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Abstract—The use of point clouds as an imaging modality
has been rapidly growing, motivating research on compression
methods to enable efficient transmission and storage for many
applications. While compression standards relying on conven-
tional techniques such as planar projection and octree-based
representation have been standardized by MPEG, recent research
has demonstrated the potential of neural networks in achieving
better rate-distortion performance for point cloud geometry cod-
ing. Early attempts in learning-based point cloud coding mostly
relied on autoencoder architectures using dense convolutional
layers, but the majority of recent research has shifted towards
the use of sparse convolutions, which are applied only to occupied
positions rather than the entire space. Since points are usually
distributed on underlying surfaces rather than volumes, such
operations allow to reduce the computational complexity required
to compress and decompress point clouds. Moreover, recent
solutions also achieve better compression efficiency, allocating
fewer bits at similar levels of geometric distortion. However, it is
not clear to which extent this gain in performance is due to the
use of sparse convolutions, if any at all, since the architecture
of the model is often modified. In this paper, we conduct an
evaluation of the effect of replacing dense convolutions with
sparse convolutions on the rate-distortion performance of the
JPEG Pleno Point Cloud Verification Model. Results show that
the use of sparse convolutions allows for an average BD-rate
reduction of approximately 9% for both D1 and D2 PSNR
metrics based on similar training procedures, with an even bigger
reduction in point clouds featuring reduced point density.

Index Terms—Point cloud compression, sparse convolutions

I. INTRODUCTION

Immersive imaging modalities have grown in popularity
in recent years due to their potential to offer more natural
ways to interact with visual content. Applications such as
virtual and augmented reality have become increasingly ac-
cessible and widely employed in numerous industries such
as entertainment, education, training, and healthcare. These
modalities enable users to explore and interact with virtual
landscapes and objects in ways previously impossible, result-
ing in more impactful experiences. Because they allow for
the correct collection and representation of 3D geometry in a
scene, point clouds are a key component of many immersive
imaging modalities. Point clouds provide a detailed and high-
fidelity representation of the geometry that may be utilized
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for a range of applications such as autonomous navigation
and visualization, by expressing the surface of objects as a
collection of 3D points in space.

The vast amount of data needed to represent point clouds is
however a major drawback for their use in mainstream appli-
cations. For that reason, effective solutions for compression
have been heavily researched in recent years. Such efforts
have led to the standardisation of two compression algorithms
by MPEG, namely geometry-based point cloud compression
(G-PCC) [1] and video-based point cloud compression (V-
PCC) [2]. While the latter obtain planar projections of both
point cloud attributes and geometry as color, depth, as well as
occupancy maps and compresses them with conventional video
codecs, G-PCC uses an octree to encode voxel occupancy
and encodes color with either a region-adaptive hierarchical
transform (RAHT) or a lifting transform.

Despite the usefulness demonstrated by conventional tech-
niques, deep learning is receiving increased attention as an
alternative approach for point cloud compression. Learning-
based solutions have displayed even better rate-distortion per-
formance for geometry data when compared to conventional
techniques, allowing for better compression efficiency while
maintaining a similar reconstruction quality. Early works in
this direction were inspired by architectures previously used
for the compression of 2D images, which relied on an au-
toencoder composed of convolutional layers. The input tensor
is downsampled multiple times at the encoder, entropy coded
using a probability distribution learned during training, and
finally upsampled back to the original resolution at the decoder
side. Initial efforts [3], [4] to adapt this algorithm for point
clouds represented blocks as dense occupancy maps where all
spatial positions are processed by dense 3D convolutions that
operate similarly to their 2D counterparts.

However, these approaches fail to take into consideration
the nature of most point clouds, which contain points sampled
from an underlying surface and therefore occupy a small
fraction of the space. Sparse convolutions, on the other hand,
allow to better take advantage of these characteristics. In
particular, sparse convolutions convolve a 3D kernel over a
set of coordinates and apply the weights only at the occupied
voxel positions from the input set of coordinates, differently
from dense convolutions that convolve the kernel over all
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indices of a three-dimensional grid and also consider all input
positions to produce the input value. Sparse convolutions were
leveraged in later compression methods [5], showing not only
reduced computational complexity, but also increased rate-
distortion performance, and have replaced dense convolutions
on recent learning-based compression methods [6], [7].

The majority of recently proposed methods also include
modifications to the architecture being used by previous mod-
els based on dense convolutions. Therefore, despite the rapid
adoption of sparse convolutions as a de facto standard for
learning-based voxelized point cloud compression, it is not
possible to conclude to which extent the obtained improve-
ments in rate-distortion performance are due to the use of
sparse convolutions. The goal of this paper is therefore to
assess the isolated impact on compression performance of re-
placing dense convolutions by these operations. The geometry-
only pipeline of the JPEG Pleno Point Cloud verification
model [8] is used as a baseline, and the evaluation is conducted
using a test set composed of point clouds with different
sparsity levels.

While early designs of the verification model also contained
joint coding for both geometry and color, recent versions use
a separate method for color coding. Moreover, the state of the
art contains a much larger number of compression algorithms
based both on dense and sparse convolutions for geometry-
only coding than for color coding. For those reasons, sparse
convolutions are evaluated only for geometry coding in this
paper. Since the architecture of the baseline model is in many
ways similar to a significant number of works in the state of
the art [3]–[5], it is also considered that the results presented
in this paper could be similar if other compression methods
based on autoencoders were used.

II. RELATED WORK

Early works on point cloud geometry compression used an
octree representation as data structure rather than a list of coor-
dinates [9]. The octree became later prevalent with the addition
of similar compression algorithms in widespread open-source
libraries such as the Point Cloud Library (PCL) [10]. Later
works explored pruning the octree, and then representing the
leaf nodes as triangular primitives rather than singular points
[11]. Both techniques were adopted in the geometry coding
module of the G-PCC standard [1]. Other methods aimed to
take advantage of the progress made in video compression
during the last decades, and projected points onto multiple
planes to represent point cloud geometry as two-dimensional
maps. Such methods were later explored by the V-PCC stan-
dard [2], achieving high rate-distortion performance for dense
point clouds, but struggling to effectively compress models
with smaller point density.

Point cloud compression algorithms using neural networks
were later introduced, with the first works [3], [4] mainly
adapting a previous method designed for image compression
[12] for three-dimensional representation. Several additional
techniques were later studied [13] using previous works as
baseline, such as entropy modeling using a hyperprior, adding
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Fig. 1: Block diagram of the model using sparse convolutions.
SConv denominates regular sparse convolutions and GSConv
denominate generative sparse transposed convolutions. k de-
nominates kernel size, f the number of features and s the
convolution stride. The residual block was implemented with
the same parameters as [8]. Scaling consists of the division
of the latent features by the quantization step q, provided as
an encoding parameter and added to the bitstream. Blocks
highlighted in gray produce compressed representation added
to the bitstream.

residual convolutional layers to the encoder and decoder,
employing an adaptive threshold selection to translate output
occupancy probability into voxels, as well as a sequential
training method to allow for coding at different bitrates at re-
duced training time. Similar techniques were also employed by
other authors [14], with results surpassing the rate-distortion
performance by G-PCC for dense point cloud models. An
autoregressive entropy coding model was also explored with
comparable architecture [15], producing even better results
that outperformed V-PCC for the evaluated test set. Other
techniques, such as block prediction [16] and residual coding
[17] explored further extension of similar techniques. Re-
cently, the JPEG standardisation committee launched a call
for proposals for learning-based point cloud coding, and a
compression method based on dense convolutions was selected
as the starting point known by the term verification model [8].

Sparse convolutions were first adopted [5] with an architec-
ture similar to the same authors’ previous work [14], with the
addition of classification and pruning layers for progressive
decoding. Another method, denominated as SparsePCGCv1
[6], improved upon the architecture by exploiting cross-
scale and same-scale redundancies, allowing for both lossless
and lossy compression. Moreover, GRASP-Net [7] proposed
a heterogeneous architecture combining sparse convolutions
with point-based MLP layers to recover fine details during
decoding.

III. EVALUATION CONDITIONS

The evaluated compression model is created by replacing
all dense convolutions from the baseline model with sparse
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Fig. 2: Histogram of sparsity values of the training set

convolutions, and its diagram block can be observed in Fig-
ure 1. The framework used in [8] includes downsampling prior
to compression as a strategy to achieve lower bitrates, with
learning-based upsampling being applied as a post-processing
method. The present evaluation focuses only on the end-to-end
autoencoder architecture, therefore setting the sampling factor
to 1 and ignoring the advanced block upsampling network.

Prior to compression, the input point cloud is first par-
titioned into blocks. In the baseline model, the blocks are
represented as dense tensors x of dimension K×K×K×N ,
where K corresponds to the block size and N is the number
of channels, which is set to 1 for geometry-only coding. The
value at a given coordinate of x is set to 1 if the coordinate
is present at the input block and to 0 otherwise. On the
other hand, the sparse tensors used in the evaluated model are
represented by a coordinate tensor xc of dimensions Ni × 3
set to the coordinates of the input point cloud block, and by a
feature tensor xf of size Ni × 1 with all values set to 1, with
Ni being the number of points in the input block.

The output of the analysis transform is a tensor y with its
coordinates yc being equivalent to xc downsampled three times
by a factor of 2. While the features yf are encoded to the bit-
stream in a lossy manner by the range coding module and serve
to build the input of the synthesis transform ŷ, the coordinates
yc are losslessly encoder and retrieved at the decoder side. The
proposed compression algorithm downsamples the input point
cloud geometry prior to block partition by a factor of 8 and
compresses it using the lossless settings of the G-PCC codec.
During decompression, the G-PCC bitstream is decoded and
the obtained coordinates are partitioned into blocks in order
to obtain ŷc, which is equivalent to yc.

The synthesis transform takes ŷ as input and passes it
through three upsampling layers and residual blocks prior to a
final sparse convolutional layer that produces a reconstructed
tensor x̂. Generative layers are employed when upsampling in
order to generate new points, which, with kernel size 2, creates
8 output coordinates for each input coordinate corresponding
to all possible positions that could have generated the point at
the corresponding downsampling layer at the analysis trans-
form.

As a result, the decoded tensor x̂ usually contains many

(a) Annibal from CfP original
Median 5-NN distance = 1.17

(b) kinfudesk from CfP supplemental
Median 5-NN distance = 2.26

(c) Lausanne from swissSURFACE3D — Median 5-NN distance = 3.36

Fig. 3: Point clouds from test set

additional points when compared to the input x. Similarly to
the baseline model, the coordinates x̂c are sorted according to
the values of x̂f , which represent the estimated probability of
occupancy for each coordinate. The decoded point cloud block
will then contain the No points with the highest occupancy
probability, with No being defined during compression as the
value that maximizes a similarity metric between decoded and
input block. During this experiment, the D1 PSNR metric is
employed for this purpose.

This model is trained end-to-end to minimize a loss function
equivalent to a weighted sum between the estimated bitrate
of the compressed features and the distortion between the
decoded point cloud block and the input. The rate R is
estimated by the sum between the entropy of ŷf and the
entropy of ẑf , while the estimated distortion D is given by
the sparse focal loss between x̂ and x. The latter term is
represented in Equation 1, where x̂fj and x̂cj correspond to
the jth row from x̂f and x̂c, respectively.

FL =

{
−α(1− x̂fj )

γ log(x̂fj ), if x̂cj ∈ xc

−(1− α)x̂γ
fj
log(1− x̂fj ), if x̂cj ̸∈ xc

(1)

The hyperparameter α can be configured to control the
weight given to unoccupied voxels relative to occupied ones,
while assigning a higher value of γ increases the importance
given to voxels difficult to classify. The final loss value is
given by L = λR+D, with the hyperparameter λ setting the
trade-off between rate and distortion.

The sequential procedure proposed by [13] was used to
train the evaluated models in order to obtain different quality
levels. In particular, the model with the lowest λ is first
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Fig. 4: Rate-distortion plots

trained from scratch, and the obtained weights are used
to initialize the training for higher λ values. The baseline
model was trained with λ values following the sequence
{0.00025, 0.0005, 0.001, 0.002, 0.004, 0.008}. For the model
with sparse convolutions, higher λ values had to be selected to
allow for similar bitrates, since the focal loss is computed only
on voxels in the neighborhoods of the input points rather than
the entire block, given how voxels are generated at the decoder.
Such voxels are harder to classify than the vastly empty
zones of dense tensors, driving up the relative importance of
the D term in the final loss value. Therefore, the sequence
{0.0025, 0.005, 0.01, 0.025, 0.05} was adopted.

Moreover, a patience parameter P was used to detect
convergence of the model during training: if the loss function
on the validation set does not decrease after P epochs, then
training is stopped and the weights yielding the lowest loss
value are selected. Both the baseline and the evaluated models
were trained with P = 10 for all λ values. An additional
model with sparse convolutions was trained using a learning
rate scheduler, which decreased the learning rate by a factor
of 10 whenever the validation loss was not reduced after 10
epochs. In this case, a patience value of P = 25 was set. All
compression models are coded in PyTorch and were trained
with an initial learning rate of 10−4 using the Adam optimizer,
with values of α = 0.7 and γ = 2 in the focal loss.

IV. TRAINING AND TESTING DATASETS

In order to train both the baseline and the evaluated com-
pression models, the training and validation datasets presented
in [8] were used, containing 35861 blocks of size 64×64×64
obtained from 24 point clouds for training and 3822 blocks
from 4 point clouds for validation. Recent works indicate
that the performance of compression models depends heavily
on the sparsity of the point clouds being compressed. One
possible reason for this difference in performance is the
distribution of the density values of the training set. In order to
evaluate the impact of this factor, a sparsity metric is computed
for each block in the training set by measuring the average
distance from each point to its 5 nearest neighbors. The median
value across all points is selected, denominated as the median
5-NN distance.

The distribution of this metric for the training set is illus-
trated in Figure 2. The majority of the point cloud blocks are
highly dense, with more than 68% having a median 5-NN
distance under 1.25. On the opposite side, less than 6% of the
training set is between 2 and 3 in the histogram, and no block
with sparsity higher than 3 was employed in the training set.
Although the use of a more diverse training set would probably
improve the performance of the model at higher sparsity levels,
the same dataset was kept to ensure a fair comparison.

In order to test both the baseline and the evaluated com-
pression models, the original test set from the JPEG Pleno
Call for Proposals on Point Cloud Coding (CfP) [18] was
used. The 20 point clouds were sampled with high density
from meshes generated from the acquisition of real-world
objects, all of them presenting a median 5-NN distance under
1.25. Additionally, the five point clouds from the supplemental
dataset were employed, some of them presenting considerably
smaller point densities. Finally, two point clouds obtained from
swissSURFACE3D [19] were also included in the test set. This
dataset was obtained with airborne LiDAR, with the entire
set currently covering more than half of Switzerland. Two
geographical regions were selected and the coordinates were
voxelized with precision of 13 bits, leading to median 5-NN
distances larger than 3. The entire test dataset contained a total
of 27 point clouds, three examples of which are presented in
Figure 3.

The test set was compressed and decompressed with the
baseline model and the two versions of the evaluated model,
using a block size of 128 and a latent quantization step of
1. They were additionally compressed using G-PCC software
version 21 with lossless settings for comparison. Both point-
to-point PSNR (D1 PSNR) and point-to-plane (D2 PSNR)
metrics were computed on the decompressed models.

V. RESULTS AND DISCUSSION

The metric values for the evaluated and baseline models
were plotted against their bitrates, with a dashed vertical line
indicating the bitrate for lossless encoding with G-PCC. The
plots for the point clouds illustrated in Figure 3 are presented
in Figure 4. For the Annibal point cloud, modest gains in
performance from the use of sparse convolutions are observed
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Fig. 5: BD-Rate reductions for D1 PSNR and D2 PSNR

across the evaluated range. Also, a difference in performance
is observed when training the model at a higher patience
value, with longer training leading to higher quality. The plots
for kinfudesk indicate that even larger gains can be obtained
for sparser point clouds. Moreover, it is also observed that
the difference between different patience levels is reduced,
possibly due to the lack of point cloud blocks with similar
sparsity levels in the training set. It is also observed that
the highest rate of the plot is significantly above the lossless
line. Finally, the results obtained for Lausanne demonstrate
that the model with sparse convolutions outperforms again
the baseline, with a higher difference in performance for
Annibal, but lower than for kinfudesk. Moreover, performance
between models trained with P = 10 and P = 25 is again
very similar, with even a slight advantage of the former at
lower bitrates. Since this point cloud is even sparser than
kinfudesk, these findings reveal that decreasing point density
does not necessarily lead to an increased advantage of the
sparse convolutions.

In order to better evaluate the effect of point cloud sparsity
on the rate-distortion performance, the BD-Rate between the
evaluated model trained with P = 10 and the baseline was
obtained for each point cloud, ignoring quality levels above
the lossless rate for G-PCC. The evaluated model achieved
an average bitrate saving of approximately 9%. A consistent
increase in performance from the use of sparse convolutions
is observed while using the exact same training strategy.

The BD-Rate results were plotted against the median 5-NN
distance of each point cloud and are displayed in Figure 5a, the
color of each point of the plot indicating the original source of
each point cloud. The use of sparse convolutions allowed for
lower bitrates for the majority of test set. All point clouds
of the original test set of the CfP are grouped at the left
of the plot, achieving a BD-rate difference varying between
3% and -15%. Since BD-rate values can vary at a range

of approximately 18 percentage points at almost identical
point density levels, these results show that sparsity is not
the only factor that determines the performance of sparse
convolutions. However, the analysis of the CfP supplemental
set indicates that sparsity is indeed among the most influential
factors, with a high correlation between BD-Rate reduction
and median 5-NN distance. In particular, the point exhibiting
the highest rate reduction is the most sparse model from this
set, achieving more than 36 % savings for the D1 PSNR metric
at 2.9 median 5-NN distance. While this strong correlation
would suggest that even higher savings should be possible on
the sparser models from swissSURFACE3D, this trend was
not observed, with overall rate difference remaining between
−17% and -27%. Such results indicate that other factors
such as homogeneity or voxelization precision can affect the
compression performance as well.

The BD-Rate between the evaluated model trained with
P = 25 and the baseline model was also computed for the
entire set. The difference between these values and those
from the previous comparison is presented in Figure 5b. It
is observed that including a mechanism for progressively
decreasing the learning rate and waiting more epochs prior to
stop of the training induced an increase in performance for the
majority of the tested point clouds. Indeed, the model trained
with P = 25 achieved an average BD-Rate difference of
approximately -12.5% when compared to the baseline. In par-
ticular, point clouds with higher density were more favored by
the higher patience value. However, a longer training process
was slightly detrimental to the efficiency of the compression of
sparser point cloud models, likely because it caused the neural
network to specialize for the sparsity values better represented
in the training set. Since blocks with a median 5-NN distance
higher than 2 account for only a small portion of the training
data, higher patience values are not beneficial. Rather than
encouraging earlier stops of the training process, these results



indicate the importance of including point cloud models with
a wider range of sparsity values in the training set.

Naturally, the obtained results depend also on the evaluation
conditions. For instance, the lack of sparse point cloud blocks
in the training set probably hinders the performance of both
the baseline and the evaluated model. As a matter of fact, no
blocks with the same sparsity as kinfubooks, nor any models
from swissSURFACE3D were used for the optimization of
the models. Yet, the models are still capable of encoding
such point clouds at rates below lossless with acceptable
quality. While these results show the generalization capacity
of the neural network to unseen examples, using a more
diverse training set would probably increase the rate-distortion
performance of such learning-based methods.

Aside from the rate reduction in sparse convolutions, a
reduction in computational complexity is also inherently ob-
tained since the convolution operations need to compute
at fewer spatial locations. While this feature is already an
advantage in itself, it would also allow the use of larger
blocks both during training and testing. Indeed, one major
limitation of using dense convolutions is their memory usage,
which restricts the size of the point cloud blocks that can
feed the neural network. While the point cloud size used
by compression models based on sparse convolutions is not
limitless, higher dimensions could certainly be used due to
their smaller memory footprint, likely enabling better perfor-
mance as previously demonstrated for models using dense
convolutions.

Moreover, the hyperparameters for the loss function selected
for the training of both the baseline and evaluated model were
established by [8], considering only the characteristics of dense
convolutions. In particular, the α parameter is set to 0.7 in
order to give a higher weight on the correct classification of
occupied voxels due to the fact that most spatial positions of
the dense input tensor x are empty. Giving instead the same
weight to both occupied and empty voxels would skew the
network into producing lower probabilities for the occupancy
of most positions due to class imbalance. However, the de-
coder of the evaluated model produces sparse tensors with
coordinates only in the neighborhoods of occupied voxels,
not considering regions that are totally empty. Therefore, the
optimal α value is likely different from that of the baseline,
and adapting this hyperparameter could lead to even better
results. These experiments were considered out of the scope
of this paper and are deferred to future work.

VI. CONCLUSION

In this paper, an evaluation of the performance of sparse
convolutions for point cloud geometry compression is con-
ducted by replacing the dense convolutions of an existing
compression model with sparse layers, with minimal additional
changes. Aside from the intrinsic complexity reduction, an
increase in the rate-distortion performance is also observed,
with an average BD-Rate reduction of approximately 9%
in the evaluated test set. An improved training process also
allowed to increase the rate savings to nearly 12.5%. While

the improvement of rate-distortion performance is observed
for the majority of the point clouds, the sparse convolutions
are particularly effective for test models with lower density,
with rate savings going up to 35%. The fact that such results
were obtained without major adaptations indicates that sparse
convolutions are more suitable for point cloud compression in
most cases, corroborating the recent shift in research trends.
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