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Abstract—A graph H is a minor of a second graph G if G can be
transformed into H by two operations: 1) deleting nodes and/or edges,
or 2) contracting edges. Coarse-grained reconfigurable array (CGRA)
application mapping is closely related to the graph minor problem, where
H is the application’s dataflow graph and G is the CGRA’s device-
model graph. A heuristic algorithm to find graph minors has proven to
be practical for sparse graphs with hundreds of vertices in a quantum
computing application. In this work, we adapt the heuristic to CGRA
application mapping, where the graphs have directed edges, and the
vertices have unique types (e.g., representing ALUs or interconnect).
Additionally, we alter the original cost function, taking inspiration from
PathFinder, an iterative negotiated-congestion routing algorithm. In an
experimental study comparing with a CGRA mapper based on integer
linear programming, we demonstrate a higher rate of successful mappings
and from 80× to up to orders of magnitude lower runtime.

I. INTRODUCTION

Coarse-grained reconfigurable arrays (CGRAs) are programmable
hardware platforms with large ALU-like configurable processing
elements (PEs) and word-wide configurable interconnect. From the
perspectives of area, power, performance, and flexibility, CGRAs lie
between custom Application-Specific Integrated Circuits (ASICs) and
Field-Programmable Gate Arrays (FPGAs). As opposed to FPGAs,
where one can configure interconnect and logic at a bit level, CGRAs
offer configurability at word-wide level for both interconnect and
compute. As Moore’s law and Dennard scaling trends slow [1],
CGRAs are emerging as a promising direction for application ac-
celeration. To use a CGRA, an application needs to be successfully
mapped onto it. CGRA mapping is a computer-aided design (CAD)
task, which involves designating the PEs in the CGRA to perform
target computations, deciding when such computations are performed
(scheduling), as well as determining the routing paths among the PEs.

In CGRA CAD, the application is typically represented as
a dataflow graph (DFG), where the vertices model operations
(e.g., arithmetic operations, loads/stores, I/O operations), and the
edges model data-dependencies between the operations. The CGRA
device can also be modeled as a graph, where vertices represent
the computational units (ALUs), memory ports, I/Os, and routing
multiplexers. Edges in the device-model graph represent potential
connections between vertices. A device-model graph example is
shown in Fig. 1 for a simplified CGRA processing element. The
multiplexer select signals and ALU op-code are driven by config-
uration bits (not shown), based on the application mapping results.
CGRA mapping can be viewed as a constrained graph-embedding
problem, where the application DFG is embedded within the device-
model graph. Nodes of the DFG must be mapped to nodes of the
device-model graph in a legal way, e.g., an I/O operation in the DFG
must be mapped to a device-model graph vertex corresponding to an
I/O. Similarly, edges in the DFG must be mapped to disjoint paths
of interconnect resources within the device-model graph.

A unique aspect of CAD for CGRAs vs. CAD for ASICs and
FPGAs is that in CGRAs, the scheduling, placement and routing are
often formulated as a single problem instance, rather than separate

Fig. 1: CGRA PE snippet and its device-model graph.

steps. We speculate that the reason for this relates to the typically
very limited routing flexibility of CGRAs: they often have nearest-
neighbor word-wide interconnect between PEs, whereas FPGAs have
large numbers of bit-level routing tracks between logic blocks.
For CGRAs, the limited flexibility implies that if placement were
decoupled from routing, it may be difficult to find a legal routing for
a given placement.

Improving the runtime and success rate of CGRA mapping is
key to boosting designer productivity and reducing non-recurring
engineering costs. In this work, we introduce GRAMM, a fast CGRA
mapper based on a graph-minor heuristic. GRAMM is an acronym
for GRAph Minor Mapping. Informally, a graph H is called a graph
minor of another graph G if G can be transformed into H by deleting
edges and vertices, as well as contracting edges. With this definition
of graph minor, one can begin to see the relationship to CGRA
mapping. Imagine the application DFG to be H and the device-model
graph to be G: we wish to determine whether H is a minor of G,
albeit with some constraints on the types of nodes and directions
of edges. Until recently, it appears that most graph-minor-finding
algorithms were quite compute intensive. In fact, an optimal solution
to the graph-minor problem is NP-hard, as if H and G have the
same number of vertices and edges, the graph-minor problem reduces
to graph isomorphism [2]. Identification of graph minors also has
applications in quantum computing, leading to the publication of a
heuristic graph minor approach by D-Wave in 2014 [3]. In this work,
we adapt the heuristic for CGRA application mapping, demonstrating
up to orders of magnitude runtime speedup for our proposed mapper
vs. a mapper based on integer linear programming. Furthermore, on
average, mappings generated by GRAMM use at least 30% fewer
PEs than the prior work.

II. GRAPH MINOR HEURISTIC

We begin by reviewing D-Wave’s graph minor heuristic [3], which
works as follows: H is the minor graph, and G is the full target graph.
For each node xi ∈ H , we use the symbol ϕ(xi) to denote a subgraph
of vertices in G that xi “maps” onto in the minor embedding. D-Wave
refers to this subgraph as the vertex model of xi [3]. ϕ(xi) must be a
connected subgraph, and as such, it is possible to collapse the nodes
of ϕ(xi) into a single vertex through edge contractions.



A legal minor embedding of H into G involves finding a non-
empty ϕ(xi) for all vertices xi ∈ H such that if two vertices, xi

and xj , are connected in H , then the two vertex models ϕ(xi) and
ϕ(xj) should also have at least one edge connecting them (i.e., at
least one vertex in ϕ(xi) has an edge to a vertex in ϕ(xj)). Moreover,
a legal minor requires that all ϕ subgraphs are disjoint—there are no
common vertices among any two of them.

At a high level, the algorithm works by iteratively finding a vertex
model for each node y of H by considering the vertex models of
y’s neighbors in H . The algorithm allows illegal intermediate states,
where some vertices in G are assigned to multiple vertex models.
The algorithm then continues to refine vertex models for vertices
in H until a legal minor is identified, or an exhaustion threshold
is crossed. Interestingly, this approach resembles the PathFinder
negotiated congestion routing algorithm for FPGAs, which allows
temporary overuse of routing resources (i.e., illegal intermediate
states), resulting in shorts between the routing of different signals [4].
The graph minor search algorithm also incorporates nondeterminism
by randomizing the order in which the nodes of H are considered
for finding their vertex models.

To illustrate the main action of the algorithm, we walk through an
example. Consider Fig. 2a which shows a portion of graph H having
a node y connected to three neighbors: x1, x2 and x3. Let us assume
we have already found vertex models for x1, x2 and x3 in graph
G (Fig. 2b), and we aim to compute ϕ(y), the vertex model for y.
Notice that the vertex model for x1, ϕ(x1), has three vertices; the
vertex models for x2 and x3 have one and two vertices, respectively.
Other nodes of G are shown as black dots. For clarity, the other edges
of G are not shown.

To find ϕ(y), the heuristic considers each node g ∈ G, and finds
the lowest-cost weighted paths from g to ϕ(x1), ϕ(x2) and ϕ(x3),
respectively. The sum of the costs of the three paths is the total
cost of paths from g. The specific costs assigned to vertices depend
on whether they are used in multiple vertex models, detailed below.
Fig. 2c shows a node gi, and the identified three lowest-cost paths
to the three vertex models. Fig. 2d shows a different node gj and
its corresponding lowest-cost paths to the three vertex models. The
low-cost path-finding process is performed for all nodes in G.

Having found the set of low-cost paths for each node in G, the
algorithm then finds the node in G having the smallest total cost,
i.e., paths to the vertex models, ϕ(x1), ϕ(x2) and ϕ(x3) with lowest
cumulative cost. This specific node, and the nodes on its lowest-cost
paths, are chosen as the vertex model for y. Carrying on with the
example, let us assume that gj is the node of G having the lowest
total cost; the selected vertex model for y, ϕ(y), is shown in Fig. 2e.

After finding vertex models using the above approach for every
node in H , the algorithm checks if the vertex models correspond to
a legal graph-minor solution. If yes, then the algorithm terminates
with success. If not, the entire process is repeated, and new (refined)
vertex models are identified for each node in H .

While the above represents the core ideas of the algorithm, there
are some special cases to consider. First, at the beginning of the
algorithm, it is possible that none of the vertex y’s neighbors have
a vertex model assigned yet. In this case, a random vertex of G is
selected, and ϕ(y) is set to this random vertex. Another scenario is
that only some of y’s neighbors have a vertex model assigned so
far. In this case, the path costs to y’s neighbors having empty vertex
models are set to 0. Finally, the heuristic also considers the case of
finding the path cost of a vertex g ∈ G to a vertex model ϕ(xi),
where g also happens to be part of ϕ(xi). For this case, the path cost
is set to the weight of vertex g.

(a) A node y with three neighbors
in graph H.

(b) Vertex models of y’s neighbors
in graph G.

(c) Node gi with three lowest-cost
paths to the three vertex models.

(d) Node gj with three lowest-cost
paths to the three vertex models.

(e) The selected vertex model ϕ(y) in G.

Fig. 2: A step-by-step example of graph minor embedding.

The last missing piece to discuss is the node weights. The weight
(cost) of a vertex g ∈ G is defined as:

w(g) = D|S(g)| (1)

where D is the diameter of G and S(g) is the set of vertices in H
that have g in the vertex model. That is, S(g) = {xi : xi ∈ H, g ∈
ϕ(xi)}. Intuitively, the weight of g is exponentially related to its
overuse in vertex models.

Algorithm 1 formalizes the approach to find a vertex model for a
node, given the vertex models of its neighbor nodes. Here, the xj’s
represent the neighbors (in H) of the node for which we are finding a
vertex model. Lines 1–2 check if the vertex models of the neighbors
are empty, and if so, return a random vertex model. The main loop is
on lines 4–12, which, for each vertex g ∈ G, finds a path from g to
the neighboring vertex models. The checks on lines 5–8 handle edge
cases, where some neighboring vertex models are empty or when g
is part of one of the neighboring vertex models. The shortest-path
distance algorithm is run on line 10. Finally, line 13 selects the node
g∗ ∈ G having the lowest total cost.

Algorithm 2 is the top-level flow. At first, the vertex order is
randomly shuffled (line 1). All vertex models are initialized to empty
in line 2. The main work is in the loop on lines 4–9: the algorithm
constructs the minor embedding by iteratively finding a vertex model
for each node in H based on the shortest path distances and weights
using Algorithm 1. Algorithm 2 will refine the vertex models until
a valid minor is found, or it will report failure if improvement



Algorithm 1 FindMinimalVertexModel(G,w, {ϕ(xj)}) from [3]

Input: Graph G with weights w, set of vertex-models {ϕ(xj)};
Output: Vertex model ϕ(y) in G such that there is an edge between

ϕ(y) and each ϕ(xj);
1: if all ϕ(xj) are empty then
2: return random g∗ ∈ G
3: end if
4: for all g ∈ G and all xj do
5: if ϕ(xj) is empty then
6: c(g, xj)← 0
7: else if g ∈ ϕ(xj) then
8: c(g, xj)← w(g)
9: else

10: c(g, xj) ← weighted shortest-path distance (g,ϕ(xj)) ex-
cluding w(ϕ(xj))

11: end if
12: end for
13: g∗ ← argming

∑
xj

c(g, xj)

14: return g∗∪ paths from g∗ to each ϕ(xj)

Algorithm 2 FindMinorEmbedding adapted from [3]

Input: Graph H with vertices x1, . . . , xn, graph G;
Output: A valid H-minor in G, or failure;

1: randomize the vertex order x1, ..., xn

2: initialize all the ϕ(x) to empty
3: while stopping criteria not met do
4: for i = 1, 2, . . . , n do
5: for g ∈ G do
6: w(g)← D|S(g)|,

where S(g) = {xi : xi ∈ H, g ∈ ϕ(xi)}
7: end for
8: ϕ(xi) = FindMinimalVertexModel(G,w, {ϕ(xj) : xj con-

nects to xi})
9: end for

10: if ϕ(xi), . . . , ϕ(xn) represent a legal minor then
11: return ϕ(xi), . . . , ϕ(xn) (“success”)
12: end if
13: end while
14: return “failure”

(i.e., fewer overlaps among vertex models) is not realized after a
fixed number of iterations.

III. GRAMM: ADAPTATION FOR CGRA APPLICATION MAPPING

We now discuss implementation details regarding how we adapted
the above heuristic to CGRA mapping, and how we further enhanced
it to improve mapping success.

A. Core Changes

1) Directed Graph: Both inputs (application DFG and device-
model graph) to mapping are directed graphs, whereas the original D-
Wave heuristic was for undirected graphs. We modified the algorithm
to work for directed graphs when finding the weighted shortest paths
from a vertex in G to vertex models. Paths may not exist between
all vertices of G once edge directionality is accounted for.

We use Dijkstra’s algorithm to compute the shortest paths and
distances from neighboring vertex models to the vertices in graph G.
Dijkstra’s algorithm normally applies to an edge-weighted graph, not
a vertex-weighted graph. We assign the weight of the sink node for
an edge as its edge weight.

When finding a vertex model for a vertex y ∈ H , via selecting the
best “root” vertex in G (i.e., the vertex having the lowest cumulative
cost), we must ensure the vertex has a valid path in the directed graph
to all of y’s neighbors’ vertex models.

2) Vertex Attributes: Node attributes are introduced to ensure a
DFG node is mapped to the correct type of vertex in the device graph.
For example, we must map an ALU-operation node in the DFG to an
ALU vertex in the device graph, and likewise map memory operations
in the DFG to memory-port vertices. For each vertex model, it should
contain at least one vertex of the correct type, with the remaining
vertices being routing-related vertices.

When a random vertex must be selected as a vertex model, we
ensure the random vertex is of a type that can accommodate the
operation of the node in H for which we are finding a vertex model.

3) Legal Merging of Paths: When finding a vertex model for a
node y ∈ H using its neighbors’ vertex models, the original heuristic
allows path merging. From the circuit perspective, this is only legal
for fanouts of y, not for fanins. The fanins of y are separate input
dependencies that must be routed using entirely disjoint CGRA paths.

With these modifications applied to the heuristic, we now have an
algorithm suitable for CGRA mapping. Searching for graph minors
results in simultaneous placement and routing of the application DFG
onto the device-model graph, where infeasible intermediate states
(resource overuse) are temporarily permitted, and iteratively resolved
through costing, re-placement, and re-routing.

B. Enhancements to Improve Mapping Success

1) Randomizing the Selection of Min-Cost Vertex Model: We
observed that when finding the minimum-cost vertex model for a
node in H , there often exist several vertex models having the same
minimum cost. Our initial implementation selected the first such
model discovered. As an alternative approach, we explored random
selection among the minimum-cost models. In the latter approach,
as each new minimum-cost model is discovered, we flip a coin to
determine whether to select it as the best, thus injecting more non-
determinism into the graph-minor heuristic. We refer to this approach
as RAND_BEST.

2) PathFinder-like Vertex Costing: Noting the similarity between
the iterative legalization approach in the graph-minor heuristic and
the PathFinder, negotiated-congestion FPGA router [4], we explored
using a PathFinder-like cost function for nodes of G as an alternative
to Eqn. (1). Like the graph-minor heuristic, PathFinder costs a vertex
(CGRA resource) based on the present demand for the resource
(i.e., its overuse). However, PathFinder’s costing also includes a
history term, which reflects the overuse of a vertex in previous
iterations of the algorithm (e.g., previous iterations of the while loop
in Algorithm 2). The history term is helpful to prevent oscillations
between the intermediate solutions, where overuse of certain vertices
is transferred to overuse of other vertices, and then back again.

Taking inspiration from PathFinder’s cost function, we consider
the following approach to costing the vertices g ∈ G:

wPathFinder(g) = (1 + |S(g)|)× P × (1 +H(g)), (2)

where S(g) is as defined previously: the set of vertices of H that use
g in their vertex model. P is a scalar constant reflecting the penalty
for overuse. We set P to one initially, and increase it geometrically
by 1.1 in each iteration (determined empirically). H(g) is the history
term, initialized to zero for each vertex. After each iteration of the
while loop in Algorithm 2, we increase H(g) by one for each
overused vertex g ∈ G (i.e., where |S(g)| > 1). We refer to this
approach as PATHFINDER.



3) Ordering of Nodes in H when Finding Vertex Models: The
original heuristic suggested ordering the nodes in H randomly
and then proceeding with finding a vertex model for each. As an
alternative to this, we explored sorting the nodes of H according to
the size (number of vertices) of their vertex model in the previous
iteration of the while loop of Algorithm 2. For nodes of H where
this quantity is equal, we break ties randomly. The intuition here is
that there may be an advantage in prioritizing the DFG nodes (and
their corresponding connections) that require many CGRA resources.
We incorporated the sorting in addition to the PathFinder costing, and
refer to this approach as PATHFINDER_SORT.

We also experimented with sorting the nodes of H according
to their topological distance from a CGRA I/O or memory port;
however, we found that this technique did not improve results beyond
the ordering by the size of the vertex models.

IV. EXPERIMENTAL STUDY

We evaluate the proposed mapper using the CGRA-ME [5], an
open-source framework for modeling and exploring CGRA archi-
tectures and CAD. In CGRA-ME, the target CGRA architecture is
specified using a C++ API. The primitives through which one may
compose a CGRA include interconnect (e.g., multiplexers, crossbars)
and PEs (e.g., ALUs, memory ports, I/Os). To evaluate GRAMM, we
use fifteen benchmarks from the CGRA-ME framework and three
additional circuits (2exp 6, 3mandelbrot, 2mandelbrot), which we
handcrafted. The first is a parallel 6-degree Taylor expansion for ex,
and the second two perform iterated Mandelbrot set computations.

As a test vehicle for our mapper evaluation, we use the popular
ADRES CGRA [6]. Fig. 3 shows an ADRES CGRA architecture
with four rows and four columns of PEs. Each PE can perform ALU
operations, including addition, subtraction, multiplication, shifting,
and logical operations. Each PE contains a local register file (LRF).
A unique memory port is assigned to each row and connected to
all the PEs in that row to perform memory load and store. As for
the connections between PEs, each PE has South/West/North/East
connections to the neighboring PEs. Also, PEs in the top row have an
additional toroidal connection to PEs in the bottom row. Likewise, the
left-most column PEs and right-most column PEs are also connected
to one another via toroidal connections. A bypass route is available
within each PE, but it comes at the cost of leaving the ALU idle
in that PE. Even though we chose ADRES for the experiments, the
proposed mapper is in no way tied to a specific CGRA architecture.

A. Impact of Optimizations

To evaluate the impact of the proposed mapper enhancements,
we target a 6×6 ADRES CGRA and run the mapper 100 times

Fig. 3: 4×4 ADRES CGRA architecture.

TABLE I: Impact of algorithm enhancements: the number of success-
ful mappings out of 100 attempts targeting a 6×6 ADRES CGRA.

Benchmark BASELINE RAND
BEST PATHFINDER PATHFINDER

SORT

accumulate 16 28 100 100
cap 1 19 99 98
conv2 51 61 100 100
conv3 9 17 100 100
mac 61 64 100 100
mac2 3 7 98 98
matrixmultiply 11 31 100 100
mults1 0 2 70 79
mults2 2 6 92 91
nomem1 91 99 100 100
nomem2 96 96 100 100
simple 20 26 100 100
simple2 5 14 100 100
sum 89 96 100 100
2exp 6 3 5 99 99
2mandelbrot 2 4 99 100

Average 29 36 97 98

with different random seeds. We record the number of successful
mappings out of 100 runs. Table I shows the results. There are
four columns for each benchmark, reflecting scenarios described
above: the baseline graph-minor heuristic (BASELINE), random
selection among min-cost vertex models (RAND_BEST), PathFinder-
style costing (PATHFINDER), and PathFinder costing coupled with
sorting the nodes of H (PATHFINDER_SORT). The table excludes
one of the benchmarks, 3mandelbrot, which cannot be mapped on a
6×6 CGRA due to a lack of resources.

As shown in Table I, as the optimizations are layered upon one
another, the number of successful mappings increases. On average,
the baseline produces successful mappings 29% of the time. The
success rate increases to 36% when randomizing the min-cost model
selection. PathFinder-style costing improves success dramatically to
97%. Sorting further improves mapping success to 98%. In the fol-
lowing section, we compare the most successful mapping approach,
PATHFINDER_SORT, with another CGRA application mapper.

B. Comparison to Other Mapping Technique:

We compare PATHFINDER_SORT, our best-performing mapping
technique, with the exact integer linear programming-based (ILP)
mapper [7] in CGRA-ME, set to have a two-hour time-out. Gurobi
ILP solver is used [8]. For each benchmark, we target 6×6 and 8×8
CGRAs and report results for both array sizes and the three mappers.
The only exception is the FFT benchmark, dimensioned for a 10×10
CGRA (and, hence, impossible to map on a smaller array). GRAMM
(this work) was run 100 times on each benchmark, and we report the
number of successful mapping attempts, as well as the average and
standard deviation of runtime across all 100 runs (including the failed
mappings). The experiments were run on a 10-core Intel Xeon CPU.
As with other works on CGRA mapping, our emphasis is on finding
legal mappings with low runtime. Note, however, that minimum-
cost placement and routing with Eqn. (2) will naturally minimize
the number of used CGRA resources.

Table II shows the runtime comparison for two CGRA sizes. The
first two columns list the names of the 18 benchmarks and the
corresponding DFG size. The latter concern all DFG nodes, including
I/Os, constants, loads/stores, and arithmetic/logical operations. The
subsequent two columns report the number of successful mappings
of our new mapper, out of the 100 runs (equivalent to a success rate
in %). Then, we report the average runtime (in seconds) and the
standard deviation across all the runs. The following columns report



TABLE II: Run-time & resource use comparison between GRAMM and ILP-based mapper [7]. TO: timeout of 120 minutes; U: unmappable.

GRAMM (This Work) ILP Mapper Speedup (×) GRAMM ILP Mapper
DFG Mapping Success (%) Runtime (s) avg (dev) Runtime (s) GRAMM vs. ILP Routing Use avg (dev) Routing Use

Benchmark size 6×6 8×8 6×6 8×8 6×6 8×8 6×6 8×8 6×6 8×8 6×6 8×8
accumulate 24 100 100 0.1 (0.05) 0.29 (0.15) 274.9 474.4 2749.0 1635.9 20.6 (2.3) 23.4 (2.8) 26 47
cap 30 98 100 0.24 (0.14) 0.5 (0.22) 2913 TO 12137.5 - 27.6 (2.3) 32.6 (3.55) 33 U
conv2 22 100 100 0.06 (0.03) 0.16 (0.09) 19 720.5 316.7 4503.1 16.5 (2.1) 18.87 (3.09) 32 33
conv3 32 100 100 0.18 (0.09) 0.39 (0.2) 36.3 85.7 201.7 219.7 24.2 (2.3) 29.2 (3.5) 33 58
mac 15 100 100 0.03 (0.01) 0.08 (0.04) 60 19.3 2000.0 241.3 11.4 (1.7) 12.92 (2.32) 9 36
mac2 32 98 100 0.27 (0.17) 1.12 (0.49) 598.4 4220 2216.3 3767.9 27.1 (2.8) 35.26 (4.27) 31 49
matrixmultiply 23 100 100 0.08 (0.05) 0.19 (0.11) 67.1 58.8 838.8 309.5 19.8 (2.6) 22.75 (3.65) 29 58
mults1 39 79 100 0.6 (0.31) 0.86 (0.4) TO TO - - 29.6 (2.5) 36.6 (4.14) U U
mults2 33 91 100 0.41 (0.23) 0.74 (0.31) TO 5893.1 - 7963.6 29.1 (2.6) 34.2 (3.46) U 48
nomem1 6 100 100 0.01 (0) 0.02 (0) 0.8 1.8 80.0 90.0 4.1 (1) 4.8 (1.26) 36 64
nomem2 8 100 100 0.01 (0) 0.03 (0.01) 1.34 39.5 134.0 1316.7 5.4 (1) 6.14 (1.66) 14 10
simple 18 100 100 0.05 (0.03) 0.15 (0.08) 14.8 225.9 296.0 1506.0 18.1 (2.3) 20 (3.54) 22 18
simple2 20 100 100 0.08 (0.04) 0.2 (0.09) 15.4 262 192.5 1310.0 21.9 (2.3) 23.99 (2.41) 30 36
sum 9 100 100 0.01 (0) 0.03 (0.01) 1.5 5.4 150.0 180.0 5.8 (1.2) 6.59 (1.6) 12 11
2exp 6 21 99 100 0.33 (0.15) 1.05 (0.47) TO TO - - 27.8 (2.3) 35.6 (3.97) U U
3mandelbrot 42 0 97 1.03 (0.03) 1.36 (0.68) TO TO - - U (-) 44.24 (4.82) U U
2mandelbrot 28 100 100 0.21 (0.1) 0.47 (0.17) TO TO - - 25.5 (2.9) 29.43 (4.66) U U
FFT (10×10) 43 7 9.3 (1.12) TO - 79.14 (7.22) U

the runtime of the exact ILP mapper. The next two columns give the
achieved average speedup against the ILP mapper.

Comparing the mapping success of GRAMM versus ILP on an
8×8 CGRA, we observe that GRAMM found a successful mapping
in all 100 runs and all benchmarks except 3mandelbrot (97 successful
attempts out of 100). At the same time, ILP mapper timed out. Fur-
thermore, ILP timed out while finding a mapping for five benchmarks.
Regarding the speed of mapping, if we compute the geometric mean
of the speedup of GRAMM versus ILP across all the benchmarks,
we find that GRAMM outperformed the ILP mapper by ∼855×. In
seven runs and 9.3 seconds (on average), GRAM found successful
mappings for the FFT benchmark (targeting a 10×10 CGRA), while
the ILP mapper timed out. As we will later show, the FFT benchmark
represents a very hard mapping problem because it requires almost
80% of the PEs to be mapped.

When targeting a 6×6 CGRA, with fewer resources and thus an
even more challenging mapping task, GRAMM was 100% successful
for 10 circuits and at least 90% successful on 15 of them. Of the
few difficult-to-map benchmarks, 3mandelbrot failed to map (due
to a lack of resources), and mults1 was successfully mapped in 79
attempts. Conversely, the ILP mapper timed out and failed to find
a mapping for five benchmarks, including 3mandelbrot and mults1.
GRAMM took at most 1.03 seconds, on average, to find a successful
mapping. Considering the geometric mean of the speedup, we find
that GRAMM outperformed the ILP mapper by 547.5×.

To assess mapping quality, the right-most columns of Table II show
the resource usage of the GRAMM and ILP mapping techniques for
both CGRA sizes. As a usage metric, we count the total number PE
output multiplexers used in the mapping, as shown in the right side
of Fig. 3. This metric reflects the aggregate number of PEs used—
either for an ALU operation or as a route-through. The metric is
indicative of area and power consumption. For GRAMM, the average
and standard deviation of the resource usage across all successful
mappings are reported. On average, GRAMM mappings use 69%
(resp. 57%) of resources compared to ILP on 6×6 (resp., 8×8
CGRA). GRAMM mappings are superior in all but two cases: 1)
to map the mac benchmark on a 6×6 CGRA, GRAMM used 26.6%
more resources than ILP, though at the advantage of ∼2,000× faster
mapping time, and 2) to map the simple benchmark on a 8×8 CGRA,
GRAMM used 11% more resources than ILP. Looking at the standard
deviations of resource usage, we find they are fairly low, within
8–24% on a 6×6 CGRAs and 10–27% on a 8×8 CGRA; hence,

GRAMM quality of results scale well with the increased device and
benchmark graph size. Finally, for the FFT benchmark targeted to a
10×10 CGRA, resource usage is 79%, on average, reflecting that a
large fraction of PEs is needed for the mapping and explaining the
low mapping success rate (7% in Table II).

V. RELATED WORK

Aside from the mappers within the CGRA-ME framework, there
are various other works on CGRA mapping; for example, a simulated
annealing-based method (DRESC [9] and SPR [10]), a reinforcement
learning-based method [11], a ZDD-based method [12], as well as
other methods like PathSeeker [13] and RAMP [14]. [11] reports
average runtimes of ∼100 seconds on DFGs of similar size to ours.
[13] does not report DFG sizes, though reports runtimes close to
10 seconds on 4×4 CGRAs and shows [14] to have considerably
longer runtimes. TAEM [15] is a mapper with emphasis on CGRAs
having heterogeneous resources, based on a maximum-weighted
clique approach; numerical run-times are not reported. An interesting
recent work, GEML [16], applies graph neural networks to CGRA
mapping. Although GEML is focused on multi-context CGRAs,
it reports mapping runtimes ranging from 2.5 to 102 seconds for
some single-context 8×8 CGRAs on similarly-sized DFGs to our
own. The application of graph minor techniques in CGRA mapping
is a niche direction; there is one prior work. Chen et al. [17]
formulated the CGRA mapping problem with route sharing as a
graph minor problem. Their solution can provide high-quality results
with a relatively small runtime compared to simulated annealing-
based mappers. However, [17] performs an exhaustive exploration
when mapping the application DFG to the device model graph, with
backtracking upon failure, which is impractical for most mapping
problems.

VI. CONCLUSIONS AND FUTURE WORK

We described a new approach to CGRA mapping based on a graph-
minor heuristic [3]. The heuristic was adapted to CGRA mapping,
and enhanced to increase the success of finding a legal mapping,
borrowing concepts from an FPGA negotiated-congestion routing al-
gorithm. Our fast mapper provides orders of magnitude speedup over
the ILP mapper in the openly-available CGRA-ME framework [18].
Additionally, the mappings it produces use, on average, approx. 30–
40% fewer resources. Early mappability estimation and alternative
cost functions are two of the many avenues for future work.
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