 P=NP=1

c
b

P=K

m
… …

m

Insert

𝑃! = 𝐾

P=2 P=NP=1

c
b

a

P=K
… …

a

Pick

Fig. 2: Priority-based lists, a common implementation for managing
ready tasks in static schedulers.

b
c
d

m

m

Insert

e

a
b
c
d
e

a
Pick

a b c d ea
Pick Insert

b c d m em

a
Pick

a b c d e b c d m em
Insert

Fig. 3: A sorted list for minimal and low-overhead dynamic schedul-
ing implementation.

terms of memory by adding periodic-specific parameters and
using multiple lists instead of one for ready tasks [7].

IV. A LOW OVERHEAD DYNAMIC SCHEDULER

In this section, we describe the main characteristics of our
low-overhead scheduler, namely: 1) use of a single sorted list
of ready tasks; 2) event-driven updating of ready tasks for
EDF-based scheduling. Furthermore, we offer insights into
the seamless integration of this scheduler within industrial
RTOSes, such as FreeRTOS.
A. Single sorted list of ready tasks
In a scheduler, a crucial aspect is managing ready tasks.

Marked as ready to run, tasks join the ready list. During con-
text switching, the scheduler selects the next task to run from
this list. In static (priority-based) schedulers like FreeRTOS,
handling ready tasks commonly involves utilizing multiple
ready lists. Each list is assigned to a specific priority level, as
depicted in Fig. 2. When a task is considered ready, such as
upon receiving an event, it is inserted at the rear of its assigned
list based on its priority, Pn, which can be accomplished with
O(1) processing. Picking a task from these lists requires O(P)
processing due to the need to check the lists one by one, in
order of their priorities. The scheduler selects the next task to
run from the first non-empty list encountered.
We propose a sorted list as a solution to manage ready

tasks in a lightweight and low-overhead dynamic scheduler
implementation. Priority-based lists are not suitable for dy-
namic schedulers, as tasks are prioritized at runtime. Moreover,
multiple lists introduce more overhead, not only in memory
but also in scheduling timing, compared to a single list.
The resulting overhead is discussed in Section V-A. Fig. 3
illustrates the sorted list used for the selection and insertion
of tasks. The list is always ordered, and the scheduler selects
the top task in O(1) time. When a new task is inserted, the
scheduler checks the parameters of other tasks in the sorted
list and places the new task in its appropriate position based
on the defined dynamic parameter. This operation requires
O(N) processing for a linked list data structure, which is a
preferred implementation considering the limited number of
tasks in an embedded system. The dynamic parameter used
for sorting is dn,k in the EDF implementation and sn,k in the
LST implementation.

B. EDF scheduling with an event-driven update of ready tasks
Two methods can be considered for updating and reordering

the ready list. The periodic update method involves checking,
updating, and reordering the list at fixed intervals, whereas the
event-driven method only updates the list when a new task is
added to it. Salamun et al. [6] implement periodic updating
of tasks’ parameters in the ready list at every RTOS tick.
However, this method introduces a large overhead in schedul-
ing timing due to redundant processing. To fully leverage the
event-based nature of tasks and reduce overhead, we propose
updating tasks in an event-driven manner. Specifically, the
dynamic parameter is updated only when a new task is inserted
into the list and is sorted and placed in the list. However,
periodic updates are necessary to implement LST. Therefore,
we recommend using EDF to minimize overhead.
C. Integration in FreeRTOS kernel
After considering the aforementioned factors, we imple-

mented a lightweight event-driven EDF-based scheduler in
the FreeRTOS kernel. Our implementation is available in
[19]. First, we added the parameters required for EDF to
the Task Control Block (tskTCB). Each task is linked to a
TCB, which includes attributes such as the task stack pointer.
In contrast to [7], which added periodic-specific parameters
like the period—thus not only making the scheduler exclu-
sive to periodic tasks, but also creating additional memory
overheads—we added only two key EDF parameters: dn,k and
Dn. Then, we modified the functions to create tasks, such as
xTaskCreate and prvInitialiseNewTask, to accept relative dead-
lines. Since we use a sorted list for ready tasks, the pxReady-
TasksLists array used for priority-based lists was replaced
by an ordered list. Subsequently, prvAddTaskToReadyList was
modified to first update the inserted task’s dn,k and then
add it at the appropriate location in the list. Similarly, task-
SELECT HIGHEST PRIORITY TASK, which searched for a
ready task from non-empty priority lists, was replaced with
taskSELECT EARLIEST DEADLINE TASK, which picks the
first task from the ready list. In general, scheduling decisions
are based on dn,k rather than Pn. For example, tasks that are
blocked for a semaphore or a queue reception in xEventList are
released after the event reception based on absolute deadlines
rather than static priorities.

V. EXPERIMENTS

This section presents the experiments and explorations con-
ducted to evaluate the performance of dynamic scheduling
utilizing the proposed scheduler. First, we assess the reduction
in the number of dn,k misses in a general case scenario. The
scheduler’s efficiency in terms of timing and memory overhead
is also analized and compared with its static counterpart. In
the static scheduler, the Pn values are assigned based on
DM. Furthermore, we explore a specific industrial use case
based on Nespresso® coffee machines, focusing on the duty
cycle of one of the most computationally intensive tasks in
the application. We also evaluate the impact of different Pn

settings in this experiment.
Of particular importance for industrial applications is achiev-

4 5 6 7 8 9 10 11 12 13 14
Number of Tasks

0

10

20

30

40

50

60

Nu
m

be
r o

f M
iss

es 21.43% 18.18%

20.37%

50.00%
32.50%

33.33%

37.50%

21.95%

22.00% 14.58%

60.00%

Static (DM)
Dynamic

Fig. 4: Comparison between static and dynamic scheduling for event-
driven applications of variable size Γ.

ing high processor utilization, which can reduce the overall
expenditure on the platform. To address this, we conducted
our experiments on the NUCLEO-G070RB board, a low-
frequency, resource-constrained platform. Here, two scheduler
versions, the proposed low-overhead EDF-FreeRTOS and na-
tive FreeRTOS, are implemented. The platform features an
ARM Cortex-M0+ with 128KiB of Flash memory and 36KiB
of SRAM. During the tests, approximately 32KiB of SRAM
are allocated for FreeRTOS heap memory. The processor fre-
quency is set to 16MHz. The platform is equipped with several
hardware timers that are used to measure the time during tests.
STM32CubeIDE serves as the development toolchain.
A. General scenario
In this scenario, all task parameters are generated randomly.

The Cns and Sns are randomly assigned within intervals of
[200, 1100]ms and [500, 5000]ms, respectively. Based on the
Cn and Sn generated for each task, its relative deadline is set
as Dn = Cn + Sn. Furthermore, in,ks are randomly assigned
to diversify test scenarios. Specifically, a maximum of 110
in,ks are generated within the interval (0, 60000] ms. These
settings are used to create test scenarios with varying task set
sizes and requirements.
Fig. 4 presents a comparison of the schedulability perfor-

mance between dynamic and static scheduling in terms of
the number of missed dn,ks. The observed improvement is
quantified by calculating the performance gain using the
following equation:

Missesstatic −Missesdynamic

Missesstatic
, (1)

This metric is also shown in Fig. 4 on top of each bar
representing different task sets. The performance gains range
from 14.6% to 60.0%. Furthermore, the performance gain
is influenced by the parameters generated for each Γ. How-
ever, the dynamic scheduling approach outperforms the static
scheduling approach in all event-based test cases.
Before analyzing timing overhead results, it’s crucial to

clarify various implementation-dependent factors. The princi-
pal source of scheduler timing overhead arises from context
switching, encompassing three phases: 1) storing the current
task’s context, 2) choosing the next task to execute, and 3)
restoring the context of the chosen task. The first and third

4 5 6 7 8 9 10 11 12 13 14
Number of Tasks

0

5

10

15

20

25

30
Ti

m
e

(u
s)

Peak
Native FreeRTOS, task insertion
Proposed EDF-FreeRTOS, task insertion
Native FreeRTOS, task picking
Proposed EDF-FreeRTOS, task picking

Fig. 5: Average time for the two primary scheduler overheads for both
the native static scheduler in FreeRTOS and the proposed dynamic
scheduler.

phases are identical in both schedulers. Thus, the second phase
is the one that makes the difference when assessing timing
overheads. Fig. 5 shows the timing overhead for task selection
and picking, which is a critical aspect of the scheduler.
Another important factor in scheduling overhead is the time

required to insert a task into the ready-to-use list. To compare
the timing overheads between the static FreeRTOS and the
proposed dynamic scheduler, the average time they spend on
these operations is presented in Fig. 5. As Γ size grows, the
task picking overhead in the static scheduler increases due
to the O(P) cost described in Section IV. On the contrary,
the proposed dynamic scheduler has a lower overhead, and
increasing the task number does not have an effect due to
the O(1) cost. However, the latter has slightly more overhead
in task insertion than native static FreeRTOS. Although the
proposed dynamic scheduler has a O(N) cost in task insertion,
it is not significantly affected by the increasing size Γ and
remains almost fixed. This is because only a small subset of
tasks is in the ready-to-use list at any given time. To investigate
the underlying cause, we present in Fig. 5 the peak time each
scheduler incurred in task insertion and selection for each task
set and scheduler. The results indicate that the maximum time
that occurs during each test for the task insertion overhead
increases as the size of Γ increases. However, given that the
average time is almost constant, the instances where ordering
and inserting a new task require more time than usual are
infrequent. This situation typically arises when most of the
system tasks are in the ready list, and the newly inserted task
has a higher dn,k than most tasks, which requires more time to
order and insert the task. On the other hand, priority-based lists
commonly require traversing the ready lists down to lower-
level priority lists, to ensure that a task with a lower Pn is
always able to execute when it must run. As a result, the
average task pick time increases nearly linearly as the task set
size increases. On the basis of these findings, we propose that
an ordered list is a better option, even for implementing static
schedulers. Fig. 5 supports our argument.
The gain in timing overhead obtained can be calculated using

the following equation:

(SPNative + INative)− (SPEDF + IEDF)

(SPNative + INative)
, (2)

TABLE I: Typical tasks in a capsule coffee machine. We use artificial
intelligence (AI) to generate long-running background workloads,
keeping a maximum deadline of 100ms to meet the reaction times
typically accepted in this type of consumer applications [20]

Task Type Deadline Period

Heater control Event (Ext., Periodic) 6ms 20ms
Pressure pump Event (Ext., Periodic) 6ms 20ms
Human-machine interface Event (External) 80ms –
Flow control Event (External) 95ms –
Brewing program Event (Internal) 90ms –
Artificial intelligence (AI) Event (External) 100ms –

where SP and I denote the average time spent selecting and
picking, and inserting tasks, respectively. Based on the results
obtained, this metric ranges from 22.7% for N = 4 and up
to 34.7% for N = 14. Unlike other research works [7], our
proposed scheduler implementation does not introduce timing
overheads with respect to Γ size. This is a significant factor
when considering the integration of the proposed dynamic
scheduler for constrained industrial applications.
In terms of memory overhead, we measured the amount of

memory required by the static scheduler to create a priority
list. Specifically, 22 bytes are reserved for each list. Therefore,
when N = 14 and DM is used to assign priorities in native
FreeRTOS, this leads to an increase of up to 286 bytes
compared to the proposed scheduler. In fact, the higher the
priority levels required in native FreeRTOS, the more memory
this part of the scheduler needs. For the dynamic scheduler,
two variables per task are added for dn,k and Dn, resulting
in an impact of up to 4 bytes per task. Thus, based on these
scheduler-specific memory differences, the memory overhead
saved in task and ready-list creation by using the proposed
dynamic scheduler can be calculated as 900

11 − 100
N percent.

Therefore, in our tests, it ranges from 56.8% up to 74.7% for
N = 4 and N = 14, respectively.
B. Case Study: Coffee Machine
To evaluate dynamic scheduling’s effectiveness in a real-

world embedded industrial application, we examine the tasks
involved in a Nespresso coffee machine designed for residen-
tial use. More recent models can also incorporate additional
advanced features, frequently powered by artificial intelligence
(AI), such as capsule recognition or voice control, reflecting a
growing trend. These tasks, despite potentially having larger
slack times, are characterized by significant execution times.
This section assesses and compares our dynamic scheduler

with its static counterpart, while scheduling a mix of tasks
that require fast response times, alongside long-running high
duty-cycle tasks. The characteristics of the tasks considered for
this example are presented in Table I. Tasks are event-driven,
but they differ in terms of triggering events. The handling of
human-machine interfaces, AI tasks, and flow control during
brewing are triggered by external events at unpredictable
times. The state machines controlling the brewing program
respond to internal events. On the other hand, tasks such as
the control of heating elements and pumps respond to external
events issued periodically at 20ms intervals.
Most of the tasks involved in a typical capsule-based coffee

1 10 20 30 40 50 60 70 80 90
AI task execution time (ms)

0

30

60

90

120

Nu
m

be
r o

f M
iss

es
Static (AI task as highest priority)
Static (Round-robin)
Static (AI task as middle priority)
Static (DM)
Dynamic

Fig. 6: Tasks deadlines misses in EDF-FreeRTOS and Native FreeR-
TOS with different task priority settings in a typical capsule coffee
machine. The duty cycle for AI tasks varies from 1ms to 90ms.

machine require only a few milliseconds to complete, and
sometimes even just a few microseconds. However, the ex-
ecution times for AI tasks are much longer due to their high
computational load. To analyze the system’s schedulability
performance, we consider various workload scenarios created
by background AI tasks with maximum reaction times of
100ms [20]. Therefore, we sweep over a range of duty cycles
for the AI task, varying from 1ms to 90ms. A high-load
scenario where consecutive external events are triggered at
short intervals of up to 10 s is run on our experimental setup,
which includes both static and dynamic schedulers.
Fig. 6 illustrates the number of deadline misses for each

scheduler. Various priority assignment schemes are evaluated
for the static scheduler, including deadline monotonic (DM),
highest priority for the AI task, middle priority for the AI
task, and round-robin with equal priority for all tasks. DM
demonstrates the best performance among all static priority
schedulers. However, the proposed dynamic scheduler ex-
hibits superior performance in most cases. Notably, when
the execution time of the AI task is fixed at 90ms (with a
maximum deadline of 100ms), static scheduling (DM and AI
with middle priority) outperforms dynamic scheduling.
Fig. 6 also shows the pitfalls of a manual priority assignment.

In particular, assigning the highest priority to the AI task
produces the highest number of deadline misses, which shows
a linear growth pattern. This occurs due to the frequent
scheduling delays experienced by high-frequency, short-lived
tasks such as heater and pressure pump control, which are
triggered at intervals of approximately ≈ 20ms. Assigning
similar priorities and using round-robin scheduling is ineffec-
tive as the scheduler lacks the ability to expropriate between
them effectively, and the typical quantum time in FreeRTOS
can be longer than the maximum deadline for some tasks.

VI. CONCLUSIONS

This work has presented an analysis of the performance
of scheduling techniques for event-driven applications in the
context of industrial applications. Our investigation covered
both a general industrial applications scenario and then a very
constrained real-world smart home device case study involving
Nespresso coffee machines. Our findings indicate that dynamic
scheduling is essential to achieve effective performance in

these applications. Furthermore, our experiments revealed that
compute-intensive tasks, such as DL inference, have a sig-
nificant impact on scheduling performance. In future work,
we plan to implement a DL-aware dynamic scheduler for
optimal scheduling in these applications. Our proposal for a
low-overhead event-driven dynamic scheduler to be integrated
into RTOSes kernels has been demonstrated on the FreeRTOS
kernel, with results indicating less overhead in timing and
memory. We are confident that this paper provides the basis
for further research into event-driven systems in the real-time
community, which traditionally focuses on periodic tasks, to
address the next generation of edge AI industrial systems.

ACKNOWLEDGMENT

This work was partly supported by a Ph.D. Student Grant
for ESL-EPFL by Nespresso S.A. within the EPFL-Nestlé
Collaboration Framework Agreement (EPFL TTO SoW no.
2019-0288).

REFERENCES

[1] A. Akundi et al., “State of industry 5.0: Analysis and identification
of current research trends,” Applied System Innovation, vol. 5, no. 1,
2022. [Online]. Available: https://www.mdpi.com/2571-5577/5/1/27

[2] G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications. Springer Science & Business Media,
2011, vol. 24.

[3] C. L. Liu et al., “Scheduling algorithms for multiprogramming in a
hard-real-time environment,” JACM, vol. 20, no. 1, pp. 46–61, 1973.

[4] J. Y.-T. Leung et al., “On the complexity of fixed-priority scheduling
of periodic, real-time tasks,” Performance evaluation, vol. 2, no. 4, pp.
237–250, 1982.

[5] N. C. Audsley, “Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times,” Department of Computer
Science, University of York, Tech. Rep. YCS-164, 1991.

[6] K. Salamun et al., “Dynamic priority assignment in FreeRTOS kernel for
improving performance metrics,” in IEEE MIPRO, 2021, pp. 880–885.

[7] G. Oliveira et al., “Evaluation of scheduling algorithms for embedded
FreeRTOS-based systems,” in IEEE SBESC, 2020, pp. 1–8.

[8] V. P. Kumar et al., “Dynamic scheduling algorithm for automotive safety
critical systems,” in IEEE ICCMC, 2020, pp. 815–820.

[9] R. I. Davis et al., “A review of priority assignment in real-time systems,”
Journal of systems architecture, vol. 65, pp. 64–82, 2016.

[10] B. Sprunt et al., “Scheduling sporadic and aperiodic events in a
hard real-time system,” Carnegie-Mellon Univ. Pittsburgh PA Software
Engineering Inst., Tech. Rep., 1989.

[11] Y. Zhu et al., “Event-based scheduling for energy-efficient QoS (eQoS)
in mobile web applications,” in IEEE HPCA, 2015, pp. 137–149.

[12] M. Yu et al., “Event-driven sensor scheduling for mission-critical control
applications,” IEEE TSP, vol. 67, no. 6, pp. 1537–1549, 2019.

[13] F. Kong et al., “On-line event-driven scheduling for electric vehicle
charging via park-and-charge,” in IEEE RTSS, 2016, pp. 69–78.

[14] A. Villa et al., “Event-driven production scheduling in sme,” Production
Planning & Control, vol. 29, no. 4, pp. 271–279, 2018.

[15] D. Faggioli et al., “An implementation of the earliest deadline first
algorithm in linux,” in Proceedings of the 2009 ACM symposium on
Applied Computing, 2009, pp. 1984–1989.

[16] R. Kase, “Efficient scheduling library for FreeRTOS,” 2016. [Online].
Available: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-204575

[17] F. E. Páez et al., “FreeRTOS user mode scheduler for mixed critical
systems,” in IEEE CASE, 2015, pp. 37–42.

[18] R. Belagali et al., “Implementation and validation of dynamic scheduler
based on LST on FreeRTOS,” in IEEE ICEECCOT, 2016, pp. 325–330.

[19] H. Taji, “ED-EDF FreeRTOS,” https://doi.org/10.5281/zenodo.8256860,
accessed 2023.

[20] B. W. Denkinger et al., “Impact of memory voltage scaling on accuracy
and resilience of deep learning based edge devices,” IEEE Design &
Test, vol. 37, no. 2, pp. 84–92, 2019.

