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Abstract—Point clouds are effective data structures for the rep-
resentation of three-dimensional media and hence adopted in a
wide range of practical applications. In many cases, the portrayed
data is expected to be visualized by humans. After acquisition,
point clouds may undergo different processing operations such
as compression or denoising, potentially affecting their perceived
quality. Although subjective experiments are still the most re-
liable form of assessing the intensity of degradation, they are
expensive and time-consuming, pushing many systems to depend
on objective metrics. Such algorithms are used to model the
human visual system, and their performance is usually assessed
through their correlation with subjective visual quality scores.
In this paper, an objective quality metric capable of evaluating
distortions between a reference and a distorted point cloud at
multiple scales is presented. The proposed metric is based on
the point cloud structural similarity metric (PointSSIM), which
computes a score based on the difference between statistical
estimators obtained on the distribution of the luminance attribute
over local neighborhoods. A collection of PointSSIM scores is
produced for multiple scales obtained through the voxelization
of both models at different bit depth precisions. These scores
are then pooled through a weighted sum, with the importance
of each scale being defined through logistic fitting to subjective
mean opinion scores, producing one MS-PointSSIM score. Three
datasets were employed for fitting and performance assessment,
demonstrating a clear advantage of the proposed metric when
compared to the single-scale baseline. Moreover, the presented
MS-PointSSIM is shown to be the best predictor according to the
average Pearson correlation coefficient across the three datasets
when compared to state-of-the-art metrics.

Index Terms—Point cloud, objective metric, quality

I. INTRODUCTION

The use of point clouds to represent three-dimensional
objects and scenes has been growing in recent years. Due to the
large amount of data needed to represent them, efforts have
been devoted to developing efficient compression solutions.
Lossy methods are capable of achieving higher compression
ratios by excluding details that are not easily perceived by
humans, inducing a trade-off between visible degradation and
compression ratio. During the development of compression
algorithms, it is essential to correctly estimate the impact of
added distortions on the quality of decoded point clouds. For
applications where humans are the end users, quality is defined
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subjectively and is more accurately measured through human
observation. It is common for such measures to be obtained
during subjective experiments where subjects are asked to
observe a distorted point cloud and its reference, attributing a
score to the impairment observed between the models.

Even if subjective experiments are the most reliable method
for point cloud quality estimation, many applications require
faster and less expensive techniques. Objective quality metrics
are usually used for this purpose by computing a score based
on the geometric and color features of the model. Their goal
is to accurately predict the subjective score associated with a
point cloud, and are often evaluated through the correlation
between their result and mean opinion scores (MOS) from
subjective experiments. The most recent metrics proposed in
the state of the art can be classified as either point-based or
image-based. While metrics from the first category are based
on operations applied directly in the three-dimensional space,
image-based metrics first project the point cloud into planes
and then estimate the quality of the obtained projections.
Such metrics have the advantage of leveraging prior research
developments on image quality assessment but are highly
dependent on the position selected for the projection planes
as well as on the rendering method.

For that reason, point-based metrics have been mostly
preferred for the evaluation of point cloud compression meth-
ods. Early metrics such as point-to-point and point-to-plane
[1] are applied directly in the geometry, while color PSNR
computes the difference between color values of neighboring
points. Although these metrics have been leveraged during
the development of MPEG compression standards G-PCC
[2] and V-PCC [3], recent studies indicate that they do not
correlate well with human perception across different types of
compression artifacts [4], especially those generated by codecs
based on neural networks.

The fact that these metrics concentrate only either on geom-
etry or color while neglecting the other is another disadvantage
since they are not able to fully model the human visual system.
Recently proposed objective quality metrics attempt to solve
this issue by either explicitly combining geometry and color
features [5] or implicitly considering geometry distortions by
pooling color attributes across local neighborhoods [6], [7].
In particular, PointSSIM [7] is inspired by the image-based



structural similarity metric (SSIM) [8], computing statistical
features on the luminance channel and comparing feature maps
from both point clouds. The correlation between image-based
SSIM and human perception is usually higher when scores
are computed at multiple scales and pooled together [9], even
when considering artifacts created by learning-based codecs
[10].

Inspired by the multiscale SSIM (MS-SSIM) metric, this
paper evaluates the use of the PointSSIM metric at multiple
scales, which are obtained through voxelization at different bit
depth precisions. Single-scale scores are produced through the
PointSSIM metric at each scale and pooled together through
a weighted sum, with weights obtained from logistic fitting
to subjective scores. In addition, a modification is proposed
to the original PointSSIM implementation by using range
searching rather than k-Nearest Neighbors (kNN) from local
neighborhoods. A software implementation of the metric is
made publicly available 1.

II. RELATED WORK

As one of the simplest methods to evaluate the distortion of
a point cloud, the point-to-point metric computes the average
distance between each point in the evaluated point cloud
and its nearest neighbor in the reference. Similarly, point-
to-plane [1] considers the normal vectors of the reference
and only computes the distance perpendicular to the normal
plane. On the other hand, the angular similarity metric [11]
produces a quality score equivalent to the average angular
distance between normal vectors. The point-to-distribution
[12] is computed through the Mahalanobis distance to achieve
a scale-invariant measure, and the same authors also proposed
improvements to traditional PSNR-based metrics [13]. Newer
approaches [14] attempt to leverage 3D convolutional net-
works in an autoencoder architecture and compute the distance
in the latent space. Such metrics rely only on geometry
distortions to achieve a final quality score.

The color-based PSNR metrics compute a metric value
similar to its image-based counterpart, establishing correspon-
dence between points on both point clouds through the nearest
neighbor. PCQM [5] computes color-based and geometry-
based features and obtains a single score through a weighted
sum with weights obtained after fitting on a subjective dataset
[15]. GraphSIM [6] constructs graphs around key points and
computes three color gradient features over each graph, which
are fused into one similarity score. PointSSIM forms neighbor-
hoods around each point and generates a score from statistical
estimators of the distribution of either geometry-based or
color-based attributes. The GQI [16] uses convolutional layers
to compute structural distortion on geometry, curvature, and
color around randomly placed patches. Apart from the simple
color-based PSNR, the remaining metrics are usually better
suited to model the human visual system.

1https://github.com/mmspg/ms-pointssim

III. SINGLE-SCALE STRUCTURAL SIMILARITY

The structural similarity used to compute single-scale scores
is based on the local distribution of attributes. In the original
work where this metric was first presented [7], four attributes
were proposed: geometry, normal vectors, curvature values,
and luminance. While the three first attributes are derived only
from spatial coordinates, the latter is based on color attributes.
For both the reference and the evaluated point clouds, different
estimators are computed to represent the statistical distribution
of the selected attribute over local neighborhoods. In the
original PointSSIM metric, these neighborhoods are defined as
the k-Nearest Neighbors of each point. A statistical estimator
is calculated over each neighborhood and assigned as a feature
F to each target point. In this paper, the following statistical
estimators of an attribute A are evaluated: the mean µA,
the standard deviation σA, the variance σ2

A, the coefficient
of variance COVA, the mean absolute deviation µADA, the
median absolute deviation mADA and the quartile coefficient
of dispersion QCDA. The last four estimators were computed
using Equations 1a to 1d.

COVA =
σA

µA
(1a)

µADA = E[A− µA] (1b)

mADA = E[A−mA] (1c)

QCDA =
QA(3)−QA(1)

QA(3) +QA(1)
(1d)

After feature computation, the nearest neighbor q from
the evaluated point cloud D to each reference point p in
the reference R is detected. A similarity value S(p) is then
attributed to each point p through Equation 2, where ϵ is a
small constant defined as the machine rounding error.

S(p) =
|F (q)− F (p)|

max{|F (q)|, |F (p)|}+ ϵ
(2)

The similarity score SR between reference R and evalu-
ated D point clouds is then obtained through the average
between the similarity values of all points in R. The en-
tire process is then repeated using the point cloud D as
the reference, resulting in another similarity score SD. The
symmetrical PointSSIM value SRD is finally selected as
SRD = min{SR, SD}.

Although four different attributes were implemented on the
PointSSIM metric [7], in this paper, only the luminance was
retained. While geometry-based features are left untouched
if only the color attributes of a point cloud are distorted,
luminance-based features capture geometry distortions indi-
rectly because point displacements alter the statistical dis-
tribution of color over local neighborhoods, being the only
attribute affected by all types of distortion. Moreover, lumi-
nance was already found to be the attribute with predictions
better correlated with subjective scores [7]. A metric based
on color attributes can also be used as the loss function for



training learning-based compression algorithms for point cloud
attributes in future works. While recent image compression
algorithms [17] currently use different objective metrics for
training such as the multiscale structural similarity [9] and
learning-based metrics such as LPIPS [18], point cloud com-
pression methods [19] still estimate distortion with the PSNR,
which correlates poorly with human perception.

A modification to the algorithm used to define neighbors
for feature computation is proposed in this paper, with range
search being studied in addition to the original implementation
with kNN. The proposed change mainly aims to better deal
with differences in point density between the reference and
distorted point cloud: if both models have widely different
point densities for a given region in space, the neighborhoods
formed by the kNN algorithm span over much larger volumes
for the sparser point cloud relatively to the denser. The
computed features may therefore diverge even if the spatial
distribution of the selected attribute is similar, only due to the
extent of the surface over which the distribution is sampled.
In contrast, with range search, all points lying within a sphere
with a fixed radius centered on the target point are selected
for the neighborhood, solving the aforementioned problem and
potentially leading to better correlation with subjective scores.

As an alternative, both neighboring search methods could
have been combined, where candidate neighborhoods are
formed with each method and the final neighborhood being
either the union or the intersection between the two candidate
neighborhoods. This analysis is not conducted in this paper
and is deferred for future work.

IV. MULTISCALE STRUCTURAL SIMILARITY

The objective quality metric presented in this paper com-
bines PointSSIM scores computed for multiple scales. The
motivation behind this design is that subjective perception can
be affected both by distortions at coarser and finer scales.
Therefore, better correlation can be achieved by assigning one
single score that pools together degradations at multiple scales,
similar to the image-based MS-SSIM metric.

The metric computation starts with the voxelization of both
the reference point cloud R and the evaluated D at different
bit depth precisions to achieve different scales. For a precision
value p, the coordinates of the point clouds are scaled to
fit into a bounding box of size 2p and then rounded to the
nearest integer. If more than one point is quantized to the same
position, their color attributes are averaged in the voxelized
point cloud. In this paper, voxelization is applied with p values
ranging from pi = 6 to pf = 10. Each point cloud pair is then
served as input to the single-scale metric, producing one score
S for each scale. The final MS-PointSSIM score M is then
generated as the weighted sum over the scores obtained for
each scale, as depicted in Equation 3, with vp representing
the voxelization operation with precision p.

M(R,D) =

pf∑
p=pi

wp × S(vp(R), vp(D)) (3)

The weight values wp are obtained by fitting the metric
scores to a subjectively annotated dataset. In order to keep the
multiscale metric value bound to the same range as the single-
scale scores, the weights wp are constrained to have their sum
equal to 1. In order to ensure the constraint, the vector w is
parametrized by Equation 4.

w = softmax(b) (4)

A logistic function is used to obtain PMOS values (predicted
MOS) from the MS-PointSSIM scores. Let us consider a
subjectively annotated dataset containing N point cloud pairs
(Di, Ri) ∀ 1 ≤ i ≤ N , where Di is a distorted point cloud
and Ri its corresponding reference. Each pair received MOSi

equal to the average attributed score across all subjects scaled
to the range [0, 1]. The PMOS value for each stimulus is given
by Equation 5, where the score M(Di, Ri) is computed using
Equation 3.

PMOSi =
1

1 + exp{α · [M(Di, Ri)− δ]}
(5)

The set of parameters β = {b, α, δ} is obtained through
the minimization of the least-squares error between the MOS
and PMOS values. An implementation from the scipy python
library of the trusted region reflective algorithm is used for the
optimization, with initial values of b = 0, δ = 0 and α = 1.

V. EVALUATION CONDITIONS

Three subjectively annotated datasets containing point
clouds distorted using different compression algorithms were
selected for fitting and evaluation. The IST Rendered Point
Cloud Quality Assessment Dataset (IRPC) [15] contains six
point clouds extracted from the MPEG repository compressed
with three codecs: V-PCC, G-PCC using the TriSoup module
for geometry coding, and the compression method from the
Point Cloud Library (PCL) [20]. Two point clouds from the
dataset are originally represented with a bit depth precision of
10, and while the remaining models use a bit depth precision
of 12, they were also reduced to a precision of 10 for V-
PCC encoding. The ICIP2020 dataset [21] contains six point
clouds compressed with both G-PCC and V-PCC at five
quality levels. The two geometry coding modules from G-
PCC, namely octree and TriSoup were employed. In this paper,
the Sarah model was excluded from the dataset due to its
lower voxelization precision. Finally, the SR-PCD [22] was
selected, containing six models compressed with two codecs,
namely G-PCC with the octree coding module and a learning-
based geometry compression method [23] combined with the
lifting module from G-PCC for color coding. The combined
evaluation dataset consists of a total of 177 distorted point
clouds, 54 from IRPC, 75 from ICIP2020, and 48 from SR-
PCD.

The single-scale PointSSIM metric was first computed on
the entire combined dataset with different sets of parameters.
The seven proposed statistical estimators were used, with
a voxelization bit depth precision p ranging from 6 to 10.



TABLE I: Correlation coefficients for single-scale PointSSIM

PLCC SROCC Average

Combination IRPC ICIP2020 SR-PCD IRPC ICIP2020 SR-PCD PLCC SROCC

8-bit, mAD, k = 24 0.859 0.906 0.904 0.790 0.878 0.925 0.890 0.864
8-bit, σ2, k = 6 0.838 0.926 0.910 0.738 0.902 0.925 0.891 0.855
8-bit, σ2, k = 48 0.771 0.916 0.915 0.682 0.887 0.931 0.867 0.834
8-bit, mAD, r = 3 0.883 0.914 0.892 0.800 0.893 0.926 0.896 0.873
10-bit, σ2, r = 1 0.551 0.957 0.679 0.458 0.943 0.684 0.729 0.695
10-bit, µAD , r = 2.5 0.751 0.911 0.934 0.656 0.880 0.936 0.865 0.824

Both kNN and range searching were used to establish local
neighborhoods, the first with k = 6, 12, 24 and 48, and the
latter with ranges set to r = 1, 1.5, 2, 2.5, 3, 3.5, 4 and 4.5. All
possible combinations of estimator, scale, and neighborhood
were used, and PMOS values were produced through least-
squares logarithmic fitting for each combination, with separate
parameters for each dataset. Finally, the Pearson and Spearman
correlation coefficients were computed between MOS and
PMOS.

The single-scale scores were used to obtain the weight
vector w using three different configurations to combine
scores from different scales. At first, only single-scale scores
from the same estimator and the same neighborhood size
were combined. In the second configuration, different estima-
tors were allowed to be combined at different scales, while
maintaining the same neighborhood size. Finally, single-scale
scores computed with distinct estimators and neighborhood
sizes were allowed to be pooled together, with the constraint
that the same search method had to be used, i.e. kNN and range
search. These three approaches are further denominated as
SESN (Single-estimator Single-neighborhood), MESN (Multi-
estimator Single-neighborhood), and MEMN (Multi-estimator
Multi-neighborhood), respectively. Each configuration allows
for a higher amount of combinations than the previous one,
with 84 for SESN, approximately 201 thousand for MESN,
and more than 560 million for MEMN. For both SESN and
MESN, one weight vector w was obtained for all possible
combinations separately for each dataset. Given the massive
amount of possible combinations for MEMN, only 20 thou-
sand random combinations were tested per dataset. Similarly
to the single-scale PointSSIM, correlation coefficients were
obtained to evaluate the performance of the metric.

Since MESN and MEMN configurations contain larger
parametric spaces, it is expected that their best-performing
combinations will improve in relation to SESN. However, such
correlation values can be the result of specific combinations
that are overfitted to the data which will not generalize well
for unseen distortions. For this reason, the best-performing
combinations for each configuration and each dataset were
also tested on the other datasets. In this case, although the
weight vector w was kept the same as the dataset to which
the combination was originally fit, a new logistic fitting of
the parameters α and δ of Equation 5 was conducted in
order to account for differences on the protocol used during
the subjective experiments. For SESN, only the 10 best-
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Fig. 1: Scatter plots of objective scores against mean opinion
scores for different metrics

performing combinations were tested for other datasets, while
100 were used for MESN and 200 for MEMN.

Finally, in order to compare the performance of MS-
PointSSIM with other state-of-the-art metrics, the following
objective quality metrics were computed on the three evalu-
ated datasets: point-to-point PSNR (D1 PSNR), point-to-plane
PSNR (D2 PSNR) [1], Y and YUV PSNR, PCQM [5] and
GraphSIM [6]. Y PSNR was computed only on the luminance
channel, and YUV was computed through a weighted average
across all channels using a [6, 1, 1] weighting scheme between
luminance and the two chrominance channels. All evaluated
metrics were separately fitted to the subjective scores of
each dataset using a logistic function, and the correlation
coefficients were obtained.

VI. RESULTS AND DISCUSSION

The Pearson and Spearman correlation coefficients (PLCC
and SROCC) computed for the single-scale PointSSIM com-
binations achieving higher Pearson correlation coefficient for
each dataset are presented in Table I. The upper half of the
table includes only combinations based on kNN, while com-
binations of the lower half group neighborhoods using range
search. It can be seen that the best-performing combination
is different for each dataset. For this reason, the average
correlation values across all datasets are also displayed in the
columns at the right. Combinations using range search are
found to consistently outperform those based on kNN, both for
individual datasets as well as for the average. In particular, the
combination with the best performance for the IRPC dataset
is also the best single-scale combination overall. In general,
correlation values for this dataset are lower than the remaining



TABLE II: Correlation coefficients for multiscale PointSSIM: SESN (Single-estimator Single-neighborhood) and MESN (Multi-
estimator Single-Neighborhood) configurations

PLCC SROCC Average Scale weights

Combination IRPC ICIP2020 SR-PCD IRPC ICIP2020 SR-PCD PLCC SROCC 6-bit 7-bit 8-bit 9-bit 10-bit

mAD, k = 24 0.861 0.903 0.904 0.791 0.878 0.925 0.890 0.865 - 0.296 0.704 - -
mAD, k = 6 0.585 0.946 0.815 0.663 0.928 0.869 0.782 0.820 0.527 - - - 0.473
σ2, k = 12 0.819 0.919 0.921 0.744 0.893 0.934 0.886 0.857 - 0.741 - 0.259 -
mAD, r = 1 0.921 0.955 0.928 0.852 0.942 0.929 0.935 0.908 0.789 - 0.053 0.070 0.088
mAD, r = 1 0.765 0.967 0.900 0.747 0.961 0.893 0.877 0.867 0.689 - - - 0.311
mAD, r = 1.5 0.780 0.946 0.956 0.786 0.931 0.934 0.894 0.884 0.590 - - 0.118 0.292

r = 1 0.928 0.901 0.913 0.856 0.886 0.911 0.914 0.884 0.533 σ 0.300 µ 0.047 µAD 0.051 QCD 0.068 mAD
r = 1 0.679 0.971 0.863 0.622 0.963 0.865 0.837 0.817 0.304 σ2 0.285 µ - 0.015 σ2 0.396 mAD
r = 1.5 0.795 0.945 0.958 0.783 0.928 0.933 0.899 0.881 0.491 σ2 - - 0.160 QCD 0.349 mAD
r = 1 0.925 0.920 0.918 0.855 0.901 0.911 0.921 0.889 0.459 σ2 0.349 µ 0.055 µAD 0.055 µAD 0.082 mAD

TABLE III: Average correlation across datasets

MS-PointSSIM PCQM GraphSIM D1 PSNR D2 PSNR Y PSNR YUV PSNR

PLCC 0.935 0.926 0.870 0.857 0.870 0.761 0.768
SROCC 0.908 0.914 0.832 0.808 0.828 0.771 0.769

two, indicating that there are characteristics from those point
clouds that hinder the performance of this objective metric.
While the employed codecs are very similar to those used in
ICIP2020, the point clouds from IRPC have highly varying
point densities when compared with the models from the
former, which are uniformly dense. This is likely the reason for
the particularly lower performance of the combinations using
10-bit precision on IRPC: for the sparser point cloud models,
most local neighborhoods are empty since most points are
more distant from each other than the range used to form the
neighborhoods. The combination with higher performance for
ICIP2020 displays low performance also for SR-PCD, possibly
due to its lack of compression artifacts from learning-based
codecs.

Table II depicts the correlation coefficients achieved by the
MS-PointSSIM metric. The upper and lower halves contain
results for the SESN and MESN configurations, respectively.
The former is further divided according to the method used to
form neighborhoods, with the combination producing higher
coefficients for each dataset using both kNN and range search-
ing being displayed on top and on the bottom, respectively.
Moreover, the five columns at the right contain the weights
wp assigned to each scale after logistic fitting, where all
values lower than 10−4 are omitted. It is observed that
MS-PointSSIM achieves higher correlation values than the
baseline for both neighborhood search methods. Similarly to
the previous case, range searching is also found to allow for
better performance for all datasets, with the average Pearson
correlation going up to 0.935 for the best configuration. The
median absolute deviation is found to be particularly effective
as an estimator, and the minimum range of 1 produces the
best results for two datasets. These results may seem counter-
intuitive since local neighborhoods formed with this range
contain only points adjacent to the target, being mostly empty
for sparser point clouds. This effect is however attenuated
at lower scales, where the points of the voxelized models
are arranged closer together, allowing the metric to extract

meaningful information. This is likely the reason why the
combination with the highest correlation for IRPC was opti-
mized with the highest weight for the coarser scale voxelized
at 6-bit depth, with the finest scale at 10-bit depth receiving
significantly smaller importance.

Since for both the single-scale metric and the SESN con-
figuration range search was found to be the best method
for forming neighborhoods, results obtained with kNN were
omitted for the MESN configuration. The first three rows
correspond to the single configuration with the highest Pearson
correlation for each dataset. In order to compute the last row,
the 100 best combinations for each dataset were tested on the
remaining two, and the combination with the highest average
Pearson correlation was retained. Since the set of MESN
combinations is a superset of the previous SESN configuration,
higher performance is naturally achieved separately for each
dataset due to the higher number of options to choose from.
However, results suggest that the large parametric space makes
the metric overfit to specific datasets, adapting to noise in the
data rather than to general features of the human visual system
on point clouds. This is the likely reason why the average
correlation values are lower than for the SESN configuration,
even when evaluating the best 100 combinations for each
dataset, as in the last row of the table. Since results for the
MEMN configuration followed a similar trend, with higher
correlation values for single datasets but not reaching an aver-
age correlation as high as SESN, results for that configuration
are not displayed in this paper.

Therefore, the SESN combination using the mAD estimator
and unitary range is selected, with scale weights obtained
from the logistic fitting on the IRPC dataset. This combination
assigns the highest weight for the coarsest scale, while the 7-
bit scale is completely ignored. These results do not mean that
the single-scale score at this precision is the least correlated
with human perception, but rather that it does not provide
enough additional information to what can be captured by the
remaining scales. The average correlation coefficients across
the three datasets obtained by this combination are compared
to other metrics in Table III, and scatter plots of the metric
values against the MOS are presented in Figure 1 for the
two best-performing estimators, namely MS-PointSSIM and
PCQM. Pearson and Spearman correlation values for individ-



ual datasets are also reported in the legends of the plots from
Figure 1. It is observed that the proposed metric outperforms
the remaining ones in terms of average Pearson correlation.
If PCQM maintains good performance for all datasets, it is
still not able to reach a correlation higher than 0.9 for IRPC.
MS-PointSSIM is the only evaluated metric able to achieve
such correlation values, obtaining a 0.935 average Pearson
correlation against 0.926 for PCQM and 0.870 for GraphSIM.
While it could be argued that the leading performance of
MS-PointSSIM on the IRPC dataset is due to the fact that
this dataset was directly used for the optimization of its
scale weights, the same holds for PCQM. Therefore, such
results corroborate the conclusion that objective evaluations
at multiple scales allow the metric to better model the human
visual system.

VII. CONCLUSION

In this paper, an objective quality metric computing the
structural similarity of the luminance attribute at multiple
scales is proposed and evaluated. The PointSSIM metric is
used as the baseline, and modifications to the method used
to form local neighborhoods are presented. Multiscale scores
are obtained through a weighted sum of single-scale metric
values computed at five scales, with weights being the result
of logistic fitting to subjective scores extracted from three
different sources. Range searching allows for better perfor-
mance than the previously proposed k-Nearest Neighbors
method for the single-scale metric. The multiscale PointSSIM
is found to achieve a higher correlation with human perception,
outperforming the baseline even when the same statistical
estimator and range value are fixed across all scales. Further
experiments showed that allowing for multiple estimators to
be combined at different scales can achieve an even higher
correlation with subjective scores for single datasets. However,
such combinations achieve lower average correlation across
datasets, indicating that the larger parametric space allows
for the metric to overfit and lose its generalization power.
Comparison to state-of-the-art metrics reveals that the pro-
posed metric achieves the highest average Pearson correlation
across the three evaluated subjective datasets. Future works
may focus on evaluation in more subjective datasets in order
to select the combination and scale weights that obtain the
best performance across a wider range of distortions, as well
as comparison to a wider range of metrics including learning-
based quality estimators.
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