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ABSTRACT
The past decades have witnessed rapid growth in imaging as a
major form of communication between individuals. Due to recent
advances in capture, storage, delivery and display technologies,
consumers demand improved perceptual quality while requiring
reduced storage. In this context, research and innovation in lossy
image compression have steered towardsmethods capable of achiev-
ing high compression ratios without compromising the perceived
visual quality of images, and in some cases even enhancing the latter.
Subjective visual quality assessment of images plays a fundamental
role in defining quality as perceived by human observers. Although
the field of image compression is constantly evolving towards effi-
cient solutions for higher visual qualities, standardized subjective
visual quality assessment protocols are still limited to those pro-
posed in ITU-R Recommendation BT.500 and JPEG AIC standards.
The number of comprehensive and in-depth studies where differ-
ent protocols are compared is still insufficient. Moreover, previous
works have not investigated the effectiveness of these methods on
higher quality ranges, using recent image compression methods. In
this paper, subjective visual scores collected from three subjective
image quality assessment protocols, namely the Double Stimulus
Continuous Quality Scale (DSCQS) and two test methods described
in the JPEG AIC Part 2 standard, are compared between different
laboratories under similar controlled conditions. The analysis of the
experimental results has revealed that the DSCQS protocol is highly
influenced by the quality of the reference images and experience of
the subjects, while the JPEG AIC Part 2 specifications produce more
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stable results but are expensive and only suitable for a limited range
of qualities. These emphasize the need for new robust subjective
image quality assessment methodologies able to discriminate in the
range of qualities generally demanded by consumers, i.e. from high
to nearly visually lossless.
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1 INTRODUCTION
With proliferation of digital images and increasing demand for high-
quality content, image compression has become a critical aspect
in visual communication. The ability to transmit and store large
volumes of digital images efficiently is a key requirement in a wide
range of applications, including social media, cloud storage, visual
surveillance, and medical imaging, among others.

Image compression techniques have been developed in the past
decades to reduce the storage and bandwidth requirements of digital
images, while maintaining acceptable levels of visual quality. How-
ever, users have become much more demanding in the last years
concerning image quality, and thus often express their desire to have
compressed images where artifacts are not perceptible even after
close inspection. There are two main types of image compression:
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(a) Face (b) Artificial (c) Bird (d) Boat (e) Night

Figure 1: Crops of the reference images used for the experiment.

lossy and lossless. Lossy image compression techniques, both con-
ventional [1, 6, 26, 31, 36] and learning-based [4, 5, 7, 9, 14, 15, 37],
exploit the limitations of human visual system to eliminate redun-
dant or irrelevant image information and are able to achieve high
compression ratios, while lossless compression [10, 19, 26, 28] can
achieve mathematically bit-exact reconstruction but are less ef-
ficient. Visually lossless or nearly visually lossless methods are
between lossy and lossless compression and thus introduce arti-
facts, but ensure that those artifacts are unlikely to be visible, i.e.
observers cannot easily differentiate between compressed, and orig-
inal or reference content.

In the design of (nearly) visually lossless compression solutions
it is fundamental to measure the perceptual quality accurately as
perceived by human observers. Therefore, subjective quality as-
sessment is a critical component in the design, development, and
optimization of image compression solutions. In this context, small
differences in image quality need to be accurately measured, pro-
viding discriminative scores between decoded images that have
high or (nearly) visually lossless quality. The JPEG Committee has
recently launched a renewed activity on Assessment of Image Cod-
ing (AIC), also referred to as JPEG AIC, to develop a new standard
(AIC-3) [33] focusing on the methodologies for assessment of images
with the quality levels in between the range where ITU-R Rec. BT.500
[24] is suitable and the range where AIC-2 [11] is suitable.

The ITU-R Recommendation BT.500 [24] and the JPEG AIC Part
2 (AIC-2) [11, 12] are the most widely used subjective image qual-
ity assessment protocols. These protocols define standardized test
procedures for evaluating the perceptual quality of compressed
images based on the judgment of human observers. Nowadays, dou-
ble stimulus subjective assessment methodologies (such as those
defined in BT.500) are often used, where subjects are asked to score
the stimuli using either a numerical (categorical) or continuous
quality scale. However, these methods also exhibit disadvantages:
i) the interpretation of the quality scale may change from observer
to observer (even with training procedure); ii) they are not well
suited for high or nearly visually lossless scenarios, since small
differences between stimuli cannot be perceived by the observers.
When coding solutions are evaluated with this type of methodology,
it is difficult to conclude, from the obtained experimental results,
which solution provides better performance at high to visually loss-
less qualities. AIC-2 was developed for this case and provides two

alternative forced-choice methodologies for subjective image qual-
ity assessment of (nearly) visually lossless qualities. Despite their
availability, subjective assessment methodologies such as AIC-2
were not evaluated with recent image compression solutions (such
as JPEG XL and AVIF), nor evaluated between them in a statistically
meaningful way. Moreover, the effectiveness of the specifications
in assessing distortions in high-quality contents or nearly visually
lossless image coding has not been evaluated.

The main objective of this paper is to evaluate and compare
the accuracy and reliability of three subjective image quality as-
sessment protocols: the Double Stimulus Continuous Quality Scale
(DSCQS) and two subjective assessment methods described in the
JPEG AIC Part 2 standard. The study compares the subjective visual
scores collected from different laboratories under similar controlled
conditions. To obtain test images, several image compression tech-
niques were used, including the latest JPEG XL and AVIF image
coding standards. The results of this study will allow to identify
the strengths and weaknesses of each protocol, with a particular
focus on their effectiveness in discriminating between high-quality
to visually lossless compressed images. This is very important to
better understand the status quo in subjective quality assessment
with respect to the aforementioned quality ranges, and thus guide
further developments in the area of subjective quality assessment
protocols.

The collected subjective quality scores as well as the employed
graphical user interface are made publicly available to facilitate
further research on the topic 1.

2 RELATEDWORK
ITU-R Rec. BT.500 [24] establishes recommendations and best prac-
tices for subjective image quality assessment, with the definition
of both single and double stimulus test methodologies. Among the
most widely used methodologies, the DSCQS protocol prompts the
subjects to evaluate the quality of two stimuli presented side-by-
side, using a continuous quality rating scale. The reference stimulus
is placed randomly, and the subjects are not explicitly instructed
about its presence. This protocol is particularly effective in the
evaluation of compression methods that employ processing algo-
rithms that may improve the visual appeal of a given image. As an

1https://www.epfl.ch/labs/mmspg/downloads/nearly-visually-lossless-subjective-
iqa/
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example, the authors in [34] used the DSCQS method for the sub-
jective evaluation of learning-based coding solutions in the context
of the JPEG AI Call for Evidence. Recent studies reported that the
methodologies in ITU-R Rec. BT.500 [24] are primarily suitable for
evaluating the visual appeal, and for applications where the bitrate
reduction is a major concern [33], e.g. web distributions. Therefore,
their use to assess nearly visually lossless qualities is not optimal.

The JPEG committee has designed and reported two additional
methodologies included in its JPEG AIC specifications, i.e. ISO/IEC
TR 29170-1:2017 (AIC-1) [12] and ISO/IEC 29170-2:2015 (AIC-2) [11].
The first focuses on defining common vocabulary and guidelines for
subjective, objective, and computational evaluation of image coding
systems, including a review of ITU-R Rec. BT.500 [24] and ITU-R
Rec. BT.1082 [25]. In contrast, the AIC-2 specifications present two
novel methodologies for the assessment of visually lossless image
compression, namely AIC-2 A and AIC-2 B (or Flicker test).

The AIC-2 A test protocol is a forced-choice methodology where
two test images are presented side-by-side along with a reference.
One of the two test images is a copy of the reference. The observer
is prompted to choose the test image that is the closest match to the
reference. To the best of the authors’ knowledge, this methodology
was never independently evaluated in previous studies.

The AIC-2 B test protocol, or Flicker test, implements a forced-
choice comparison using interleaved images. In each trial, two test
samples are presented side-by-side. One of these is the reference
image, whereas the other is a compressed and reconstructed image,
which is temporally interleaved with the reference image. The ob-
server is requested to choose the non-flickering stimulus. As both
the AIC-2 A and the AIC-2 B protocols are forced-choice methodolo-
gies, the subjects will submit random answers if the reconstructed
image has visually lossless distortions. The Flicker test was often
adopted in previous works for evaluating image codecs which target
the range from nearly visually lossless to visually lossless quali-
ties [29]. For example, this methodology was used for assessing the
performance of submissions to the JPEG XS Call for Proposals [17]
and for the assessment of the VESA Display Stream Compression
(DSC) codec with Standard Dynamic Range (SDR) images [3], High
Dynamic Range (HDR) images [30], and stereoscopic images [22].
Moreover, a large-scale dataset including subjective visual scores
collected using the Flicker methodology was presented in [8].

Although both AIC-2 A and Flicker test are suitable for images
compressed with light coding solutions, the Flicker test is consid-
ered more sensitive than AIC-2 A, as the in-place switching, or
toggling, allows for easier identification of subtle artifacts [2], mak-
ing them suitable for applications such as the visual assessment of
photography.

Recently, a number of studies explored alternativemethodologies
for subjective visual quality assessment. As an example, the authors
in [18] proposed to use boosting techniques to improve the visibility
of subtle artifacts. In addition, a hybrid approach that combines
a pairwise comparison experiment with absolute grading scores
was proposed in [27]. The JPEG AIC-3 Dataset [32] was collected
in the context of the JPEG AIC Part 3 activity using a variation of
the Pair Comparison (PC) protocol. It includes 10 reference images
compressed with several codecs, i.e. JPEG, JPEG 2000, HEVC Intra,
VVC Intra, JPEG XL, and AVIF, at 10 distortion levels in the range

from high to nearly visually lossless quality, corresponding to 0.25
to 2.5 Just Noticeable Difference (JND) units.

The number of studies which compare different subjective image
quality assessment methodologies is still limited. A preliminary
analysis in the context of video compression was conducted in [23],
where the authors compared three different subjective quality as-
sessment methodologies. A similar study was conducted in the
context of image compression [16], where the authors compared
four different subjective image quality assessment protocols. Nev-
ertheless, the state of the art still lacks an extensive analysis on the
performance of subjective quality assessment protocols targeting
the assessment of recent image compression solutions, and in the
range from high to nearly visually lossless quality. Moreover, the
two methodologies presented in AIC-2 have not been thoroughly
evaluated and mutually compared.

3 SUBJECTIVE EXPERIMENTS
Subjective visual scores have been collected and evaluated using
three different subjective protocols, namely DSCQS, AIC-2 A, and
Flicker test, by three different institutions, namely EPFL, UBI, and
IST.

3.1 Test material: JPEG AIC-3 dataset
The JPEG AIC-3 dataset [32] was employed for the study. To limit
the cost and complexity of the experiment, following the recom-
mendations in ITU-T P.910 [13], only images 00002, 00004, 00005,
00006, and 00007 were adopted and cropped to a size of 620x800. A
preview of the reference crops is provided in Figure 1. Moreover,
only the images encoded with JPEG, JPEG 2000, VVC Intra, JPEG
XL, and AVIF, and with only a limited number of quality levels
were considered. Notably, for the DSCQS and AIC-2 A experiments,
quality levels 2, 5, 8, and 10 of the dataset were considered, corre-
sponding to JND values of -0.5, -1.25, -2, and -2.5 computed in a
PC experiment [32]. For the Flicker experiment, given its increased
sensitivity, only quality levels 1 and 2 were considered, correspond-
ing to JND values of -0.25 and -0.5. It is important to emphasize
that the JND values were obtained with a different protocol and
therefore do not necessarily apply to the experiments conducted in
this paper. In the rest of this paper, the images will be referred to
as Face, Artificial, Bird, Boat, and Night.

According to the AIC-2 specifications, the experiments should
include a number of control images, i.e. images unambiguously
compressed and presenting artifacts that can be easily detected by
an average viewer in a side-by-side experiment. These images are
used to detect the subjects who misunderstood the objective of the
experiment or were inattentive. Notably, five control images were
included in the experiments, compressed with JPEG at quality 10
and presenting severe blocking artifacts and color distortions.

3.2 Graphical user interface
The graphical user interface (GUI) for the three experiments was
implemented in MATLAB. Depending on the protocol, two or three
images were presented side-by-side in the central part of the screen
with a 1:1 pixel ratio. A pseudo-random order of presentation was
applied, and care was devoted to avoid displaying the same con-
tent consecutively. Under the images, the voting mechanism was
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displayed according to the specific protocol. For the AIC-2 method-
ologies, the subjects had the possibility to select the desired image
through a radio button or by clicking directly on the images. For
the DSCQS protocol, two slide bars were placed under the left and
right images in a vertical position. Five markers on the slide bars re-
ported the labels Excellent, Good, Fair, Poor, and Bad, corresponding
to proportional values from 100 to 0. The sliders were initialized
to the value 0 (Bad), and the system did not allow moving to the
subsequent step until at least one click was registered on each slide
bar. For all the experiments, the subjects were required to press
the button ’Next’ in order to proceed to the next stimulus. This
button was hidden during the first four seconds in order to impose
a minimum viewing time, but no upper limit was set. The back-
ground was set to a mid-dark gray tone (HEX #333333), and a blank
interface with only the background color was displayed for 0.25
seconds between two consecutive steps.

Prior to the beginning of the experiments, the subjects were
requested to conduct a training session in order to get accustomed
to the goal of the experiment and grading scale. For the AIC-2 A
and Flicker protocols, the training session included 6 examples and,
in order to prevent misinterpretations of the task, feedback was
provided to the subjects if an incorrect answer was given. For the
DSCQS protocol, three examples with qualities Excellent-Excellent,
Excellent-Fair and Excellent-Bad were presented during the training
session.

3.3 Experimental setup
The experiments were conducted in the three institutions in simi-
lar environments with ambient light set to approximately 15 lux.
Monitors of sizes 31.5" and 32" were adopted for the experiments,
notably a Dell UltraSharp 32 4K U3219Q at EPFL, an Asus ProArt
PA32UC at IST, and an EIZO ColorEdge CG318 at UBI. All monitors
were configured to work with a Full HD resolution (1920x1080).
Moreover, the monitors were calibrated by setting a D65 white
point, and 120𝑐𝑑/𝑚2 monitor brightness. The viewing distance was
set to 62 cm. Written and oral instructions were provided prior to
the beginning of the experiment. At each institution, 20 subjects
participated in the experiments. All subjects passed a Snellen visual
acuity test and Ishihara color vision test prior to the experiment.

At EPFL, the average age of the subjects was 22, with maximum
age 25 and minimum age 18. At UBI, the average age of the subjects
was 21.7, with maximum age 26 and minimum age 19. Finally, at
IST, the average age of the subjects was 29.35, with maximum age
47 and minimum age 24.

The order of the experiments varied between the different insti-
tutions, notably: at EPFL and IST the adopted order was (1) DSCQS
(2) AIC-2 A (3) Flicker test, while at UBI the order was (1) AIC-2 A
(2) Flicker test (3) DSCQS. This variation was introduced to evaluate
the impact of the experience of the subjects on the results.

4 STATISTICAL ANALYSIS
4.1 Results processing
The subjective scores were separately screened for outliers for
each protocol and each laboratory. Outlier detection from ITU-
R Rec. BT.500 [24] was applied to the subjective scores from the
DSCQS experiment. For the AIC-2 methodologies, a subject was

considered an outlier in case of wrong detection of one or more
control images [11]. Two outliers were identified following this
procedure, one for the DSCQS experiment at EPFL and one for the
AIC-2 A experiment at UBI, and their scores were removed from
the analysis.

The differential mean opinion scores (DMOS) and confidence
intervals (CI) were then obtained for the DSCQS experiment. Con-
sidering that (𝐷𝑖 , 𝑅𝑖 ) denotes a stimulus pair where 𝐷𝑖 is a distorted
image and 𝑅𝑖 is its corresponding reference, the differential score
𝛿𝑖 𝑗 for each subject 𝑗 is computed through 𝛿𝑖 𝑗 = 𝑑𝑖 𝑗 − 𝑟𝑖 𝑗 + 100,
with 𝑑𝑖 𝑗 and 𝑟𝑖 𝑗 being the scores attributed by subject 𝑗 to 𝐷𝑖 and
𝑅𝑖 , respectively. The DMOS value and CI are then obtained from
Equations 1 and 2, where 𝑆𝑖 corresponds to the standard deviation
of the differential scores across all subjects.

𝐷𝑀𝑂𝑆𝑖 =
1
𝑁

𝑁∑︁
𝑗=1

𝛿𝑖 𝑗 (1)

𝐶𝐼𝑖 = 1.96
𝑆𝑖√
𝑁

(2)

The obtained DMOS values represent the difference in visual
quality between the reference and distorted stimuli. It is also possi-
ble to ignore the score given to the reference and compute only the
mean opinion score (MOS), which represents the visual appeal of
the distorted stimulus only. This value is given by Equation 3 and
can be related to the DMOS through Equation 4.

𝑀𝑂𝑆𝑖 =
1
𝑁

𝑁∑︁
𝑗=1

𝑑𝑖 𝑗 (3)

𝐷𝑀𝑂𝑆𝑖 = 100 +𝑀𝑂𝑆𝑖 −
1
𝑁

𝑁∑︁
𝑗=1

𝑟𝑖 𝑗 (4)

For the protocols based on the AIC-2 specifications, the cor-
rect detection rate (CDR) is computed for each stimulus pair. In
particular, the detection score 𝑐𝑖 𝑗 receives value 1 if subject 𝑗 cor-
rectly detects the reference 𝑅𝑖 , and 0 otherwise. The CDR is then
computed through Equation 5.

𝐶𝐷𝑅𝑖 =
1
𝑁

𝑁∑︁
𝑗=1

𝑐𝑖 𝑗 (5)

The CDR evaluates the visual fidelity of the distorted stimuli.
High CDR values indicate that most subjects were able to differen-
tiate the distorted stimulus from the reference, implying low visual
fidelity, and vice-versa. In the extreme case where no subject was
able to detect any difference, the CDR should approach 0.5, since
all individual detection scores are random.

4.2 AIC-2 probability analysis
The AIC-2 standard defines that all subjects should visualize each
stimulus multiple times, resulting in individual CDR values for each
subject. A distorted stimulus is then considered visually lossless if it
differs from its corresponding references at 1 JND for all subjects. At
this threshold level, a subject would correctly detect the reference
half of the time, and answer randomly at the other half, resulting in
a CDR approaching 0.75. In this experiment, although the subjects
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Figure 2: Probability of a stimulus being visually lossless

rate each stimulus only once, the threshold CDR value is kept at
0.75. This threshold should correspond to the level of 1 JND for
the entire subjects pool rather than for individuals. However, it is
also possible for this threshold to be reached even if the difference
is higher than 1 JND, in the case that the amount of subjects that
randomly assign false detection scores is higher than the amount
of subjects with correct detection scores. Therefore, an analysis of
the probability of a stimulus actually being visually lossless at a
CDR of 0.75 is needed.

Let us consider that each stimulus pair (𝐷𝑖 , 𝑅𝑖 ) is evaluated by a
total of 𝑁 subjects, where 𝑁 𝑖

𝑎 subjects are aware of the distortions
and can fully differentiate both images, resulting in an individual
detection score of 𝑐𝑖 𝑗 = 1. The remaining 𝑁 𝑖

𝑏
subjects are unaware

of the impairments and are here denominated as distortion-blind
subjects. The value of 𝑐𝑖 𝑗 for each distortion-blind subject is a ran-
dom variable with a 0.5 probability of being either 0 or 1. Assuming
the threshold of 1 JND, a stimulus pair (𝐷𝑖 , 𝑅𝑖 ) can be considered
as visually lossless if 𝑁 𝑖

𝑏
> 𝑁 /2.

However, the value for 𝑁 𝑖
𝑏
cannot be directly derived from𝐶𝐷𝑅𝑖 .

Instead, the total number of subjects who correctly detected the
reference𝑁 𝑖

𝑐𝑑
= 𝐶𝐷𝑅𝑖×𝑁 is the sum between𝑁 𝑖

𝑎 and the amount of
distortion-blind subjects who randomly assigned the correct score.
This second term follows a binomial distribution 𝐵(𝑁 𝑖

𝑏
, 0.5). The

probability of 𝑁 𝑖
𝑐𝑑
, assuming a given 𝑁 𝑖

𝑏
, can therefore be obtained

by Equation 6, with 𝑛 = 𝑁 𝑖
𝑏
, 𝑘 = 𝑁 𝑖

𝑐𝑑
− 𝑁 𝑖

𝑎 and 𝑝 = 0.5:

𝑃 (𝑁 𝑖
𝑐𝑑
|𝑁 𝑖

𝑏
) =

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 (6)

In order to derive the probability 𝑃 (𝑁 𝑖
𝑏
|𝑁 𝑖

𝑐𝑑
) of the amount of

distortion-blind subjects being 𝑁 𝑖
𝑏
given the observed 𝑁 𝑖

𝑐𝑑
from

the experiment, the Equation 7 derived from Bayes’ theorem is
employed. The prior probability 𝑃 (𝑁 𝑖

𝑏
) is set to a constant value

of 1
𝑁+1 , since all possible values of 𝑁

𝑖
𝑏
are initially considered as

equally likely.

𝑃 (𝑁 𝑖
𝑏
|𝑁 𝑖

𝑐𝑑
) =

𝑃 (𝑁 𝑖
𝑐𝑑
|𝑁 𝑖

𝑏
)𝑃 (𝑁 𝑖

𝑏
)∑𝑁

𝑥=0 𝑃 (𝑁 𝑖
𝑐𝑑
|𝑁 𝑖

𝑏
= 𝑥)𝑃 (𝑁 𝑖

𝑏
= 𝑥)

(7)

Finally, the probability 𝑝𝑖
𝑉𝐿

that the stimulus pair (𝐷𝑖 , 𝑅𝑖 ) is
visually lossless is given by 𝑃 (𝑁 𝑖

𝑏
> 𝑁 /2), which is expressed in

Equation 8.
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Figure 3: Comparison of results between all laboratories.

𝑝𝑖𝑉𝐿 =

𝑁∑︁
𝑥=⌊ 𝑁

2 ⌋+1
𝑃 (𝑁 𝑖

𝑏
= 𝑥 |𝑁 𝑖

𝑐𝑑
) (8)

In order to evaluate the reliability of experiments following the
AIC-2 standard, the values of 𝑝𝑉𝐿 given all possible observed CDR
values for different total amounts of subjects 𝑁 is displayed in Fig-
ure 2. The proposed probability model results in a 𝑝𝑉𝐿 value higher
than 0.5 at the adopted CDR threshold of 0.75 for all evaluated val-
ues of 𝑁 , which decrease rapidly for higher CDR values. However,
the obtained 𝑝𝑉𝐿 (𝐶𝐷𝑅 = 0.75) is still far from 1, leaving about a
40% chance that the stimulus is actually not visually lossless. In
order to define a 5% confidence interval for the classification of
the stimulus, two dashed lines are displayed at 𝑝𝑉𝐿 = 0.05 and
𝑝𝑉𝐿 = 0.95. With 𝑁 = 40, corresponding to the number of subjects
from two out of the three laboratories of the present experiment,
a CDR as low as 0.675 is needed to achieve 𝑝𝑉𝐿 next to 95%, and
a value of approximately 0.85 is needed to affirm that a stimulus
has only 5% chance of being visually lossless. If the outcome of
the experiment lies between these values, then it is not possible to
affirm at a 5% confidence interval whether the stimulus is visually
lossless or not. If however the results from only one laboratory are
used individually, then this interval would be enlarged from 0.65
to 0.9. On the other hand, having 20 more subjects would reduce
the confidence interval from 0.683 to 0.833. In general terms, more
subjects should be added to allow for higher reliability of the test,
which results however in higher costs. In subsequent analysis, the
CDR threshold of 0.75 is kept, always considering that a significant
distance from this value is needed for robust conclusions.

5 RESULTS AND DISCUSSION
5.1 Comparison between laboratories
A comparison between the results obtained from each laboratory is
conducted to determine if the results are strongly correlated. Since
the experiments were conducted using the same order at EPFL and
IST, their results are compared first.
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Scatter plots comparing the DSCQS DMOS and AIC-2 A and
Flicker test CDR are presented in Figure 3 (upper). Results show
that the DMOS values in the DSCQS experiment from both labora-
tories agree, with a Pearson linear correlation coefficient value of
0.939, despite the slight tendency of IST subjects to accord higher
differential scores than EPFL. The correlation values were how-
ever lower for the remaining experiments, with 0.750 in AIC-2 A
and 0.635 in the Flicker test. Differently from the DMOS, the CDR
values can be considered as being quantized with a step value of
1
𝑁
, where 𝑁 is the total number of subjects. Since only 20 subjects

were employed in each laboratory, the CDR can only vary with a
step of 0.05, which corresponds to 10% of the total range given that
all values are higher than 0.5. Therefore, random variations in the
data have a higher impact on the correlation between laboratories.
This implies that, in order to maintain the same correlation values
between different experiments, either a larger number of subjects
should participate in the experiment, or each subject should rate
each stimulusmultiple times. Any of the alternatives would increase
the time duration of the experiment, and therefore the associated
cost. These results suggest therefore that the protocols based on
the AIC-2 standard are more expensive than the DSCQS.

Since the experiments were conducted in the same order at EPFL
and IST, and a high correlation was achieved for the DSCQS exper-
iment, the subjective scores from both laboratories were merged
for all subsequent analyses. Figure 3 (lower) compares the result
from merged scores between EPFL and IST against UBI. Contrary
to what was observed in the previous comparison, the correlation
coefficient of DSCQS results reaches a low value of only 0.684. The
scatter plot reveals that the DMOS values are mainly different for
Artificial, where UBI subjects tend to attribute much lower DMOS
scores. Moreover, many distorted stimuli from Bird and Face re-
ceived higher scores at UBI, which was not the case for Night and
Boat. It is clear that the order of the experiments had a high impact
on the DMOS scores obtained from the DSCQS experiment, and
this is however not the case for the remaining protocols, which
achieved a correlation of 0.817 for AIC-2 A and 0.671 for the Flicker
test. The fact that these values are actually higher than the previous
comparison between EPFL and IST corroborates the conclusion
that the correlation is negatively impacted by coarser quantization
steps of the CDR. Here, since the results from EPFL and IST are
joined, the total number of subjects is doubled and its correspond-
ing quantization step for the CDR of 1

𝑁
is halved. These results

indicate that the amount of subjects affects the consistency of the
CDR values.

Considering the impact that the order of experiments had on
DSCQS results, scores obtained at UBI are not included in the sub-
sequent analysis.

5.2 DSCQS experiment
Figure 4 depicts the DMOS values with CI obtained in the exper-
iment separately for each original content. In most cases, the be-
havior of the DMOS is monotonically decreasing with the quality
value for each codec, which is expected given the way that the
quality levels were defined. Artificial is an outlier since the DMOS
at quality 10 (highest distortions) is higher than quality 2 (low-
est distortions) for both AVIF and VVC Intra. More surprisingly,
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Figure 4: DSCQS DMOS results

Table 1: No reference metrics computed on reference images

Face Artificial Bird Boat Night

BRISQUE 19.33 43.46 11.38 29.74 31.29
NIQE 2.91 5.49 3.01 3.20 4.24
PIQE 20.64 29.78 15.03 29.09 40.86

these stimuli receive DMOS higher than 100, which indicates that
the distorted images are perceived as having higher quality than
the original. This observation can be explained by the denoising
mechanisms of such codecs which exert particularly strong effects
at lower bitrates. Since the reference image contains a high level
of noise, subjects associated noise attenuation with an increase
in visual appeal. However, the CIs of such stimuli are among the
largest of the dataset, indicating that the level of agreement on how
this denoising effect impacts the visual appeal is low.

The plots also indicate that a higher range of DMOS values is
achieved by using Face and Bird, allowing to better discriminate
between different quality levels, with maximum values going from
around 100 to less than 50. This range is moderately reduced for
Night and Boat, and even more for Artificial without considering
the enhancing effect of VVC Intra and AVIF. Visual inspection of the
reference images in Figure 1 suggests that Face and Bird have the
highest visual quality, where fine details in skin, hair, and feathers
can be discerned. In Boat and Night however, the distinction of
finer details is hindered due to motion blur and acquisition noise.
Artificial is heavily different from the remaining, not only because
it is not a natural image, but also due to the high level of added
noise and edges being perceived as jagged lines. Such inspection
suggests that Face and Bird have higher quality than the remaining
reference images.

In order to further investigate this assumption, three widely used
non-reference quality metrics, namely BRISQUE [20], NIQE [21]
and PIQE [35], were computed directly on the reference images and
reported in Table 1. While both Face and Bird present the lowest
values for all three evaluators, two out of three metrics give the
highest value for Artificial, as it presents statistics far from those
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Figure 5: Scatter plot of DSCQS DMOS against MOS

in natural images. Such results corroborate previous conclusions
derived from visual inspection.

The effect of the quality of the reference image on the DSCQS
results is more clearly observed in Figure 5, where the DMOS of
each stimulus is plotted against the MOS obtained by disregarding
the scores given to the reference images in the same experiment.
According to Equation 4, the MOS and DMOS are related to the
average score attributed to the reference image of the stimulus
pair. Figure 5 takes that into account by including dashed lines
that correspond to constant reference average scores. The plot
indicates that rating behavior is divided between three distinct
clusters. The references Face and Bird received similar average
scores of approximately 80, with the former achieving slightly
higher quality. Boat and Night received lower average scores lying
mostly between 50 and 60, and Artificial has an average reference
score of less than 40, with some stimuli even approaching 20.

The plot in Figure 5 strongly suggests that the selection of the
reference images plays a crucial role in the outcome of DSCQS
experiments. This is due to the fact that this experiment targets
the assessment of the visual appeal of the distorted images, rather
than their fidelity to the reference. It is observed that the distorted
stimuli from references with higher visual quality achieve higher
differentiation between quality levels, which is a desirable feature
when the performances of different codecs are being evaluated at
similar bitrates. Therefore, these results indicate that images with
high visual quality should always be included in datasets comparing
the rate-distortion performance of coding methods with the DSCQS
experiment.

Moreover, Figure 5 reveals that the high DMOS values for Arti-
ficial were only possible since the average reference scores were
low. In fact, the stimulus with the highest DMOS value has a MOS
value of only 40, indicating that its absolute quality is low despite
its DMOS being above 100.

5.3 AIC-2 experiments results
The CDR results obtained in the AIC-2 A experiment are presented
in Figure 6. It is observed that the majority of stimuli under the
CDR threshold were compressed with quality level 2. Moreover, no
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Figure 6: AIC-2 A CDR results

clear difference between CDR values is observed at higher quality
levels, especially between levels 8 and 10. These results are in line
with the experiment in [32] where these quality levels were defined
since all levels higher than 4 should differ from the original by 1
JND or more.

However, some stimuli from quality 2 are not labeled as visually
lossless with a significant margin from the threshold, even if their
difference to the reference image was measured as being only 0.5
JND in [32]. One possible reason for the difference in the results
between both experiments is that the original JND values were
obtained through the interpolation of a curve fitted to the observed
data, relying on the precision of values that are susceptible to errors.
Moreover, the experiment setup from [32] and from the current
study are not equivalent: while in [32] each subject was asked
to select the image with the highest visual quality, in the AIC-2 A
experiment they are asked to select the closest match to the original.

Therefore, while [32] assessed if one image is more visually
appealing than the other, the experiment in this paper evaluated
the visual fidelity of the distorted images. It is possible that the same
subject could identify an objective difference between both images
of the stimulus pair in the latter case, but not be able to select an
image with higher visual quality in the former. Therefore, given
the way that the JND levels were defined, subjects are expected to
be more strict in the AIC-2 A experiment than in [32].

Results from the Flicker test are presented in Figure 7. If quality
level 2 was enough to generate CDR values under the threshold for
most stimuli in AIC-2 A, the same distortion is much more easily
perceived on the Flicker test. Even for quality level 1, which corre-
sponds to a difference of only 0.25 JND in [32], the subjects were
able to differentiate the stimulus pair at high CDR for some stimuli.
A higher variability between different content is also observed. For
Artificial, no stimulus was considered as visually lossless, mainly
due to the presence of high levels of noise in the original image.
Due to the high spatial frequencies of the added noise, this image
is extremely hard to compress with high fidelity levels. Moreover,
while slight modifications may pass undetected in a side-by-side
comparison, they are much more easily noticed between two inter-
leaved images. Among the remaining stimuli, Face and Bird have on
average larger CDR values, suggesting that subjects are in general
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Figure 7: Flicker CDR results

more able to detect impairments in images with higher qualities.
Such variability between content also indicates JND levels defined
through side-by-side comparison do not translate easily to the
Flicker test.

5.4 Protocol comparison
Since the Flicker test has a higher discerning ability and may detect
perceptual differences even in stimuli with excellent perceptual
quality, it is difficult to compare the outcome of this experiment to
DSCQS and AIC-2 A. On the other hand, the same quality levels
were used in the datasets evaluated by the two latter protocols,
allowing a straightforward comparison.

A scatter plot comparing the CDR values obtained in the AIC-2 A
experiment against the DMOS values from DSCQS is displayed in
Figure 8. There is an evident difference between the points on the
left of the CDR threshold and the points on its right. All stimuli
considered as visually lossless received high DMOS, with minimum
values ranging around 90. Assuming that the number of distortion-
blind subjects for a given stimulus is the same for the DSCQS and
AIC-2 A protocols, and assuming that such subjects attribute the
same score for both images of the stimulus pair during the DSCQS
experiment, then more than half of the differential scores of that
stimulus should be equal to 100. Considering that the increased
visual fidelity of such stimuli also corresponds to high visual appeal
for the remaining distortion-aware subjects, the overall DMOS
should remain near 100, which is observed here.

The stimuli with CDR higher than the threshold present however
a different behavior. While, in general, the DMOS decreases with
higher CDR for most images, stimuli from Artificial received high
differential scores even when differences between both stimuli
could be perceived. These findings indicate that, although there is
a correlation between visual fidelity and visual appeal for most of
the test images, the DSCQS protocol cannot be used to determine
if a distorted stimulus is visually lossless.

Overall, the analysis conducted in this paper shows different
weaknesses of the considered standardized protocols:

• The DSCQS methodology is highly influenced by the quality
of the reference image and is unable to differentiate between
images with slight differences in visual quality,
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Figure 8: Result comparison between DSCQS and AIC-2 A

• The AIC-2 A methodology is not able to discriminate be-
tween images with visual quality lower than (nearly) visually
lossless,

• The Flicker test is too sensitive and does not provide any
meaningful result in the quality range of interest of this
paper.

6 CONCLUSIONS
In this study, three different subjective assessment protocols, namely
DSCQS and the two variants of the AIC-2 standard, are compre-
hensively assessed and compared. A dataset of compressed im-
ages distorted using multiple codecs was evaluated on experiments
conducted in three separate laboratories. The outcome from dif-
ferent laboratories was first analyzed, revealing that the DSCQS
experiment was heavily affected by the order in which the experi-
ments were conducted, or more specifically by the subject experi-
ence. Moreover, the quality of the reference image was observed
to strongly impact the range of obtained DMOS scores. The two
experiments following the AIC-2 protocols evidence that the defi-
nition of visually lossless is largely dependent on the visualization
conditions. The comparison between protocols also indicates that,
while there is a correlation between visual appeal measured by
DSCQS and visual fidelity measured by AIC-2 protocols, the two
concepts are not interchangeable, and stimuli with high appeal
scores may present low fidelity. This study, therefore, suggests the
need for novel subjective image quality assessment protocols robust
in quality range from high to nearly visually lossless.
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