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École Polytechnique Fédérale de Lausanne (EPFL)

Station 17, 1015 Lausanne, Switzerland
∗sebastian.neumayer@epfl.ch

†michael.unser@epfl.ch

Received 17 May 2022
Accepted 13 June 2023
Published 27 July 2023

The Lizorkin space is well suited to the study of operators like fractional Laplacians
and the Radon transform. In this paper, we show that the space is unfortunately not
complemented in the Schwartz space. In return, we show that it is dense in C0(Rd), a
property that is shared by the larger Schwartz space and that turns out to be useful
for applications. Based on this result, we investigate subspaces of Lizorkin distributions
that are Banach spaces and for which a continuous representation operator exists. Then,
we introduce a variational framework that involves these spaces and that makes use of
the constructed operator. By investigating two particular cases of this framework, we
are able to strengthen existing results for fractional splines and 2-layer ReLU networks.
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1. Introduction

This paper pertains to the Lizorkin space SLiz(Rd), which was first introduced in
[20] for the investigation of partial differential equations. It consists of the Schwartz
functions S(Rd) for which all moments vanish. For detailed expositions on the topic,
we refer to [26, 28]. Surprisingly, SLiz(Rd) is still rather large, its closure under the
L∞-norm being the space C0(Rd). Another attractive feature of SLiz(Rd) is that
many non-invertible operators become invertible if their domain is restricted to
SLiz(Rd), which happen with the Radon transform and with fractional Laplacians.
This makes SLiz(Rd) well suited to theoretical analyses. In the present paper, we
show that SLiz(Rd) cannot be complemented in S(Rd). In particular, continuous
projections onto SLiz(Rd) cannot exist. This result is in sharp contrast to the peri-
odic setting, where a projection actually exists.
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The corresponding dual space S′
Liz(R

d) of Lizorkin distributions [41] is fairly
large and has attracted increased interest over the past years (e.g., shearlet trans-
form [2], ridgelet transform [18], choice of activation functions in neural net-
works [33]). It is well known that S′

Liz(R
d) can be identified as the quotient space

S′(Rd)/P(Rd), where P(Rd) denotes the space of polynomials. Naturally, this leads
to a representation problem if we want to make computations explicit, an issue that
has not been addressed so far. Here, our results directly imply that no continuous
linear projector for the assignment of representatives can exist. At first glance, this
result appears to be quite discouraging as it implies that, in general, it is neces-
sary to work with equivalence classes. Fortunately, this can be circumvented if we
consider appropriate Banach subspaces of S′

Liz(R
d). Indeed, due to the density of

SLiz(Rd) in C0(Rd) and due to the Riesz theorem, the space of Radon measures is
an embedded subspace of S′

Liz(R
d) for which unique representations exist. Further,

we are able to provide a positive answer for more general cases if we restrict our-
selves to subspaces that can be equipped with a specific Banach-space structure.
In this case, we are able to provide a continuous representation operator for which
the point evaluations are weak*-continuous.

The procedure to obtain these subspaces and the representatives is as follows:
Given a well understood pair of Banach spaces (X ,X ′), we construct Banach spaces
(XT,X ′

T) through a linear homeomorphism T: S1 ⊂ X → S2 defined on some dense
subspace of X . The core advantage of our construction is that many properties carry
over directly to (XT,X ′

T); for instance, the set of the extreme points of X ′
T can be

specified easily from those of X ′. While our construction is abstract, it allows us
to make use of the fact that many (differential) operators are homeomorphisms on
SLiz(Rd) due to the density of SLiz(Rd) in X = C0(Rd). Unfortunately, the space
X ′

T usually still consists of mere equivalence classes. Therefore, as the second step,
we formulate conditions under which we can identify the elements of X ′

T using a
representation operator. These conditions are fulfilled when the Green’s function of
the operator T is sufficiently regular. Overall, this framework enables us to design
a rich class of interesting new norms for which the related Banach subspaces of
Lizorkin distributions have a continuous representation operator. This makes our
framework usable for applications.

Within the proposed setting, we study variational problems involving the con-
structed Banach spaces and the general representer theorems established in [37, 38].
The fact that our abstract formulation involves spaces whose elements are equiva-
lence classes can be circumvented by the application of our representation operator.
We investigate two special cases for which the formulations become explicit. First,
we revisit fractional splines in arbitrary dimensions, which have been investigated
before in [9, 39, 40]. These splines are a generalization of the traditional polynomial
splines [31] and preserve most of their properties. Note that (fractional) splines are
still fashionable and recently found their way into neural network research [3, 11, 24].
Although this is not included in our discussion, we may also use the model to study
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polynomial splines. Overall, our approach leads to a unifying setting that includes
a straightforward extension to the multivariate case.

As second example, we strengthen the representation results for 2-layer ReLU
networks established by Parhi and Nowak [23] and Bartolucci et al. [1], which
builds up on the univariate case investigated in [30]. The involved norm was also
studied from a theoretical point of view in [22]. While proofs in these works rely
on a general result on the existence of sparse solutions for variational problems by
Bredies and Carioni [4], we are additionally able to identify the solution set as being
the weak* closure of certain sparse solutions. Similarly to [1], our construction is
related to reproducing-kernel Banach spaces [6, 19, 42] since our representation
operator is constructed using a kernel and the point evaluations are continuous.
The key ingredient that enables us to strengthen the results of these prior works
is that we actually construct a predual space for the optimization domain, which
enables us to use our proposed variational framework.

The paper is organized as follows: The necessary preliminaries are provided in
Sec. 2. Then, we proceed with a discussion of SLiz(Rd) in Sec. 3 and show that a
continuous projection onto SLiz(Rd) cannot exist. This part is complemented with
a short discussion of the periodic case. In Sec. 4, we identify subspaces of Lizorkin
distributions for which a continuous representation operator exists. Next, we relate
these subspaces to several interesting research questions in Sec. 5. As warm-up,
we investigate the construction of periodic (fractional) splines in Sec. 5.1. Here,
no representation mechanism is necessary as we can use the projector. Then, we
introduce in Sec. 5.2 our general variational framework involving the constructed
Banach spaces, for which we detail two specific cases: The delicate case of non-
periodic (fractional) splines in Sec. 5.3; and a representer theorem for 2-layer ReLU
neural networks in Sec. 5.4. Finally, conclusions are drawn in Sec. 6.

2. Mathematical Preliminaries

In this paper, we consider functions f : Rd → C. To describe their partial deriva-
tives, we use the multi-index k = (k1, . . . , kd) ∈ Nd with the notational conventions
k! =

∏d
n=1 kn!, |k| = k1 + · · · + kd, xk =

∏d
n=1 x

kn
n for any x ∈ Rd and

∂kf(x) =
∂|k|f(x1, . . . , xd)

∂k1
x1 · · · ∂kd

xd

. (2.1)

This enables us to write the multidimensional Taylor expansion around x0 of an
analytical function f : Rd → C in compact form as

f(x) =
∞∑

n=0

∑
|k|=n

∂kf(x0)
k!

(x − x0)k. (2.2)

The Schwartz space [32] of smooth and rapidly decreasing functions ϕ : Rd → C

equipped with the usual Fréchet–Schwartz topology is denoted by S(Rd). This space
is an algebra for the multiplication as well as the convolution product. Additionally,
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it is closed under translation, differentiation and multiplication by polynomials. Its
continuous dual is the space of tempered distributions S′(Rd). Moreover, S′(Rd)
(as well as S(Rd)) is a nuclear Montel space, where a sequence in S′(Rd) con-
verges with respect to the strong dual topology if and only if it converges in the
weak* topology. Therefore, it does not actually matter which of the two topolo-
gies we choose for S′(Rd). The Montel property also implies that S(Rd) is reflexive,
which means that there exists an isomorphism between the topological vector spaces
S′′(Rd) and S(Rd). Note that the Lebesgue spaces Lp(Rd) for p ∈ [1,∞) are the
completion of the set S(Rd) under the Lp-norm ‖ · ‖Lp . For p = ∞, we have that
(S(Rd), ‖ · ‖L∞) = C0(Rd), namely, the space of continuous functions that vanish
at infinity. The dual of C0(Rd) is the space M(Rd) = {f ∈ S′(Rd) : ‖f‖M < ∞}
of bounded Radon measures with norm

‖f‖M = sup
ϕ∈S(Rd):‖ϕ‖L∞≤1

〈f, ϕ〉. (2.3)

The latter is an isometrically-embedded superset of L1(Rd), which implies that
‖f‖L1 = ‖f‖M for all f ∈ L1(Rd). We also need the weighted Lebesgue space
L∞,α(Rd), α ≥ 0, defined via the weighted norm

‖f‖∞,α := ess sup
x∈Rd

|f(x)|(1 + ‖x‖2)−α, (2.4)

which consists of functions that grow with order at most α.

The Fourier transform F : L1(Rd) → C0(Rd) of a function ϕ ∈ L1(Rd) is
defined as

ϕ̂(ω) := F{ϕ}(ω) =
1

(2π)d

∫
Rd

ϕ(x)e−j〈ω,x〉dx. (2.5)

As the Fourier transform F : S(Rd) → S(Rd) is an isomorphism, it can be extended
by duality to S′(Rd). Specifically, f̂ ∈ S′(Rd) is the (unique) generalized Fourier
transform of f ∈ S′(Rd) if and only if 〈f̂ , ϕ〉 = 〈f, ϕ̂〉 for all ϕ ∈ S(Rd). Finally, we
note that the analytic Schwartz functions form a dense subset of S(Rd), which can
be seen as follows. As the smooth and compactly supported functions D(Rd) are
dense in S(Rd), we also get that F(D(Rd)) is dense in S(Rd). Due to the Paley–
Wiener theorem, the Fourier transform of any f ∈ D(Rd) is analytic and also entire.
Hence, these functions are dense.

The simplest way to specify fractional derivatives or integrals is to describe
their action in the Fourier domain. Let us start with d = 1. The one-dimensional
fractional derivative Dα : S(R) → S′(R) of order α ≥ 0 is defined as

Dα{ϕ}(t) = F−1{(j·)αϕ̂}(t). (2.6)

For α = n ∈ N, Dn = dn

dtn coincides with the classical nth order derivative. Def-
inition (2.6) is also valid for negative orders, in which case it yields a fractional
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integral [39]. In fact, the impulse response of D−α is the Green’s function of Dα,
which is given by

ρα(t) = F−1

{
1

(j·)−α

}
(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tα−1
+

Γ(α)
, α− 1 ∈ R+\N,

sgn(t)
2

tn

n!
, α− 1 = n ∈ N.

(2.7)

Likewise, the fractional Laplacian (−Δ)α/2 of order α ∈ (1,∞) is the linear-
shift-invariant operator (LSI) whose frequency response is ‖ω‖α. Its inverse is the
fractional integrator (−Δ)−α/2, which corresponds to a frequency-domain multipli-
cation by ‖ω‖−α. Fractional derivatives and Laplacians are part of the same family
of operators (isotropic LSI and scale-invariant) with their distributional impulse
response for α > d being given by

kα,d(x) = F−1

{
1

‖ · ‖α

}
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−Δ)−n{δ}, α/2 = n ∈ N

Bn,d‖x‖2n log(‖x‖), α− d = 2n ∈ 2N

Aα,d‖x‖α−d, α− d /∈ 2N

(2.8)

with constants Ad,α = Γ((d−α)/2)
2απd/2Γ(α/2)

and Bd,n = (−1)1+n

22n+d−1πd/2Γ(n+d/2)n!
. For a more

detailed exposition on the topic, we refer to [13, 29, 34].

3. Lizorkin Spaces

The Lizorkin space SLiz(Rd) is the closed subspace of S(Rd) that consists of the
functions whose moments of any order k are zero, so that

SLiz(Rd) =
{
ϕ ∈ S(Rd) :

∫
Rd

xkϕ(x)dx = 0, ∀k ∈ Nd

}
. (3.1)

A nice overview with properties of SLiz(Rd) is given in [36]. Equivalently, we can
describe these functions in the Fourier domain through

ŜLiz(Rd) = F(SLiz(Rd)) = {ψ ∈ S(Rd) : ∂kψ(0) = 0 ∀k ∈ Nd}. (3.2)

Although closed subspaces of reflexive topological vector spaces are in general not
reflexive, this property holds for Fréchet spaces. Hence, the spaces SLiz(Rd) and
ŜLiz(Rd) are reflexive. Further, we have for all ϕ ∈ SLiz(Rd), x0 ∈ Rd and a ∈ R that
ϕ(·−x0) ∈ SLiz(Rd) and ϕ(·/a) ∈ SLiz(Rd). Finally, we note that SLiz(Rd)∩D(Rd) =
{0}. Indeed, if ϕ ∈ D(Rd), then ϕ̂ is entire and hence equal to its Maclaurin
expansion. But if ϕ ∈ SLiz(Rd), then the Taylor series of ϕ̂ is 0.

We are going to show that SLiz(Rd) cannot be complemented in S(Rd); in other
words, a continuous projector PLiz : S(Rd) → SLiz(Rd) cannot exist. Before we prove
this negative result, we first discuss the easier case of periodic Lizorkin functions,
for which a continuous projection actually exists.
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3.1. Periodic Lizorkin spaces

The functions of interest are T -periodic and typically specified only over their main
period T = [0, T ]. The corresponding space of test functions is S(T) = C∞

perio(T),
which is in one-to-one correspondence with the Fréchet space of rapidly decaying
sequencesa S(Z) via the Fourier homeomorphism [10, 35]. More precisely, there are
Fourier coefficients ϕ̂[·] ∈ S(Z) such that

ϕ(t) =
∑
n∈Z

ϕ̂[n]ejnω0t ∈ S(T) (3.3)

with ω0 = 2π
T . This expansion of ϕ is unique and ϕ̂[n] = 〈ϕ, e−jnω0·〉T, where

〈f, g〉T = 1
T

∫
T
f(t)g(t)dt. The continuous dual of S(T) is the space of periodic

distributions S′(T) = S′
perio(R), which is itself homeomorphic to the space S′(Z)

of slowly growing sequences. Indeed, it holds f ∈ S′(T) ⇔ f̂ [·] ∈ S′(Z), where f̂ [n]
denotes the nth Fourier coefficient of f .

To ensure invertibility of the continuous fractional-derivative operator
Dα : S(T) → S(T) given by

Dα{ϕ}(t) =
∑
n∈Z

(jω0n)αϕ̂[n]ejnω0t, (3.4)

we restrict ourselves to the subspace

S0(T) = {ϕ ∈ S(T) : 〈1, ϕ〉T = 0}, (3.5)

which inherits the nuclear topology from S(T). While (3.5) imposes a restriction
only on the mean value of ϕ, the resulting space S0(T) is the proper periodic
counterpart of the SLiz(R), since the only periodic polynomials are constants. The
periodic setting is simple, in that S0(T) is 1-complemented in S(T) with S(T) =
S0(T) ⊕ P0 and

P0 = {b0 · 1 : b0 ∈ R} ⊂ S(T). (3.6)

Correspondingly, we introduce the continuous projection P0 : S(T) → S0(T) with

P0{φ} = ϕ− 〈1, ϕ〉T1. (3.7)

As S0(T) = P0(S(T)), its dual is S′
0(T) = P∗

0(S′(T)) with S′(T) = S′
0(T) ⊕ P0.

Here, we can identify P ′
0 = P0 because the space is spanned by 1 ∈ S(T) ⊂ S′(T)

with 〈1, 1〉T = 1. The latter property also implies that P∗
0 = P0, which makes the

projection (3.7) also applicable to periodic distributions.
As the space P0 of constant polynomials is indeed the null space of Dα : S(T) →

S(T) with α > 0, we can restrict Dα to a homeomorphism Dα : S0(T) → S0(T)
for any α ∈ R. By duality, the same holds true on S′

0(T) with the Fourier-domain

aThis space is denoted by “s” in [14]. It is the discrete analog of the Schwartz space S(R).
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definition (3.4) of Dα being applicable to periodic distributions as well. In particular,
the fractional integrator D−α : S′

0(T) → S′
0(T) of order α ≥ 0 is given by

D−α{f}(t) =
∑

n∈Z\{0}

1
(jnω0)α

f̂ [n]ejnω0t. (3.8)

3.2. Nonexistence of a continuous projector

PLiz : S(Rd) → SLiz(Rd)

To prove the nonexistence of a continuous linear projection onto the Lizorkin space
SLiz(Rd), we first show that the closed set P(Rd) is not complemented in S′(Rd).

Theorem 3.1. There exists no topological complement of P(Rd) in S′(Rd).

Proof. Assume there is a complement. In other words, assume that a continuous
projector P: S′(Rd) → P(Rd) ⊂ S′(Rd) exists. We consider δ̂x0 ∈ S′(Rd), x0 ∈ Rd,
and set px0 := P{δ̂x0} ∈ P(Rd). Using relations such as

lim
t→0

δtek
− δ

t
= −∇ek

δ (3.9)

and similar ones for higher-order derivatives, we observe that P(Rd) ⊂
span{δ̂x0}‖x0‖≤1, where all equalities are in the sense of distributions. Since P is a
continuous projection onto P(Rd), this implies that

P(Rd) ⊂ span{px0}‖x0‖≤1. (3.10)

In the sequel, we show that the polynomials px0 with ‖x0‖2 ≤ 1 have a common
maximum degree m, which results in the contradiction that P(Rd) ⊂ Pm(Rd).

If no common maximum exists, then there is a sequence {hn}n∈N ∈ Rd with
‖hn‖2 ≤ 1 such that {phn}n∈N is a sequence of polynomials with unbounded degree.
By passing to a subsequence, we can assume that hn → h for some h ∈ Rd with
‖h‖ ≤ 1. Due to the continuity of P and F , we also have that p̂hn → p̂h in the
sense of distributions. Setting phn =

∑mn

j=0 aj,nx
j with mn → ∞ and amn,n �= 0,

this can be written as

p̂hn =
mn∑
j=0

(−2πj)jaj,n
∂j

∂ξj
δ0 → p̂h. (3.11)

Dropping again to a subsequence, we assume that mn is monotonically increasing.
Using Borel’s theorem, we then pick ϕ ∈ S(Rd) with ∂mn

∂ξmn ϕ(0) = (amn,n)−1Cn,
where Cn is chosen such that∣∣∣∣∣∣

mn∑
j=0

(−2πj)jaj,n
∂j

∂ξj
ϕ(0)

∣∣∣∣∣∣ ≥ n. (3.12)

Hence, p̂hn(ϕ) → ∞, which contradicts that p̂hn → p̂h ∈ S′(Rd). Consequently, all
ph with ‖h‖ ≤ 1 have a common maximum degree m.
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Remark 3.1. Theorem 3.1 implies that there is no continuous linear projection
P: S′(Rd) → S′(Rd) with kerP = P(Rd). Otherwise, we would have that (Id − P)
is a continuous projector onto P(Rd). In particular, representatives of Lizorkin
distributions cannot be assigned in a continuous linear way.

Now, the desired nonexistence result follows immediately.

Corollary 3.1. There exists no topological complement of SLiz(Rd) in S(Rd).

Proof. On the contrary, let us assume that a continuous linear projection
PLiz : S(Rd) → SLiz(Rd) exists. Then, the adjoint map P∗

Liz : S′(Rd) → S′(Rd)
is a projection as well. Due to the fact that

〈P∗
Liz{f}, ϕ〉 = 〈f,PLiz{ϕ}〉 (3.13)

for all f ∈ S′(Rd) and ϕ ∈ S(Rd), its null space is given by kerP∗
Liz = P(Rd). Hence,

(Id − P∗
Liz) would be a projection onto P(Rd), which contradicts Theorem 3.1.

3.3. Closure of the Lizorkin space

Despite the negative finding of Sec. 3.2, we are nevertheless able to provide a result
that is useful for applications.

Theorem 3.2. It holds that (SLiz(Rd), ‖ · ‖∞) = C0(Rd).

We note that the result was already mentioned in [27], but without a proof.

Proof. Using the function ϕ̃0 : Rd → R with ϕ̃0(x) = exp(−1/(1−(2‖x‖)2))/nd (nd

is the normalizing constant) for ‖x‖ < 1/2 and zero else, we define ϕ0 : Rd → [0, 1]
via ϕ(x) = (χB1(0)∗ϕ̃0)(2x) with χB1(0) being the characteristic function of the unit
ball. This function is smooth, symmetric, and satisfies that ϕ(x) = 1 for |x| ≤ 1/4
and ϕ(x) = 0 for |x| ≥ 3/4. Based on this function, we define

φn =
xn

n!
ϕ0 ∈ S(Rd), n ∈ Nd (3.14)

and set

E2 = span{φn : n ∈ Nd} ⊂ S(Rd). (3.15)

Next, we observe that (φ̂n − t−|n|−dφ̂n(·/t)) → φ̂n ∈ C0(Rd) as t → ∞, where the
sequences have all moments equal to zero. Hence, we have that

Ê2 ∈ (SLiz(Rd), ‖ · ‖∞). (3.16)

To conclude the argument, we show that ŜLiz(Rd) + E2 contains the entire
Schwartz functions, so that its closure under the Schwartz topology is already the
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complete space S(Rd). Then, the same holds true for SLiz(Rd) + Ê2 and conse-
quently, we get that

(SLiz(Rd), ‖ · ‖∞) = (SLiz(Rd) + Ê2, ‖ · ‖∞) = (S(Rd), ‖ · ‖∞) = C0(Rd). (3.17)

The Taylor series of any entire function f converges absolutely for any x ∈ Rd. It
then holds that

g = fϕ0 =
∑
n∈Nd

∂nf(0)φn ∈ S(Rd). (3.18)

Hence, we get that (f − g) ∈ ŜLiz(Rd). It remains to show that g ∈ E2 or, equiva-
lently, that

gj =
∑

n∈Nd,|n|<j

∂nf(0)φn → g (3.19)

in the Schwartz topology. For any α,k ∈ Nd, it holds that

‖xα∂k(g − gj)‖∞ ≤ sup
|x|≤3/4

|xα|
∑

n∈Nd,|n|≥j

∣∣∣∣∂nf(0)
n!

∂k(xnϕ0(x))
∣∣∣∣

≤ sup
|x|≤3/4

∑
n∈Nd,|n|≥j

|∂nf(0)|
∑

k1≤k,n

(
k
k1

) |xn−k1 |
(n − k1)!

|∂k−k1ϕ0(x)|

≤ C
∑

n∈Nd,|n|≥j

|∂nf(0)|
∑

k1≤k,n

(
k
k1

)
1

(n − k1)!

≤ C
∑

n∈Nd,|n|≥j

|∂nf(0)|n
k

n!
. (3.20)

The last expression converges to zero as j → ∞ if

1 < lim sup
j→∞

⎛⎝ ∑
|n|=j

|∂nf(0)|
n!

j|k|

⎞⎠− 1
j

. (3.21)

However, it holds that lim supj→∞ j
1
j = 1 and hence, the claim follows since the

Taylor expansion converges absolutely for any x ∈ Rd.

By duality, Theorem 3.2 implies that the Radon measures M(Rd) are continu-
ously embedded into the space S′

Liz(R
d) of Lizorkin distributions.

Remark 3.2. In [27], it was shown that the same results hold for Lp(Rd) with
1 ≤ p <∞.
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4. Banach Subspaces of Lizorkin Distributions

In contrast to the periodic case, the space S′
Liz(R

d) is an abstract space of equiva-
lence classes, which means that the assignment of representatives for computational
purposes is difficult. Therefore, we want to restrict our attention to subspaces with
more structure. As our proposed framework is also applicable for other spaces, we
outline it in full generality and explicitly provide the specifications for SLiz(Rd) as
discussion.

Let S1, S2 be two topological vector spaces with a linear homeomorphism
T: S1 → S2 and let T∗ : S′

2 → S′
1 be defined via duality. The simplest choice

for the construction of Banach subspaces of S′
Liz(R

d) is S1 = S2 = SLiz(Rd), but
variations of this setting are clearly possible. In the Lizorkin setting, a possible
choice of operator is the fractional Laplacian T = (−Δ)α, which is discussed as first
example in Sec. 4.1. Now, let (X ,X ′) be a dual pair of Banach spaces whose norm
‖ · ‖X is continuous with respect to the topology of S1 such that

(S1, ‖ · ‖X
)

= X .
For S1 = SLiz(Rd), we have seen in Sec. 3.3 that X = Lp(Rd), p ∈ [1,∞) and
X = C0(Rd) are admissible choices, as their norms are indeed compatible with the
Schwartz topology. The density enables us to write that

‖f‖X ′ = sup
ϕ∈X :‖ϕ‖X≤1

〈f, ϕ〉 = sup
ϕ∈S1:‖ϕ‖X≤1

〈f, ϕ〉 (4.1)

for any f ∈ X ′. Given any f ∈ S′
1 for which (4.1) is finite, the bounded linear trans-

formation (BLT) theorem implies that there exists a unique continuous extension
to some element in X ′. Conversely, any f ∈ X ′ defines a unique element in S′

1 via
restriction due to the compatibility of the norm and the topology.

In this setting, we define the abstract space

X ′
T =

{
f ∈ S′

2 : ‖T∗{f}‖X ′ <∞}
=

{
T−∗{g} ∈ S′

2 : g ∈ X ′}, (4.2)

which is a Banach space if equipped with the norm ‖ · ‖X ′
T

:= ‖T∗{·}‖X ′. In par-
ticular, by choosing S2 = SLiz(Rd), we can construct a subspace of S′

Liz(R
d) and

equip it with a Banach-space structure. The norm of X ′
T can be rewritten in dual

form as

‖f‖X ′
T

= sup
ϕ∈S1:‖ϕ‖X≤1

〈T∗{f}, ϕ〉 = sup
ϕ∈S2:‖T−1{ϕ}‖X≤1

〈T∗{f},T−1{ϕ}〉

= sup
ϕ∈S2:‖T−1{ϕ}‖X≤1

〈f,TT−1{ϕ}〉 = sup
ϕ∈S2:‖T−1{ϕ}‖X≤1

〈f, ϕ〉. (4.3)

Consequently, from the BLT theorem again, any f ∈ X ′
T can be extended to a

continuous functional with domain

XT = (S2, ‖T−1{·}‖X ), (4.4)

which is identified as a predual of X ′
T since T−1 is continuous. Likewise the operator

T−1 can be extended to a continuous and surjective operator T−1 : XT → X . Now,
it holds that 〈f, ϕ〉 = 〈g,T−1{ϕ}〉 for any f = T−∗{g} and ϕ ∈ XT. Hence, the
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weak* convergence of a sequence fn = T−∗{gn} to f = T−∗{g} is equivalent to the
weak* convergence of gn to g.

Let us now discuss in more detail the case S1 = S2 = SLiz(Rd). To simplify the
notation, we stick to X = C0(Rd), but the same argumentation applies to Lp(Rd).
For the remainder of this section, we use the more specific notations

S′
Liz,T(Rd) = {T−∗{μ} ∈ S′

Liz(R
d) : μ ∈ M(Rd)} (4.5)

and SLiz,T(Rd) for the dual and for the predual, respectively. At first glance, the
search for representatives for S′

Liz,T(Rd) is as difficult as before because we are still
dealing with elements in S′

Liz(R
d). To resolve this issue, let us assume that there

exist continuous elements ρT,y = T−∗{δ(· − y)} ∈ C(Rd) in each equivalence class.
Then, we conclude, for any f = T−∗{μ} ∈ S′

Liz,T(Rd) and ϕ ∈ SLiz(Rd), that

〈T−∗{μ}, ϕ〉 = 〈μ,T−1{ϕ}〉 =
∫

Rd

T−1{ϕ}(y)dμ(y) =
∫

Rd

〈T−∗{δ(· − y)}, ϕ〉dμ(y)

=
∫

Rd

∫
Rd

(ρT,y(x) − py(x))ϕ(x)dxdμ(y), (4.6)

where the polynomials py(x) ∈ P(Rd) are added to ensure the following properties:
First, the kernel h(x,y) = ρT,y(x)− py(x) must be bi-continuous and bounded for
some g ∈ L∞,α(Rd), α ≥ 0, and every y ∈ Rd by

|h(x,y)| ≤ g(‖x‖). (4.7)

Second, we require that h(x,y) → 0 for a given x ∈ Rd and ‖y‖ → ∞. Using
Fubini’s theorem and the growth control, we can then identify the distribution
T−∗{μ} ∈ S′

Liz(R
d) as the continuous function f(x) =

∫
Rd ρT,y(x) − py(x)dμ(y).

Due to the growth bound, this function corresponds to a unique distribution in
S′(Rd). We collect these observations together with a few properties in Theorem 4.1.

Theorem 4.1. Assume that the Schwartz kernel h(x,y) = ρT,y(x) − py(x) is bi-
continuous and bounded for every y ∈ Rd as

|h(x,y)| ≤ g(‖x‖) (4.8)

for some g ∈ L∞,α(Rd), α ≥ 0. Then, any element f = T−∗{μ} ∈ S′
Liz,T(Rd) can

be identified as the continuous function

f(x) =
∫

Rd

ρT,y(x) − py(x)dμ(y) (4.9)

with bounded growth so that |f(x)| ≤ |μ|(Rd)g(‖x‖). In particular, we get that the
operator PLiz,T : S′

Liz,T(Rd) → L∞,α(Rd) ↪→ S′(Rd) with T−∗{μ} �→ f assigning the
representatives is linear and continuous. Moreover, if h(x, ·) ∈ C0(Rd) for every x ∈
Rd, then the point evaluations for the representatives are in the predual SLiz,T(Rd).

Proof. We have already shown that f is indeed a representative. The growth bound
and the continuity of PLiz,T follow immediately from the bound on h(x,y).
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Next, we show that point evaluations are weak*-continuous. Let fn = T−∗{μn}
be a weak*-convergent sequence with limit f = T−∗{μ}, in the sense that μn con-
verges weakly to μ as a measure. Due to the requirement that e(x, ·) ∈ C0(Rd), we
directly get that the evaluation functionals are weak*-continuous. To conclude the
argument, we recall that the only weak*-continuous linear functionals on S′

Liz,T(Rd)
are the elements of SLiz,T(Rd), see [25, Theorem IV.20].

While this construction does not cover all Lizorkin distributions, we discuss
two interesting examples, which will then be used in Sec. 5.2 to revisit representer
theorems for certain problems.

Remark 4.1. The same argumentations and constructions can be applied if S1

consists of even or odd (hyper-spherical) Lizorkin functions. This setting is actually
required for one of our examples.

4.1. Example 1: Fractional Laplacians

Here, we choose the spaces as S1 = S2 = SLiz(Rd) and X = C0(Rd) with T
being the fractional Laplacian described in Sec. 2, which is self-adjoint. Specifi-
cally, (−Δ)α : SLiz(Rd) → SLiz(Rd) for any α ∈ R with (−Δ)−α(−Δ)α = Id on
SLiz(Rd). First, we note that the required density result was already established in
Theorem 3.2. According to these choices, X ′

T is given by

Mα(Rd) = {(−Δ)−α/2μ ∈ S′
Liz(R

d) : μ ∈ M(Rd)}, (4.10)

with predual space Cα(Rd) = (SLiz(Rd), ‖(−Δ)−α/2 · ‖L∞).
By Theorem 4.1, we can get a representation operator for α > d and

(α − d) /∈ N. Indeed, let ρLiz,α = (−Δ)−α/2{δ} ∈ Mα(Rd) with a contin-
uous representation given by (2.8). Using this representation, we obtain that
ρLiz,α(· − xk) = (−Δ)−α/2{δ(· − xk)}. Now, we have to show that there exist
polynomials py(x) ∈ P(Rd) such that the kernel h(x,y) = ρLiz,α(x − y) − py(x)
fulfills the requirements. Based on (2.8), we construct for y �= 0 the polyno-
mial p̃y(x) = T�α−d−1
{ρLiz,α(· − y)}(x) with T�α−d−1
 the Maclaurin expan-
sion of order �α − d − 1� around 0. For this function, we can bound the kernel
h̃(x,y) = ρLiz,α(x − y) − p̃y(x) by

|h̃(x,y)| ≤ C‖x‖�α−d
 sup
t∈[0,1],|k|=�α−d


‖∂kρLiz,α(tx − y)‖2. (4.11)

For any fixed x ∈ Rd, we then use our estimates from Proposition A.1 in the
appendix to conclude that |h̃(x,y)| ≤ C‖x‖α−d if ‖y‖ ≥ ‖x‖ + 1 and ẽ(x, ·) ∈
C0(Rd) for every x ∈ Rd. Next, apply a smooth function χ : R → R with χ(t) = 0 if
|t| ≤ 1 and χ(t) = 1 if |t| ≥ 2 to define a bi-continuous (both in x and y) function
x �→ py(x) = χ(‖y‖)p̃y(x) ∈ P(Rd). Now, we can bound the kernel h(x,y) using
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the bound for h̃(x,y) by

|h(x,y)| ≤ max
{

max
‖y‖≤‖x‖+2

{ρLiz,α(x − y) + |py(x)|}, C‖x‖α−d

}
≤ C(‖x‖ + 2)α−d, (4.12)

where we used Proposition A.1 to produce the estimate

max
‖y‖≤‖x‖+2

|py(x)| ≤ max
‖y‖≤‖x‖+2

∑
|k|≤�α−d−1


1
k!
|∂kρLiz,α(−y)|‖x‖|k|

≤ C(‖x‖ + 2)α−d. (4.13)

Finally, we apply Theorem 4.1 to obtain the desired representations. The results of
this section are summarized in the following corollary.

Corollary 4.1. Let α>d with (α−d) /∈N. Then, there exists a continuous represen-
tation operator PLiz,α : Mα(Rd)→L∞,α−d(Rd)⊂S′(Rd) with (−Δ)−α/2{μ} �→ f .
Further, the point evaluations for these representatives are in the predual Cα(Rd).

4.2. Example 2: Radon domain splines

In this example, we work with certain hyper-spherical counterparts of SLiz(Rd)
as described in Sec. 2. More specifically, the Euclidean indexing with x ∈ Rd is
replaced by (t, ξ) ∈ R × Sd−1 and we distinguish between even and odd functions.
We express this distinction with an index m ∈ N, which simplifies the notation. We
define

SLiz,m(R × Sd−1)

=
{
ϕ ∈ Sm(R × Sd−1) :

∫
R×Sd−1

ϕ(t, ξ)p(t)dtdξ = 0 ∀ p ∈ P(R)
}
, (4.14)

where dξ stands for the surface element on the unit sphere Sd−1. Here, the space
Sm(R × Sd−1) is defined as the even functions in S(R × Sd−1) if m is even and the
odd ones otherwise. Correspondingly, an element g ∈ S′

Liz,m(R × Sd−1) is a contin-
uous linear functional on SLiz,m(R × Sd−1) whose action on the test function φ is
represented by the duality product 〈g, φ〉Rad. If g can be identified with a function
g : R × Sd−1 → R, then

〈g, φ〉Rad =
∫

Sd−1

∫
R

g(t, ξ)φ(t, ξ)dtdξ. (4.15)

The evaluation functional on SLiz(R × Sd−1) is δz0 = δ(· − t0)δ(· − ξ0) with z0 =
(t0, ξ0) ∈ R × Sd−1. A brief overview for properties of the Radon transform R
and its filtered version KradR related to these spaces is given in Appendix B. In
particular, it holds that both R and KradR are homeomorphisms. Next, we briefly
review Lizorkin ridges, which play a key role for the construction of representatives.
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Lizorkin Ridges The 1D profile (or ridge) along the direction ξ0 ∈ Rd associated
to r ∈ S′

Liz(R) is the distribution rξ0
∈ S′

Liz(R
d) that satisfies

∀ϕ ∈ SLiz(Rd) : 〈rξ0
, ϕ〉 = 〈r,R{ϕ}(·, ξ0)〉. (4.16)

The most basic ridge is δ(ξT
0 · −t0) := rξ0

with r = δ(· − t0). It is a Dirac ridge
along ξ0 with offset t0. Since the Fourier transform of such ridges is localized along
the ray {ω = ωξ0 : ω ∈ R}, the Radon transform of a ridge must vanish away from
±ξ0. This is generalized and formalized as follows.

Proposition 4.1 (Radon Transform of Lizorkin Ridges). Let (t0, ξ0) = z0 ∈
R × Sd−1 and r ∈ S′

Liz(R). Then,

KradR{δ(ξT
0 · −t0)} = Peven{δz0} ∈ S′

Liz(R × Sd−1), (4.17)

R{δ(ξT
0 ·)} = Peven{qdδ(· − ξ0)} ∈ S′

Liz(R × Sd−1), (4.18)

KradR{r(ξT
0 ·)} = Peven{rδ(· − ξ0)} ∈ S′

Liz(R × Sd−1), (4.19)

R{r(ξT
0 ·)} = Peven{(qd ∗ r)δ(· − ξ0)} ∈ S′

Liz(R × Sd−1), (4.20)

where qd(t) = 2(2π)d−1F−1{1/| · |d−1}(t) is the 1D impulse response of the Radon-
domain inverse filtering operator K−1

rad. Here, (4.17) can be identified as an even
measure.

Proof. For any ϕ ∈ SLiz,0(R×Sd−1), it holds that RR∗Krad{ϕ} = ϕ and therefore,
also that

〈KradR{rξ0
}, ϕ〉 = 〈rξ0

,R∗Krad{ϕ}〉 = 〈r,RR∗Krad{ϕ}(·, ξ0)〉 = 〈r, ϕ(·, ξ0)〉,
(4.21)

from which (4.17) and (4.19) do follow. In a similar way, we obtain, for any ϕ ∈
SLiz,0(R × Sd−1), that

〈R{rξ0
}, ϕ〉 = 〈r,RR∗{ϕ}(·, ξ0)〉 = 〈r,K−1

rad{ϕ}(·, ξ0)〉, (4.22)

from which (4.18) and (4.20) do follow as K−1
rad{ϕ}(t, ξ0) = (qd ∗ ϕ(·, ξ0))(t).

An equivalent form of (4.17) in Proposition 4.1 is

δ(ξT
0 · −t0) = R∗Peven{δz0}(x), (4.23)

which results from R∗KradR = Id on S′
Liz(R

d). Note that the other identities can
be rewritten in a similar form, too.

Construction of Radon Splines In this example, we choose the spaces for con-
structing the Banach subspaces as S1 = SLiz,m(R × Sd−1), S2 = SLiz(Rd) and
X = C0,m(Rd), where C0,m(Rd) consists of even or odd continuous functions,
respectively, that vanish at infinity. Next, recall that the derivative ∂m

t : SLiz,m(R×
Sd−1) → SLiz,0(R × Sd−1) is self-adjoint and a homeomorphism. Its inverse
can be constructed by iterating ∂−1

t {ϕ}(t, ξ) =
∫ ∞

t
ϕ(r, ξ)dr. Then, we choose
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T =R∗Krad∂
m
t such that the dual T∗ = ∂m

t KradR is the concatenation of the filtered
projection KradR: S′

Liz(R
d) → S′

Liz,0(R × Sd−1) with the partial derivative ∂m
t . To

begin, we show the required density result for the construction of the spaces related
to Theorem 4.1, which also applies in this hyper-spherical setting, as pointed out
in Remark 4.1.

Lemma 4.1. It holds that

(SLiz,m(Rd), ‖ · ‖∞) = C0,m(Rd) =

⎧⎨⎩C0,even(Rd) if m is even,

C0,odd(Rd) if m is odd.
(4.24)

Proof. By the Stone–Weierstrass theorem and the continuity of the projection
onto even or odd functions, respectively, we first get that C0,m(R) × C(Sd−1) =
C0,m(Rd). Then, we conclude from Theorem 3.2 that SLiz,m(R) × C∞(Sd−1) ⊂
SLiz,m(R × Sd−1) is dense in C0,m(Rd).

According to these choices, our Banach space X ′
T with smoothness exponent m

is given by

MRad,m(Rd) = {R∗∂−m
t {μ} ∈ S′

Liz(R
d) : μ ∈ Mm(Rd)} (4.25)

with predual CRad,m(Rd) = (SLiz(Rd), ‖∂−m
t R{·}‖L∞). Now, we show that Theo-

rem 4.1 can be applied for m ≥ 2 to get continuous representations of elements in
MRad,m(Rd). Define

ρRad,m(x) = max(0, x)m−1/(m− 1)!. (4.26)

Then, as shown in Proposition 4.1, ρRad,m(〈·, ξ0〉− t0) with z0 = (t0, ξ0) ∈ R×Sd−1

is an element of the equivalence class
1
2
R∗Peven{ρRad,m(· − t0)δ(· − ξ0)} =

1
2
R∗∂−m

t {δz0 ± δ−z0} ∈ MRad,m(Rd),

(4.27)

where the sign depends on m. Now, we have to show that there are polynomials
pt,ξ ∈ P(Rd) such that the kernel h(x, z) = ρRad,m(〈x, ξ〉−t)−pt,ξ(x) with z = (t, ξ)
fulfills the requirements. As m is a natural number, no Taylor expansion is necessary
and we can provide the correcting family of polynomials directly. More precisely,
we set

pt,ξ = max{0,min{−t, 1}}(〈·, ξ〉 − t)m−1/(m− 1)! ∈ P(Rd), (4.28)

which ensures that (ρRad,m(〈x, ·〉 − ·) − p{·}(x)) ∈ C0(R × Sd−1) together with

‖ρRad,m(〈x, ·〉 − ·) − p{·}(x)‖∞ ≤ C‖x‖m−1. (4.29)

Hence, we can apply Theorem 4.1 to obtain explicit representations.

Corollary 4.2. Let m ≥ 2. Then, there exists a continuous representation operator
PRad,m : MRad,m(Rd) → L∞,m−1(Rd) ⊂ S′(Rd) with R∗∂−m

t {μ} �→ f . Further, the
point evaluations for these representatives are in the predual CRad,m(Rd).
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5. Variational Problems that Involve Lizorkin Spaces

As warm-up, we first revisit periodic (fractional) splines [9]. For variational prob-
lems in which the regularization favors such functions, we can use the projec-
tion (3.7) to get representations. Note that our approach is applicable to a very
broad class of problems; namely, whenever a continuous projection and a suit-
able extension are available. By contrast, after this warm-up example, we study
variational problems where no projection onto the involved spaces is available.
There, we focus on problems that involve our previously constructed Banach sub-
spaces, which usually only consist of equivalence classes. This makes the situa-
tion much more delicate than before and the use of a representation operator
is necessary. Based on this operator, we are able to obtain similar results as
before.

5.1. Periodic fractional splines

We use our tools to derive a representer theorem that is an alternative to the
one in [9]. To this end, we need the space C(T) = (S(T), ‖ · ‖L∞) of continuous,
T -periodic functions. Its topological dual M(T) (namely, the space of T -periodic
Radon measures) can be specified as

M(T) = {f ∈ S′(T) : ‖f‖M <∞} with ‖f‖M := sup
φ∈S(T):‖φ‖L∞≤1

〈f, φ〉. (5.1)

Since the projection (3.7) continuously extends to these spaces, we have the decom-
position C(T) = C0(T) ⊕ P0 with C0(T) = P0(C(T)). The final ingredient are the
sampling functionals in M0(T) = C0(T)′ � M(T)/P0, where we use P∗

0 to identify
representations.

Theorem 5.1 (Periodic Lizorkin Sampling Functionals). The Lizorkin sam-
pling functionals δ0(· − t0) = P∗

0{δperio(· − t0)} ∈ M0(T) with t0 ∈ T have the
following properties :

(1) Explicit representation: δ0(· − t0) = δperio(· − t0) − 1.
(2) Sampling at t0 : 〈δ0(· − t0), φ〉 = φ(t0) for all φ ∈ C0(T).
(3) Zero mean: 〈δ0(· − t0), 1〉 = 0 for all t0 ∈ R.
(4) It holds that ‖δ0(· − t0)‖M0 = 1 for any t0 ∈ T.
(5) For finite sets {tk} ⊂ T of distinct points, it holds ‖∑k akδ0(· − tk)‖M0 =∑

k |ak|.
(6) If ek ∈ ExtB(M0(T)), then ek = ±δ0(· − tk) for some tk ∈ T.

Proof. The first 3 items follow directly by construction. Now, we prove item 4. For
any (f, φ) ∈ M(T) × C0(T), it holds that

〈P∗
0{f}, φ〉 = 〈f,P0{φ}〉 = 〈f, φ〉. (5.2)
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In particular, 〈δ0(· − t0), φ〉 = 〈δperio(· − t0), φ〉. By definition of the dual norm, we
have that

‖δ0(· − t0)‖M0 = sup
φ∈C0(T):‖φ‖L∞≤1

〈δ0(· − t0), φ〉 = sup
φ∈C0(T):‖φ‖L∞≤1

〈δperio(· − t0), φ〉

≤ sup
φ∈C(T):‖φ‖L∞≤1

〈δperio(· − t0), φ〉 = ‖δperio(· − t0)‖M = 1. (5.3)

Next, we show that this bound is sharp by fixing 0 < ε < T/2 and choosing the
test function

φε,perio(· − t0) =
∑
n∈Z

ϕ0

( · + nT − t0
ε

)
, (5.4)

where ϕ0 : R → [−1, 1] is continuous with ϕ0(0) = 1,
∫

R
ϕ0(t)dt = 0 and supp(ϕ0) ⊂

[−1, 1]. Then, the statement follows from φε,perio(t0) = 1 and ‖φε,perio‖L∞ ≤ 1.
Similarly, for item 5, we first observe that the triangle inequality leads to

sup
φ∈C0(T):‖φ‖L∞≤1

〈∑
k

akδ0(· − tk), φ

〉
=

∥∥∥∥∥∑
k

akδ0(· − tk)

∥∥∥∥∥
M0

≤
∑

k

|ak|. (5.5)

Since the tk are distinct, there exists ε > 0 with |tk − tk′ | > 2ε for all k′ �= k.
Then, we take the critical function φcrit(t) =

∑
k sgn(ak)φε,perio(t − tk) satisfying

‖φcrit‖L∞ = 1, which saturates the bound.
Due to M0(T) � M(T)/P0, it holds that P∗

0B(M(T)) = B(M0(T)). By [4,
Lemma 3.2], we then get that ExtB(M0(T)) ⊂ P∗

0ExtB(M(T)). Since the extreme
points of B(M(T)) are {±δ(· − t)}t∈T, the last claim readily follows.

Now, we are able to formulate the approximation problem. Given a series of (pos-
sibly noisy) data points (ym, tm) ∈ R × T, m = 1, . . . ,M , we consider the task of
reconstructing a periodic function f : T → R such that f(t1) ≈ y1, . . . , f(tM ) ≈ yM

without overfitting. Since this problem is inherently ill-posed, we put a penalty on
‖Dα{f}‖M0 in order to favor solutions with “sparse” αth derivatives. The corre-
sponding native space is

Mα(T) = {f ∈ S′(T) : ‖Dα{f}‖M0 <∞}
= {D−α{w} + p0 : (w, p0) ∈ M0(T) × P0}. (5.6)

In particular, this means that Mα(T) = U ′ ⊕ P0 with U ′ = D−α(M0(T)), which
is isomorphic to M0(T)×P0. The basic atoms for the representation of minimum-
norm interpolators in U ′ are the extreme points ek of the unit ball BU ′(1). Due to
the isometry between U ′ and M0(T), we have that ExtBU ′(1) = D−α(ExtBM0(1)),
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which in light of items 1 and 6 in Theorem 5.1 yields that

ek = D−α{δ0(· − tk)} = ρperio,α(· − tk), (5.7)

where

ρperio,α(t) = D−α{δ0}(t) =
∑

n∈Z\{0}

1
(jnω0)α

ejnω0t. (5.8)

The latter formula is obtained from (3.8) by using that δ̂0[n] = δ̂[n] for n �= 0.
The resulting Fourier series (5.8) converges to a continuous function for α > 1. The
functions ρperio,α are the building blocks of the (non-periodic) fractional splines of
degree α−1. Now, the direct application of the third case of [38, Theorem 3] yields
the following.

Theorem 5.2 (Minimum-Energy Periodic Spline Reconstruction). Let
E : R × R → R be a strictly convex loss function and λ > 0 some regularization
parameter. Then, for any given data points (ym, tm) ∈ R × T,m = 1, . . . ,M, the
solution set of the functional-approximation problem with α > 1,

S = arg min
f∈Mα(T)

M∑
m=1

E(ym, f(tm)) + λ‖Dαf‖M0 (5.9)

is nonempty and weak*-compact. It is the weak* closure of the convex hull of its
extreme points, which are all of the form

fExt(t) = b0 +
K0∑
k=1

akρperio,α(t− τk) (5.10)

for some K0 ≤ M − 1, weights and knots (ak, τk) ∈ R × R, k = 1, . . . ,K0, and the
periodic basis function ρperio,α : R → R specified by (5.8).

Proof. First, we identify the (unique) predual space Cα
0 (T) = U ⊕ P0 such that

Mα(T) = U ′ ⊕ P ′
0. By the injectivity of Dα∗ on C0(T) = (S0(R), ‖ · ‖L∞) and by

setting U = Dα∗(C0(T)), we readily verify that U ′ = D−α(M0(T)). This allows us
to identify the predual space as

Cα
0 (T) = U ⊕ P0 = {Dα∗{v} + p0 : (v, p0) ∈ C0(T) × P0}, (5.11)

which is a Banach space isomorphic to C0(T) × P0 as expected. The technical
prerequisite for applying [38, Theorem 3] is the weak*-continuity of the sampling
functionals δ(·− tm), which is equivalent to δ(·− tm) ∈ Cα

0 (T). To this end, we have
that

D−α∗{δ(· − tm) − 1} = ρperio,α(tm − ·) (5.12)

with the latter function being included in C0(T) if and only if α > 1 or, equivalently,
when the Fourier coefficients in (5.8) are in �1(Z).
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Remark 5.1. Functions of the form (5.10) are fractional splines if and only if∑K0
k=1 ak = 0, see [9, Proposition 3]. To ensure this, we can add the constraint

〈f, ejω0·〉T = 0 in Theorem 5.2, which again leads to extreme points of the form
(5.10) with K0 ≤M . Since ‖Dαf‖M ≥ ‖Dαf‖M0 with equality holding for extreme
points, this modified version of Theorem 5.2 remains true if we replace ‖Dαf‖M0

in (5.9) by ‖Dαf‖M. Plots of the fractional splines ρperio,α − ρperio,α(· − T
2 ) for

different α are given in [9, Fig. 1].

Remark 5.2 (Numerical Approach). To find f , we can overparameterize it
with knots τk chosen over a fine uniform grid. The respective weights are then
recovered by solving a discrete penalized basis pursuit problem using state-of-
the-art proximal algorithms [7, 15] or Bregman methods [5]. While conceptually
simple, this is computationally expensive since the underlying grid needs to have
much more knots than M − 1. More advanced meshfree approaches for directly
recovering the positions τk can be developed using, for example, the Franck–Wolfe
algorithm [8, 12].

5.2. A general variational problem framework

In this section, we first state a general variational problem framework that
involves the constructed Banach spaces and shares some similarities with the
approach presented in Sec. 5.1, but for which no projector is available. Here, the
derived representation operator from Theorem 4.1 makes the framework explicit,
again with the advantage that we can rely on the general abstract machin-
ery for the derivation of theoretical results. We then treat several useful special
cases related with the Banach subspaces of S′

Liz(R
d) introduced as examples in

Sec. 4.
By construction, we immediately deduce that the extreme points of the unit

ball in X ′
T are given by ẽk = T−∗{ek} ∈ X ′

T, where ek are the extreme points of the
unit ball in X ′. Now, we are able to formulate a variational problem that involves
our constructed Banach spaces and provide a representer theorem for the structure
of the solutions.

Theorem 5.3 (Representer Theorem [38]). Let the linear operator ν : X ′
T →

RM be given by f �→ (〈ν1, f〉, . . . , 〈νM , f〉) with νi ∈ XT being linearly independent.
Further, let E : RM × RM → R+ ∪ {+∞} be proper, lower-semicontinuous and
convex and let ψ : R+ → R+ be strictly increasing and convex. Then, for any fixed
y ∈ RM , the solution set S of the generic optimization problem

arg min
f∈X ′

T

E(y, ν{f}) + ψ(‖f‖X ′
T
) (5.13)

is nonempty, convex and weak*-compact. If, additionally, E is strictly convex or
if it imposes the equality constraint y = ν{f}, then S is the weak* closure of the
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convex hull of its extreme points, which can all be expressed as

f0 =
K0∑
k=1

ckT−∗{ek} (5.14)

with K0 ≤M and ck ∈ R.

Remark 5.3. The result can be slightly strengthened if X ′ is strictly convex, see
[38] for details.

As illustration, we briefly derive two corollaries from Theorem 5.3. They are
based on the two Banach subspaces of S′

Liz(R
d) introduced in Sec. 4.

5.3. Fractional splines

Here, we extend our investigations in Sec. 5.1 to non-periodic splines using Theo-
rem 5.3 and the discussion from Sec. 4.1, which is summarized in Corollary 4.1. Since
the point evaluations are in the predual, the application of Theorem 5.3, together
with the explicit representation of elements in Mα(Rd), yields the following.

Corollary 5.1 (Minimum-Energy Lizorkin Splines). Let E : R × R → R be
a strictly convex loss function, let (xm, ym) ∈ Rd × R,m = 1, . . . ,M, be a set of
data points, and let λ > 0 be some regularization parameter. Then, for α > d and
α− d /∈ N, the solution set S of the functional optimization problem

argmin
f∈Mα(Rd)

M∑
m=1

E(ym, PLiz,α{f}(xm)) + λ‖(−Δ)α/2{f}‖M (5.15)

is nonempty and weak*-compact. It is the weak* closure of the convex hull of its
extreme points, which are all of the form

fExt = PLiz,α

{
K0∑
k=1

ak(−Δ)α/2{δ(· − xk)}
}

=
K0∑
k=1

ak(ρLiz,α(· − xk) − pxk
)

(5.16)

for some K0 ≤M, expansion parameters (weights and adaptive centers) (ak,xk) ∈
R × Rd for k = 1, . . . ,K0, pxk

∈ P�α−d−1
(Rd), and the radial basis function
ρLiz,α : Rd → R from Sec. 4.1.

Remark 5.4. Starting from the chosen representative, we could replace
PLiz,α{f}(xm) with PLiz,α{f}(xm) + p(xm), where p ∈ P�α−d�(Rd), which would
result in a minimization over L∞,α−d(Rd). Hence, we are back to a more classical
setting and a similar result holds, see [38, Theorem 3]. Proving the weak*-continuity
of the evaluation functional in this extended setting follows along the lines of the
Lizorkin-distribution setting.
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5.4. Radon splines

The native Banach space for interpolation with Radon splines, given some orderm ∈
N, is the space MRad,m(Rd) introduced in Sec. 4.2. Due to the form of the function
ρRad,m, this interpolation problem is closely related to approximations with 2-layer
neural networks as pointed out in [1, 23]. Since the point evaluations are in the
predual, the application of Theorem 5.3, together with the explicit representation
of elements in MRad,m(Rd) obtained in Corollary 4.2, yields the following.

Theorem 5.4 (Minimum-Energy Radon Splines). Let E : R × R → R be a
strictly convex loss function, let (xi, yi) ∈ Rd × R, i = 1, . . . ,M, be a set of data
points, and let λ > 0 be some regularization parameter. For m ∈ N,m ≥ 2, the
solution set S of the functional optimization problem

arg min
f∈MRad,m(Rd)

M∑
i=1

E(yi, PRad,m{f}(xi)) + λ‖∂m
t KradR{f}‖Mm (5.17)

is nonempty and weak*-compact. It is the weak* closure of the convex hull of its
extreme points, which are all of the form

fExt = PRad,m

{
K0∑
k=1

akR∗∂−m
t {δ(· − xk)}

}
=

K0∑
k=1

ak(ρRad,m(〈ξk, ·〉 − tk) − ptk,ξk
)

(5.18)

for some K0 ≤ M , expansion parameters (weights and adaptive centers)
(ak, tk, ξk) ∈ R × R × Sd−1 for k = 1, . . . ,K0, ptk,wk

∈ Pm−1(Rd), and the Radon
radial-basis function ρRad,m : R → R defined by (4.26).

Remark 5.5. Starting from the chosen representative, we can also add the
minimization over Pm−1(Rd) to the problem and replace PRad,m{f}(xm) with
PRad,m{f}(xm) + p(xm), where p ∈ Pm−1(Rd), which results in a minimization
over L∞,m−1(Rd). As this rules out the dependence on the representation oper-
ator PRad,m, we are back in a classical setting and a similar result holds (with
K0 ≤M−m), see [38, Theorem 3]. Further, we can also evaluate ‖∂m

t KradR{f}‖Mm

in the sense of S′(Rd) since Pm−1(Rd) ⊂ ker ∂m
t KradR. Compared to previous

results in the literature [1, 23], this leads to a stronger characterization of the solu-
tion set S together with a nice and elegant proof.

6. Conclusions

We have shown that continuous projections onto the Lizorkin space cannot exist.
Therefore, we had to resort to projection-free approaches to find representatives of
Lizorkin distributions. Using the property that the space is dense in C0(Rd), we
have established a framework for finding representatives of distributions that lie in
certain Banach subspaces. To do so, we only require representations of the related
Green functions with sufficient regularity. Based on the obtained representation
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operator, we have introduced a powerful variational framework for the study of a
wide class of inverse problems. In particular, this enabled us to strengthen results
obtained in prior works. As future work, we want to apply our framework to the
study of other subspaces and related variational models.

Acknowledgments

The research leading to these results has received funding from the European
Research Council (ERC) under European Unions Horizon 2020 (H2020), Grant
Agreement - Project No 101020573 FunLearn. Further, the authors want to thank
Joachim Krieger and Marc Troyanov for fruitful discussions on the topic and in
particular, Joachim Krieger for providing us with a proof of the nonexistence of
projections.

Appendix A. Fundamental Solutions of the Fractional Laplacian

Given α ∈ R and d ∈ N with α > d and α− d /∈ N, we want to provide an estimate
of the asymptotic behavior of fα,d : Rd → R with fα,d(x) = ‖x‖α−d and of its
derivatives. For this purpose, we need the following lemma.

Lemma A.1. For any k ∈ Nd, it holds that ∂k‖ · ‖ = pk/‖ · ‖−1+2|k| for some
polynomial p ∈ P(Rd) of order at most |k|.

Proof. We proceed by induction. For k = 0 the result is obviously true. Assume
that the claim holds for any k ∈ Nd with |k| ≤ n and let k ∈ Nd with |k| = n+1. For
simplicity of notation, we assume that the derivative with respect to x1 is included
and define k̃ = k − e1. The induction assumption implies that

∂k‖x‖ = ∂xk
∂k̃‖x‖ = ∂xk

pk̃(x)

‖x‖−1+2|k̃| =
∂xk

pk̃(x)‖x‖−1+2|k̃| − pk̃(x)xk‖x‖−3+2|k̃|

‖x‖−2+4|k̃|

=
pk(x)‖x‖−3+2|k̃|

‖x‖−2+4|k̃| =
pk(x)

‖x‖−1+2|k| , (A.1)

which concludes the proof.

Lemma A.1 is going to let us prove the actual result.

Proposition A.1. For any k ∈ Nd with |k| ≤ �α − d� and x �= 0, it holds that
|∂kfα,d(x)| ≤ C‖x‖α−d−|k|.

Proof. We proceed inductively over �α− d�. For �α− d� = 1, Lemma A.1 implies
that

|∂xk
fα,d(x)| = |(α− d− 1)fα−1,d(x)∂xk

‖x‖| ≤ C‖x‖α−d−1. (A.2)

If k = 0, there is nothing to show. Assume now that the results holds for �α−d� = n

and let α, d be such that �α−d� = n+1. Like in the proof of Lemma A.1, we assume
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again that the derivative with respect to x1 is included and define k̃ = k−e1. Then,
using the Leibniz rule, we provide the estimate

|∂kfα,d(x)| = |∂k̃∂x1fα,d(x)|
≤ C

∣∣∂k̃(fα−1,d(x)∂x1‖x‖)| ≤ C
∑
i<k̃

|∂k̃−ifα−1,d(x)∂i+e1‖x‖∣∣
≤ C

∑
i<k̃

‖x‖α−1−d−|k̃−i|‖x‖−|i| ≤ C‖x‖α−d−|k|, (A.3)

which concludes the proof.

Appendix B. Radon Transform

Here, we recall some important properties of the Radon transform, for which an
extensive overview is given in [17]. The Radon transform is first described for
Lizorkin functions and then extended to distributions by duality.

Classical Integral Formulation The Radon transform of f ∈ L1(Rd) is defined as

R{f}(t, ξ) =
∫

Rd

δ(t− ξTx)f(x)dx, (t, ξ) ∈ R × Sd−1. (B.1)

Its adjoint is the back-projection R∗, whose action on g : R×Sd−1 → R is defined as

R∗{g}(x) =
∫

Sd−1
g(ξTx︸︷︷︸

t

, ξ)dξ, x ∈ Rd. (B.2)

Given the Fourier transform f̂ := F{f} of f ∈ L1(Rd), we can calculate R{f}(·, ξ0)
at given ξ0 ∈ Sd−1 through the relation

R{f}(t, ξ0) =
1
2π

∫
R

f̂(ωξ0)e
jωtdω = F−1{f̂(·ξ0)}(t), (B.3)

a property that is referred to as the Fourier-slice theorem. The key property for
analysis purposes is that the Radon transform is continuous and invertible if the
spaces are chosen properly, see [16, 17, 21] for details.

Theorem B.1 (Continuity and Invertibility of the Radon Transform on
SLiz(Rd)). The Radon operators R: SLiz(Rd) → SLiz,0(R×Sd−1) and R∗ : SLiz,0(R×
Sd−1) → SLiz(Rd) are bijective and continuous. Moreover, R∗KradR = KR∗R =
R∗RK = Id on SLiz(Rd) and KradRR∗ = Id on SLiz,0(R × Sd−1), where K =
(R∗R)−1 = cd(−Δ)(d−1)/2 with cd = (2(2π)d−1)−1 is the so-called “filtering” oper-
ator and where Krad is an one-dimensional radial counterpart that acts along the
Radon-domain variable t. These filtering operators are characterized by their fre-
quency response K̂(ω) = cd‖ω‖d−1 and K̂rad(ω) = cd|ω|d−1.

As evidenced in (2.8), the impulse response of the filtering operator K in Theo-
rem B.1 is proportional to k−d+1,d, which tells us that it asymptotically decays like
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1/‖x‖2d−1 when d is even, or is a power of the Laplacian (local operator) otherwise.
Further, we note that Theorem B.1 implies that R is actually a homeomorphism.

Distributional Extension This framework is extended to distributions by duality.

Definition B.1. The distribution g = R{f} ∈ S′
Liz,0(R × Sd−1) is the Radon

transform of f ∈ S′
Liz(R

d) if

∀φ ∈ SLiz,0(R × Sd−1) : 〈g, φ〉Rad = 〈f,R∗{φ}〉. (B.4)

Likewise, g̃ = KR{f} ∈ S′
Liz,0(R×Sd−1) is the filtered projection of f ∈ S′

Liz(R
d) if

∀φ ∈ SLiz,0(R × Sd−1) : 〈g̃, φ〉Rad = 〈f,R∗Krad{φ}〉. (B.5)

Finally, the backprojection f = R∗{g} ∈ S′
Liz(R

d) of g ∈ S′
Liz,0(R×Sd−1) is defined

via

∀ϕ ∈ SLiz(Rd) : 〈R∗{g}, ϕ〉 = 〈g,R{ϕ}〉Rad. (B.6)

Due to duality, the distributional extension of the Radon transform inherits
most of the properties of the “classical” operator defined by (B.1).

Theorem B.2 (Invertibility of the Radon Transform on S′
Liz(R

d)). It holds
that R∗KradR = KR∗R = Id on S′

Liz(R
d). Hence, the “filtered-projection” operator

KradR: S′
Liz(R

d) → S′
Liz,0(R

d) is a homeomorphism with inverse R∗ : S′
Liz,0(R

d) →
S′

Liz(R
d).

The Fourier-slice theorem expressed by (B.3) yields a unique (Fourier-based)
characterization of R{f}. It remains valid for tempered distributions whose gen-
eralized Fourier transforms can be identified as continuous functions of ω. It is
especially helpful when the underlying function or distribution is isotropic.

An isotropic function ρiso : Rd → R is characterized by its radial profile
ρ : R≥0 → R, so that ρiso(x) = ρ(‖x‖). The frequency-domain counterpart of this
characterization is ρ̂iso(ω) = ρ̂rad(‖ω‖) with radial frequency profile

ρ̂rad(ω) =
(2π)d/2

|ω|d/2−1

∫ +∞

0

ρ(t)td/2−1Jd/2−1(ωt)tdt, (B.7)

where Jν is the Bessel function of the first kind of order ν. In Proposition B.1, we
characterize isotropic Lizorkin functions.

Proposition B.1. Let ϕiso ∈ S(Rd) be an isotropic test function. Then, ϕiso ∈
SLiz(Rd) if and only if ϕrad(t) = R{ϕiso}(t, ξ) ∈ SLiz(R).

Proof. Since ϕiso is isotropic, for any k ∈ Nd, we have that

ck = 〈xk, ϕiso〉 = j|k|∂kϕ̂iso(0) = jkDk{ϕ̂rad}(0) = ck with k = |k|. (B.8)

The last equality also implies that ck =
∫

R
ϕrad(t)tkdt, where ϕrad =

F−1{ϕ̂rad}(·, ξ) = R{ϕ}(·, ξ) is the radial profile (by the Fourier-slice theorem).
This shows that, indeed,

ϕrad ∈ SLiz(R) ⇔ ϕiso ∈ SLiz(Rd). (B.9)
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Finally, we provide a result on how to compute the Radon transform of isotropic
Lizorkin distributions.

Proposition B.2 (Radon Transform of Isotropic Distributions). Let ρiso be
an isotropic distribution whose radial frequency profile is ρ̂rad(ω). Then,

R{ρiso(· − x0)}(t, ξ) = ρrad(t− ξTx0), (B.10)

KradR{ρiso(· − x0)}(t, ξ} = ρ̃rad(t− ξTx0), (B.11)

R{∂mρiso}(t, ξ) = ξmD|m|{ρrad}(t) (B.12)

with ρrad(t) = F−1{ρ̂rad}(t) and ρ̃rad(t) = 1
2(2π)d−1F−1{| · |d−1ρ̂rad}(t).

Proof. These identities are all direct consequences of the Fourier-slice theorem.
For instance, by setting ω = ωξ in the Fourier transform of ∂mρiso, we get that

∂̂mρiso(ωξ) = (jωξ)mρ̂rad(ω) = ξm(jω)|m|ρ̂rad(ω), (B.13)

which, upon taking the inverse 1D Fourier transform, yields (B.12).

Appendix C. Extreme Points

First, we recall the definition of extreme points.

Definition C.1 (Extreme Points). Let C be a convex set in a Banach space X .
The extreme points of C are the points x ∈ C such that if there exist x1, x2 ∈ C

and θ ∈ (0, 1) with x = θx1 + (1− θ)x2, then it necessarily holds that x1 = x2. The
set of extreme points is denoted by Ext(C).

Proposition C.1 (Isometric Projections and Extreme Points). Let U be a
closed subspace of the Banach space (X , ‖ ·‖X ) with some corresponding continuous
projection ProjU : X → U . Then, the following hold :

(1) The unit ball in the Banach space U = ProjU(X ) satisfies

BU (1) ⊆ ProjU (BX (1)) ⊆ BU (‖ProjU‖), (C.1)

where BU (r) = {x ∈ U : ‖u‖U ≤ r} and ‖ProjU‖ is the norm of the underlying
projector. Consequently, BU(1) = ProjU(BX (1)) if and only if ‖ProjU‖ = 1.

(2) Let Ẽ = {ProjU{e} : e ∈ Ext(BX (1))}\{0}. If ‖ProjU‖ = 1 and all ẽ ∈ Ẽ sat-
isfy ‖ẽ‖X = 1, then BU (1) is the closed convex hull of Ẽ so that Ext(BU (1))⊆ Ẽ.

Proof. For the first statement, note that the unit ball in U is BU (1) = BX (1)∩U .
In particular, u = ProjU{u} and ‖u‖X ≤ 1 for any u ∈ BU (1), which implies that
BU(1) ⊆ ProjU (BX (1)). Next, we recall that the norm of ProjU : X → U is given by

‖ProjU‖ = sup
x∈X\{0}

‖ProjU{x}‖X
‖x‖X . (C.2)

Therefore, any x ∈ BX (1) satisfies ‖ProjU{x}‖X ≤ ‖ProjU‖ ‖x‖X ≤ ‖ProjU‖, which
implies that ProjU (BX (1)) ⊆ BU (‖ProjU‖).
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The Krein–Milman theorem ensures that BX (1) is the closed convex hull of its
extreme points ek ∈ E = Ext(BX (1)), namely, BX (1) = cchE. Due to ‖ProjU‖ =
1, it holds that BU (1) = ProjU(BX (1)). Further, as BU (1) is convex, each u =
ProjU (

∑K
k=1 θkek) =

∑K
k=1 θkẽk with θk ≥ 0,

∑K
k=1 θk = 1 and ek ∈ E lies in

BU (1). In other words, the convex hull of the ek maps onto the convex hull of
the ẽk = ProjUek with ch{ẽk} ⊆ BU (1). Since ProjU is continuous and BX (1) is
closed, the argument carries over to limits as well. Hence, it holds that BU(1) =
ProjU (cchE) = cch(ProjU (E)) = cch(Ẽ).

Example C.1. The projector Projeven : S(Rd) → Seven(Rd) onto the even
Schwartz functions is given by

Projeven{f}(x) =
f(x) + f(−x)

2
. (C.3)

By duality, we define Projeven : S′(Rd) → S′
even(Rd). The extreme points of M(Rd)

are (δ(· − τ))τ∈Rd . Since

‖Projeven{δ(· − τ)}‖M =
∥∥∥∥1

2
δ(· + τ) +

1
2
δ(· − τ)

∥∥∥∥
M

= 1 (C.4)

for all τ ∈ Rd, the extreme points of Meven(Rd) are of the form 1
2δ(·+τ)+ 1

2δ(·−τ)
with τ ∈ Rd.
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