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ABSTRACT

In recent years, new emerging immersive imaging modalities, e.g. light fields, have been receiving growing
attention, becoming increasingly widespread over the years. Light fields are often captured through multi-camera
arrays or plenoptic cameras, with the goal of measuring the light coming from every direction at every point
in space. Light field cameras are often sensitive to noise, making light field denoising a crucial pre- and post-
processing step. A number of conventional methods for light field denoising have been proposed in the state of the
art, making use of the redundant information coming from the different views to remove the noise. While learning-
based denoising has demonstrated good performance in the context of image denoising, only preliminary works
have studied the benefit of using neural networks to denoise light fields. In this paper, a learning-based light field
denoising technique based on a convolutional neural network is investigated by extending a state-of-the-art image
denoising method, and taking advantage of the redundant information generated by different views of the same
scene. The performance of the proposed approach is compared in terms of accuracy and scalability to state-of-the-
art methods for image and light field denoising, both conventional and learning-based. Moreover, the robustness
of the proposed method to different types of noise and their strengths is reviewed. To facilitate further research
on this topic, the code is made publicly available at https://github.com/mmspg/Light-Field-Denoising
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1. INTRODUCTION

Immersive imaging modalities are transforming the way visual information is captured, processed, and interacted
with. As an example, virtual and augmented reality applications are assisting students during their education,
and new techniques in the field of medicine, engineering, and psychology are being developed using this tech-
nology, providing realistic simulations of complex scenarios and environments. Moreover, in entertainment,
immersive imaging modalities are enabling new forms of storytelling and interactive experiences. In this context,
light field imaging is receiving increasing attention. Contrary to traditional cameras which use a 2D sensor
capable of capturing only the intensity and color, light field cameras are also able to capture the direction and
position of the light rays. This is often implemented through multi-camera arrays or, in the case of plenoptic
cameras such as Lytro and Raytrix, by embedding micro-lenses arrays. This allows for capturing multiple views
of the same scene at the same time, allowing, among others, manipulation of the perspective, focus, and depth
of field of the image after its capture.

Similarly to traditional imaging technologies, light field photography is susceptible to noise. Notably, light
fields are even more sensitive to camera noise as they rely on a more complex capture technology. In order to
reduce the impact of this artifact, pre- and post-processing techniques, such as denoising, may be applied to
images. While the state of the art in image denoising is fairly established, only a limited number of works have
explored light field denoising. Moreover, while learning-based image denoising algorithms have demonstrated
improved performance when compared to traditional methods, no effort has yet been devoted to the field of
learning-based light field denoising.

In this paper, a novel method for light field denoising, developed on the basis of an existing learning-based
image denoising method is proposed, and its performance is assessed by comparing it to existing state-of-the-art
methods for conventional light-field denoising. Moreover, as image denoising algorithms can be trivially applied
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Figure 1: SAIs from each of the selected testing scenes.

to light fields by processing each view separately, conventional and learning-based image denoising methods are
additionally considered during the assessment of the performance.

The contributions of this paper are as follows:

• A light field dataset is presented, by merging multiple existing datasets. The size of the proposed dataset
is suitable for training a deep-learning model, and a division between training, validation, and testing
datasets is proposed. Moreover, a strategy for applying synthetic-realistic noise is presented.

• An optimized stitch-patching algorithm is presented, able to effectively search for the most similar patches
among different views while being computationally efficient.

• A novel method for light-field denoising inspired by a state-of-the-art image denoising architecture is
proposed.

• A comprehensive assessment of the performance of state-of-the-art methods for both image and light field
compression, both conventional and learning-based is performed.

While this paper reports only preliminary results on the topic, the potential of these applications is empha-
sized, with the goal of inspiring further research on learning-based approaches to light field denoising.

2. RELATED WORK

2.1 Image denoising

Image denoising is a key pre- and post-processing step in many applications. A typical approach to image
denoising is to consider noisy images as the sum of a noise map and an original noise-free image, where the main
goal is to estimate the noise map and restore the original image.

Over the years, several classical methods have been proposed, e.g. methods based on wavelet thresholding,
non-local self-similarity models,1,2 sparse models,3,4 or gradient models.5,6 As an example, a method based on



block-matching and 3D filtering was introduced by Dabov et al. in 2007,7 presenting a non-local self-similarity
model used for image denoising, and often considered as a baseline for assessing the performance of the most
recently-proposed methods. However, most of these classical methods suffer from a number of drawbacks: firstly,
they tend to be time-consuming and computationally expensive;8 secondly, they often rely on several hard-coded
parameters, which makes it harder to achieve optimal performance and generalize over different types of noise.

Recently, with the success of machine learning techniques, several learning-based approaches have been pro-
posed in the state of the art. Early work focused on discriminative models that attempted to learn image priors,
e.g. Cascade of Shrinkage Fields9 or Trainable Nonlinear Reaction Diffusion.10,11 More recent work mainly
focused on Convolutional Neural Networks (CNNs)12–14 or Generative Adversarial Networks (GANs).15,16 No-
tably, the usage of CNNs stemmed from its ability to exploit local information efficiently, while GANs surfaced
as an alternative for handling real noisy images, for which deep CNNs can be insufficient.17 As an example, the
DnCNN method proposed by Zhang et al. in 2017,18 presents a CNN-based model for image denoising, which
aims at estimating the noise map from the noisy data, and successively subtracting it from the noisy image to
get the clean image.

2.2 Light fields denoising

Contrary to the traditional image denoising, light Field denoising has been developed only recently. While all
image denoising methods can be trivially applied to light field denoising by looking at each single Sub-Aperture
Image (SAI), the ultimate goal of light field denoising is to use the redundant information present in multiple
views to improve the quality of the captured light fields.

Previous classical attempts at light field denoising aimed at splitting and processing 2D light field slices,19 or
taking into account the 4D structure of light fields by using Gaussian Mixture Model light field patch priors.20

An interesting approach consists in stacking the SAIs and using video denoising, where each SAI is considered
to be one frame of the generated video.21 In 2012 Alain and Smolic presented LFBM5D,22 i.e. a generalization
of the BM3D method, translated to the light field domain by searching for similar patches not only within the
same image but also among neighboring views

Learning-based methods for light field denoising are scarce. One of the main methods available23 uses
anisotropic parallax analysis to guide the denoising process, which is performed via two CNNs trained jointly.
However, there don’t seem to be other alternative approaches, which suggests that this is a challenging problem,
with potentially many directions for further explorations.

As light field denoising falls under the broader category of light field restoration and enhancement, there are
closely related fields that should also be considered, and ideas from them can be translated into the denoising
task. As an example, Fan et al. proposed in 2017 a method for light field superresolution,24 which uses a 2-stage
CNN. The strategy used to exploit the 4D structure of light fields, i.e. by applying a patch match algorithm
to produce stitch-patched versions of an SAI from other views of the scene, which can be implemented in the
context of light field denoising.

3. LIGHT FIELDS DATASET

In order to train the proposed learning-based light field denoising model and to assess its performance, a large
dataset of SAIs was constructed by merging the data from a number of datasets already available in the state of
the art. The utilized datasets, as well as any post-processing operation applied to its images, are described in
Table 1.

Light fields are normally stored using the ESLF and LFR formats. Notably, LFR files contain the raw lenslet
image from the camera, and ESLF files decode the light field into an orthogonal grid of lenslet images. To extract
the data contained in the ELSF file into a more common png file, we used the MATLAB Light Field Toolbox,25

while extraction from LFR format was done using the Plenopticam package.26

The full dataset has a total of 409 scenes, with 23’301 images, and includes natural scenes, geometrical shapes,
synthetic images, and various lighting conditions. The dataset was divided into a training set with 400 scenes,
a validation set including 32 scenes, and a testing set representing 6 scenes, as depicted in Figure 1. During
training, synthetic Gaussian noise of random strength was added to each scene.



Table 1: Description of datasets used.

Dataset Scenes Post-Processing Applied

Stanford Lytro Light Field Archive27 212 Decoding ESLF format to SAI grid

INRIA Synthetic Light Fields Dataset28 91 None

EPFL Light Field Dataset29 60 Decoding LFR format to SAI grid

4D Light Field Benchmark30,31 28 None

Stanford Light Field Archive32 10 None

MIT Synthetic Light Fields Dataset33–36 8 None

Figure 2: Examples of the original image and stitch-patched version for two scenes. The top scene has wide
angular spacing (so the local similarity isn’t enough to build a coherent image) and the bottom has a short
angular spacing (locally similar patches fit well together to form a globally similar image).

4. LEARNING-BASED LIGHT FIELDS DENOISING

The learning-based light field denoising method proposed in this paper uses the DnCNN model18 as a baseline,
presenting a possible extension for light fields that exploits the redundant information present in neighboring
images. The proposed method is referred to as LFDnPatch, as it is a learning-based light field denoising method
relying on a patch-matching algorithm and inspired by its image denoising counterpart, i.e. DnCNN.18

4.1 LFDnPatch

As a preliminary step, it is necessary to fix the disparity problem. The simplest solution would be to shift the
neighboring images of every SAI so they fit better. However, in practice, this shift is not constant throughout the
image and the implementation of such a method would be most likely inaccurate and computationally expensive.

It is instead possible to construct images similar to a given SAI using the remaining images in the scene. This
idea was first analyzed in the work of Fan et al.24 on light field super-resolution, where a set of stitch-patched
versions of the image is produced and used to give extra information to the CNN.

The method proposed in this paper takes an entire grid of SAIs as input. For each SAI, N stitch-patched
images (N = 6 in our implementation) are built by decomposing each SAI into non-overlapping patches and
then finding similar patches in the other SAIs, where the similarity is computed via mean absolute error. The
first stitch-patched image is built by using the most similar patch found, the second image using the second



most similar, and so on. This way, one obtains several images that are locally similar to the original, and
result from stitching all these patches together. The images will never be identical, because of disparities and
occlusions introduced by the different viewpoints, but by making them locally similar we make it easier to exploit
redundancies for denoising.

Two examples of such stitch-patched versions are illustrated in Figure 2. The top images were taken from a
scene with very large angular spacing between SAIs, which leads to the very visible blocking artifacts on the stitch-
patched version. This happens because the large angular spacing means that there are a lot of occlusions and
disparity effects, and so while the searched patches are similar to the reference, they present visual discontinuities
when stitched together. On the other hand, in the images at the bottom, it is much harder to spot such artifacts,
which suggests that the patch-matching method gives adequate results under smaller angular spacing.

The built images are stacked along the third dimension, producing an array of shape [H,W, (N + 1) · C],
where C is 3 for RGB images and 1 for grayscale. The last C channels correspond to the reference image, i.e.
the image used to build all the stitch-patched versions. This augmented image is fed into a network having a
similar architecture to the DnCNN, where the first convolutional layer has been adjusted to handle such input.
The network was then trained to produce a noise map, which is then subtracted from the original noisy image
to obtain the denoised estimate.

4.1.1 Patch match algorithm

It is worthwhile describing the patch-matching algorithm in more detail, as several heuristics had to be used to
reduce its run time. Considering an image grid of shape [GH , GW ], composed of SAIs of shape [H,W ], the goal
is to compose N patched-stitched versions of the SAI in position (i, j) in the grid, taking patches of dimensions
[k, k].

An optimal implementation of the patch-matching algorithm would go through every other SAI in the scene,
and within every SAI it would look at every possible patch in the scene in search of the best candidates. While
this method would yield the best results, it is also prohibitively expensive. The number of operations to compare
one patch with another is k2, and each SAI has ⌈H/k⌉·⌈W/k⌉ non-overlapping patches. Additionally, considering
that each reference patch from each SAI needs to be compared with every one of the (H − k + 1) · (W − k + 1)
overlapping patches in all the other SAIs and that there are GH ·GW SAIs, this results in a total complexity of

O(H2 ·W 2 ·G2
H ·G2

W )

Considering that it is still necessary to sort the candidates (which takes roughly O(H2 ·W 2 ·G2
H ·G2

W ·k−2 · logN)
if done with binary insertion), it is evident that such an approach cannot scale. So, several heuristics were used
to speed up the process, as represented in Figure 3.

The first heuristic stems from the fact that there are strong geometrical constraints that can be taken into
account within an SAI grid. Namely, it can be assumed that for SAIs in the same row of the grid, there is only
horizontal disparity. Likewise, for images in the same column of the grid, we can assume there is only vertical
disparity. This means that for these SAIs, one only needs to search in one direction of the image relative to the
current patch, and not in the entire image, as shown in Figure 3b, hence significantly reducing the computational
cost. This does not exclude the presence of viable, or even better candidates in the remaining images of the grid,
but they would be much more costly to find. Figure 3a represents an SAI grid, where, when looking for patch
matches for the SAI in the center of the cross, only the red images are considered in the search. This heuristic
already simplifies the complexity to

O(GH ·GW ·H ·W · (H ·GH +W ·GW ))

Having narrowed the search to a 1D problem instead of a 2D problem, it is also possible to simplify it further
by assuming that the disparity between neighboring SAIs is not large. This means that it is only necessary to
search in the vicinity of the position of the closest match in the previous SAI. This is essentially a sliding window,
represented in Figure 3b by the region in brown. If there are S ≪ H,W positions within the search space, then
the final complexity for the simplified algorithm becomes

O(GH ·GW ·H ·W · S · (GH +GW )) (1)



(a) In red are the only SAIs considered when ap-
plying patch-matching to the one at the intersec-
tion. All the blue ones are ignored.

(b) Representation of the 1D search for the closest match over a row of SAIs.

Figure 3: Visual representation of the heuristics applied to speed up the patch-matching algorithm

In comparison with the näıve implementation’s complexity, there is a tremendous gain, that becomes even more
significant as the images/scenes get larger.

4.2 Training routine

As the process of computing the stitch-patched versions is too slow to be performed at every step of training,
they were computed for the entire training dataset beforehand and used as the input to train the model. During
the training procedure, the patches were computed on the clean images, and then random gaussian noise was
applied to the stitch-patched versions at each step of training. Nevertheless, in reality, patch-matching would
be performed on noisy images in order to introduce differences between the training pipeline and the inference
pipeline.

To train the model, we used l2 loss, as well as a step-based decaying learning rate. We used a batch size of
128 and a training patch of shape [21, 64, 64], 21 channels from the stitch-patched images, and square patches
with side 64 pixels. Using 2 GPUs, the training took 20 hours for the model, as well as 100 hours (on CPU) to
compute the stitch-patched versions for all images.

To train the model for blind denoising, the noise strength was not fixed during training, i.e. for each of the
extracted training patches, a random Gaussian noise strength was selected in the range [0-55], and noise with
such strength was applied to the patch.



Parameter a b c d
Best Fit 4.8×10−3 2.0 6.1×10−1 3.4

Table 2: Best-fit parameters from Equation 2 to data for LFDnPatch in Figure 4.

Parameter a b c d
Best Fit 1.3×10−3 1.9 3.2×10−1 0.0

Table 3: Best-fit parameters from Equation 2 to data for LFDnPatch in Figure 5.

Figure 4: Execution times for the methods as a func-
tion of scene size. The dashed line corresponds to the
fit of Equation 2 to the LFDnPatch data points.

Figure 5: Execution times for the methods as a func-
tion of SAI size. The dashed line corresponds to the
fit of Equation 2 to the LFDnPatch data points.

5. EMPIRICAL COMPLEXITY ANALYSIS

In this section, the empirical effect of scene size (number of views per scene) and view size (number of pixels) on
the run-time of the considered methods are reviewed.

5.1 Hardware specifications

For the experiments, two different hardware were used. Notably, LFDnPatch runs on a hybrid set-up where the
construction of the stitch-patched versions is performed on an Intel Xeon CPU E5-2630 CPU with 20 cores, and
the processing of the enhanced image by the learned model is performed on an Nvidia GeForce RTX 2080 GPU.

5.2 Scene size effect on run-time

To assess how the scene size affects the run-time, the scene flower was used with a downscaling factor of 0.3.
This choice is motivated by our sole interest in studying how the scene size affects the execution time of each
method. A smaller image on all tests allows running the tests faster without impacting the results.

The results of the proposed method have been compared to:

• Two conventional methods for image denoising, i.e. Wavelet thresholding and BM3D.37

• One learning-based method for image denoising, i.e. DnCNN.18

• One conventional method for light field denoising, i.e. LFBM5D.22

From an implementation perspective, for Wavelet thresholding the implementation from SciPy38 was used,
which implements Wavelet denoising via adaptive thresholding by computing separate thresholds for each wavelet
sub-band, instead of a universal threshold, as introduced by Chang et al.39 For BM3D, the implementation
submitted alongside the LFBM5D40 was used for the experiments. This was because using the codes for BM3D
and LFBM5D with exactly the same compilation settings and consistent mode of usage makes it fairer to



compare them in terms of run-time complexity. Finally, for DnCNN, the original implementation41 provided by
the authors was used.

The results are presented in Figure 4. The original flower scene had a scene size of (17×17), leading to a total
of 289 SAIs. The different-sized scenes were extracted from the original using sub-grids of size (i× i), i ∈ [1, 17]
starting from the top-left corner of the scene.

Considering that the methods BM3D, Wavelets, and DnCNN were initially designed to denoise images, it
is expected to see their run-time grow linearly with the scene size. Indeed that is observed, with BM3D being
the slowest and Wavelets the fastest. However, it should be pointed out that the DnCNN method is running on
GPU, not CPU, which gives it its boost over BM3D. While the LFBM5D is a light field-specific method, it also
seems to grow linearly with scene size. This results from trade-offs of speed and performance implemented by
the authors, as a naive implementation of LFBM5D would not result in linear complexity.

For LFDnPatch, a more careful analysis should be performed. One can observe that it is growing superlinearly,
which is expected as Equation 1 dictates a dependency of the form O(GH · GW · (GH + GW )). For simplicity,
let us take G := GH ≈ GW (exactly true in our experiments). So, if there are N := G2 images in the scene, the
dependency should be of the form O(N3/2). To test this, we fit a function of the form

aN b + cN + d (2)

with free parameters a, b, c, d. The linear term is the contribution of running the stitch-patched images through
the model, which is linear. The result of the fit is shown in Figure 4 as the black dashed line, and the best-fit
parameters are in Table 2. The most important parameter is b = 2.0, which is slightly higher than the theoretical
optimum of 1.5. This suggests that the code can be further optimized in terms of scaling with scene size.

5.3 SAI size effect on run-time

Similarly to the previous section, the effect of the SAI size affects the run-time of each method was also studied.
The flower scene was used again, but to speed up the tests only used a sub-grid of size (6× 6) was considered.
The results are presented in Figure 5.

It can be observed that the methods Wavelets, DnCNN, BM3D, and LFBM5D also grow linearly with the
number of pixels. For the Wavelets and DnCNN, this happens by design, while for the BM3D and LFBM5D, it
is due to internal heuristics that speed up the implementation, making it linear with image size. Additionally,
one can observe that LFBM5D has a much higher variance in its run-time when compared to other methods.

Regarding LFDnPatch, it should behave as O(H · W ), i.e. linear with image size. However, the data in
the figure does not match the latter. Fitting again Equation 2 one obtains the parameters in Table 3. The
most relevant parameter is again b = 1.9 and as it can be seen, it is far from the expected 1. This is another
strong indicator that the code can be further optimized, probably with regard to memory allocations or data
movements.

6. EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Objective results

To perform a quantitative comparison of all the methods, the scenes backlight, pens, fence, t-rex, and
reflection from the test set were used. For each scene, either additive white Gaussian or Poissonian-Gaussian
noise were applied, with three increasing strength levels, as can be seen in Figure 6. Then all the denoising
methods were applied to these scenes and the reconstruction quality was measured using the PSNR and SSIM
objective quality metrics. The full results can be found in Appendix A, respectively in Tables 5 and 6. It
should be noted that BM3D and LFBM5D require an estimate of the noise variance for parameter selection.
Noise variance as a strength indicator was also used in the analysis. To estimate the noise variance the function
estimate sigma from the scikit-image package42 was used, which implements the method proposed by Donoho
and Johnstone.43 However, this method is designed for additive white gaussian noise, which is not a realistic
noise. Therefore, we will make a distinction between using σ for gaussian noise and σest for realistic noise.



(a) Soft Gaussian noise (σ = 5). (b) Medium Gaussian noise (σ = 13). (c) Hard Gaussian noise (σ = 20).

(d) Soft Poissonian-Gaussian noise
(σest = 6).

(e) Medium Poissonian-Gaussian noise
(σest = 13).

(f) Hard Poissonian-Gaussian noise
(σest = 20).

Figure 6: Examples of noisy images, for each of the strengths and noise types considered.

Table 4: Aggregated results for additive white gaussian noise and realistic noise. The aggregation is done via
averaging over Tables 5 and 6 for each method.

(a) Aggregated method results for additive white gaussian noise.

Method
Soft Noise Medium Noise Hard Noise

PSNR SSIM PSNR SSIM PSNR SSIM

Wavelets 39.3 0.936 32.1 0.767 29.6 0.688

BM3D 42.5 0.961 34.1 0.823 31.3 0.751

LFBM5D 43.1 0.965 34.9 0.859 31.9 0.805

DnCNN 41.2 0.957 34.6 0.853 31.8 0.796

LFDnPatch 40.4 0.951 33.9 0.833 31.2 0.773

(b) Aggregated method results for realistic noise.

Method
Soft Noise Medium Noise Hard Noise

PSNR SSIM PSNR SSIM PSNR SSIM

Wavelets 38.4 0.904 32.2 0.768 29.0 0.654

BM3D 40.1 0.927 33.5 0.804 30.0 0.669

LFBM5D 41.0 0.942 35.0 0.857 30.3 0.755

DnCNN 40.4 0.945 34.5 0.857 30.5 0.748

LFDnPatch 39.5 0.935 33.8 0.820 29.7 0.717

Table 4 shows the aggregated results, where one can see that LFBM5D presented the highest performance,
consistently outscoring the other methods both in terms of SSIM and PSNR scores. This is a strong indication
that light field-specific methods are capable of exploiting scene redundancies and achieving better performance



Clean patch. BM3D output.
(PSNR=28.2; SSIM=0.857)

LFBM5D output.
(PSNR=26.5 SSIM=0.818)

Noisy patch.
(PSNR=23.0; SSIM=0.530)

DnCNN output.
(PSNR=28.1; SSIM=0.860)

LFDnPatch output.
(PSNR=26.6; SSIM=0.791)

Figure 7: Detail from t-rex scene, clean, noisy (gaussian hard noise) and as the output of denoising methods.

than standard image denoising methods applied to the different SAIs. However, one interesting takeaway is that,
looking at the full results in Appendix A, LFBM5D presents lower performance than BM3D or DnCNN in the
t-rex scene. This matches our expectations, as this scene presents particularly large angular spacing. In this
way, the redundancy between the different SAIs is reduced and more occlusions and disparity effects make light
field-specific methods inefficient. A similar behavior is, in fact, also presented for the LFDnPatch method for
the same scene. This suggests that specific methods for light fields with large angular should be designed to
mitigate this problem.

Another observation is that the BM3D method slightly outperforms DnCNN for soft noise, but as the noise
intensity increases the DnCNN becomes more competitive and surpasses BM3D, even becoming comparable to
LFBM5D. This shows that learning-based methods are capable of adapting better than classical methods to
stronger noise levels. Adding this to the fact that these methods tend to be faster, applications with strong noise
and strong time constraints may benefit from learning-based methods.

Another observation regards the fact that only a small performance drop can be observed between the additive
white gaussian noise and the Poissonian-Gaussian noise. This stems from the fact that while these methods were
designed/trained for additive white gaussian noise, they are capable of generalizing to other noise statistics
without being optimized for them.

Looking at LFDnPatch, one observes that even though it performed slightly worse than DnCNN, it always
performed better than Wavelet denoising, and outperforms BM3D in the case of medium and strong noise. The
results are promising, and it seems feasible that this method will reach comparable or even superior performance
when compared to DnCNN, in the future. Finally, one must remember that IQA metrics aren’t perfectly
correlated with human perception, and are therefore not sufficient for a complete analysis.

6.2 Visual examples

To provide a visual assessment of the methods, a number of patches from the testing scenes are presented. For
each, the reference-clean patch, the noisy patch, and the outputs from the methods BM3D, LFBM5D, DnCNN,
and LFDnPatch are shown. The Wavelet Denoising method was discarded in this analysis.



Clean patch. BM3D output.
(PSNR=31.7; SSIM=0.732)

LFBM5D output.
(PSNR=33.0; SSIM=0.825)

Noisy patch.
(PSNR=24.9; SSIM=0.353)

DnCNN output.
(PSNR=31.5; SSIM=0.753)

LFDnPatch output.
(PSNR=31.5; SSIM=0.741)

Figure 8: Detail from translucent scene, clean, noisy (realistic hard) and as output of denoising methods.

Figure 7 reports a crop from the t-rex scene. This is the scene presenting the largest angular disparity, and
it can be observed that the performance for light field-specific denoising methods is lower than the image-based
denoisers. Looking at their behaviors in the fine structures of the foliage, it is possible to observe that the output
from LFBM5D and LFDnPatch is more blurry, even erasing certain fine details.

Figure 8 shows another challenging scene, as the background has a texture very similar to noise. Due to this
fact, all the methods produced blurry output for the background, as they were not capable of distinguishing
it from noise. However, the LFBM5D method is the only method that kept the sharpness on the foreground
objects, which is most clearly seen in the red pencil. In this scene, the LFDnPatch method presented the lowest
performance as, while the noise was effectively removed, the output presents high blurriness. The BM3D and
DnCNN, on the other hand, present comparable performances.

Figure 9 shows how the methods generalize in the case of realistic noise. The noisy patch shows the predom-
inance of noise in the green channel compared to the red and blue. From the output of BM3D, it is possible
to observe that this method is not able to effectively remove the noise in the green channel. This stems from
the fact that this method was designed for additive white gaussian noise, and so expects similar noise strengths
along the channels. Comparing it with DnCNN, it seems that learning-based methods may generalize better to
different noise statistics, as they were not designed with specific priors in mind.The LFBM5D method, on the
other hand, seems to exploit the light field redundancies in a way that allows it to overcome its design priors,
giving an image almost identical to the original, when the results are assessed visually.

Finally, Figure 10 shows one last example. Here it is clear that LFBM5D and DnCNN present the highest
performance, but it is interesting how BM3D and LFDnPatch seem to behave in different ways. The results from
BM3D seem grainy but they still retain the sharpness of the original image. On the other hand, the results from
LFDnPatch are better at restoring the original textures but introduce more blur to the image.



Clean patch. BM3D output.
(PSNR=29.8; SSIM=0.696)

LFBM5D output.
(PSNR=32.2; SSIM=0.904)

Noisy patch.
(PSNR=21.6; SSIM=0.256)

DnCNN output.
(PSNR=31.9; SSIM=0.896)

LFDnPatch output.
(PSNR=30.2; SSIM=0.833)

Figure 9: Detail from backlight scene, clean, noisy (realistic hard) and as output of denoising methods.

Clean patch. BM3D output.
(PSNR=32.3; SSIM=0.681)

LFBM5D output.
(PSNR=33.5; SSIM=0.733)

Noisy patch.
(PSNR=26.5; SSIM=0.329)

DnCNN output.
(PSNR=33.4; SSIM=0.736)

LFDnPatch output.
(PSNR=32.9; SSIM=0.719)

Figure 10: Detail from fence scene, clean, noisy (gaussian medium) and as output of denoising methods.

These results visually confirm that the method that presents the highest performance, both visually and
in terms of objective scores, is LFBM5D, except for images with large angular spacing. Nevertheless, all the



methods present comparable results, with BM3D and LFDnPatch performing slightly worse than DnCNN. Since
both DnCNN and LFBM5D outperformed BM3D, we believe that this provides evidence that a learning-based
light field-specific method such as LFDnPatch can further improve light field denoising performance.

7. CONCLUSIONS

In this paper, a novel learning-based light field denoising method was presented. While assessing its performance,
several existing image and light field denoising methods have been reviewed. A large dataset of light fields was also
built by merging multiple noise-free scenes from existing datasets and applying synthetic noise. The comparison
of BM3D, i.e. a classical image denoising method, with LFBM5D, i.e. its light field denoising generalization,
showed that while there is a clear performance boost by using the latter, it is also computationally heavier, as the
added dimensions increase its run-time complexity. However, for scenes with large angular spacings, none of the
light field denoising methods were able to outperform their image denoising counterparts. The proposed novel
method is based on a patch-matching algorithm to build stitch-patched versions of every SAI from its neighboring
SAIs. This allows us to exploit redundancies in similar patches as an input to a denoising learning-based model.
Objective results show that despite the fact that the proposed method presented lower performance compared
to the original DnCNN, it is capable of exploiting the information over the different views through the stitch-
patched images and generalizing across the noise types. The results presented in this paper are only preliminary
and several directions still need to be explored. In future work, different architectures may be explored, e.g. by
studying a 2-stage model.
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APPENDIX A. COMPLETE SCENE SCORES

In this section, we include the full results obtained while comparing different methods. Table 5 shows the results
from additive gaussian noise, with soft (σ = 5), medium (σ = 13), and hard (σ = 20) noise. Likewise, Table 6
shows the results from realistic noise, with soft (σest = 6), medium (σest = 13), and hard (σest = 20) noise.

Table 5: Results for all methods applied on the selected testing scenes, with additive white gaussian noise.

Method
backlight pens fence t-rex reflection

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

σ = 5

Noisy 36.3 0.810 36.7 0.862 36.4 0.759 36.4 0.963 36.8 0.732

Wavelets 38.6 0.934 37.3 0.930 39.4 0.902 39.4 0.979 41.7 0.937
BM3D 41.6 0.970 40.8 0.969 42.4 0.915 41.3 0.987 46.5 0.966

LFBM5D 41.5 0.968 42.2 0.980 44.0 0.924 40.6 0.985 47.2 0.967
DnCNN 40.6 0.965 40.3 0.968 42.1 0.909 38.4 0.980 44.8 0.961

LFDnPatch 40.0 0.955 39.4 0.954 41.6 0.917 37.5 0.973 43.6 0.956

σ = 13

Noisy 27.3 0.409 28.4 0.507 26.6 0.282 29.0 0.738 26.7 0.229

Wavelets 32.0 0.798 32.6 0.799 31.2 0.605 31.0 0.885 33.8 0.746
BM3D 34.8 0.888 35.1 0.885 32.4 0.632 33.6 0.938 34.7 0.770

LFBM5D 35.6 0.923 37.1 0.933 33.5 0.699 32.8 0.928 35.3 0.812
DnCNN 35.3 0.913 35.2 0.892 33.6 0.699 33.1 0.936 35.8 0.824

LFDnPatch 34.4 0.895 34.5 0.862 33.2 0.685 32.0 0.912 35.4 0.810

σ = 20

Noisy 23.8 0.266 24.4 0.307 24.3 0.198 24.5 0.550 24.6 0.159

Wavelets 29.1 0.714 30.7 0.710 29.2 0.532 27.6 0.798 31.4 0.687
BM3D 31.2 0.797 32.9 0.811 30.0 0.556 30.4 0.889 31.9 0.702

LFBM5D 31.9 0.875 34.8 0.879 30.9 0.639 29.6 0.874 32.5 0.759
DnCNN 31.9 0.865 33.1 0.825 31.0 0.634 30.3 0.890 32.8 0.768

LFDnPatch 31.0 0.835 32.8 0.800 30.6 0.616 29.2 0.856 32.4 0.759

Table 6: Results for all methods applied on the selected testing scenes, with realistic noise.

Method
backlight pens fence t-rex reflection

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

σest = 6

Noisy 33.9 0.760 32.5 0.799 38.0 0.697 39.2 0.875 37.2 0.668

Wavelets 37.0 0.914 35.2 0.890 39.4 0.841 38.6 0.960 41.8 0.915
BM3D 40.0 0.959 38.8 0.955 40.1 0.831 37.4 0.965 44.3 0.924

LFBM5D 40.5 0.966 41.5 0.974 41.4 0.863 36.4 0.960 45.4 0.945
DnCNN 39.8 0.960 38.9 0.954 42.0 0.898 35.9 0.960 45.2 0.954

LFDnPatch 39.0 0.949 37.7 0.937 41.0 0.901 35.9 0.941 43.9 0.946

σest = 13

Noisy 27.1 0.473 26.4 0.500 30.5 0.342 30.8 0.737 24.6 0.307

Wavelets 32.1 0.798 31.8 0.767 33.8 0.636 31.2 0.883 31.9 0.754
BM3D 34.4 0.866 34.6 0.876 34.3 0.616 32.6 0.914 31.6 0.750

LFBM5D 36.0 0.926 37.3 0.932 36.0 0.695 32.3 0.916 33.3 0.817
DnCNN 35.6 0.914 35.0 0.886 35.7 0.718 32.4 0.923 33.8 0.844

LFDnPatch 34.6 0.895 34.3 0.855 34.8 0.701 31.5 0.896 33.9 0.754

σest = 20

Noisy 22.2 0.224 25.6 0.325 24.7 0.154 26.0 0.591 23.9 0.103

Wavelets 27.8 0.670 31.2 0.729 28.9 0.481 27.1 0.778 29.8 0.610
BM3D 29.4 0.738 32.9 0.777 29.5 0.463 28.2 0.775 30.0 0.594

LFBM5D 30.2 0.848 34.4 0.858 30.0 0.568 28.4 0.832 28.7 0.667
DnCNN 30.2 0.835 32.7 0.798 30.0 0.570 29.0 0.853 30.6 0.686

LFDnPatch 28.5 0.795 32.7 0.783 29.3 0.544 28.0 0.812 30.0 0.650
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