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Abstract—The detection of digital face manipulation in video
has attracted extensive attention due to the increased risk to
public trust. To counteract the malicious usage of such tech-
niques, deep learning-based deepfake detection methods have
been developed and have shown impressive results. However, the
performance of these detectors is often evaluated using bench-
marks that hardly reflect real-world situations. For example,
the impact of various video processing operations on detection
accuracy has not been systematically assessed. To address this
gap, this paper first analyzes numerous real-world influencing
factors and typical video processing operations. Then, a more
systematic assessment methodology is proposed, which allows for
a quantitative evaluation of a detector’s robustness under the
influence of different processing operations. Moreover, substantial
experiments have been carried out on three popular deepfake
detectors, which give detailed analyses on the impact of each
operation and bring insights to foster future research.

I. INTRODUCTION

Recent years have witnessed remarkable progress in com-
puter vision tasks due to the rapid development of deep
convolutional neural networks (DCNNs) and the ease of ob-
taining large-scale datasets. This advancement has also led
to an increase in new applications. For instance, generative
adversarial networks (GANs) [1], [2], [3] have made it possible
to produce fake content that appears authentic to human eyes.
In fact, deep learning-based face manipulation techniques [4],
[5], [6], [7] can alter the expression, attributes, and even
identity of a human face image, the outcome of which is
referred to by the term ‘Deepfake’. The development of such
technologies and the wide availability of open-source software
have simplified the creation of deepfakes, causing significant
public concern and undermining our trust in online media. As
a result, detecting manipulations in facial video has become
a popular topic in the media forensics community, receiving
increased attention from academia and businesses to counteract
the misuse of these deepfake techniques and malicious attacks.

Nowadays, with the aid of advanced deep-learning tech-
niques and various large-scale datasets, numerous detection
methods [4], [8], [9], [10], [11], [12], [13] have been published
and have shown remarkable results. But recent studies [14],
[15] have shown that the detection accuracy significantly drops
in the cross-dataset scenario, where the fake samples are
created by unknown manipulation methods. As a result, cross-
dataset evaluation has become an important step to better
demonstrate the generalization ability of different types of
detectors.

Nevertheless, researchers still overlook a common realistic
scenario where DCNN-based methods are susceptible to real-
world perturbations and processing operations. In more real-
istic conditions, video content on social media can encounter
unpredictable distortions during propagation due to extrinsic or
artificial impacts, such as varying brightness, compression, and
video filters, to mention a few. In practice, most of the current
deep learning-based deepfake detectors are developed and
evaluated using constrained and high-quality face manipulation
datasets and benchmarks, making them insufficiently robust to
real-world situations. Our previous study [16] has contributed
with a realistic evaluation framework for deepfake detectors
with a specific focus on images. However, a large number
of deepfakes are distributed in the form of video on social
media. Therefore, this paper investigates potential influencing
factors for deepfake detectors in more practical scenarios and
proposes a reliable method for evaluation. Ideally, this study
will bring valuable insights and encourage researchers to create
more resilient detection techniques. In summary, this paper
makes the following contributions.

• It analyzes numerous video processing operations that
can potentially impact the performance of a deepfake
detector.

• A systematic evaluation method is proposed to evalu-
ate the performance of learning-based deepfake detec-
tion systems affected by different influencing factors.

• It presents substantial experimental results to measure
and analyze the performance of three popular deepfake
detection techniques.

II. RELATED WORK

A. Deepfake Detection

In computer vision, detecting deepfakes is typically ap-
proached as a binary classification. Initially, methods that
relied on facial expressions [17], head movements [18], and
eye blinking [19] were suggested as solutions to tackle this
detection challenge. In recent years, the main approach to
address this problem is to utilize deep learning technology
with sophisticated neural networks. [20] first proposed a two-
stream neural network to detect deepfakes. Nguyen et al. [8]
employed a combination of conventional CNNs and Capsule
networks and surpassed the benchmark at that time. Rössler
et al. [4] adopted the well-known XceptionNet as one of the



baseline models alongside three other learning-based methods
to perform deepfake detection. Video deepfake detectors [21],
[22] leverage recurrent neural networks (RNNs) to capture
forgery traces from temporal sequences. Several innovative
network architectures, such as efficient networks [23], [24],
and vision transformers [25], have also been explored for
deepfake detection tasks. In [26], the well-known attention
mechanism was applied to the deepfake detection system,
which highlighted the informative regions. Other attempts have
been made by [10], [11], [12] to analyze forgery contents in
the frequency domain. In general, these methods separate the
information contained in images according to the frequency
bands via FFT or DCT transformation and more effectively
capture traces of forgery. Another branch of research directly
works on authentic video and generates synthetic faces during
a training process. For example, Xray [27] and SBIs [24]
methods reproduce the blending artifacts that exist in many
types of deepfakes and force the network to learn more generic
representations. These methods show a strong generalization
ability but remain susceptible to common real-world perturba-
tions.

B. Deepfake Benchmarks

To facilitate a faster progress and better performance in
deepfake detection, numerous benchmarks, competitions, and
challenges have been organized by academia and businesses.
Early on, UADFV [28] was one of the first public databases,
comprising 49 real and fake video. Korshunov and Marcel con-
tributed a larger database in [29], called the Deepfake-TIMIT,
which comprises 620 fake video of 32 subjects created by
GAN-based face-swapping algorithms. Celeb-DF [30] provides
a high-quality face forgery detection benchmark and often
used for cross-dataset evaluation. One of the most popular
databases and benchmarks is FaceForensics++ [4]. It contains
a larger number of fake video footage generated by different
tools and presents six baseline detectors for comparison. It
is important to remark that FaceForensics++ first considers
the different levels of video quality and simulates the video
compression techniques applied in social media. But a deeper
exploration of more perturbation types is expected. Later on,
Jiang et al. [31] presented a large-scale benchmark for face
forgery detection, called DeeperForensics-1.0. Facebook also
launched the Deepfake Detection Challenge (DFDC) [32] in
collaboration with other companies and institutions. Although
both benchmarks comprise a hidden test set impacted by
realistic perturbations, their assessment approach either ignores
many practical influencing factors or employs a less reliable
evaluation strategy. [16] introduced a more rigorous way to
measure the influence of image processing operations. This
paper adopts a similar evaluation method and when compared
to previous work, pays special attention to video-processing
operations that exist in the real world.

III. PROPOSED METHOD

A. Realistic Influencing Factors for Video Deepfakes

The processing operations and various video effects are
widespread on different social media, smartphone applications,
and streaming platforms. Their impact on the accuracy of
detection methods should not be neglected. This paper studies
seven categories of video processing operations with the most
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Fig. 1: Example of a typical video frame in the FFpp test set after
applying different video processing operations. Some notations are
explained as follows. C23 and C40: Video compression using H.264
codec with factors of 23 and 40. Light and Dark: Increase and
decrease brightness. Resolution: Reduce video resolution. Hflip and
Vflip: Horizontal and Vertical flip.

commonly used parameters. The factors are also described in
detail as follows and the illustrative examples of testing data
are shown in Figure 1.

Video Compression: Video compression technology can
save storage space and allows for a high-quality video to be
distributed worldwide. Although lossless video compression
codecs can perform at a compression rate of 5 to 12, lossy
compression video can achieve a much lower data rate while
maintaining high visual quality. The deepfake video can be
compressed multiple times before propagating through social
networks. However, the side effects of lossy compression
artifacts on deep learning-based detectors have not been suf-
ficiently studied. It is necessary to evaluate the robustness of
a deepfake detector on compressed deepfake video. In this
context, the proposed assessment framework includes test data
compressed by H.264 codec with two constant rate factors,
namely 23 and 40, using the FFMPEG toolbox.

Flip: Horizontally flipping a video creates a mirrored
version of the original footage and is a video editing technique
sometimes used for aesthetic reasons. However, the impact of
this operation on deepfake detectors has not been assessed be-
fore. On the other hand, vertically flipping a video is a simple
way to deceive a detector, as most current detection methods
do not adjust or correct the face pose during preprocessing.
Hence, a flipped video can be uploaded and remain undetected
on social networks while still being readable to a human.

Video Filters: Video filters have become popular on social
media in recent years. They are preset effects available in
many video editing apps, software, and social media platforms,
providing easy access for users to alter the look of a video
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Fig. 2: Proposed assessment method for measuring the impact of multiple influencing factors.

clip. Some common types of video filters include color filters,
beauty filters, stylization filters, etc. The overall color palette
of a deepfake video can be changed by a video filter on social
media, making it an out-of-distribution sample from common
deepfake databases. In the proposed assessment framework,
two common filters, namely ‘Vintage’ and ‘Grayscale’, are
taken into consideration.

Brightness: Brightness refers to the overall lightness or
darkness of a video. Modifying the brightness can impact the
perception of colors and the visibility of details and textures.
For example, increasing brightness can enhance the visibility
of details in shadows, while decreasing it can obscure the
details. In real-world conditions, the brightness of a video
is often adjusted to create a specific style. The proposed
assessment framework takes this situation into consideration
and measures the performance of a detector under different
brightness conditions. More specifically, the ‘Lighten’ and
‘Darken’ commands in the FFMPEG toolbox are applied to
the test video respectively.

Contrast: Contrast refers to the difference between the
lightest and darkest areas of a video. Similar to brightness,
adjusting contrast is one of the most common operations to
change the visual appearance of a video. The framework used
in this paper is capable of adjusting the contrast value of the
test deepfake video to measure the performance of a detector.

Noise: Video noise is a common problem in video captured
in low-light conditions or using small-sensor devices, such
as mobile phones. It often appears as annoying grains and
artifacts in the footage. The assessment framework introduces
Gaussian noise with a constant intensity but varying temporal
distribution to the video data.

Resolution: Resolution refers to the number of pixels in a
video. There is an important trade-off between the resolution
and file size. Decreasing the resolution of a video will gen-
erally result in a lower-quality video with fewer details to be
displayed on the screen, but it can also reduce the file size,
which makes it easier to store and share. On the other hand,

the resolution change can also affect the ratio of the width
to the height of the video. The performance of the deepfake
detector when facing low-resolution or stretched video will be
evaluated by the proposed framework.

B. Assessment Framework

Deep learning-based deepfake detection methods currently
rely heavily on the distribution of training data. Typically,
these methods are evaluated using test datasets that are similar
to the training sets. Some benchmarks additionally take real-
world perturbations into consideration by randomly processing
a subset of the test set and mixing it with other data. However,
the results of these benchmarks are often stochastic and less
reliable due to the absence of more realistic perturbations or a
standard way of determining the proportion of corrupted data.

This section introduces the usage and principle of the pro-
posed assessment framework in details. The deepfake detector
is first trained on a target dataset without any modifications
applied to it. Then, multiple copies of the test set are created.
The influencing operations or distortions are applied to an
entire copy of the test set respectively to avoid randomness
in the results. The distorted data are then fed into the deep-
fake detector to calculate the performance metrics for each
corresponding influencing factor. Furthermore, the computed
metrics can be grouped according to the operation category to
further analyze the impact of a specific processing operation.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

1) Detection Methods: Experiments have been conducted
using the following three learning-based deepfake detection
methods.

XceptionNet [4] is a well-known CNN architecture and has
been applied for detecting manipulated faces by functioning
as a classification network. The detection system is first pre-
trained on ImageNet database [33] and then re-trained on a



TABLE I: AUC (%) scores of three selected deepfake detection methods on the distorted variants of the FFpp test set that are subject to
different video processing operations. The notation C23 and C40 here refer to the two different compression rates using AVC/H.264 codec.
Contrast refers to increasing the contrast by a fixed scale. Resolution refers to reducing video resolution by a specific scale.

Methods TrainSet
Compression Brightness

Contrast
Gaussian

Noise

Flipping Resolution
Grayscale

Vintage
Filter

AverageC23 C40 Increase Decrease Horizontal Vertical x2 x4

CapsuleNet

FFpp-Raw

77.97 54.14 73.31 70.62 69.31 54.14 73.13 63.20 65.43 56.99 68.38 72.94 66.63
XceptionNet 69.49 55.70 65.92 66.40 65.32 50.50 65.26 57.36 57.23 55.90 65.51 66.90 61.79

SBIs 90.43 76.27 86.38 86.47 85.94 71.52 85.98 79.28 76.35 63.62 86.27 86.54 81.25

CapsuleNet

FFpp-C23

95.61 66.03 93.27 92.31 91.55 53.50 91.98 71.49 80.28 67.56 87.43 88.86 81.66
XceptionNet 98.34 70.71 97.07 96.65 96.34 51.04 96.20 66.82 83.42 72.03 93.17 94.99 84.73

SBIs 91.71 75.43 87.63 86.51 87.40 57.06 86.84 81.22 75.40 64.31 87.31 86.28 80.59

CapsuleNet
FFpp-C40

82.64 78.33 80.22 80.77 79.30 52.78 78.64 61.53 76.88 71.91 78.41 75.82 74.77
XceptionNet 83.25 80.69 80.85 82.83 80.65 51.74 81.39 55.70 80.62 74.99 71.30 78.43 75.20

SBIs 83.00 70.66 76.49 78.15 77.49 62.82 77.34 69.14 67.04 56.42 76.67 76.50 72.64

deepfake detection dataset. It has become a popular baseline
method in the FaceForenscis++ benchmark.

CapsuleNet is a deepfake detection method based on a
combination of capsule network and conventional convolu-
tional neural network. Nguyen et al. [8] employed the capsule
network in their deepfake detection pipeline and achieved
the best performance at that time in the FaceForensics++
benchmark compared to other competing methods.

SBIs [24] refers to a deepfake detection method based
on synthetic data, called Self-Blended Images. The overall
detection system is built on a pre-trained deep classification
network, EfficientNet. During the training phase, the SBIs
method generates hardly recognizable fake images that contain
common face forgery traces to enforce the network to learn
more general representation. It demonstrates state-of-the-art
performance in cross-dataset evaluations.

2) Datasets: This paper adopts the FaceForensics++
dataset, denoted by FFpp, for extensive experimentation. It
comprises 1000 pristine and 4000 manipulated video footage
in three compression quality levels. In the experiment, the
different quality data is used for training, denoted as FFpp-
Raw, FFpp-C23, and FFpp-C40.

3) Training Details: To train high-performing deepfake
detectors, the following configurations have been selected. The
XceptionNet and CapsuleNet are trained with Adam optimizer
with β1 = 0.9 and β2 = 0.999 and a batch size of 64. The
XceptionNet model is trained for 10 epochs using a learning
rate of 0.001, while the CapsuleNet is trained for 25 epochs
using a learning rate of 0.0005. For both methods, 100 frames
are randomly sampled from each video for training purposes
and 32 frames are extracted for validation and testing. The
SBIs method has a different experimental setting. It is trained
with SAM [34] optimizer for 100 epochs. The batch size and
learning rate are set to 32 and 0.001 respectively. During the
training phase, only authentic high-quality video is used and
the corresponding fake samples are created by their proposed
self-blending method. Only 8 frames per video are sampled
for training while 32 frames are for validation and testing.

B. Assessment Results

This section reports a thorough assessment of three de-
tection methods, i.e. CapsuleNet, XceptionNet, and SBIs,
for identifying deepfakes under realistic situations using the

framework described earlier. Table I summarizes the perfor-
mance of the three deepfake detection methods.

As a result, different detection methods show variant
characteristics under the assessment framework. Both the
XcpetionNet and CapsuleNet heavily rely on the quality of
the training set. When trained on very high- or low-quality
data, both approaches exhibit poor performance when facing
all kinds of processing operations. However, their performance
in our benchmark improves significantly and even surpasses
the state-of-the-art SBIs method after training with slightly
compressed training data. Under this setting, the changes
in brightness, contrast, and color map bring limited impact,
while heavy compression, low resolution, noise, and geometric
transformation still remain to be significantly affecting factors.

On the contrary, the overall performance of the SBIs
method declines by 0.6% after training with compressed data,
which implies that this method relies more on the difference
between authentic training data and its fake counterparts.
While XceptionNet and CapsuleNet suffer from vertical flipped
video, it is notable that this operation shows a limited impact
on the SBIs method. This is attributed to the fact that, unlike
the other two detectors, the SBIs method leverages general
traces of forgery rather than the global inconsistency on the
face. On the other hand, none of the three methods can
accurately classify deepfakes processed by heavy compression,
resolution reduction, or video noise, which will be an open
issue for both research and industrial deployment in deepfake
detection.

V. CONCLUSION

Most of the current deepfake detection methods focus on
achieving high performance on specific benchmarks. However,
it has been shown that the assessment approaches employed
in these benchmarks are less reliable and insightful. This
paper analyzes in details numerous video processing operations
and studies their impact on learning-based deepfake detection
methods. Experiments have been performed on three popular
detectors which bring insights into their future improvement.
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