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O R I G I N A L  A R T I C L E

Identifying Aerodynamics of Small Fixed-Wing Drones 
Using Inertial Measurements for Model-Based Navigation

Aman Sharma  Gabriel François Laupré  Jan Skaloud

1  INTRODUCTION

In the past, drones have been predominantly used by the military to ascertain 
several safeguards pertinent to national security. However, the past two decades 
have experienced a dramatic technological boom in the fields of robotics, computer 
vision, and deep learning, which has consequently opened the doors to innovation 
in the way drones are being utilized today and their plausible usage in the future. 
Non-military applications of drones include the fields of healthcare (Hiebert et al., 
2020), cinematography (Alcántara et al., 2020), geographic mapping (Cledat et al., 
2020), disaster management (Erdelj et al., 2017), precision agriculture (Puri et al., 
2017), search and rescue (Hayat et al., 2020), weather forecast (Leuenberger et al., 
2020), wildlife monitoring (Hodgson et al., 2018), entertainment (Kim et al., 2018), 
and more. In this article, we envisage addressing the notion of navigation safety 
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Abstract
The success of drone missions is incumbent on an accurate determination of 
the drone pose and velocity, which are collectively estimated by fusing iner-
tial measurement unit and global navigation satellite system (GNSS) mea-
surements. However, during a GNSS outage, the long-term accuracy of these 
estimations are far from allowing practical use. In contrast, vehicle dynamic 
model (VDM)-based navigation has demonstrated significant improvement in 
autonomous positioning during GNSS outages. This improvement is achieved 
by incorporating mathematical models of aerodynamic forces/moments in the 
sensor fusion architecture. Such an approach, however, relies on a knowledge 
of aerodynamic model parameters, specific to the operating vehicle. We present 
a novel calibration algorithm to identify these parameters from the flight data 
of two geometrically different drones. The identified parameters, when used in 
the VDM framework, show a significant reduction in navigation drift during 
GNSS outages. Moreover, the obtained results show that the proposed algorithm 
is independent of the choice of fixed-wing platform and prior knowledge of 
aerodynamics.

Keywords
extended Kalman filter, observability Gramian, partial update, recursive least 
squares, Schmidt–Kalman filter

mailto:aman.sharma@epfl.ch


SHARMA et al.

(in terms of pursuing a programmed path with better tolerance to the absence of a 
global navigation satellite system [GNSS]) using fixed-wing drones without depen-
dence on illumination conditions (i.e., a vision system), as may be required for 
certain beyond-visual-line-of-sight missions.

The majority of aerial navigation systems are based on the integration of an iner-
tial navigation system (INS) and GNSS (Bryson & Sukkarieh, 2015; Nonami et al., 
2010). GNSS provides position/velocity/time data at a low frequency, whereas INS 
facilitates position/velocity/attitude (PVA) data at a high frequency. The fusion 
of data outputs from these two systems provides a navigation solution (position/
velocity/attitude/time [PVAT]) with sufficient short-term and long-term accuracy. 
However, during a GNSS outage, this solution is based solely on INS in the horizon-
tal direction, while the vertical channel can be bounded by a barometer. The accu-
racy of such a solution, based on dead reckoning, is predominantly dictated by the 
quality of the inertial measurement unit (IMU). For small drones, the long-term 
accuracy of this solution is so low that the position uncertainty after 1 min of GNSS 
outage is far from allowing practical utility.

Vehicle dynamic model (VDM)-based navigation systems (Khaghani & Skaloud, 
2018; Laupré et al., 2021) have demonstrated significant mitigation of drift in 
autonomous positioning during GNSS outages. This mitigation is achieved by 
incorporating mathematical models of aerodynamic forces and moments (expe-
rienced by the drone) in the sensor fusion framework. These models play a key 
role in implicitly rejecting physically impossible movements suggested by the IMU 
(Khaghani & Skaloud, 2016, 2018). The aerodynamic model proposed in Ducard 
(2009) has been widely used in recent works (Khaghani & Skaloud, 2018; Laupré 
et al., 2019; Laupré & Skaloud, 2020, 2021; Mwenegoha et al., 2019a, 2019b, 2020, 
2021) involving VDM for a fixed-wing drone, whereas Laupré et al. (2021) proposed 
an aerodynamic model for a delta-wing platform. We make use of these same func-
tional models to evaluate the performance of our calibration strategy in a compa-
rable setting. We refer the readers to Sendobry (2014), Cork (2014), and Khaghani 
(2018) for an extensive review of the usage of VDM in the domain of navigation.

The aforementioned aerodynamic models contain certain constant—yet 
unknown—parameters that are specific to the operating platform. Development 
of a (flight) data-driven methodology for estimating these unknown parameters is 
an attractive and inexpensive alternative to computational fluid dynamics (CFD) 
and wind tunnel testing (Dsouza et al., 2016; Schwithal et al., 2016; Wisnoe et al., 
2009) and motivates further exploration of the potential of such an alternative. 
The existing flight-data-based method, as detailed in Laupré & Skaloud (2021) 
and Khaghani & Skaloud (2018), makes use of an extended Kalman filter (EKF) 
to simultaneously estimate all of these parameters in addition to the wind and 
navigation states as part of a state-space framework. This approach has two major 
drawbacks: i) the auxiliary states representing the model parameters require a good 
initial guess to prevent filter divergence (due to nonlinearity and observability) and 
ii) the simultaneous estimation causes some of the states to compensate for oth-
ers (Laupré & Skaloud, 2021). Existing works do not detail how these parameters 
are initialized. It seems that some prior knowledge, or a guess, is indeed used to 
find the first set of working parameters and/or zero-wind conditions are expected. 
These parameters, based on prior knowledge, are later refined and tuned using 
different methodologies presented in Khaghani (2018), Laupré & Skaloud (2021), 
and Laupré et al. (2021) for obtaining better results.

In Khaghani & Skaloud (2018), the authors argue that for the purpose of naviga-
tion, in-flight estimation of parameters is sufficient to improve autonomous posi-
tioning compared with inertial coasting while minimizing design effort. However, 
they also assert that these parameters are practically constant and that they can be 
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better estimated in a calibration scenario. In Laupré & Skaloud (2021), a calibration 
scenario is created by utilizing post-processed kinematic (PPK) GNSS data as com-
pared with standalone data. Additionally, precise observations of absolute attitude 
are incorporated using an external camera and photogrammetry. The obtained 
parameters from the calibration scenario are then used to initialize the EKF in a 
test flight executing the VDM-based navigation algorithm (Khaghani & Skaloud, 
2018), yielding better results.

The above-described existing approaches to aerodynamic calibration have con-
tributed significantly toward improving the quality of model-based navigation. 
However, these approaches rely heavily on a priori estimates of model parameters 
and do not provide a definite answer as to how to initialize these parameters for a 
new platform. Moreover, the reliance of these approaches on a state-space frame-
work that simultaneously estimates the model parameters (alongside navigation 
states, wind, sensor biases, etc.) causes the different elements of the state vector 
to compensate for each other (Laupré & Skaloud, 2021). We view this simulta-
neous estimation structure as a conjunction of nuisance states (constant model 
parameters and time-varying wind) and states of importance (navigation states). 
In Brink (2017), the authors point out that nuisance states are usually only mildly 
observable, and estimating them in the traditional sense may often cause filter 
divergence. The authors also question the existence of sufficient unique informa-
tion in a given set of measurements such that the update of a nuisance state is not 
correlated to any other state. The existing VDM-based navigation methodology is 
composed of a multitude of states (47 or more), making it challenging to analyze 
the uniqueness of the information brought in by each measurement. Therefore, 
we propose a methodology to first decouple the estimation of the wind velocity 
and the parameters associated with aerodynamic moments and forces. Secondly, 
we analyze the uniqueness of information associated with each measurement 
by developing a heuristic approach based on the observability Gramian (Chen, 
1999). Thereafter, we utilize a Schmidt–Kalman filter framework to update most 
observable parameters within nuisance states to obtain a sufficiently good a priori 
estimate of model parameters. Finally, we validate the proposed methodology 
using the VDM-based navigation framework, wherein we use the calibrated model 
parameters to either i) initialize the EKF and fine-tune the parameters in-flight 
or ii) keep the parameters fixed and not estimate them in-flight while adding a 
new (scale) state to compensate for different weather conditions. The proposed 
method is found to be independent of the choice of drone and the shape of its 
wings, allowing for a set of aerodynamic coefficients to be estimated with limited 
prior knowledge of the platform.

The remainder of the article is organized as follows: Section 2 discusses the rele-
vant mathematical background for a general understanding of the VDM. Section 3 
is dedicated to the proposed decoupled aerodynamic calibration algorithm. Then, 
Section 4 details the experimental setup, followed by the obtained results and a dis-
cussion in Section 5 and Section 6, respectively. Finally, we conclude our findings 
in Section 7.

2  BACKGROUND

In this section, we review the relevant theoretical framework pertinent to our 
work. We begin with commonly used estimators: recursive least squares (RLS), 
Kalman filter, and Schmidt–Kalman variant. Secondly, we discuss the VDM and 
its incorporation into a sensor fusion architecture for two drones, and finally, we 
review a drone-based wind estimation methodology.
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2.1  Linear Estimators

Let x∈n  be the state vector and z∈p  be the vector of measurements (or 
observations).

2.1.1  RLS

Let Equation (1) describe the observation model:

 z H x vk k k k� �  (1)

where H v� �� p n p,  denotes white noise with covariance R  and  
k∈ { , , , }.0 1 2   The state estimate ˆ( )x  and its covariance (P) after each 
observation ( )k  are given by the following set of recursive equations:

 K P H H P H Rk k k
T

k k k
T

k� �� �
�

1 1
1( )  (2)

 1 1(ˆ ˆ ˆ )k k k k k k− −= + −x x K z H x  (3)

 P I K H Pk k k k� � �( ) 1  (4)

2.1.2  Kalman Filter

In addition to the aforementioned observation model in Equation (1), let the 
process model (or linearized state dynamics) be characterized by the following dif-
ference equation:

 x F x wk k k k� �� �1 1  (5)

where F� �n n  and w∈n  denote white noise with covariance Q. Then, the state 
estimate and its covariance are given by the following set of recursive equations in 
two phases: prediction and update. Prediction involves the following operations:

 1 1ˆk k k− −=x F x  (6)

 1 1 1
ˆ T

k k k k k− − −= +P F P F Q  (7)

For the update, Kk  follows Equation (2) with 1 ˆ,k k k− ←P P x  follows Equation (3) 
with 1 ,ˆ k k− ←x x  and ˆ

kP  follows Equation (4) with P Pk k� �1
 .  It can be seen that 

these equations are similar to that of RLS (wherein there are no state dynamics). 
An RLS estimator is a Kalman filter with F I=  and Q = 0  (deterministic process).

2.1.3  Schmidt–Kalman Filter

Continuing with the Kalman filter framework, let � c �[ , ]0 1  and:

 
ˆ ˆˆ ˆˆ and ˆ ˆˆ

i ii ic

c ci cc

  
= =   

     

x P P
x P

x P P
 (8)
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with superscripts c  and i  denoting the considered (or nuisance) states and 
states of importance, respectively. Then, the estimated value and covariance of 
considered states are governed by the following equations in the update steps:

 ( )ˆ ˆ1c c c
c cγ γ← + −x x x  (9)

 2 2ˆ ˆ(1 )cc cc cc
c cγ γ← + −P P P  (10)

2.2  VDM-Based Navigation System

This section summarizes the paradigm of drone navigation based on the VDM. 
We refer the readers to Khaghani & Skaloud (2016) and Khaghani & Skaloud (2018) 
for further details.

2.2.1  From Inertial to VDM-Based Navigation

A classical sensor fusion architecture, based on an EKF, estimates the navigation 
states by combining an INS, GNSS, and/or other sensors. The INS governs the state 
dynamics (process model), whereas GNSS data are treated as a measurement (or 
observation). Let xn  represent the PVA navigation states of the drone; then, the 
process model is of the following form:

 x f x z zn n a� ( , , )�  (11)

where za  and zω  are accelerometer and gyroscope measurements. It should be 
noted that these measurements directly serve as forcing inputs of the above dif-
ferential equation (Equation (11)). However, a VDM-based process model incor-
porates mathematical models of aerodynamic forces and moments experienced 
by the drone instead of directly using raw inertial measurements. Let xn  be the 
position, velocity, attitude, and angular velocity of the drone (13 states with atti-
tude representation in quaternion); then, the VDM-based process model is of the 
following form:

 x f x x x un n p w= ( , , , )  (12)

where xp ��  denotes the vector of aerodynamic model parameters, with � � �
denoting the number of aerodynamic model parameters. It should be noted that 
ζ  depends on the drone platform and its aerodynamics. Generally speaking, 
x C Cp � �� ��f

T
m
T T

,  where C Cf m,  denote force and moment parameters, respec-
tively. For a conventional fixed-wing drone, these parameters are later defined 
in Equation (36) and Equation (38), thereby yielding � � 21.  However, for a 
delta-wing platform, � � 44.  xw ∈3  denotes the wind velocity in the naviga-
tion frame, and u∈v  denotes autopilot control commands, with v  denoting the 
number of independent actuators on the drone platform. For a fixed-wing plat-
form, the control commands consist of the propeller, ailerons, elevators, and rud-
der, thereby yielding v = 4.  However, for a delta-wing platform, v = 3.

It should be noted that the autopilot commands and wind serve as the forcing 
inputs of the above differential equation (Equation (12)). The IMU is treated as 
an external measurement in addition to GNSS and possibly other sensors (if avail-
able). As the model parameters xp  and wind xw  are a priori unknown, they are 
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estimated as part of the augmented state simultaneously alongside the navigation 
states. Auxiliary states modeling accelerometer and gyroscope biases xe  are also 
added to the complete state vector. The dimensionality of state space for the two 
platforms is presented in Table 1 (based on the implementation of Khaghani & 
Skaloud (2018) and Laupré et al. (2021)). It is very evident that the dimension of 
the VDM-based navigation filter (47 or 69 when the parameters are not fixed) is 
much larger than that of the conventional INS/GNSS system (16 or 22 based on 
Tomé et al. (2000)). Later, in this article, we discuss the possibility of reducing the 
dimensionality of the state vector. The dimension of this reduced state vector can 
be inferred from Table 1 under the header “Fixed.”

2.2.2  VDM

Two fixed-wing platforms are used in this study. The first platform, TP2, is a 
custom-made fixed-wing drone of a conventional shape (see Figure 1). The second 
platform, eBeeX, is a commercially available delta-wing platform (see Figure 2).

2.2.2.1  TP2

The aerodynamic model presented by Equation (13)–Equation (19) (Ducard, 
2009) is used for the conventional fixed-wing drone:

 F n D C C J C JT
b

F F FT T T
� � �� �� 2 4

1 2 3
2  (13)

 F qS C C C Cx
w

F F F Fx x x x
� � � �� �1 2

2
2

2
� � �� � �  (14)

 F qS Cy
w

Fy
� � �1�  (15)

 F qS C Cz
w

F Fz z
� �� �1 ��  (16)

 M qSb C C C Cx
b

M a a M M x M zx x x x x z
� � � �� �� � � �� � � 

   (17)

 M qSc C C C Cy
b

M M e e M y My y y y y
� � � �� �1 � � �� �

  (18)

 M qSb C C Cz
b

M r M z Mz r z z z
� � �� �� � �� � �



  (19)

TABLE 1
Dimensionality of State Space

Non-fixed Fixed

Drone TP2 eBeeX TP2 eBeeX

Navigation 13 13 13 13

Parameters 21 44 1 1

Actuators 04 03 04 03

Wind 03 03 03 03

Bias 06 06 06 06

Total 47 69 27 26
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where FTb  denotes the thrust force and F Fx
w

y
w, ,  and Fzw  denote drag, lateral, and 

lift forces. M Mx
b

y
b, ,  and Mz

b  denote aerodynamic moments. b S c, , ,  and D  are 
the wing span, wing surface, mean aerodynamic chord, and propeller diameter, 
respectively. These quantities are summarized in Table 2 under the header “TP2.” 
The air density is denoted by ρ,  whereas q  is the dynamic pressure defined as 
ρV 2 2/ , with V  denoting the airspeed given by V g w� �|| ||v x .  Here, v g  denotes 
the ground velocity of the drone in the navigation frame. In contrast, the vector 
entity Vb x y z T

g
b

w
bV V V� � �[ ]   v x  denotes the relative velocity of the drone with 

respect to the wind in the body frame. α  and β  denote the angle of attack and side 
slip, respectively, and are computed using the following trigonometric equations: 
� � arctan V

V
z

x  and � � arcsin V
V
y .  J is defined as V D n/( )π ,  with n  denoting the 

propeller rotation speed. The non-dimensional angular velocities are defined as 
 � � � �x x y yb V c V� �/( ), /( )2 2 ,  and � �z zb V� /( )2 ,  where [ ]ω ω ωx y z

T  denotes 
the angular velocity of the drone with respect to the navigation frame. The deflec-
tions of the control surfaces (i.e., aileron, elevator, and rudder) are denoted by 
δ δa e, ,  and δr ,  respectively. Finally, the aerodynamic model parameters are repre-
sented by C  in Equation (13)–Equation (19).

TABLE 2
Vehicle Parameters

Parameter Notation TP2 eBeeX Units

Wing span b 1.63 1.17 m

Wing surface S 0.3439 0.32 m2

Mean aerodynamic chord c 0.225 0.295 m

Propeller diameter D 0.362 0.23 m

Mass m0 2.771 1.45 kg

FIGURE 1 Three-dimensional model of TP2

FIGURE 2 eBeeX
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2.2.2.2  eBeeX

The aerodynamic model for the delta-wing drone (Laupré et al., 2021) is charac-
terized by Equation (20)–Equation (25) for force and moment coefficients.

 C C C C C C CF F F F F F e Ax x x x x x e Fx
� � � � � �

0 2

2
� � � �
� � � � ��  (20)

 C C C C a CF F F F Ay y y y a Fy
� � � �

� � �
� � �

2

2 ��  (21)

 C C C C C C CF F F F F F e Az z z z z z e Fz
� � � � � �

0 2

2
� � � �
� � � � ��  (22)

 C C C C CM M M M a Ax x x x a Mx
� � � �

� � �
� � �

2

2 ��  (23)

 C C C C C CM M M M M e Ay y y y y My
� � � � �

0 2

2
� � �
� � � ��  (24)

 C C C C CM M M M a Az z z z a Mz
� � � �

� � �
� � �

2

2 ��  (25)

Here, � �� � � �
a e

L R L R� �� � �
2 2, ,  and all of the other terms have already been 

defined. It should be noted that a delta-wing drone does not have elevators and 
ailerons typical of a conventional aircraft geometry; rather, it has two indepen-
dent control surfaces commonly referred to as elevons. The elevon deflections are 
denoted by δL  and δR ,  where the subscripts L  and R  denote left and right deflec-
tion, respectively. Additionally, Cθθ  is defined as follows:

 C C C CA A x A y A zi i x i y i z
�� � � �

  

  

� � �
� � �  (26)

with A F M∈ { , }  distinguishing forces from moments and i x y z∈ { , , }  defining the 
three axes. Subsequently, F qSC i x y zi

w
Fi

� � � { , , }  and M qS C j x y zj
b

M j
� � � { , , }  

such that  = b  for j x z∈ { , }  and  = c  for j y∈ { }.  In this way, the force and 
moment equations for eBeeX are similar to Equation (14)–Equation (19). The 
thrust models for both platforms are identical. Physical quantities such as the wing 
surface S, span b, mean aerodynamic chord c ,  and propeller diameter D  are sum-
marized in Table 2 under the header “eBeeX.”

2.2.3  IMU Observation Model

The observation model of the IMU, presented in Khaghani & Skaloud (2018), is 
given by the following set of equations:

 z f r r w

x u x u

f
b

f C

b

f C

bI b b bI f

F w M w

� � � � � � �

� � � �, , , ,
��� �� ��� ��

��� �� ��  (27)

 z w� �� ���b  (28)

where f b  denotes the model of specific force at the center of gravity of the drone, 
ωωb  is the angular velocity of the drone with respect to an inertial frame, ωωb  denotes 
the model of angular acceleration, rbI  denotes the lever arm between the drone’s 
center of gravity and the IMU, and { , }w wf ω  together denote measurement noise. 
The specific force is given as follows:
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 f x u Rb
F w

T
b

b
w T

x
w

y
w

z
w

C
m

F F
F
F

, ,� � �
�

�

�
�
�

�

�

�
�
�
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�

�

�
�
�

�

�

�
�
�

�

�

1 0
00

��
�
��

�

�

�
�
��
;� (29)

with
cos sin
sin cos

cos sin

sin
Rb
w � �

�

�

�
�
�

�

�

�
�
� �

� �
� �

� �

�

0
0

0 0 1

0
0 1 0
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�
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�
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�
�
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�
�
�

 �� �� ��b M w
b

x
b

y
b

z
b

b
b

bC
M
M
M

, , ( )x u I I� � �
�

�

�
�
�

�

�

�
�
�
� �

�

�

�
�
�
�

�

�

�
�
�
�

�1 ,,  (30)

where Ib denotes the inertia tensor and m0 is the drone mass.

2.3  Wind Estimation Based on Vehicle Kinematics

As highlighted in Equation (12), wind serves as one of the forcing inputs of the 
differential equation modeling the VDM state dynamics; therefore, its estimation 
is important for a reliable navigation solution. In this section, we review one of 
the drone-based wind estimation methodologies (Johansen et al., 2015), which 
has been both theoretically and practically validated on three different platforms. 
This methodology is based on the Bucy–Kalman filter (continuous-time coun-
terpart of the discrete-time Kalman filter) and makes use of a Pitot tube as an 
external measurement. Unlike the original work, we choose to present the meth-
odology in discrete time. Let xw ∈3  be the wind velocity in the navigation frame 
and � � �  be the scale factor of the Pitot tube; then, the process model is of the 
following form:

 
x x ww

k

w

k

wk k k

k
w

�

�

�

�
�
�

�

�
�
�
�
�

�
�
�

�

�
�
�
�
�

�
�
�

�

�
�
�

1

1� � �
 (31)

with { , }wwk k
wγ  denoting white noise. The observation model is of the following 

form:

 z v h uk k w k
T

l
b

w k kk k k
� � � �( , )x d R x� �  (32)

where d = [ ],1 0 0  u is the airspeed measured by the Pitot tube, Rl
b  is the rotation 

matrix from the navigation frame to the body frame, z  is the drone’s longitudinal 
velocity, obtained as a result of sensor fusion (INS/GNSS), and v  denotes white 
noise. Incorporation of Equation (31) and Equation (32) as the process and obser-
vation models of the Kalman filter, respectively, yields the wind velocity.

Observability of the system is asserted by computing the observability Gramian 
at the end of the flight by using Equation (33) and finding it to be positive definite:

 W F H HF0
0

( ) ( )k
k

T T�
�
�
�

� �  (33)

It should be noted that F  and H  are generally defined by Equation (5) and 
Equation (1), respectively. In this context, F I=  (deduced from Equation (31)) 
and H d R= [ ]T

l
bu  (deduced from Equation (32)). To ensure observability, the 
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attitude of the drone should not be constant. The results reported in Johansen 
et al. (2015) show that planar wind is estimated with a lower uncertainty than 
vertical wind. This difference is due to prevailing maneuvers in yaw rather than 
in pitch. We refer the readers to any book on advanced systems and control, 
for example, Chen (1999), for an exhaustive description of the observability 
Gramian.

This methodology assumes that the wind varies relatively slowly with respect 
to time. Albeit limited by the rotational movement of the aircraft, these variations 
can be estimated by defining a cut-off frequency in the Kalman gain of the EKF. 
Wind velocity frequencies that are lower than this cut-off frequency are captured, 
whereas the other frequencies are filtered. The authors provide general comments 
on tuning the Kalman filter; however, no systematic methodology is presented, 
suggesting that empirical testing is used in their estimator.

3  DECOUPLED AERODYNAMIC CALIBRATION

We define calibration as the phase wherein aerodynamic model parameters 
are estimated subject to known navigation states xn .  Meanwhile, application is 
defined as the phase wherein navigation states, wind, and possibly other states 
are estimated subject to known (or reasonably known) aerodynamic model 
parameters.

The calibration procedure is premised on the knowledge of navigation states in 
addition to control commands and geometric parameters. The navigation states are 
obtained by employing post-processing differential techniques, based on an opti-
mal (Kalman) smoother, on INS/GNSS data. This approach results in an accuracy 
at the centimeter level for position, 0.01 [m/s] for velocity, and ~ 0.1 [deg] for atti-
tude, as highlighted in many studies, such as Niu et al. (2015). In contrast, control 
commands are logged by the autopilot, and all geometric parameters (including the 
inertia tensor) are known.

Substitution of navigation states, control commands, and geometric parame-
ters in Equation (27) for TP2 results in a nonlinear observation model involving 
aerodynamic model parameters and wind (21 + {3 × number of observations} 
unknowns). Such substitution has no decoupling effect. A similar substitution 
in Equation (30) results in a nonlinear model involving aerodynamic moment 
parameters and wind (11 + {3 × number of observations} unknowns). For such a 
substitution to work, it is assumed that gyroscope measurements can be numer-
ically differentiated. Although this substitution has no decoupling effect, it gives 
credible evidence that if the wind is estimated a priori (e.g., via Johansen et al. 
(2015)), the model in Equation (30) is linear in aerodynamic moment parameters. 
Consequently, if both wind and aerodynamic moment parameters are known, 
then the model in Equation (27) is linear in aerodynamic force parameters. As 
a result, we have three linear and decoupled estimators to collectively carry out 
aerodynamic calibration of drones using inertial data and Pitot tube observations 
(during windy conditions). The calibration strategy is illustrated in Figure 3. In 
the next subsection, we introduce the methodology by first presenting a general 
model structure based on the Schmidt–Kalman filter, which is shown to be the 
same for all three estimators. Secondly, we detail the mathematics associated with 
the estimators for the conventional drone platform. Thirdly, we propose a heu-
ristic based on the observability Gramian to discern the most observable states. 
Finally, we present a calibration algorithm as a combination of the aforemen-
tioned three steps.
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3.1  Generic Model Structure

The process model is of the following form, with w  as the process noise:
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The observation model is of the form given in Equation (1). The previously 
reviewed works (Johansen et al., 2015; Khaghani & Skaloud, 2018) have shown 
that the observability of aerodynamic model parameters and wind is depen-
dent on the trajectory, and hence, they are only mildly observable. Studies from 
Brink (2017) have shown that estimating nuisance states (or mildly observ-
able states) in a traditional setting can impact filter accuracy and consistency. 
Therefore, we make use of a partial-update Schmidt–Kalman filter (PSKF) 
(Brink, 2017), which has been shown to be effective in estimating both constant 
and time-varying nuisance states. The PSKF facilitates a generalized estima-
tion approach wherein only a portion of the traditional full filter update can 
be applied to selected states. In this way, according to observability conditions, 
the nuisance terms can be treated as either full filter states and updated or as 
considered states and not updated. Such a framework has proven to be unbiased 
and consistent (Brink, 2017).

3.2  Estimator I: Wind

As a priori knowledge of wind is a key requirement for linearizing 
Equation (30), we make use of the methodology proposed in Johansen et al. 
(2015) (reviewed in Section 2.3) to estimate the wind. However, as pointed out 
in the original work, the observability of some of the states in Equation (31) 
is dependent on the trajectory (change in attitude); therefore, these states are 
estimated only when observable. This estimation is carried out by making use 
of a PSKF (discussed in Section 3.5), in contrast to the standard Kalman filter 
proposed in Johansen et al. (2015).

FIGURE 3 Calibration procedure as a sequence of three decoupled estimators
IIR: infinite impulse response.
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3.3  Estimator II: Moments

By substituting formerly obtained wind-related entities ( ,� � ,  and V ) and 
moments (from Equation (17)–Equation (19)) in Equation (30) for TP2 and then 
rearranging, the following observation model is obtained:

 z v H Cm m m m� � with  (35)
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vm denotes white noise, and ωωb  is obtained by employing a high-order (e.g., 
eighth-order in our case) differentiator on a sequence of gyroscopic observations 
in which deterministic errors have been removed (from pre-calibration and INS/
GNSS integration). Such a differentiator is, for instance, designed using the Parks–
McClellan algorithm1 (based on the Remez exchange algorithm and Chebyshev 
approximation theory). It should be noted that the quantities ( ,� � ,  and V)  
required to identify Cm  in Equation (35) are taken from estimator I.

The process model is as given in Equation (34). This model results in an 11 11×  
process-noise covariance matrix, which is non-trivial to tune practically. Moreover, 
as model parameters associated with aerodynamic moments are practically con-
stant ( )( )Cm t = 0  (Khaghani & Skaloud, 2018), the complexity of the estimator 
is reduced by design by setting the process noise to zero. This effectively turns 
the Kalman filter into an RLS moment parameter estimator. It should be noted 
that white noise can also be used; however, selecting its form and strength is not 
straightforward and requires adaptation to the stability of the meteorological con-
ditions. In the end, we employ a partial-update framework to address observability 
concerns (as discussed in Section 3.5).

3.4  Estimator III: Forces

By substituting previously estimated wind and moment parameters in 
Equation (27) for TP2 and then rearranging, the observation model is obtained:

 � � �z v H Cf f f f �with� (37)
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1https://ch.mathworks.com/help/signal/ref/firpm.html

https://ch.mathworks.com/help/signal/ref/firpm.html
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where m0  is the mass of the drone, z f  is the accelerometer reading, 
M vb

x
b

y
b

z
b T

fM M M� �� �� ,  denotes white noise, and the other terms are already 
defined. The process model is as given in Equation (34). Following the same rea-
soning as in the estimation of moment parameters, the process noise is chosen to be 
zero. This corresponds to an RLS force parameter estimator with a partial-update 
framework. Again, the entities ( , , , )C Vm � �  needed to identify C f  are taken from 
the two previous estimators.

3.5  Heuristic of Uniqueness

In the previous subsections, we presented process and observation models of 
three decoupled linear estimators. Now, we introduce a heuristic to segregate the 
system state of these estimators into nuisance and observable states so as to carry 
out partial updates. We take inspiration from Johansen et al. (2015), wherein the 
observability of wind is evaluated only at the end of the trajectory by computing 
the observability Gramian and finding it to be full rank. This metric asserts that 
the system is observable at the end; however, it does not convey any information 
regarding the specific states that are observable or precisely when they are observ-
able. We address these questions using the following empirical approach. 

For the chosen generic model structure, applicable to all three estimators (wind, 
moments, and forces), with F I= ,  the observability Gramian can be computed after 
each observation by the following recursive summation of the normal equation:

 W W H H0 0 1( ) ( )k k k
T

k� � �  (40)

Let V v vk
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k� diag[ , , ]� �1   such that W V V0 ( )k k k k� �� .  

It should be noted that ( , )v j
k

j
kλ  denote the j-th eigenvector/eigenvalue pair of 

W0 ( )k . These eigenvalues are sorted in ascending order (1 denoting the smallest 
value and n  the largest). We compute these values using the MATLAB2 function 
eig. Let k K=  denote the last observation; then, we define a closeness matrix:
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Note that ΓΓK  is an identity matrix. Moreover, each element of ΓΓq  is a scalar 
product between the eigenvectors of W0 ( )q  and W0 ( )K .  We then write ΓΓq  in the 
following form:

 ��q q q q
n� �� ��g g g1 2

  (42)

2https://ch.mathworks.com/products/matlab.html

https://ch.mathworks.com/products/matlab.html
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Subsequently, we compute the maximum value along each column vector 
gqj j n� � { , , , }1 2  :  

 max max max max( )��q q q q
n

qa qb qc
n T

g g g� � � � � � ��
��

�
��
� �� ��g g g1 2 1 2

   (43)

where gqj  denotes the element-wise absolute value of gqj .  In other words, the a-th 
eigenvector of W0 ( )q  is closest to the first eigenvector of W0 ( )K  and so on. In this 
way, it is numerically possible to approximately associate the eigenvalues of the 
observability Gramian at each epoch to a chosen basis, which are the eigenvectors 
of W0 ( )K .

At the end of this step, we have n time series (of length K) of eigenvalues of W0 .  
Each time series is characterized by one of the eigenvectors of W0 ( )K .  Let λ j k( )  
denote such a time series. As the system satisfies conditions of persistence of exci-
tation (Green & Moore, 1986) for uniform observability, there exists  > 0  such 
that W I0 ( )K >  (Kalman & Bucy, 1961). As a result, for some sufficiently large 
K K, ( )W0  is positive definite. Therefore, eigenvalues of the observability Gramian 
tend to grow with each observation subject to excitation/dynamics. This trend is 
experimentally shown in Section 5. Our methodology, thus far, approximately asso-
ciates this growth to an eigenvector of W0 ( )K .

To ascertain the uniqueness of information brought in by each observation, we 
compute the difference between adjacent elements of each time series:

 � � � �� � �j j jk k k( ) ( ) ( )1  (44)

If � �� j k( )  threshold, then new information is available and some states are 
observable. To use this heuristic for the generic model structure, it is imperative 
to first change the basis of state space to the basis created with the eigenvectors 
of W0 ( )K .  This approach causes the states to correspond to a sufficiently large 
�� j k( ) being updated while the others are considered.

For any of the three estimators, a general procedure is summarized in the form 
of an algorithm:

1. Build the observability Gramian. For epoch k K∈ { , , , }1 2  ,
 (a) Compute Hk  and W0 ( )k
 (b) Compute the eigenvalues ( )ΛΛk  and eigenvectors ( )Vk  of W0 ( )k

2. Form the new basis. At the last epoch K,
 (a) Having W0 ( )K ,  find the basis VK
 (b) Compute the state-transformation matrix: T V= K

T

3. Compute the evolution in observability. For epoch k K∈ { , , , }1 2  ,  
 (a) Compute ��k k

T
K� V V

 (b) Compute max( )ΓΓk
 (c) Rearrange the eigenvalues into n  time series λ j k( )  for j n∈ { , , , }1 2 
 (d) Compute the difference �� j k( )

4. Initialize the state x  estimator. For k∈ { }1 ,
 (a)  Transform the initial states, initial covariance, and process noise (if non-

zero); � � �� � �x Tx P TPT Q T T, ,T TQ

5. Estimate the “transformed” states ′x .  For k K∈ { , , }2  ,
 (a)  If � �� j k( )  threshold � �j n{ , , , }1 2  ,  update the state, else consider; a 

partial update is carried out in this step
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6. Transform back to the original basis. For k K∈ { , , }1  ,
 (a)  Invert the basis to obtain the estimated states x T x� ��1  and covariance 

P T P TT� �  in their original basis set

The partial-update algorithm detailed above is carried out sequentially for the 
three estimators in the following order: i) wind estimation with non-zero process 
noise, ii) moment parameter estimation with zero process noise, iii) force parame-
ter estimation with zero process noise. A similar procedure is followed for the other 
fixed delta-wing platform to carry out aerodynamic calibration.

4  EXPERIMENTAL SETUP

In this section, we describe the two drone platforms used in this research and the 
associated relevant avionics.

4.1  Drone Platform

We test the proposed methodology on two platforms with distinctly different geom-
etries. The first platform is an in-house-developed conventional fixed-wing drone 
with the shape of hobby plane “Mentor” from multiplex (Multiplex HiTec power 
peak, 2022), referred to as TP2. The second platform is a commercial delta-wing 
drone, eBeeX-RTK, from senseFly SA, Switzerland, which is henceforth referred to as 
eBeeX. Images of the two platforms are presented in Figure 1 and Figure 2.

4.2  Avionics

Implementation of the proposed calibration algorithm is incumbent on the avail-
ability of flight data. In this section, the necessary custom hardware development 
for data acquisition is detailed for the two platforms. It should be noted that these 
developments are based on size, weight, and power constraints that are different 
for each drone.

4.2.1  TP2

This platform has been used in previous research (Khaghani & Skaloud, 2018; 
Laupré & Skaloud, 2021). However, to improve the quality of inertial data, we 
have developed a state-of-the-art payload comprised of an IMU from Sensonor, 
the STIM 318 (Stim 318, 2022), which represents one of the best available options 
on the market in terms of performance per size and weight. Its bias instability is 
0.3° ∕ h and 2µg  for gyroscopes and accelerometers, respectively. Some of the other 
parameters of the STIM 318 can be inferred from Table 3. An image of the devel-
oped payload is shown in Figure 4(a).

The IMU data stream, at a frequency of 500 Hz, is connected to a dedicated 
board called Sentiboard (Albrektsen & Johansen, 2018), which is responsible for 
time-tagging the data in a common global positioning system (GPS) reference time. 
A second serial port on the Sentiboard handles messages from the GNSS receiver, 
where the time reference is provided by a pulse-per-second (PPS) signal issued at 
the same frequency as the GNSS messages. We use a multi-constellation (minimum 
GPS and GLONASS), multi-frequency (minimum L1 and L2) TOPCON B125 GNSS 
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receiver, and a three-frequency antenna, which gathers code and phase measure-
ments for post-processing differential position and velocity references. Meanwhile, 
the control commands are stored in the autopilot for later use. The autopilot is the 
open-source PixHawk (Meier et al., 2011) (v.2) running a modified firmware of 
PX4 (PX4 autopilot, 2009) that accommodates the aforementioned GNSS receiver 
and synchronizes its internal time with respect to GPS time. In addition, we have 
also integrated an in-house-developed redundant IMU (R-IMU) board consisting 
of four ADIS-16475 sensors. Some of the parameters of this IMU can be inferred 
from Table 3. The data from these IMUs are recorded on the R-IMU board itself 
against a GPS time stamp.

4.2.2  eBeeX-RTK

The inertial data are acquired by means of the custom payload presented in 
Figure 4(b). The developed payload consists of an R-IMU board, and the inertial 
data for the two IMUs3 are stored internally on the board. Some of the parameters 
of this IMU can be inferred from Table 3.

This board is connected to the eBeeX via a USB cable that provides i) power for 
the electronics, ii) GNSS data from the receiver, and iii) the PPS signal for synchro-
nizing the IMU clocks with GPS time. The GNSS receiver used in this study is a 

3NavChip v.1 from InterSense-Thales https://www.intersense.com/navchip

TABLE 3
Parameters of Experimental IMUs
RMS: root mean square.

STIM 318 ADIS 16475 -2 NavChip v1

Parameters Value Unit Parameters Value Unit Parameters Value Unit

Accelerometer

Bias 1-year stability 1.5 mg Repeatability 1.4 mg
In-run bias 
stability

0.05 mg

Bias instability 0.003 mg
In-run bias 
stability

3.6 µ g Bias accuracy 8 mg

Velocity random walk 0.015 �m s/ / h
Velocity 
random walk

0.012 �m s/ / h
Noise density 
(RMS)

50 µg h/

Gyroscope

Bias range 250 deg/h Repeatability 0.7 deg/s
In-run bias 
stability

10 deg/h

Drift rate stability 3 deg/h
In-run bias 
stability

2.5 deg/h
Noise density 
(RMS)

0.003 deg s/ / h

Bias instability 0.3 deg/h Angular 
random walk

0.15 deg/ h
Angle 
random walk

0.18 deg/ h

Angular random walk 0.15 deg/ h Bias accuracy 0.2 deg/s

Other parameters

Size (length × width × height) 44.8 × 38.6 × 21.5 11 × 15 × 11 13.5 × 24 × 9 mm

Weight 55 1.3 6 g

Power 1800 145 214 mW

Cost ~7000 ~500 ~500 Euro

Year 2020 2021 2011 –

https://www.intersense.com/navchip
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multi-constellation (GPS, GLONASS) Septentrio AsteRx-m2 with dual-frequency 
capacity (L1, L2) alongside a Maxtena M1227 antenna. The flight control com-
mands, autopilot data, and raw GNSS observations are recorded within the autopi-
lot in GPS time.

4.3  Experimental Flights

Experimental flights of the aforementioned drones were conducted in a rural 
region in Switzerland (46.5788° N, 6.5394° E) between 2019 and 2021, and the flight 
data were logged using the avionics described in Section 4. At least two flights per 
drone were used in the analysis: one for calibration and one for application. The 
calibration and application flights for TP2 are shown in Figure 5, whereas those 
for eBeeX are shown in Figure 6. It should be noted that a 2-min-long GNSS out-
age is simulated later in the application flights to evaluate the performance of the 
proposed calibration methodology. We have marked a portion of the trajectory in 
Figure 5 and Figure 6 in red to explicitly highlight the outage.

The beginning of the trajectory is marked with a red circle, and a black arrow 
indicates the initial flying direction. For a calibration flight, the proposed meth-
odology is implemented to compute the aerodynamic model parameters. These 
parameters are subsequently used in an application flight, wherein they are either 
i) held fixed throughout the flight or ii) used as an initial guess with a low uncer-
tainty within the VDM-EKF framework.

FIGURE 4 Payload: (a) TP2 payload and (b) eBeeX payload

FIGURE 5 TP2 flight trajectories with CF_STIM6 (a) as a calibration flight and AF_STIM5 
(b) and AF_STIM7 (c) as application flights
The 2-min simulated GNSS outages are depicted in red.
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4.4  Reference Trajectory

To evaluate the performance of the proposed methodology in the VDM-EKF 
framework, the reference trajectories are obtained as a result of post-processing the 
GNSS and inertial data, as shown in Figure 7. The flight mission is performed for the 
two drones: TP2 and eBeeX. Both drones carry a dedicated payload to collect IMU 
and GNSS data (step 1), as described in Section 4.2.1 and Section 4.2.2. During the 
missions, a GNSS base station, hosting a multi-constellation and multi-frequency 
receiver, JAVAD Triumph-LS (minimum L1, L2 on GPS and GLONASS), records 
the code and phase signals at 10 Hz for the precise differential PPK4 solution 
(step 2) of the trajectory. This approach allows cm accuracy for position and cm/s 
accuracy for velocity to be obtained. The precise position and velocity of the tra-
jectory are then combined using optimal smoothing with the inertial data using 
an INS/GNSS software5 to yield a reference trajectory. The obtained reference tra-
jectory, used for calibration and navigation performance comparison, provides the 
required accuracies of cm in positioning, cm/s in velocity, 0.1 deg in roll and pitch, 
and 0.2 deg in yaw. Although the NavChip IMU is not as accurate as STIM318, its 
efficacy to produce similar navigation accuracy in a post-processing scenario has 
been demonstrated by an independent comparison with i) photogrammetry on a 
drone (Rehak & Skaloud, 2015) and ii) navigation-grade INS on a helicopter flying 
at speeds comparable to those of a drone (Clausen & Skaloud, 2020).

4Inertial Explorer, ver 8.5-9, NovAtel Inc., 2020
5POSProc, ver. 2.1.4, Applanix Corp., 1999

FIGURE 6 eBeeX flight trajectories with CF_eBee_756 (a) as calibration and AF_eBee_652 
(b) as application flights The 2-min simulated GNSS outages are depicted in red.

FIGURE 7 Steps for obtaining the reference trajectory
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5  RESULTS

In this section, the proposed aerodynamic calibration methodology is validated 
by means of rigorous experimentation. Following the aforementioned experimen-
tal workflow for TP2, during the calibration phase, we first present empirical evi-
dence relating our heuristic of uniqueness to the observability of the parameters 
of interest. Next, we compare some of the IMU observations with those obtained 
using calibrated model parameters. Then, we present the performance of these cali-
brated parameters in an application flight. Additionally, we evaluate the invariance 
of calibrated model parameters to different IMUs (STIM 318 and ADIS-16475). 
Subsequently, we study the performance of uncalibrated (or random) model 
parameters in a VDM-based navigation system. Finally, the entire methodology is 
repeated for a delta-wing platform (eBeeX), and the obtained results are presented 
as a proof of concept. This experimental workflow is summarized in Figure 8.

5.1  Evolution of the Observability Gramian of the 
Wind Estimator

We present empirical and graphical evidence pertaining to the evolution of the 
observability Gramian in an experimental setting. To the best of our knowledge, 
this is the first time that such results have been presented in this context within the 
domain of navigation. To present these findings, we chose to elucidate the wind 
estimator because of its simplicity and familiarity in the scientific community.

The procedure detailed in Section 3 is implemented for each estimator. For the 
wind estimator, the dimensionality of the state space is four ( j = 4)  and Hk �

�1 4 ,  
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FIGURE 8 Experimental pipeline
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whereas the observability Gramian W0
4 4( )k � � .  Upon calculating the eigenval-

ues and eigenvectors of W0 ( )k  after all observations k K∈ { , , , }1 2  ,  we choose 
eigenvector of W0 ( )K  as the basis of the state space. It should be noted that W0 ( )k  
is symmetric and the eigenvector matrix Vk  is orthonormal, thereby making it a 
rotation matrix in 4 .  Subsequently, the closeness matrix ( )ΓΓk  is computed as a 
dot product between Vk  and the basis ( )VK .  This step is followed by the max( )ΓΓk  
operation. This operation determines which eigenvector of W0 ( )k  is most closely 
aligned with the basis vector. For the wind estimator, this evaluation of the closest 
eigenvector is reported in Figure 9, and the corresponding evolution of the numer-
ical value max( )ΓΓk  is shown in Figure 10.

As V V Ik
T

K =  for k K= ,  the value of max K
T( ) [ ] .�� � 1 1 1 1  This can be 

clearly seen in Figure 10, wherein all of the trends eventually converge to unity. As 
a result, at k K= ,  the first (second and so on) basis vector is the same as the first 
(second and so on) eigenvector of W0 ( )k .  This can be seen in Figure 9, wherein 
all of the trends converge to the index of the basis vector. The plot in Figure 9 is a 
special graphical representation in which i) the x axis ∈ { , , , }1 2  K  accounts for 
the discrete-time events at which airspeed measurements are made and ii) the 
y axis ∈ { , , , }v v v v1 2 3 4  represents the eigenvectors of W0 ( )k ,  each made up of 
one of four colors (blue, red, yellow, purple). As discussed earlier, the eigenval-
ues and eigenvectors of W0  are calculated for each discrete-time event, and then 
their association to the basis is established (using the closeness metric). In this 
graph, each basis vector is color-coded, and each v j  is represented as a quantized 
time series of these colors. For instance, the time series v1  consists primarily of 
basis vector 1 (blue) except for a few samples of basis vector 2 (red) at the very 
beginning.

In this way, the eigenvalues of W0 ( )k k∀  are approximately associated with basis 
vectors. The evolution of these eigenvalues (red dashed line) is shown in Figure 11, 
which displays a generally growing trend, except for certain small variations in 
basis vectors 2 and 3, corresponding to a swapping of basis.

In Figure 11 (red), we present the normalized incremental growth (IG) of the 
eigenvalue using Equation (44). This IG is then compared with the drone’s attitude 
and Pitot measurement, collectively shown by the right-hand axis of Figure 11.

FIGURE 9 Tracking the eigenvector (EVe) of the observability Gramian
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We observe the following:

1. IG along basis vector 1 is correlated to pitch: The peaks (both positive and 
negative) in pitch lead to a nonzero IG along basis vector 1. However, this IG 
is mostly close to zero as the drone performs fewer pitching maneuvers.

2. IG along basis vectors 2 and 3 is correlated to yaw: The nonzero IG peaks along 
these basis vectors alternate with changes in heading. Moreover, the IG shows 

FIGURE 10 Maximum closeness in wind observability
EVe: eigenvector.
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complementary trends, i.e., a peak in one basis vector corresponds to a sharp 
decrease in the other.

3. IG along basis vector 4 is correlated to Pitot measurements: This IG is always 
greater than zero.

These observations are consistent with findings of previous works (Johansen 
et al., 2015) showing that i) a drone must change its heading for the horizontal 
wind to be observable, ii) pitching maneuvers are essential for better observability 
of down wind, and iii) the Pitot scale factor is always observable as long as the 
drone is airborne.

By following this methodology, it is possible to approximately track the growth of 
eigenvalues of the observability Gramian, rather than evaluating these values only 
after the last observation, as in Johansen et al. (2015). The IG along basis vectors 
is primarily responsible for observability. For the wind estimator, it appears that 
i) basis vector 1 corresponds to down wind, ii) basis vectors 2 and 3 correspond to 
horizontal wind, and iii) basis vector 4 corresponds to the Pitot scale factor. This 
interpretation is intuitive, thanks to a low-dimensional state space; however, mak-
ing such one-to-one correspondences for a high-dimensional state space may not 
always be possible (as in the case of moment and force parameters). Nevertheless, 
the mathematics of the methodology prove effective in discerning the most observ-
able states from the rest after each observation. In the next subsection, the same 
methodology is utilized in computing the aerodynamic model parameters associ-
ated with moments and forces.

Note: There exist certain observations that are not accepted for estimation 
because of the following reasons: i) Non-uniqueness of max( )��k �  it was found 
that in some situations, two eigenvectors are close to the same basis vector, leading 
to an eventual reduction in the dimensionality of tracked eigenvector space, and 
ii) transitioning from one closest eigenvector to the other, implying sharp peaks in 
IG, which do not necessarily correspond to observability. The causes of both situ-
ations seem to be related to the empirical nature of the algorithm and observation 
noise. However, such data points are easy to detect from a software viewpoint and 
are hence excluded from the estimation. Collectively, such cases form less than 
0.5% of the total number of observations for all three estimators.

5.2  Aerodynamic Model Parameters

Following the partial-update methodology presented in Section  3, we sequen-
tially estimate wind, followed by moment, and finally force parameters using sen-
sor data from the calibration flight. To do so, we follow the recommendations of 
Laupré & Skaloud (2021) in terms of making use of GNSS position and velocity 
derived from PPK data. Additionally, we make use of an infinite impulse response 
smoother with a cutoff frequency of fc = 30  and 40�Hz  (from visual data inspec-
tion using a fast Fourier transform) for the gyroscope and accelerometer, respec-
tively. This approach eliminates high-frequency noise from inertial sensors (which 
would affect subsequent numerical differentiation), while precluding any time 
delays. The signal quality of the onboard smoothed IMU (STIM318) is far superior 
to that of the autopilot’s IMU.

We then compare these IMU observations to those obtained using calibrated 
parameters. For this comparison, we choose to focus on forces, as the forces are 
implicitly dependent on moments and wind because of the cascaded design of the 
estimation framework. Calculating forces using accelerometer measurements is a 
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straightforward operation involving multiplication by the mass of the drone. We 
graphically show one of the estimated quantities—body force along the y axis—
against the value computed using the IMU in Figure 12(a). This figure clearly shows 
that the force estimated by the model parameters qualitatively follows trends sim-
ilar to those computed directly from the IMU. Additionally, the estimated forces 
appear to be filtered versions of IMU data.

5.3  VDM-Based Navigation

In this section, we use the aerodynamic model parameters obtained from Section 5.2 
in the VDM-based navigation framework (Khaghani & Skaloud, 2018) for an appli-
cation flight (different from that of the calibration flight). We use two possible 
architectures of aerodynamic sensor fusion, depending on how the obtained model 
parameters are used:

1. 47-state estimator: When model parameters are included in the state 
vector of the EKF-VDM framework, as in Khaghani & Skaloud (2018) and 
Laupré & Skaloud (2021), with their a priori estimates provided by the 
proposed calibration strategy. This results in a 47-dimensional state space, as 
discussed in Section 2.2.1. 

2. 27-state estimator: When model parameters are considered as known 
constants, with their values provided by the proposed calibration strategy. 
This results in a 26-dimensional state vector of the EKF-VDM framework. 
However, a new state referred to as the aerodynamic scale factor is introduced 
to compensate for changes in atmospheric conditions between the calibration 
and application flights. This scale factor is multiplied by the dynamic 
pressure ( )q  for the calculation of forces and moments in the VDM-based 
process and observation models. This approach effectively results in a 
27-dimensional state space.

Both of the aforementioned approaches yield encouraging results and mitigate 
navigation drift during a GNSS outage, as shown in Figure 13(a) for application 
flight AP_STIM5 and Figure 13(c) for application flight AP_STIM7. Figure 13(c) also 
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FIGURE 12 (top) Juxtaposition of the y force computed using the IMU and calibrated model 
and their residuals (bottom) for (a) the y force for TP2 and (b) the x force for eBeeX
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portrays the use of a considerably smaller (and less expensive) IMU (ADIS-16475), 
which is discussed later in Section 5.4. It should be noted that the drone platform 
for application flight AP_STIM5 differs from that of the calibration flight and appli-
cation flight AP_STIM7 because of hardware modifications.

5.4  Model Invariance to Choice of IMU

We compare the navigation solution obtained by fusing the identified aero-
dynamic parameters with two different IMUs: i) STIM-318 and ii) ADIS-16475. 
For this comparison, we treat the data from application flight AF_STIM7 using 
both of the aforementioned architectures (47/27-state estimator). The outcome, 
presented in Figure 13(c), shows that the navigation solutions for the two IMUs 
are similar during a GNSS outage. This result indicates that dynamics identified 
from a high-grade IMU, using the proposed methodology, can be prima facie fused 
with measurements from a lower-grade inertial sensor to obtain similar results. In 
contrast, if ADIS is used in an INS/GNSS-driven navigation system, the trajectory 
obtained during a GNSS outage quickly drifts away from the reference and devi-
ates from the true trajectory by 1 km at the end of 2 min. This result is graphically 
shown in Figure 13(b) in red with the legend “ADIS-INS/GNSS.”

5.5  Model Parameter Initialization in the EKF 
Framework

After having analyzed the goodness of the obtained model parameters for TP2 in 
the previous section, we shift our focus to studying the influence of these parame-
ters on state estimation when our initial knowledge is of insufficient quality.

To emphasize the importance of the correct initialization of aerodynamic 
parameters in a real scenario, different initial sets of parameters were tested in the 
VDM-based navigation system. These tests were carried out on data from appli-
cation flight AF_STIM7 with a 47-dimensional state vector. The initialization sets 
used in this test are as follows: (i) all ones, (ii) all zeros (approximated to 10 7− ),  and 
(iii) all random values with N ~ ( , )0 1 .  The effect of these incorrect initial parame-
ters was assessed during a simulated 2-min GNSS outage after 4 min of flight. The 
obtained results are shown in Figure 14. The scenario in which the VDM parame-
ters are initialized with all zeros results in a straight-line (black) trajectory because 

FIGURE 13 TP2 flight AF_STIM5 (a) with an outage after 15 min and flight AF_STIM7 
(b) with an outage after 4 min and (c) invariance of the calibrated VDM to different IMUs
The GNSS outage starts at the black cross.
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the model does not produce tangible moments or forces. The second scenario in 
which the initial values are set to ones (red) is comparable to free INS. The last sce-
nario is not visible on the plot, as numerical instability occurred within 1 s. Clearly 
and in comparison to Figure 13(c), the communicated methodology outperforms 
randomly initialized parameters in a model-based navigation framework.

The results obtained with incorrect initialization are consistent with existing 
simulation studies in a more general framework (Laupré & Skaloud, 2020). For 
the sake of completeness and to highlight the relevance of the proposed method-
ology, we briefly review the major findings of the sensitivity studies presented in 
Laupré & Skaloud (2020):

1. The initialization of unknown model parameters must be below 40% of 
their true value to prevent filter divergence and/or software failure (due to 
numerical instability).

2. In addition to the threshold of 40% mentioned above, there is a need for 
sufficient dynamics to reasonably estimate these unknown parameters in 
flight.

The consequences of these erroneously estimated model parameters are mani-
fold. First, the incorrect estimated parameters lead to improper forces and moments, 
which are subsequently compensated for by other states such as wind, IMU biases, 
or even large errors in drone velocity, as mentioned in Laupré & Skaloud (2021). In 
the case of a GNSS outage, the solution becomes rapidly unusable and potentially 
worse than a free INS solution. Another issue with incorrect VDM parameters is 
the possible numerical instability of the filter, which can potentially lead to soft-
ware failure.

5.6  Validation with eBeeX

The entire calibration and application procedure was repeated for a delta-wing 
drone. However, here, we skip the repetitive details and present the major findings 
succinctly.

We begin by graphically comparing the estimated body force along the x axis 
against the force computed using the IMU. This comparison is presented in 

FIGURE 14 A 2-min GNSS outage after 4 min with intentionally wrong initial VDM 
parameters for flight AF_STIM7
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Figure 12(b). Because the force model of eBeeX contains a large number of param-
eters compared with TP2, the two signals match better and the residual is lower, 
confirming the correctness of model identification with respect to the observa-
tions. However, these results do not necessarily guarantee better navigation per-
formance. This aspect is further discussed in the following paragraph and later in 
Section 6.1.

To validate the goodness of the obtained parameters, the application flight was 
processed two times with GNSS outages simulated after 24 and 28 min. For this test, 
the model parameters are included in the state, thereby yielding a 69-dimensional 
state vector (as discussed in Section 2.2.1). The a priori estimate of these parame-
ters is obtained using the proposed calibration strategy. The navigation results are 
portrayed in Figure 15(a) and Figure 15(b) alongside the INS solution with IMU 
data being pre-calibrated; the deterministic noise error was removed thanks to 
Clausen (2019). In contrast, the 26-dimensional estimator, which considers model 
parameters to be constant, did not yield encouraging results. A plausible reason 
for such a result, based on the following evidence, seems to be over-fitting: (i) low 
residual error during calibration, (ii) a large number of unknown parameters, and 
(iii) large navigation drift/numerical instability when model parameters are held 
fixed during the application phase. It is also important to highlight that in Laupré 
et al. (2021), the trajectory used for calibration and application is one and the same, 
while independent testing is enforced here.

5.7  Performance Summary

We present the performance of calibrated aerodynamic model parameters during 
GNSS outages in Table 4. It should be noted that the navigation error at the end of 
the outage under the header “VDM” in Table 4 corresponds to an estimator con-
sisting of 47 (for TP2) or 69 (for eBeeX) states. Additionally, navigation error curves 
for the two outages of AF_eBee_652 are portrayed in Figure 16(a) and Figure 16(b), 
together with certain statistical indicators listed in Table 5. The obtained results 
show that VDM-based navigation significantly outperforms conventional sen-
sor fusion for the small MEMS IMU, ADIS, used on TP2. In contrast, STIM318, 

FIGURE 15 eBeeX application flight AF_eBee_652 with a 2-min outage after (a) 24 or 
(b) 28 min
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which can almost be classified as a tactical-grade IMU (costing ~$7500), is used for 
aerodynamic calibration and obtaining high-precision reference navigation data. 
A recent work (Paul et al., 2023) has suggested that using VDM is beneficial for 
lower-quality IMUs. This finding is consistent with the obtained results, wherein 
VDM does not yield similar navigation results for the high-quality IMU (STIM318) 
for the chosen trajectory/outage duration. Yet, based on the navigation error curve 
for eBeeX shown in Figure 16, the error at the end of the outage in Table 4, and the 
statistics listed in Table 5, the long-term performance of the VDM-EKF framework 
is better than that of INS/GNSS for the MEMS IMU, NavChip, whereas INS/GNSS 
performs better in the short term. It should be noted that these results are based 
on the choice of the aerodynamic model (Laupré et al., 2021), which is most likely 
over-parameterized for a drone of this shape; this aspect is briefly discussed above 
in Section 5.6 and later in Section 6.1.

TABLE 4
Summary of Calibration Performance for Different Flights and IMUs in a VDM-EKF Framework

Flight
Outage after 

(minutes)
Outage duration 

(minutes)
IMU

Error at the end of  
outage (m)

INS/GNSS VDM

AF_STIM5 15 02 STIM 318 44 41

AF_STIM7 04 02 ADIS 16475 1062 155

AF_eBee_652 24 02 NavChip v1 394 88

AF_eBee_652 28 02 NavChip v1 185 39

TABLE 5
Error Statistics for AF_eBee_652
RMS: root mean square.

Outage after
  [min]

RMS error [m] Median error [m] Mean error [m]

INS/GNSS VDM INS/GNSS VDM INS/GNSS VDM

24 171 120 85 73 124 95

28 74 35 22 35 48 32

FIGURE 16 Horizontal error evolution during a 2-min GNSS outage of AF_eBee_652 after 
(a) 24 or (b) 28 min
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5.8  Calibration with a Lower-Quality MEMS IMU

We identified the aerodynamic model parameters of TP2 using ADIS 16475, as 
opposed to STIM 318 in previous investigations, yet on the same flight, namely, 
CF_STIM6. Subsequently, we tested the identified parameters on the application 
flight, AF_STIM7, by fusing the parameters for both STIM and ADIS separately. The 
results are shown in Figure 17, whereas the results obtained by calibration using 
STIM have already been presented in Figure 13(c). Our findings reveal that calibra-
tion using the higher-grade IMU results in better test performance of the VDM-EKF 
with the lower-grade IMU, compared with calibration using the lower-grade IMU. 
Conversely, calibration using the lower-grade IMU does not result in as good a test 
performance as the former, although this approach still performs better than the 
free INS (as shown in Figure 13(b)). It should be noted that while our preliminary 
results are promising, further statistical analysis is needed to provide stronger evi-
dence for using our methodology with different grades of IMUs. We recognize that 
the evaluation of IMU grade is an important aspect of future research in this area, 
but we do emphasize this aspect in this paper.

6  ADDITIONAL DISCUSSION

In this section, certain nuances associated with the proposed methodology are 
discussed, and references to further reading are provided wherever possible.

6.1  Aerodynamic Modeling

Although not stated explicitly, the presented mathematical formulations for 
identifying the aerodynamics of drones are dependent on the choice of model. In 
this article, we have relied on already existing functional models, be it for TP2 or 
eBeeX. However, while carrying out the calibration procedure, we observed that 
there are certain basis vectors along which there is hardly any significant growth in 
the eigenvalues of the observability Gramian. Although we could have chosen the 
path of eliminating certain parameters, we opted instead to infrequently update 

FIGURE 17 Testing model parameters, identified using ADIS, in the VDM-EKF framework 
for AF_STIM7
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the parameters in the partial-update framework. Otherwise, this opens a new 
research direction—model selection—which is outside the scope of this article. 
This appears to be largely true for eBeeX, whose aerodynamic model comprises 
44 parameters. At the end of the calibration phase, the mean residual error for 
the specific forces and moments of eBeeX is found to be much lower than that of 
TP2. Yet, when these parameters are held fixed in an application flight, TP2 clearly 
outperforms eBeeX. However, for TP2, there seems to be a scope to reduce residual 
error by including more parameters while simultaneously ensuring that there is no 
over-fitting. It is also important to note that if the residual error were zero, 
then the VDM would converge to the INS, which is not desirable except for 
an IMU of excellent quality (e.g., navigation grade).

In addition to the choice of a functional model, it is also important to ensure 
that the parameters associated with the model are observable. This observabil-
ity is closely related to the trajectory of the platform, which should satisfy the 
conditions of persistence of excitation. Such an excitation heavily relies on drone 
dynamics, which (in the function of guidance and planning) may be difficult to 
achieve in fully automated missions. For TP2, this condition is achieved by manual 
control, whereas this option is not available for the commercial platform, eBeeX. 
This difference is evident from Figure 5 and Figure 6, where TP2 trajectories have 
significantly more dynamics than eBeeX trajectories.

6.2  Alternative Methods

In this section, we comment on the benefits of the proposed methodology over 
alternative approaches. The existing strategies have largely addressed aerody-
namic modeling in a VDM-based navigation system by pursuing the following 
approaches.

1. Using prior knowledge of the platform’s aerodynamics followed by further 
in-flight refinement of model parameters, as in Khaghani & Skaloud (2018), 
Laupré et al. (2021), and Laupré & Skaloud (2021). However, this knowledge 
may not always be available for every drone. We have shown that a random 
initialization of these parameters in a filtering framework leads to filter 
divergence (or software failure). Therefore, a strategy for systematically 
identifying a set of working aerodynamic parameters from flight data serves as 
an attractive alternative for scenarios in which very limited prior knowledge 
of the platform is available.

2. Using CFD and/or wind tunnel experimentation to obtain a working set 
of aerodynamic parameters, as in Mwenegoha et al. (2020). Despite being 
rigorous, these approaches are setup-expensive and time-consuming 
and require specific expertise to obtain tangible results. Here, we have 
demonstrated excellent navigation performance by making use of model 
parameters obtained solely using available flight data. The proposed approach 
serves as an inexpensive and efficient substitute for wind-tunnel/CFD-based 
aerodynamic characterization used in model-based navigation.

6.3  Parameter Initialization

In this article, we claim that our methodology does not require an initial guess 
of model parameters for the purpose of calibration. However, all of the presented 
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estimation equations are purely recursive. This might be tantamount to a need 
for an initial guess unless it can be systematically computed. We follow the latter 
approach in order to free the methodology from the burden of prior knowledge 
by making use of the observability Gramian and linear regression. The developed 
calibration software chooses certain observations, equaling the number of states 
(10/11 for TP2, for instance), corresponding to the highest IG of eigenvalues along 
each basis vector for running classical (weighted) linear regression:
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where the cardinality of { , , , }e e en1 2   is equal to the dimension of the state space. 
The subscript e j  denotes the most exciting entity for basis vector j. In other words, 
He j

 and ze j  denote the observation matrix and the measurement for which the 
highest IG of eigenvalues is observed along basis vector j.

This approach provides an initial guess to start off the estimators. It should be 
noted that if the first n  temporal observations are selected (assuming that n  is 
sufficiently small, as above), there is no guarantee that the regressor matrix will be 
full rank, thereby causing the entire framework to break down. This phenomenon 
was indeed observed during the rudimentary phase of this research. Thus, we rec-
ommend choosing these observations via a reliable metric, as described above, to 
preclude implementation-related problems. Moreover, by means of independent 
testing, we found that random initialization of these parameters in the EKF-VDM 
framework leads to filter divergence or complete breakdown of the software for 
both platforms. Therefore, either a priori knowledge or an independent 
methodology for obtaining these parameters a priori is indispensable to 
run the VDM-based navigation system.

6.4  Comparison With Existing Methods

The presented methodology takes inspiration from several widely known con-
cepts, including RLS (Gelb, 1974), Kalman filtering (Bryson & Sukkarieh, 2015), 
Schmidt–Kalman filtering (Brink, 2017), partial-update frameworks (Brink, 2017), 
principal component analysis (Moore, 1981), the observability Gramian (Chen, 
1999), the accumulation of normal equations (Gelb, 1974), and cascaded estima-
tors (Haupt et al., 1996). In this section, we emphasize the similarities/differences 
between some of the aforementioned existing methodologies and the proposed 
technique.

In Haupt et al. (1996), the authors formally propose a two-step estimator to han-
dle nonlinearity in a state estimation framework. Standard nonlinear recursive 
estimators, such as the EKF, linearize the cost function in order to use the widely 
known linear Kalman filter equations. This approach results in an estimate that 
is biased while simultaneously rendering the estimation schema very sensitive to 
a priori estimates of unknown states (about which the cost function is linearized) 
(Haupt et al., 1996). This extremely important finding validates our choice to i) use 
three linear estimators for obtaining unbiased estimates of aerodynamic parame-
ters and ii) perform a rudimentary sensitivity analysis of a priori unknown model 
parameters in a VDM-based navigation filter. Although our work differs from the 
research presented in Haupt et al. (1996), both approaches deal with nonlinearity 
using a cascaded framework.
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State-space representation of a system is not unique, and there are infinitely 
many representations. This feature is widely referred to as state-space invariance 
to a change of basis. In this work, a special basis set (the eigenvectors of the observ-
ability Grammian) is used to build a partial-update framework that is updated 
using a metric based on the evolution of the observability Gramian. We have relied 
on Khaghani & Skaloud (2018), Brink (2017), and Johansen et al. (2015) to deter-
mine that the state estimation is trajectory-dependent and that a part of the state 
vector is mildly observable. We have also relied on Brink (2017) to understand how 
conventional filter updates of these mildly observable states may lead to filter diver-
gence/inconsistency unless a partial-update framework is employed. Therefore, in 
sum, we have made use of well-established prior art; however, the proposed holis-
tic reorganization of this art in a practical setting for model-based navigation is our 
original contribution to the scientific community.

6.5  Assumptions, Advantages, and Limitations

The proposed methodology relies on the following assumptions: i) existence of 
an aerodynamic model that is linear in parameters and ii) a knowledge of geomet-
ric parameters of the platform.

Conversely, this methodology comes with the following advantages: i) The pro-
posed algorithm facilitates a simple and scalable framework that takes recorded 
flight data as input and outputs usable model parameters. ii) The calibrated model 
parameters present the potential to significantly reduce the state-space dimension 
of the VDM-navigation filter from 47 to 27 for TP2, thereby lowering the computa-
tional burden. iii) The algorithm is proven to be generalizable and can be extended 
to different drone geometries.

The algorithm, in its current form, cannot calibrate in real time (while the drone 
is airborne) because of its reliance on i) smoothed data, ii) available PPK GNSS 
data, and iii) the existence of the observability Gramian until the last observation 
for the partial update. However, as the purpose of the methodology is to calibrate, 
its advantages significantly outweigh its limitations. In other words, a fixed-wing 
drone can be flown once to collect the necessary flight data for offline aerodynamic 
calibration. Subsequently, the calibrated aerodynamic model can be directly used 
for online real-time flight tests. It is worth mentioning that Brink (2017) proposes a 
real-time metric for conducting partial updates by obtaining a proxy of information 
content:

 I P KR K PEKF � �� ��
� � �
 

1 1 1T T
 

However, no literature-based backing is provided regarding the origin of this 
metric, nor is any empirical/mathematical proof presented. Nevertheless, the 
approach presents very encouraging results, in terms of preventing filter diver-
gence (albeit in a purely simulated setting).

7  CONCLUSION

In this article, we have presented a methodology for identifying aerodynamic 
model parameters of small fixed-wing drones, solely from recorded flight data, 
for applications in model-based navigation. The analysis presented in this article 
shows that a reasonably good a priori estimate of aerodynamic model parame-
ters is indispensable for implementing a model-based navigation filter. Failure to 
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correctly initialize these parameters results in filter divergence or, worse, software 
failure. The parameters obtained from the proposed calibration algorithm were suc-
cessfully tested and validated on two different fixed-wing drone platforms during 
GNSS outages. In sum, this methodology has been shown to be independent of 
i) the fixed-wing drone geometry and ii) prior knowledge of aerodynamic model 
parameters. Because of these two major advantages, the presented work may serve 
as an inexpensive substitute for wind tunnel experimentation and fluid dynamics 
simulations for model-based navigation. Moreover, the obtained calibration results 
show a significant improvement in autonomous navigation with respect to inertial 
coasting for low-quality MEMS IMUs.
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