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Abstract—In this paper, a synchrophasor estimation (SE)
algorithm is presented to simultaneously comply with the re-
quirements for the P and M phasor measurement unit (PMU)
performance classes. The method employs a second-order gen-
eralized integrator (SOGI) quadrature signal generator (QSG)
filter to attenuate the self-interference of the fundamental tone.
Inspired by other static state-of-the-art SE methods, the algo-
rithm combines a three-point IpDFT with a three-cycle Hanning
window delivering a reduction in the total computational cost. Its
performance with respect to all the operating conditions defined
by the IEC/IEEE Std. 60255-118 is assessed and compared with
another state-of-the-art technique. Furthermore, a computational
complexity analysis is performed to assess the potential viability
of the proposed SE algorithm for its implementation in embedded
devices.

Index Terms—IEC/IEEE Std 60255-118-1-2018, second-order
generalized integrator, discrete Fourier transform, interpolated
DFT, phasor measurement unit, synchrophasor estimation.

I. INTRODUCTION

Although most commercial PMUs rely on DFT-based syn-
chrophasor estimation (SE) algorithms [1], which are capable
of delivering accurate estimates by simply processing a few
DFT bins [2], two main limitations bound their performance:
aliasing and spectral leakage. The adoption of higher sampling
rates and/or anti-aliasing filters may tackle aliasing, while
short- and long-range spectral leakage1 are addressed by
modern interpolated DFT techniques (IpDFT), respectively,
by interpolating the DFT bins [3] and windowing [4]. Self-
interference, namely, the mutual interaction between the pos-
itive and negative spectral images, represents the main source
of error in DFT-based SE processes [5]. In a real-valued
power system signal, whose main tone nominal frequency
is close to DC, this phenomenon is further enhanced due to
the general adoption of short analysis windows of just a few
nominal cycles [5]–[7] used to comply with both the latency
requirements of [8] and the assumption of a discrete signal
spectrum.

The project that gave rise to these results received the support of a
fellowship from ”la Caixa” Foundation (ID 100010434). The fellowship code
is LCF/BQ/DR20/11790026.

1Short-range leakage is the error associated with the displacement of the
maximum bin while long-range leakage is caused by the mutual interference
between all tones that form the spectrum of the signal.

Different techniques have been proposed to attenuate nega-
tive image infiltration. Some of the most relevant in SE are the
multi-point weighted IpDFT [9], new cosine windows called
Maximum Image interference Rejection with Rapid Sidelobe
Decay rate (MIR-RSD) windows with high rejection of self-
interference [10], the iterative approximation and compensa-
tion of the negative image based on DFT symmetry [6] and
the approximation of the analytic signal by a Hilbert filter
to remove the negative spectrum [5]. Another suitable way
to cancel the negative image of a specific tone is to define a
complex signal (ȳ) with in-quadrature real (yα) and imaginary
(yβ) components at the frequency of the tone of interest and
of the same magnitude (see Section II-B). This is done in [11]
where a SE technique is presented which relies on a delayed
in-quadrature complex signal generation technique to mitigate
the self-interference of the fundamental tone. This paper pro-
poses a SE algorithm that employs a second-order generalized
integrator (SOGI) quadrature signal generator (QSG) filter to
obtain such a signal (ȳ) and attenuate the effects of self-
interference. The method, named SOGI-IpDFT, is built on the
same three-point IpDFT combined with a Hanning window
and OOBI detection mechanism used by the i-IpDFT [7],
[12]. Moreover, it also uses a similar iterative formulation to
remove the effects of OOBIs and ensure compliance with all
requirements for both PMU classes. Compared to the i-IpDFT,
a reduced computational cost is achieved in return for a higher
signal buffer size. The remainder of the paper is organized as
follows. Section II provides the fundamentals of SE IpDFT-
based methods and of SOGI-QSG. Section III presents the
structure, formulation, parameterization, and computational
cost of the SOGI-IpDFT algorithm. Section IV evaluates its
performance based on the P- and M-class PMUs defined in
[8] and compares it with the i-IpDFT algorithm proposed
in [7], [12]. Given their comparative performance, section
V proposes a merged structure, named eSOGI-IpDFT, based
on the combination of both algorithms. Finally, Section VI
provides some closing remarks.

II. FUNDAMENTALS OF IPDFT SE AND SOGI-QSG

This section presents the fundamentals of the SOGI-IpDFT
algorithm, namely: (i) the three-point (3p) IpDFT based on



the Hanning window; (ii) the attenuation of self-interference
through in-quadrature signals; and (iii) the SOGI-QSG filter.

A. Three-point IpDFT based on the Hanning window

The same IpDFT formulation used in [5], [7] is used for
the SOGI-IpDFT. It considers a three-point DFT interpolation
scheme that reduces the effects of long-range leakage [9] and
a Hanning window function as it offers a good compromise
between sidelobe decay and mainlobe width [13].

x(n) = A0 cos (2πf0nTs + φ0), n ∈ [0, N − 1] (1)

Given a set of N samples x(n) (1) taken from a continuous
single-tone steady state signal x(t) with sampling period Ts,
the 3p Hanning IpDFT provides an analytical formulation
to determine its defining parameters, i.e. its fundamental
frequency f0 (3a), amplitude A0 (3b) and initial phase φ0

(3c), based on a fractional correction term δH (2):

δH = 2ε
|XH(km + ε)| − |XH(km − ε)|

|XH(km − ε)|+ 2|XH(km)|+ |XH(km + ε)|
(2)

where ε = ±1 if |XH(km+1)| ≷ |XH(km−1)|, XH(k) is the
Hanning windowed DFT spectrum of x(n) and km the index
of the highest bin. The term δH ∈ [−0.5, 0.5) represents the
displacement of the fundamental with respect to the maximum
bin km in the general case of incoherent sampling2.

f0H = (km + δH)∆f (3a)

A0H = 2|XH(km)|
∣∣∣∣ πδH
sin (πδH)

∣∣∣∣ |δ2H − 1| (3b)

φ0H = ∠XH(km)− πδH (3c)

where ∆f = 1/T is the DFT frequency resolution. The
expressions (2)-(3) assume that no aliasing is present and
that the DFT bins XH(k) are only the result of the positive
image of the tone of interest. Finally, once a set of estimates
of the signal parameters (f̂ , Â, φ̂) is available, the spectral
contributions of positive and negative images can be estimated
by:

X̂H±(k) = Âe±jφ̂WH(k ∓ f̂/∆f ) (4)

where WH(k) is the DFT of the Hanning window.

B. Attenuated Self-Interference through in-quadrature signals

Consider a complex discrete single-tone steady-state signal
ȳ(n), with in-quadrature components yα(n) and yβ(n):

ȳ(n) = A0 cos (ω0nTs)

yα(n)

+j ξA0 sin (ω0nTs)

yβ(n)

, n ∈ N (5)

where ω0 = 2πf0 is the angular frequency3 of the signal’s
fundamental tone and ξ is the ratio between the magnitudes
of yβ(n) and yα(n). If (5) is expressed in terms of complex

2As known, incoherent sampling refers to the adoption of a window length
(T ) which does not contain an integer number of periods of the signal
fundamental tone (1/f0), i.e., δH ̸= 0.

3Although for simplicity the initial angle has been set to 0, the same result
holds if considered.
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Fig. 1. Block diagram of the SOGI-QSG for a fixed centre frequency ωc.

exponentials and the positive and negative frequency compo-
nents are grouped, the following expression is obtained:

ȳ(n) =
1

2
A0(e

jθ0(n)(1 + ξ)

Positive Frequency

+ e−jθ0(n)(1− ξ)

Negative Frequency

), n ∈ N (6)

where θ0(n) = ω0nTs. In the case of equimagnitude compo-
nents (ξ = 1) the negative frequency component is cancelled
and the positive one doubled. Nonetheless, even if the in-
quadrature components yα(n) and yβ(n) have similar mag-
nitudes (ξ ≃ 1), a major attenuation of the negative frequency
component, and thus of self-interference, is achieved.

C. SOGI-QSG

The SOGI-QSG is a popular QSG method, widely used
in single-phase PLLs, which not only generates in-quadrature
signals, but also attenuates the harmonic components of the
input signal [14]. It constitutes a second-order adaptive filter
[15] whose block diagram for a fixed centre frequency ωc is
shown in Fig. 14. Given an input signal x(t), it generates two
in-quadrature output signals yα(t) and yβ(t), whose transfer
functions are given by:

Gα(s) =
yα(s)

x(s)
=

ksωcs

s2 + ksωcs+ ω2
c

(7a)

Gβ(s) =
yβ(s)

x(s)
=

ksω
2
c

s2 + ksωcs+ ω2
c

(7b)

where s denotes the complex frequency, ωc is the filter centre
frequency, and ks is the SOGI-QSG gain. As indicated in [15]
ks can be calculated to obtain a dynamic response with a
desired settling time ts according to:

ks =
9.2

tsωc
(8)

For ωc equal to the nominal angular grid frequency (2πfn) and
ts equal to one nominal electric cycle (20 ms for fn = 50 Hz),
Fig. 2 shows the frequency response of the SOGI-QSG filter
for a normalized frequency f [pu] = f/fn. It can be seen that,
across the spectrum, signals yα(t) and yβ(t) are guaranteed to
be in-quadrature but only at fn their magnitudes are the same.
The filter response for any generic tone ‘γ’ of frequency fγ can
be calculated by evaluating (7) at s = j2πfγ . The resulting
complex values σαγ

= Gα(j2πfγ) and σβγ
= Gβ(j2πfγ),

defined as the complex α-β gains, indicate respectively the
gain and phase shift introduced by the filter to the α-β

4The general implementation of the SOGI-QSG considers the centre
frequency of the filter ωc to be an adaptive parameter.



Fig. 2. Frequency response of SOGI-QSG for normalized frequency f [pu] =
f/fn. Wide view (a) and zoomed (b).

components. The discrete implementation of the SOGI-QSG
is performed according to Algorithms 1 - 2 by means of a
third-order integrator, which was shown in [16] to deliver the
best results compared to other discretization techniques.

Algorithm 1 SOGI-QSG Algorithm
Input: [x(n)]

1: {yα(n)} = TO-Int[(ks(x(n)−yα(n−1))−yβ(n−1))ωc]
2: {yβ(n)} = TO-Int[yα(n− 1)]ωc

Output: {yα(n), yβ(n)}

Algorithm 2 TO-Int Algorithm
Input: [x(n)]

1: ζ(n) = x(n)/(12fs) + ζ(n− 1)
2: {y(n)} = 23ζ(n− 1)− 16ζ(n− 2) + 5ζ(n− 3)

Output: {y(n)}

III. THE SOGI-IPDFT

A. Signal Model

As in [7], [12] the SOGI-IpDFT considers within the analy-
sis window (n ∈ [0, N−1]) a static signal model composed of
a fundamental tone and a potential interference tone, respec-
tively, characterized by the parameter sets {A0, f0, φ0} and
{Ai, fi, φi} denoting their amplitude, frequency, and initial
phase:

x(n) = A0 cos (ω0nTs + φ0)

Fundamental Tone

+Ai cos (ωinTs + φi)

Interference Tone

(9)

where ω0 = 2πf0 and ωi = 2πfi denote the angular
frequencies of the fundamental and interference tones. Given
a set of N samples x(n) (9), the algorithm provides estimates

of the fundamental tone’s parameters {Â0, f̂0, φ̂0}. If detected,
the effects of the interfence tone are iteratively approximated
and compensated, and estimates of its parameters can also be
obtained {Âi, f̂i, φ̂i}.

B. Proposed Method

The structure of the SOGI-IpDFT algorithm is summarized
by the pseudocode in Algorithm 4, where the functions
SOGI-QSG, SOGI-CGαβ , SOGI-CG+−, e-IpDFT, DFT, IpDFT and
wf refer, respectively, to Algorithm 1, (7a)-(7b) evaluated at
j2πfγ , Algorithm 3, Algorithm 1 in [7], [12], the DFT, (2)-(3)
and (4).

First, the in-quadrature signal components (yα(n), yβ(n))
are obtained by filtering the measured signal samples (x(n))
through Algorithm 1 (line 1), followed by the respective calcu-
lations of their DFT spectrums (Yα(k), Yβ(k)) and windowing
(Hanning) in the frequency domain (YαH

(k), YβH
(k)) (lines

2-4). An IpDFT is then applied to obtain a first estimate
of the fundamental frequency of the signal (f̂0) (line 5),
which is used to calculate the fundamental complex α-β gains
(σα0

, σβ0
) by means of (7a)-(7b) (line 8). Their magnitudes

allow to correct the gains introduced by the SOGI-QSG filter
at off-nominal frequencies (Fig. 2) and ensure equimagni-
tude between the in-quadrature components. Additionally, the
windowed spectrum (XH(k)) of the original measured signal
samples is also determined (lines 6-7) as it is used to identify
potential OOBIs. Subsequently, an interference compensation
loop is initiated (line 10) after the initialization of two auxiliary
variables (line 9). These are the initial estimate of the filtered
spectrum of a potential interference tone Ŷ 0

i (k) and the
interference trigger flag τi.

Within the loop, an IpDFT is used first to esti-
mate the parameters of the fundamental tone (f̂q

0 , Â
q
0, φ̂

q
0)

(lines 11-12). These are obtained by considering the
magnitude-corrected bins of the windowed α-β spectrums
(YαH

(k)/|σq−1
α0

|, YβH
(k)/|σq−1

β0
|), and removing the estimated

contribution of the filtered interference tone (Ŷ q−1
i (k)). Then

both σq
α0

and σq
β0

are revised given the updated frequency
(f̂q

0 ) (line 13). During the first iteration (q = 1) the potential
presence of an interference tone is analyzed (lines 14-21). The
same procedure used in [7], [12] is adopted, which consists of
determining the ratio between the total energy contained in the
residual spectrum and that in the original spectrum and then
comparing it to a threshold level defined heuristically (λ). To
estimate X̂i(k), the contribution of the fundamental tone is
approximated given f̂q

0 , Âq
0 and φ̂q

0x
and then subtracted from

XH(k) (lines 16-17). The corrected phase of the signal φ̂q
0x

is
calculated by removing the phase shift introduced by the filter
∠σα0 (line 15).

If an interference tone is detected, an e-IpDFT is used to
estimate its parameters (line 26) based on its β-component
spectrum (Ŷ q

iβ
(k)). This spectrum is approximated by remov-

ing the contribution from the fundamental tone given f̂q
0 , Âq

0β

and φ̂q
0β

from YβH
(k) (lines 23-25), where Âq

0β
and φ̂q

0β
are the beta parameters of the fundamental tone calculated



Algorithm 3 SOGI-CG+− Algorithm
Input: [σαi

, σβi
, σα0

, σβ0
]

1: σα+ = σαi
/|σα0

|;σβ+ = σβi
/|σβ0

|
2: σα– = σ∗

α+
;σβ– = σ∗

β+

3: σ+ = σα+ + jσβ+ ;σ– = σα– + jσβ–

Output: {σ+, σ–}

Algorithm 4 SOGI-IpDFT Algorithm
Input: [x(n)]

1: {yα(n), yβ(n)} = SOGI-QSG[x(n)]
2: Yα(k) = DFT[yα(n)];Yβ(k) = DFT[yβ(n)];
3: YαH

(k) = 0.5Yα(k)− 0.25(Yα(k − 1) + Yα(k + 1))
4: YβH

(k) = 0.5Yβ(k)− 0.25(Yβ(k − 1) + Yβ(k + 1))
5: {f̂0} = IpDFT[YαH

(k) + jYβH
(k)]

6: X(k) = DFT[x(n)]
7: XH(k) = 0.5X(k)− 0.25(X(k − 1) +X(k + 1))
8: {σ0

α0
, σ0

β0
} = SOGI-CGαβ [f̂0]

9: Initialization: Ŷ 0
i (k) = 0; τi = 0

10: for q = 1 to Q do

11: {f̂q
0 , Â

q
0, φ̂

q
0} = IpDFT

[
YαH

(k)

|σq−1
α0

|
+ j

YβH
(k)

|σq−1
β0

|
− Ŷ q−1

i (k)

]
12: Âq

0 = Âq
0/2

13: {σq
α0
, σq

β0
} = SOGI-CGαβ [f̂

q
0 ]

14: if q = 1 then
15: φ̂0x = φ̂0 − ∠σα0

16: X̂0(k) = wf[f̂0, Â0, φ̂0x ] + wf[–f̂0, Â0, –φ̂0x ]
17: X̂i(k) = XH(k)− X̂0(k)
18: if

∑
|X̂i(k)|2 > λ

∑
|XH(k)|2 then

19: τi = 1
20: end if
21: end if
22: if τi = 1 then
23: Âq

0β
= Âq

0|σ
q
β0
|; φ̂q

0β
= φ̂q

0 − π/2

24: Ŷ q
0β
(k) = wf[f̂q

0 , Â
q
0β
, φ̂q

0β
] + wf[–f̂q

0 , Â
q
0β
, –φ̂q

0β
]

25: Ŷ q
iβ
(k) = YβH

(k)− Ŷ q
0β
(k)

26: {f̂q
i , Â

q
iβ
, φ̂q

iβ
} = e-IpDFT[Ŷ q

iβ
(k)]

27: {σq
αi
, σq

βi
} = SOGI-CGαβ [f̂

q
i ]

28: Âq
i = Âq

iβ
/|σq

βi
|; φ̂q

i = φ̂q
iβ

− ∠σq
βi

29: {σq
+, σ

q
–} = SOGI-CG+−[σ

q
αi
, σq

βi
, σq

α0
, σq

β0
]

30: Âq
i+ = Âq

i |σ
q
+|; Âq

i– = Âq
i |σq

– |
31: φ̂q

i+ = φ̂q
i + ∠σq

+; φ̂
q
i– = −φ̂q

i + ∠σq
–

32: Ŷ q
i (k) = wf[f̂q

i , Â
q
i+, φ̂

q
i+] + wf[–f̂q

i , Â
q
i–, φ̂

q
i–]

33: else
34: break
35: end if
36: end for
37: φ̂q

0 = φ̂q
0 − ∠σq

α0

Output: {f̂0, Â0, φ̂0}

according to the filter response. The actual magnitude and
phase (Âq

i , φ̂q
i ) of the interference tone are then obtained by

removing the effects of the SOGI-QSG filter at the frequency
of the tone f̂q

i based on the calculated interference complex
α-β gains (σq

αi
, σq

βi
) (lines 27-28). Algorithm 3 is then used

to aggregate the effects of the positive and negative images
of the interfering tone from both in-quadrature components
while also considering the magnitude correction applied to
the windowed α-β spectra and used for the fundamental esti-
mation (line 29). The obtained interference complex positive
and negative gains (σq

+i
, σq

–i) are used to estimate the filtered
spectrum of the interference tone Ŷ q

i (k) (lines 30-32) and
enhance the fundamental estimate in the next iteration. The
process is looped Q times. The final results, the initial estimate,
if no interferences are found, or the latest once the maximum
number of iterations is reached, are then phase corrected to
account for the phase shift of the filter (line 37). Since the
frequency time derivative is not part of the signal model, the
Rate-Of-Change-Of-Frequency (ROCOF) at the reporting time
m is calculated based on fundamental frequency estimates at
two successive reporting times (m and m − 1) with a first-
order backward approximation of a first-order derivative:

ˆ̇
f0(m) =

(
f̂0(m)− f̂0(m− 1)

)
Fr (10)

where Fr denotes the reporting rate.

C. Parametrization and Computational Cost

The computational complexity of the SOGI-IpDFT is now
analyzed to compare its performance with other state-of-the-
art techniques such as the i-IpDFT [7], [12] and evaluate
the viability of its potential implementation in an embedded
device. The analysis is done in terms of the total number of
arithmetic operations required by the SOGI-IpDFT (both in
case an interference tone is detected or not) versus those used
by its constituent functions, e.g., IpDFT.

A distinction between simple operations (+ − ×), complex
operations (÷ sin |...| ∠), and function calls (such as calls to
predefined subroutines or algorithms, e.g. IpDFT) is drawn as
in [5], [7]. All are formulated in terms of the total number
of calculated DFT bins K, and the maximum number of
executions of the iterative process Q. The results show for
a case of no interference a total requirement of 1274 simple
and 168 complex operations, while 1179+1501Q simple and
155 + 446Q complex operations are needed considering the
OOBI iterative compensation for 8 DFT bins.

To facilitate the analysis, the algorithm is parameterized
according to Table I. For method-specific parameters, ’-’ is
indicated for the non-applicable algorithm. To make a fair
comparison, the same values are selected for both the SOGI-
IpDFT and the i-IpDFT for shared parameters based on
the values presented in [12]. The only exception is for the
maximum number of iterations Q for the OOBI correction.
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Fig. 3. Performance comparison between SOGI-IpDFT and i-IpDFT for noise
levels with signal-to-noise ratios (SNR) equal to 60 and 80 dB for 25 different
runs. δEmax (top) and δEµ (bottom) as a function of the maximum iteration
number Q. The shaded areas are given by the maximum-minimum value pairs
of δEmax and δEµ while the solid (80 dB) and dotted-dashed (60 dB) lines
represent their mean values across all runs. Zoomed plots of the shaded areas
are provided to show the variability caused by noise.

The tuning of this parameter is done according to δEmax (11a)
and δEµ (11b). These are defined as:

δEmax = max
fi

(max
f0

(δEf0fi)) (11a)

δEµ =
1

#Fi

∑
fi

(max
f0

(δEf0fi)) (11b)

where δEf0fi is the error in estimating the correction term δ
(2) given a signal characterized by a fundamental frequency f0
and a 10% interference signal fi, Fi is the set of considered
OOBI signal frequencies and # denotes cardinality. δEmax

represents the maximum error obtained in estimating the
correction term δ (2) for all interferences and fundamental
frequency values, while δEµ is the mean error across the
OOBI range considering the largest error that each interfer-
ence produces for each fundamental frequency. The values
considered for f0 and the set Fi of interference frequencies
are selected in accordance with [8] for a Fr of 50 fps. A
performance comparison between the SOGI-IpDFT and the
i-IpDFT is shown in Fig. 3 as a function of Q. The figure
reports δEmax and δEµ for noise levels with SNR equal to
60 and 80 dB for 25 different runs. The shaded areas are
given by the maximum-minimum value pairs of δEmax and
δEµ while the solid (80 dB) and dotted-dashed (60 dB) lines
represent their mean values across all runs. The results reveal
similar variability due to noise for both methods in terms of
δEµ while a higher impact is observed in terms of δEmax

for the SOGI-IpDFT. However, in terms of the mean values
obtained, it is seen, regardless of the noise level considered,
that the SOGI-IpDFT requires fewer iterations to achieve the
same performance as the i-IpDFT in terms of δEmax. Also, in
terms of δEµ the i-IpDFT cannot match the performance of

TABLE I
SOGI-IPDFT AND I-IPDFT PARAMETERS

Value

Parameter Variable SOGI-IpDFT i-IpDFT

Nominal System Frequency fn 50 Hz 50 Hz
Window Type - Hann Hann

Window Length T 60 ms ( 3
fn

) 60 ms ( 3
fn

)

Sampling Rate Fs 50 kHz 50 kHz
PMU Reporting Rate Fr 50 fps 50 fps

DFT bins K 8 8
Self-Inter. comp. (fund) P0 - 1
Self-Inter. comp. (inter) Pi 2 2

Max Number of Iterations Q 35 71
IpDFT Interpolation Points - 3 3
OOBI Detection Threshold λ 3.3 · 10−3 3.3 · 10−3

Settling Time ts 20 ms -
Filter Centre Frequency ωc 2πfn -

SOGI-QSG Gain ks 9.2/(tsωc) -

TABLE II
SOGI-IPDFT COMPUTATIONAL COMPLEXITY

Parameter Value

q ≤ Q
K 8

+ − × ÷ sin |...| ∠ g(h)

(h1) IpDFT (3p) 15 8 -
(h2) wf 24K+15 7K+10 -
(h3) SOGI-QSG 5 0 2h4

(h4) TO-Int 7 0 -
(h5) SOGI-CGαβ 15 1 -
(h6) SOGI-CG+− 10 4 -
(h7) e-IpDFT (Pi= 2) 4K+4 0 3h1+2h2

(h8) mSDFT 17K+18 0 -

Alg. IV + − × ÷ sin |...| ∠ g(h)

SOGI-IpDFT (no int.) 40K+14 2K+10 h1,3+2h2,5

+3h8

32K+13 2K+6 Qh1,6,7+
SOGI-IpDFT (OOBI) +14KQ +12Q (1+2Q)(h5+

+11Q 2h2)+h3+3h8

the SOGI-IpDFT for the entire range of simulated Q values.
A Q = 71 is selected for the i-IpDFT as it corresponds to the
intersection value between the two methods for δEmax and 80
dB. To ensure an equivalent level of performance, a Q = 35
should be selected for the SOGI-IpDFT. However, a value
of Q = 38 is recommended since it results in the minimum
value of δEmax for the method with 80 dB noise. In general,
approximately a 55.2% reduction in total computational cost
is achieved with the SOGI-IpDFT compared to the i-IpDFT if
a Q = 35 is selected for the first, while a 51.5% is achieved
instead if Q = 38 is used. However, this comes at the expense
of tripling the required signal buffer size as shown in Fig. 8 for
a mSDFT [17] based implementation. In any case, this only
represents a total buffer size of 72 kB based on the values of
T and Fs in Table I and the MATLAB double numeric data
type.



IV. PERFORMANCE ASSESSMENT

In this section, the performance of the SOGI-IpDFT algo-
rithm is evaluated against the static and dynamic accuracy
limits set by the standard for the P and M classes [8] and
compared with that of the i-IpDFT proposed in [7], [12].
Validation is carried out in a MATLAB simulated environment
in terms of total vector error (TVE), frequency error (FE), and
ROCOF error (RFE), as well as response times (Rt), delay
times (Dt) and maximum overshoot values for the step tests.
All simulations are carried out according to the parameters
given in Table I considering test signals affected by two levels
of additive white Gaussian noise. Equivalent parameters are
adopted for both methods to ensure a fair comparison. As in
[7], noise levels with SNRs equal to 60 and 80 dB have been
selected to account for the uncertainty of the measurement and
simulate more realistic conditions. The results of all tests for
both the SOGI-IpDFT and the i-IpDFT are graphed against the
accuracy limits defined in [8] in Figs. 4 - 7. Plots for static
and dynamic tests are shown for both 60 dB and 80 dB noise
levels, while step tests are only shown for 80 dB for better
clarity. Furthermore, the maximum values of both algorithms
are summarized in Tables III, IV, and V.

A. Static Tests

The results of all the static tests defined in [8] are presented
in Figs. (4 - 5) and Table III. The signal frequency range test
(Fig. 4(a)) shows how the frequency of the fundamental tone
does not affect the accuracy of neither method. The SOGI-
IpDFT also achieves slightly higher accuracy in all metrics
compared to the i-IpDFT. Maximum errors of 0.018% (60
dB) and 0.002% (80 dB) for the TVE, 1.01 mHz (60 dB)
and 0.10 mHz (80 dB) for the FE and 0.084 Hz/s (60 dB)
and 0.008 Hz/s (80 dB) for the ROCOF are obtained and
reported in Table III for the SOGI-IpDFT, which comply with
their respective most restrictive limits of 1%, 5mHz and 0.1
Hz/s. As observed in [7] for the i-IpDFT, both algorithms
present spurious RFE values that can marginally exceed the
most stringent limit of class M under the higher SNR of 60
dB solely due to noise. Compliance is also proven for the
harmonic distortion test, where Table III shows the maximum
errors obtained for THDs of 1% and 10%. For the most
challenging noise level (60 dB), the maximum reported TVE
values of 0.019% are well below the 1% limit. Similarly, the
maximum values of FE and RFE were 1.01 mHz, 1.07 mHz for
the frequency, and 0.084 Hz/s and 0.089 Hz/s for the ROCOF,
which are within the more demanding P-class requirements.
The results of the harmonic distortion test for a THD of 10%
are shown in Fig. 4(b) where both methods exhibit almost
equivalent error levels.

For the OOBI test, the maximum values of TVE, FE and
RFE obtained for each interference tone among the three
simulated fundamental frequency values of 47.5, 50 and 52.5
Hz are shown in Fig. 5. A total interharmonic distortion of
10% has been considered, as required by [8]. The maximum
values obtained segregated per fundamental frequency are
summarized in Table III and are shown to be well within
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Fig. 4. Static tests: (a) Signal frequency range test and (b) Harmonic distortion
test (Ah = 10%A0) [8].
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Fig. 5. OOBI test (Aih = 10%A0) [8].

the performance requirements of class M. All static tests
reveal how the precision is determined by the total noise level
present in the signal and not, respectively, by the fundamental
tone frequency (signal frequency range test), the order of the
interfering harmonic tone (harmonic distortion test), or that of
the subharmonic or interharmonic tone (OOBI test).

B. Dynamic Tests

The results of all dynamic tests defined in [8] are presented
in Fig. 6 and Table IV. As shown in Fig. 6 the maximum errors
obtained by both algorithms comply with the most demanding
requirements set in [8]. These correspond, respectively, to class
P for the measurement bandwidth test and class M for the
frequency ramp test. The maximum overall error values are
summarized in Table IV. For the measurement bandwidth tests,
both Fig. 6 (a), in the case of amplitude modulation, and Fig. 6
(b), for phase modulation, depict the maximum errors obtained
with each algorithm for modulating frequencies between 0.1
and 5Hz, while the worst-case results of the frequency ramp
test are shown in Fig. 6 (c) for different positive and negative
ramp rates.



TABLE III
MAXIMUM TVE, FE AND RFE IN STATIC TESTS AND MAXIMUM LIMIT ALLOWED BY [8]

TVE[%] FE[mHz] RFE[Hz/s]

IEEE Std Hann (3/fn) IEEE Std Hann (3/fn) IEEE Std Hann (3/fn)
P M SOGI i-IpDFT P M SOGI i-IpDFT P M SOGI i-IpDFT

SNR [dB] 60 80 60 80 60 80 60 80 60 80 60 80

Sign Freq 1 1 0.018 0.002 0.024 0.003 5 5 1.01 0.10 1.21 0.14 0.4 0.1 0.084 0.008 0.104 0.011

Harm Dist 1% 1 1 0.019 0.002 0.022 0.002 5 25 1.01 0.10 1.10 0.11 0.4 - 0.084 0.008 0.089 0.009
Harm Dist 10% 1 1 0.019 0.002 0.023 0.002 5 25 1.07 0.11 1.26 0.13 0.4 - 0.089 0.009 0.111 0.011

47.5Hz - 1.3 0.019 0.002 0.045 0.005 - 10 1.18 0.13 2.28 0.23 - - 0.098 0.010 0.159 0.016
OOBI 50Hz - 1.3 0.018 0.003 0.028 0.003 - 10 1.20 0.19 1.24 0.12 - - 0.087 0.011 0.118 0.012

52.5Hz - 1.3 0.026 0.003 0.029 0.003 - 10 1.49 0.15 1.50 0.15 - - 0.131 0.013 0.123 0.012

TABLE IV
MAXIMUM TVE, FE AND RFE IN DYNAMIC TESTS AND MAXIMUM LIMIT ALLOWED BY [8]

TVE[%] FE[mHz] RFE[Hz/s]

IEEE Std Hann (3/fn) IEEE Std Hann (3/fn) IEEE Std Hann (3/fn)
P M SOGI i-IpDFT P M SOGI i-IpDFT P M SOGI i-IpDFT

SNR [dB] 60 80 60 80 60 80 60 80 60 80 60 80

Ampl Mod 3 3 0.694 0.692 0.607 0.604 60 300 26.73 26.49 1.20 0.45 2.3 14 0.797 0.762 0.092 0.016
Ph Mod 3 3 0.605 0.602 0.551 0.547 60 300 19.89 19.69 17.94 17.40 2.3 14 0.900 0.867 0.862 0.802

Freq Ramp 1 1 0.049 0.042 0.043 0.038 10 10 1.10 0.11 1.15 0.15 0.4 0.2 0.099 0.010 0.109 0.011

Both the SOGI-IpDFT and the i-IpDFT show no significant
differences in performance in terms of frequency ramps or
phase modulations. The frequency ramp test results in FE and
RFE values equivalent to those of the signal frequency test
regardless of the ramp rate and increasing TVEs with higher
ramp rate magnitudes. At the same time, under phase mod-
ulations, increasing modulating frequencies result in higher
TVEs, FEs, and RFEs, which eventually substitute noise as
the main source of error. The same is observed in terms of
ramp rates for the TVE in the frequency ramp test.

Finally, in the case of amplitude modulations, more accurate
results are obtained using the i-IpDFT. This is especially
noticeable in terms of FE and RFE, where the values achieved
by the i-IpDFT are less affected by (80 dB) or independent
of (60 dB) the modulating frequency. These results reveal that
the e-IpDFT [6] routine on which the i-IpDFT is based has a
more robust behavior in this case compared to the SOGI-QSG
filter.

C. Step Tests

The results of both step tests defined in [8] are presented in
Fig. 7, and their response times, delay times, and maximum
overshoot values are presented in Table V. All results corre-
spond to the positive step cases (similar results are obtained
in the case of negative steps) and are only graphed for 80 dB
noise for better clarity.

TVE, FE, and RFE are represented in Fig. 7 as a function
of their respective response times, that is, the origin of each
time axis corresponds to the moment when the accuracy limit
is first exceeded. Similarly, the estimated phase and amplitude
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Fig. 6. Dynamic tests: (a) Amplitude modulation test (depth 10%); (b) Phase
modulation test (depth π/18 rad); and (c) Frequency ramp test [8].

are shown as functions of their respective delay times, i.e. the
origin of the time axis is the instant at which each step occurs.
The results show how both algorithms meet all requirements,
and although slightly higher response times are obtained for
the SOGI-IpDFT in terms of FE and RFE, all estimates are
within the limits. Similarly, higher levels of overshoot are
obtained for SOGI-IpDFT compared to those obtained for the



TABLE V
MAXIMUM RESPONSE, DELAY TIMES, AND OVERSHOOTS IN STEP TESTS AND LIMITS ALLOWED BY [8]

TVE Response Time [ms] FE Response Time [ms] RFE Response Time [ms]a

IEEE Std Hann (3/fn) IEEE Std Hann (3/fn) IEEE Std Hann (3/fn)
P M SOGI i-IpDFT P M SOGI i-IpDFT P M SOGI i-IpDFT

SNR [dB] 60 80 60 80 60 80 60 80 60 80 60 80

Ampl Step 40 140 30 30 28 28 90 280 56 56 46 46 120 280 110 82 104 68
Ph Step 40 140 36 36 34 34 90 280 58 58 48 48 120 280 106 88 104 72

Delay Time [ms] Max Overshoot [%]

IEEE Std Hann (3/fn) IEEE Std Hann (3/fn)
P M SOGI i-IpDFT P M SOGI i-IpDFT

SNR [dB] 60 80 60 80 60 80 60 80

Ampl Step 5 5 0 0 2 2 5 10 0.170 0.139 0.077 0.008
Ph Step 5 5 0 0 2 2 5 10 0.281 0.260 0.047 0.005

a The RFE response times have been calculated considering all crossings with the M class accuracy band limit of 0.1 Hz/s within a 140 ms window centered
around the step. This is done to exclude spurious RFE values that marginally exceed the said limit under the higher SNR of 60 dB solely due to noise.
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Fig. 7. Step tests: (a) Amplitude step test (+10%) and (b) Phase step test
(+π/18) [8].

i-IpDFT. However, in both cases, these are well below the
limit set in the standard.

V. DISCUSSION

Overall, given the results of the comparative analysis be-
tween the SOGI-IpDFT and the i-IpDFT, it can be concluded
that the combination of the two SE methods would offer
significant advantages. An algorithm relying on the SOGI-
QSG filter for the iterative process whenever an OOBI is
detected, and the e-IpDFT routine otherwise, would guarantee
a performance equivalent to that of the i-IpDFT with a reduced
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Fig. 8. Diagrams of the i-IpDFT, the SOGI-IpDFT and the eSOGI-IpDFT.
The mSDFT [17] is used to calculate the required DFT bins.

computational cost equal to that of the SOGI-IpDFT. Fig. 8
summarizes the structure of the i-IpDFT, the SOGI-IpDFT and
the merged algorithm, named eSOGI-IpDFT which does not
require any additional parametric adjustment. Another feature
offered by the SOGI-IpDFT, and exploitable in the eSOGI-
IpDFT, is the availability of a complex signal at the SOGI-
QSG filter output. Potentially both the amplitude and phase of
this signal could be used to develop and implement detection
and correction techniques for the amplitude and phase steps
as shown in [18].

VI. CONCLUSIONS

In this article, a SE technique has been presented to combine
the application of a SOGI-QSG filter with the IpDFT. The



resulting filtered complex signal has a spectrum characterized
by an attenuated self-interference of the fundamental tone,
which allows a reduction in the total computational complexity
of 55.2% compared to the i-IpDFT when the OOBI routine is
activated for an equivalent level of performance.

A complete assessment of the proposed method has shown
that it satisfies all the accuracy requirements defined in the
IEC/IEEE Std. 60255-118 for both the P and M classes. The
method achieves a performance equivalent to that of the i-
IpDFT in all cases, except for the amplitude modulation test,
where the SOGI-IpDFT is shown to deliver less accurate
estimates, and the step tests where slightly higher response
times and overshoot values are obtained for the SOGI-IpDFT.
Overall, a combination of the SOGI-QSG filter when an OOBI
is detected and the e-IpDFT routine otherwise would guarantee
a performance equivalent to that of the i-IpDFT with a reduced
computational cost equal to that of the SOGI-IpDFT.
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