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Abstract—This paper presents the experimental validation of a
linear recursive state estimation (SE) process for hybrid AC/DC
microgrids proposed in the authors’ previous work. The SE
uses a unified and linear measurement model that relies on the
use of synchronized AC and DC measurements along with the
complex modulation index of voltage source converters (VSCs).
The validation is performed on the hybrid AC/DC microgrid
available at the EPFL. The hybrid network consists of 18 AC
nodes, 8 DC nodes and 4 VSCs interfacing the AC and DC parts
of the grid at different nodes. The experimental validation of
the measurement model is based on the classical noise model
verification via the measurement residuals. It is shown that the
measurement residuals of the AC system, DC system and VSC
model are zero-biased with a standard deviation well below
the three-sigma threshold of the expected noise distribution. An
estimation of the prediction error covariance is also implemented
and analyzed to automatically adopt the accuracy of the SE
during dynamic and steady-state conditions. Furthermore, the
time latency of each section in the SE process is analysed to
validate its applicability in critical real-time applications.

Index Terms—State estimation, Hybrid AC/DC networks, Ex-
perimental validation

I. INTRODUCTION

Hybrid AC/DC microgrids are a promising solution for
future power grids that are expected to heavily rely on renew-
able sources. Indeed, combining AC with DC systems creates
several benefits, such as a higher overall system efficiency [1],
a more flexible control (due to the presence of controllable
interfacing AC/DC converters) and a reduced system cost
because less power converting sources are required as DC
sources and loads are directly connected to the DC grid [2].
Different core functionalities of electrical networks require the
knowledge of the systems state e.g. security assessment, opti-
mal grid-aware controls and stability analysis [3]. Therefore,
state estimation (SE), i.e. the process of computing the most
likelihood state of the system using a noisy and incomplete
set of measurements, is a critical element in the operation of
modern power transmission and distribution systems.

This paper presents the experimental validation of a uni-
fied SE model for hybrid AC/DC microgrids that has been
proposed in the authors’ previous work [4]. The measurement
model, linking the states and measurements, is fully linear and
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includes the AC system’s model, DC model and AC/DC con-
verters’ interlinking equations that are based on the complex
modulation index.

The validation of the SE model is performed on the hybrid
AC/DC network developed at the EPFL. The SE model
has been implemented in the Supervisory Control and Data
Acquisition (SCADA) system that has been presented in [5].
The SCADA system consists of a data acquisition stage from
phasor measurement units (PMU) and time-synchronized DC
measurement units (DMUs), a phasor data concentrator (PDC)
and the SE. The data acquisition by PMUs and DMUs is
characterised by high streaming rates (i.e., in the order of
tens of frames per second) that allow for real-time SE with
a low latency and a high refresh rate. To the best of the
authors’ knowledge, this is the first linear SE for hybrid
AC/DC networks that has been experimentally validated on
a real-world hybrid microgrid.

SE methods proposed in the literature for hybrid AC/DC
systems rely mainly on decomposing the problem by solving
the AC and DC network equations separately and linking
them through an iterative process [6]–[8]. References [9],
[10] propose a unified model that includes the power balance
equation of the interlinking converter. However, these iterative
methods are computationally inefficient and no unique solution
can be guaranteed, thus justifying the development of the
adopted SE model.

The paper is structured into four sections. Section II de-
scribes the adopted linear and unified measurement model
for the recursive SE of hybrid AC/DC microgrid proposed in
[4]. Furthermore, the complex modulation index and the SE
prediction error covariance estimation are recalled. Section III
describes the experimental setup. Section IV shows the results
of the experimental validation of the SE method and presents a
time latency analysis of the individual stages of the SE process.
The conclusions are given in Section V.

II. SUMMARY OF THE ADOPTED SE METHOD

A. The recursive state estimator

A recursive SE, and more specifically a discrete Kalman
filter (DKF), is used for the SE process. The choice of a
DKF relies on the nature of the measurement model that is
introduced in subsection II-B. Indeed, the previously estimated
state is needed to compute the equivalent series resistance used
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to model the losses in the interfacing AC/DC voltage source
converters (VSCs) and thus making the SE problem inherently
recursive. As known, the DKF relies on a measurement model
(1) and a process model (2) to compute the state using the set
of m-measurements z ∈ Rm [11].

zk = Hxk + vk, p(vk) ∼ N (0, R) (1)
xk = xk−1 +wk−1, p(wk−1) ∼ N (0, Q) (2)

where k is the discrete time index, xk ∈ Rn is the estimated
state and Hk the measurement model. The measurement noise
vk ∈ Rm is assumed to be uncorrelated, unbiased and
characterized by a white Gaussian covariance matrix R. The
noise level associated with each measurement is dependent
on the measurement transformers and the PMUs and DMUs
accuracy classes as discussed in Section III. The process model
accounts for the time evolution of the system states and an
ARIMA (0, 1, 0) model [12] is used since is very suitable for
the measurements high frame rate in this application where
the state between two consecutive timesteps does not change
significantly1. The process noise follows the same assumptions
and has as covariance matrix Q. The DKF consists of a
prediction and estimation step:
Prediction step:

x̃k = x̂k−1 (3)

P̃k = P̂k−1 +Qk−1 (4)

Estimation step:

Kk = P̃kH
T (HP̃kH

T +Rk)
−1 (5)

x̂k = x̃k +Kk(zk −Hx̃k) (6)

P̂k = (I−KkH)P̃k, (7)

where x̃k is the process-model predicted state and P̃k and
P̂k are the prediction error and estimation error covariance
matrices.

B. Measurement model

The measurement model (1) for hybrid AC/DC SE
gives a linear relationship between the measurements z =
[zac zdc zvsc]

⊺ and the states x = [xac xdc]
⊺ [4]. The states

of a power system are typically the nodal voltage phasors and
the measurements are nodal voltages, current injections and
flows. The consequent measurement model matrix H has the
following form:

H =

[ Hac−ac 0
0 Hdc−dc

Hvsc−ac Hvsc−dc

]
(8)

The submatrix Hac−ac is the measurement model for the
AC system and is strictly linear when written in Cartesian
coordinates with PMUs providing synchronised voltage and
current measurements [11]. The submatrix Hdc−dc links the
DC measurements coming from the DMUs to the DC states
in an intrinsically linear way. The remaining submatrices

1In the case this is not true, the SE process suitably adapts the process
model covariance Q (see Section II-D)
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Fig. 1: Transformer-like model of an inverter leg of the AC/DC
converter with LCL filter and losses

represent the VSC model linking its measurements to the AC
and DC states. Details on the composition of the measurement
matrix are given in Section III. The measurement model is
introduced in [4] and is based on the complex modulation
index to link the DC voltage to the real and imaginary parts
of the complex AC voltage phasors. The model is based on
the transformer-like inverter model introduced in [13] and
illustrated in Fig. 1. The electrical schematic includes the
LCL filter as well as the VSC losses. The VSC transformer-
like model allows to include the converter losses (i.e. the
conduction and switching losses) as a voltage source in series
with the AC side, and a current source in parallel with the DC
side [14] [15]. The DC part is coupled to the AC part using the
complex transformer ratio M as shown in (9). The transformer
ratio represents the reference signal (in the time domain)
averaged over one switching period suitably transformed into a
phasor representation. In what follows, it is called the complex
modulation index:

V2 = MV1, (9)

where the overline represents a complex phasor.
The voltages V1 and V2 are measured in internal points of

the converter, i.e. the terminals of the IGBTs, and are not
generally accessible. Therefore, the LCL filter and converter
losses need to be included to link the DC voltage at the output
of the converter (Vdc) to the AC voltage at the grid connection
(V ac). The VSC switching and conduction losses are included
in the model using their phasor representation as presented in
[4]. The AC voltage V 2 is written as a function of the AC
grid voltage and current as:

V 2 = V ac(1 + ZbY c)− Iac(Za + Zb + ZaZbY c) (10)

where V ac is the voltage at the AC node connected to the
VSC, Za, Zb, Y c are the LCL filter parameters as indicated
on Fig. 1. The transistor conduction losses are included by a
resistive term Req in Zb as described in [4]. By solving (9)
and (10) to Vdc, and substituting the current Iac using the AC
admittance matrix I = Y V , expression (11) is obtained to
relate the DC voltage to the AC voltage phasors in a fully
linear way.

Vdc = C1V
′
j + C2V

′
l + C3V

′′
j + C4V

′′
l , (11)

where the subscript j and l refer to the AC branch connected
to the VSC, where j is adjacent to the VSC. The real and
imaginary parts are indicated using the superscript ’ and ”.

In the case of unbalanced loading conditions, the AC 3-
ph measurements cannot be approximated anymore to only
contain the positive sequence and, thus, the measurement
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model H needs to be extended accordingly. Since one DC
quantity needs to be related to three complex phasors, the
linear VSC model needs to be updated. The complex 3-ph
modulation indices M

abc
are transformed into their symmet-

rical components M
0pn

and expression (9) is rewritten as:

VDC =M−
0

′V ′
0 +M−

p
′V ′

p +M−
n

′V ′
n

−
(
M−

0
′′V ′′

0 +M−
p

′′V ′′
p +M−

n
′′V ′′

n

)
(12)

By transforming (10) in symmetrical components, and
substituting it in (12), a linear expression is obtained to
relate the DC voltage to 3-ph AC phasors for unbalanced
loading conditions (13). The full mathematical development
is presented in [4].

ℜ
(
(C0pn

1 + jC0pn
3 )TA−1

)
ℜ
(
(C0pn

2 + jC0pn
4 )TA−1

)
ℑ
(
−(C0pn

1 + jC0pn
3 )TA−1

)
ℑ
(
−(C0pn

2 + jC0pn
4 )TA−1

)



T 
V ′
m

abc

V ′
k
abc

V ′′
m

abc

V ′′
k

abc

 = VDC, (13)

The above expression can directly be included in the mea-
surement model as the [Hvsc−acHvsc−dc] submatrices.

C. VSCs complex modulation index

VSCs typically have switching frequencies of tens of kHz.
In this experiment, VSCs use symmetric on-time pulse width
modulation (PWM) (see Fig. 2), that can be expressed in the
Laplace domain as follows:

GPWM (jω) = cos

(
ωDTs

2

)
∠

(
−ωTs

2

)
, (14)

where Ts is the fixed switching period, ω the grid frequency
and D the duty cycle [16]2. The magnitude of (14) is close to
one, independently of the duty cycle D, because of the high
switching frequencies that characterise VSCs. Therefore, the
modulation process only affects the angle in (14) that has to
be compensated for.

The modulation method uses a single or double-updated
PWM. The single update is characterized by a computational
delay of Ts (as shown in Fig. 2) and a sampling delay
of 0.5 Ts is needed to represent the average time for the
setpoint implementation. For the double update, the PWM
signal is updated twice per switching period and, therefore,
characterised by half the delay of the single updated PWM.

Additionally, there is a phase shift caused by the dead time,
or blank time (δdead) , required to prevent the upper and lower
transistors of the VSC leg being in ’on’ state simultaneously
and causing a short circuit. This blank time causes a phase
shift that is dependent on the phase lag of the AC side current
with respect to the voltage and it can be modelled as in (16).
This is the only phase shift that is non-constant and is function
of the state of the network. The dead time causes an offset in
voltage at the output of the transistors as illustrated in Fig. 2.
The voltage difference between the reference and the observed

2Reference [16] gives the Laplace domain formulation for most of the
common modulation techniques.
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Fig. 2: Left: illustration of the single update and symmetric on-time
pulse modulation. Right: the influence of the deadtime on the actual
voltage reference (obtained in PLECS simulation)

voltage at the IGBT terminals in the time domain can be
written as in (15) [17] :

vref (t)− v2(t) =

{
2tdead/Tsv2(t) if i2(t) > 0

−2tdead/Tsv2(t) if i2(t) < 0
(15)

When computing the Discrete Fourier Transform of this
signal, a small different phase angle is obtained compared
to the one of the original reference voltage. An analytical
expression of the phase shift is experimentally obtained here
below to model this phenomenon:

∠δdead = 2.5
tdead
Ts

sin (∠V2 − ∠I2) (16)

Therefore, the true modulation index that represents the AC
voltage at the output of the converter (V2) can be written as
follows:

M true = |Mmeas.| ∠
(
∠Mmeas. −

ωTs

2
− δupdate + δdead.

)
(17)

D. DKF Prediction Error Covariance Estimation

A correct assessment of the prediction error covariance
matrix P̃k is crucial for the correctness of the DKF. The
prediction error covariance is dependent on the process noise
Q, which is often hard to assess correctly. Multiple methods
have been proposed in the literature for its estimate [18]–[21].
For this experimental validation, the PECE method proposed
in [22] is used. This method directly estimates the value of P̃k

without needing the assessment of Q. Due to the relatively
high computational cost of the PECE, an approximation of
the method is implemented. Reference [4] shows that the
approximation allows using the PECE method in real-time SE
processes with only a limited impact on the state’s accuracy.
The PECE works as follows: during rapid state changes e.g.
a change in the tap position of a transformer, rapid start-
up of power electronic converters or load inrushes, the state
prediction (3) of the process model is inaccurate. Therefore,
the prediction error covariance P̃k estimated by the PECE
method inflates to give more weight to the measurements
(6). During steady-state operations of the hybrid grid, the
opposite happens: the state predictions are more accurate and
more weight is given to the process model. Therefore, noise
measurements have less influence, so the state estimates will
have a lower variance.
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TABLE I: Data of the installed cables in the hybrid grid.

Line R (Ω/km) X (Ω/km) B (µS/km) Amp. (A) Length (m)
1 - 2 0.27 0.119 100.5 207 70
2 - 3 3.30 0.141 47.1 44 30
2 - 4 0.27 0.119 100.5 207 35
4 - 5 0.78 0.126 66.0 108 30
4 - 6 1.21 0.132 72.3 82 105
6 - 7 1.21 0.132 72.3 82 30
4 - 8 0.55 0.126 81.7 135 70
8 - 9 0.27 0.119 100.5 207 30
8 - 10 1.21 0.132 72.3 82 105
10 - 11 3.30 0.141 47.1 44 30
10 - 12 1.21 0.132 72.3 82 35
12 - 13 1.21 0.132 72.3 82 30
7 - 14 0.78 0.126 66.0 108 38
9 - 15 0.55 0.122 81.7 135 114.5
13 - 16 0.55 0.122 81.7 135 114.5
11 - 17 0.55 0.122 81.7 135 114.5
7 - 18 0.55 0.122 81.7 135 114.5
19 - 23 0.075 0.089 91.7 45 1000
20 - 24 0.075 0.089 91.7 45 1000
21 - 25 0.075 0.089 91.7 45 1000
22 - 26 0.075 0.089 91.7 45 1000

III. SYSTEM ARCHITECTURE

A. Experimental setup

The SE model described in Section II is validated on the
hybrid AC/DC network developed at the EPFL Distributed
Electrical Systems Laboratory. The hybrid network consists
of an 18-bus AC grid coupled to an 8-bus DC grid using 4
interfacing VSCs. Fig. 3 shows the experimental setup with
the AC grid, the DC grid, the interfacing converters and
the DMUs. The topology of the hybrid network is shown
in Fig. 4. The AC network is a replica of the CIGRE low
voltage benchmark grid defined in [23] consisting of real lines
(i.e. not emulated) and hosting different distributed energy
resources (DERs) such as photovoltaic (PV) plants, a battery
energy storage system, an electrical vehicle (EV) charging
station and an integrated fuel cell/ electrolyzer system [5].
The three-phase AC grid has a nominal voltage of 400V and
is connected to the medium voltage grid at node 1. This node
serves as the slack bus of the AC microgrid. The DC grid does
not host any resources yet, but two DC transformers (DCT)
allow the exchange of power between nodes 26 - 23 and 23
- 25. The power flow over the DCTs is proportional to the
voltage difference between their input and output [24]. The
DC network has a base voltage of 750V and consists of 4
line emulators to model lines from 250m to 2 km. Table I
summarizes the line parameters in the AC and DC networks.
The locations of the four AC connection nodes are specifically
selected since these nodes are most likely to exhibit grid
constraint violations with the connected DER. The VSCs
control allows for tracking the reactive power Qac and the DC
voltage Vdc setpoint separately. By regulating the DC voltage
at the different converter’s outputs, the DCTs generate a power
flow in the DC grid and active power is injected/absorbed
in/from the AC grid (an operational condition that allows to
satisfy the grid constraints during high-load conditions). For
both networks a base power of 100 kVA has been chosen.

TABLE II: PMU and DMU locations and measurement type in the
hybrid AC-DC micro-grid.

Network Measurement type Bus #

AC Nodal voltage (Vac) 1,3,5,14

AC Current injection(Iac) 1,3,5,14

AC Zero injection (I0,ac) 2,4,6,8,10,12

AC Current flow (Ifl,ac) 8-9,10-11,12-13, 9-15,13-16,11-17,7-18

DC Nodal voltage (Vdc) 19,20,21,22,23,24,25,26

DC Current flow (Vdc) 19-23,20-24,21-25,22-26

AFE Modulation index AFE 1-4

B. Metering system

The hybrid network is equipped with PMUs and DMUs
to provide the SE with high-resolution, time-synchronized
measurements. The PMUs are installed in the AC network
and measure nodal voltages, current injections and/or current
flow phasors. Tab. II summarizes the different measurement
types and their location. The location of the measurement
devices is also highlighted in Fig. 4. The PMUs are of P-
class and extract the phasor of the measured signal’s fun-
damental tone based on the Enhanced Interpolated Discrete
Fourier Transform (e-IPDFT) [25]. The data acquisition and
the e-IPDFT are implemented on the field programmable gate
array of the NI Compact RIO 9063 real-time controller and
the communication is implemented on the controller’s CPU.
The synchrophasor extraction process is time synchronized
by GPS. The real-time controller acquires analogue voltages
from LEM CV 3-1000 sensors (±0.2% accuracy) and current
measurements from LEM LF 205-S sensors (±0.5% accuracy).
The PMU complies with the IEEE standard C37.118 [26]
with a total vector error of 0.14%. The synchrophasors are
encapsulated and streamed every 20ms to the PDC using the
User Datagram Protocol (UDP) and the IEEE std C37.118.

The DMUs acquire and stream time-synchronized measure-
ments of DC voltages and DC currents using the same proce-
dure as the PMU. Due to the DC nature of the measurements,
the e-IpDFT is replaced by an averaging block to average the
acquired measurements over the same window as the phasor
extraction (i.e., 60ms). Since no DMU standard exists, the
same protocol as for PMUs is used to encapsulate and stream
the DC quantities to the PDC. The DMUs are calibrated using
the Keysight 3458A digital multimeter over their full operating
range to ensure a correct assessment of the measurement noise
and to guarantee a zero bias.

C. Assessment of the measurement noise

The measurement noise defined in (1) needs to be correctly
assessed for a proper operation of the SE. The noise originates
from both the sensors and inaccuracies in the phasor extraction
at the PMU level. The IT instrument class of the sensor
satisfies the IEEE standard [27] [28], which defines the ratio
limits and angular displacements of the current and voltage
transformers. The accuracy of the e-IpDFT PMUs is in the
order of 0.1 % for the magnitude and 10 × 10−3 rad for the
phase displacement [26]. The noise is assumed to be white
and uncorrelated with the instrument transformers’ noise.
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Fig. 3: The experimental setup: (a) AC grid and DERs (B01−B18), (b) DC measurement units (DMU 1− 8), (c) interfacing VSCs (VSC
1− 4) and (d) DC grid (B19−B26).
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Fig. 4: Hybrid AC/DC microgrid developed at the EPFL: topology and DERs power ratings.

Therefore, following the hypothesis for the summation of
uncorrelated normal distributions, the cumulative maximum
errors of the sensors and the PMUs are computed by adding
the corresponding magnitude and phase errors. The cumulative
standard deviation of the measurement noise is equal to one-
third of the maximum errors. Since the phasors are expressed
in Cartesian coordinates, the measurement noise also needs to
be transformed to this coordinate base. Reference [29] defines
the coordinate transformation and shows it does not influence
the normality or bias of the noise noticeably.

Using the Keysight digital multimeter, the measurement
noise of the sensors and DMU are quantified precisely. The
measurements have a standard deviation of around 8.7×10−6

p.u. for the voltage and 2.3× 10−5 p.u. for the current.

D. Supervisory Control and Data acquisition
The SCADA system consists of the PDC and the SE

stages. The SCADA system is implemented in the Labview
programming environment on a dedicated Windows machine
[5]. The machine is time-synchronised by the Tekron TTM
01-G GPS clock.

The PDC collects the UDP packages coming from the
PMUs and DMUs and mitigates the latency variations in-
troduced by the different components in the network [26].

The data aggregation and time alignment are achieved using
a fixed-size circular buffer [30]. The buffer is implemented
as a 2D array with N rows, for each stored timestamp, and
as many columns as PMU and DMU measurements. The
number of rows equals the buffer depth and thus the number
of time stamps stored. When the first row is full, meaning each
measurement of the first timestamp has arrived or when the
waiting time is over, the data in this row is pushed to the SE.
The SE deals with possible missing data that did not arrive in
time or that went lost in the telecommunication network. The
missing data is replaced with pseudo measurements computed
using the previously estimated state [31]. This architecture
allows for a minimal PDC latency while still having robustness
for data incompleteness [30].

The SE algorithm is based on the DKF presented in Section
II and implemented in the same Labview environment. The full
structure of the measurement model, measurement and state
vector for the hybrid AC/DC grid is given in (18). The 116
state variables of the hybrid network are the nodal real and
imaginary 3-ph AC and real DC voltages. The measurements
are provided by the PMUs and DMUs along with the zero
injection nodes constraints (I0,ac) and the VSC equations
(13). The system counts 170 unique measurements and has
a redundancy factor of 1.47. Furthermore, the measurement
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locations and types are chosen to insure the observability
criteria is satisfied at all time (i.e., it is full rank).



V ′
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V ′
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V ′′
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V ′′
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I ′ac

I ′′ac
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I ′′fl,ac

Vdc
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Idc
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AFE



=


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Gac −Bac
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bac gac

I

I

Gdc Gdc

Gdc Gdc

C1 C2 C3 C4 −I





V ′
ac

V ′
ac*

V ′′
ac

V ′′
ac*

Vdc

Vdc*



(18)

The adaptive KF estimates the prediction error covariance
and is implemented in a sequential way as in the original DKF
architecture. Since the PECE method directly computes P̃, it
replaces equation (4) of the DKF. We can observe that the SE
computation time could be further improved by running the
PECE method in parallel on a dedicated CPU core. However,
as will be shown in the next section, the computation time
of the PECE algorithm is around 150ms and is thus already
suitable for a real-time SE.

IV. RESULTS AND DISCUSSION

A. Measurement Residual Noise Hypothesis Validation

Since in a real-world experiment the true states are unob-
servable, the prediction and estimation noise hypothesis verifi-
cation method used in [4] cannot be adopted here. Therefore,
the validation is based on the analysis of the measurement
residuals, i.e. the difference between the measurements and
the reconstructed measurements computed using the estimated
states: r = z − Hx̂. Only when no bad data is present,
this metric can be used to validate the measurement model.
Intuitively this can be explained as follows: when no bad
data is present, the measurements are unbiased and the
distributions are within the measurement noise model and
the linear measurement model is an exact mapping between
the measurements and the estimated states. Therefore, if the
residuals are zero-biased and have a distribution that is smaller
than the three-sigma limit of the theoretical distribution, the
measurement model is correct. The theoretical covariance
matrix of the residuals of the DKF is presented in [4] and
can be computed as:

T = R(HP̃H⊺)−1R. (19)

The experiment has been conducted on December 9, 2022,
in the afternoon during a quasi-steady-state operation of the

TABLE III: PMU and DMU locations and measurement types.

Resouce Setpoints Resource Setpoints

AFE 1 −10 kVAr, 741V PV 1 ∼ 4 kW

AFE 2 5 kVAr, 750V PV 2 ∼ 6 kW

AFE 3 −15 kVAr, 750V Load 6.32 kW,1.5 kVAr (ph-c)
AFE 4 5 kVAr, 750V EV 0 kW

Fig. 5: Distribution of all the measurement residuals for the DKF
method (in p.u.)

network. Tab. III shows the setpoints and loading conditions
of the operational resources. The voltage difference between
converter 1 and 2 generates an active power flow of around
10 kW. The controllable load connected in Bus 3 creates an
unbalanced loading condition by absorbing power only in
phase c.

Fig. 5 shows the distribution of every measurement residual.
The type of measurements (AC or DC voltages or currents) is
indicated on the left vertical axis. The mean and the standard
deviation of all the residuals are displayed by the blue bars and
the three-sigma limits of the expected distribution are shown
by the grey error bars. The distributions are computed over a
10min horizon and are all shown in p.u.

We can see that the residuals have a mean that is very
close to zero and a standard deviation that is well below the
three σ limit of the expected distribution. This confirms the
correctness of the measurement model and thus the SE of the
hybrid AC/DC microgrid 3.

3Notice that the distribution of the AC current residuals is much smaller
than the one of the AC voltages. The reason for this is the low loading
condition of the grid: the measured voltages are typically 1 p.u. and have
an accuracy of 0.2%. The currents, on the other hand, are around 0.1 p.u.
with an accuracy of 0.5%. Therefore, in absolute value, the measurement
error of the currents will be much smaller and this has a direct impact on the
residuals. Furthermore, the DC residuals have a small distribution because of
the very low DC measurement noise.
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Fig. 6: Comparison of the dynamic response between the DKF and
the Adaptive KF based on the PECE method

B. Performance of the PECE method

The performance of the PECE method is assessed in a
dedicated experiment where the hybrid grid states vary over
time. The initial hybrid grid is in quasi-steady-state conditions
and a step is introduced in the setpoint of VSC 4 where the
reactive power output is suddenly increased from 5 kVAr to
15 kVAr (an increase of 0.1 p.u.). The residuals of the voltage
measurements of phase a in bus 5 are shown over time in Fig. 6
and the 3σ boundaries of the expected residual variance are
indicated in the shaded area. We see that, during the step, the
residuals of the DKF SE increase strongly and exceed the 3σ
limits. In DKF coupled with the PECE method, however, the
residuals do not exceed the bounds because the PECE method
responds instantaneously to the step. This directly affects the
accuracy of the estimated state. Notice here that we cannot
determine the accuracy of the SE since the ’true’ state cannot
be observed in a real-world experiment. Additionally, we can
also observe that, before and after the step, the variation of the
residuals is significantly lower for the PECE method. This is
because the prediction covariance noise is estimated at every
timestep, therefore both in steady-state conditions and during
dynamics, the PECE method will have superior performance.

C. Time Latency Analysis

The time latency for the different elements in the SE
process, i.e. the phasor extraction, the telecommunication
network, and the time-alignment of the PDC and the SE
process, is analysed. The measurement devices, PDC and SE
computer are all time-synchronised by means of the UTC-
GPS and, thus, the latency of each element can be assessed
individually as a cumulative distribution function as shown in
Fig. 7. The time latency analysis is shown for both the normal
DKF and the DKF coupled with the PECE where we can see
that the latter is around 150ms longer due to the computation
of the process noise covariance matrix. We can observe that
the maximum latencies of the DKF with the PECE method
are below 400ms, thus compatible with real-time controls.

V. CONCLUSION

In this paper, we presented the experimental validation of
the novel SE process for hybrid AC/DC microgrids proposed
in the authors’ previous work. The electrical hybrid network

Fig. 7: Cumulative distributions of the time latencies of the individual
sub-processes of the SE process. Top: for the DKF. Bottom: for the
approximated PECE diag method (DKF+PECE).

developed at the EPFL consists of a DC network that is
interconnected with the AC grid in four nodes using VSCs.
Time synchronised measurement devices (i.e. PMUs in the
AC system and DMUs in the DC system) provide low latency
measurements at a rate of tens of estimates per second. The
PDC receives the measurements, time-aligns them and streams
them to the SE process relying on the unified and linear
measurement model.

Because of the unobservability of the network’s true state,
the performance of the SE process is analysed using the
hypothesis verification on the measurement residuals. It is
shown that the residuals are zero-biased and have a variance
well below the three-sigma value of the theoretical distribution
and therefore the SE is validated. To cope with frequent step
changes in microgrids, an adaptive SE based on the PECE
method is implemented. We show that the PECE method
reliably tracks the system’s state during severe step change
dynamics and during steady-state operation of the hybrid
microgrid. Finally, the time latency of both SE methods,
the DKF and the DKF coupled with the PECE method, is
presented demonstrating the compatibility of the latter with
real-time control needs.
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