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Abstract—Increasing adoption of smart meters and phasor
measurement units (PMUs) in power distribution networks are
enabling the adoption of data-driven/model-less control schemes
to mitigate grid issues such as over/under voltages and power-
flow congestions. However, such a scheme can lead to infeasi-
ble/inaccurate control decisions due to measurement inaccura-
cies. In this context, the authors’ previous work proposed a
robust measurement-based control scheme accounting for the
uncertainties of the estimated models. In this scheme, a recursive
least squares (RLS)-based method estimates the grid model (in
the form of voltage magnitude sensitivity coefficients). Then, a
robust control problem optimizes power set-points of distributed
energy resources (DERs) such that the nodal voltage limits
are satisfied. The estimated voltage sensitivity coefficients are
used to model the nodal voltages, and the control robustness
is achieved by accounting for their uncertainties. This work
presents the first experimental validation of such a robust model-
less control scheme on a real power distribution grid. The scheme
is applied for voltage control by regulating two photovoltaic (PV)
inverters connected in a real microgrid which is a replica of the
CIGRE benchmark microgrid network at the EPFL Distributed
Electrical Systems Laboratory.

Index Terms—Measurement-based, robust voltage control,
data-driven, experimental validation, estimation, model-less.

I. INTRODUCTION

Distribution System Operators (DSOs) have the responsibil-
ity of maintaining adequate voltage quality for end-consumers
through the operation of their networks [1]. To this end,
voltage control has been identified as a prominent approach
to be employed [2]–[4]. Various control strategies have been
proposed in the literature, which can be broadly classified into
two categories. The first category comprises the model-based
control schemes, such as those proposed in [5]–[7], which
rely on accurate knowledge of the grid model, including its
topology and branch parameters. However, it is not applicable
to cases when the grid model is unavailable. To tackle this
issue, data-driven methods have been recently proposed [8]–
[15] where the network model is first inferred from suitable
measurements, then fed to a coupled control scheme. These
schemes are referred to as model-less control. The works in
[8], [10] proposed voltage control using estimated voltage
sensitivity coefficients. However, as shown in [11], these
schemes might suffer from the multi-collinearity problem (i.e.,
unreliable estimates in the case of similar power injections
at multiple nodes). To solve this issue, it proposed adopting
the principle component analysis (PCA) method. The works
in [12], [15] used a two-stage estimation scheme where a
least-squares (LS) method obtains a rough estimate of the

sensitivity coefficients that are then corrected via an online
recursive-least-square (RLS)-based scheme using the most
recent measurements.

In all the above schemes [8], [10]–[12], the sensitivity
coefficients were modeled as point estimates, ignoring the
estimation uncertainty, which may lead to infeasible control
decisions. Since measurement-based estimates are sensitive
to measurement quality (i.e., bias and noise), it might be
helpful to account for these elements via uncertainty bounds
on the estimates in the control problem. Author’s previous
work [15], [16] proposed a robust voltage control scheme
that modeled sensitivity coefficient estimates as probability
density functions (PDFs) instead of their mean value. This
approach resulted in a better performance than its non-robust
counterpart (i.e., when the estimates were modeled by their
mean values). However, to the author’s best knowledge, none
of these schemes were experimentally validated.

In this context, this paper presents an experimental valida-
tion of the estimation and control scheme of [15] on a real-
scale microgrid hosted at the EPFL Distributed Electrical Sys-
tems Laboratory. The microgrid is a low-voltage distribution
network and is a replica of the CIGRE microgrid benchmark
network [17]; it hosts two1 controllable photovoltaic (PV)
inverters and multiple uncontrollable injections. The grid is
equipped with seven phasor measurement units (PMUs) and
a dedicated communication network providing real-time mea-
surements of nodal voltages and branch current flows.

The paper is organized as follows: Section II presents the
problem statement, Section III describes the estimation and
control problem, Section IV presents the experimental results,
and Section V summarizes the main contributions of this paper.

II. PROBLEM STATEMENT

We consider a power distribution network of generic topol-
ogy (i.e., meshed or radial) equipped with measurement
devices (either smart meters or phasor measurement units)
capable of providing high throughput measurements2 on nodal
voltage magnitudes and active/reactive powers. The objective
is to control distributed energy resources (DERs) in a power
distribution grid such that nodal voltages are kept within
their operational bounds. We rely on the measurement-based

1Note that the power injected from multiple PV plants may introduce the
problem of multi-collinearity in the sensitivity estimation problem.

2Future distribution grids are recommended to install low-cost PMUs for
their situational awareness by CIGRE and IEEE working groups [4], [18],
providing high throughput measurements.
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Fig. 1. Schematic diagram of the model-less/measurement-based robust voltage control framework.

estimation and robust voltage control originally proposed in
[15]. The scheme is schematically shown in Fig. 1. It consists
of three different blocks:
• Measurement: the measurements of nodal active, reactive

powers, and voltage magnitudes are obtained from PMUs.
Also, the measurements on global horizontal irradiance
(GHI) and temperature is gathered. We consider the mea-
surements sampled at 1 second.

• Estimation and control: the voltage magnitude sensitivity
coefficients are estimated using a pre-defined measurement
window (5-minutes in this case), the short-term forecasts of
the injections are updated, and finally, using the estimated
sensitivity coefficients and short-term forecasts, the robust
control algorithm computes the active and reactive power
setpoints of controllable DERs such that the system state
is feasible with respect to the sensitivity coefficients uncer-
tainties. This block is run every 30 seconds.

• Actuation: the power setpoints are sent to the DERs through
a dedicated IPv4 communication network via User Data-
gram Protocol (UDP).

This scheme is experimentally validated on a real microgrid
which is a replica of the CIGRE benchmark microgrid network
hosted at the EPFL Distributed Electrical Systems Laboratory.
The framework is validated in terms of estimation and control
accuracy. In the following, we briefly recall the control and
estimation scheme.

III. METHODS

Let us consider a power distribution network consisting of
Nb non-slack buses contained in the set Nb = {1, . . . , Nb}.
The distribution network hosts multiple DERs that can be
controlled to provide active and reactive power support to
the grid. The objective is to control a subset of these DERs
at a relatively high refresh rate (e.g., 30 seconds) such that
nodal voltage constraints are always satisfied. In the follow-
ing, we present how the nodal voltages are modeled using
measurements, the model-less robust control problem, and the
estimation problem formulations.

The nodal voltages are approximated via the first-order
Taylor’s approximation using the so-called voltage sensitivity

coefficients. Let |vi,tk−1
| ∈ R denote the nodal voltage

magnitude of i−th node at time tk−1, Kp
i,tk−1

∈ RNb×1 and
Kq

i,tk−1
∈ RNb×1 be the nodal voltage magnitude sensitivity

coefficient with respect to nodal injections of active and
reactive powers, respectively. Let the nodal active and reactive
power injections are denoted by ptk ∈ R1×Nb and qtk ∈
R1×Nb , respectively; ptk−ptk−1

= ∆ptk ,qtk−qtk−1
= ∆qtk

be the variations of nodal active and reactive power injections.
The nodal voltage magnitude of i−th node at time tk (i.e.,
|vi,tk |) can be approximated by

|vi,tk | ≈ |vi,tk−1
|+∆ptkK

p
i,tk−1

+∆qtkK
q
i,tk−1

∀i ∈ Nb (1)

To account for the uncertainty on the estimates, the coefficients
are represented by following intervals with ∆Kp

i,tk
,∆Kq

i,tk
being the estimated uncertainty

Kp
i,tk

∈ [K̂p
i,tk

−∆Kp
i,tk

, K̂p
i,tk

+∆Kp
i,tk

] ∀i ∈ Nb (2a)

Kq
i,tk

∈ [K̂q
i,tk

−∆Kq
i,tk

, K̂q
i,tk

+∆Kq
i,tk

] ∀i ∈ Nb. (2b)

The sensitivity coefficients in (1) are obtained by a
measurement-based estimation process described later in Ap-
pendix A. We use a two-stage scheme from [15], [16] for
the estimation of the sensitivity coefficients that are used as
inputs in the robust control problem of the previous section.
In the first stage, the least squares (LS)-based scheme (offline)
estimates the initial values of sensitivity coefficients using
previous-day measurements. Then, an online recursive least
squares (RLS) scheme is used to update the estimates during
real-time operation. The scheme is described in Appendix A.

A. Robust Control Problem Formulation
We refer to the robust control formulation from the author’s

previous work in [15], [16]. Here, the objective is to control
active/reactive power injections from curtailable PV plants
such that the grid nodal voltages are always within the opera-
tional bounds. At the same time, it minimizes the active power
curtailment with respect to maximum power potential (MPP)
and the corresponding reactive power constrained by the PV
plant’s minimum power factor. The control formulation is
linear, thanks to the linear grid constraints modeled by voltage
sensitivity coefficients and robust reformulation scheme [19]
and is briefly described in Appendix B.
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Fig. 2. (a) The microgrid setup used for the experimental validation. We consider two controllable resources (curtailable PV plants PV1 and PV2 at buses
B11 and B09) and uncontrollable injections from L1, B, and L2 at buses B03, B05, and B14, respectively. (b-i) The two PV plants at the roof-top, (b-ii, iii)
inverters for PV1 and PV2, respectively, and (c) IT communication infrastructure for microgrid including local server, PMUs, Meteo-box and PV converters.

IV. EXPERIMENTAL VALIDATION

In the following, we present the experimental validation of
the measurement-based estimation and robust control scheme.
First, we describe the experimental setup, and then the results
from a full day of experiments are presented and discussed.

A. Experimental Setup

We validate the model-less robust control scheme on a real-
scale microgrid hosted at the EPFL’s Distributed Electrical
Systems Laboratory. The microgrid setup is a replica of the
CIGRE low voltage benchmark microgrid [17]. The grid
topology, corresponding ampacities, and locations of the DERs
are shown in Fig. 2a. It also shows the locations of the PMUs
installed at nodes B01, B03, B05, B09, B13, B07, and B11,
respectively. It is operated at 400 V and is connected to the
20 kV medium voltage feeder via a 630 kVA transformer. The
microgrid hosts several controllable and uncontrollable DERs.
For the sake of this experiment, we consider two PV plants
as controllable, other injections from Battery (B), loads (L1
and L2) are used to imitate uncontrollable prosumers. The
nominal ratings of DERs are also displayed in Fig. 2a. The
PV panels are shown in Fig. (2b-i), and they are interfaced by
two different converters (shown in Fig. 2b-ii and iii) at nodes
B09 and B11, respectively. The two converters differ in terms
of their controllability. Their capability curves are shown in
Fig. 3. From the curve, it is apparent that the first converter
cannot control reactive power, whereas the second can control
both the active and reactive powers within its capacity. In both
cases, the active power is limited by the MPP obtained using
a short-term irradiance forecast.

1) Monitoring and Communication Infrastructure: The mi-
crogrid is equipped with seven PMUs providing measurements
of nodal voltages and lines currents. Although the measure-
ments are available at a time sampling of 100 ms, we down-
sample them to 1 second to demonstrate that the proposed
scheme can work with that time resolution. Since the esti-
mation approach requires power measurements, we compute
the nodal powers using the voltage and current measurements
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Fig. 3. Capability curves of (a) PV1 and (b) PV2 converters.

from PMUs. The nodal voltages and branch currents are sensed
by commercial LEM voltage transducer CV 3-1000 [20] and
current transducer LF 205-S/SP3 [21] with IT measurement
classes of 0.2 and 0.5, respectively. We also obtain global
horizontal irradiance (GHI) and air temperature measurements
from suitable meteo-boxex that allows obtaining a short-term
forecast of the PV generation. The specifications of the PMUs
and meteo-boxex are described in [22].

As for communication, the microgrid is equipped with a
dedicated IPv4 communication infrastructure. The network
layout is shown in Fig. 2c. It connects the PMUs, meteo-
boxes, and a local server. The local server hosts four different
virtual machines (VM), their functions are (i) VM1 as PDC
(phasor data concentrator) for aggregating the packets from
the PMUs, (ii) VM2: Databases for logging the measurements,
(ii) VM3: Implementing the estimation and control algorithms
and (iv) VM4: Routing the packets according to the firewall
configurations. We use User Datagram Protocol (UDP) for the
communication of the packets. All the elements are connected
to the sub-network via Ethernet cables.

2) Short-term forecast: Thanks to the fast time resolution
(1-second) of the measurements, we use persistent3 forecasting
scheme for short-term forecasts of GHI and demand. In other
words, we assume that the GHI and demand stay the same
(as observed in the last second) for the computation of the

3A better forecasting strategy will be investigated in future work.
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Fig. 4. Flow-chart illustrating the real-time operation for a single day of
operation.

control setpoint. The GHI and air temperature measurements
are obtained via meteo-box described in Sec. IV-A1. These
measurements are then used for the estimation of the PV MPP
generation using a PV model from [23].

3) Experimental flow diagram: Fig. 4 shows the data flow
during the real-time operation. It starts at midnight 00.00 UTC.
As described in Appendix A, the initial sensitivity coefficients
are estimated by LS using the previous day’s measurements.
Then, the real-time stage starts at 00.00.30. Using the recent
5-minute measurements (sampled per second), it updates the
estimation of the sensitivity coefficients using RLS. In the
next step, we update the MPP and demand forecasts, and then
the robust voltage control problem (Sec. III-A) is solved. The
power setpoints from the controller are then sent to the PV
inverters. Their cycles are repeated every 30 seconds till the
end of the day’s operation.

4) Performance metrics: This section defines the metrics
used in the performance assessment of the estimation scheme.
The metrics are listed in Table I. Here, the first one is

TABLE I
PERFORMANCE METRICS

Metrics Expression
RMSE(X̂)

||Xtrue−X̂||2
||Xtrue||2

PICP 1
M

∑tM
tk=t1

btk where btk counts number of times
the true coefficients are within the uncertainty bound.

PINAW 1
N(KP

ij,max)

∑tM
tk=t1

(2∆KP
ij,tk

)

CWC PINAW(1 + η(PICP)e−(ν(PICP−α))

the classical root-mean-square-error (RMSE).Here, the vectors
Xtrue and X̂ contain true and estimated values of particular
sensitivity coefficients, respectively for all time steps.

For the performance comparison on the estimation of the
uncertainty intervals, we use metrics inspired by [24]: the
first is the prediction interval coverage probability (PICP) that
counts the number of instances of realization falling within
the uncertainty bounds for a given confidence interval α. The
second is the prediction interval normalized average width
(PINAW) to quantify the uncertainty width. Here, KP

ij,max
is the maximum value of the coefficient in the series. The
final metric is the coverage width-based criterion (CWC),
which quantifies the trade-off between high PICP and small

PINAW. where η =

{
0, PICP ≤ α

1, otherwise
. The symbol ν is a

design parameter to amplify the instances when PICP is higher
than the confidence interval, based on a trade-off between
the interval width penalization. We chose ν = 50. The
considered α is 99% reflecting the confidence interval used
in the estimations.

B. Experimental Results

The control aims to keep the voltage within 0.96 - 1.04 per
unit (pu) of the base voltage. The PV inverters are controlled
with a time resolution4 of 30 seconds. The control scheme was
validated for several days, but for the sake of brevity, we show
for a single day; it corresponds to a weekday (Monday, 18 July
2022). The day is characterized by clear-sky irradiance. The
estimation and control results are described below.

1) Estimation Results: In Fig. 5, we show the estimation
results for nodes with controllable PV plants (nodes B09 and
B11), i.e., Kp

9,9, Kp
9,3, Kp

11,3 and Kp
11,11, The estimates are

shown in red, and the uncertainty on the estimates in shaded
grey. They are compared against the true values (in black)
obtained by model-based5 computation of the sensitivity co-
efficients [7]. The key metrics on the RMSE and PICP-CWC-
PINAW are shown in Table. II. From the plots and the reported
metrics, all the coefficients except Kp

11,11 attain nearly 100 %
coverage, although the CWC is relatively high. The coefficient
Kp

11,11 estimates are at the edge during the beginning of the
day, it is due to insufficient variation in the PV injection
as the PV plant is off during the night. This issue can be
effectively tackled by increasing the confidence intervals from
99 % to 99.9%. In this specific case, we keep it to 99 %
as during the night there is no overvoltage problem as PVs
are not generating. Overall, it can be concluded that the true
coefficients fall within the estimated uncertainty bounds; thus,
they can be used reliably for real-time voltage control.

2) Control Results: Fig. 6 shows the control results. In
Fig. 6a, it shows the nodal voltage magnitudes measurements
of different nodes with and without control; the line plots show
voltages with control, whereas the shaded grey area shows the

4This time resolution is chosen based on the time taken to gather the
measurements, execute the estimation, update the short-term forecast of the
PV production and demand, and solve the robust control problem.

5Indeed, the microgrid is equipped with a real-time state estimator coupled
with the method in [7]; this information is used for computing the true
sensitivity coefficients.
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Fig. 5. Coefficients estimates and their uncertainty using RLS-SF.

TABLE II
ESTIMATION PERFORMANCE.

Coefficients RMSE PICP-CWC-PINAW
Kp

9,3 0.88 1 - 11.75- 11.75
Kp

9,9 0.37 1 - 3.60 - 3.60
Kp

11,3 0.95 1 - 11.03-11.03
Kp

11,11 0.13 0.9 - 0.78 - 1.44

plots without any control.6 As it can be observed, all the nodal
voltages are within the operational limit of 1.04 pu, thanks to
the robust control action. Conversely, in case of no control,
the nodal voltages do not respect this limit. Therefore, it can
be concluded that robust control succeeds in voltage control.
Indeed, the control action results in curtailing PV generation
from the two PV plants to keep the voltage within the
imposed limit. The curtailed PV generation and corresponding
estimated maximum power potential (MPP)7 is shown in
Figs 6b and 6c. Fig. 6d and 6e show the uncontrollable nodes’

6As it is not possible to repeat same conditions of the experiments, this
plot is obtained solving an AC load while replaying the uncontrollable power
injections and imposing the maximum power potential of the PV plants.

7The maximum power potential of each PV plant is obtained by using a
PV generation model from [23], fed with the measurements of the global
horizontal irradiance, air temperature and the configuration of the PV plants.

(a) Nodal voltage magnitudes with control (line plot) and without control
(shaded grey).

(b) PV plant at node B11: curtailed generation (line plot) and MPP (shaded
grey).

(c) PV plant at node B09: curtailed generation (line plot) and MPP (shaded
grey).

(d) Uncontrollable active power injections.

(e) Uncontrollable reactive power injections.

Fig. 6. Experimental validation results: (a) voltage magnitude, (b) PV at node
B11, (c) PV at node B09, and (d) uncontrollable active and (e) reactive powers
at other nodes.

active and reactive power injections. From the above plots, the
following observations are made:

• Most curtailments occurred on the PV1 plant as it is located
at the feeder’s end, causing over-voltages across all the
nodes in case of excess PV generation. A fair curtailment
strategy (e.g., [25]) will be investigated in our future work
promoting fair curtailment action.

• PV plants (PV1) experienced large curtailments between
9:00-11:00 and 12:00-15:00; it is due to an increase in the
slack’s nodal voltage (imposed by the upper-level grid.

• The PV curtailment decreases in PV1 at 12.00 and 15.00
due to a sudden drop in the slack’s voltage; It is because of
tap-changer’s action in the upstream grid.

• Due to the reactive power injection at node B05 between
14.00-15:00, the curtailment at PV1 plant decreases.
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3) Computation Time: We also report the statistics on total
computation time comprised of time to download the measure-
ments, estimate the sensitivity coefficients, obtain short-term
forecasts, and solve robust control scheme. The histogram of
the computation time is shown in Fig. 7. As can be observed,
the whole scheme takes an average total computation time
of 12.8 seconds which is below the control actuation time
deadline of 30 seconds. In some cases, the time is near the
30-second deadline,8 it is due to the communication delay in
receiving the measurements.

Fig. 7. Probability density function (PDF) of the total computation time.

V. CONCLUSION

In this work, we presented an experimental validation of
a model-less robust voltage control scheme on a real-life
microgrid hosting two controllable PV plants. The robust
control scheme relied on measurement-based estimated voltage
sensitivity coefficients, and robustness is achieved by account-
ing for estimation uncertainties. The estimation and control
problem is solved every 30 seconds, and the estimation is
performed with a measurement window of 5 minutes.

The scheme was experimentally validated on a real mi-
crogrid hosted at the EPFL Distributed Electrical Systems
Laboratory, a replica of the CIGRE low voltage benchmark
microgrid. The control results are shown for a single day of
experiments. The experimental results show that the proposed
robust control scheme keeps the nodal voltage magnitudes
within the imposed limits thanks to the proposed model-less
robust voltage control scheme’s curtailment action on the PV
plants. Also, the total computation time for estimation and
control was, on average, 12.8 seconds which is much below
the control actuation time deadline.

Future works aim to extend this framework to realize other
control objectives, such as model-less congestion management,
dispatch tracking, etc.

APPENDIX

A. Estimation of Voltage Sensitivity Coefficients

Below we briefly describe the two-stage estimation scheme
originally developed in Author’s previous work in [15].

1) Offline LS: is used to obtain initial estimates for the RLS
estimation scheme, described later. Eq. (1) can be written as

|vi,tk | − |vi,tk−1
| = |∆vi,tk︸ ︷︷ ︸

γtk

| ≈ [∆ptk ∆qtk ]︸ ︷︷ ︸
htk

[
Kp

i,tk
Kq

i,tk

]
︸ ︷︷ ︸

X

. (3)

8We use a fallback strategy to implement the previous setpoint in the case
of exceeding the time deadline.

Given the measurements window from time t = t1 . . . , tM ,
and assuming that coefficients do not change9 within the
window, eq. (3) can be written as

Γ ≈ HX (4)

where, Γ ∈ RM×1 = [γt1γt2 . . . γtM ]⊤, H ∈ RM×2Nb =
[ht1ht2 . . . htM ]⊤ and X ∈ R2Nb×1 includes KP

i,tk
and KQ

i,tk
.

The estimation problem is formulated as

X̂ = min
X

||Γ−HX||2 + λregX⊤X (5)

where λreg ≥ 0 serves as a regularization parameter to penalize
coefficients assuming large values. It can be solved as

X̂t0 = (H⊤H+ λregI)−1H⊤Γ = (Rt0 + λregI)H⊤Γ (6)

where I is the identity matrix. The covariance matrix is Pcov
t0 =

R−1
t0 = (H⊤H)−1.
2) Online RLS: is used to update the estimates recursively

with more recent measurements during real-time operation.
The scheme is initialized with LS estimates and solved recur-
sively during the day. A forgetting factor 0 < µ ≤ 1 is applied
to propagate covariance information from the last step as

Rtk = µRtk−1
+ h⊤

tk
htk (7)

This results in the following iterative updates.

etk = γtk − htkX̂tk−1
(8a)

X̂tk = X̂tk−1
+Gtketk (8b)

Gtk =
Pcov

tk−1
h⊤
tk

µ+ htkP
cov
tk−1

h⊤
tk

(8c)

Pcov
tk

= (I−Gtkhtk)P
cov
tk−1

/µ (8d)

where, G is the estimated gain and e the residual. This
scheme is referred to as RLS-F. However, it suffers from
the windup10 problem of the covariance matrix [26], [27]
and it may lead to very large covariances resulting in large
estimate variances. A way to solve this issue is to use different
forgetting factors for different eigenvalues of the covariance
matrix. These forgetting factors are computed and updated
iteratively to limit the windup problem. This scheme is called
selective forgetting (SF) i.e., RLS-SF; the gain and covariance
matrices are updated as follows [26].

Gtk =
Pcov

tk−1
h⊤
tk

1 + htkP
cov
tk−1

h⊤
tk

(9a)

Pcov
tk

=

2Nb∑
i=1

τi,tk
µi

u⊤
i,tk

ui,tk . (9b)

Here, ui,tk denotes the eigenvectors of Pcov
tk

in Eq. (8d)
and τi,tk the corresponding eigenvalues. It is updated as

τi,tk =

{
1, τi,tk > τmax

τmin + (1− τmin/τmax)τi,tk−1
τi,tk−1

≤ τmax
and

bounded by [τmin τmax]. More information on the tuning of
RLS-SF is in [26] and [28].

9Given, the measurements are sampled at 1-sec and the network is in the
steady state (no dynamic transients), this assumption holds well.

10The windup problem occurs when the system has very low excitation
(i.e., the system is slowly varying); it leads to the exponential growth of the
covariance matrix.
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B. Robust Control Formulation

Without loss of generality, we consider that the distribu-
tion network is hosting controllable PV plants indexed by
j contained in set Npv ⊂ Nb. The objective is to control
active/reactive power injections (ppv

j,tk
, qpv

j,tk
, j ∈ Npv) such that

the grid nodal voltages are always within the statutory bounds.
At the same time, it minimizes the active power curtailment
with respect to maximum active power potential (MPP) p̂pv

j,tk
and the corresponding reactive power given by the PV plant
fixed power factor. The objective we minimize at time tk is

minimize
ppv
j,tk

,qpv
j,tk

,∀j∈Npv

∑
j∈Npv

{
(ppv

j,tk
− p̂pv

j,tk
)2 + (qpv

j,tk
)2
}

(10a)

where the first and second terms are on minimizing the ac-
tive power curtailments and regulating corresponding reactive
power within the PV plant’s minimum power factor limit,
respectively.

The problem is solved with respect to the following con-
straints:

0 ≤ ppv
j,tk

≤ p̂pv
j,tk

j ∈ Npv (10b)

0 ≤ (ppv
j,tk

)2 + (qpv
j,tk

)2 ≤ (Spv
j,max)

2 j ∈ Npv, (10c)

qpv
j,tk

≤ ppv
j,tk

ζ j ∈ Npv (10d)

− qpv
j,tk

≤ ppv
j,tk

ζ j ∈ Npv (10e)

vmin ≤ |vi,tk | ≤ vmax. (10f)

Here, (10b) refer to the constraint on PV generation limited by
short-term MPP forecast p̂pv

j,tk
, (10c) is the capability constraint

of the converter rating Spv
j,max. Eqs. (10d) and (10e) are the

minimum power factor constraint (for simplicity, we assumed
that all the PV plants have the same minimum power factor).

Here, ζ =
√
(1− PF2

min)/PF2
min, PFmin being the minimum

power-factor allowed for the PV operation of each PV plant.
The final constraints (eq. 10f) are on the voltage magnitudes,
expressed using (1), are bounded by [vmin, vmax].

Note that the interval constraints of (2) used for expressing
voltage magnitudes in (1) make the optimization problem
in (10) intractable. Therefore, the problem is reformulated
using the technique proposed in [29]. This approach intro-
duces auxiliary variables zi, gij , y

p
j , y

q
j , j ∈ Npv, i ∈ Nb and

reformulates the constraint in (2) and (10f) by following set
of constraints.

|vi,tk−1
|+∆ptkK̂

p
i,tk−1

+∆qtkK̂
q
i,tk−1

+ ziξi+∑
j∈Npv

gij ≤ vmax ∀i ∈ Nb
(11a)

|vi,tk−1
|+∆ptkK̂

p
i,tk−1

+∆qtkK̂
q
i,tk−1

− ziξi−∑
j∈Npv

gij ≥ vmin ∀i ∈ Nb
(11b)

− ypj ≤ ∆ppv
j,tk

≤ ypj ∀j ∈ Npv (11c)

− yqj ≤ ∆qpv
j,tk

≤ yqj ∀j ∈ Npv (11d)

zi + gij ≥ ∆Kp
ij,tk

ypj i ∈ N , j ∈ Npv (11e)

zi + gij ≥ ∆Kq
ij,tk

ypj i ∈ N , j ∈ Npv (11f)

ypj , y
q
j , zi, gij ≥ 0 i ∈ N , j ∈ Npv. (11g)

Here, the symbol ξi ∈ [0, |Npv|] is a user-defined parameter
for a trade-off between the robustness and conservative-ness
of the solution.

Note that the constraint reformulation of (2) and (10f) by
(11) makes the robust problem in (10) tractable and convex
given its quadratic objective and linear11 constraints. Hence it
can be efficiently solved using any off-the-shelf solver.
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[3] W. CIGRÉ, “C6. 11,“development and operation of active distribution
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