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Abstract: Sterilization is a prerequisite for biomedical devices before contacting the human body. It
guarantees the lack of infection by eliminating microorganisms (i.e., bacteria, spores and fungi). It
constitutes the last fabrication process of a biomedical device. The aim of this paper is to understand
the effect of different sterilization methods (ethanol-EtOH, autoclave-AC, autoclave + ultraviolet
radiation-ACUV and gamma irradiation-G) on the surface chemistry and electrochemical reactivity
(with special attention on the kinetics of the oxygen reduction reaction) of CoCrMo and titanium
biomedical alloys used as prosthetic materials. To do that, electrochemical measurements (open
circuit potential, polarization resistance, cathodic potentiodynamic polarization and electrochemical
impedance spectroscopy) and surface analyses (Auger Electron Spectroscopy) of the sterilized surfaces
were carried out. The obtained results show that the effect of sterilization on the corrosion behavior
of biomedical alloys is material-dependent: for CoCrMo alloys, autoclave treatment increases the
thickness and the chromium content of the passive film increasing its corrosion resistance compared
to simple sterilization in EtOH, while in titanium and its alloys, autoclave and UV-light accelerates
its corrosion rate by accelerating the kinetics of oxygen reduction.

Keywords: sterilization; biomedical alloys; corrosion

1. Introduction

Biomedical implants and, in general, medical devices, must be sterile before implan-
tation and contact with the human body. To do that, different physical and chemical
techniques are available nowadays, and their use depends on the material properties and
the final application of the device. Among them, gamma irradiation (G), steam autoclave
(AC), ultraviolet irradiation (UV), dry heat and ethylene oxide (EO) are widely used in
the biomedical field. Each of these different sterilization methods have their own advan-
tages and limits [1] with more (gamma radiation) or less (such as autoclave) penetrability,
very good compatibility with all materials (such as ethylene oxide) or low cost (such as
autoclave). A very simple method is the use of 70% ethanol in water, which can also be
considered a sterilization method.

Whatever the method, the sterilization process in the manufacturing of biomedical
devices constitutes a crucial step to prevent infections of the implanted elements. It is the
process that facilitates eliminating and stopping the production of microorganisms, such
as bacteria, spores and fungi, and it is considered the last step of the surface modification
before the device is in contact with the human body. Its importance is related to the fact
that sterilization has to remove the maximum number of microorganisms without compro-
mising key surface properties that may influence their interaction with the surrounding
tissue (i.e., electrochemical reactivity).
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The biocompatibility of implants is related to the implant–body interactions and, there-
fore, to the surface reactivity with the surrounding biofluids (corrosion). Since sterilization
is the final step in the manufacturing process of implants, characterizing the influence of
that process on the electrochemical behavior of the resulting surface is needed to understand
the final implant performance in vivo. The importance of understanding the corrosion
degradation mechanisms of biomedical implants is related to its consequences on metal ion
release into the human body and other clinical implications, such as inflammation [2–4].

It has been previously reported for titanium and its alloys that cell adhesion and
proliferation and bacterial attachment, which are directly related to the biocompatibility of
those materials, are highly dependent on surface chemistry, crystallinity, roughness and
wettability, which can be modified by the final sterilization procedure [5–8]. Indeed, steril-
ization by autoclaving has been shown to decrease the hydrophilicity of titanium surfaces
due to the introduction of hydrophobic contaminants on the surface [9,10]. Autoclaving
has also been shown to destroy nanotubular morphology during the sterilization of TiO2
nanotubes used for biomedical devices, while other methods, such as UV-light or plasma
sterilization, did not cause any damage. However, all sterilization techniques influenced
the cytocompatibility of some nanotubular structures [11]. Similar results were also found
by Oh et al. [12], who also observed that dry or wet autoclaving generated different cell
adhesion properties on TiO2 nanotubes due to the difference in air entrapment among
the different autoclaving conditions, which modified the protein deposition in and on the
nanotubes necessary for cell adhesion contacts.

With respect to the influence of bacterial growth depending on the sterilization process,
Kumer et al. [13] observed that UV- and EtOH-sterilized samples decreased the bacterial
growth on anodized TiO2 nanotubes, while autoclave sterilized samples showed the highest
amount of bacterial growth. This effect was found to be dependent on the length of the
nanotubes, with the 20 nm TiO2 structure showing the lowest bacterial growth.

Clearly, the final sterilization process modifies the surface properties of the treated
implant, although very scarce literature [14] exists on its effect on the corrosion behavior.
In this previous work, Thierry et al. [14] tested an electropolished NiTi biomedical alloy
after sterilization using several procedures (ethylene oxide, steam autoclaved, paracetic
acid and hydrogen peroxide plasma). The main influence of sterilization on the corrosion
behavior of the NiTi was observed after steam autoclaving. NiTi showed an increase in
corrosion potential and a decrease in localized corrosion resistance, which were related, by
the authors, to the generation of surface defects during that sterilization process. However,
no clear conclusions on which sterilization parameter was responsible for the different
corrosion behavior were derived from this study.

Recently, an in vivo corrosion study testing pure titanium in synovial fluid directly
extracted from patients has shown that the cathodic reaction of dissolved oxygen plays a
key role determining the corrosion rate of the metal [15]. The cathodic reduction of oxygen
is an electrochemical parameter that is significantly affected by the surface state of the
metal. It is thus expected that the sterilization process, by modifying the metal surface,
affects the corrosion of titanium and by extension biomedical alloys in general.

The aim of this work is to characterize the effect of sterilization processes on the
electrochemical behavior of common biomedical alloys used in orthopedic implants. The
investigated materials are a low carbon CoCrMo alloy, a Ti6Al4V alloy and pure titanium.
The latter was investigated in an anodized and non-anodized state to check for possible
effects of TiO2 thick surface films. Samples were exposed to different sterilization processes:
70% ethanol/water, steam autoclave, UV-light and gamma-irradiation. The corrosion tests
were carried out in a simulated body fluid. Corrosion was characterized by electrochem-
ical methods with a particular emphasis on the cathodic kinetics (oxygen reduction) as
corrosion-limiting step.
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2. Materials and Methods
2.1. Sample Preparation

Three different biomaterials were used in this work: a low carbon CoCrMo alloy (C:
0.05 %wt, Cr: 28 %wt, Mo: 6 %wt, Co: 65.95 %wt), a titanium Ti64 alloy grade 5 (Ti: bal, Al:
6 %wt, V: 4 %wt) and a pure titanium metal (cp-Ti). The cp-Ti was tested as received and
after anodization. The anodization process was carried out in a 0.1 M citric acid solution at
an applied voltage of 15 V during 1 min.

Both alloys, CoCrMo and Ti64, were mechanically polished with consecutive 800, 1200,
2400 and 4000 SiC papers. The final surface roughness (Sa) of those materials was 0.2 mm
(CoCrMo) and 0.7 mm (Ti64), respectively. The pure titanium and the anodized titanium
samples had a surface roughness of 6.5 mm and 6.3 mm, respectively.

Before testing, all samples were ultrasonically washed in an acetone bath followed by
an ethanol bath.

2.2. Sterilization Processes

In order to analyze the influence of the sterilization process on the corrosion behavior
of the biomedical alloys, four consecutive sterilization methods were carried out:

• Ethanol (EtOH): the samples were immersed in a 70% ethanol bath over 20 min.
• Autoclave sterilization (AC): after the EtOH step, samples were introduced in an

autoclave at 121 ◦C at a pressure of 0.1 MPa over 20 min.
• UV-light sterilization (AC-UV): after the EtOH and AC steps, the samples were ex-

posed to UV-Light (260 nm wavelength) over 20 min.
• Gamma radiation sterilization (G): the samples without any previous sterilization

were exposed to a source of energy between 25–42 kGy.

2.3. Surface Analysis

Before the electrochemical tests, surface analysis of the sterilized CoCr samples was
carried out via Auger Electron Spectroscopy (AES) in a PHI 680 Scanning Auger Nanoprobe
(Physical Electronics GmbH, Feldkirchen, Germany) using a tilted angle of 30◦ and an
energy of a 10 keV (10 nA) electron beam. Depth profile acquisition was performed by
scanning at 1 keV (500 nA) with an Ar+ beam over an area of 2 × 2 mm for the CoCr
and titanium samples. For the anodized titanium, higher energy of the ion beam was
used, 2 keV (2 µA). The sputter rate of SiO2 standards measured under those conditions
(1.5 nm/min and 5 nm/min, respectively) was used to convert the sputter time to the
approximate sputter depth.

AES depth profiles were smoothened by averaging three acquisition points and then
corrected for the influence of the electron escape depth using the same procedure that
Mischler et al. used for passive films [16] and further applied for CoCrMo alloys [16]. The
peaks considered for analysis and the corresponding values for the electron inelastic mean
free path (IMFP) are listed in Table 1.

Table 1. AES peaks considered for depth profiling.

Element Peak Kinetic Energy (eV) IMFP (nm)

C KLL 273 0.7
O KLL 503 1.0
Cr LMM 528 1.1
Co LMM 778 1.4
Ti LMM 421 1.0

2.4. Electrochemical Measurements

Corrosion behavior was characterized by using a three-electrode electrochemical cell
using a calomel (SCE) reference electrode (0.244 V vs. standard hydrogen electrode SHE)
and a platinum counter electrode. All potential values in the text refer to that SCE reference
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electrode. The exposed area of the working electrode was 7 cm2. The electrochemical
cell was filled with 380 mL of 0.15 M NaCl solution, pH 7, under aerated conditions and
connected to an Autolab 301N potentiostat.

The following electrochemical sequence was carried out on the sterilized samples
using four electrochemical techniques:

- The Open Circuit Potential (OCP) was continuously measured over 60 min.
- During the OCP measurement, linear polarization measurements were carried out

every 10 min from −10 mV to +10 mV with respect to the OCP at a scan rate of 2 mV/s
in order to determine the polarization resistance (Rp). Rp is inversely proportional to
the corrosion rate.

- Electrochemical impedance spectroscopy (EIS) was carried out at OCP after 60 min of
immersion in a frequency range from 105 to 0.01 Hz with an amplitude of 10 mV. This
measurement allowed for characterization of the interface biomaterial/electrolyte.

- A cathodic potentiodynamic scan was carried out from OCP towards −200 mV vs.
OCP at 2 mV/s. Cathodic kinetic parameters were extracted from those curves.

At least two tests under the same conditions were carried out to check for reproducibil-
ity of the data.

Anodic polarization curves from 200 mV below the OCP to 1000 mV at 2 mV/s were
also carried out in order to characterize the corrosion behavior of all materials.

3. Results
3.1. Surface Analysis

Figure 1 shows typical AES profiles of the CoCrMo samples subjected to different
sterilization methods, considering the characteristic peaks of C, O, Co and Cr. Although
Mo was also identified in the spectra measured before each depth profile, the signals were
very weak and they have not been plotted in the figure. The intensity of the oxygen signal
passes through a maximum with the sputter depth and starts decreasing again around 2
and 2.5 nm. The thicknesses of the passive layers can be determined by taking the depths
at which the oxygen signal is at 50% of its maximum amplitude, which correspond to 3, 4.5
and 4.8 nm depending on the sterilization process, EtOH, AC or ACUV, respectively.

The oxide film thickness and composition for the titanium and the anodized titanium
was slightly influenced by the sterilization process. In all cases, the film was composed
of TiO2. In the titanium sample, an oxide film of around 30 nm was observed, while
on the anodized titanium, an oxide layer was formed at around 300 nm. Only in the
case of sterilization with EtOH was the passive film thinner when compared to the other
sterilization methods.

3.2. Electrochemical Measurements

The Open Circuit Potential (OCP) of the tested samples was continuously monitored
with time, and every 10 min, polarization resistance was measured based on a short scan of
±10 mV from the OCP. Figure 2 shows a typical example of the OCP evolution with time
of the CoCr alloy sterilized by autoclaving. The OCP transients observed every 10 min
corresponded to the moments at which the Rp was measured. A moderate increase in OCP
with time, typically from passive materials, was observed in all samples.

Figure 3 shows the OCP values determined every 10 min before the measurement
of the Rp and their evolution with time for the different materials sterilized by different
processes. OCP values of the CoCr alloy are very reproducible and slightly increase with
immersion time in the saline solution (Figure 3a). The main effect on OCP was observed
with autoclave sterilization, which shifts the OCP towards higher values compared to those
with the EtOH process. Exposure to UV-light after AC sterilization also generates a slight
increase in OCP. In the titanium samples, no general effect of sterilization was observed. The
OCPs of the Ti64 alloy, in Figure 3b, reached values between 0 and −0.3 V after sterilization
in EtOH. Autoclaving reduces the scatter of the OCP values, with all of them being around
−0.17 V, and exposure to the UV-light slightly shifted those OCPs towards higher values,
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around −0.07, at the end of the OCP tests. In the AC-UV sterilization process, the scatter
of the OCP values was very low, at ± 20 mV. On the contrary, the lowest scatter in the Ti
samples was obtained after sterilization in EtOH, and in this case, no clear effect of the
sterilization process on OCP was observed (Figure 3c). Finally, when Ti was anodized, all
OCP values remained very constant during the whole test and lied between a range of
50 mV, independently of the sterilization process (Figure 3d).
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Figure 1. AES sputter depth profiles after correction for the electron escape depth measured on
CoCrMo samples sterilized by (a) EtOH, (b) AC and (c) AC-UV.
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Figure 3. Evolution with time of OCP values obtained every 10 min of immersion for the (a) CoCr,
(b) Ti64, (c) Ti and (d) Ti/TiO2 in the NaCl solution.

The polarization resistance, determined as the slope of the linear regression of the
potential versus the current around the potential of zero current, was obtained every 10 min.
Figure 4 shows a typical example of a polarization resistance measurement. The deviations
from linearity obtained at cathodic potentials are probably due to capacitive effects caused
by the charging of the double-layer and the passive film.

Figure 5 shows the evolution with time of the extracted Rp values every 10 min for
the Ti64 sample sterilized using different procedures. In general, all materials show very
reproducible polarization resistance values, shifting towards slightly higher values with
time.
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Figure 5. Evolution with time of Rp values determined every 10 min of immersion in the NaCl
solution for the Ti64 alloy sterilized by EtOH, AC and AC-UV.

For comparison purposes, Figure 6 shows the summary of the Rp values obtained after
60 min of immersion in the NaCl solution for all tested samples. The highest Rp values
were obtained for the anodized titanium samples followed by the pure titanium ones.
The Rp values of the CoCr and the Ti64 alloys were modified by the sterilization process.
Autoclaving and UV-light exposure increased the Rp of the CoCr, while they decreased the
Rp value for the Ti64.

Electrochemical impedance spectroscopy was carried out at the OCP measured after
60 min of immersion. Figure 7 shows some examples of Bode plots, the modulus |Z| (in
logarithmic scale) and the phase shift (both on the y-axis) as a function of the logarithm of
the frequency f, of the pure Ti obtained at the OCP established after 60 min of immersion
in NaCl after being sterilized using different processes. It constitutes the typical spectra
of passive materials with high impedance at low frequencies and a broad phase angle
maximum. Similar spectra were obtained for all tested samples.
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In those spectra, the highest frequency region shows a constant value for log|Z|
with a phase shift close to 0◦. This resistive behavior of the impedance corresponds to the
solution resistance Rs, i.e., the solution resistance between the working and the reference
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electrode. These Rs values lied around 35 Ω in all tests, in good agreement with the good
electrical conductivity of saline solutions.

At the lowest frequencies, no plateau of log|Z| values was reached. This indicates that
the time constant of the electrochemical process is low, and thus, the polarization resistance
could not be extracted from the EIS results. Therefore, the polarization resistances were
obtained from the DC measurements at OCP and the capacitance of the interface calculated
using a simple electrical model, shown in Figure 8. A constant Rs value of 35 Ω was
considered.
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This equivalent electrical circuit (EEC) consists of the electrolyte resistance Rs in
series with the parallel combination of the oxide capacitance Cox and the impedance of
the faradaic reaction, the polarization resistance. In order to consider different surface
physical phenomena, such as surface heterogeneity, which results from surface roughness,
impurities, dislocations or grain boundaries [17], instead of an ideal capacitor, a constant
phase element (Q) is used. The relationship between Q and Cox is given by Equation (1),
proposed by Brug et al. [18]:

Cox =

(
Q

R−1
s + R−1

p

) 1
n

(1)

This approach has been already used and validated by other authors for determining
the capacitance values of different passive materials [19–21].

Table 2 summarizes the fitted values of the capacitance and the OCP values at which
the EIS was carried out for all samples. Two repetitions under the same experimental
conditions are shown.

Table 2. OCP values at which EIS was carried out and capacitance of the interface (Cox) determined
by fitting the EIS data to the randles EEC of Figure 8 for the different samples.

Sample Sterilization OCP (V) Cox (µF/cm2)

CoCr

EtOH
−0.321 4
−0.305 4

AC
−0.029 1.5
−0.058 0.9

AC-UV
0 0.8

−0.235 1.5

Ti64

EtOH
−0.278 1.8
−0.009 1.8
−0.225 2.2

AC
−0.178 1.5
−0.146 1.5

AC-UV
−0.079 2
−0.085 1.8
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Table 2. Cont.

Sample Sterilization OCP (V) Cox (µF/cm2)

Ti

ETOH
0.040 3
0.057 3.1

AC
0.055 2.5
−0.059 2.5

AC-UV
−0.091 2.4
−0.008 2.7

Gamma
0.090 2.1
−0.040 2.1

Ti/TiO2

ETOH
−0.011 1
0.055 1.2
0.024 1.1

AC
0.046 1.1
0.017 1.1

AC-UV
0.030 1.2
0.045 0.9

Gamma
0.060 0.7
0.090 0.7

After the EIS measurement, cathodic polarization from the OCP towards lower po-
tential values was carried out. Figure 9 shows those cathodic polarization curves of the
studied biomaterials sterilized using different processes.
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Figure 9. Cathodic polarization curves from OCP of (a) CoCr, (b) Ti64, (c) Ti and (d) Ti/TiO2 in the
NaCl solution.
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In the CoCr alloy (Figure 9a), independent of the sterilization process, the relationship
between potential and the logarithm of the current density shows a linear relationship,
which means that the cathodic reaction (oxygen reduction) is not controlled by mass
transport, but by charge transfer. A single cathodic slope was determined to lie between 70
and 90 mV. Similar cathodic slopes were found for the Ti/TiO2 sample (Figure 9d) sterilized
using different processes at low overpotentials. However, the cathodic behavior of Ti/TiO2
shows a change in the slope towards lower values (around 50 mV) when cathodically
polarizing the metal below 0.1 V with respect to the initial OCP. Similar behavior was found
in the titanium alloy and pure titanium depending on the sterilization process. The values
of the cathodic slopes of the studied samples are summarized in Table 3.

Table 3. Kinetic parameters calculated from the potentiodynamic curves, in Figure 9, for the different
samples in the NaCl solution.

Sample βc (V/Decade) icorr (nA/cm2) i0 (µA/cm2)

CoCrEtOH 0.092 59 9.4 × 10−7

CoCrAC 0.077 50 7.1 × 10−6

CoCrACUV 0.086 20 1.4 × 10−5

CoCrACUV 0.080 25 1.7 × 10−5

Ti64EtOH 0.167/0.122 70 6.3 × 10−5

Ti64EtOH 0.225/0.163 90 3.8 × 10−4

Ti64AC 0.498/0.291 389 4.1 × 10−3

Ti64ACUV 0.610 386 6.5 × 10−3

TiETOH 0.116 11 4.9 × 10−5

TiAC 0.121 28 3.2 × 10−4

TiACUV 0.114 36 6.8 × 10−4

TiGamma 0.100/0.146 26 1.5 × 10−4

Ti/TiO2EtOH 0.075/0.052 4 1.7 × 10−8

Ti/TiO2EtOH 0.090/0.056 8 6.9 × 10−8

Ti/TiO2AC 0.100/0.070 9 1.2 × 10−6

Ti/TiO2ACUV 0.086 13 7.9 × 10−6

Ti/TiO2Gamma 0.123/0.075 6 1.7 × 10−6

4. Discussion
4.1. Oxygen Reduction Kinetics

During the sterilization procedure, a segregation process might occur or the surface
composition could be altered because of the addition or elimination of a contaminant.
Besides this, the thickness of the oxide layer might also be affected by the steps of the
sterilization procedure. As a result of the sterilization steps, changes in the surface com-
position and thickness of the oxide layer may be expected. Consequently, the sterilization
would not only be a microbe-killing process but could also produce a surface with different
characteristics. Therefore, different interaction effects between the implant surface and
body tissue (with the subsequent effect on the implantation process) could be expected
depending on the material.

Electrochemical kinetic parameters (cathodic Tafel slope, bc, corrosion current density,
icorr, and exchange current density, i0, for oxygen reduction) were extracted from the
polarization curves shown in Figure 9, and they are summarized in Table 3. The corrosion
rates, expressed as corrosion current densities, icorr, were calculated from the polarization
resistance values Rp (Figure 4) and the cathodic Tafel slope, simplifying the Butler–Volmer
equation of a mixed electrode when the anodic Tafel slope (ba) is much higher than the
cathodic one (i.e., passive materials).

icorr = βc βa (βc + βa)−1 Rp
−1 ≈ βc Rp

−1

The cathodic reaction at the measured potentials corresponds to the oxygen reduction
reaction (O2 (g) + 2H2O + 4e− 
 4OH− (aq)) and was obtained from the Tafel plots shown
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in Figure 9 and by extrapolating the current density to EO2/OH− = 0.57 VSCE (equilibrium
potential for oxygen reduction at pH 7).

4.2. Effect of Sterilization on the Electrochemical Behavior of the CoCrMo Biomedical Alloy

In CoCrMo, successive sterilization steps increases the corrosion resistance (up to an
inhibition effect of 66% in ACUV with respect to EtOH).

The effect of AC and ACUV sterilization on the CoCrMo are related to a change in
the surface chemistry. Figure 10 shows the Cr ratio with respect to the total Co and Cr
concentration as a function of the sputter depth. It is possible to observe an enrichment in
Cr in the passive film. This suggests a preferential Co dissolution during EtOH sterilization.
On the other hand, AC provokes an increase in the thickness of the passive film. This
chemical effect of sterilization on the surface is in good agreement with the OCP shifts
towards higher values in the EtOH < AC < ACUV CoCrMo samples (Figure 3). In the
figure, clearly, the main effect on the OCP was caused by the autoclaving. The autoclave
process, a heat treatment at 121 ◦C, the oxide growth rate may increase with an increase in
the diffusion coefficients caused by the temperature increase. As shown in the AES depth
profiles of Figure 1, the thicknesses of the passive layers increase with the sterilization
method from 3 nm with EtOH to 4.5 nm with AC and 4.8 nm with ACUV. Moreover, the
presence of impurities might affect the oxide growth rate by enhancing mass transport
and/or the adsorption and dissociation of oxygen at the surface.
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Considering that the anodic behavior of the CoCrMo alloy is independent of the
sterilization process (Figure 11), its electrochemical behavior can be rationalized through
the kinetics of the reduction reaction. The cathodic kinetics for oxygen reduction on the
CoCrMo surface are kinetically controlled according to the polarization curves shown
in Figure 9. Indeed, the exchange current densities for this cathodic reaction on the
sterilized CoCrMo surfaces are very low because they are dramatically inhibited by the
passive film. This inhibition is dependent on the sterilization process, and i0 is lower in
EtOH < AC < ACUV (Figure 12a). The cathodic Tafel slope is very similar in all cases,
around 0.080 V/decade, so the variation of i0 is caused by the lower OCP of the CoCrMo
after EtOH sterilization, as a consequence of the different surface chemistries (Figure 10).
However, the corrosion current densities of the CoCrMo alloy increase with the increase in
sterilization steps, EtOH > AC > ACUV (Figure 12b). In any case, corrosion current densities
are in the range of tenths of nA/cm2, typical values for passive materials. Therefore, the
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electrochemical behavior of this alloy is influenced not only by the cathodic kinetics but
also by their passivity.
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2 mV/s) of the CoCrMo alloy after different sterilization methods in the NaCl solution.
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Figure 12. (a) Exchange current densities for oxygen reduction and (b) corrosion current density on
the different sterilized samples.

4.3. Effect of Sterilization on the Electrochemical Behavior of Titanium and Titanium Alloy
Biomedical Alloy

Successive sterilization steps carried out on titanium and titanium alloys decrease the
corrosion resistance with respect to EtOH. The effect of AC and ACUV is specially marked
in the case of the Ti64 alloy, for which the corrosion rate increases one order of magnitude
compared to the corrosion rate after EtOH sterilization. This corresponds well with the
increase in the i0 for oxygen reduction (Figure 12a), thus suggesting cathodic control of the
corrosion process for titanium and its alloys. Indeed, the sterilization process can modify
up to two orders of magnitude the exchange current density for oxygen reduction. This
effect is more pronounced in the case of the anodized titanium.

Autoclaving significantly increases the oxygen reduction kinetics of titanium and
its alloys. The possible generation of defects on the titanium passive film after the heat
treatment produced during autoclaving could be the responsible for this effect, while
UV only modifies the anodized titanium to the same extent as AC. This is not surprising
since UV irradiation was reported to create oxygen vacancies due to the formation of two
coordinated bridging sites, which converts the corresponding Ti4+ sites to Ti3+ sites that
enhance the amount of absorbed dissociated water and increase the surface energy [22].
On the thin spontaneously formed passive layers (Ti and Ti64), this effect is less marked
than in the much thicker oxide formed on the anodized titanium.

5. Conclusions

The influence of different sterilization process (ethanol, autoclave, UV-light and
gamma radiation) on the corrosion resistance of CoCrMo and titanium biomedical alloys
has been assessed and the following outcomes have been obtained:

• For CoCrMo alloys, sterilization by AC and ACUV significantly modified the surface
composition (thicker and chromium rich passive film) and improved the corrosion
resistance compared to simple sterilization in EtOH. The modified surface composition
was found to inhibit the oxygen reduction reaction, thus reducing the corrosion rate.

• For titanium and titanium alloys, the sterilization has a negative impact on the cor-
rosion resistance. Indeed, the corrosion behavior was found to be controlled by the
oxygen reduction reaction rate, which is enhanced by the AC and ACUV steriliza-
tion methods. On the contrary, gamma irradiation slightly increases the corrosion
resistance of the investigated titanium and titanium alloy.
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• Sterilization methods potentially lead to different reactivities of biomedical alloys and
therefore their further biological and clinical performance.

• Further analysis in more complex simulated body fluids (i.e., containing proteins
and other organic molecules, controlled oxygen content) together with in vivo mea-
surements could be carried out to optimize the sterilization procedures allowing for
minimization of metal ion release in patients.
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