
A 16-bit Floating-Point Near-SRAM Architecture
for Low-power Sparse Matrix-Vector Multiplication

Grégoire Eggermann∗, Marco Rios∗, Giovanni Ansaloni∗, Sani Nassif† and David Atienza∗
∗Embedded Systems Laboratory (ESL), École polytechnique fédérale de Lausanne (EPFL), Switzerland, †Radyalis, Austin, USA

Email: ∗{gregoire.eggermann, marco.rios, giovanni.ansaloni, david.atienza}@epfl.ch, †srn@radyalis.com

Abstract—State-of-the-art Artificial Intelligence (AI) algo-
rithms, such as graph neural networks and recommendation
systems, require floating-point computation of very large matrix
multiplications over sparse data. Their execution in resource-
constrained scenarios, like edge AI systems, requires a) careful
optimization of computing patterns, leveraging sparsity as an op-
portunity to lower computational requirements, and b) using ded-
icated hardware. In this paper, we introduce a novel near-memory
floating-point computing architecture dedicated to the parallel
processing of sparse matrix-vector multiplication (SpMV). This
architecture can be integrated at the periphery of memory arrays
to exploit the inherent parallelism of memory structures to speed
up computation. In addition, it uses its proximity to memory to
achieve high computational capability and very low latency. The
illustrated implementation, operating at 1GHz, can compute up
to 370 MFLOPS (millions of floating-point operations per second)
while computing SpMV multiplications, while incurring a modest
17% area overhead when interfaced with a 4KB SRAM array.

Index Terms—Near-memory computing, Sparse matrix-vector
multiplication, Edge computing.

I. INTRODUCTION

Machine learning (ML) is fostering a revolution in many
fields, ranging from implanted devices for healthcare [1] to
location-based recommendation applications [2]. Among ML
algorithms, Graph Neural Networks (GNNs) are particularly
interesting because of their ability to capture dependencies
across large problems. GNNs find application in a wide range
of scenarios, from physics modeling to text processing [3].
Although GNN models reach state-of-the-art performance in
these fields, their large size poses a challenge for computing
systems.

Hence, optimizing GNNs is currently a very active area
of investigation [4]. Their prevalent computing pattern is
that of Sparse Matrix-Vector (SpMV) multiplication because
graphs can be represented as (very large) sparse matrices with
non-zero elements indicating edges connecting nodes. Hence,
efficient implementations of this arithmetic pattern are key for
reducing the GNNs’ computational and memory requirements.
[5].

Several works focus on exploiting the parallelism of a mem-
ory structure to speed up and increase the energy efficiency of

This research was partially supported by EC H2020 FVLLMONTI project
(GA No. 101016776) and by the ACCESS – AI Chip Center for Emerging
Smart Systems, sponsored by InnoHK funding, Hong Kong SAR.

SpMV multiplication [6] [7] [8]. We review them in Section
II. Our work takes a similar approach but differentiates from
related efforts by proposing a dedicated near-memory process-
ing unit for SpMV, operating on a 16-bit floating-point data
representation. Being specialized for SpMV multiplication, our
design is much more area-efficient than solutions for general-
purpose near-memory processors [9]. Moreover, the floating-
point capability of our architecture allows for larger dynamic
ranges in data representation than fixed-point alternatives [8],
which is a key requirement for GNNs.

We show that floating-point arithmetic (addition and multi-
plication) can be added to our design with a marginal increase
in area cost, allowing our near-memory SpMV multiplication
accelerator to be integrated with SRAM sub-arrays as small
as 4KB in size, inducing an overhead of only 17%. Such fine
granularity poses a challenge when partitioning and mapping
large matrices. Addressing this problem, we show a novel
solution that integrates fixed row mapping and row reorder-
ing. Our approach effectively limits data replication across
memory arrays, allowing for a high degree of computational
parallelism.

The paper’s contributions are as follows:
• We present a novel near-memory architecture dedicated

to computing floating-point SpMV multiplication.
• We explore its integration at the periphery of SRAM

banks. Considering a collection of benchmark sparse
matrices, we discuss the resource and performance im-
plications of different architectural arrangements.

• We show how SpMV multiplication can be effectively
mapped in our proposed near-memory architecture by
data partitioning and reordering, with the aim of max-
imizing computational efficiency.

We summarize concepts and research work related to our
contribution in Section II. Then, we detail the near-SRAM
architecture in Section III. Our novel strategy for efficiently
partitioning and mapping data on compute memories is dis-
cussed in Section IV. Experiments are introduced and dis-
cussed in Sections V and VI, respectively. Finally, Section
VII summarizes the main findings of the paper.

II. BACKGROUND AND RELATED WORK

A. Sparse matrix vector multiplication
SpMV involves multiplying a N ×M matrix with very few

non-zero elements by a dense input vector of N elements,979-8-3503-2599-7/23/$31.00 ©2023

���������������

�������
�����
���

���������
����������
�����

����

����

�	���

�
��
��
��

�������

�	������������

�����������
������

�����

�����

�����������

������������������

���

�������������������

�
��
�

��
�
��
��
��
�

������
�����������

��
�

�
�

�
�

�

�����������

�������

�	�����
�	�

	�����������

����������
����������

�
�

�������������

	����������

�����		��������

�����������������������
�

Op.
Round R1 R2 R1 R2
M1 1 0 1 0
M2 0 0 1 0
M3 0 0 1 1

Op.
M4

Add Mult
1 0

Add Mult

��

��

��

��

��

�����		��������

����������������
������

Fig. 1. Block diagram of the implemented design showing (a) the integration of the system in a CPU platform and focusing on (b) the near-memory
floating-point unit. c) Multiplexers route the inputs to the multiplier/shifter in the two rounds (R1 and R2) required for addition and multiplication.

resulting in a dense output vector of M elements. SpMV is the
fundamental computational kernel in graph-related algorithms
such as GNNs, a class of deep learning networks that has
recently attracted considerable attention in academia due to
their versatility. GNNs can generalize other neural networks,
such as convolutional and recurrent neural networks [3]. For
example, GNNs have been shown to learn from non-Euclidean
data structures [10]. Moreover, they have been applied to a
wide range of tasks that benefit from the ability of graph-
structured data to represent rich relationships among elements,
from cancer classification [11] to text generation [12].

Naı̈ve dense matrix-vector multiplication algorithms are ill-
suited for the sparse matrices in GNNs, as they incur a
large number of multiplications by zero (that do not influence
results), leading to computational and storage inefficiencies.
To address this limitation, specialized representations, such as
COOrdinate (COO) and Compressed Sparse Row (CSR), have
been proposed [13], exploiting the sparsity of the matrices
to encode them efficiently. The COO format lists the non-
zero elements of a matrix along with their row and column
indices. Therefore, each non-zero element of the matrix is
represented by a triplet (n, m, non-zero value), where n
denotes the row index, and m denotes the column index.
CSR instead lists the number of non-zero elements in each
row and their column position. We adopt a COO scheme
in our work, as has been shown in [9] to lead to greater
efficiency in distributed computing. Moreover, it results in a
simpler hardware implementation for controlling the execution
of SpMV multiplication.

The ordering of the matrix rows also plays a role in the
efficiency of computing SpMV multiplications. The recur-
sive algorithm in [14], based on nested dissection, [15], is
particularly effective in reordering rows to increase run-time
efficiency. We explore its benefits when applied to our design
in Section IV.

B. Near-memory computing

SpMV multiplication is intrinsically a memory-bounded
kernel, as it requires a very large amount of memory band-
width. Therefore, processor-centric systems, such as CPUs,
poorly support this kernel. It is similarly challenging for GPUs,
as their high level of computational parallelism is hampered
by sparse and irregular access patterns. In particular, the lack
of spatial locality in sparse matrices leads to a poor temporal
locality in input and output vectors (since contiguous elements
may be accessed at distant moments in time), resulting in poor
utilization of local memories, which lowers performance [7].

This challenge motivated the development of hardware
accelerators dedicated to sparse arithmetic [16]. In this light,
Near-Memory Computing (NMC) solutions are particularly
promising, as they combine the high bandwidth present at the
memory periphery with the high degree of parallelism derived
by the regular structure of memory arrays.

Most works in SpMV multiplication in NMC consider high-
performance computing solutions. The authors of [9] and [6]
propose to integrate SpMV computing units into DRAM banks
on a 3D integration using Through Silicon Vias (TSV).

With a focus on low-power edge systems, we propose a
near-SRAM computing unit instead. The investigated scenario
is similar to the one in [8]. However, the NMC design in
that work only supports fixed-point arithmetics, which has a
considerably lower dynamic range than floating-point notation.
Moreover, their solution is based on analog computing, which
requires energy- and area-hungry domain converters. We ad-
dress these deficiencies by a fully digital near-SRAM archi-
tecture that performs 16-bit floating-point arithmetic, showing
that these operations can be implemented within tight energy
and area envelopes while incurring negligible accuracy drops
[17]. Finally, being entirely CMOS-based, our design can be
readily integrated with SRAM arrays.

III. SYSTEM ARCHITECTURE

In this section, we first present the components of the
proposed Floating-Point Unit (FPU), illustrating how these are

× =

������
�����������

�����
������
���

�������
������
���

����

���� �

�
�

�

������
������
������
������
������
������
������
������
������

������
�������
�������

� � � � � �

�

�

� �

����
	
�

��
�
	�
�

������������
���������

v_addr

coo_addr
����

����

��

��

��

��

��

��

�����×������������

�����×������������

��
��
��

��
��
��

Fig. 2. Diagram showing data mapping of a portion of matrix inside the
memory

employed to perform addition/subtraction and multiplication
operations. Then, we describe how these basic operations are
managed by a dedicated Control Unit (CU) to implement
SpMV. The FPU is interfaced with the sub-arrays composing
conventional SRAM arrays, while the CU is connected to
the system bus (as shown in Fig. 1-a) and programmed via
configuration registers. Our design does not require modifying
standard bus protocols or re-designing the memory sub-arrays.
Since the FPU and CU operate at the same speed as the
memory accesses, they do not affect their performance. They
are entirely transparent when a sub-array is solely used for
storing data (i.e., no near-memory computation is performed).
To parallelize the run-time execution, multiple sub-arrays can
be employed, each having its own near-memory FPU and CU.

A. Near-SRAM floating-point unit

The FPU structure comprises three main blocks, as shown
in Fig. 1-b. First, the data comparator selects the Bigger
Operand (BO) and the Smaller (SO) one (in absolute value).
Then, the Mantissa Logic, which is employed twice in both
multiplications and additions, is built with a combinational
multiplier and an adder. Shifts are carried out in the multiplier,
by multiplying one operand with a one-hot code representing
the number of shifts (named #shift in Fig. 1). Finally, the Sign
and Exponent logic comprises a three-input adder.

When performing additions, the mantissa of the SO is right-
shifted by the multiplier/shifter to align its exponent with the
BO’s exponent, as indicated by the comparator block 1. The
adder in the Mantissa Logic then calculates the addition of the
mantissa. The result is again fed to the multiplier/shifter so that
its most significant bit is properly aligned, since a right or left
shift may be required to align the most significant bit of the
mantissa output, depending on the operand values. Finally, the
Mantissa Logic forwards the number of shifts (normalization)
to the adder in the sign and exponent logic. As the last step in
the floating-point addition, the exponent of BO is added with
the Normalization value.

When executing multiplications, the multiplier/shifter is
instead used to multiply the two mantissas. The Mantissa
Logic’s adder is bypassed, and the result is looped back to

1For simplicity, the logic responsible for the one-hot coding of the #shifts
signal is omitted from Fig. 1-b.

Algorithm 1 The SpMV algorithm implemented at the com-
pute sub-array controller. It performs NZmn × Vn = Cm in
each while loop. The sparse-matrix column and input index
are represented by n, while m represents the sparse-matrix
row and the output index.

1: v addr ← base address of input vector
2: coo addr ← address of current non-zeros (COO format)
3: last addr ← last sub-array address
4: while coo addr ≥ last addr do
5: n = read(coo addr ++)
6: Vn = read(n+ v addr)
7: NZmn = read(coo addr ++)
8: m = read(coo addr ++)
9: Cm ← Cm + NZmn × Vn ▷ MAC op.

10: end while

the multiplier/shifter, where, as in the addition case, such
block is employed to align the mantissa output. However,
differently from additions, the Sign and Exponent Logic adds
the exponents of BO and SO, as well as the Normalization
value.

For multiplication and addition, the specialized logic (resid-
ing in the comparator) handles special values such as infinity,
zero, and not a number. Our design performs floating-point
additions and multiplications in only 5 clock cycles.

B. SpMV algorithm

Multiplication and addition between floating-point numbers
are used to implement the MACs (Multiply-ACcumulates)
required for SpMV. To this end, the architecture supports COO
encoding, which, as illustrated in Section II-A, enables the
compression of the sparse matrix representation by considering
only non-zero values. Each sub-array is logically partitioned
into three regions to maximize computation efficiency, as
shown in the example in Fig. 2. The top region stores a slice
of the output vector being computed. The middle region stores
a slice of the input vector. Finally, the bottom region stores the
non-zero values of the matrix tile corresponding to the input
and output slices, represented in COO format. Notice that 3
memory words are required for each non-zero matrix element
(stating its column index, value, and row index, respectively).

Three registers are used to keep track of the SpMV com-
putation at run-time:

• coo addr : Stores the address of the next word to be read
in the region storing non-zero matrix values. This register
is initialized at the beginning of the matrix tile region.

• v addr: Stores the offset address corresponding to the
beginning of the input region.

• last addr: Stores the address of the last non-zero value.
As dictated by COO coordinates and the offset register

value, the CU orchestrates the memory accesses to read/write
operands and results, while activating the FPU to perform
arithmetic operations. It performs a while loop over the sub-
array addresses until all MAC operations are performed, as
shown in Algorithm 1.

FPU3

FPU0

FPU1

FPU2

Fig. 3. Example of fixed-row tiling for an architecture composed of 4 sub-
arrays with 16-word memory capacity. The black squares represent the non-
zero values, the dotted rectangles are the tiles, and each color corresponds
to the sub-array to which the tile is assigned. Skipped portions of stripes
(containing only zero values) are shaded in grey.

In each MAC operation, the column index n of a non-zero
element of the sparse matrix tile is read (line 5) then this index
is translated to a sub-array address offset by v addr, allowing
the fetching of the corresponding input vector element. The
non-zero matrix value is accessed on the subsequent address
of coo addr (line 7). At this point, both NZmn and Vn

are available at the FPU and so they are multiplied. In
parallel, the row index m is fetched from the sub-array by
accessing the next coo addr (line 8). Once the multiplication
has reached completion, the product accumulates in Cm (line
9). A complete multiply-accumulate operation requires 14
clock cycles.

SpMV computations are executed independently on differ-
ent matrix tiles and can therefore be distributed among several
sub-arrays operating in parallel. Note also that the SpMV
multiplication approach outlined above can accommodate rect-
angular matrix tiles (input and output slices with different
dimensions). We exploit this feature to optimize data mapping,
as discussed in the next Section.

IV. DATA PARTITIONING AND MAPPING

The sparse matrices used in ML applications are, of course,
far larger (even when using compressed representations) than
the storage capacity of sub-arrays. Therefore, to perform
SpMV efficiently, it is key to properly partition the data into
matrix tiles and the inputs/outputs into vector slices.

Of the various tiling strategies proposed in the literature [9],
fixed-row tiling is particularly appealing in our scenario. Such
a mapping partitions the sparse matrix into 2D rectangular
tiles, which all have the same height and a variable width
(depending on the matrix sparsity). Consequently, the output
vector slice computed in each sub-array has a constant size
throughout the sub-arrays, while the input vector slice size
varies with the tile width. In our architecture, such a strategy
eliminates the need for a computation phase to aggregate
partial results. Instead, each sub-array is assigned to compute
a horizontal stripe, i.e., all tiles in a row. Using this strategy,

TABLE I
BENCHMARK SPARSE MATRICES, FROM [18].

Benchmarks Matrix size Non-zeros Density

c-61 43,618 × 43,618 310,016 1.63× 10−4

roadNet-TX 1,393,383 × 1,393,383 3,843,320 1.98× 10−6

delaunay n19 524,288 × 524,288 3,145,646 1.14× 10−5

fe ocean 143,437 × 143,437 819,186 3.98× 10−5

gridgena 48,962 × 48,962 512,084 2.14× 10−4

k49 norm 10NN 38,547 × 38,547 618,158 4.16× 10−4

worms20 10NN 20,055 × 20,055 240,826 5.99× 10−4

amazon0601 403,394 × 403,394 3,387,388 2.08× 10−5

webbase-1M 1,000,005 × 1,000,005 3,105,536 3.11× 10−5

inputs must still be transferred tile-wise to the sub-array ac-
cording to the available storage. However, the output remains
resident in memory and thus accumulates the results of all the
relevant tiles, minimizing the number of data transfers.

On the other hand the fixed row tiling requires the repli-
cation of input vector slices in multiple sub-arrays. This
redundancy can be reduced by maximizing the size of the
output vector slice (hence, the height of the matrix stripe)
computed in each sub-array. Such a strategy is particularly
effective in the common case when each input vector element
only contributes to the computation of a few output elements,
for example, in sparse matrices that are locally dense along
the diagonal.

Our implementation of fixed-row tiling is illustrated in Fig.
3 for a small illustrative example. In the figure, we consider
a 16×16 matrix and an architecture composed of 4 sub-
arrays, each composed of 16 words storing matrix tiles, inputs,
and outputs according to the scheme in Fig. 2. First, the
height of the matrix stripe is fixed to four in the example.
Then, the tile widths, different for each tile, are determined
to maximize the number of non-zero matrix values per tile
while not exceeding the sub-array size constraint. The tiles in
a stripe are then processed sequentially. Leading columns in a
tile are completely skipped if they only contain zeros, reducing
the redundancy in the input vector data and the number of
required matrix tiles. In the example, the first 5 input vector
elements do not have to be transferred to FPU2 since the
corresponding matrix columns are skipped.

V. EXPERIMENTAL SET-UP

Implementation. We designed the near-memory unit com-
posed of the floating-point computing block and the SpMV
controller in 28nm CMOS technology. We appended the near-
memory units to high-density single-port SRAM sub-arrays
ranging from 4kB (2048 16-bit words) to 32kB (16384 16-bit
words). The total storage capacity was kept constant at 32kB.
Hence, we instantiate one, two, four, and eight FPUs to 32kB,
16kB, 8kB, and 4kB SRAM sub-arrays, respectively. Area and
energy extractions were performed post-synthesis for a 1GHz
timing constraint.

Baselines. We compared our FPU to a similar architecture
capable of adding and multiplication in a fixed-point format.
The fixed-point architecture features a 16-bit multiplier instead

TABLE II
COMPARISON OF THE AREA PERFORMANCE OF THE FLOATING-POINT
ARCHITECTURE WITH RESPECT TO FIX-POINT ARCHITECTURE. AREA

VALUES ARE IN µm2 .

Fixed-point Floating-point
Area Overhead Area Overhead

Memory (4kB) 7927.2 - 7927.2 -
Near-memory unit 622.8 7.9% 874.7 11.0%

Controller 442.1 5.6% 475.3 6.0%

Total 1064.9 13.5% 1350.0 17.0%

of the 11-bit multiplier in the Mantissas Logic of our proposed
design. On the other hand, it does not require logic to deal
with exponents. It can perform a MAC operation in 11 clock
cycles because the multiplier must only be traversed once
(as no normalization step has to be performed). Hence, for
a fair comparison, we set its timing constraint to 787MHz (a
setting that puts the integer implementation at an advantage),
so that both floating- and fixed-point architectures can perform
a MAC in the same time span.

Benchmarks. We tested the performance of our designs on
the collection of sparse matrices of the University of Florida
[18]. We selected a representative sample of matrices that were
related to general graph applications. Their characteristics are
reported in Tab. I. All benchmark matrices are square, with
sizes varying between 20 thousand and 1.4 million lines. The
number of non-zero values ranges from 240 thousand to 3.8
million. Thus, the density of the matrices is on the order of
magnitude of 10−4 to 10−6.

VI. EXPERIMENTAL RESULTS

A. Floating-point compared to fixed-point

The area breakdown of the implemented design is detailed
in Tab. II. The first line of the table reports the area of a 4KB
SRAM sub-array, which is independent of the FPU design.
The second and third lines report the area (and the related
overhead) of the arithmetic unit and the controller. The total
area overhead of the floating-point unit in this implementation
is 17%. We regard this as a worst-case scenario of using very
small sub-arrays. Indeed, increasing the sub-array size reduces
the ratio of the area dedicated to FPUs.

The fixed-point baseline incurs a slightly lower area over-
head of 13.5%. The difference between the two implementa-
tions is due to the additional complexity (comparator, exponent
logic) required by floating-point arithmetic and the more
stringent timing constraint employed to synthesize this design.
Such effects are partially compensated for by the larger bit
width of the fixed-point multiplier, which requires 50% more
area. The energy consumption of our near-memory block is
only 8.5pJ/MAC, representing an increase of 14.9% of the
energy compared to the fixed-point architecture, which con-
sumes 7.4pJ/MAC. The overall performance of our floating-
point architecture is thus competitive with the fixed-point
implementation. We have slightly increased the area and power

���� ���� ���� ���������������� ����
������������

���

���

���

���	�
�
��
��

��
��

�����
������������������������

Fig. 4. Speedup of SpMV multiplication, with respect to a conventional
algorithm, on a 40,000 × 40,000 matrix, varying the density of non-zero
values.

��

��

��

��

��

��

��

�

��
��
���

��
��
�

��
��

	

��
��

	

��
�

	

��
�

	

��

��

��

��

��

��

��

�

��
��

	

��
��

	

��
�

	

��
�

	

�

�

�

�

�

�

�

��
��

	

��
��

	

��
�

	

��
�

	

�

�

�

�

�

�

�

��
��

	

��
��

	

��
�

	

��
�

	

��������������������������������������

�������������� ������� �� ����� � �������������

��
��
���

��
��
�

������ ������

��� ���

Fig. 5. Execution time of the SpMV algorithm before and after reordering
of the matrices for a total memory size of 32kB split in 1, 2, 4, and 8 FPUs
with (a) c-61 and (b) amazon0601.

of our design to benefit the dynamic range of the represented
values.

B. SpMV algorithm performance

Fig. 4 showcases the speed-up obtained by our SpMV strat-
egy, compared to a conventional matrix-vector multiplication.
It considers a square matrix of 40 thousand lines with random
placement of non-zero values and varying degrees of sparsity.
Very large speedups are reached for high sparsity levels (up to
35,000× for densities of 10−6). SpMV multiplication performs
worse than a conventional dense computation (with speed-ups
less than 1) only when the matrix densities are higher than
10%. At these sparsity levels, the overhead of storing each
non-zero value’s coordinates is no longer compensated by the
gain induced by skipping multiplications by zero. Notice that,
for the benchmark matrices considered further in this section,
the speedups obtained are always greater than 103.

Often, sparse matrices from graph applications are locally
denser around the diagonal, the edges, and the corners. This
characteristic is beneficial in our NMC scenario, as few input
vector elements have to be replicated across sub-arrays. Such
a feature can also be emphasized (or enforced) by reordering
the matrix rows. We highlight such an effect, employing the

0

100

200

300

400
M

FL
O

PS

0

100

200

300

400

c-61
roadNet-TX
delaunay

fe_ocean
gridgena
k49

worms20
amazon0601
webbase-1M

With reorderingWithout reordering
1x

32
kB

2x
16

kB

4x
8k

B

8x
4k

B

1x
32

kB
2x

16
kB

4x
8k

B

8x
4k

B

Memory con�guration Memory con�guration

Fig. 6. Performance of the SpMV algorithm with and without matrix
reordering for a 32KB compute memory, having 1, 2, 4, or 8 FPUs.

nested dissection algorithm illustrated in [15], in Fig. 5. When
sparse matrices are already well-formed, as is the case of
the c-61 benchmark in Fig. 5-a, reordering does not have a
major effect, resulting in marginal benefits, especially when
employing small sub-arrays. Instead, sparse but irregularly
scattered matrices such as amazon0601 presented in Fig. 5-
b are highly impacted by reordering. In particular, in such a
benchmark, increasing the number of FPUs (e.g., from 4 to
8) can lead to a performance drop in the non-reordered case.
Such an effect is due to the high increase in data transfers due
to the replication of input vector elements.

The performance of different implementations of our NMC
design is comparatively evaluated in Fig. 6 for all the bench-
marks in Tab. I. Plots report the MFLOPS (Millions of
floating-point Operations per Second) executed by the archi-
tectures, with and without considering matrix reordering. The
results show that the performance scales gracefully even for
very small subarray sizes (such as the 4×8KB configuration).
Increasing further the number of FPUs (e.g. in the 8×4KB
case) still induces speed-ups in most cases, at the cost of a
higher area requirement. As discussed above, amazon0601 and
webbase-1M (without reordering) exhibit shallower trends, as
their irregular sparsity induces inefficient data replications of
input vector elements for small sub-array sizes.

C. Comparison to the state of the art

Tab. III compares the performance of our architecture to the
UPMEM PIM architecture [9], with the latter operating on 16-
bit integer and 32-bit floating point numbers. The authors do
not report data for the 16-bit floating-point case. It can be
noticed that our design outperforms UPMEM PIM in terms
of throughput per pipeline, thanks in large part to the higher
proximity between memory and computing elements in our
case.

TABLE III
COMPARISON TO THE ARCHITECTURE IN [9].

UPMEM PIM Our work

Clock frequency 500 MHz 1 GHz
Memory technology DRAM SRAM

Data format INT16 FP32 FP16
Performance (per pipeline) 6.25 Mop/s 0.53 Mop/s 46.25 Mop/s

VII. CONCLUSION

In this work, we have proposed a novel near-memory
floating-point architecture designed to seamlessly interface
with SRAM sub-arrays and perform sparse matrix-vector
multiplications, a key computational kernel in large graph
applications such as GNNs. Our design only causes a 17% area
overhead when attached to a 4kB SRAM, marginally more
than an equivalent fixed-point implementation. Moreover, we
have described how very large matrices can be mapped on
our near-memory architecture using fixed row mapping and
reordering. Our strategy effectively minimizes data transfer
overheads caused by replicating input vector values. Finally,
we have demonstrated the scalability of our approach on a
representative set of sparse-reference matrices.

REFERENCES

[1] M. e. a. Shaeri, “Challenges and opportunities of edge AI for next-
generation implantable BMIs,” in AICAS, 2022.

[2] T. e. a. Zhong, “Hybrid graph convolutional networks with multi-head
attention for location recommendation,” World Wide Web, 2020.

[3] J. e. a. Zhou, “Graph neural networks: A review of methods and
applications,” AI open, 2020.

[4] K. e. a. Huang, “Understanding and bridging the gaps in current GNN
performance optimizations,” in SIGPLAN, 2021.

[5] S. e. a. Qiu, “Optimizing sparse matrix multiplications for graph neural
networks,” in LCPC, 2022.

[6] X. e. a. Xie, “SpaceA: Sparse matrix vector multiplication on processing-
in-memory accelerator,” in HPCA, 2021.

[7] D. e. a. Fujiki, “Near-memory data transformation for efficient sparse
matrix multi-vector multiplication,” in International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019.

[8] S. e. a. Srinivasa, “Trends and opportunities for SRAM based in-memory
and near-memory computation,” in ISQED, 2021.

[9] C. e. a. Giannoula, “SparseP: Towards efficient sparse matrix vector
multiplication on real processing-in-memory systems,” arXiv preprint
arXiv:2201.05072, 2022.

[10] M. M. B. et al., “Geometric deep learning: going beyond euclidean data,”
CoRR, 2016.

[11] S. e. a. Rhee, “Hybrid approach of relation network and localized graph
convolutional filtering for breast cancer subtype classification,” arXiv
preprint arXiv:1711.05859, 2017.

[12] L. e. a. Song, “A graph-to-sequence model for AMR-to-text generation,”
in Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2018.

[13] V. L. et al., “Matrix computations (Johns Hopkins studies in mathemat-
ical sciences),” Matrix Computations, 1996.

[14] A. e. a. Pinar, “Improving performance of sparse matrix-vector multi-
plication,” in SC, 1999.

[15] R. J. e. a. Lipton, “Generalized nested dissection,” 1979.
[16] S. e. a. Dave, “Hardware acceleration of sparse and irregular tensor

computations of ML models: A survey and insights,” Proceedings of
the IEEE, 2021.

[17] S. e. a. Gupta, “Deep learning with limited numerical precision,” in
International Conference on Machine Learning, 2015.

[18] T. A. e. a. Davis, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., 2011. [Online]. Available:
https://doi.org/10.1145/2049662.2049663

