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ABSTRACT

The demand for data storage has grown exponentially over the past decades. Current archival solutions have sig-
nificant shortcomings, such as high resource requirements and a lack of sufficient longevity. In contrast, research
on DNA-based storage has been advancing notably due to its low environmental impact, larger capacity, and
longer lifespan. This has led to the development of compression methods that adapted the binary representation
of legacy JPEG images into a quaternary base of nucleotides while taking into account the biochemical con-
straints of current synthesis and sequencing mechanisms. In this work, we show that DNA can also be leveraged
to efficiently store images compressed with neural networks even without a need for retraining, by combining
a convolutional autoencoder with a Goldman encoder. The proposed method is compared to the state of the
art, resulting in higher compression efficiency on two different datasets when evaluated by a number of objective
quality metrics.
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1. INTRODUCTION

The constant demand for increased storage capabilities poses challenges to conventional storage technologies for
archival, which are approaching their physical limitation. DNA-based storage currently represents a promising
alternative to such methods, offering the use of DNA molecules as a medium for encoding and storing different
types of digital information such as images. For this purpose, data is converted to quaternary codes corresponding
to the four nucleotide bases found in DNA, namely adenine (A), cytosine (C), guanine (G), and thymine (T).
DNA storage offers a large number of advantages when compared to conventional storage:

1. High information density: DNA molecules can store a large amount of data in a limited amount of
space. For example, recent studies have demonstrated the potential of storing data with a density up to 1
exabyte (or 1018 bytes) per mm3, approximately six orders of magnitude denser than the modern physical
storage devices.1,2

2. Long-term stability: DNA has been demonstrated to be more stable than conventional storage devices
over time, making it a promising candidate for long-term archival. DNA can, in fact, be preserved for
millennia, or even longer if stored in ideal conditions.3

3. Energy efficiency: DNA-based storage allows for reducing the energy cost, both at rest and per access.
For example, the energy consumption at rest can be approximately eight orders of magnitude less than con-
ventional storage devices.4 This makes DNA-based storage a more sustainable alternative to conventional
storage technologies.2

4. Redundancy and error correction: DNA-based data storage methods can incorporate redundancy for
error correction. In fact, DNA molecules can be replicated, for example using PCR, with a little added
cost, allowing for a simple and effective solution for correctly retrieving data.1 Moreover, distributing data
across multiple DNA molecules lowers the risk of data loss due to damage or decay, ensuring better data
integrity over time.



Despite the numerous advantages offered by DNA-based storage, there are still a number of challenges that
need to be taken into account, namely high costs of synthesis and sequencing, and slow read and write. In
this context, data compression is fundamental to reduce the storage requirements and therefore limiting the
cost and accelerate the synthesis/sequencing process. Moreover, in the context of image storage, technologies
should consider that a large percentage of stored images are already compressed with well-known compression
standards, such as JPEG or JPEG 2000. Therefore, an effective DNA-based storage solution should allow the
transcoding of such image formats to DNA.

As DNA is highly susceptible to errors occurring both during sequencing and synthesis of the DNA strand,
as well as during storage, a number of constraints need to be considered while designing a robust and effective
DNA-based coding:5,6

• Strand length limitation: as longer DNA strands are more difficult to produce, they are typically divided
into smaller strands, also known as oligos. Acceptable oligo lengths range from 100 to 300 nucleotides.

• Homopolymer run: homopolymers, or repetitions of the same nucleotide consecutively in a strand, might
impact the stability of the DNA molecules. For this reason, homopolymers of length 3 or more should be
avoided, and in particular, homopolymers of length 7 and above strictly forbidden.

• GC content balance: to limit errors during the sequencing operations, the percentage of G and C nucleotides
in each strand should be between 40% and 60%.

• Pattern repetition: or repetitions of the same sequence of nucleotides more than 3 times (pattern), increases
the probability of errors during encoding and the stability of the produced DNA strands, and should
therefore be avoided.

Regardless, researchers and professionals in this field are constantly working towards making DNA storage
technology feasible not only by designing new synthesis/sequencing techniques, but also presenting effective
ways of encoding data in DNA. Therefore the above constraints are still evolving and could change as a result
of features offered by newer technologies.

The JPEG Committee is currently working on an activity, known as JPEG DNA, with the goal of standard-
izing efficient image coding solutions for storage on DNA support. The standardized coding is expected to be
able to respect the biochemical constraints and offer robustness to errors. During the 99th JPEG Meeting, in
April 2023, a Final Call for Proposals on Digital Media Storage on DNA Support7 was issued, covering both
coding and transcoding solutions. The proposals are expected to be received in early October 2023, and the
collaborative process will be initiated during the 101st JPEG meeting, in October 2023.

In this paper, a novel deep learning-based method for compressing images into DNA code is presented.
The proposed method is able to outperform previous works and is compliant with a number of biochemical
constraints. Following the Final Call for Proposals on Digital Media Storage on DNA Support,7 the performance
of the submitted solutions is compared to two anchors and on two different datasets, both through rate-distortion
plots and by presenting a number of visual examples.

2. RELATED WORK

The first attempts to store digital information using DNA recorded in the literature were conducted by Church
et al.,8 which translated each zero bit of a file either to A or C and each one bit either to T or G. Since the
selected mechanism for translation from binary to nucleotides did not take into account the inherent biochemical
constraints, the data could not be fully recovered. This work illustrated the need for the use of robust encoding
mechanisms as well as the challenges related to DNA-based storage. In a later work, Goldman et al.9 proposed
an algorithm for constrained DNA coding, where ternary symbols were translated to nucleotides with a rotating
dictionary. The dictionary assigned one nucleotide to each symbol, ensuring the absence of homopolymers by
not allowing the repetition of the last produced nucleotide. The produced sequence was finally partitioned into
oligos, each representing a section of the source sequence. Three-quarters of the section represented by each oligo
overlapped with the section represented by the previous one, ensuring that all fragments of the source sequence



were represented by four different oligos. Yet, after synthesizing these oligos into DNA and sequencing them
back to digital information, there were fragments of the original data that could not be fully retrieved.

In order to improve the information retrieval process despite such errors inserted in the DNA channel, Grass
et al.3 proposed to represent the data as symbols from a Gallois Field (GF(47)) and use Reed-Solomon codes
for error correction. Each GF(47) symbol was translated into three nucleotides using a mechanism that avoided
homopolymers by ensuring that the last two nucleotides in the triplet were different. This experiment was able
to completely retrieve a total of 83 kB of data. Later, Blawat et al.10 proposed a method where each byte was
mapped into five nucleotides. The first three pairs of bits were translated into one nucleotide each, and the last
two bits were translated into two nucleotides using a dictionary allowing for multiple translation options. Erlich
et al.11 presented a method leveraging Fountain codes to encode data into DNA. The source binary data was
partitioned into packets which were randomly combined into data chunks using the XOR operation following the
Luby transform.12 The binary chunks were then translated into DNA oligos using a simple scheme where each
two bits were mapped into one nucleotide. The obtained oligo was then only added to the oligo pool if it met the
imposed set of biochemical constraints, and discarded otherwise. Since a virtually infinite number of oligos can
be generated from the source data, this method also has the advantage of producing redundant oligos if desired,
allowing the retrieval of the source data even if full oligos are lost prior to sequencing. Lately, Schwarz et al.13

have implemented a library with not only a similar approach as Erlich et al.,11 but also more recent fountain
codes such as Online codes14 and Raptor codes.15

In addition to the above efforts, which focused on the encoding of any type of data into DNA, other works
studied the implementation of methods directly tailored to specific data types. Dimopoulou et al.16 proposed
an image compression algorithm based on the Discrete Wavelet Transform (DWT) that used dictionaries to
associate quantized coefficients to nucleotides while avoiding biochemical constraints. The encoded oligos were
used to synthesize DNA strands, which were amplified both with PCR and, during sequencing, with BA (bridge
amplification), allowing for a full recovery of the information using only a consensus mechanism without any
error correction scheme. The same authors later developed an algorithm17 based on the JPEG coding that
translated quantized DCT coefficients into nucleotides using Goldman encoding. The JPEG Committee selected
this algorithm as the JPEG DNA Benchmark Codec (BC). Inspired by this solution, Secilmis et al. developed
an algorithm18 able to retrieve the coefficients from already compressed JPEG files and encoded them with a
similar method. Ramos et al.19 explored the impact of the errors added during the DNA synthesis, storage,
and sequencing on the decoding of such files, proposing a method to protect these nucleotide sequences. With a
similar approach to the JPEG DNA BC, Pic et al.20 replaced the MQ-coder of the JPEG 2000 coding with an
arithmetic encoder designed to directly produce nucleotides respecting the homopolymer constraint.

The majority of the works are inspired by conventional image compression methods relying on handcrafted
transforms to generate coefficients that are later quantized and entropy coded. However, learning-based ap-
proaches have been receiving increased attention as the applied transforms are obtained from data in order to
maximize rate-distortion performance. Early works proposed21 an autoencoder architecture based on convo-
lutional neural networks with downsampling operations in the encoder and upsampling in the decoder. The
latent features generated in the bottleneck were then compressed using a range encoder assuming learned inde-
pendent probability distributions for each variable. Although this approach already outperformed, on average,
conventional image coding such as JPEG and JPEG 2000, it was not able to optimally explore spatial redun-
dancies within the image. The previous method was therefore later extended with a hyperprior22 that estimated
the probability distribution of the latent features and used predicted variance values to reduce the bitrate of
compressed representation. Autoregressive methods23 taking previously decoded symbols into consideration for
probability estimation using masked convolutions were proposed as an alternative way of increasing performance.
Solutions based on Generative Adversarial Networks24 have also been investigated as a technique to increase the
perceptual quality of images at low bitrates. Inspired by learning-based solutions for image compression, Pic
et al. proposed a method25 using two distinct DNA entropy coders9,26 to translate quantized latent features
into nucleotides by extracting the statistics from the training data, without however being able to outperform
previous JPEG-based methods.17,18



Figure 1: Workflow of the codec proposed in this paper

3. LEARNING-BASED IMAGE COMPRESSION FOR DNA-BASED STORAGE

The learning-based algorithm for image compression presented by Ballé et al.,21 using factorized probability
distributions for the entropy coding of latent features, was used in this work. The input image is represented as
a tensor x containing one channel for each color component, which serves as an input to the analysis transform
ga. This transform is composed of stacked downsampling convolutions interleaved with generalized divisive
normalization layers acting as non-linear operations. The output tensor y is then quantized into Q(y) = ŷ and
entropy coded following a probability distribution learned during training. The quantization operation does not
round the values of y directly, but instead first measures the offset between the latent features and their median
values m. The rounding operation is then applied and the integer values contained in r = ⌊y − m⌉ are fed to
the entropy coder, with the value of m being derived from the probability function estimated during training.
During decoding, the median values for each channel are added again as represented by Equation 1. Note that
since y is composed of a total of N channels, this probability function is estimated separately for each channel,
and m is represented as a tensor of size N .

Q(y) = ŷ = ⌊y −m⌉+m (1)

On the decoder side, ŷ goes through a synthesis transform gs that mirrors the analysis ga. The decoded
output x̂ can be related to the input through Equation 2.

x̂ = gs(Q(ga(x))) (2)

The entire network was trained end-to-end to minimize both the distortion of the decoded image and the rate
of the compressed representation. The distortion is obtained through the mean squared error (MSE) between
the input x and output x̂, and while the rate cannot be directly computed, it was estimated using the binary
entropy of the tensor ŷ. The relative importance given to each of these values is controlled by a multiplier term
λ, which is set as a hyperparameter. The final loss term is represented in 3.

L = R+ λD = −
∑

log2p(ŷ) + λ||x̂− x|| (3)

Since the rounding operation within Q cannot be differentiated, it is replaced by additive uniform noise as
a proxy function during backpropagation. In this paper, the implementation provided by CompressAI27 was
used. Contrary to previous works,25 the pre-trained models used to compress images into binary representation
were also used in this paper, since the binary entropy was considered to be a suitable estimator for the rate,
independently from binary or quaternary representations used for entropy coding. The employed implementation



contains eight different pre-trained models each using a different value of λ. The three models trained using the
highest values contained N = 320 latent channels, while for the remaining ones, the value of N = 192 was set.

The main difference between the method proposed in this paper and the compression model described above
is that the latter stores the information of the image as binary data, while here, DNA is used as a storage
medium. In the original work, the latent features from y are quantized and the values of r = ⌊y−m⌉ are entropy
coded into binary. This step is modified in the proposed work to generate quaternary nucleotides respecting
biochemical constraints. In particular, the same ternary Huffman coding module coupled with Goldman used
by the JPEG DNA BC17 is here used. The statistics from the r tensor itself were used to build the frequency
tables of the Huffman encoder. A workflow of the proposed codec is depicted in Figure 1.

Interestingly, during the training process of the model, the analysis transform converged to a point where
only a subset of the N channels of the latent features contained actual information about the input image. The
remaining channels contained only zero values no matter which image was encoded and therefore did not provide
useful information for the decoder to reconstruct the image. This behavior is encouraged during training since
setting all values of a channel to a constant effectively neutralizes its entropy, reducing overall the first term
of the loss function. The channels with zero entropy are here referred to as trivial, and the remaining ones as
non-trivial. This is illustrated in the plots in Figure 2, which shows a histogram with logarithmic scale of the
values contained in each of the non-trivial channels of r after encoding the first image of the Kodak dataset with
quality levels 1, 3, 5, and 8. The histogram for each channel is represented with a different color. It is clear that
the amount of non-trivial channels increases with the quality level even when the total number of channels is the
same, as for the first three plots. Likewise, the range of the values r increases as well.

Since the original model uses an arithmetic encoder, the presence of these channels does not increase the size
of the bitstream, since all the zero symbols have a probability equal to 1. However, the ternary Huffman encoder
can be regarded as a dictionary where each input value is translated into a sequence of {0, 1, 2} symbols, with
shorter sequences being assigned to values with higher probability. Repeated input values, therefore, increase the
bitrate if they are included in this dictionary. For this reason, and since the trivial channels are always the same
for any given input image, their values are excluded from the encoding process in this paper, and automatically
set to 0 at the decoder side.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of the proposed learning-based image compression for DNA storage is assessed on Kodak and
JPEG DNA datasets:

• Kodak dataset:28 consists of 24 images with small size (768 × 512) in both portrait and landscape
orientation, including a variety of contents. In this dataset, only the original uncompressed images are
provided.

• JPEG DNA dataset: derived from the JPEG AIC-3 dataset,29 includes 10 high-quality reference images
with different sizes and resolutions (from 560 × 888 up to 2592 × 1946). In addition to the reference
images, the dataset includes their encoded and decoded versions with three different compression methods,
namely JPEG, JPEG 2000, and JPEG XL. Ten different compressed images per codec are provided, having
visual quality levels, in Just Noticeable Difference (JND) units, between 0 to -2.5 JND. Information on the
procedure adopted for the selection of images in the dataset is provided in the paper on the JPEG AIC-3
dataset.29

The proposed learning-based image compression for storage on DNA support is compared to two anchor
methods, namely the JPEG DNA Benchmark Codec (JPEG DNA BC)17 and the JPEG DNA Benchmark
Transcoder (JPEG DNA BT).18

For the JPEG DNA BC, the rate control is managed by the alpha value. By varying this parameter, each
image in each dataset was compressed with 8 different quality levels. A similar procedure was adopted for the
images in the Kodak dataset for the JPEG DNA BT, which needed to be encoded to JPEG prior to transcoding.
Notably, the original images were compressed with JPEG at 8 different quality levels and subsequently transcoded
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Figure 2: Values in each channel of r for kodim01 at various quality levels

using the JPEG DNA BT. For the JPEG DNA dataset, this process was not necessary as the encoded images
with JPEG are provided as part of the dataset, and therefore they were directly transcoded using the JPEG
DNA BT.

Figures 3 and 4 present the rate-distortion performance of the proposed learning-based image compression
for storage on DNA support in comparison to the two anchors. Notably, the rate is reported as nucleotides per
pixel, and the distortion is computed using several objective image quality metrics: PSNR YUV, MS-SSIM,30

IW-SSIM,31 FSIM,32 NLPD,33 VIF,34 and VMAF.35 For the majority of the analyzed objective metrics, except
for NLPD for which the opposite applies, a high metric score expresses better image quality.

A trend can be observed for the PSNR YUV, MS-SSIM, IW-SSIM, VIF, and NLPD objective quality metrics.
While the proposed learning-based image compression for storage on DNA support always performs better than
the anchors on the Kodak dataset, the performance gap between the proposed method and JPEG DNA BT
narrows on the JPEG DNA dataset, which even outperforms the proposed method in a few cases. A closer
analysis shows that the performance of the proposed learning-based image compression for storage on DNA
support is comparable on both datasets, presenting similar metric values at similar rates. On the other hand,
the performance of the JPEG DNA BT increases on the JPEG DNA dataset and, in some cases, approaches
the proposed codec. A similar trend can also be observed on the JPEG DNA BC, which also presents higher
performance on the JPEG DNA dataset, showing objective values approaching those of the proposed codec
when evaluated on this dataset. This could be explained by the fact that both the JPEG DNA BC and JPEG
DNA BT are based on JPEG compression, which inherently removes the high-frequency AC coefficients. As the
images in the JPEG DNA dataset are larger than those in the Kodak dataset, they most likely contain fewer
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Figure 3: Average PSNR YUV, MS-SSIM, and IW-SSIM across all the images of both JPEG DNA and Kodak
datasets, for different models and at different rates

high-frequency regions in each 8x8 DCT block, leading to a better reconstruction quality.

This behavior does not emerge when VMAF and FSIM are considered. For both metrics, in fact, the proposed
codec is the model with the lowest performance on the JPEG DNA dataset and the lowest performance on the
Kodak dataset at the highest rates. Nevertheless, VMAF was designed to assess the performance of video
compression, and therefore its usage might not be adequate in the use case of interest to this paper. In this
context, a visual inspection of the reconstructed images is necessary to validate the discussion above.

Figures 5 and 6 show crops of images from the JPEG DNA and Kodak datasets respectively. In Figure 5,
it is possible to observe that while the images compressed with the proposed codec (central column) present
smoothing artifacts and loss of texture, the JPEG DNA BC (left column) presents typical JPEG artifacts
namely blocking and posterization. Similarly, Figure 6 shows stair-casing artifacts in the sky and water areas
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Figure 4: Average VIF, NLPD, FSIM, and VMAF across all the images of both JPEG DNA and Kodak datasets,
for different models and at different rates

of the image compressed with the JPEG DNA BC, whereas the proposed codec produces a smoother texture.
In general, the learning-based image compression for storage on DNA support presents a higher accuracy in
reconstructing the colors when compared to the JPEG DNA BC, making the proposed method more visually
appealing (right column).

More visual examples, both for the Kodak dataset as well as on the JPEG DNA dataset, are available in



(a) JPEG DNA BC (b) Proposed (c) Original

Figure 5: Image 00002 of the JPEG DNA dataset, at a rate of ≈ 0.37 nucleotides/pixel

(a) JPEG DNA BC (b) Proposed (c) Original

Figure 6: Image kodim12 of the Kodak dataset, at a rate of ≈ 0.26 nucleotides/pixel

Annexes A, B and C.

4.1 Biochemical constraints analysis

As reported in Section 1, a number of biochemical constraints should be taken into account during the design of
an efficient DNA-based compression method. In this paper, only an analysis of the homopolymers is conducted.
Moreover, to simplify the analysis, this paper considers only homopolymers of length 7, corresponding to the
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Figure 7: Average homopolymer frequency on the different datasets.

most severe type of error, disregarding the homopolymers of length between 3 and 6 from the analysis. Moreover,
the homopolymer frequency is defined as the number of homopolymers per 1000 bases in the DNA. Figure 7
shows that the proposed method is able to respect the homopolymer constraint, regardless of the rate or test
dataset. On the other hand, both the JPEG DNA BC and the JPEG DNA BT present a high homopolymer
frequency at the lowest encoding rates, rapidly decreasing when the encoding rate is increased. It can also
be observed that, when the JPEG DNA BC was used to compress the JPEG DNA dataset, the homopolymer
frequency never reaches zero.

5. CONCLUSIONS

In this paper, a method that combines a learning-based compression algorithm with a Goldman encoder applied
in the latent domain is proposed for the representation of images based on DNA codes. The proposed method
is used to compress images from two datasets and is evaluated with objective quality metrics. Results confirm
that the proposed method outperforms previous methods designed to compress images for storage on DNA
support. Moreover, contrary to the other evaluated approaches, the homopolymers constraint is found to be
respected. Future works will focus on comparing the proposed approach to methods directly producing DNA
from binary data from compressed image files, in order to better evaluate whether producing DNA code directly
from source images can actually provide benefits. Moreover, since Goldman encoding does not ensure that other
biochemical constraints, such as restricting the percentage of CG content or avoiding pattern repetitions, are
met, the development of other mechanisms for the translation of latent features into DNA code respecting those
constraints is desirable.
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APPENDIX A. VISUAL INSPECTION ON THE KODAK DATASET: KODIM04

Figure 8 presents a crop from image kodim04 of the Kodak dataset compressed with the proposed compression
method and the two anchor methods considered in this paper. All the reported crops were encoded targeting
a similar rate of approximately 0.25 nucleotides/pixel. The crop decoded with the proposed codec presents
smoothing artifacts and loss of details. On the other hand, the other anchor methods present the typical JPEG
artifacts, namely blocking artifacts and color distortions. Among the presented crops, the proposed method is
the method that presents the least amount of distortions, resulting in more visually-pleasing results.

(a) Original (b) Proposed (0.26
nts/pxl)

(c) JPEG DNA BC
(0.32 nts/pxl)

(d) JPEG DNA BT
(0.27 nts/pxl)

Figure 8: Visual comparison of a crop from image kodim04 from the Kodak dataset, compressed with the
proposed codec and the two anchor methods considered in this paper.



APPENDIX B. VISUAL INSPECTION ON THE KODAK DATASET: KODIM08

Figure 9 presents a crop from image kodim08 of the Kodak dataset compressed with the proposed learning-based
DNA compression method and the two anchor methods considered in this paper. All the reported crops were
encoded targeting a similar rate of approximately 0.55 nucleotides/pixel. Notably, the presence of small details
and texture in the image allows the evaluation of all models on such image types.

In this example, the performance of the proposed codec, JPEG DNA BC, and JPEG DNA BT are equivalent
to each other: on one side, the proposed codec generates blurriness in the image, therefore losing details in
the white panels of the windows; on the other side, the JPEG DNA BC and JPEG DNA BT present blocking
artifacts and color distortions.

(a) Original (b) Proposed (0.48
nts/pxl)

(c) JPEG DNA BC
(0.64 nts/pxl)

(d) JEPG DNA BT
(0.56 nts/pxl)

Figure 9: Visual comparison of a crop from image kodim08 from the Kodak dataset, compressed with the
proposed codec and the two anchor methods.



APPENDIX C. VISUAL INSPECTION ON THE JPEG DNA DATASET: IMAGE
00002

As mentioned in Section 4, the performances of JPEG DNA BC and the JPEG DNA BT are, on average, higher
when measured on the JPEG DNA dataset compared to the Kodak dataset. Figure 10 presents a crop from image
00002 of the JPEG DNA dataset compressed with the proposed codec and the two anchor methods considered in
this paper. All the reported crops were encoded targeting a similar rate of approximately 0.5 nucleotides/pixel.
This region was selected to analyze the effect of compression on fine texture areas, e.g. skin and hair. In this
case, the proposed codec presents severe smoothing artifacts, which entirely smooth the texture of the skin and
degrade the lines of the hair. The other anchor methods, on the other hand, present light-blocking artifacts,
better preserving the texture and information. For all methods, no color distortions can be observed.

(a) Original (b) Proposed, (0.50
nts/pxl)

(c) Benchmark Codec
(0.49 nts/pxl)

(d) BC transcoder (0.53
nts/pxl)

Figure 10: Visual comparison of a crop from image 00002 from the JPEG DNA dataset, compressed with the
proposed codec and the two anchor methods.
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