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ABSTRACT

In recent years, the remarkable progress in facial manipulation techniques has raised social concerns due to
their potential malicious usage and has received considerable attention from both industry and academia. While
current deep learning-based face forgery detection methods have achieved promising results, their performance
often degrades drastically when they are tested in non-trivial situations under realistic perturbations. This paper
proposes to leverage the information in the frequency domain, particularly the phase spectrum, to better differen-
tiate between deepfakes and authentic images. Specifically, a new augmentation method called degradation-based
amplitude-phase switch (DAPS) is proposed, which disregards the sensitive amplitude spectrum of a forged facial
image and enforces the detection network to focus on phase components during the training process. Exten-
sive evaluation results from a realistic assessment framework show that the proposed augmentation method
significantly improves the robustness of two deepfake detectors analyzed and consistently outperform other aug-
mentation approaches under various perturbations.
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1. INTRODUCTION

Recent studies have shown a rapid development of facial manipulation techniques enabling users to modify facial
regions in an image or video and create a so-called “Deepfake”. For example, current deep learning-driven
generative models1–3 are capable of changing the identities or modifying the facial attributes that are hardly
distinguishable by human eyes. The forged image or video can be abused for malicious purposes, causing severe
trust issues in society at large. Therefore, it is crucial to develop effective face forgery detection methods.

Nowadays, multiple datasets, benchmarks, and competitions4–7 have been launched to assist the progress of
developing more advanced deepfake detection methods. At the same time, a variety of methods8–15,15–17 have
been proposed. Earlier studies mainly relied on hand-crafted features, while most of the current work adopts deep
learning tools to tackle this challenge. Recent learning-based detection methods often leverage prior knowledge
of certain face manipulation methods from specific databases and then mine the forgery clues using classical
convolutional neural networks (CNNs) in a supervised manner. These approaches have achieved great success in
some well-known datasets, such as FaceForensics++,4 Celeb-DF,5 and DFDC.6

Despite their excellent performance, most of the previous deepfake detection methods tend to suffer from
overfitting problems. These methods often experience drastic performance drops when facing deepfakes created
by unseen forgery techniques because they were trained on datasets created by specific face manipulation methods.
Existing work10,15,17 have attempted to address the generalization problem by exploiting some common artifacts
shared by multiple datasets. For instance, Face X-ray15 and SBIs17 methods proposed to directly detect the
blending artifacts instead of general forgery traces and managed to significantly improve the generalization
ability. However, these methods are still susceptible to common perturbations because the blending artifacts
can be easily corrupted by any processing operations such as compression. In fact, this is another challenge that
commonly exists in the real world and has attracted little attention from researchers in deepfake detection. In
more realistic situations, deepfake contents on social media can be post-processed by various image and video
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processing operations such as resizing, compression, or stylization filters. Artifacts created by these operations
can mask the forgery clues and mislead a deepfake detector, resulting in incorrect decisions. To the best of
our acknowledgment, most of the current learning-based detection methods were developed under simple and
constrained scenarios with less realistic face manipulation datasets. In this context, this paper aims at developing
a deepfake detection method that is robust to more practical and realistic situations.

Many previous studies18–23 suggest that it is easier to distinguish the forgery clues of a deepfake in the
frequency domain by comparing to the normal frequency distributions of authentic images. Meanwhile, it has
been shown24 that the phase spectrum of the Fourier transform of an image is more resilient to disturbances
than the corresponding amplitude spectrum. From another perspective, data augmentation techniques have
been widely used in different vision tasks to enhance the generalization ability and robustness of a deep neural
network. Inspired by the above, this paper proposes a new data augmentation method that aims at enforcing
the neural network to focus on the phase component of the frequency distribution of the training data. More
specifically, the paper brings the following contributions:

• A new data augmentation method called degradation-based amplitude-phase switch (DAPS) is conceived
to improve the robustness of general deepfake detection methods under real-world conditions.

• Several classical data augmentation techniques have been adapted to the deepfake detection task to further
compare with the DAPS augmentation method.

• Extensive experiments have been performed with a realistic image and video deepfake assessment framework
that shows the proposed augmentation method brings significant improvement in the robustness of two
deepfake detectors under consideration and consistently outperforms other augmentation approaches.

2. RELATED WORK

Over the past years, deepfake detection has gained significant attention in the scientific community due to its
wide application and potential threat to public trust and has become an emerging research area. In recent years,
various attempts have been made and remarkable performance achieved. In this section, current face forgery
detection methods are reviewed from three aspects.

2.1 Deepfake Detection in Spatial Domain

With the recent advancement in deep learning, various methods have been proposed to address the challenge
of face forgery detection. The majority of them exploit forgery clues in the spatial domain, such as RGB and
HSV. Some approaches11,13,16,25 detect deepfakes based on hand-crafted features, such as the inconsistency of
head pose,11 face expression,13 eye blinking,25 and lips movement.16 Later on, the development of deep learning
has enabled an effective extraction of deep representations from images and video. Some work mainly treated
deepfake detection as a binary classification task and adapted the structure of existing neural networks to identify
manipulated faces. For example, Zhou et al.8 proposed to detect deepfakes with a two-stream neural network
adapted from GoogLeNet.26 MesoNet9 designed a shallow neural network that comprises two inception modules
and two convolution layers. Nguyen et al.27 leveraged the capsule network28 to detect face manipulation, which
reduced the number of parameters while maintaining comparable performance to conventional convolutional
neural networks (CNNs). Rössler et al.4 demonstrated exceptional performance in detecting deepfakes created by
various algorithms using the efficient XceptionNet.29 It now serves as a popular baseline approach in benchmarks.
Recent creative attempts in network structures have explored the usage of more advanced architectures, such as
autoencoders,12,14 EfficientNets,17,30 as well as vision transformers,31,32 and have further boosted the accuracy
in detecting forged faces. In addition, a number of studies attempt to localize the manipulated regions in
addition to performing the classification task. Some researchers12,33–35 directly adopted multi-task learning to
simultaneously detect deepfake and localize the modified areas, while more recent work32,36,37 leveraged attention
mechanism to jointly predict location information of manipulated regions.

Although these methods achieved sound performance at their times, they are incapable of obtaining high
accuracy in more recent benchmarks and challenges, such as Deepfake Detection Challenge (DFDC)6 and Trusted
Media Challenge (TMC),7 mainly due to the rapid progress in deepfake technologies.



2.2 Deepfake Detection in Frequency Domain

Frequency domain analysis is an important method in image and video processing and has been widely employed
in vision tasks such as image classification38 and super-resolution.39,40 Most such techniques convert the image
from the spatial domain to the frequency domain with Discrete Fourier Transform (DFT), Discrete Cosine
Transform (DCT), or Wavelet Transform (WT). Several studies18–23 have proposed to resolve the deepfake
detection task by analyzing the forgery clues in the frequency domain. Durall et al.18 first attempted to
extract frequency-domain information using DFT and average the amplitude of each frequency band to capture
the abnormal information contained in forged images. F3-Net19 proposed a two-stream collaborative learning
framework, which is composed of two frequency-aware branches. One extracts frequency information from
images via DCT and the other branch analyzes the statistical discrepancy between real and forged images in the
frequency domain. This approach achieves state-of-the-art performance on heavily compressed deepfake video.
Frank et al.20 conducted an in-depth frequency analysis on GAN-generated fake images via DFT and revealed
obvious grid-like patterns in their frequency counterparts, which validated the potential of identifying forged
faces in the frequency domain. Liu et al.22 further verified the forgery clues in the frequency domain caused by
the up-sampling operation in GANs and proposed to focus on the phase spectrum of the frequency components,
which preserves more critical information for detection. Li et al.21 integrated frequency transformation into a
metric learning framework to learn more discriminative features for face forgery detection. Luo et al.23 conducted
a similar frequency analysis as the previous work21 but took a complementary point of view, which focused on
the high-frequency features to improve the generalization ability. Their method mainly extracted high-frequency
noises at multiple scales for face forgery detection and achieved promising results in the cross-manipulation
evaluation.

2.3 Data Augmentation

Data augmentation is a widely used technique to enhance the generalization ability and robustness of deep
learning-based models. Common augmentation operations employed in vision tasks include random flipping,
cropping, translation, etc. In addition to these traditional operations, more advanced augmentation techniques
have been conceived specifically for vision models and have demonstrated outstanding performance in image
classification tasks. In an earlier work, Cutout,41 randomly square regions were masked out during the training
and showed improvement in robustness and overall performance of a convolutional neural network in image
classification tasks. Later on, Mixup42 linearly combined two images and corresponding labels in the training
batch. Cutmix43 used a similar strategy of mixing different data by replacing a portion of an image with
a portion of another image. AutoAugment44 is a learnable approach that optimizes the selection of various
augmentation operations. It iteratively discovers the best augmentation policies with reinforcement learning
techniques. AugMix45 utilized stochasticity and cascaded various augmentation operations and achieved state-of-
the-art performance on ImageNet-C.46 Other studies47,48 have explored augmenting training data with Gaussian
noise and managed to improve the performance of an object classifier on corrupted images. In deepfake detection,
researchers49 proposed a realistic augmentation chain that managed to improve the robustness of a common
deepfake detector under the attack of real-world perturbations.

3. PROPOSED METHOD

This section starts by describing the motivation for the proposed augmentation method. Then, two pivot
steps of the augmentation pipeline, i.e. degradation-based augmentation chain and amplitude-phase switch are
introduced.

3.1 Motivation

The proposed augmentation method is inspired by the following key observations. Several studies18–23 have
shown that frequency-domain analysis is capable of capturing hidden forgery clues based on abnormal frequency
distributions. In particular, the phase spectrum of a frequency-domain deepfake image is more sensitive to the
up-sampling artifacts caused by the deepfake creation process when compared to the amplitude spectrum.20

Moreover, it has been shown24 that the phase spectrum of a signal in the frequency domain is more resilient
than the corresponding magnitude spectrum. The latter is easily disturbed by perturbations such as noise or
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Figure 1: Workflow of the proposed degradation-based amplitude-phase switch (DAPS) augmentation method.

other artifacts from common processing operations. Therefore, forcing the detector to disregard the susceptible
amplitude component and emphasize the resilient phase spectrum at the same time can potentially improve both
the performance of the detector and its robustness against real-world disturbances. This paper proposes a new
data augmentation technique, called degradation-based amplitude-phase switch (DAPS), for this purpose.

3.2 Degradation-based Amplitude-Phase Switch Augmentation

Figure 1 illustrates the proposed degradation-based amplitude-phase switch (DAPS) augmentation pipeline.
Given an input image I, a preliminary augmentation is first applied to it and the output counterpart is denoted
as Î. The pre-augmentation operations are designed in a way to simulate real-world perturbations. However,
some of the subtle forgery clues could be hidden in the various artifacts produced by these processing operations
and potentially impair the detection performance. To eliminate the disturbances of such artifacts, a second step
of the DAPS augmentation aims at making the detection model concentrate more on the phase spectrum of the
training data and less on the changes in the amplitude. For this purpose, Discrete Fourier Transform (DFT) is
applied to the image pair {I, Î}, and then their amplitude spectrum is switched. The amplitude spectrum of the
pre-augmented image and the phase spectrum of the original image is re-combined to generate a new training
sample. Below, two pivot steps, i.e. degradation-based augmentation chain and amplitude-phase switch, of the
proposed method are introduced in more details.

3.2.1 Degradation-based Augmentation Chain

The first step provides a preliminary data augmentation to the input data. Common data augmentation opera-
tions include a variety of geometric and color space transformations to enrich training data, such as translation,
rotation, flipping, change of contrast, etc. More recent studies either concatenate multiple geometric transforma-
tions into augmentation chains44,45 or introduce random cut and paste to re-combine several input images.41,43

However, according to our experiments, these methods bring a somewhat limited impact on the robustness of
deepfake detection.

The main insight in designing the preliminary data augmentation is motivated by typical perturbations
that images and video are subject to in real-world conditions. In order to improve the resilience of deepfake
detectors against realistic perturbations, this paper adopts a similar format as45 to build an augmentation chain
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Figure 2: Preliminary augmentation chain based on realistic degradation processes.

but meanwhile selects multiple transformations that can simulate the common processing operations in the real
world.

As shown in Figure 2, the input image is first modified by image enhancement operation and then convoluted
with a Gaussian blurring kernel. Afterward, additive Gaussian noise is applied to the augmented data, followed by
JPEG compression artifacts. At the end, the image is resized to a lower resolution to simulate loss of information
and then it is up-sampled back to the original size to obtain the final augmented training data.

3.2.2 Amplitude-Phase Switch

The main objective of the second augmentation step is to emphasize the importance of the phase spectrum of
input data during the training process. This section introduces amplitude-phase switch operation that enforces
the deepfake detector to concentrate more on the phase than on the amplitude spectrum.

As illustrated in Figure 1, for each input image I and its corresponding pre-augmented counterpart Î, Discrete
Fourier Transform (DFT) is applied to both and the corresponding frequency domain signals F(I) and F(Î) are
obtained through equations 1 and 2.

F(I) = DFT (I) = Aei·P , (1)

F(Î) = DFT (Î) = Âei·P̂ . (2)

Afterward, the amplitude and phase spectrum of the two signals are switched. Specifically, the amplitude
component of the pre-augmented data and the phase spectrum of the original data re-combine together to build a
new signal Âei·P and the augmented training sample is obtained through the inverse Discrete Fourier Transform
(iDFT) operation.

Ĩ = iDFT (Âei·P), (3)

where Ĩ is the final augmented data used for training.

4. EXPERIMENTS AND RESULTS

This section first introduces the overall experimental setups and then presents the substantial experimental
results to show the superiority of the proposed augmentation method.

4.1 Implementation Details

4.1.1 Datasets

This paper adopts the challenging FaceForensics++4 dataset for experiments. FaceForensics++ comprises 1000
real video collected from YouTube. Each video was altered by four different types of face manipulation methods:
Deepfake,50 Face2Face,51 FaceSwap,52 and NeuralTextures.53 The original dataset provides data in three quality
levels, namely C0 (raw), C23 (light compression), and C40 (heavy compression). The experiments in this paper
are mainly conducted with the raw quality of this dataset. As for the data preprocessing, 100 frames are first
randomly extracted from every video for training purposes. Then, the dlib54 face detector is applied to each
video to extract and crop the face regions. Finally, the face images are resized into 300×300 pixels before feeding
into the deepfake detection models.



Table 1: Frame-level AUC (%) scores of XceptionNet method tested on unaltered and distorted variants of FaceForen-
sics++ test set via the realistic image deepfake assessment framework. DL-Comp is the abbreviation of deep learning-based
compression operation.57 Po-Gau Noise means Poisson-Gaussian noise. Resize refers to downsizing the image for certain
scales.

Methods Augmentation Unaltered
JPEG DL-Comp Gaussian Noise

Po-Gau
Noise95 60 30 AVG High Med Low AVG 5 10 30 AVG

XceptionNet

No Aug 99.56 76.77 56.00 54.20 62.32 50.16 50.37 50.10 50.21 50.12 51.00 50.36 50.49 51.02
Cutout41 99.63 85.50 56.79 54.41 65.57 52.14 48.60 48.60 49.78 51.24 50.20 50.20 50.55 50.67
CutMix43 99.80 76.42 53.18 51.67 60.42 70.59 49.15 47.25 55.66 56.53 55.02 50.00 53.85 50.80

AutoAugment44 99.53 98.83 75.32 65.18 79.78 89.21 50.93 53.24 64.46 92.76 72.00 54.28 73.01 63.00
Augmix45 97.23 69.81 58.59 58.83 62.41 82.44 60.83 55.99 66.42 70.06 64.64 58.41 64.37 61.22
DAPS 99.64 98.97 90.51 80.68 90.05 93.68 63.40 54.82 70.63 93.95 82.12 60.90 78.99 74.09

Methods Augmentation
Gaussian Blur Gamma Correction Resize

Average3 7 11 AVG 0.1 0.75 1.3 2.5 AVG x4 x8 x16 AVG

XceptionNet

No Aug 68.76 55.61 50.70 58.36 54.66 98.66 99.57 70.45 80.84 68.60 55.80 50.45 58.28 63.89
Cutout41 86.95 62.25 52.52 67.24 55.85 99.52 99.42 76.41 82.80 75.49 59.47 53.11 62.69 66.12
Cutmix43 99.37 68.11 50.43 72.64 51.15 99.70 99.71 96.81 86.84 93.62 64.79 50.13 69.51 68.69

AutoAugment44 99.05 62.35 50.62 70.67 97.65 99.55 99.52 99.40 99.03 91.55 63.74 54.34 69.88 77.42
Augmix45 93.52 61.50 53.09 69.37 98.64 98.89 94.60 73.32 91.36 72.04 56.13 50.27 59.48 71.48
DAPS 99.43 83.62 67.60 83.55 53.00 97.01 97.11 81.74 82.22 94.96 69.32 55.37 73.22 81.55

4.1.2 Detection Methods

To show the effectiveness of the proposed augmentation technique, it has been tested on two different face forgery
detection methods.

XceptionNet29 is a popular CNN architecture in many computer vision tasks. Ros̈sler et al.4 first utilized it
to detect face manipulations in the FaceForensics++ benchmark. It achieves excellent results in identifying forged
contents created by different manipulation methods and has become a popular baseline method for learning-based
deepfake detection approaches

UIA-VIT32 detects face forgery using the vision transformer technique. This approach jointly trains an
end-to-end pipeline that both classifies the deepfake images and estimates the location modification areas in an
unsupervised manner. Overall, the UIA-VIT method focuses on intra-frame inconsistency without pixel-level
annotations and achieves state-of-the-art performance.

4.1.3 Training Details

Following the hyper-parameters suggested in the original paper, the XceptionNet model is first pre-trained on
ImageNet55 and then fine tuned for 10 epochs with a learning rate 1×10−3, while the UIA-VIT model is trained
from scratch for 8 epochs with an initial learning rate of 3×10−5, which is reduced when the validation accuracy
arrives at plateau. Both methods are trained with Adam optimizer with β1 = 0.9, β2 = 0.999.

4.1.4 Evaluation Framework and Performance Metrics

This work mainly explores methods to improve the robustness of deepfake detection in real-world situations.
Therefore, a realistic image and video assessment framework56 has been employed for a fair measurement and
comparison among different augmentation methods. In principle, the deepfake detectors are first trained on the
originally targeted dataset as usual, but they are evaluated with multiple test data distorted by a variety of
processing operations. Notably, the robustness of the detector against the following image processing operations
will be measured: JPEG compression, learning-based compression,57 noises, blurry effect, gamma correction
operation, and low-resolution effect. Similarly, the video assessment framework measures detection performance
when facing video compression, video filter, brightness and contrast changing, geometric flipping, low-resolution
effect, and temporal noise.

During the evaluation, the frame-level Area Under the Receiver Operating Characteristic Curve (AUC) is
adopted as the metric. An overall AUC score is reported by averaging the scores on different test sets, which
reveals the robustness of the detector.



Table 2: Frame-level AUC (%) scores of UIA-VIT methods tested on unaltered and distorted variants of FaceForensics++
test set via the realistic image deepfake assessment framework. DL-Comp is the abbreviation of deep learning-based
compression operation.57 Po-Gau Noise means Poisson-Gaussian noise. Resize refers to downsizing the image for certain
scales.

Methods Augmentation Unaltered
JPEG DL-Comp Gaussian Noise

Po-Gau
Noise95 60 30 AVG High Med Low AVG 5 10 30 AVG

UIA-VIT

No Aug 99.38 99.30 95.16 84.92 93.13 89.19 57.49 56.75 67.81 96.86 89.10 72.32 86.09 82.97
Cutout41 99.10 99.12 94.60 82.72 92.15 89.39 58.01 58.29 68.56 96.15 87.32 68.23 83.90 80.11
CutMix43 99.33 99.29 93.21 79.07 90.52 51.77 59.61 56.02 55.80 94.26 83.08 65.44 80.93 76.69

AutoAugment44 99.22 99.13 97.19 89.66 95.33 96.72 71.36 63.60 77.23 98.54 93.64 74.48 88.89 87.12
Augmix45 99.20 99.14 96.31 87.31 94.25 96.28 67.07 63.79 75.71 98.10 91.59 74.80 88.16 85.86
DAPS 98.61 98.43 97.29 94.55 96.76 97.54 88.64 73.17 86.45 98.21 96.65 81.45 92.10 92.22

Methods Augmentation
Gaussian Blur Gamma Correction Resize

Average3 7 11 AVG 0.1 0.75 1.3 2.5 AVG x4 x8 x16 AVG

UIA-VIT

No Aug 98.81 86.71 72.62 86.05 57.35 99.05 99.04 89.14 86.15 98.44 87.14 61.37 82.32 85.49
Cutout41 97.79 83.08 69.63 83.50 55.17 98.55 98.96 88.61 85.32 97.25 83.33 60.52 80.37 84.13
Cutmix43 97.56 46.14 39.03 60.91 48.59 98.88 99.05 86.76 83.32 97.40 85.98 62.35 81.91 78.68

AutoAugment44 98.52 89.34 80.22 89.36 84.40 99.16 99.12 98.49 95.29 97.65 87.04 66.36 83.68 89.51
Augmix45 98.21 79.29 66.69 81.40 84.85 99.09 99.13 97.41 95.12 97.00 84.14 66.69 82.61 87.79
DAPS 98.17 95.31 90.23 94.57 77.95 98.36 98.15 93.63 92.02 96.59 87.01 70.32 84.64 92.17

4.2 Experimental Results

This section provides experimental results assessed under two typical scenarios, i.e. image and video deepfakes
in realistic situations. More specifically, the selected XceptionNet and UIA-VIT models are first trained on the
unaltered FaceForensics++ (Raw) dataset with different data augmentation techniques. Their performance is
then measured by two realistic assessment frameworks56 to compare the robustness improvement brought by
each augmentation method.

4.2.1 Results on Realistic Image Deepfakes

The realistic image assessment framework reports the robustness of two deepfake detectors trained with different
augmentation techniques under the attack of various image processing operations and summarizes the results as
shown in Table 1 and 2.

First, while the state-of-the-art UIA-VIT detector obtains better performance than XceptionNet when fac-
ing different perturbations, it still suffers from certain types of corruption such as learning-based compression
artifacts, noises, and low-resolution effects.

Second, the performance of four classical augmentation techniques in the image classification field has been
investigated. Due to the domain gap between the image classification and deepfake detection tasks, the augmen-
tation techniques that are well-known in the former task are not necessarily effective in the latter. For example,
it is shown that randomly cutting out image patches41 from the training data leads to few improvements to the
robustness of XceptionNet method while harming the performance of the UIA-VIT model. AutoAugment44 and
Augmix45 are two similar approaches that build up sequential augmentation chains with classic 2D geometric
and color-space transformations. Both of them are able to bring marginal improvements to the robustness of the
two detectors, particularly under the impact of gamma correction operations.

More importantly, the proposed DAPS augmentation method achieves considerably higher scores than clas-
sical data augmentation techniques under the attack from most perturbations. For example, the UIA-VIT
model trained with DAPS augmentation is significantly more robust to corruptions caused by learning-based
compression, noises, or blurry operation.

4.2.2 Results on Realistic Video Deepfakes

Besides the image scenario, this work also provides a comprehensive evaluation of the augmentation methods
under the impact of various video processing operations and the results have been summarized in Table 3.

The results from the video deepfake assessment framework verify that the Cutout and Cutmix augmentation
methods are not suitable for robust deepfake detection tasks, although they are effective in image classification



Table 3: Frame-level AUC (%) scores of XceptionNet and UIA-VIT methods tested on unaltered and distorted variants
of FaceForensics++ test set via the realistic video deepfake assessment framework.

Methods Augmentation
Compression Brightness

Contrast
Increasing

Grayscale
Filter

Vintage
Filter

Flipping Resolution
Gaussian
Noise AverageC23 C40 ↑ ↓ Horizontal Vertical x2 x4

XceptionNet

No Aug 66.49 55.70 65.92 66.40 65.32 65.51 66.90 65.26 57.36 57.23 55.90 50.50 61.54
Cutout41 66.88 54.84 63.98 64.44 63.98 62.18 63.97 63.93 52.60 55.78 54.59 50.18 59.78
Cutmix43 64.22 53.54 61.16 62.34 64.07 58.20 61.50 60.71 54.12 55.64 55.84 51.28 58.55

AutoAugment44 83.13 58.32 77.73 77.52 78.95 83.45 76.33 76.06 52.41 62.32 53.97 55.17 69.61
Augmix45 63.87 56.17 62.50 62.02 61.38 54.23 63.72 61.34 51.24 56.98 55.37 55.95 58.73
DAPS 85.68 65.20 80.76 81.26 78.63 83.23 79.43 80.51 56.41 71.29 64.05 62.28 74.06

UIA-VIT

No Aug 93.82 71.56 91.10 88.55 89.18 88.91 87.11 89.02 77.74 79.78 72.72 71.50 83.42
Cutout41 92.72 70.21 89.97 87.28 88.27 88.98 85.71 87.20 76.48 77.42 70.88 68.17 81.94
Cutmix43 93.19 68.27 88.54 87.36 87.40 90.48 86.19 87.40 76.73 77.03 68.72 64.42 81.31

AutoAugment44 95.53 73.99 92.63 92.34 92.30 89.82 88.85 92.29 77.04 81.11 73.71 74.42 85.34
Augmix45 95.03 76.06 91.44 91.47 92.06 91.03 87.93 90.88 76.03 82.52 74.22 74.36 85.25
DAPS 94.87 80.46 93.09 92.47 92.36 91.03 91.11 92.66 72.15 87.35 82.50 80.32 87.53

tasks. It is because both methods comprise a random-cutting operation, which can occasionally destroy some
consistent forgery clues and make the training process much more difficult. AutoAugment method achieves
comparable results with our method when facing perturbations in color space and the models trained with this
augmentation technique are more robust to brightness and contrast changes and video filters. Notably, our
proposed DAPS method introduces the most significant improvements to the robustness of two tested deepfake
detectors. It outperforms other augmentation approaches, particularly in the cases of heavy compression, low
resolution, and temporal noise.

It is also interesting to note that none of the augmentation techniques can improve the detection accuracy
while facing a vertically flipped deepfake video, even if AutoAugment and Augmix methods contain similar
geometric transformations in their augmentation chain. One needs to design a specific detection algorithm to
resolve this problem, such as correcting the rotation of the video before conducting deepfake detection.

5. CONCLUSION

This paper provides a detailed review about the advantage of frequency-domain analysis in deepfake detection. A
new data augmentation method, DAPS, is proposed to emphasize the resilient phase spectrum and disregard the
susceptible amplitude components while training the detection model. The effectiveness of the conceived aug-
mentation technique is evaluated by a realistic assessment framework, which significantly improves the robustness
of two deepfake detection methods against real-world perturbations.

ACKNOWLEDGMENTS

The authors acknowledge support from CHIST-ERA project XAIface (CHIST-ERA-19-XAI-011) with funding
from the Swiss National Science Foundation (SNSF) under grant number 20CH21 195532.

REFERENCES

[1] Karras, T., Aila, T., Laine, S., and Lehtinen, J., “Progressive growing of gans for improved quality, stability,
and variation,” arXiv preprint arXiv:1710.10196 (2017).

[2] Brock, A., Donahue, J., and Simonyan, K., “Large scale gan training for high fidelity natural image synthe-
sis,” arXiv preprint arXiv:1809.11096 (2018).

[3] Karras, T., Laine, S., and Aila, T., “A style-based generator architecture for generative adversarial net-
works,” in [Proceedings of the IEEE/CVF conference on computer vision and pattern recognition ], 4401–4410
(2019).
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