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Abstract
In this work, linear and nonlinear collisionless electrostatic simulation studies of the standard
and short wavelength ion temperature gradient mode (SWITG) for experimental profiles and
parameters of ADITYA-U tokamak are performed using the linear global eigenvalue gyrokinetic
code GLOGYSTO and the nonlinear global gyrokinetic particle-in-cell code ORB5. All
simulations are carried out with non-adiabatic ions and adiabatic electrons. The ADITYA-U
tokamak which has recently been upgraded to divertor configuration, is small in size and well
suited for investigation of micro-instabilities in the presence of density and temperature
gradients. Due to steep density and temperature gradients, simulation shows that the SWITG
mode naturally exists along with the standard ion temperature gradient (ITG) mode in
ADITYA-U. In this work, the experimental shot# 33536 of the ADITYA-U tokamak is
considered as a reference. There is good agreement in the growth rate and the real frequency
values between GLOGYSTO and ORB5 with variations of less than 25%. Two maxima of
growth rate versus mode number are obtained, the first around kθρs ≃ 0.4 is the standard ITG,
the second around kθρs ≃ 1.2 is the SWITG. Additionally, using linear stability analysis, it is
observed that the SWITGs are suppressed for low values of R0/LT i.e. only the standard ITG
mode remains unstable. For the ADITYA-U tokamak, nonlinear global simulations with ORB5
are also carried out. Nonlinearly, SWITG dominating case results are compared with the
conventional ITG case, where SWITG is relatively suppressed. The nonlinear contribution of
the SWITG mode to the total thermal ion heat transport is found to be minimal due to an
increased zonal flow shearing effect on the SWITG mode suppression, even though it may be
linearly more unstable than the conventional long wavelength (kθρs < 1) ITG mode.
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1. Introduction

One of the crucial concerns in current fusion research is the
mitigation of anomalous transport to enable improved plasma
confinement. In modern tokamaks [1], high confinement mode
plasmas are frequently created. The creation of pedestals and
transport barriers in this scenario, which minimize the trans-
port of particles and heat from the system, is a significant
aspect. Strong pressure gradients throughout the pedestal’s
plasma make it a hotspot for a variety of instabilities of dif-
ferent flavours. Similar to this, the plasma also displays sharp
gradients across internal transport barriers, which gives free
energy to small-scale instabilities [2]. In tokamak experiments,
these barriers are produced in a self-consistent way due to non-
linear interactions between multi-scale structures. The nature
of the conventional instabilities may vary when strong gradi-
ents are present. Instabilities at low frequency as compared
to the ion gyro-motion frequency and scale length compar-
able to the ion Larmor radius instabilities [3–8] are thought
to be the cause of confinement’s degradation, which results
in anomalous transport of energy and particles. The density
and temperature inhomogeneities that are present in a mag-
netically confined plasma are the source of free energy for
these modes. For example, it is observed that even at wave
lengths kθρs > 1.0, the ion temperature gradient (ITG) mode,
which is driven by the temperature gradient of ions, becomes
unstable, when the background gradients (density and temper-
ature) are extremely sharp [3, 4]. These background gradients
tend to drive short scale ITGmodes (SWITGs) unstable [3–6].
Similarly, trapped electron modes can also exhibit a shorter
wavelength branch when significant gradients are present [9,
10]. Using gyrokinetic simulations, it has been shown that
this short wavelength branch of micro-instabilities is vital for
experimental parameters [11].

Therefore, it is crucial to comprehend these modes’ non-
linear characteristics and their contribution to the anomal-
ous transport of energy and particles. The contribution of the
shorter-scale ITGmodes to the overall heat flux is weaker than
that of the standard wavelength ITG branch, as determined
by a nonlinear flux tube simulation of SWITG modes with
adiabatic electrons [5]. In this case, local flux tube calcula-
tions might not be applicable because the region across the
steep gradients might be relatively small. This is due to the
fact that the local computations are built on the assumption
that the equilibrium quantities and fine-scale fluctuations have
disparate scale-lengths and are hence separable. However, in
the regions with narrow gradients, such an assumption breaks
down. This therefore necessitates the use of global compu-
tations that address small scale fluctuations and large scale
equilibrium variations on an equal basis. Therefore, it is cru-
cial to use a global gyrokinetic solver to examine how this
mode acts nonlinearly and determine whether it contributes
significantly to the net ion transport in the core of the system.

The self-consistent dynamics of SWITGs driven by extremely
sharp background gradients, their linear and nonlinear evol-
ution and their saturation after the onset of zonal flows are
addressed in the present work, possibly for the first time using
a global, gyrokinetic, electrostatic solver that includes adia-
batic electrons and non-adiabatic ions. The scope of the paper
is not a direct comparison with the experiment but is merely
a first step, focusing on strong gradient cases. More real-
istic modelsin particular, non-adiabatic electron response, will
be studied in future works. In order to do this, we perform
a systematic linear and nonlinear analysis of the mode for
ADITYA-U [12] using ORB5 [13, 14] and GLOGYSTO [15,
16]. However, nonlinearly, we observe that the SWITG mode
only makes a very minor contribution to the total amount of
ion thermal transport while having a growth rate that is lin-
early comparable to that of the conventional ITG mode.

The present manuscript is arranged as follows. Section 2
briefly describes the simulation models used, namely ORB5
and GLOGYSTO. In section 3, ADITYA-U profiles, plasma
parameters used in the present simulations and the results and
discussion are described. Finally, conclusions are drawn in
section 4.

2. Simulation model

In the following, we briefly describe the global nonlin-
ear gyrokinetic particle-in-cell (PIC) code ORB5 [13, 14]
and global linear eigenvalue gyrokinetic code GLOGYSTO
[15, 16]. Note that the linear SWITG mode for ADITYA-U
is studied using ORB5 and GLOGYSTO while the nonlin-
ear SWITG study is carried out using the ORB5 code in the
present work.

2.1. ORB5 Gyrokinetic model

For an axisymmetric toroidal plasma, the Vlasov–Poisson sys-
tem is solved using the ORB5 code in the gyrokinetic limit.
Labels for magnetic surfaces are either the poloidal flux ψ

or the radial coordinate s=
√

ψ
ψedge

. The magnetic field is

expressed as B= I(ψ)∇φ +∇ψ ×∇φ, Here, I(ψ) is the pol-
oidal current flux function, andφ is the toroidal angle. Circular
concentric magnetic surfaces (ad hoc equilibrium) and real
MHD equilibria are two different types of magnetic equilibria
that are implemented in ORB5. For the real MHD equilibrium,
the Grad–Shafranov equation with a fixed plasma boundary is
solved using the CHEASE code [17] and it is coupled with the
ORB5 code. In ORB5, a straight-field-line coordinate system
is used with the poloidal coordinate θ⋆ defined by

θ⋆ =
1
q(s)

ˆ θ

0

B ·∇φ
B ·∇θ ′

dθ ′ (1)
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where q(s) is the safety factor and θ is the geometrical pol-
oidal angle. The 5D phase space (R,v∥,µ) is sampled in ORB5
using markers or pseudo-particles for charges. In the absence
of collisions, the magnetic moment (µ) of a marker is con-
stant and the equations are independent of the gyrophase. The
guiding center position is represented by R, v∥ and v⊥, respect-
ively, stand for the parallel and perpendicular components of
the velocity with respect to the magnetic field. The dynam-
ics is determined by using a gyrokinetic framework for ions,
where the time evolution of the particle distribution function
is given by:

∂fi
∂t

+ Ẋ ·∇fi+ v̇∥
∂fi
∂v∥

= C+ S (2)

where the gyro-position center’s in real space is X, v∥, its
velocity parallel to the equilibrium magnetic field B= Bb, C
accounts for the effects of collisions and S accounts for the
sources [18, 19]. Noting that this work is restricted to electro-
static perturbations and collisionless (C= 0) regime despite
the fact that ORB5 can account for both electromagnetic fluc-
tuations [20] and collisions [18, 19]. In ORB5, a PIC scheme
with control variates is used to reduce statistical sampling
noise. It consists in formally splitting the full distribution f
into a time-independent part f 0 and a time-dependent part δf.
Only the δf part is discretized using numerical particles, called
markers, while the f 0 terms are treated analytically. As indic-
ated earlier, S stands for the sources that can be added to regu-
late numerical noise and/or maintain temperature and dens-
ity profiles; S= Sk+ Sh, where Sh is a heating source term
(considered zero in the present simulation) and Sk is a Krook
operator. In ORB5 [21], a Krook operator is employed with
corrections for energy, momentum, and zonal flow (ZF) con-
servation; however, in the present simulation, a Krook operator
is used without any corrections. Therefore, all of the following
equations are given in this limit. For a species with massm and
charge q, the equations of motion are given by

Ẋ= v∥b+
B
B⋆∥

(v∇B + vE×B + vc) , (3)

v̇∥ =−

(
1
m
b+

1
mv∥

B
B⋆∥

(v∇B + vE×B + vc)

)
· (µ∇B+ q∇⟨ϕ⟩G) , (4)

where v∇B = (µ/(mΩB))B×∇B represents the grad-B
drift velocity, vE×B =

(
1/B2

)
B×∇⟨ϕ⟩G represents the

E×B drift velocity, and vc = (v2∥/Ω)(∇× b)⊥ denotes the
curvature drift velocity. Here, ⟨ϕ⟩G represents the gyroaverged
electrostatic potential. Finally, the effective magnetic field
(B⋆) can be written as

B⋆ = B+
B
Ω
v∥∇× b= B⋆∥b+

B
Ω
v∥ (∇× b)⊥ = B⋆∥b+

B
v∥

vc

(5)

The system of equations (2)–(4) is closed by the gyrokinetic
Poisson equation which assuming a quasi-neutrality, reads as∑

α

qαδnα = 0 (6)

where δnα is the perturbed density and the sum extends over
all α plasma species. Gyro-density and polarisation density
are the two components that are produced when δnα is eval-
uated as the zeroth order moment of the corresponding distri-
bution function; the latter is caused by the difference between
the coordinates of the guiding centre and the gyro-center,
i.e., a result of finite amplitude field fluctuations. As a res-
ult, equation (6) is transformed into a linear integral equation
for the electrostatic potential. The ion polarization term that
appears in the quasi-neutrality equation has been linearized
and can be expressed in various ways in ORB5: (a) a long-
wavelength approximation [13]

qi
mi

∇⊥ · n0i
Ω2

0i

∇⊥ϕ − qen0e
T0e

(ϕ −⟨ϕ⟩FS) = δn̄i (7)

(b) a Pade approximation [14, 22, 23] and (c) a solver
valid at arbitrary order in k⊥ρ [24]. In equation (7), ⟨ϕ⟩FS
represents a flux-surface-averaged electric potential defined

as
´
ϕJ(s,θ⋆,φ)dθ⋆dφ´
J(s,θ⋆,φ)dθ⋆dφ

, where J(s,θ⋆,φ) is the Jacobian of the

straight-field-line coordinate system (s,θ⋆,φ). The solver
valid at arbitrary order is used in the current work because
it is our goal to explore both conventional ITG and SWITG
modes (0.0⩽ kθρs ⩽ 1.4). Four parameters- the ion mass (mi),
the ion charge (qi = Zi e, Zi the atomic number and e the elec-
tric charge), the electron temperature at a specified reference
position s0, Te(s0), and the magnetic field on axis (B0) are used
to normalise all the quantities in the code. These parameters
are used to determine all other normalized quantities. The time
units are given as the inverse of the ion-cyclotron frequency,
Ωci = qiB0/(mi), the velocity units are normalized through the
sound velocity of the ions (cs =

√
eTe(s0)/mi, the temperature

Te(s0) is in eV), the length units through the ion sound Larmor
radius (ρs = cs/Ωci), and the densities are normalized by their
averaged value in space.

2.2. GLOGYSTO gyrokinetic model

With the use of the Nyquist method, the GLOGYSTO
code [15, 16], a global spectral code, determines the eigen
mode structure as well as the real frequency and growth rates
of unstable modes for a given equilibrium. Ion and electron
species are both taken as fully gyrokinetic. However, in the
present simulation, electrons are considered adiabatic. The
sum of the adiabatic and non-adiabatic components can be
used to express the perturbed electrostatic density for a spe-
cies α as follows:

ñα(r;ω) =−
(
qαN
Tα

)[
ϕ̃+

ˆ
dkexp(ik · r)

×
ˆ
dv

fMα
N

(ω−ω∗
α)(iUα) ϕ̃(k;ω)J20(xLα)

]
(8)
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The charge and temperature for the species α are rep-
resented by qα and Tα, respectively, while N accounts
for the equilibrium density. The perturbed electrostatic
potential is represented by ϕ̃. The diamagnetic drift fre-
quency is given by ω∗

α = ωnα[1+
ηα
2 ( v2

v2thα
− 3)] where ωnα =

(Tα∇n lnNkθ)/(qαB),∇n =−rBp ∂
∂ψ , ηα = (d lnTα)/(d lnN)

and vthα is the thermal velocity of species α. The full finite
Larmor radius effect is taken into account in the Bessel func-
tion J0(xLα) where xLα = k⊥ρLα. The safety factor is defined
as q= m

n , m and n are poloidal and toroidal wave numbers,
respectively, Bp is the poloidal magnetic field, and kθ is the
poloidal wave vector. The local Maxwellian fMα for the spe-
cies α of mass mα is given by

fMα(ψ) =
N(ψ)(

2πTα(ψ)
mα

)3/2 exp

(
−

1
2mαv

2

Tα(ψ)

)
(9)

N(ψ) and T(ψ) are the density and temperature at a given
magnetic surface. The term Uα represents the guiding center
propagator for the passing particles. Using the quasi-neutrality
condition, it provides the following equation∑

α

ñα(r;ω) = 0. (10)

This results in an eigenvalue problem that can be solved in
Fourier space, in the case of electrostatic fluctuations only,
where ω and φ̃ are the eigenvalues and eigenvectors, respect-
ively. For fully gyrokinetic ions and electrons with only
passing particles, the following equation is given:∑

k ′

∑
α=i,e

M̂α
k,k ′ φ̃ ′

k = 0. (11)

HereM̂α
k ,k

′ is the convolutionmatrix [6] in Fourier space and
it has been given in the appendix B. The radial and poloidal
wave numbers κ and m, respectively, are represented by the
wave vector k= (κ,m) when the toroidal mode number n for
an axisymmetric system is fixed. Thus, k= (κ,m) and k ′ =
(κ ′,m ′). Here, m ′ = nq(s0)± δm, where q(s0) denotes the q
value at s= s0 and δm determines the range of poloidal mode
numbers.

3. Results and discussion

In this section, we will discuss our results for both nonlinear
runs with ORB5 and linear runs with GLOGYSTO and ORB5.

3.1. Linear gyrokinetic simulations with ORB5 and
GLOGYSTO

The ADITYA-U tokamak [12, 25, 26] which has recently been
upgraded to divertor configuration [26], is small in size and
well suited for the investigation of micro-instabilities in the
presence of density and temperature gradients. The gradient

in the plasma profile can drive several temperature and dens-
ity gradient instabilities, such as ITG [6, 27–30], trapped elec-
tron mode (TEM) [31, 32], universal drift modes [33, 34]
etc which are electrostatic in nature. Similar profile gradi-
ents may also produce electromagnetic instabilities such as
kinetic ballooning mode (KBM) [35–40] and micro tear-
ing mode [41–45] if the plasma β is high [46, 47]. In
the present study, the core plasma beta β = 2µ0n0eT0e/B2

0,
where T0e, n0e and B0 are the on-axis electron temperat-
ure, density and the magnetic field strength with the val-
ues of n0e = 2.3× 1019 m−3, T0e = 250 eV and B0 = 1.0 T
is approximately 0.1%. Furthermore, the threshold β for the
KBM is higher than the β value for the current discharge of
ADITYA-U for hydrogen plasma [48]. At such a low β value,
the microturbulence responsible for the heat and particle trans-
port in a tokamak is expected to be electrostatic [39, 47, 49].

Hence, in this work, we perform global linear and nonlin-
ear electrostatic simulation studies of the conventional (ITGs)
mode and SWITGs, which are both unstable, resulting in a
multi-scale gyrokinetic transport, for profiles and paramet-
ers relevant to the ADITYA-U tokamak. Conventionally, in
ADITYA-U discharges, it is observed that the electron tem-
perature is almost three times greater than the ion temperat-
ure [25]. In the presence of external auxiliary heating mech-
anisms, it is expected that the ion temperature would become
comparable to the electron temperature, i.e, Ti = Te. Figure 1
shows the plasma profiles and the corresponding normalized
gradient (R0/Lg) used in the simulations, where Lg is the pro-
file gradient length scale of any quantity g(r), given by Lg =
−(d lng/dr)−1, r is the local minor radius. We first bench-
mark the ORB5 code with the familiar Cyclone DIII-D base
case (CBC) [50] for ITG modes with adiabatic electrons.
This is presented in the appendix A. After this exercise, we
carry out linear simulations using GLOGYSTO and ORB5
codes for parameters and the density profile of shot# 33 536 of
the ADITYA-U tokamak [12, 25, 26]. However, as indicated
earlier, we consider temperature profiles with Ti = Te. The
simulations are performed on spatial grids Ns = 448,Nθ⋆ =
512,Nφ = 256, (s,θ⋆,φ) representing the radial, poloidal, and
toroidal directions. The number of markers is Np = 15× 108,
the time step is ∆t= 10Ω−1

ci and ρ∗ = ρs/a= 0.00365. The
ITG instability is measured at s0 = 0.6, where the temperat-
ure and density gradients peak. For the linear simulation 25
particles per cell are used [51]. As described earlier, in ORB5,
a field-aligned Fourier filter [13, 14] is invoked using θ⋆ and φ
coordinates. In line with the gyrokinetic order, i.e. k∥/k⊥ ≪ 1,
the effective number of markers per Fourier mode in the filter
and per radial mode then becomes Np

Ns(2×∆m) ∼ 3× 105 (∆m
is the width of the field-aligned filter), for the parameter used.
Each linear simulation corresponds to a single toroidal mode
number. Accordingly, kθρs is computed by using the relation-
ship kθρs = nqr0ρ∗a/s with s= 0.6a and qs0 is the value of
the safety factor at s0. The safety factor, shear, temperature,
density, temperature and density gradient scale lengths and
η = Ln/LT profiles for ADITYA-U circular plasma are depic-
ted in figure 1. Here, we use the circular concentric model

4
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Figure 1. Equilibrium profiles of ADITYA-U (a) q profile (b) shear profile (c) Ti and Te profiles (d) experimental and fitted density profiles
(e) R0/LT and R0/Ln profiles and ( f ) η = Ln/LT profile.

[13, 52] to describe the equilibrium even though it is not a real
MHD equilibrium. This model is very useful for numerical
studies since it offers straightforward formulations for geo-
metrical and magnetic field parameters. Flux-tube and global
gyrokinetic studies using this model have found linear growth
rates and a heat diffusivity fairly similar to those determined
using an ideal MHD equilibrium [52, 53]. This equilibrium
with circular cross-section magnetic configurations is defined
in radial(r), poloidal(θ), and toroidal(φ) coordinate system,
which is related to the cylindrical coordinate-system (R,φ,Z)
by the relationships R= R0 + rcosθ = R0(1+ ϵcosθ) and
Z= rsinθ, here ϵ= r/R0 is the inverse aspect ratio and R0

the major radius in the cylindrical co-ordinate system, but
keeping all geometrical terms consistent, which was shown
in order to get quantitatively correct results [52]. The mag-
netic flux is chosen as circular concentric surfaces defined by
dψ
dr = B0r

q̄(r) , with a specified q̄(r) profile given in table 1, result-

ing q(r) = 1
2π

´ 2π
0

B·∇φ
B·∇θ dθ =

q̄(r)√
1−r2/R2

0

.

The required plasma parameters and profiles for the sim-
ulation are taken from [25, 26]. The profiles and paramet-
ers that are considered in the simulation of ADITYA-U are
given in table 1 for which R0/Ln = 5.52 and R0/LT = 26.8.
The real frequencies and growth rates are calculated using

GLOGYSTO andORB5 for ADITYA-Us for different toroidal
mode numbers and are shown in figure 2.

As seen in figure 2 for R0/LT = 26.8 case, the growth
rate has two peaks rather than the single peak often seen in
linear conventional ITG modes, which is around kθρs ≃ 0.4
(shown by the orange dashed vertical line). The second peak
appears around kθρs ≃ 1.2 (shown by the blue dashed ver-
tical line) and is characteristic of the SWITG mode [3–6, 54,
55]. For kθρs ⩽ 1, the real frequency increases monotonically
with kθρs, but then stays almost constant for 1⩽ kθρs ⩽ 2.
The following dispersion relation for SWITG [56] for adia-
batic electrons is obtained by the quasi-neutrality equation
in the context of a local gyrokinetic formulation in the limit
ω∗i > ω > (ωdi+ k∥v∥), where ωdi is the ion magnetic drift
frequency.

ω =
τ

τ + 1

(ηi
2
− 1
)
ω∗iI0(k

2
θρ

2
s )exp(−k2θρ2s ) (12)

here τ = Te/Ti, I0 is the modified Bessel function of order
zero, ω∗i =−(vthi/Ln)(kθρs) is the ion diamagnetic drift fre-
quency, and Ln is the density scale length. It can be seen
from the expression of the dispersion relation, equation (12)
that the mode frequency ω scales as kθρs for small k2θρ

2
s

5
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Table 1. Parameters and equilibrium profiles.

Parameters: Equilibrium Profiles:

• B-field : B0 = 1.0 Tesla, mi
me

= 1836 • N-profile and T-profile:

• Density : N0 = N(s0) = 0.955× 1019 N(s)/N0 = exp
(
− a δsn

Ln
tanh

(
s−s0
δsn

))
• Temperature : T0 = T(s0) = 78 eV Ti,e(s)/T0 = exp

(
− a δsT

LT
tanh

(
s−s0
δsT

))
•Major radius : R0 = 0.75 m δsn = 0.665, δsT = 0.13 at s= s0
•Minor radius : a= 0.25 m • q-profile and ŝ-profile:
• Radial coordinate : s, s0 = 0.6 q(s) = 1.25+ 0.67 s2 + 2.38 s3 − 0.06 s4

• Ln = 0.136 m, LT = 0.028 m→ ηi,e(s0) =
Ln
LT

= 4.86 such that q(s= s0) = 2.0;

• τ(s) = Te(s)
Ti(s)

= 1, ϵn = Ln
R0

= 0.18, ϵT = LT
R0

= 0.037. shear ŝ is positive and at s= s0, ŝ= 1.

Figure 2. (a) Growth rate (γ) and (b) real frequency (ωr) plots using ORB5 and GLOGYSTO.

6
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Figure 3. A 2D poloidal mode structure plot of electrostatic potential in the (R,Z) plane at t[Ω−1
ci ] = 8.0e4 for (a) n= 35 (conventional

ITG) in the left panel and (b) n= 100 (SWITG) in the right panel using ORB5 for R0/LT = 26.8.

and for larger k2θρ
2
s (kθρs ≫ 1) scales almost as constant as

I0(k2θρ
2
s )exp(−k2θρ2s )→ 1/

√
2π(k2θρ

2
s ) = 1/(

√
2πkθρs). The

toroidal magnetic drift term ωdi of the ions resonates with the
mode frequency ω and results in the double hump behaviour in
the growth rate in toroidal geometry. It is crucial to remember
that the finite Larmor radius effects also have an impact on the
SWITG mode [56, 57].

From figure 2, we also see that there is, in general, a
good agreement in growth rate and real frequency values
between ORB5 and GLOGYSTO with quantitative differ-
ences that are less than 25%. Figure 3 shows the mode struc-
ture obtained from ORB5 for toroidal mode numbers n= 35
(first peak) and n= 100 (second peak), respectively. With
GLOGYSTO, we obtain the shifted peaks of the growth rates
compared to ORB5, which are located at toroidal mode num-
bers n= 40 (first peak) and n= 105 (second peak), respect-
ively, as shown in figure 2. The mode structures obtained
using GLOGYSTO for toroidal mode numbers n= 40 (first
peak) and n= 105 (second peak), respectively, are also shown
in figure 4. For comparison with a case without SWITG, we
have looked atR0/LT = 13.1 keepingR0/Ln fixed. Both ORB5
and GLOGYSTO are run for R0/LT = 13.1 case to make sure
that SWITG is actually suppressed, and it does indeed suggest
that for R0/LT = 13.1, SWITG contribution would be small as
shown in figure 2. The growth rate peaks at n= 30 (conven-
tional ITG peak) as obtained fromORB5. The mode structures
of R0/LT = 13.1 case for toroidal mode number n= 30 (con-
ventional ITG peak) using ORB5 is shown in the left panel of
figure 5. Also in this case, we find a shifted peak of growth rate
with GLOGYSTO, which is located at n= 35 (conventional
ITG peak). The right panel of figure 5 depicts mode structure
usingGLOGYSTO. Themode structures obtained fromORB5
and GLOGYSTO exhibit good agreement. Additionally, for
R0/LT = 13.1 case, we observe from figure 2 that there is gen-
erally reasonable agreement between ORB5 and GLOGYSTO

in terms of growth rate and real frequency values, with quant-
itative deviations that are less than 10%.

Before discussing our nonlinear simulations, it is cru-
cial that the zonal flows respond correctly in nonlinear runs
because of ZFs’ significant contribution to the evolution of
plasma turbulence and their ability to effectively suppress
plasma turbulence and reduce turbulent transport due to their
low frequency characteristic [58]. Therefore, the Rosenbluth–
Hinton test for ADITYA-U using ORB5 is performed and
shown in the appendix C, which was analytically detailed in
[59], is the common benchmark [13, 48, 60, 61] that addresses
the physics of the zonal flow/geo-acoustic mode.

Following the linear simulation, in the below section we
present nonlinear global simulations with ORB5 for R0/LT =
26.8 and R0/LT = 13.1 keeping R0/Ln = 5.52 fixed.

3.2. Nonlinear gyrokinetic simulations with ORB5

Wewill outline our findings for gradient-driven nonlinear runs
in this section. The following numerical parameters are chosen
the number of markers is Np = 15× 108, which corresponds
to ∼ 2360 particles per Fourier modes and per radial inter-
val using the expression Np/(Ns(2∆m+ 1)(nmax+ 1)), where
∆m is the width of the field-aligned filter and nmax is the
maximum value of the toroidal mode number. This leads to
a signal-to-noise ratio sufficiently high (above 80) for all non-
linear simulations shown later in this paper. The 3D grid resol-
ution for the field solver isNs×Nθ⋆ ×Nφ = 448× 512× 256.
Note that we have 6× 107 grid points, resulting in 25
particle/cell on average and a 32-point averaging technique is
employed for gyro-averaging. The arbitrary wavelength field
solver is used for the quasi-neutrality equation and the time
step size is ∆t= 10Ω−1

ci . We conduct a convergence test for
the grid and time steps, and the selected number of grid points
and time steps are sufficient for nonlinear simulation. Toroidal

7
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Figure 4. A 2D poloidal mode structure plot of electrostatic potential in the (R,Z) plane for (a) n= 40 (conventional ITG) in the left panel
and (b) n= 105 (SWITG) in the right panel using GLOGYSTO for R0/LT = 26.8.

Figure 5. A 2D poloidal structure plot of electrostatic potential in the (R,Z) plane for (a) n= 30 (conventional ITG) using ORB5 in the left
panel for R0/LT = 13.1 at t[Ω−1

ci ] = 8.0e4 and (b) n= 35 (conventional ITG) using GLOGYSTO in the right panel for R0/LT = 13.1.

mode number modes n ∈ [0 : 128] and poloidal mode numbers
m ∈ [−256 : 256] are kept which cover the poloidal wave num-
bers kθρs from 0.0 to 1.4. The following flux densities quant-
ities are obtained from the simulation [62]:

Γ =

ˆ
f
dR
dt
d3v (13)

Qkin =

ˆ
1
2
msv

2f
dR
dt
d3v (14)

Qpot =

ˆ
fqiϕ

dR
dt
d3v (15)

qH = Qkin+Qpot−
5
2
msv

2
thΓ. (16)

8
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Figure 6. (a) Temporal evolution of signal-to-noise ratio (left) with ZF (red solid line) and w/o ZF (blue dashed-dotted line) and (b) average
weight squares of particles (right) from two simulations using a different number of simulation particles.

Γ is the gyrocenter particle flux,Qkin is the kinetic energy flux,
Qpot is the potential energy flux, and qH is the heat flux.

Heat diffusivity χ is defined as

χ =− qH
n∇T

. (17)

The gyro-Bohm heat diffusivity is defined as χGB =
ρ2s0cs0/a, with a is the minor radius, ρs0 the sound Larmor
radius of the ion, and cs0 the sound speed of the ion where the
temperature is taken at the reference surface s0 and the mag-
netic field on the axis. Using the plasma parameters taken in
this work, χGB = 0.29 m2 s−1.

The E×B ZF shearing rate is given by [62].

ωE×B(s, t) =
s

2ψs0q
∂

∂s

(
1
s
∂⟨ϕ⟩FS
∂s

)
. (18)

3.2.1. SWITG dominant case: R0/LT = 26.8. All of the sim-
ulations reported in this paper have a signal-to-noise ratio that
is high enough, S/N> 80, as shown in figure 6(a). Further
information on the S/N estimation can be found in [63].
With a decay rate γK = 2.0× 10−4Ωci, the Krook operator,
as described in [21], is used to control noise over long time
scales without corrections for energy, momentum and ZF con-
servation [64]. The time evolution of the corresponding aver-
age particle weight squared, ⟨w2⟩, is calculated with a differ-
ent number of markers, 15× 108 and 45× 108 , respectively,
as shown in figure 6(b). The average particle weight squared
⟨w2⟩ in both cases is almost identical and does not depend on
whether 15× 108 or 45× 108 markers are used in these sim-
ulations. The particle weight is found to saturate during the
simulations and remains at a low level (⟨w2⟩< 0.12) through-
out the simulations. These convergence tests clearly show that
the noise-induced transport in our simulations is insignificant
compared to the turbulence driven transport.

Our simulations are therefore ‘gradient-driven’, however
small variations are permitted, as will be seen in the results
presented below. The Krook source term acts as a source

of heat. As a consequence, while the temperature profile is
allowed to relax due to the turbulent heat flux, it is main-
tained close to the given initial profile. In the long timescales,
the time-averaged temperature gradients reach a quasi steady-
state. In figure 7(a), the temperature profile relaxation, com-
puted using equation (19) is shown. Since the adiabatic elec-
tron model is used, there is no particle transport. In figure 7(b)
initial and final R0/LT profiles are shown.

The plasma volume is split into Nb radial bins, with each
having a volume of Vj, j ∈ [1,Nb], in order to compute the pro-
files. The evolving plasma temperature and density are com-
puted as follows for species α , with fα = f0α+ δfα, using the
expressions [65]:

T( j)α =
1
3
mα
(
(v2⊥)

( j)
α +(v2∥)

( j)
α − (v∥)

( j)
α (v∥)

( j)
α

)
(19)

nαj =
1
Vj

ˆ
Vj

dR
ˆ
fαd

3v (20)

(v2⊥)
( j)
α =

1
nαjVj

ˆ
Vj

dR
ˆ
fαv

2
⊥d

3v (21)

(v2∥)
( j)
α =

1
nαjVj

ˆ
Vj

dR
ˆ
fαv

2
∥d

3v (22)

(v∥) =
1

nαjVj

ˆ
Vj

dR
ˆ
fαv∥d

3v (23)

where v∥ is the parallel velocity along the magnetic field and
v⊥ is the perpendicular velocity across the magnetic field. f0α
is the equilibrium distribution function and δfα is the perturbed
distribution function.

From figure 8(a), we can see an initial exponential growth
phase of the electrostatic field energy as a function of time, fol-
lowed by a nonlinear saturation phase. The electrostatic field
energy Efield, defined as

Efield =

ˆ
qi
2
(⟨ni⟩G− n0)ϕdR (24)

9
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Figure 7. Evolution of the temperature (left) and R0/LT (right) profiles, in both plots, the red dashed line represents the initial profile and the
magenta dashed line represents the final profile.

where ⟨ ⟩G indicate a gyro-averaged quantity and n0 is the
equilibrium density. From figure 8(a), it can be seen that after
the initial linear phase the mode amplitude tends to saturate
from time t∼ 20.0× 103Ω−1

ci . The normalized field energy
is given as Efield/(⟨n⟩VT) and the normalized heat flux as
Q/(⟨n⟩csTe(s0), whereV is the plasma volume, n is the density
and ⟨n⟩ its averaged value in space and Te = Te(s0) is the elec-
tron temperature at s0 = 0.6. Figure 8(b) displays the volume-
averaged heat flux Q, defined by

Q=
1
V

ˆ
V
dR
ˆ
f(R,v∥,µ, t)

1
2
miv

2 ⟨E⟩G×B
BB∗

∥

· ∇ψ
|∇ψ|

B∗
∥dv∥dµdα (25)

where V is the volume of the torus. It is clear from the figure
that the heat flux initially increases exponentially in the linear
phase and peaks around t∼ 1.0× 104Ω−1

ci . However, as time
progresses the simulation enters the nonlinear phase around
t= 2.5× 104Ω−1

ci where the zonal-flow sets in. Due to the
interaction between turbulence and zonal flow, the overall
heat flux reduces and tends towards a steady state. The time-
averaged heat flux in the steady state is around 0.04 in the nor-
malized unit. As mentioned in appendix C, when conducting
nonlinear simulations, it is crucial to accurately describe the
structure of the zonal flow component i.e., .(n= m= 0), as it
is crucial for the nonlinear saturation in the ITG regime. Due
to its ability to shear radially coherent turbulent formations,
zonal flows have an impact on microturbulence. This effect
is governed by the shearing rate ωE×B, which is determined
by equation (18). The shearing rate is proportional to the first
radial derivative of the electric field or the second radial deriv-
ative of the electrostatic potential. The structure of turbulent
eddies in the nonlinear phase can be seen in figure 8(c) taken

at t= 2× 105Ω−1
ci , where the ϕ −⟨ϕ⟩FS (where ⟨ϕ⟩FS is the

flux surface averaged potential) is plotted in a poloidal cross
section. From the snapshot, it is clear how zonal flow shearing
affects the potential. The zonal flow tears the global structures
and regulates the turbulence.

In figure 9(a), we plot the simulated heat flux as a func-
tion of the radial coordinate and time. Figure 9(b) shows the
spatio-temporal evolution of the ion heat diffusivity χi. From
figure 9(b), we can see that a number of bursts (localized
features in space and time) as well as avalanches frequently
occur following an initial turbulence overshoot commencing
near s ∈ [0.55− 0.75], which is in the region of maximum
R0/LT. The averaged heat diffusivity over the time interval
tΩci = [1.0e5− 2.0e5], and the radial interval s= [0.5− 0.7]
is χi/χGB = 6.04. In physical units, this is χi ≃ 1.7 m2 s−1.

Figure 10 shows the spatio-temporal behaviour of the elec-
trostatic field energy, equation (24), separately for its zonal
(top panel) and non-zonal (bottom panel) components. The
mode intensity peaks at time t∼ 1.0× 104Ω−1

ci and around
s= 0.65. The turbulence exists over a wide radial domain
approximately from s= 0.5 to s= 0.8. The zonal flow caused
by the turbulence reaches its peak, as expected, in the region
of significant ITG and SWITG activity, as can be seen in the
upper panel of figure 10. As a result, a saturation phase of tur-
bulence is reached. The radial profiles of R0/LT at initial (red
dashed line) and final (magenta dashed line) times are shown
in figure 10. The equilibrium R0/Ln profile is depicted by the
white dashed line and η = Ln/LT at initial (orange dashed line)
and final (green dashed line) are displayed in figure 10. From
figure 10, we can also see that the turbulent energy and ZF
energy have their maximum amplitude pushed a bit outwards
from the position of maximum log gradient. It looks much
more active in the interval s ∈ [0.6,0.8]. This can be attributed
to temperature profile relaxation.
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Figure 8. (a) Electrostatic field energy using equation (24), (b) heat flux density using equation (25), and (c) ϕ −⟨ϕ⟩FS plots for
R0/LT = 26.8.

3.2.2. Conventional ITG dominant case: R0/LT = 13.1.
Here, we consider the same density profile as before,
R0/Ln = 5.52, but a lower temperature gradient profile with
R0/LT = 13.1 instead of 26.8. The time evolution of the elec-
trostatic field energy is shown in figure 11(a). It is clear that
the initial exponential growth phase of the electrostatic field
energy as a function of time is followed by a nonlinear satur-
ation phase. After the initial linear phase, the mode amplitude

tends to saturate from time t∼ 25.0× 103Ω−1
ci . Compared to

figure 8(a) the mode amplitude increases slowly due to the
reduced strength of the gradients.

Figure 11(b) displays the volume-averaged heat flux. The
heat flux peaks around t∼ 1.5× 104Ω−1

ci and then enters the
nonlinear steady state phase around t= 2.5× 104Ω−1

ci . The
time averaged heat flux in the steady state is around 0.02 in
the normalized unit. The steady state heat flux is quite small
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Figure 9. Spatio-temporal plots of (a) heat flux computed using equation (16) and (b) ion turbulent heat diffusivity χi/(ρ2s0cs0/a) using
equation (17) for R0/LT = 26.8.

in the present case for R0/LT = 13.1 compared to the earlier
case where R0/LT = 26.8.

The structure of turbulent eddies in the nonlinear phase
can be seen in figure 11(c) taken at t= 2× 105Ω−1

ci , where

the quantity ϕ −⟨ϕ⟩FS is plotted in a poloidal cross section.
From the snapshot, it is clear how zonal flow shearing affects
the electrostatic potential. The global structures are torn apart
by zonal flows that control the turbulence. From figure 11(c),

12
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Figure 10. Spatio-temporal contour plots of the electrostatic field energy, equation(24), separately for the zonal (top panel) and non-zonal
(bottom panel) components. Also shown are the radial plots of R0/LT at initial (red dashed line) and final (magenta dashed line) time, R0/Ln
(white dashed line) at initial time and η = Ln

LT
at initial (orange dashed line) and final (green dashed line) times.

we also see that the turbulence is more global (wide spread in
radial direction) as compared to R0/LT = 26.8 case.

In figure 12(a), a spatio-temporal plot of the heat flux is
depicted. The spatio-temporal evolution of the ion heat dif-
fusivity χi is depicted in figure 12(b). From figure 12(a), we
see that following an initial turbulence overshoot beginning
near s ∈ [0.55− 0.75], which is in the region of maximum
R0/LT , lower amplitude bursts are observed in comparison to
figure 9(a). The averaged heat diffusivity over the time interval
tΩci = [1.0e5− 2.0e5], and the radial interval s= [0.5− 0.7]
is χi/χGB = 4.925, which is lower than R0/LT = 26.8 case.
Heat flux and ion heat diffusivity over the time interval tΩci =
[0.0− 2.0e5] are displayed by inset plots.

The upper and bottom panels of figure 13 show the spatio-
temporal behaviour of the ZF and turbulence energy. Themode
intensity peaks at time t∼ 1.5× 104Ω−1

ci and around s= 0.65.
The turbulence exists and spreads over a wide radial domain
approximately from s= 0.5 to s= 0.8. As could be expected,
the zonal flow caused by the turbulence reaches its peak in
the region of the strong ITG activity, as can be seen in the
upper panel of figure 13. As a result, the turbulence enters into

a saturation regime. It can also be seen from the figure that ZF
and turbulence energy are lower for R0/LT = 13.1 than the one
for R0/LT = 26.8. The equilibrium R0/LT profile at initial (the
red dashed line) and final (the magenta dashed line) time are
displayed in figure 13. The equilibrium R0/Ln profile is shown
by a white dashed line and η = Ln/LT at initial (the orange
dashed line) and final (the green dashed line) are depicted in
figure 13.

3.3. Comparison of results obtained from nonlinear
simulations for both R0/LT cases

Snapshots of the electrostatic turbulent potential ϕ̃ = ϕ −
⟨ϕ⟩FS at t= 2.0× 105Ω−1

ci during the nonlinear simulations
with R0/LT = 26.8 and R0/LT = 13.1 are shown in figure 14.
From figure 14, it is clear that the turbulence is more global
(more broad radial extent) for R0/LT = 13.1 case compared
to R0/LT = 26.8 case. This can be understood from the lin-
ear results shown in figure 2 For the R0/LT = 13.1 case, the
long wavelength i.e., low n modes are unstable while for
R0/LT = 26.8 case, short wavelength i.e., high n modes are
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Figure 11. (a) Electrostatic field energy using equation (24), (b) heat flux density using equation (25), and (c) ϕ −⟨ϕ⟩FS plots for
R0/LT = 13.1.

also equally unstable. As we also see from figure 14 that the
zonal flow shear tears the global structures to regulate the
turbulence for both R0/LT = 26.8 and R0/LT = 13.1 cases.
Therefore, it is essential to investigate the role of the zonal
flow shearing rate [58, 66, 67] in both cases.

In order to achieve this, in both simulations (R0/LT = 13.1
and R0/LT = 26.8), we have determined the zonal flow shear-
ing rate. In both situations, the shearing rate and temporal
evolution are depicted in figure 15. The time and radially
averaged shearing rate ωtotE×B = ⟨⟨|ωE×B|⟩s⟩t is 0.0033Ωci for

R0/LT = 26.8 and 0.0008Ωci for R0/LT = 13.1, respectively,
are shown with red dashed lines in figures 15(a) and (b). The
subscripts s and t indicate averages over radius (s ∈ [0.5 0.7])
and time (t[Ω−1

ci ] ∈ [1.0× 105 2.0× 105]), respectively. The
quantity ωtotE×B is a measure of the total absolute value of the
ZF shearing rate. In the case of R0/LT = 26.8, the zonal flow
shearing rate for the SWITG mode is approximately twice
as high as in the case of R0/LT = 13.1. The primary mech-
anism for saturating the SWITG mode turbulence is zonal
flows, as shown by the fact that the shearing rate is higher in
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Figure 12. Spatio-temporal plots of (a) heat flux computed using equation (16) (Heat flux over the time interval tΩci = [0.0− 2.0e5] is
shown by inset plot) and (b) ion turbulent heat diffusivity χi/(ρ2s0cs0/a) using equation (17) for R0/LT = 13.1 (ion turbulent heat diffusivity
over the time interval tΩci = [0.0− 2.0e5] is shown by inset plot).

both cases than the linear growth rate. It has also been found
that ZF shearing is a generally accepted mechanism for tur-
bulence suppression [68]. Maximum linear growth rates of
the SWITG mode are 0.00214Ωci and 0.00065Ωci, respect-
ively, for R0/LT = 26.8 and R0/LT = 13.1 at kθρs = 1.2 are
shown with dashed magenta lines in figures 15(a) and (b)
respectively.

In figure 16, the temporal evolution of normalized heat
flux Q/(⟨n⟩csTe(s0) is depicted. In figures 16(a) and (b),
the normalized heat flux is estimated for R0/LT = 13.1 and
R0/LT = 26.8 cases. The simulations at large (R0/LT = 26.8)
and low (R0/LT = 13.1) gradients are repeated using the
same physical parameters but this time considering the modes
only up to n ∈ [0 : 70], i.e. kθρs ⩽ 0.8. With this, only the
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Figure 13. A spatio-temporal plot of (a) ZF (ϕ00) component of electrostatic field energy along-with spatial plots of R0/LT at initial (red
dashed line) and final (magenta dashed line) time, R0/Ln (white dashed line) at initial time and η = Ln

LT
at initial (orange dashed line) and

final (green dashed line) time and (b) Turbulent ϕ̃ = ϕ −ϕ00 component of electrostatic field energy.

conventional ITG mode is taken into account and the SWITG
modes are artificially suppressed from the simulations. The
aim is to determine the role of SWITG modes on turbulent
heat transport.

We can see from figures 16(a) and (b) that the contribu-
tion of the SWITG mode to the normalized heat flux is very
small when compared to the contribution of the standard ITG
mode (the region 0.0⩽ kθρs ⩽ 0.8, which mostly contributes
to the transport) in both kθρs scenarios because we obtain
roughly the same heat fluxes 0.024 forR0/LT = 13.1 and 0.039
for R0/LT = 26.8, shown in green and magenta dashed lines,
respectively, whether SWITG mode is taken into account or
not. One can calculate the difference between the higher kθ
tail, kθρs ⩾ 1.0, which corresponds to the SWITG mode and
the lower kθ component, kθρs ⩽ 1.0, which is related to the
conventional ITG, in terms of their relative contributions to
the net ion heat transport.

Qfrac, SWITG =
Q(0.0⩽ kθρs ⩽ 1.4)−Q(0.0⩽ kθρs ⩽ 0.8)

Q(0.0⩽ kθρs ⩽ 1.4)
,

(26)

where Qfrac, SWITG is the relative contributions to the net ion
heat transport. From equation (26), we obtain, Qfrac, SWITG =
0.032 for R0/LT = 13.1 and Qfrac, SWITG = 0.035 for R0/LT =
26.8. Thus, one finds that despite the SWITG mode for
R0/LT = 26.8 having a linear growth rate that is more than
thrice that of the SWITG mode for R0/LT = 13.1 (see
figure 2), the SWITG branch of the kθ spectrum’s net contri-
bution to the total ion heat flux is approximately 3.5% in both
cases. As a result, the lower kθ components of the fluctuation
related to the conventional ITG mode dominate in determin-
ing the thermal ion heat transport and the SWITG mode only
makes a very small contribution to the overall ion thermal
transport.
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Figure 14. 2D potential structure ϕ −⟨ϕ⟩FS at t[Ω−1
ci ] = 2.0e5 for R0/LT = 26.8 (top) and R0/LT = 13.1 (bottom) respectively.

Mixing length estimation of heat diffusivity is also car-
ried out. The estimation of the heat diffusion coefficient for
conventional and short-wavelength ITG from mixing length
arguments (quasi-linear theory) is given as follows: χ ∼ γL

k2⊥
∼

γL
k2θ
, where k2⊥ = k2r + k2θ and γL is the linear growth rate;

here we have used k⊥ ≈ kθ, which is a valid approxima-
tion in ITG relevant scales in the absence of non-adiabatic
electrons [69].

In figure 9(b), the total heat diffusivity calculated from
nonlinear simulations including mode numbers up to the
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Figure 15. The time history of the E×B zonal flow shearing (ωE×B) using equation (18), in units of Ωci for the nonlinear simulations with
(a) R0/LT = 26.8 and (b) R0/LT = 13.1. The magenta dashed lines represent the corresponding maximum linear growth rates for the
SWITG mode, i.e. 0.00214Ωci and 0.00065Ωci, respectively, for R0/LT = 26.8 and R0/LT = 13.1.

Figure 16. Temporal evolution of (a) normalized heat flux Q/(⟨n⟩csTe(s0) for R0/LT = 13.1 for poloidal wave numbers 0.0⩽ kθρs ⩽ 1.4
(red solid line) and R0/LT = 13.1 for poloidal wave numbers 0.0⩽ kθρs ⩽ 0.8 (the blue solid line) capturing only conventional ITG mode
(b) normalized heat flux Q/(⟨n⟩csTe(s0) for R0/LT = 26.8 for poloidal wave numbers 0.0⩽ kθρs ⩽ 1.4 (the red solid line) and
R0/LT = 26.8 for poloidal wave numbers 0.0⩽ kθρs ⩽ 0.8 (the blue solid line) capturing only the conventional ITG mode.

short-wavelength range (ITG+SWITG) is found to be
χNLITG+SWITG = 1.7 m2 s−1. Total heat diffusivity including
mode numbers up to the conventional ITG range (n⩽ 70) is
χNLITG = 1.64 m2 s−1. Hence, the ratio of the total heat diffusiv-
ity coming from the ITG+SWITG branch to the conventional
ITG branch is χNLITG+SWITG/χ

NL
ITG = 1.04.

The current heat transport coefficient is estimated from the
mixing length calculation for all the toroidal mode numbers
using the linear calculations as shown in figure 17. For the con-
ventional ITG mode (denoted by the orange dashed vertical

line at kθρs ≃ 0.4 in figure 17), the transport coefficient is
found to be ≃ 0.92 m2 s−1 whereas the same for the SWITG
mode (denoted by the blue dashed vertical line at kθρs ≃ 1.2 in
figure 17) is ≃ 0.12 m2 s−1. Hence, from quasi-linear theory,
the ratio of the diffusivity coming from the conventional ITG
branch to that coming from the SWITG branch is about 7.7,
whereas it is 1.04 from the nonlinear simulations. This shows
that the mixing length theory is unable to explain the small
contribution from SWITG and overestimates it. This necessit-
ates the requirement of nonlinear simulation.

18



Nucl. Fusion 63 (2023) 086029 A.K. Singh et al

Figure 17. The transport coefficient is estimated with the mixing length approximation for ITG modes versus kθρs for R0/LT = 26.8 case.
Note that χkθρs = 0.4/χkθρs=1.2 ≃ 7.7.

From the present linear and nonlinear simulations of both
cases, the following conclusions emerge:

1. In the linear simulations, ORB5 and GLOGYSTO exhibit
good agreement in growth rate and real frequency values,
with quantitative differences that are less than 25%.

2. We find two peaks of the linear growth rate versus mode
number as opposed to the single peak that is often seen
in the linear analysis of the conventional ITG modes. The
second peak, which is characteristic of the SWITG mode,
appears at kθρs ≃ 1.2.

3. Using linear analysis, it is also observed that the SWITGs
are suppressed at low values of R0/LT, implying that only
the conventional ITG mode remains unstable.

4. The nonlinear SWITG mode for R0/LT = 26.8 exhib-
its a higher zonal flow shearing rate than the one for
R0/LT = 13.1.

5. The nonlinear contribution from the SWITG modes to the
net ion heat flux is very small in both cases, despite the fact
that the growth rate of the SWITG mode is significantly
higher for R0/LT = 26.8 than for R0/LT = 13.1 in the linear
phase. This implies that the bulk part of the ion heat fluxes
comes from the standard ITG mode.

The significance of secondary instabilities [70, 71] can be
used to clarify the fifth point. The secondary instability caused
by the E×B shear scales as k2θΦL [72], where ΦL is the amp-
litude of the linear SWITG mode. It should be noted that the
values of kθ’s where the linear growth rates of the conventional
ITG and SWITG modes peak are approximately 0.4 and 1.2,
respectively (see figure 2). The corresponding growth rates
also have similar magnitudes. Due to the fact that secondary
instabilities’ nonlinear growth rates (∝ k2θ ) exceed their linear
growth rates, hence SWITG modes are sub-dominant nonlin-
early. The strength of the secondary instability is weaker in
the conventional ITG component of the kθ spectrum than in the

SWITG part because the conventional ITG part’s kθ is smaller.
Since SWITG has a far stronger suppression level than ITG in
the nonlinear regime, conventional ITG contributes the major-
ity of the total ion heat flux. Therefore, the SWITG mode’s
contribution to the total ion heat flux for R0/LT = 26.8 is prac-
tically as low as that for R0/LT = 13.1.

4. Summary

In the present work, linear and nonlinear simulation invest-
igations of the standard and SWITG mode for experimental
profiles and parameters of shot# 33 536 [but setting Ti = Te]
of ADITYA-U tokamak have been carried out using the global
nonlinear gyrokinetic PIC code ORB5 and global linear eigen-
value gyrokinetic code GLOGYSTO. The growth rate and real
frequency are calculated using GLOGYSTO and ORB5 for
different toroidal mode numbers. We see that there is a good
agreement in growth rate and real frequency values between
GLOGYSTO and ORB5. As a consequence of the linear ana-
lysis, we found two peaks for R0/LT = 26.8 case as opposed
to the single peak that is often seen in the linear analysis of
the conventional ITG modes. The SWITG mode is represen-
ted by the second peak, which appears around kθρs ≃ 1.2. The
SWITGs are found to be suppressed for low values of R0/LT,
meaning that only the standard ITG mode remains unstable,
using linear stability analysis.

Nonlinear global simulations using ORB5 for ADITYA-U
tokamaks are also performed for R0/LT = 26.8 and R0/LT =
13.1 (to check what transport looks like if SWITG is sup-
pressed) keeping R0/Ln fixed. Higher heat fluxes are observed
in nonlinear simulations for higher values of R0/LT, which
is in accordance with the linear growth rate’s trend with
respect to R0/LT. From the time evolution of the heat flux, we
observed that the contribution of the SWITGmode to the over-
all heat flux is very small when compared to the contribution
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of the standard ITG mode (the region 0.0⩽ kθρs ⩽ 0.8, which
mostly contributes to the transport). It is found that the E×B
shearing rate is larger than the linear mode frequency and
growth rate of the SWITG mode, indicating that zonal flows
are the primary mechanisms causing the SWITG mode to be
suppressed. This is consistent with the findings of [72], which
showed that E×B velocity shear can stabilise the slab SWITG
mode. In our situation, it is also found that the E×B shearing
rate is larger for the SWITG modes with R0/LT = 26.8, which
also displays higher growth rate linearly, as contrasted to the
lower shearing rate for those with R0/LT = 13.1 and lower
growth rate linearly. In spite of the temperature scale length,
which linearly determines the strength of the SWITG mode
in comparison to the conventional ITG, the higher kθρs part
of the spectrum relevant to the SWITG mode contributes very
little to the thermal ion heat flux. This is because the higher
shearing rate appears to compensate for the higher growth rate
of the mode.

When combined with other modes, such as TEMs, which in
the presence of kinetic electrons at higher kθρs, SWITG mode
can be significant for electron thermal transport even though
it has been shown to have very little contribution to net ion
heat flux [10]. Therefore, when considering kinetic electron
dynamics and interactionwith TEMs, the smallness of the con-
tribution of SWITG modes to heat transport determined here
with an adiabatic electron model may differ. This issue will
be addressed in a future communication. Apart from the TEM
simulation, it will be interesting to take into account electro-
magnetic effects (finite β effects) on the SWITG mode in the
linear and nonlinear regimes, which will also be addressed
in future work. This effort is a first step towards understand-
ing the microturbulence and transport in ADITYA-U. It might
be possible to plan future ADITYA-U experiments using the
knowledge gathered from this investigation on electrostatic
microturbulence.
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Appendix A. CBC benchmark

Here, we reported the benchmarking of ORB5 for ITG modes
with adiabatic electrons for the well-known Cyclone base case
(CBC) [50]. The parameters for CBC are: inverse aspect ratio
a/R0 = 0.36; ion density and temperature profiles are given as
a function of s which is the geometrical radius

T(s) = T(s0)exp

(
− a∆T

LT
tanh

(
s− s0
∆T

))
(A.1)

n(s) = n(s0)exp

(
− a∆n

Ln
tanh

(
s− s0
∆n

))
(A.2)

the gradient profiles can be obtained easily:

d lnT(s)
s

=− a
LT

cosh−2
(
s− s0
∆T

)
(A.3)

d lnn(s)
s

=− a
Ln

cosh−2
(
s− s0
∆n

)
(A.4)

where LT,Ln are the temperature and density characteristic
lengths, and ∆T,∆n are constants. Te/Ti = 1, q(s) = 0.86−
0.16s+ 2.52s2, ∆T = 0.3, ∆n = 0.3 and η = Ln/LT = 3.12.
These input profiles are shown in figure A.1.

In the radial domain from 0.01 to 1.0 (in terms of nor-
malized minor radius), the linear benchmark simulations for
ORB5 are performed. In the toroidal direction, simulations
are run as a full torus. Additional parameters are: a/ρs = 185,
lx = 2a/ρs = 370.0, total number of grid points is 4× 108 and
12 particles/cell are used in the linear simulation. The ITG
instability is calculated at s0 = 0.5, where the density and tem-
perature gradients havemaximumvalue. Here, we specify nine
toroidal mode numbers: n= 5,10,15,20,21,22,25,30,35
which cover the poloidal wave numbers kθρs from 0.07 to 0.55.
Each linear simulation corresponds to a single toroidal mode
number n.

As illustrated in figure A.2, reasonable agreement is
obtained for the real frequencies ωr and growth rates γ with
GENE code [73] from where the real frequencies ωr and
growth rates γ data are taken. Ad-hoc MHD equilibrium is
used for this run. The poloidal mode structure of most unstable
mode n= 21 is also shown in figure A.3. Note that for the
plots in figure A.2, we run the code ORB5 only; the results
corresponding to the other code (GENE) in the same figure
are taken from [73]. When comparing growth rates obtained
using ORB5 and GENE, a good agreement is observed for
the lower kθρs values, but minor inconsistencies are seen for
kθρs ⩾ 0.3. The growth rates for the two curves agree within
20%. It has been reported in [22] about the discrepancies due
to the differences in the model equations considered by the
two codes. The growth rates for the largest kθρs are lower in
ORB5, as compared to GENE. There is also a good agree-
ment in real frequency values between ORB5 and GENE,
that is within 10% with some small deviations, which are
probably due to other minor differences between the two
codes [22].
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Figure A.1. Equilibrium profiles of Cyclone base case [50, 73]. (a) q profile (b) shear profile (c) temperature profile (d) density profile
(e) R0/LT and R0/Ln profiles and ( f ) η = Ln/LT profile.
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Figure A.2. Comparison of the growth rates (top) and real frequencies (bottom) calculated by the ORB5 and the GENE (data taken from
[73]) for CBC.
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Figure A.3. A 2D mode structure plot of the electrostatic potential in the (R,Z) plane of the dominant mode corresponds to the toroidal
mode number n= 21 using ORB5 at t[Ω−1

ci ] = 8.0e4.

Appendix B. Details of the convolution matrix given
in the equation (11)

The convolution matrices used in equation (11) for ions and
electrons are given as follows:

Mi
φ̃φ̃,k,k ′ =

1
∆r

ˆ ru

rl

drexp(−i∆κr)

×

[
αpδ

′
mm+ exp(i∆mθ̄)

∑
p

Î0p,i

]
,

Me
φ̃φ̃,k,k ′ =

1
∆r

ˆ ru

rl

drexp(−i∆κr)

×

[
αpδmm ′

τ(r)
+

exp(i∆mθ̄)

τ(r)

∑
p

Î0p,e

]
, (B.1)

where ∆r= ru− rl (upper and lower radial limits), ∆κ =
κ−κ ′ and∆m = m−m ′. Here k= (κ,m) and k ′ = (κ ′,m ′).
The parameters used in the above equation are given as
follows:

Îlp, j =
1√

2πv3th, j(r)

ˆ vmax, j(r)

−vmax, j(r)
vl||dv|| exp

(
−

v2||
v2th, j(r)

)

×

{
N j
1I
σ
0, j−N j

2I
σ
1, j

Dσ, j1

}
p′=p−(m−m′)

,

Iσn, j =
ˆ v⊥max, j(r)

0
v2n+1
⊥ dv⊥ exp

(
− v2⊥
2v2th, j(r)

)
× J20(xLj)Jp(x

′σ
tj )Jp ′(x

′σ
tj ) , (B.2)

For jth species, the upper cutoff speed is vmax, j(r) (con-
sidered in the numerical implementation), v⊥max, j(ρ) =
min(v||/

√
ϵ,vmax, j) is ‘trapped particle exclusion’ from ω

independent perpendicular velocity integral Iσn, j, ε is the

inverse aspect ratio, αp = 1−
√
ϵ/(1+ ϵ) is the fraction

of passing particles; Îlp, j is ω− dependent parallel integ-

rals, xσtj = k⊥ξσ, N j
1 = ω−wn, j

[
1+(ηj/2)(v2||/v

2
th, j)− 3)

]
;

N j
2 = wn, jηj/(2v2th, j) and Dσ, j1 =< wt, j(ρ)> (nqs−m ′(1−

p)(σv||/vth, j)−ω where < wt, j(ρ)> = vth, j(ρ)/(rqs) is the
average transit frequency of the species j.
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Figure C.1. A time-dependent plot of Φ00 at s0 = 0.6. The linear mode, with sin(krs) perturbation, output of the ORB5 simulation yielded
the solid red line. The exponential decay is represented by the dashed black line [76, 77], while the residual is shown as a solid green line
from Rosenbluth-Hinton theory.

Appendix C. The Rosenbluth-Hinton test

The zonal flow damping tests for ADITYA-U are carried out in
the linear regime. Low frequency electrostatic modes known
as zonal flows, which are produced by turbulence on their
own and are crucial for controlling the turbulence [58]. The
Rosenbluth and Hinton theory on the collisionless damping
of zonal flow [59] is verified by the collisionless damping of
the zonal electrostatic field to a non-zero steady-state value.
As zonal flows are considered as a crucial saturation mech-
anism in turbulent regimes, particularly for ITG turbulence,
a correct prediction of residual level (a non-zero steady-state
value) is an important test for gyrokinetic codes [13, 61, 74].
To replicate the findings of Rosenbluth and Hinton [59], only
a radial electrostatic potential is solved by initialising a radi-
ally perturbed density with δni(s,θ⋆,φ) = δni(s) and filter-
ing the density so that only modes with the parameters n=
0,m ∈ [−16 : 16] are retained. Due to the toroidal geometry,
the initial condition gives rise to GAMs, that are (m,n) =
(0,0)modes coupled to sidebands (m,n) = (±1,0). The finite
poloidal wavenumber of the sideband causes these GAMs
to be Landau-damped [75]. There is, however, an additional
undamped component (m,n) = (0,0) that corresponds to the
ZF. Following [13, 61, 74], the time evolution of the zonal
component i.e. n= m= 0 of electrostatic potential can be
written as:

Φ00(s, t)
Φ00(s, t0)

= (1−AR0)exp(γGt)cos(ωGt)+AR0 (C.1)

Φ00 being the flux-surface averaged electrostatic potential,
where AR0 is the residual at the radial position s and can be
defined as:

AR0(s) =
1

(1+ 1.6q(s)2(s/R0)−1/2)
(C.2)

and (ωG,γG) are the GAM frequency and damping rate,
respectively [76, 77].

ωG =

√
7+ 4τe
2

q

(
vth,i
R0q

)√
1+

2(23+ 16τe+ 4τ 2e )

q2 (7+ 4τe)
2 (C.3)

γG =−
√
π

2
q2
(
vth,i
R0q

)[
1+

2
(
23/4+ 4τe+ τ 2e

)
q2 (7/2+ 2τe)

2

]−1

×

[
exp
(
−ω̂2

G

)
{ω̂4

G+(1+ 2τe) ω̂
2
G}

+ 0.25

(
krvth,iq
Ωci

)2

exp
(
−ω̂2

G/4
){ ω̂6

G

128
+

(1+ τe)

16
ω̂4
G

+

(
3
8
+

7
16
τe+

5
32
τ 2e

)
ω̂2
G

}]
(C.4)

with s as the minor radius of the considered magnetic surface
i.e. 0.6 in the present simulation, R0 is the major radius, q(s)
is the safety factor on the surface of interest, τe = Te/Ti, and

ω̂G ≡
(
R0qωG
vth,i

)
.
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Input parameters are hydrogen ions, a= 274ρs,R0 =
0.75 m,R0/a= 3 and B0 = 1.0 T. The temperature and dens-
ity profiles are taken as flat. The safety factor profile is a
monotonic increasing and given as q(s) = 1.25+ 0.67 s2 +
2.38 s3 − 0.06 s4, at s0 = 0.6,q(s0) = 2.0. The grid numbers
are Ns = 256,Nθ⋆ = 64,Nφ = 32, the number of markers is
N= 1.0× 107 and the time step size is ∆t= 10Ω−1

ci . The ini-
tial condition is prepared to obtain an axisymmetric ion density
perturbation. The density perturbation δni(s)∼ δni,0sin(krs),
where kr is the radial wave number in units of (1/a). The
results of the ORB5 simulations are shown in figure C.1. In
figure C.1, the potential Φ00(s0, t) normalized to the initial
value Φ00(s0, t0) is displayed as a function of time. The expo-
nential decay predicted by equation (C.1) and the residual cal-
culated from equation (C.2) are also plotted for reference. The
result indicates that the real frequency and residual amplitude
are in agreement with the Rosenbluth-Hinton theory [59].
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