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Abstract—Despite the huge success of deep convolutional
neural networks in face recognition (FR) tasks, current methods
lack explainability for their predictions because of their “black-
box” nature. In recent years, studies have been carried out to give
an interpretation of the decision of a deep FR system. However,
the affinity between the input facial image and the extracted
deep features has not been explored. This paper contributes to
the problem of explainable face recognition by first conceiving a
face reconstruction-based explanation module, which reveals the
correspondence between the deep feature and the facial regions.
To further interpret the decision of an FR model, a novel visual
saliency explanation algorithm has been proposed. It provides
insightful explanation by producing visual saliency maps that
represent similar and dissimilar regions between input faces. A
detailed analysis has been presented for the generated visual
explanation to show the effectiveness of the proposed method.

Index Terms—face recognition, explainable AI, deep learning

I. INTRODUCTION

With the rise of deep learning, remarkable progress has
been made in various computer vision applications, such as
image classification and face recognition. In the past years,
deep convolutional neural networks (DCNNs) have played
a fundamental role in these tasks and significantly boosted
their performance, even achieving higher accuracy than human
observers [1]. Despite the huge success, the decision made by
these neural networks tends to be challenging to understand
and interpret due to their “black-box” nature [2], [3]. Cur-
rently, deep learning-based technologies have been employed
in multiple safety and security crucial domains. For example,
deep face recognition techniques are widely used in access
control systems, where a false positive prediction made by the
“black-box” model can lead to severe consequences.

Therefore, the general necessity of transparency and in-
terpretability of deep learning techniques has inspired fast
progress in the field of explainable artificial intelligence (XAI).
Specifically, the explanation method should interpret the pre-
diction of DCNNs in a precise and reliable manner in order
to better comprehend the reasoning and potential vulnerability
behind the decision system [4], [5]. In particular, this paper
focuses on the problem of explainable face recognition (XFR).
XFR generally studies the decision-making process of a deep
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face recognition system, i.e. how the model matches a given
facial image over another [2], [6]. In this context, the expla-
nation is usually presented in the form of attention or saliency
maps for visualizing the discriminative areas on the faces.

In recent years, several approaches have been introduced
to increase the explainability of face recognition techniques,
allowing for further improvements in the reliability and even
performance of the system. For example, in [7], perturbations
were applied to input images and their impact on the output
was analyzed. In [8], the contrastive excitation backpropaga-
tion method was used to identify the relevant regions of the
images. In [9], a learnable module was plugged into existing
face recognition models to enhance the overall explainability.

However, current popular XFR methods have shown some
common limitations. First, the connection between the deep
face representation and the discriminative facial regions has
not been sufficiently explored in previous studies. In general,
the decision-making process of a face recognition model fully
relies on the similarity comparison between two or more deep
feature vectors extracted by the FR model. In this context,
the distances between specific dimensions of two features are
expected to accurately reflect the discriminative regions on the
input face images. This paper proposes a novel explanation
approach based on face reconstruction, which reproduces a
face image from its deep representation. Thereafter, any mod-
ification on the deep feature will reflect on the reconstructed
image through forward propagation. Secondly, most of the
current explanation methods focus on generating a saliency
map that describes the similar regions between two given face
images. Nevertheless, the dissimilarities between the inputs,
particularly the non-matching face pairs, can also dominate the
decision-making process. In this work, the proposed method is
capable of providing richer explanation by producing saliency
maps that respectively represent similar and dissimilar regions.
In summary, the main contributions of the paper are as follows.

‚ A new explainable face recognition framework is pro-
posed, which explores the connection between facial im-
ages and deep features via a face reconstruction module.

‚ A saliency map generation algorithm has been conceived,
which provides explanation by highlighting the similarity
and dissimilarity regions between two face images.

‚ Extensive experimental results have shown that the pro-
posed method can significantly enhance the model’s ex-



plainability without affecting recognition performance.

II. RELATED WORKS

A. Explainable Artificial Intelligence

Explainable artificial intelligence refers to the problem of
comprehending the predictions of a generic machine-learning
model. Over the past years, the increasing demand for XAI
technologies has promoted the development of numerous ex-
planation methods that are based on different mechanisms.

One major category of methods is based on backpropa-
gation, which makes use of gradient information to directly
identify the relevant pixels on the input image. Gradient [10]
evaluated the importance of the pixels by approximating the
model with the gradient of the output with respect to the input.
SmoothGrad [11] added noise to the input and averaged the
gradients corresponding to multiple noisy images to obtain a
de-noised saliency map. The Integrated Gradients approach
[12] defined a baseline image and a straight-line path between
the baseline and the input, and then performed integration of
gradient over the path to estimate the relevance of each pixel.

Certain methods [13]–[17] additionally require accessing
the intrinsic architecture or gradient information to compute
the discriminative regions of the image. For example, CAM
[13] modified the last layer of the deep model to perform an
explanation, while its successors GradCAM [14] and Grad-
CAM++ [15] leveraged the internal gradients to retrieve the
areas of interest from the deep features.

Another type of method works independently from the
internal status of the deep model, which often refers to “black-
box” explanation. LIME [18] analyzed the relation between
the input image and the prediction in a perturbation-based
manner. RISE [19] and its variant D-RISE [20] applied random
masks to the input images and estimated the model’s behavior
by analyzing the impact of the perturbations on the posterior
probability at the output. On the other hand, approaches such
as GAIN [21] integrated learnable modules into the model
training process, providing attention maps as an explanation.

B. Explainable Face Recognition

While most of the classic explanation approaches were
originally designed for image classification or detection tasks,
various studies have been carried out recently to explain deep
learning-based face recognition models.

Most explanation methods in face recognition are repre-
sented through visualization of saliency maps. Earlier work [8]
first adapted several explanation methods from classification
tasks, namely Grad-CAM [14], Guided Grad-CAM [22], Gra-
dient [10], etc., to face recognition and further benchmarked
the explainability of the produced saliency maps. Similarly, [6]
proposed a Subtree Excitation Backprop (EBP) to generate
an explainable saliency map, and meanwhile introduced an
evaluation approach based on triplets along with an inpainting
game protocol. More recently, Mery [7], [23] has proposed
several perturbation-based approaches to explain face verifi-
cation algorithms without accessing the model. The produced
saliency maps represent the most similar regions between the

input pair during the recognition process. xFace [24] achieved
better performance by applying systematic occlusions to inputs
and measuring the feature distance deviations.

Certain methods aim to increase explainability by introduc-
ing additional modules in the face recognition system. xCos
[9] designed a learnable module that was incorporated into
a face recognition model to compute local similarities and
produce spatial explanation. [25] proposed two loss functions
and learned an interpretable face representation where each
dimension of it depicts part of the face structure.

Although many explainable face recognition methods man-
age to achieve compelling visual results, they [7], [18], [23],
[24], [26] intend to explain the FR system in a “black-box”
manner. There is a lack of discussion on the connection
between the deep feature representation and the final decision
of the FR model. Among prior art, [17], [24] are closest to
our proposed method. The former added a MaxPooling layer to
the end of the entire CNN architecture to decompose the final
probability score. The latter explained a deep FR model by
analyzing the similar and dissimilar regions between two faces.
In this work, our method provides a more precise explanation
by directly mapping the deep features to specific facial regions
via a face reconstruction module.

III. PROPOSED METHOD

Explanation methods for general deep learning-based com-
puter vision systems are expected to provide a precise visual
interpretation of the deep models’ decisions. However, face
recognition is different from other tasks due to an essential
difference in the decision-making process, which often in-
volves a comparison between two or more facial images. This
paper defines the solution to explainable face recognition by
answering the following questions: Which regions of two given
faces are discriminative for the deep face recognition model
to make predictions, and more specifically, which regions are
the most similar or dissimilar to the deep model?

A. Feature Guided Explanation based on Face Reconstruction

Previous research has explored the XFR problem from
different perspectives but suffers from drawbacks mainly in
terms of stable outcomes. For example, gradient-based meth-
ods [10]–[12] can be easily affected during backpropagation.
“Black-box” explanation approaches based on perturbations
[19], [20] would introduce inevitable randomness to the ex-
planation map due to lack of a rigorous strategy to inject
perturbation.

One fact has been neglected that deep face recognition
systems make decisions by directly comparing the distance
between deep representations, where the most discriminative
feature channels dominate the final prediction. Thus, this work
explores the direct affinity between the specific discriminative
feature channels and the input facial image in a forward prop-
agation manner by leveraging a face reconstruction module.
To the best of our knowledge, this is the first research that
generates saliency map explanation by propagating the critical
deep features to a reconstructed face image.
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Fig. 1. Two-stream workflow of the proposed explainable face recognition framework. The recognition flow performs normal face recognition tasks, while
the explanation flow provides interpretations for the model’s decision.

Algorithm 1
Input:
Face images: IA, IB
Number of feature channels: c
Threshold: T
Feature extractor: f()
Face reconstructor: Recon()
CA, FA Ð fpIAq

CB , FB Ð fpIBq

FA, FB Ð normalizationpFA, FBq

weights Ð FA f FB ´ T
IRA Ð ReconpCAq

C 1
A Ð CA

for i “ 1 : c do
maxpC 1

Arisq Ð 0
IRA , IR1

A Ð ReconpCAq,ReconpC 1
Aq

Residualris Ð abspIRA ´ IR1
A q

Residualris Ð normalizationpResidualrisq
end for
H Ð

ř

Residual f weights
S Ð abspHq Ź discriminative map
S` Ð ReLUpHq Ź similarity map
S´ Ð ReLUp´Hq Ź dissimilarity map
return S, S`, S´

The overall explainable face recognition framework is il-
lustrated in Fig. 1, which comprises two separate streams,
i.e. the recognition flow and the explanation flow. The former
performs standard face recognition tasks. In the explanation
workflow, a face reconstruction network is introduced with the
goal of reproducing a facial image from its deep convolutional
representations. The main idea is that any modification on
the deep feature will reflect on the rebuilt images via the
reconstruction network. Moreover, the difference between the
unmodified rebuilt image and the feature-masked reconstructed
image can indicate the specific face region that corresponds to
the masked channel in the feature vector.

B. Saliency Map Generation
The face reconstruction-based explanation flow provides

means of understanding the deep feature representation, whilst
it cannot yet interpret the predictions of a face recognition
system. This section proposes a novel explainable saliency
map generation algorithm that both leverages the feature-
guided face reconstruction workflow and takes into account the
similarity calculation between two face pairs. Moreover, this
work decomposes the produced discriminative saliency map
into two visual representations, i.e. similarity and dissimilarity
heatmaps, for a higher-level interpretation.

The procedure of the saliency map generation method is
described in both Fig. 1 and Algorithm 1. In general, the
explanation process is designed in a channel-wise iterative
manner. Given input image IA, the convolutional feature map
CA of size pc, w, hq is first extracted and accessed. Then,
the explanation module iterates along each channel of CA

and modifies the maximum value of this channel by setting
maxpCAiq “ 0. Afterward, the reconstruction module rebuilds
face images tIRA , IR1

A u from both original and modified fea-
tures, and the residual difference between them is calculated
and normalized. After iteration, the stacked residual maps
represent a channel-wise mapping between the convolutional
feature map and the specific regions on the facial image.

At the same time, the standard face recognition flow cal-
culates the cosine distance between two deep face represen-
tations. Equation 1 shows the computation of the similarity
score s, where the feature vectors F1, F2 are first normalized
and then channel-wise multiplication is computed. The value
of every single channel of the resulting vector represents a
feature-level distance. Therefore, the entire vector will serve
as a channel-wise importance weight for the aforementioned
residual maps in order to combine the final saliency map.

spF1, F2q “
F1 ¨ F2

||F1|| ||F2||
“

řc
i“1pf1i ˚ f2iq

||F1|| ||F2||
. (1)

Moreover, the proposed method is capable of further de-
composing the discriminative saliency map into similarity



and dissimilarity maps through analysis of the weight vector.
Intuitively, the large and positive values represent the similar
feature channels between two face representations, while the
small and negative ones represent dissimilar channels. As
explained in Algorithm 1, the weight vector is re-balanced by
subtracting the decision threshold, and the desired similarity
and dissimilarity maps are obtained by simply separating the
discriminative saliency map.

C. Model Architecture and Loss Function

As depicted in Fig. 1, the proposed explanation framework
adopts a two-stream workflow that allows for providing recog-
nition predictions and decision interpretation in a precise and
efficient manner. This section describes in detail the network
architecture and training process.

In the recognition flow, a minor modification has been
introduced to the conventional face recognition pipeline.
Specifically, it removes the last fully connected layer in the
ResNet backbone and replaces it with a global MaxPooling
layer, which preserves the spatial information to establish
a correspondence between the convolutional feature and the
facial image. In the explanation flow, a face reconstruction
network comprising a stack of four transposed convolutional
layers is employed, which takes the convolutional features as
input to rebuild a facial image.

During the training phase, the recognition flow and the
explanation flow, mainly referring to the reconstruction net-
work, are jointly trained by optimizing both the ArcFace
[27] recognition loss Lid and an MSE loss Lrec between the
original and reconstructed faces tIA, I

R
Au. The overall loss

function is defined as follows.

L “ Lid ` λ ¨ Lrec , (2)

where λ “ 1 is selected for all the experiments in this paper.

IV. EXPERIMENTS

A. Implementation Details

During the experiments, this work adopts the well-known
ArcFace [27] method as the face recognition pipeline, using
ResNet-50 [28] as a feature extractor. The face recognition
system and the reconstruction module are jointly trained on
the MS1Mv2 dataset [29] for 25 epochs. Specifically, the
face recognition pipeline is trained with the SGD optimizer
with an initial learning rate of 0.02, while the reconstruction
network uses the Adam optimizer with an initial learning
rate of 2 ˆ 10´4. During evaluation, the performance of the
proposed method is tested on LFW [30], AgeDB-30 [31], CFP
[32], IJB-B [33], and IJB-C [34] datasets.

B. Evaluation Methodology

The evaluation for the proposed explainable face recogni-
tion framework includes three phases. First, the recognition
performance is evaluated on five popular FR benchmarks and
is compared with the original ArcFace pipeline. Then, a visual
demonstration of the generated explanation saliency maps is

TABLE I
RECOGNITION PERFORMANCE OF THE EXPLAINABLE FACE RECOGNITION

FRAMEWORK.

Model LFW AgeDB CFP IJB-B IJB-C
ArcFace 99.78 98.03 96.71 95.00 96.45
Ours 99.83 98.07 97.90 94.49 95.95

presented. In the third phase, a quantitative evaluation method-
ology called “hiding game” is employed for a fair comparison
among current state-of-the-art saliency map-based explanation
methods. This evaluation approach was first conceived in [8].
They first sort the generated heatmap in ascending order and
mask the least important pixels. The face recognition model
is then tested with the obscured images. Ideally, the more
accurate the saliency map, the higher the evaluation accuracy
because only the most critical pixels are maintained. However,
directly changing the pixel values will modify the original data
distribution, which leads to less accurate results. Therefore,
instead of simply masking the least important pixels, this paper
proposes to blur the pixels with a Gaussian kernel, which
is often considered an intuitive way of representing missing
information.

C. Experimental Results

1) Recognition Performance: The objective of this section
is to show there is no performance deterioration after inte-
grating the proposed reconstruction-based explanation mod-
ule. The face verification task is performed on five different
datasets. Table I shows that the explainable face recognition
framework is capable of achieving similar accuracy to the
original ArcFace pipeline on all the test datasets and even
slightly outperforms it on LFW, AgeDB, and CFP, providing
interpretation on the deep recognition system in the meantime.

2) Visual Results: In this section, the visual explanation
for the deep face recognition system is presented through
saliency maps. The experiments are conducted under the face
verification scenario.

Fig. 2 demonstrates a comparison between saliency maps
produced by six explanation methods. The first three rows
are from well-known XAI methods adapted to the XFR task,
while the fourth and fifth rows are produced by state-of-
the-art model-agnostic XFR methods. Every two columns
represent a to-be-explained matching input pair and the dis-
criminative regions in them highlighted by different methods.
As a result, the proposed method is capable of producing
meaningful explanation maps, which focus on critical facial
characteristics, e.g. lips, nose, eyes, mouth, etc., and vary for
different subjects. It is also notable that the proposed method
spotlights discriminative regions in unusual cases, such as
the opening mouth and teeth in the second last example and
the non-masked regions in the last sample. In contrast, many
other approaches cannot provide stable outcome in various
test cases and fail in producing meaningful explanation in
the last sample. For a more straightforward comparison, the
quantitative evaluation is introduced in the next subsection.



Fig. 2. Visual comparison of saliency maps generated by six different explainability methods.
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Fig. 3. Saliency map explanations highlighting the facial regions that the
deep model believes are similar, dissimilar, and discriminative.

The results in Fig. 3 offer a deeper analysis of how the
proposed explanation method interprets the decision of a deep
face recognition system by decomposing the saliency map into
similarity and dissimilarity maps. The first two rows are ex-
amples of image pairs belonging to the same subjects but with
mask occlusions. It is shown that the decomposed similarity
map mainly highlights the facial regions while the dissimilarity
map highlights the occluded parts. The discriminative saliency
maps provide a final interpretation that the similarity map
actually weighs more and the deep model manages to verify
the occluded image based on the unmasked areas, e.g. eyes
and forehead. Finally, the last two rows include two pairs of
non-matching subjects. It is notable that the dissimilarity map
concentrates on critical facial areas while the similarity map
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Fig. 4. Quantitative performance evaluation on LFW dataset.

only focuses on the backgrounds. The discriminative maps
show that the deep model relies more on the dissimilarity map
to provide the final decision.

3) Quantitative Results: This section gives quantitative
evaluation results for a fair comparison among different ex-
planation methods, namely GradCAM++ [15], Gradient [10],
Stylianou et al. [17], and xFace [24]. The MinPlus [7] method
is not selected for this experiment because it cannot explain
predictions on non-matching faces. Fig. 4 depicts the results
after applying the “hiding game” evaluation, which clearly
shows that the saliency maps produced by the proposed
method remain the most accurate when different percentages
of the least important pixels are blurred out. Table II reports
the Area Under the Curve (AUC) metric for the Fig. 4 along
with test results on AgeDB-30 [31] and CFP-FP [32] datasets
under the same setting. It validates the conclusion that the
proposed saliency maps are more accurate than the state-of-
the-art in describing the most discriminative facial regions.



TABLE II
QUANTITATIVE PERFORMANCE EVALUATION ON LFW, AGEDB, AND CFP

DATASETS. AUC SCORES FROM THE “HIDING GAME” ARE REPORTED.

Methods LFW AgeDB-30 CFP-FP
GradCAM++ [15] 88.05 83.00 82.20
Gradient [10] 89.68 85.13 84.24
Stylianou et al. [17] 88.90 83.73 81.99
xFace [24] 90.14 85.82 82.96
Ours 90.39 86.23 85.26

V. CONCLUSION

In this paper, a two-stream explainable face recognition
framework is proposed. The connection between an input
facial image and the corresponding extracted deep feature is
analyzed in detail via a face reconstruction module. Further-
more, a saliency map generation algorithm has been conceived
to provide visual interpretations for the prediction of the
face recognition system. Both the visual and quantitative
evaluation results have shown that the proposed method can
significantly improve the interpretability of a face recognition
system without affecting its recognition performance.
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