
The Complexity of Checking Non-Emptiness

in Symbolic Tree Automata

Rodrigo Raya

School of Computer and Communication Sciences, EPFL,
Switzerland

August 18, 2023

Abstract

We study the satisfiability problem of symbolic tree automata and
decompose it into the satisfiability problem of the existential first-order
theory of the input characters and the existential monadic second-order
theory of the indices of the accepted words. We use our decomposition
to obtain tight computational complexity bounds on the decision problem
for this automata class and an extension that considers linear arithmetic
constraints on the underlying effective Boolean algebra.

1 Introduction

The purpose of this paper is to expose certain analogy that can be made between
the computational complexity analysis of the decision problem of symbolic tree
automata and the decision problem of a class of logical structures known as
power structures in model theory.

The notion of symbolic automata appeared first in [39]. But it was not
until [37] that this class of automata regained attention. Symbolic automata
have been used in a variety of applications including the analysis of regular
expressions [8, 37], string encoders [15, 23, 24], functional programs [12], code
generation, parallelisation [31] and symbolic matching [32]. The specific sub-
class of symbolic tree automata (STAs) was later studied in the sequence of
publications [9, 12,21,35].

Several theoretical investigations have been carried out on computational
aspects of the symbolic automata model, including [2, 8, 34]. In particular,
the authors of [36] observed that such an automata model had been studied
previously by Bès in [5]. In his paper, Bès introduced a class of multi-tape syn-
chronous finite automata whose transitions are labelled by first-order formulas.
He then proved various properties of the languages accepted by such automata
including closure under Boolean, rational, and the projection operations, logical

1

characterisations in terms of MSO logic and the Eilenberg-Elgot-Shepherdson
formalism [16] as well as decidability properties. Remarkably, the paper showed
that the notion of recognisability for such automata coincides with that of de-
finability for certain generalised weak powers, first-studied by Feferman and
Vaught [18]. In the concluding remarks of his work, Bès noted that “all results
in this paper can be extended to the case of infinite words as well as (in)finite
binary trees, by relying on classical decidability results for MSO theories”.

The techniques of Feferman and Vaught allow decomposing the decision
problem for the first-order theory of a product of structures1 , Th(

∏
iMi) into

the first-order theory of the structures Mi, Th(Mi), and the monadic second-
order theory of the index set I, Thmon(⟨I, . . .⟩), where the structure ⟨I, . . .⟩ may
contain further relations such as a finiteness predicate, a cardinality operator,
etc. If the theory of the components Th(Mi) is decidable for each i ∈ I,
then the decision problem reduces to that of the theory Thmon(⟨I, . . .⟩). To
analyse these structures, Feferman and Vaught extended results going back to
Löwenheim, Skolem and Behmann [3, 29, 33]. Technically, the decomposition is
expressed in terms of so-called reduction sequences.

It is known [13] that many model-theoretic constructions incur in non-
elementary blow-ups in the formula size. This includes the case of the size
of the Feferman-Vaught reduction sequences in the case of disjoint unions. Per-
haps for this reason, no computational complexity results have been obtained for
the theory of symbolic tree automata and related models. Instead, the results
in the literature [10,11,20] refer to the decidability of the satisfiability problem
of the monadic predicates or provide asymptotic run-times rather than a refined
computational complexity classification, which could help evaluating the speed
and scale to which we can hope to solve the satisfiability problem.

As a main contribution, we show how to reduce the satisfiability problem
for symbolic tree automata to the satisfiability problem of the existential first-
order theory of the input characters and the existential monadic second-order
theory of the indices. This decomposition allows us to derive tight complex-
ity bounds for the decision problem of the automaton in the precise sense of
Corollary 1. We then study an extension of the formalism of symbolic tree au-
tomata which also imposes linear arithmetic constraints on the cardinalities of
the Venn regions of the underlying effective Boolean algebra. In particular, this
extension allows expressing the number of occurrences of a particular kind of
letter in a word. We show in Corollary 2 that the computational complexity of
the corresponding satisfiability problem is the same as the one for the simpler
model without cardinalities. Similar extensions for related models of automata
are considered in the literature on data words [19].

Organisation of the paper. Section 2 introduces symbolic tree automata.
Section 3 gives a preliminary Feferman-Vaught decomposition of symbolic tree
automata in terms of the theory of the elements and the theory of the indices.
Section 4 describes the decision procedure with which, in Section 5, after pre-

1The notion of the theory of a structure for first-order and monadic second-order theories
is standard in model theory. We refer the interested reader to the book of Hodges [22] for the
details.

2

senting the quantifier-free theory of Boolean algebra with Presburger arithmetic,
we obtain the tight complexity bounds announced. Section 6 describes the ex-
tension of symbolic tree automata that uses linear arithmetic constraints over
the cardinalities of the automaton’s underlying effective Boolean algebra and
proves the corresponding upper bounds for the associated satisfiability prob-
lem. Section 7 concludes the paper.

2 Symbolic Tree Automata (STA)

In this section, we introduce the automata model that we will study in the rest
of the paper.

Unlike traditional tree automata, symbolic automata read input characters
over a not necessarily finite domain, which has the structure of a Boolean alge-
bra of sets defined by a family of monadic predicates. To ensure compatibility
with the Boolean algebra operations, the family of monadic predicates defining
the sets needs to be closed under propositional operations and contain formulae
denoting the empty set and the universe. Furthermore, the definition requires
that checking satisfiability of the monadic predicates is decidable. In later sec-
tions, we will refine this assumption with different complexity-theoretic bounds.

Definition 1 ([11]). An effective Boolean algebra A is a tuple

(D,Ψ, J·K,⊥,⊤,∨,∧,¬)

where D is a set of domain elements, Ψ is a set of unary predicates over D that
are closed under the Boolean connectives, with ⊥,⊤ ∈ Ψ and J·K : Ψ → 2D is a
function such that 1. J⊥K = ∅, 2. J⊤K = D, and 3. for all ψ,ψ1, ψ2 ∈ Ψ, we have
that (a) Jψ1 ∨ψ2K = Jψ1K∪ Jψ2K (b) Jψ1 ∧ψ2K = Jψ1K∩ Jψ2K (c) J¬ψK = D\JψK.
4. Checking JψK ̸= ∅ is decidable. A predicate ψ ∈ Ψ is atomic if it is not a
Boolean combination of predicates in Ψ.

We will give now two examples of the notion of effective Boolean algebra.
From the various examples in the literature, we choose one that matches one of
our initial motivations: to generalise the complexity results obtained for array
theories in [1, 30]. We observe that the notion of SMT algebra in [11, Exam-
ple 2.3] precisely corresponds to the language introduced in [30, Definition 5]
but omitting cardinality constraints. We take this as a first example of effective
Boolean algebra.

Example 1. The SMT algebra for a type τ is the tuple (D,Ψ, J·K,⊥,⊤,∨,∧,¬)
where D is the domain of τ , Ψ is the set of all quantifier-free formulas with
one fixed free variable of type τ , J·K maps each monadic predicate to the set of
its satisfying assignments, ⊥ denotes the empty set (which can be represented
by the formula x ̸= x), ⊤ denotes the universe D (which can be represented
by the formula x = x) and ∨,∧,¬ denote the Boolean algebra operations of
union, intersection, and complement respectively (which can be represented by
the propositional operations on quantifier-free formulae).

3

In applications, it is often useful to consider effective Boolean algebras
whose generating monadic predicates use particular representations of formu-
lae. In particular, Example 1 can be contrasted with other representations of
the monadic predicates, which consider implementation details. An example of
the latter is the BDD effective Boolean algebra described in [9] which assumes
that the set of elements of the underlying domain are expressed by means of
binary decision diagrams [4].

Example 2. The BDD algebra B = (N,Ψ, J·K,⊥,⊤, |,&, ·) has the set of natural
numbers N as its universe and Ψ is the Boolean closure of BDDs βi such that JβiK
is the set of natural numbers such that the i-th bit of n in binary representation
is one, ⊥ denotes the BDD representing the empty set, ⊤ denotes the BDD
representing the universal set and |,&, · denote the Boolean algebra operation
of union, intersection, and complement. For instance, β3 ∧β0 denotes the set of
numbers matching the binary bit-pattern . . . 1 · ·0, which is satisfied by 8, 24,

We now introduce the automata model we will investigate in the paper. As
in [35], we will assume that our automata read binary trees.

Definition 2. A binary Σ-tree is a function τ : A → Σ where A is a finite
subset of {0, 1}∗ closed under the initial segment relation (i.e. if uv ∈ A then
u ∈ A). Σ# is the class of all binary Σ-trees. Λ the function with domain ∅ also
known as the empty tree. For σ ∈ Σ and τ, τ ′ ∈ Σ#, σ[τ, τ ′] is the Σ-tree with
root σ, left subtree τ and right subtree τ ′.

The crucial difference with traditional tree automata comes in the definition
of the transition relation which occurs at two levels: the symbolic level, at which
we only consider the particular formula that is satisfied, and the concrete level
in which we also consider the input character from the effective Boolean algebra
that satisfies the predicate.

Definition 3 ([35]). A symbolic tree automaton (STA) is a tuple

M = (A, Q, q0, F,∆)

where 1. A is an effective Boolean algebra. 2. Q is a finite set of states. 3. q0 ∈ Q
is the initial state. 4. F ⊆ Q is the set of final states. 5. ∆ ⊆ Q×ΨA ×Q×Q
is a finite set of transitions.

A symbolic transition ρ = (q1, ψ, q2, q3) ∈ ∆, also denoted (q1, q2)
ψ→ q3,

has source states q1 and q2, target state q2, and guard ψ. For d ∈ D, the

concrete transition (q1, q2)
d→ q3 denotes that there exists a symbolic transition

(q1, q2)
ψ→ q3 ∈ ∆ such that d ∈ JψK.

The language ofM at state q ∈ Q, denoted by Lq(M), is the smallest subset
of D# such that 1. if q ∈ F then Λ ∈ Lq(M), 2. if (q1, ψ, q2, q3) ∈ ∆, d ∈ JψK
and for i ∈ {1, 2}, τi ∈ Lqi(M), then d[τ1, τ2] ∈ Lq3(M). The language of M is
L(M) = Lq0(M).

We next give examples of automata running over the algebras of Example 1
and 2.

4

Example 3 ([35]). We consider the language of linear arithmetic over the in-
tegers. We set three formulae ψ>0(x) ≡ x > 0, ψ<0(x) ≡ x < 0, ψ=0(x) ≡ x = 0
satisfied by all positive integers, all negative integers and zero, respectively. The
symbolic tree automaton with states qroot, q−, q0, q+, qϵ, final states qϵ, initial
state qroot and transitions

(q−, q+, ψ=0, qroot) (q+, q−, ψ=0, q0) (qϵ, qϵ, ψ=0, q0)

(q−, q0, ψ<0, q−) (qϵ, qϵ, ψ<0, q−)

(q0, q+, ψ>0, q+) (qϵ, qϵ, ψ>0, q+)

accepts all trees such that the root has a label 0, its left son is a − node and
its right son is a + node, every − node has a negative label and is either a leaf
or its left son is a − node and its right son is a 0 node. Similarly, every + node
has a positive label and is either a leaf or its right son is a + node and its left
son is a 0 node. For example, the following tree would be accepted:

0

6

5

ϵϵ

0

ϵϵ

-1

0

-4

ϵϵ

3

ϵϵ

-2

ϵϵ

Example 4 ([9]). We consider the language of the BDD algebra in Example 2.
The following symbolic tree automaton accepts all trees whose labels represent
integers such that whenever the i-th bit of such integer in binary representation
is one, then the j-th bit of the integer in binary representation is also one. The
automaton has a single state q and a single transition rule (q, q, βi|βj , q):

q

βi|βj

3 Decomposition through Shared Set Variables

In this section, we start with a symbolic tree automaton M = (A, Q, q0, F,∆)
and denote by ψ1, . . . , ψk, . . . the atomic predicates in the underlying effective
Boolean algebra A. Our first observation is that the definition of symbolic tree
automaton allows assuming that the set of these predicates is finite.

Lemma 1. There exists a symbolic tree automatonM ′ = (A′, Q, q0, F,∆) such
that L(M) = L(M ′) and the cardinality of ΨA′ is finite.

5

Proof. By definition, the automaton M has a finite number of transitions. We
take ΨA′ to be the Boolean closure of the predicates occurring in these transi-
tions. It follows that ΨA′ is a finite set. We define the remaining components
of A′ as those in the definition of A. Since the structure of the automaton
is unchanged under this transformation, it follows that the two languages are
equal, i.e. L(M) = L(M ′).

From Lemma 1, it follows that without loss of generality we may assume
that ΨA is finite. Thus, the set of atomic predicates (see Definition 1) is finite
too. In the remaining of the paper, we will work under this assumption, and we
will write ϕ1, . . . , ϕk for the generators of the effective Boolean algebra used by
the symbolic finite automaton M . Similarly, we will write ψ1, . . . , ψm for the
actual predicates used in the transitions of M . We will decompose the study
of L(M) into the study of the properties of the input characters in D and the
indexing properties induced by the transition structure of the automaton. Both
kinds of properties will refer to variables representing sets of indices, in order
to stay synchronised with each other. This methodology for combining theories
had been previously studied in [40].

To specify the properties of the input characters in D, we use set interpre-
tations of the form:

k∧
i=1

Si = { n ∈ {0, 1}∗ | ϕi(d(n)) } = JϕiK (1)

where d(n) is the element occurring at position n in the tree d ∈ D#. These
sets can be pictured via a Venn diagram of interpreted sets, such as the one
in Figure 1. Each formula in ΨA corresponds to a particular Venn region in
this diagram and can be referred to using a Boolean algebra expression on the
variables S1, . . . , Sk, thanks to the set interpretation (1).

A concrete transition (q1, q2)
d→ q3 requires a value d ∈ D. This value will

lie in some elementary Venn region of the diagram in Figure 1, i.e. in a set
of the form Sβ1

1 ∩ . . . ∩ Sβk

k where β = (β1, . . . , βk) ∈ {0, 1}k, S0 := Sc and
S1 := S. We will denote such Venn region with the bit-string β. To specify the
transition structure of the automaton, what is relevant to us is the region of the
Venn diagram, not the specific value that it takes there. Thus, we can relabel
the transitions of the automaton by the propositional formulae corresponding
to the monadic predicates they held originally.

Example 5. In Example 3 the labelling predicates ψ=, ψ<0 and ψ>0 would be
replaced by propositional formulae S1, S2 and S3. Similarly, if in Example 4, we
take as atomic formulae the predicates βi then the formula βi|βj corresponds to
the propositional formula ¬Si ∨ Sj .

It follows that a run of the automaton can be encoded as a tree of bit-strings
τ : A ⊆ {0, 1}∗ → {0, 1}k (with A prefix-closed) and that these bit-strings
only need to satisfy the propositional formulae corresponding to the predicates

6

labelling the transitions of the automaton. Figure 2 represents one such run
over an uninterpreted Venn diagram.

We denote by L1, . . . , Lm such propositional formulae and byM(L1, . . . , Lm)
the set of bit-string trees accepted by M , which we call tree tables following the
terminology of Kleene [26]. Lemma 2 observes that the language L(M) can be
expressed in terms of set interpretations of the form (1) and the condition:

∃τ ∈M(L1, . . . , Lm).

k∧
i=1

Si = { n ∈ {0, 1}∗ | τi(n) } (2)

where τi(n) denotes the i-th bit of τ at position n ∈ {0, 1}∗.
This is a Feferman-Vaught decomposition in the sense that we explain next.

Observe first that following the automata-logic connection discovered by Büchi
[6] and extended by Doner [14], the tuple of sets (S1, . . . , Sk) definable in (2)
are precisely those tuples of sets definable in weak second order logic of two
successors. Thus, what changes in the expression of formula (2) is the particular
representation of these relations. Lemma 2 decomposes the satisfiability problem
of symbolic tree automata into the satisfiability problem of the existential first-
order theory of the input characters and the satisfiability problem of a certain
representation of the monadic second-order theory of two successors.

Lemma 2 (Feferman-Vaught decomposition for STAs).

L(M) =
{
d ∈ D∗

∣∣∣∃τ ∈M(L1, . . . , Lm).

k∧
i=1

Si = { n ∈ {0, 1}∗ | ϕi(d(n)) } = { n ∈ {0, 1}∗ | τi(n) }
}

Proof. The proof uses the definition of L(M) and M(L1, . . . , Lm). For the left
to right inclusion, one defines τ using the membership of the values d(i) in the
elementary Venn regions βi. For the right to left inclusion, the definition of
M(L1, . . . , Lm) ensures that there is an accepting run of M corresponding to
the value d thanks to the interpretations of the sets Si.

It is important to note that both sides of the equality in Lemma 2 use essen-
tially the same number of bits in their description, since the set M(L1, . . . , Lm)
can be described by the automaton with propositional labels or, if preferred,
an equivalent regular expression. Thus, the complexity of the non-emptiness
problem for both sets is the same.

In the next sections, we make use of this decomposition to devise a decision
procedure for symbolic tree automata, which, will refine the existing computa-
tional complexity results for the corresponding satisfiability problem.

4 Decision Procedure for Non-Emptiness

Definition 4. The non-emptiness problem for a symbolic tree automaton M is
the problem of determining whether L(M) ̸= ∅.

7

ϕ1 ϕ2

ϕ3

Figure 1: A Venn diagram representing a finitely generated effective Boolean
algebra with atomic predicates ϕ1, ϕ2 and ϕ3.

S1 S2

S3

0
1
0

1
1
0

1
0
0

1
0
1

1
1
1

0
0
1

0
1
1

Figure 2: A tree table accepted by a symbolic tree automaton represented over
an uninterpreted Venn diagram (left) and as a bit-string tree (right). According
to Doner’s interpretation, the sets A,B,C are A = {0, 1, 00, 01}, B = {ϵ, 0, 1, 11}
and C = {1, 01, 10, 11}.

8

By Lemma 2, checking non-emptiness of the language of a symbolic finite
automaton reduces to checking whether the following formula is true:

∃S1, . . . , Sk.∃d.
k∧
i=1

Si = { n ∈ {0, 1}∗ | ϕi(d(n)) }∧

∃τ ∈M(L1, . . . , Lm).

k∧
i=1

Si = { n ∈ {0, 1}∗ | τi(n) }

(3)

To establish the complexity of deciding formulae of the form (3), we will have
to analyse further the set M(L1, . . . , Lm). Each tree table τ in M(L1, . . . , Lm)
corresponds to a symbolic table s whose entries are the propositional formu-
lae that the bit-strings of τ satisfy. More generally, these symbolic tables are
generated by the symbolic automaton obtained by replacing the predicates of
the symbolic automaton by propositional formulae. The set of symbolic tables
accepted by the automaton M is a regular tree set and will be denoted by
MS(L1, . . . , Lm).

Example 6. The automaton in Example 4 corresponds, according to Exam-
ple 5, to the following symbolic automaton:

q

¬Si ∨ Sj

To find the computational complexity of deciding formulae of the form (3),
consider first the case where the propositional formulae L1, . . . , Lm for the au-
tomatonM denote disjoint Venn regions. In such case, checking the satisfiability
of formula (3) reduces to determining whether there exists a symbolic tree table
s such that whenever the number of times a certain propositional letter occurs
is non-zero, the corresponding Venn region interpreted according to (1) has a
satisfiable defining formula. From this observation follows that our decision
procedure will need to compute the so-called Parikh image of the regular tree
language MS(L1, . . . , Lm).

Definition 5 (Parikh Image).
The Parikh image of MS(L1, . . . , Lm) is the set

Parikh(MS(L1, . . . , Lm)) = {(|s|L1
, . . . , |s|Lm

)|s ∈MS(L1, . . . , Lm)}

where |s|Li denotes the number of occurrences of the propositional formula Li
in the symbolic tree table s.

To compute the Parikh image of a regular tree language, we will use a key
observation by Klaedtke and Rueß [25] that allows to reduce the problem to
that of computing the Parikh image of a context-free grammar.

9

First, note that the tree languageMS(L1, . . . , Lm) is given by a non-deterministic
bottom-up tree automaton (this follows from Definition 3). However, the con-
struction of Klaedtke and Rueß is given by non-deterministic top-down tree
automata.

Definition 6. A non-deterministic top-down tree automaton is a tuple A =
(Q,Σ, δ, q0, F), where

- Q is a finite set of states.

- Σ is an alphabet.

- δ : Q× Σ → P(Q×Q) is the transition function.

- q0 is the initial state.

- F ⊆ Q is the set of final states.

Associated with A is the function δ : Σ# → S defined by δ(Λ) = Λ and

δ(σ[τ, τ ′]) = δ(q0, σ)

A run ϱ of A on t ∈ TΣ is a Q-labelled tree ϱ with dom(ϱ) = {λ}∪ {ub | u ∈
dom(t), b ∈ {0, 1}} such that ϱ(u) = q0, and (ϱ(u0), ϱ(u1)) ∈ δ(ϱ(u), t(u)), for
all u ∈ dom(t).

ϱ is accepting if all leaves of ϱ are labeled with states in F , i.e. ϱ(u) ∈ F ,
for all u ∈ dom(ϱ)\ dom(t).

A tree t is recognized by A if there is an accepting run of A on t.
T (A) denotes the set of trees that are recognized by A.

Fortunately, it is easy to convert from non-deterministic top-down to non-
deterministic bottom-up tree automata.

Proposition 1 ([7, Theorem 1.6.1]). The class of languages accepted by top-
down NFTAs is exactly the class of languages accepted by bottom-up NFTAs.
Given a top-down (bottom-up) NFTA one can compute a bottom-up (top-down)
NFTA in linear time in the number of edges and states of the input.

Second, we use the observation of Klaedtke and Rueß [25, Lemma 17] to
compute a context-free grammar with the same Parikh image.

Lemma 3 ([25]). For any non-deterministic top-down tree automaton A one
can compute in linear time a context-free grammar GA expressing the trees
accepted by A as words obtained through the in-order traversal of the trees. As
a consequence Parikh(A) = Parikh(GA).

Proof. Let A = (Q,Γ, δ, qI , F) be a top-down tree automaton. We define a
context-free grammar G = ⟨V,Σ, R, S⟩ that generates the words obtained by
traversing the trees recognized by A in infix order as follows:

• V = Q is the set of non-terminal symbols.

10

• Σ is the set of terminal symbols.

• There are two kinds of derivation rules:

– For each (q, q′) ∈ δ(p, b), we have the rule p→ qbq′.

– If (F × F) ∩ δ(q, b) ̸= ∅ then we have the rule q → b.

• S = qI is the start symbol of G.

It is immediate from the definition that Inorder(L(A)) = L(G) and that
the size of the grammar is equal to that of the automaton. Since the Parikh
image is invariant under permutation of the labels, it follows that Parikh(A) =
Parikh(GA).

The second key observation, by Verma, Seidl and Schwentick, is that the
Parikh image of a context-free grammar can be described by a linear-sized ex-
istential Presburger arithmetic formula.

Lemma 4 ([38]). Given a context-free grammar G, one can compute an exis-
tential Presburger formula ϕG for the Parikh image of L(G) in linear time.

In summary,

Lemma 5. The set Parikh(MS(L1, . . . , Ln)) is definable by an existential Pres-
burger formula ρ of size O(|M |) where |M | is the number of symbols used to
describe the automaton M .

In the more general case, when propositional letters denote overlapping Venn
regions, a partitioning argument is required. This is formalised in Theorem 1.
First, we fix some notation. We set pβ :=

⋂k
i=1 S

βi

i where β ∈ {0, 1}k, pL :=⋃
β|=L

pβ where L is a propositional formula and |= is the propositional satisfaction

relation that is true if and only if the assignment of the values in β to the free
variables in L makes the formula L true. When using the interpretation of
sets of the form (1), the formula defining the Venn region pβ will be denoted by

φβ(d) :=
∧k
i=1 φ

β(i)
i (d). We write S1∪̇S2 to denote the set S1∪S2 where we want

to emphasise that S1 ∩ S2 = ∅. Finally, we use the notation [n] := { 1, . . . , n }
to refer to the first n natural numbers.

We give next the technical statement of the main theorem of this section.
The reader should refer to the explanations following the statement for the
intuition behind it.

11

Theorem 1. Formula (3) is equivalent to the formula

∃s ∈[m].σ : [s] ↪→ [m].∃β1, . . . , βs ∈ {0, 1}k.
s∧
j=1

∃d.ϕβj (d)∧

∃k1, . . . , km.∃S1, . . . , Sk, P1, . . . , Ps.

ρ(k1, . . . , km) ∧
s∧
i=1

Pi ⊆ pLσ(i)
∧ ∪mi=1pLi

= ∪̇si=1Pi∧

s∧
i=1

|Pi| = kσ(i) ∧
s∧
i=1

pβi ∩ Pi ̸= ∅

(4)

where σ is an injection from { 1, . . . , s } to { 1, . . . ,m }, ρ is the arithmetic expres-
sion in Lemma 5 and | · | denotes the cardinality of the argument set expression.

We start by observing that formula (4) has two parts. The first part cor-
responds to the subterm

∧s
j=1 ∃d.φβj (d) and falls within the existential theory

of the elements in D, Th∃∗(D). The second part corresponds to the remaining
subterm and falls within the quantifier-free first-order theory of Boolean Al-
gebra with Presburger arithmetic (QFBAPA) [28], which can be viewed as the
monadic second order theory Thmon∃∗ (⟨N,⊆,∼⟩) where ∼ is the equicardinality
relation between two sets.

The second observation is that formula (4) is distilled from a non-deterministic
decision procedure for the formulae of the shape (3). The existentially quanti-
fied variables s, σ, β1, . . . , βs are guessed by the procedure. These guessed values
are then used by specialised procedures for Th∃∗(D) and Thmon∃∗ (⟨N,⊆,∼⟩). For
the convenience of the reader, we describe here what these values mean (this
meaning follows from the proof of the theorem below). The value of s represents
the number of Venn regions associated to the formulae L1, . . . , Lm that will be
non-empty. σ indexes these non-empty regions. β1, . . . , βs are elementary Venn
regions contained in the non-empty ones.

Observe that Theorem 1 refines the statement in Lemma 2: the satisfiability
problem of SFAs is decomposed into the decision problem of the existential
fragment of the theory of the input characters and the existential fragment of
the monadic second-order theory of the indices.

Finally, it remains to exemplify the situation in which the Venn regions
overlap, which justifies the introduction of the partition variables P1, . . . , Ps in
formula (4).

Example 7. Consider the situation where S1 ∧ S2 and S2 ∧ S3 are two propo-
sitional formulae labelling the transitions of the symbolic automaton. These
formulae correspond to the Venn regions S1 ∩ S2 and S2 ∩ S3, which share the
region S1 ∩ S2 ∩ S3. Given a model of S1, S2 and S3, how do we guarantee
that the indices in the region S1 ∩ S2 ∩ S3 are consistent with a run of the
automaton? For instance, the automaton may require one element in S1 ∩ S2

and another in S2 ∩S3. Placing a single index in S1 ∩S2 ∩S3 would satisfy the
overall cardinality constraints, but not the fact that overall we need to have two

12

S1 S2

S3

Figure 3: A Venn diagram representing the situation discussed in Example 7.
To deal with the overlapping regions, it is necessary to decide to which sets do
the different indices belong to. In the Figure, the different parts are marked
with colours.

elements. Trying to specify these restrictions in the general case would reduce
to specifying an exponential number of cardinalities.

We proceed next to the proof of the theorem.

Proof of Theorem 1. ⇒) If formula (3) is satisfiable, then there are sets S1, . . . , Sk,
a word d and a tree table τ satisfying

k∧
i=1

Si = { n ∈ {0, 1}∗ | ϕi(d) }∧τ ∈M(L1, . . . , Ls)∧
k∧
i=1

Si = { n ∈ {0, 1}∗ | ti(n) }

Let s ∈M(L1, . . . , Ls) be the symbolic tree table corresponding to τ (where
the bar is used to distinguish it from variable s appearing in the formula (4)). We
define ki := |s|Li

, s = | { i | ki ̸= 0 } |, σ mapping the indices in [s] to the indices
of the terms for which ki is non-zero and Pi = {n ∈ {0, 1}∗ | s(n) = Lσ(i) }. It
will be convenient to work out the following equalities:

pLi =
⋃
β|=Li

k⋂
j=1

S
βj

j =
⋃
β|=Li

 n ∈ {0, 1}∗
∣∣∣∣∣∣

k∧
j=1

t
βj

j (n)


= { n ∈ {0, 1}∗ | τ(n) |= Li }

pLi
=

⋃
β|=Li

k⋂
j=1

S
βj

j =
⋃
β|=Li

 n ∈ D

∣∣∣∣∣∣
k∧
j=1

ϕ
βj

j (d)


=

{
d ∈ D

∣∣ Li(ϕ(d)) }
(5)

where Li(ϕ(d(n))) is the propositional formula obtained by substituting each
set variable Si by the formulae ϕi(d(n)). We now deduce formula (4):

- ρ(k1, . . . , km): from s ∈ P (L1, . . . , Lm), we have that

(k1, . . . , km) ∈ Parikh(MS(L1, . . . , Lm))

13

and therefore ρ(k1, . . . , km).

- Pi ⊆ pLσ(i)
: since s corresponds to τ , for all n ∈ N we have τ(n) |= s(n)

and the inclusion follows from the definition of Pi and equation (5).

- |Pi| = kσ(i): since

|Pi| =
∣∣∣ { n ∈ {0, 1}∗

∣∣ s(n) = Lσ(i)
} ∣∣∣ = |s|Lσ(i)

= kσ(i)

- Each pair of sets Pi, Pj with i < j is disjoint:

Pi ∩ Pj =
{
n ∈ {0, 1}∗

∣∣ s(n) = Lσ(i)
}
∩
{
n ∈ {0, 1}∗

∣∣ s(n) = Lσ(j)
}
=

=
{
n ∈ {0, 1}∗

∣∣ s(n) = Lσ(i) = Lσ(j)
}
= ∅

using that the letters L are chosen to be distinct and that σ is an injection
(so σ(i) ̸= σ(j)).

- pL1
∪ . . . ∪ pLm

= P1∪̇ . . . ∪̇Ps: since by definition

Pi =
{
n ∈ {0, 1}∗

∣∣ s(n) = Lσ(i)
}
, pLi = { n ∈ {0, 1}∗ | τ(n) |= Li }

and by definition of σ it follows that the only letters that can appear in
s are Lσ(1), . . . , Lσ(s). Thus, we have pL1

∪ . . . ∪ pLm
= [1, |t|] = [1, |s|] =

P1∪̇ . . . ∪̇Ps.

- There exists β1, . . . , βs ∈ {0, 1}k, such that
∧s
i=1 Pβi ∩ Pi ̸= ∅: note that

Pi ̸= ∅ by definition of σ. Thus, there must exist some βi such that
pβi

∩ Pi ̸= ∅. We pick any such βi.

-
∧s
j=1 ∃d.φβj (d): follows from pβj

∩ Pj ̸= ∅ and formula (5).

⇐) Conversely, if formula (4) is satisfiable, then there is an integer s ∈ [n],
an injection σ : [s] ↪→ [n], bit-strings β1, . . . , βs ∈ {0, 1}k, integers k1, . . . , km
and sets S1, . . . , Sk, P1, . . . , Ps satisfying

s∧
j=1

∃d.φβj (d) ∧ ρ(k1, . . . , km) ∧
s∧
i=1

Pi ⊆ pLσ(i)
∧ ∪mi=1pLi

= ∪̇si=1Pi∧

s∧
i=1

|Pi| = kσ(i) ∧
s∧
i=1

pβi
∩ Pi ̸= ∅

(6)

From ρ(k1, . . . , kn) follows that there is a symbolic table s ∈ MS(L1, . . . , Lm)
such that |s|Li = ki for each Li ∈ {L1, . . . , Lm }. From formula (5) and

pL1
∪ . . . ∪ pLm

= P1∪̇ . . . ∪̇Ps ∧
s∧
i=1

Pi ⊆ pLσ(i)
∧

s∧
i=1

|Pi| = kσ(i)

follows that we can replace the formulae Li occurring in the symbolic table s by
the bit-strings representing the elementary Venn regions to which the indices of

14

the sets Pi belong. Moreover, thanks to the condition
∧s
i=1 pβi ∩Pi ̸= ∅ follows

that we can replace the letters Li by the bit-strings βi, defining τ as τ(n) ={
βi if n ∈ Pi . In this way, we obtain a table τ ∈ M(L1, . . . , Ls). We then

define the corresponding word over D, thanks to the property
∧s
i=1 ∃d.ϕβi(d).

Naming the witnesses of these formulae as di, we define d(n) =
{
di if n ∈ Pi .

To conclude, note that:

{ n ∈ {0, 1}∗ | tj(n) } = ∪{ 1≤i≤k | βi(j)=1 }Pi = { n ∈ {0, 1}∗ | ϕj(d(n)) }

Thus, we have that formula (3) is satisfied by the set variables

Sj := { n ∈ {0, 1}∗ | tj(n) } = { n ∈ {0, 1}∗ | ϕj(d(n)) }

5 Quantifier-free Boolean Algebra with Presburger
Arithmetic

The arguments following the statement of Theorem 1 sketch a non-deterministic
procedure for the satisfiability problem of symbolic finite automata, based on
the existence of decision procedures for Th∃∗(D) and Thmon∃∗ (⟨N,⊆,∼⟩). In
this section, we recall the non-deterministic polynomial time decision procedure
for Thmon∃∗ (⟨N,⊆,∼⟩). As a consequence, we obtain Corollary 1 which situates
the decision problem of symbolic finite automata in the classical complexity
hierarchy. This section should also prepare the reader for the extension of these
results, where the automaton can require linear arithmetic constraints on the
cardinalities of the effective Boolean algebra. This extension is described in
Section 6.

Instead of working with Thmon∃∗ (⟨N,⊆,∼⟩) directly, we use the logic QFBAPA
[28] which has the same expressive power [27, Section 2]. The syntax of QFBAPA
is given in Figure 4. The meaning of the syntax is as follows. F presents the
Boolean structure of the formula, A stands for the top-level constraints, B gives
the Boolean restrictions and T the Presburger arithmetic terms. The operator
dvd stands for the divisibility relation and U represents the universal set. The
remaining interpretations are standard.

The satisfiability problem of this logic is reducible to propositional sat-
isfiability in polynomial time. Our proofs will rely on the method of [28],
which we sketch briefly here. The basic argument to establish a NP com-
plexity bound on the satisfiability problem of QFBAPA is based on a theo-
rem by Eisenbrand and Shmonin [17], which in our context says that any el-
ement of an integer cone can be expressed in terms of a polynomial number
of generators. Figure 5 gives a verifier for this basic version of the algorithm.
The algorithm uses an auxiliary verifier VPA for the quantifier-free fragment
of Presburger arithmetic. The key step is showing equisatisfiability between
2.(b) and 2.(c). If x1, . . . , xk are the variables occurring in b0, . . . , bp then we

15

F ::= A |F1 ∧ F2 |F1 ∨ F2 | ¬F
A ::= B1 = B2 |B1 ⊆ B2 |T1 = T2 |T1 ≤ T2 |K dvd T

B ::= x | ∅ | U |B1 ∪B2 |B1 ∩B2 |Bc

T ::= k |K |T1 + T2 |K · T | |B|
K ::= . . . | − 2 | − 1 | 0 | 1 | 2 | . . .

Figure 4: QFBAPA’s syntax

write pβ =
k⋂
i=1

xeii for β = (e1, . . . , ek) ∈ {0, 1}k where we define x1 := x

and x0 := U \ x as before. If we define JbiKβj
as the evaluation of bi as a

propositional formula with the assignment given in β and introduce variables

lβ = |pβ |, then |bi| =
2e−1∑
j=0

JbiKβj
lβj

, so the restriction
p∧
i=0

|bi| = ki in 2.(b) be-

comes
p∧
i=0

2e−1∑
j=0

JbiKβj
lβj

= ki which can be seen as a linear combination in the

set of vectors {(Jb0Kβj , . . . , JbpKβj).j ∈ {0, . . . , 2e − 1}}, i.e. as

p∧
i=0

2e−1∑
j=0

Jb0Kβj

...
JbpKβj

 lβj
= ki

Eisenbrand-Shmonin’s result allows then to derive 2.(c) for N polynomial in
|x|. In the other direction, it is sufficient to set lβj

= 0 for j ∈ {0, . . . , 2e − 1} \
{i1, . . . , iN}. Thus, we have:

Theorem 2 ([28]). The satisfiability problem of QFBAPA is in NP.

From Theorems 1 and 2, we obtain the following improvement of [35, The-
orem 2]:

Corollary 1. Let Th∃∗(D) be the existential first-order theory of the formulae
used in the transitions of the symbolic tree automaton M .

• If Th∃∗(D) ∈ P then L(M) ̸= ∅ ∈ NP.

• If Th∃∗(D) ∈ C for some C ⊇ NP then L(M) ̸= ∅ ∈ C.

Proof. The procedure non-deterministically guesses the value of the variables
s, σ, β1, . . . , βs and uses a decision procedure for Th∃∗(D) and a non-deterministic
polynomial time decision procedure for QFBAPA to check the corresponding sub-
formulae in (4). The correctness of the procedure follows from Theorem 1.

16

On input ⟨x,w⟩:

1. Interpret w as:

(a) a list of indices i1, . . . , iN ∈ {0, . . . , 2e−1} where e is the number
of set variables in x.

(b) a certificate C for VPA on input x′ defined below.

2. Transform x into x′ by:

(a) rewriting boolean expressions according to the rules:

b1 = b2 7→ b1 ⊆ b2 ∧ b2 ⊆ b1

b1 ⊆ b2 7→ |b1 ∩ bc2| = 0

(b) introducing variables ki for cardinality expressions:

G ∧
p∧
i=0

|bi| = ki

where G is the resulting quantifier-free Presburger arithmetic for-
mula.

(c) rewriting into:

G ∧
∧

j=i1,...,iN

lβj
≥ 0 ∧

p∧
i=0

∑
j=i1,...,iN

JbiKβj
· lβj

= ki

3. Run VPA on ⟨x′, C⟩.

4. Accept iff VPA accepts.

Figure 5: Verifier for QFBAPA

Observe that in typical examples, Th∃∗(D) ∈ NP and thus, from Corollary 1
it follows that L(M) ̸= ∅ ∈ NP. This partially explains the success in the
automation of SFAs in SMT solvers, which rely on solvers for propositional
satisfiability.

17

6 Decision Procedure for Non-Emptiness with
Cardinalities

We now consider a generalisation of the language of a symbolic tree automaton
from Lemma 2 with cardinality constraints on the effective Boolean algebra.
Similar extensions for related models of automata are considered in the literature
on data words [19].

Definition 7. A symbolic tree automaton with cardinalities accepts a language
of the form:

L(M) =

{
d ∈ D∗

∣∣∣∣∣ F (S1, . . . , Sk) ∧
∧k
i=1 Si = { n ∈ {0, 1}∗ | ϕi(d(n)) }∧

∃τ ∈M(L1, . . . , Lm).
∧k
i=1 Si = { n ∈ {0, 1}∗ | τi(n) }

}

where F is a formula from QFBAPA.

Thus, checking non-emptiness of the language of a symbolic tree automaton
with cardinalities reduces to checking whether the following formula is true:

∃S1, . . . , Sk.F (S1, . . . , Sk)∧

∃d.
k∧
i=1

Si = { n ∈ {0, 1}∗ | ϕi(d(n)) }∧

∃τ ∈M(L1, . . . , Lm) ∧
k∧
i=1

Si = { n ∈ {0, 1}∗ | τi(n) }

(7)

To show that Theorem 1 and Corollary 1 stay true with linear arithmetic
constraints on the cardinalities, we need to repeat part of the argument in
Theorem 1 since if F denotes the newly introduced QFBAPA formula and G,H
are the formulae shown equivalent in Theorem 1, then from:

∃S1, . . . , Sk.F (S1, . . . , Sk) ∧G(S1, . . . , Sk)

and [
∃S1, . . . , Sk.G(S1, . . . , Sk)

]
⇐⇒

[
∃S1, . . . , Sk.H(S1, . . . , Sk)

]
it does not follow that:

∃S1, . . . , Sk.F (S1, . . . , Sk) ∧H(S1, . . . , Sk)

Instead, the algorithm derives the cardinality constraints from each theory and
then uses the sparsity of solutions over the satisfiable regions. In the proof, we
use the notations JbiKβj

and lβ introduced in Section 5.

18

Theorem 3. Formula (7) is equivalent to:

∃N ≤ p(|F |),∃s ∈ [m].σ : [s] ↪→ [m].∃β1, . . . , βN ∈ {0, 1}k.
N∧
j=1

∃d.ϕβj (d)∧

∃k1, . . . , km.∃S1, . . . , Sk, P1, . . . , Ps.

ρ(k1, . . . , km) ∧
s∧
i=1

Pi ⊆ pLσ(i)
∧ ∪mi=1pLi = ∪̇si=1Pi∧

s∧
i=1

|Pi| = kσ(i) ∧ ∪Ni=1pβi = ∪̇si=1Pi ∧ F (S1, . . . , Sk)

(8)

where p is a polynomial and |F | is the number of symbols used to write F .

Proof. ⇒) If formula (7) is true, then there are sets S1, . . . , Sk, a finite tree d
and a tree table τ such that:

F (S1, . . . , Sk) ∧
k∧
i=1

Si = { n ∈ {0, 1}∗ | ϕi(d(n)) }∧

τ ∈M(L1, . . . , Lm) ∧
k∧
i=1

Si = { n ∈ {0, 1}∗ | τi(n) }

(9)

Thus, there exists a symbolic table s ∈MS(L1, . . . , Ls) corresponding to τ . We
define ki := |s|Li , s = | { i | ki ̸= 0 } |, σ maps the indices in [s] to the indices of
the terms for which ki is non-zero and Pi =

{
n ∈ {0, 1}∗

∣∣ s(n) = Lσ(i)
}
. As

in Theorem 1, we have the equalities pLi
= { n ∈ {0, 1}∗ | τ(n) |= Li }, pLi

={
n ∈ {0, 1}∗

∣∣ Li(ϕ(d)) } and we can show that the following formula holds:

ρ(k1, . . . , km) ∧
m∧
i=1

Pi ⊆ pLσ(i)
∧ ∪mi=1pLi

= ∪̇si=1Pi∧

s∧
i=1

|Pi| = kσ(i) ∧ F (S1, . . . , Sk)

(10)

We need to find a sparse model of (10). To achieve this, we follow the method-
ology in Theorem 2. This leads to a system of equations of the form:

∃c1, . . . , cp.G ∧
2e−1∑
j=0

Jb0Kβj

· · ·
JbpKβj

 · lβj
=

 c1
. . .
cp


We remove those elementary Venn regions where lβ = 0. This includes regions
whose associated formula in the interpreted Boolean algebra is unsatisfiable,
and regions corresponding to tree table entries not occurring in τ . This trans-
formation gives a reduced set of indices R participating in the sum.

19

Using Eisenbrand-Shmonin’s theorem, we have a polynomial (in the size
of the original formula) family of Venn regions β1, . . . , βN and corresponding
cardinalities l′β1

, . . . , l′βN
, which we can assume to be non-zero, such that

∃c1, . . . , cp.G ∧
∑

β∈{ β1,...,βN }⊆R

Jb0Kβj

· · ·
JbpKβj

 · l′βj
=

 c1
. . .
cp

 (11)

The satisfiability of formula (11) implies the existence of sets of indices p′β
satisfying the conditions derived in formula (10). However, it does not imply
which explicit indices belong to these sets and which are the contents corre-
sponding to each index. From the condition

ρ(k1, . . . , kn) ∧
n∧
i=1

P ′
i ⊆ p′Lσ(i)

∧ ∪ni=1p
′
Li

= ∪̇si=1P
′
i ∧

s∧
i=1

|P ′
i | = kσ(i)

follows that there is a symbolic tree table s′ satisfying MS(L1, . . . , Ln) with
kσ(i) letters Lσ(i) and that these letters are made concrete by entries in P ′

i for
each i ∈ {1, . . . , s}. We take the Venn regions β ∈ {β1, . . . , βN} such that
P ′
i ⊇ pβ and label the corresponding entries in s′ with β. In this way, we obtain

a corresponding concrete tree table τ ′. This makes the indices in each Venn
region concrete. To make the contents of the indices concrete, note that for
each β ∈ R, since lβ ̸= 0, the formula ∃d.ϕβ(d) is true. In particular, this
applies to each β ∈ {β1, . . . , βN}. Thus, we obtain witnesses d1, . . . , dN . We
form a tree by replacing each letter β in τ ′ by the corresponding value dβ . Then
we have that formula (8) holds too.

⇐) If formula (8) is true, then there is N ≤ p(|F |) where p is a polynomial,
s ∈ [m], β1, . . . , βN ∈ {0, 1}k, k1, . . . , km ∈ N and sets S1, . . . , Sk, P1, . . . , Ps
such that

N∧
j=1

∃d.ϕβj (d)∧ρ(k1, . . . , km) ∧
s∧
i=1

Pi ⊆ pLσ(i)
∧ ∪mi=1pLi

= ∪̇si=1Pi∧

s∧
i=1

|Pi| = kσ(i) ∧ ∪Ni=1pβi
= ∪̇si=1Pi ∧ F (S1, . . . , Sk)

From ρ(k1, . . . , kn) follows that there is a symbolic table s ∈M(L1, . . . , Lm)
such that |s|Li

= ki for each Li ∈ {L1, . . . , Lm }. From formula (9) and

pL1 ∪ . . . ∪ pLm = P1∪̇ . . . ∪̇Ps ∧
s∧
i=1

Pi ⊆ pLσ(i)
∧

s∧
i=1

|Pi| = kσ(i)

follows that we can replace the formulae Li occurring in the symbolic table s
by the bit-strings representing the elementary Venn regions to which the indices
of the sets Pi belong. Moreover, thanks to the condition ∪Ni=1pβi

= ∪̇si=1Pi, it
follows that we can replace the letters Li by the bit-strings βi. In this way, we

20

obtain a table τ ∈M(L1, . . . , Lm). We then define the corresponding word over

D, thanks to the property
∧N
i=1 ∃d.ϕβi(d). To conclude, note that:

{ n ∈ {0, 1}∗ | τj(n) } = ∪{ i | βi(j)=1 }Pi = { n ∈ {0, 1}∗ | ϕj(d(n)) }

Thus, we have that formula (7) is satisfied by the set variables

Sj := { n ∈ {0, 1}∗ | τj(n) } = { n ∈ {0, 1}∗ | ϕj(d(n)) }

We can thus formulate the analogous to Corollary 1 in the case of finite
symbolic automata with cardinalities.

Corollary 2. Let Th∃∗(D) be the existential first-order theory of the formulae
used in the transitions of a symbolic finite automaton with cardinality con-
straints.

• If Th∃∗(D) ∈ P then L(M) ̸= ∅ ∈ NP.

• If Th∃∗(D) ∈ C for some C ⊇ NP then L(M) ̸= ∅ ∈ C.

Proof. As in Corollary 1.

7 Conclusion

We have revisited the model of symbolic tree automata as it was introduced
in [35]. We have obtained tight complexity bounds on their non-emptiness prob-
lem. Our methodology follows the Feferman-Vaught decomposition technique in
that it reduces the non-emptiness problem of the automaton to the satisfiability
problem of the existential first-order theory of the characters accepted by the
automaton and the satisfiability problem of the existential monadic second-order
theory of the indices.

To combine these two distinct theories we use the ideas from the combina-
tion method through sets and cardinalities of Wies, Piskac and Kunčak [40] and
the computation of an equivalent linear-sized existentially quantified Presburger
arithmetic formula from the Parikh image of a regular tree language. The latter
combines two observations. The first observation by Klaedtke and Rueß [25] con-
nects this problem with the computation of the Parikh image of a context-free
grammar. The second observation by Verma, Seidl and Schwentick [38] allows
to compute the Parikh image of a context-free grammar in term of a linear-sized
Presburger arithmetic formula. A crucial step in the proofs is a partitioning ar-
gument for the underlying Venn regions. We profit from the analysis in [28] to
extend our arguments to the satisfiability problem of finite symbolic automata
that consider linear arithmetic restrictions over the cardinalities of the Boolean
algebra associated with the symbolic finite automaton.

In future work, we plan to extend our methods to other variants of symbolic
automata to which we believe similar techniques may be applicable. Another

21

interesting research direction would be to consider extensions of the language
that allow free variables in set interpretations of the form (1), which seems to
have applications to various satisfiability problems.

References

[1] Alberti, F., Ghilardi, S., Pagani, E.: Cardinality constraints for arrays
(decidability results and applications). Formal Methods in System De-
sign 51(3), 545–574 (Dec 2017). https://doi.org/10.1007/s10703-017-0279-
6, https://doi.org/10.1007/s10703-017-0279-6

[2] Argyros, G., D’Antoni, L.: The Learnability of Symbolic Automata. In:
Computer Aided Verification, vol. 10981, pp. 427–445. Springer Interna-
tional Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-96145-
3 23, http://link.springer.com/10.1007/978-3-319-96145-3_23, se-
ries Title: Lecture Notes in Computer Science

[3] Behmann, H.: Beiträge zur Algebra der Logik, insbesondere zum
Entscheidungsproblem. Mathematische Annalen 86(3), 163–229 (Sep
1922). https://doi.org/10.1007/BF01457985, https://doi.org/10.1007/
BF01457985

[4] Bryant: Graph-Based Algorithms for Boolean Function Manipula-
tion. IEEE Transactions on Computers C-35(8), 677–691 (Aug 1986).
https://doi.org/10.1109/TC.1986.1676819, conference Name: IEEE Trans-
actions on Computers

[5] Bès, A.: An Application of the Feferman-Vaught Theorem to Automata
and Logics for Words over an Infinite Alphabet. Logical Methods in
Computer Science 4(1), 8 (Mar 2008). https://doi.org/10.2168/LMCS-
4(1:8)2008, https://lmcs.episciences.org/1202

[6] Büchi, J.R.: Weak Second-Order Arithmetic and Finite Au-
tomata. Mathematical Logic Quarterly 6(1-6), 66–92 (1960).
https://doi.org/10.1002/malq.19600060105

[7] Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Loding,
C., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications
(2008)

[8] D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In:
Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages. pp. 541–553. POPL ’14, Associ-
ation for Computing Machinery, New York, NY, USA (Jan 2014).
https://doi.org/10.1145/2535838.2535849, https://dl.acm.org/doi/10.
1145/2535838.2535849

22

https://doi.org/10.1007/s10703-017-0279-6
http://link.springer.com/10.1007/978-3-319-96145-3_23
https://doi.org/10.1007/BF01457985
https://doi.org/10.1007/BF01457985
https://lmcs.episciences.org/1202
https://dl.acm.org/doi/10.1145/2535838.2535849
https://dl.acm.org/doi/10.1145/2535838.2535849

[9] D’Antoni, L., Veanes, M.: Minimization of Symbolic Tree Automata.
In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science. pp. 873–882. ACM, New York NY USA (Jul 2016).
https://doi.org/10.1145/2933575.2933578, https://dl.acm.org/doi/10.
1145/2933575.2933578

[10] D’Antoni, L., Veanes, M.: The power of symbolic au-
tomata and transducers. In: Proceedings 29th Interna-
tional Conference on Computer Aided Verification (Jul 2017),
https://www.microsoft.com/en-us/research/publication/

power-symbolic-automata-transducers-invited-tutorial/

[11] D’Antoni, L., Veanes, M.: Automata modulo theories. Communications
of the ACM 64(5), 86–95 (May 2021). https://doi.org/10.1145/3419404,
https://dl.acm.org/doi/10.1145/3419404

[12] D’Antoni, L., Veanes, M., Livshits, B., Molnar, D.: Fast: A
Transducer-Based Language for Tree Manipulation. ACM Transac-
tions on Programming Languages and Systems 38(1), 1:1–1:32 (Oct
2015). https://doi.org/10.1145/2791292, https://dl.acm.org/doi/10.

1145/2791292

[13] Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Model Theory
Makes Formulas Large. In: Arge, L., Cachin, C., Jurdziński, T., Tar-
lecki, A. (eds.) Automata, Languages and Programming. pp. 913–924.
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73420-8 78

[14] Doner, J.: Tree acceptors and some of their applications. Jour-
nal of Computer and System Sciences 4(5), 406–451 (Oct
1970). https://doi.org/10.1016/S0022-0000(70)80041-1, https:

//www.sciencedirect.com/science/article/pii/S0022000070800411

[15] D’Antoni, L., Veanes, M.: Extended symbolic finite automata and
transducers. Formal Methods in System Design 47(1), 93–119 (Aug
2015). https://doi.org/10.1007/s10703-015-0233-4, https://doi.org/10.
1007/s10703-015-0233-4

[16] Eilenberg, S., Elgot, C.C., Shepherdson, J.C.: Sets recog-
nized by n-tape automata. Journal of Algebra 13(4), 447–464
(Dec 1969). https://doi.org/10.1016/0021-8693(69)90107-0, https:

//www.sciencedirect.com/science/article/pii/0021869369901070

[17] Eisenbrand, F., Shmonin, G.: Carathéodory bounds for inte-
ger cones. Operations Research Letters 34(5), 564–568 (Sep 2006).
https://doi.org/10.1016/j.orl.2005.09.008, https://doi.org/10.1016/j.

orl.2005.09.008

23

https://dl.acm.org/doi/10.1145/2933575.2933578
https://dl.acm.org/doi/10.1145/2933575.2933578
https://www.microsoft.com/en-us/research/publication/power-symbolic-automata-transducers-invited-tutorial/
https://www.microsoft.com/en-us/research/publication/power-symbolic-automata-transducers-invited-tutorial/
https://dl.acm.org/doi/10.1145/3419404
https://dl.acm.org/doi/10.1145/2791292
https://dl.acm.org/doi/10.1145/2791292
https://www.sciencedirect.com/science/article/pii/S0022000070800411
https://www.sciencedirect.com/science/article/pii/S0022000070800411
https://doi.org/10.1007/s10703-015-0233-4
https://doi.org/10.1007/s10703-015-0233-4
https://www.sciencedirect.com/science/article/pii/0021869369901070
https://www.sciencedirect.com/science/article/pii/0021869369901070
https://doi.org/10.1016/j.orl.2005.09.008
https://doi.org/10.1016/j.orl.2005.09.008

[18] Feferman, S., Vaught, R.: The first order properties of products of algebraic
systems. Fundamenta Mathematicae 47(1), 57–103 (1959)

[19] Figueira, D., Lin, A.W.: Reasoning on Data Words over Numeric Do-
mains. In: Proceedings of the 37th Annual ACM/IEEE Symposium on
Logic in Computer Science. pp. 1–13. ACM, Haifa Israel (Aug 2022).
https://doi.org/10.1145/3531130.3533354, https://dl.acm.org/doi/10.
1145/3531130.3533354

[20] Fisman, D., Frenkel, H., Zilles, S.: On the Complexity of Symbolic
Finite-State Automata (Jul 2021), http://arxiv.org/abs/2011.05389,
arXiv:2011.05389 [cs]

[21] Fülöp, Z., Vogler, H.: Forward and backward application of sym-
bolic tree transducers. Acta Informatica 51(5), 297–325 (Aug 2014).
https://doi.org/10.1007/s00236-014-0197-7, https://doi.org/10.1007/

s00236-014-0197-7

[22] Hodges, W.: Model Theory. Encyclopedia of Mathematics and its Appli-
cations, Cambridge University Press, Cambridge (1993)

[23] Hooimeijer, P., Livshits, B., Molnar, D., Saxena, P., Veanes, M.: Fast
and Precise Sanitizer Analysis with BEK. In: 20th USENIX Conference
on Security. USENIX Association, San Francisco, CA, Berkeley CA, USA
(2011)

[24] Hu, Q., D’Antoni, L.: Automatic program inversion using symbolic trans-
ducers. In: Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. pp. 376–389. PLDI 2017,
Association for Computing Machinery, New York, NY, USA (Jun 2017).
https://doi.org/10.1145/3062341.3062345, https://dl.acm.org/doi/10.
1145/3062341.3062345

[25] Klaedtke, F., Rueß, H.: Parikh Automata and Monadic Second-Order Log-
ics with Linear Cardinality Constraints. Tech. Rep. 177, Freiburg Univer-
sity, Institute of Computer Science (2002)

[26] Kleene, S.C.: Representation of Events in Nerve Nets and Fi-
nite Automata. In: Representation of Events in Nerve Nets and
Finite Automata, pp. 3–42. Princeton University Press (1956).
https://doi.org/10.1515/9781400882618-002, https://www.degruyter.

com/document/doi/10.1515/9781400882618-002/html

[27] Kunčak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra
with Presburger Arithmetic. Journal of Automated Reasoning 36(3),
213–239 (Apr 2006). https://doi.org/10.1007/s10817-006-9042-1, https:

//doi.org/10.1007/s10817-006-9042-1

24

https://dl.acm.org/doi/10.1145/3531130.3533354
https://dl.acm.org/doi/10.1145/3531130.3533354
http://arxiv.org/abs/2011.05389
https://doi.org/10.1007/s00236-014-0197-7
https://doi.org/10.1007/s00236-014-0197-7
https://dl.acm.org/doi/10.1145/3062341.3062345
https://dl.acm.org/doi/10.1145/3062341.3062345
https://www.degruyter.com/document/doi/10.1515/9781400882618-002/html
https://www.degruyter.com/document/doi/10.1515/9781400882618-002/html
https://doi.org/10.1007/s10817-006-9042-1
https://doi.org/10.1007/s10817-006-9042-1

[28] Kunčak, V., Rinard, M.: Towards Efficient Satisfiability Checking for
Boolean Algebra with Presburger Arithmetic. In: Automated Deduction
– CADE-21. pp. 215–230. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3 15

[29] Löwenheim, L.: Über Möglichkeiten im Relativkalkül. Mathematische An-
nalen 76(4), 447–470 (Dec 1915). https://doi.org/10.1007/BF01458217,
https://doi.org/10.1007/BF01458217

[30] Raya, R., Kunčak, V.: NP Satisfiability for Arrays as Powers. In: Veri-
fication, Model Checking, and Abstract Interpretation. pp. 301–318. Lec-
ture Notes in Computer Science, Springer International Publishing, Cham
(2022). https://doi.org/10.1007/978-3-030-94583-1 15

[31] Saarikivi, O., Veanes, M., Mytkowicz, T., Musuvathi, M.: Fusing effectful
comprehensions. In: Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 17–32. ACM,
Barcelona Spain (Jun 2017). https://doi.org/10.1145/3062341.3062362,
https://dl.acm.org/doi/10.1145/3062341.3062362

[32] Saarikivi, O., Veanes, M., Wan, T., Xu, E.: Symbolic Regex Matcher.
In: Tools and Algorithms for the Construction and Analysis of Sys-
tems: 25th International Conference, TACAS 2019, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6–11, 2019, Proceed-
ings, Part I. pp. 372–378. Springer-Verlag, Berlin, Heidelberg (Apr
2019). https://doi.org/10.1007/978-3-030-17462-0 24, https://doi.org/

10.1007/978-3-030-17462-0_24

[33] Skolem, T.: Untersuchungen über die Axiome des Klassenkalküls und über
Produktations- und Summationsprobleme, welche gewisse Klassen von Aus-
sagen betreffen (1919)

[34] Tamm, H., Veanes, M.: Theoretical Aspects of Symbolic Automata.
In: SOFSEM 2018: Theory and Practice of Computer Science, vol.
10706, pp. 428–441. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-319-73117-9 30, http://link.springer.

com/10.1007/978-3-319-73117-9_30, series Title: Lecture Notes in
Computer Science

[35] Veanes, M., Bjørner, N.: Symbolic tree automata. Infor-
mation Processing Letters 115(3), 418–424 (Mar 2015).
https://doi.org/10.1016/j.ipl.2014.11.005, https://www.sciencedirect.

com/science/article/pii/S0020019014002555

[36] Veanes, M., Bjørner, N., Nachmanson, L., Bereg, S.: Monadic
Decomposition. Journal of the ACM 64(2), 1–28 (Apr 2017).
https://doi.org/10.1145/3040488, https://dl.acm.org/doi/10.1145/

3040488

25

https://doi.org/10.1007/BF01458217
https://dl.acm.org/doi/10.1145/3062341.3062362
https://doi.org/10.1007/978-3-030-17462-0_24
https://doi.org/10.1007/978-3-030-17462-0_24
http://link.springer.com/10.1007/978-3-319-73117-9_30
http://link.springer.com/10.1007/978-3-319-73117-9_30
https://www.sciencedirect.com/science/article/pii/S0020019014002555
https://www.sciencedirect.com/science/article/pii/S0020019014002555
https://dl.acm.org/doi/10.1145/3040488
https://dl.acm.org/doi/10.1145/3040488

[37] Veanes, M., de Halleux, P., Tillmann, N.: Rex: Symbolic Regular
Expression Explorer. In: Verification and Validation 2010 Third In-
ternational Conference on Software Testing. pp. 498–507 (Apr 2010).
https://doi.org/10.1109/ICST.2010.15, iSSN: 2159-4848

[38] Verma, K.N., Seidl, H., Schwentick, T.: On the Complexity of Equa-
tional Horn Clauses. In: Automated Deduction – CADE-20. vol. 3632,
pp. 337–352. Springer Berlin Heidelberg, Berlin, Heidelberg (2005).
https://doi.org/10.1007/11532231 25

[39] Watson, B.W.: Implementing and using finite automata toolk-
its. Natural Language Engineering 2(4), 295–302 (Dec 1996).
https://doi.org/10.1017/S135132499700154X, publisher: Cambridge
University Press

[40] Wies, T., Piskac, R., Kunčak, V.: Combining Theories with Shared
Set Operations. In: Frontiers of Combining Systems. pp. 366–382. Lec-
ture Notes in Computer Science, Springer, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04222-5 23

26

	Introduction
	Symbolic Tree Automata (STA)
	Decomposition through Shared Set Variables
	Decision Procedure for Non-Emptiness
	Quantifier-free Boolean Algebra with Presburger Arithmetic
	Decision Procedure for Non-Emptiness with Cardinalities
	Conclusion

