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a b s t r a c t 

Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, 
partly due to the presence of false-positive connections and the misestimation of connection weights. Building on 
previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evalu- 
ate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the 
phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected 
by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth 
connectivity weights, in complex numerical environments. Additionally, the methods used by the participating 
teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false 
positive and false negative connections were consistently estimated across all methods. Although the challenge 
dataset doesn’t capture the complexity of a real brain, it provided unique data with known macrostructure and 
microstructure ground-truth properties to facilitate the development of connectivity estimation methods. 

1

 

o  

a  

p  

2  

m  

l  

2  

i  

s  

p  

s  

i  

a  

2  

E  

J  

s  

t  

t  

i  

i  

o
 

a  

t  

t  

t  

C  

m  

2  

m  

v  

R  

u  

s  

f
 

c  

n  

m  

e  

m  

c

2

2

 

t  

c  

l  

g  

i  

a  

T  

t  

m  

p  

a  

w  

a  

w  

w  

o  

t  

C  

w

. Introduction 

Over the last decade, protocols for diffusion-weighted magnetic res-
nance imaging (DW-MRI) acquisition, local modelling, tractography
lgorithms, and connectivity mapping methods have considerably im-
roved ( Jeurissen et al., 2017; Sotiropoulos and Zalesky, 2019; Sporns,
011 ). However, concerns remain about the reliability of connectivity
apping. International tractography challenges ( Côté et al., 2013; Fil-

ard et al., 2011; Maffei et al., 2022; Maier-Hein et al., 2017; Nath et al.,
020 ) have shown limitations in the ability of tractography to correctly
dentify binary connectivity and identify white matter pathways con-
itently. In particular, Maier-Hein et al. (2017) showed that tractogra-
hy may produce an abundance of false positive connections. Moreover,
tudies on animal models showed that, albeit tractography can correctly
dentify connections, the estimated connection weight does not always
gree with ex vivo tracing data ( Ambrosen et al., 2020a; Aydogan et al.,
018; Azadbakht et al., 2015; Delettre et al., 2019; Donahue et al., 2016;
ssen et al., 2014; Girard et al., 2020; 2021; van den Heuvel et al., 2015;
babdi et al., 2013; Schilling et al., 2019a; Thomas et al., 2014 ). For in-
tance, Donahue et al. (2016) reported the correlation between ex vivo
ract tracing data and tractography estimation to be 𝑟 = 0 . 59 , on the in-
rahemispheric connections the monkey brain. Despite tract tracing be-
ng among the best available data to validate diffusion tractography, it
s not possible to have the full ground-truth micro- and macro-structure
n animal models. 

The rich signal from physical MRI phantoms has been used to test
nd validate methods ( Fillard et al., 2011; Schilling et al., 2019b ), but
heir macrostructural complexity is insufficient for quantifying connec-
ivity. Numerical phantoms have also been proposed and demonstrated
o be important tools for methods development ( Caruyer et al., 2014;
lose et al., 2009; Neher et al., 2013 ), but their biological fidelity for
icrostructure is limited. Monte Carlo methods ( Hall and Alexander,
009; Lee et al., 2021; Rafael-Patino et al., 2020 ) can provide realistic
icroscopic DW-MRI signals, but they are generally limited to a single

oxel signals or to a substrate of only a few voxels in size. Recently,
afael-Patino et al. (2020) proposed a novel diffusion Monte Carlo sim-
2 
lator able to generate billions of particles. This allows for large-scale
ubstrates with both microscopic and macroscopic complexity, suitable
or structural connectivity validation. 

The MICCAI-CDMRI 2021 Diffusion-Simulated Connectivity (DiSCo)
hallenge ( Girard et al., 2021 ) was organized to compare structural con-
ectivity estimation methods using three novel large-scale complex nu-
erical phantoms designed for connectivity assessment ( Rafael-Patino

t al., 2021a; 2021b ). Fourteen teams, adding up to 57 researchers, sub-
itted 111 weighted connectivity matrices estimating the ground-truth

onnectivity. Results from the challenge are presented below. 

. Methods 

.1. Synthetic data 

The three numerical phantoms (training, validation and test phan-
oms) used for the DiSCo challenge ( Rafael-Patino et al., 2021b ) are
omposed of approximately 12,000 numerical tubular fibres. The tubu-
ar fibres’ outer diameter ranges from 2 . 0 𝜇𝑚 to 6 𝜇𝑚 , sampled from a
amma distribution Γ( 𝜅, 𝜃) , with shape, 𝜅 = 0 . 5 , and scale 𝜃 = 0 . 007 . The
nner diameter of each fibre ranges from 1 . 4 𝜇𝑚 to 4 . 2 𝜇𝑚 , simulating
 fixed g-ratio of 0.7 ( Cercignani et al., 2017; Chomiak and Hu, 2009 ).
he numerical fibres connect pairs of Regions of Interest (ROIs) among
he 16 ROIs of each phantom (see Fig. 1 A). No other numerical compart-
ents were added to the substrates. For the three phantoms, the average
ercentage of connections with non-zero connection weight is 22.2%
mong all possible connections (120 pairs of ROIs). The connectivity
eight between two ROIs was defined as the sum of the cross-sectional
reas of fibres interconnecting the regions. The normalized connection
eights range from 0.007 to 0.092 for the three phantoms, resulting
ith the smallest connection having 7.6% of the weight of the largest
ne. Those connection weights derive from the numerical phantom ini-
ialization parameters described in Rafael-Patino et al. (2021a) . Fig. 1 B,
, D show the ground-truth synthetic fibre trajectories of the test dataset
here fibres are curved and intermingle with other fibres. 
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Fig. 1. Ground-truth test dataset composed of 11,032 numerical tubular fibres. (A) 3D rendering showing the synthetic white matter mask (gray) and the 16 ROIs 
(colors). (B) Trajectories of the fibres of the 26 bundles, each shown using a different color. (C-D) 3D mesh of the outer layer of numerical fibres. 
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The simulation substrates have an unprecedented volume of 1 cubic
illimeter, resulting in an image size of 40 × 40 × 40 voxels of 25 𝜇𝑚

sotropic resolution. To the best of our knowledge, this is the largest
mage volume achieved for the Monte Carlo simulation of the DW-MRI
ignal in complex numerical substrates. Within each voxel, the signal
as simulated using Monte Carlo simulations of spin dynamics with a
ensity of one particle per cubic micrometer ( Rafael-Patino et al., 2021a;
omascano et al., 2019 ). Rafael-Patino et al. (2020) showed this was a
ufficient number of particles to obtain a robust estimation of the dif-
usion signal in complex fibre geometries. Particles initiated within the
nner diameter of the fibres and outside the outer diameter of the fibres
ere used to generate the DW-MRI signal. The particles initiated be-

ween the outer and inner diameter (in myelin water) were discarded.
he voxel-wise intra-tubular volume fraction reaches 52% in the cen-
ral portion of the numerical phantoms ( Rafael-Patino et al., 2021b ).
he mean voxel-wise fibre diameter is 2 . 25 𝜇𝑚 with up to 82 tubular
bres per voxel and up to 5 distinct bundles ( Rafael-Patino et al.,
021b ). 

The DW-MRI protocol is composed of 360 measurements, uniformly
istributed over 4 b-value shells (1000, 1925, 3094, 13,191 𝑠 ∕ 𝑚𝑚 

2 ), as
uggested in ActiveAx ( Alexander et al., 2010; Daducci et al., 2015 ),
nd corrupted with Rician noise with signal-to-noise ratio of 30. The
esulting DW-MRI signal is affected by the microscopic properties of the
ynthetic white matter, such as fibre diameter, packing densities, fibre
ispersion and water diffusing around fibres, while also having targeted
acroscopic properties like the smoothness of the trajectories and fibres

rganized in bundles. 

.2. Challenge task 

Participating teams had access to one dataset for training, which
ncluded the noisy and noiseless DW-MRI signals, the fibre volume
raction map, the label map of the ROIs defining the connectivity
ndpoints, the synthetic fibre trajectories and their diameter, and the
round-truth connectivity matrix. Additionally, participants had access
o one dataset for validation with the noisy DW-MRI signal, label map
nd ground-truth connectivity matrix. Participating teams were pro-
ided with the noisy DW-MRI signal and a label map (ROIs) of the
est dataset, and were asked to submit a 16 × 16 weighted connectiv-
ty matrix. Participants were free to select any method to compute
he matrix weights. The estimated connection weights between any
wo pairs of ROIs were compared with the ground-truth total cross-
ectional area of the synthetic fibres connecting both ROIs. The teams
ad to select methods to obtain estimates of the cross-sectional area
rom their tractography results, such as the proportion or volume of
treamlines, or microstructure properties or geometrical features esti-
ated for bundles ( Assaf et al., 2008; Daducci et al., 2014; Dimitri-

dis et al., 2017; Hagmann et al., 2008; 2007; Messaritaki et al., 2019;
mith et al., 2015; Sotiropoulos and Zalesky, 2019; Tournier et al.,
019; Yeh et al., 2021 ). Teams could submit up to ten connectivity
atrices. 
3 
.3. Connectivity evaluation 

The Pearson correlation coefficient ( 𝑟 ) between the ground-truth ma-
rix and the submitted matrices was used for ranking the teams ( Caminiti
t al., 2021; Donahue et al., 2016 ). Moreover, the fraction of valid con-
ectivity weight was computed to compare submissions ( Côté et al.,
013; Maier-Hein et al., 2017 ). This fraction corresponds to the sum
f the matrix weights in pairs of regions connected in the ground-truth
onnectivity matrix divided by the sum of all weights. A Receiver Oper-
ting Characteristic (ROC) analysis was also performed ( Ambrosen et al.,
020b; Girard et al., 2020; Maffei et al., 2022; Schilling et al., 2019b;
homas et al., 2014 ). The true positives ( 𝑇 𝑃 ) and true negatives ( 𝑇 𝑁)
re connections correctly identified as connected and not connected in
oth the participant matrix and the ground-truth matrix, respectively.
he false positives ( 𝐹 𝑃 ) are connections wrongly identified as connected

n the participant matrix. Similarly, the false negatives ( 𝐹 𝑁) are con-
ections erroneously identified as not connected. The ROC curves were
onstructed by iteratively thresholding the submitted connectivity ma-
rices, starting with a threshold higher than the maximum, thus yielding
o pair of ROIs connected, resulting in a specificity ( 𝑇𝑁 

𝑇𝑁+ 𝐹𝑃 
) of 1 and

ensitivity ( 𝑇𝑃 

𝑇𝑃+ 𝐹𝑁 

) of 0 (all pairs of ROIs not connected in the ground-
ruth are correctly identified, no ROIs are identified as connected). The
hreshold is then iteratively reduced until all ROIs are identified as con-
ected, producing a sensitivity of 1. The quicker the sensitivity rises to
 while the specificity remains high, the better the binary connectiv-
ty classification performance of the method. The Area Under the ROC
urve (AUC) summarizes the plot with a number between 0 and 1. The
UC approaches 1 if there are few or no classification errors (a random
onnectivity matrix would yield an AUC of 0.5). Moreover, we studied
he accuracy ( 𝑇 𝑃+ 𝑇 𝑁 

𝑇 𝑃+ 𝑇 𝑁+ 𝐹 𝑃+ 𝐹 𝑁 

) of the submitted matrices using a thresh-
ld selected as 5% of their maximum value. This threshold was fixed
ollowing the connectivity weights of the ground-truth matrix. 

. Results 

Fourteen teams participated in the DiSCo challenge and submitted
11 connectivity matrices for the test dataset. Fig. 2 A shows the Pear-
on correlation coefficient 𝑟 between the participant’s submitted matri-
es and the ground-truth connectivity matrix of the validation dataset.
ig. 2 B shows the fraction of valid connectivity weight in pairs of con-
ected regions (non-zero connection strength) in the ground-truth con-
ectivity matrix. The best-performing matrix of each team ranges from
 = 0 . 874 to 𝑟 = 0 . 973 (mean 𝑟 = 0 . 950 ). The area under the ROC curve
AUC), computed from the submitted matrices and the ground-truth bi-
ary connectivity matrix, is reported in Fig. 2 C. Fig. 2 D shows the ac-
uracy of all methods when thresholding the submitted matrices at 5%
f their maximum value. The ground-truth connectivity matrix of the
est dataset is shown in Fig. 3 , alongside each team’s best-performing
ethod (method with maximum 𝑟 ). 

Fig. 4 shows the ROC curves for the best-performing methods of each
eam. The corresponding area under the curve (AUC) is reported in the
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Fig. 2. Challenge submission results of the 14 participating teams (111 submissions). (A) Fraction of valid connectivity weight in pairs of regions connected in 
the ground-truth connectivity matrix. (B) Pearson correlation coefficient between the participant’s submitted matrices and the ground-truth connectivity matrix of 
the validation dataset. (C) The area under the ROC curve (AUC) computed from the submitted matrices and the ground-truth binary connectivity matrix. (D) The 
accuracy (fraction of correctly identified pairs of ROIs, out of 120) of the binarised submitted matrices, thresholded at 5% of their maximal value. Numbers indicate 
the submission indices of each team. 
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egend, ranging from 0.865 to 0.982 (mean AUC = 0.946). Fig. 5 shows
he ground-truth binary connectivity matrix (top left) and each team’s
airs of ROIs classifications. Matrices were thresholded at 5% of their
aximal value. The light green and dark green colours show the true
ositives and true negatives, respectively. The light red and dark red
olours show the false positives and the false negatives, respectively. 

The percentage of classification error for each pair of ROIs for all
ubmitted connectivity matrices is shown in Fig. 6 . The left subfigure re-
orts the false positive connections. The worst performance is reported
or ROIs 5–11 and 4–6 with 73% and 71% of matrices erroneously iden-
ifying them as connected. The right subfigure reports the false negative
onnections, with ROIs 6–9, 4–16, and 3–14 showing the worst classi-
cation, with 100%, 97% and 95% of methods erroneously identifying
hem as not connected, respectively, although connected in the ground-
ruth. Fig. 7 shows the location of the false positive bundles connecting
OIs 5–11 (blue) and 4–6 (green). Both pairs of ROIs are spatially lo-
ated next to each other. Fibre ODFs show the corresponding ground-
ruth numerical fibre distribution. Fig. 8 shows the false negative bun-
les connecting ROIs 6–9 (green), 4–16 (red), and 3–14 (blue). They
re the bundle with the lowest, second lowest and 5th lowest connectiv-
ty in the ground-truth weighted connectivity matrix. All three bundles
how long and straight configurations going through the centre of the
umerical phantom. 
4 
Each team’s best-performing method processing steps are listed
n Table 1 . All teams submissions are described in supplementary
aterial. 

. Discussion 

The aim of this work was to test tractography algorithms in carefully
esigned numerical phantoms with intricate connectivity patterns. The
hallenge was to identify connected pairs of ROIs among 16 ROIs and
stimate their connection strength, defined as the cross-sectional area
f the synthetic fibres interconnecting them. The DiSCo challenge phan-
oms were developed to feature challenging configurations found in the
uman brain, such as branching, crossing, and tortuous trajectories. Al-
hough these phantoms don’t mimic the anatomy of the human brain,
hey provide valuable data for studying tractography and connectivity.
s such, results obtained on the DiSCo dataset are not directly transfer-
ble to real brain data. Rather, they should be used to evaluate the rela-
ive performance among connectivity methods. Unlike traditional trac-
ography numerical phantoms that use biophysical models, the DiSCo
atasets were obtained from realistic Monte Carlo simulations. This ap-
roach allows for a signal with rich microstructure and complex and
oherent macrostructure properties, suitable to study properties of con-
ectivity methods. 
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Fig. 3. The test dataset’s ground-truth connectivity matrix (top left) and each team’s best-performing classification matrices. All matrices are symmetric, and the 
upper triangular matrices are normalized to sum to one. The 26 non-zero connections of the test dataset have weights ranging from 0.008 to 0.092. 

Fig. 4. Receiver Operating Characteristic (ROC) curves of the submitted ma- 
trix with the highest correlation for each team. The black dashed line shows 
the performance of a connectivity matrix with randomly generated weights. 
The corresponding area under the curve (AUC) is reported in the bottom right 
panel. 
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Participating teams did remarkably well, despite the known limi-
ations of diffusion tractography methods ( Jbabdi et al., 2015; Jones,
010 ). This is shown by the large fraction of connection weight re-
orted in the pair of ROIs connected in the ground-truth matrix (0.89
n average, see Fig. 2 A). Methods generally showed high accuracy (av-
rage of 0.91) and high AUC (average of 0.95) for the identification
f connected/non-connected ROIs ( Fig. 2 C,D). Overall, the mean Pear-
on’s correlation coefficient across all submissions is 𝑟 = 0 . 95 , with a
aximum of 𝑟 = 0 . 973 (see Fig. 2 B). Despite the macroscopic complexity

f the numerical phantom, state-of-the-art tractography methods com-
ined with state-of-the-art spherical deconvolution methods can cor-
5 
ectly identify connected ROIs, producing connectivity results predom-
nantly faithful to the numerical substrate. 

.1. Correlation coefficients with the ground-truth weights 

The correlation coefficients obtained on numerical data are higher
han those reported in brain connectivity studies comparing DW-MRI
eights estimation and labelled cell counts from tracing studies in the

ntraparietal sulcus ( Caminiti et al., 2021 ) ( 𝑟 = 0 . 65 ) and intrahemi-
pheric ( Donahue et al., 2016 ) ( 𝑟 = 0 . 59 ) connections. This highlights
hat the DiSCo numerical substrates oversimplifies the complexity of real
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Fig. 5. The test dataset’s ground-truth binary connectivity matrix (top left) and each team’s matrices. All matrices were thresholded at 5% of their maximal value. 
The light/dark green and light/dark red colours show the true positives/negatives and false positives/negatives, respectively. All matrices are symmetric. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Percentage of classification error for each pair of ROIs for the submitted matrices (111) and using the threshold at 5% of their maximal value. The left 
subfigure reports the false positive connections. Regions 5–11 and 4–6 show the worst performance, with 73% (81) and 71% (79) matrices erroneously identifying 
them connected. The right subfigure reports the false negative connections. Regions 6–9, 4–16, and 3–14 show the worst classification, with 100% (111), 97% (108) 
and 95% (105) of methods erroneously identifying them as not connected. Both matrices are symmetric. 
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RI signals. Indeed, tractography limitations could originate from other
actors aside from the diffusion information, such as MRI artifacts (B0
eld inhomogeneity, susceptibility, motion, etc) and region-dependent
2 effects ( Le Bihan et al., 2006 ). Despite the complexity achieved with
he DiSCo numerical phantoms, real tissue shows a higher heterogeneity
 Andersson et al., 2021 ) that was not reproduced, which may affect the
elevance of some findings on biological tissue data. However, it is pos-
ible to know the ground-truth connectivity with higher accuracy than
racing studies, including the trajectory and diameter of the numerical
6 
bres and the voxelwise compartmental volume fractions. Future stud-
es should investigate the effects of MRI artifacts and signal-to-noise ra-
io on the connectivity estimation. New numerical datasets should be
enerated with varying numbers of ROIs, ROI sizes, and connectivity
trenghts. This would allow testing DW-MRI connectivity estimation
ethods in diverse and complex environments, improving the gener-

lizability of our results. In addition, other evaluation metrics, such as
ice similarity coefficient, could be used to test bundle volume identifi-
ation using tractography. Moreover, research should be done on com-
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Fig. 7. False positive bundles connecting ROIs 5–11 (A, blue) and 4–6 (B, green). These 2 pairs of regions have been incorrectly identified as connected by 73% and 
71% of the submitted matrices, using a threshold at 5% of their maximal value, respectively. Glyphs show the local orientations of the ground-truth tubular fibres 
intersecting voxels, coloured with their orientation (left-right: red, anterior-posterior: green, superior-inferior: blue). Both pairs of regions are spatially located next 
to each other. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. False negative bundles connecting ROIs 6–9 (green), 4–16 (red), and 3–14 (blue), were erroneously reported non-connected by 100%, 97% and 95% of 
methods, respectively. A) show a 3D rendering of the ground-truth fibre trajectories of the three bundles. B) and C) show a 2D cross-sectional image of the local 
orientations of the ground-truth tubular fibres, with fibre segment intersecting the 2D plane. All three bundles show a long and straight configuration going through 
the centre of the phantom and mixing with the other bundles. Those three bundles are the bundle with the lowest, second lowest and 5th lowest connectivity in 
the ground-truth weighted connectivity matrix. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 
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ining tractography performances in a single measurement as different
easurements can lead to a change in the ranking of a specific method,

ometime in opposite directions. 

.2. Binary classification of the connectivity 

The performances of participating teams for binary classification of
he connectivity is also higher on the DiSCo numerical phantoms than
reviously reported results on other synthetic data ( Maier-Hein et al.,
017 ) and real brain ( Caminiti et al., 2021; Donahue et al., 2016; Gi-
ard et al., 2020 ). For instance, teams 3 and 14 obtained a specificity
f 1, i.e. no false positives (see Figs. 4, 5 ). Most teams have 3 to 5 false
egatives, showing high sensitivity. Team 3 and 4 have the highest ac-
uracy, with 4 and 5 misclassified pairs of ROIs, respectively, out of
20 pairs of ROIs. Moreover, Team 3 and 14’s best-performing meth-
ds had no false positives, even before applying the thresholding. This
as achieved by the teams via thresholding of their matrices before the

hallenge submission, with a threshold value estimated using the train-
7 
ng dataset. This also suggest the DiSCo substrates, although complex,
re oversimplifying real brain connectivity. 

Nonetheless, the errors (false positives/negatives) of methods are not
andomly distributed among the connections of the numerical substrate.
ather, a subset of bundles is either consistently wrongly connected
r wrongly not connected (see Fig. 6 ). The most frequently reported
alse negatives are non-dominant bundles with generally low connec-
ion strength in the ground-truth matrix (fewer synthetic fibres than
ther bundles). They also have a straight geometric profile with syn-
hetic fibres crossing with several other bundles in the central partition
f the phantom, as shown in Fig. 8 . Contrarily, the most frequently re-
orted false positives are bundles connecting adjacent ROIs (see Fig. 7 ).
hese bundles are likely the result of two portions of existing bundles
rongly merged due to a low angle crossing and bottlenecks configura-

ions ( Girard et al., 2020; Maier-Hein et al., 2017 ). This may indicate
hat bundle metrics, such as volume and structural connectivity esti-
ates, may be biased by the shape and size of white matter bundles,

ather than being uniform across all of them. 
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Table 1 

Best-performing method for each team. Most of the best-performing methods used DW-MRI signal denoising, multi-shell multi-tissue spherical deconvolution, prob- 
abilistic or deterministic tractography, and microstructure informed-tractography filtering approaches. ASI ( Wu et al., 2019 ), AxCaliber ( Assaf et al., 2008; Fick 
et al., 2019 ), COMMIT ( Daducci et al., 2014 ), COMMIT2 tree ( Ocampo-Pineda et al., 2021 ), CSD ( Tournier et al., 2004; 2019 ), Deterministic RK4 ( Yeh, 2017 ), iFOD2 
( Tournier et al., 2010; 2019 ), iFOD1 ( Tournier et al., 2010; 2019 ), MPPCA ( Veraart et al., 2016 ), MRDS ( Coronado-Leija et al., 2017 ), msmt-CSD ( Jeurissen et al., 
2014 ), ms-fODF ( Tran and Shi, 2015 ), Probabilistic tractography ( Garyfallidis et al., 2014 ), RUMBA-SD ( Canales-Rodríguez et al., 2015 ), Radial DSI ( Baete et al., 
2016 ), SD_STREAM ( Tournier et al., 2019 ), SIFT2 ( Smith et al., 2015 ), SR-ASI ( Wu et al., 2020 ), PFT ( Girard et al., 2014 ), PTT ( Aydogan and Shi, 2021 ), U-net fODFs 
( Sedlar et al., 2021 ). 

𝑟 

Fraction of Valid 
Streamlines AUC Accuracy Denoising Local Modelling Tractography Algorithm Connectivity Weighting 

Team 1 0.945 0.966 0.918 0.942 MPPCA RUMBA-SD Probabilistic counts 
Team 2 0.960 0.937 0.955 0.942 MPPCA msmt-CSD SD_STREAM SIFT2 
Team 3 0.951 1.000 0.923 0.967 MPPCA Radial DSI Deterministic RK4 count, length scaling,thresholding 
Team 4 0.964 0.930 0.982 0.958 U-net fODFs iFOD2 SIFT2 
Team 5 0.940 0.900 0.964 0.925 msmt-CSD iFOD2 SIFT2 
Team 6 0.919 0.856 0.940 0.858 MPPCA ASI SR-ASI SIFT2 
Team 7 0.954 0.938 0.956 0.942 MPPCA msmt-CSD SD_STREAM counts 
Team 8 0.971 0.930 0.963 0.925 MPPCA msmt-CSD PTT COMMIT2 tree 

Team 9 0.960 0.938 0.956 0.942 MPPCA msmt-CSD SD_STREAM SIFT2 
Team 10 0.972 0.911 0.982 0.925 MPPCA msmt-CSD PTT SIFT2 
Team 11 0.874 0.861 0.906 0.900 CSD PFT COMMIT 
Team 12 0.964 0.912 0.964 0.942 MPPCA msmt-CSD iFOD1 AxCaliber 
Team 13 0.973 0.893 0.969 0.917 MPPCA ms-fODFs PTT COMMIT 
Team 14 0.946 1.000 0.865 0.942 MPPCA MRDS iFOD2 count, thresholding 
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In this work, we fixed a threshold of 5% of each method maximum
onnectivity to binarise connectivity matrices. This will inevitably pe-
alise the identification of connections with low weights, where under-
stimation may lead to the exclusion of connections. This is also the case
n vivo , when connectivity matrices are binarised. As such, alternative
atrix binarisation methods, such as using various fixed thresholds or
sing thresholds specific to each connection, should be investigated in
uture work. 

.3. Characteristics of the best-performing methods 

The estimated connectivity matrices of the best-performing methods
ubmitted by the teams are shown in Fig. 3 , and their corresponding pro-
essing methods are listed in Table 1 . Most of the team used the MPPCA
enoising algorithm ( Veraart et al., 2016 ) before performing the local
econstructions. Although multiple local reconstruction methods ( Baete
t al., 2016; Canales-Rodríguez et al., 2015; Coronado-Leija et al., 2017;
edlar et al., 2021; Tournier et al., 2004; Wu et al., 2019 ) yield a high
earson correlation coefficient, the multi-shell multi-tissue spherical de-
onvolution method was the most common ( Jeurissen et al., 2014 ). Var-
ous tractography algorithms were selected ( Aydogan and Shi, 2021;
aryfallidis et al., 2014; Tournier et al., 2010; 2019; Wu et al., 2020;
eh, 2017 ), with the probabilistic streamlines tractography methods be-

ng the most common. In particular, the top 3 connectivity methods
ith the highest Pearson correlation coefficient ( 𝑟 ) all used the Paral-

el Transport Tractography (PTT) algorithm ( Aydogan and Shi, 2021 ).
otably, the method with the highest accuracy used the RK4 determin-

stic tractography algorithm ( Yeh, 2017 ) combined with the Radial DSI
econstruction ( Baete et al., 2016 ). Moreover, most of the submitted ma-
rices used microstructure-informed tractography ( Daducci et al., 2014;
rigo et al., 2021; Smith et al., 2013; 2015 ) to weigh the connectivity
atrices, in particular, the top 3 all used the SIFT2 ( Smith et al., 2015 )

r the COMMIT ( Daducci et al., 2014 ) methods. However, teams us-
ng streamline counts or thresholded streamline counts to estimate the
onnectivity also obtained a high Pearson correlation coefficient, partic-
larly when paired with deterministic tractography algorithms. Future
ork should target evaluating individual steps (e.g. denoising, local re-

onstruction, tractography, connectivity weighting methods), fixing the
ther steps to assess it effects on the connectivity evaluation. Moreover,
ther methods, not selected by teams, may provide similarly good re-
ults and shouldn’t discarded. Rather, results presented here serve as
aseline for future method testing and development. Nonetheless, the
8 
eometry of the fibre in DiSCo substrates may favour some methods over
thers. Hence, conclusions derived from numerical substrates must be
hallenged against real data. 

. Conclusion 

Current tractography and connectivity methods show exceptional
erformance on the DiSCo datasets. All methods selected by participat-
ng teams were able to accurately estimate connectivity weights cor-
esponding to the cross-sectional area of the synthetic fibres connect-
ng the network. Furthermore, they were able to accurately identify
he pairs of ROIs interconnected by synthetic fibres. Previous phantoms
ere designed to validate either tractography or microstructure; we be-

ieve that DiSCo phantoms enable an improved assessment of the relia-
ility of quantitative connectivity methods thanks to their microscopic
nd macroscopic properties. Tractography is capable of accurately solv-
ng complex configurations, as demonstrated by this challenge. How-
ver, a noticeable gap exists between the challenge results and results
n real data or from other validation techniques. As such, the complexity
f the numerical substrates should be improved, for instance, by varying
he tubular shape of the fibre, increasing the packing density, adding T2
ffects and simulating membrane permeability. Moreover, future work
hould modify the DW-MRI signal by adding MRI artifacts, changing
patial and angular resolutions, as well as varying the acquisition proto-
ol to test tractography in clinically realistic DW-MRI signals. Overall,
his work contributes to the growing body of evidence suggesting that
ractography research should focus on improving tractography in bot-
lenecks and other challenging fibre configurations. The DiSCo datasets
re available publicly ( Rafael-Patino et al., 2021a; 2022 ) to foster the
evelopment of the next generation of structural connectivity methods.
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ata availability 

The three dataset used in this study is available online at
ttp://data.mendeley.com/datasets/fgf86jdfg6 ( Rafael-Patino et al.,
021a; 2022 ). The dataset includes the noiseless and corrupted DW-
RI signal (SNR = [10, 20, 30, 40, 50]) at two resolutions (25 𝜇𝑚 and

0 𝜇𝑚 isotropic voxels). The dataset also includes the 3D mesh used to
imulate the signals, the ROIs masks, and the trajectories of the fibres
ith their corresponding diameter. 
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