Résumé

For people with limited mobility, navigating in cluttered indoor environment is challenging. In this work, we propose a mobile assistive furniture suite that is designed to ease the life of people with special needs in indoor movement. To enable intelligent coordination of this system, a key component is the localization of each mobile furniture. The challenge is to assess the state of an arbitrary living scenario so that the estimation can be used as a real-time feedback signal for autonomous closed-loop control of mobile furniture. We propose a perception pipeline that addresses these challenges. A machine learning model is designed and trained to jointly achieve multi-object semantic keypoint detection and classification in camera images. The synthetic data generation is employed to augment the training set and boost the model performance. A robust point cloud registration uses the detected semantic keypoints and depth information to estimate poses of the furniture. Tracking is applied to achieve smooth estimation. A high-performance accelerator that optimizes the efficiency of using heterogeneous devices is applied to achieve real-time performance. This visual perception pipeline is used in closed-loop control to steer the mobile furniture from initial to a desired location demonstrated in experiments on real hardware.

Détails