
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023 1

Inverse Reinforcement Learning of Pedestrian–robot
Coordination

David Gonon1 and Aude Billard1

Abstract—We apply inverse reinforcement learning (IRL) with
a novel cost feature to the problem of robot navigation in human
crowds. Consistent with prior empirical work on pedestrian
behavior, the feature anticipates collisions between agents. We
efficiently learn cost functions in continuous space from high-
dimensional examples of public crowd motion data, assuming
locally optimal examples. We evaluate the accuracy and predic-
tive power of the learned models on test examples that we attempt
to reproduce by optimizing the learned cost functions. We show
that the predictions of our models outperform a recent related
approach from the literature.

The learned cost functions are incorporated into an optimal
controller for a robotic wheelchair. We evaluate its performance
in qualitative experiments where it autonomously travels between
pedestrians, which it perceives through an on-board tracking
system. The results show that our approach often generates
appropriate motion plans that efficiently complement the pedes-
trians’ motions.

Index Terms—Human-Aware Motion Planning; Learning from
Demonstration; Path Planning for Multiple Mobile Robots or
Agents

I. INTRODUCTION

AUTONOMOUS navigation in pedestrian areas has been
an active area of research due to applications in smart

wheelchairs or delivery robots. In order to navigate smoothly
and safely in human crowds, robots need to consider how
their own actions affect surrounding humans and reason about
the individual costs and benefits of each involved agent. We
propose to use a collective cost function that describes how
desirable a particular combination of individual trajectories
is from the collective point of view of all agents involved.
We apply Inverse Reinforcement Learning (IRL) to capture
important characteristics of human navigation from empirical
data.

We assume a single objective function, whose features
depend on each agent, similar to recent approaches [1]–[3]
to IRL of multi-agent navigation. Similarly, techniques for
crowd modeling and simulation [4], [5] optimize a single
cost function over all agents’ actions. Such formulations are
appealing, as they allow to model agents’ reciprocal actions,
i.e. actions that complement each other.

Traditional IRL assumes that observations are globally op-
timal, causing their computational cost to scale exponentially

Manuscript received: December 14, 2022; Revised May 16, 2023; Accepted
June 7, 2023.

This paper was recommended for publication by Editor Gentiane Venture
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the Hasler Foundation, Switzerland.

1David Gonon and Aude Billard are with the School of Engineer-
ing, EPFL, CH-1015 Lausanne, Switzerland david.gonon@epfl.ch;
aude.billard@epfl.ch

Digital Object Identifier (DOI): see top of this page.

with the number of state dimensions. However, a more recent
approach [6] overcomes this curse of dimensionality (as shown
in [6]) by assuming that examples are only locally optimal.
We argue that this framework is particularly well suited to
modeling human crowds, since they may evolve in multiple
qualitatively different ways with similar probabilities. For
example, a pedestrian may pass another pedestrian on the left
or on the right side, while trajectories in between the two
alternatives should be costly because they lead to a collision.
Thus, the two alternatives can be described as local optima
which are separated by trajectories with higher costs.

Despite the availability of promising algorithms, the design
of appropriate features for the problem of multi-agent naviga-
tion IRL remains a challenging and critical step in achieving a
cost function that generalizes in a meaningful way and proves
useful in real-world situations. Common features to account
for collisions include f = d−2 [2] and f = exp(−d2/σ2/2)
[3], where d denotes the distance between agents’ centers. As
both features are only position-dependent, they do not reflect
how human walkers avoid collisions, namely by anticipating
and regulating the minimum predicted distance dmp [7] (cf.
Fig. 1-a).

Prior empirical work [4] derived an anticipatory interaction
potential E, defined as

E := ητ−2 exp(τ/τo), (1)

where τ denotes the time to collision of two given agents,
τo=3 s is a time horizon, and η=1 s2 may be set arbitrarily.
Note that E drops discontinuously to zero when approaching
agents change their velocities to avoid each other.

We propose a novel feature Ẽ that smoothly approximates
E (cf. Fig. 1-c), as required by the framework for continuous
IRL [6]. We train two models incorporating Ẽ on real crowd
data. Our quantitative evaluation demonstrates more accurate
and smoother predictions of pedestrians’ trajectories compared
to a state-of-the-art alternative [2]. Further, we qualitatively
evaluate our approach’s performance at controlling a mobile
robot navigating in a real crowd.

II. RELATED WORK

Several previous works have used IRL to learn navigation
in crowds. Some works [8]–[12] use discrete state and action
spaces. These approaches operate on grids over the entire state
space, and thus, they cannot easily incorporate multiple agents
due to exponentially increasing computational cost. Instead,
they typically consider pedestrians as exogenous inputs which
affect the cost/reward features only. While such an approach
may yield sensible behavior, it cannot produce a model which

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3289770

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023

Fig. 1. (a) Two agents A and B are shown at exemplary positions. The
cone of colliding relative velocities V O∞ is constructed as a function of
their relative position and their combined radius R. The minimum predicted
distance dmp and the free relative path length D for an exemplary relative
velocity v are also shown. (b) The agents’ interaction energy E is shown as
a function of their relative velocity v. (c) The approximate interaction energy
Ẽ of the agents is smooth at the edge of V O∞, in contrast to E.

reasons about interactions between agents, since the behavior
of other agents is treated as a given input to the model.

In contrast, the works [1], [2], [6], [13] have adapted the
popular Maximum Entropy (MaxEnt) IRL [14] method to
continuous state and action spaces. In the works on continuous
spaces, trajectories are either parametrized by the control
actions at each discrete time point [3] or as splines [1],
[2], [13]. For dealing with the high dimensionality of the
space of possible multi-agent trajectories, [3] resort to a local
approximation [6] of the exponential policy for MaxEnt IRL,
similar to our work. In contrast, [1], [2], [13] simplify the
policy by discretizing it into topological variants (who passes
on which side of who) and/or use computationally expensive
Monte Carlo techniques.

III. METHOD

A. System Model

For a system comprising n agents, let pi,vi,ai ∈ R2

denote the position, velocity, and acceleration of the i-th agent,
respectively, where i ∈ {1, 2, . . . n}. Let the system’s state

x :=
[
pT
1 pT

2 . . . pT
n vT

1 vT
2 . . . vT

n

]T
(2)

contain all positions and velocities. The system’s action

u :=
[
aT
1 aT

2 . . . aT
n

]T
(3)

is defined by all accelerations, on the other hand.
The system’s transition from one state x(k) to another state

x(k+1), under an action u(k+1) over a time step of duration
h, is described by the linear dynamic system

x(k+1) = Ax(k) +Bu(k+1), (4)

A :=

[
I hI
0 I

]
, B :=

[
(h2/2)I
hI

]
,

where I ∈ R2n×2n denotes the identity matrix. The above
dynamic model (4) corresponds to applying constant acceler-
ations over a duration h.

A state–action trajectory S := (X ,U , T) is defined by a
state sequence X :=

{
x(k)

}K

k=0
and an action sequence U :={

u(k)
}K

k=1
satisfying the dynamic model (4) for 0 ≤ k < K

with a uniform time step h, and by a time sequence T :={
t(k)

}K

k=0
, where each t(k) denotes the time at which the state

x(k) is attained, and t(k+1) − t(k) = h,∀k.

B. Framework for Inverse Reinforcement Learning

We assume that there is a scalar cost function J (X ,U)
which reflects the collective objectives of the multi-agent
system under consideration, e.g. navigating efficiently and
without any collision. For a given cost function J and an initial
state xo, we model the system’s behavior over K+1 uniform
time steps as a local optimum of the optimal control problem

min
X ,U

J (X ,U) (5)

s.t. x(k) = Ax(k−1) +Bu(k), k = 1, . . .K

x(0) = xo.

Given a set E := {Sl}Ll=1 of L examples Sl (multi-agent
trajectories) recorded from a human crowd, we aim at inferring
a meaningful cost function J , such that the examples Sl are
approximated by local optima of (5) with J .

We aim at linear estimation of J in the form

J(X ,U ;w) :=

K∑
k=1

wTf
(
x(k),u(k)

)
, (6)

where the feature vector f(x,u) ∈ Rq is specified a priori
to describe quantities of interest, and where w ∈ Rq is the
unknown vector of the features’ weights. We use a linear
technique as we hypothesize that our features describe non-
interacting cost components. In the original maximum entropy
(MaxEnt) framework [14], the weights are learned by maxi-
mizing the examples’ likelihood under a policy which assigns

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3289770

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

GONON et al.: INVERSE REINFORCEMENT LEARNING OF PEDESTRIAN–ROBOT COORDINATION 3

a probability density to an action sequence in proportion to
the exponential of its reward (i.e. negative cost). We adopt the
framework [6], where this policy is approximated as a Gaus-
sian in U around the examples, thereby relaxing the original
MaxEnt framework’s assumption of their global optimality to
only local optimality.

C. Cost Features for Cooperative Navigation

For simplicity, we use only four features, which we consider
as the most essential ones for multi-agent navigation, describ-
ing individual effort and goal-directed motion, and pairwise
distance and anticipatory collision avoidance, respectively.
Individual features are of the form f := (1/n)

∑n
i=1 fi, where

the fi denote agents’ individual contributions, and pairwise
features are of the form f := (1/n)

∑n
i=1

∑n
j=i+1 fij , where

the fij denote agents’ pairwise contributions.
1) Individual feature contributions: An agent’s effort can

be described by the feature contribution

f
(a2)
i = |ai|2/2 (7)

where ai denotes the agent’s acceleration. Alternatively, let

f
(a1)
i = |ai|+ (log(1 + exp(−2λ|ai|))− log(2)) /λ (8)

define a feature contribution smoothly approximating |ai|,
where λ > 0 controls the function’s sharpness at the origin.

An agent’s deviation from its desired motion is described
by the feature contribution

f
(v)
i = |vi − v̆i|2/2 (9)

where vi and v̆i denote the agent’s actual and desired velocity,
respectively.

2) Pairwise feature contributions: For a pair of agents with
respective indices i and j, let pij := pi − pj and vij :=
vi−vj denote their relative position and velocity, respectively.
We employ a simple pairwise feature contribution commonly
found in related work, namely a gaussian function of both
agents’ distance [3]

f (c)
ij = exp

(
−|pij |2/(2σ2)

)
, (10)

where σ > 0 denotes the activation radius.
Additionally, we define the pairwise feature contribution

f (e)
ij := Ẽ (pij ,vij) := η g(z (pij ,vij))/τ̃

2 (pij ,vij) (11)

to smoothly approximate the interaction potential (1), with τ̃
approximating τ . The sigmoid g(z) := (1+exp (−sz))−1 with
s > 0 is activated for v ∈ V O∞, since z is defined as

z :=− pTv −
|p|2|v|√
|p|2 +R2

= |p| |v| (cos(ψ)− cos(ψc)) ,

with ψ := ∠(−p,v), and ψc denoting half the opening angle
of the cone V O∞ (cf. Fig. 1-a), omitting the subscripts ij for
brevity. Thus, z = 0 holds when the relative velocity is at the
edge of V O∞, which becomes the activation threshold.

Let τ̃ := D̃/|v|, where D̃ approximates the distance D that
the relative position p can travel along the relative velocity v

Fig. 2. Showing original tracks from the dataset DIAMOR (black) and the
corresponding fit trajectories (red).

before entering the disk of radius R centered at the origin (cf.
Fig. 1-a). We define D̃2 as

D̃2 :=ε1 + (|p| −R)
(
|p| −R+ 2d2mp/R

)
(12)

d2mp :=|p|2 −
(
pTv

)2
|v|2 + ε2

(13)

where ε2 > 0 prevents division by zero, and dmp≥0 denotes
the minimum predicted distance (cf. Fig. 1-a). Disregarding
ε1, it holds D̃2=D2, for ψ=0 or ψ=ψc. We set ε1:=0.22R2 to
ensure that D̃2>0 always holds. To see this for the only non-
trivial case |p|<R, we replace d2mp in (12) by its upper bound
|p|2 and analyze the resulting cubic function of |p|, to find
that its minimum on 0 < |p| < ∞ is positive. The Fig. 1-c
shows the resulting approximation for the same configuration
as for Fig. 1-b, where we set s=10 and ε2=0.01 m2/s2.

3) Feature vectors and normalization: We define

f(a2) :=
[
f (a2) f (v) f (c) f (e)

]T
, (14)

f(a1) :=
[
f (a1) f (v) f (c) f (e)

]T
, (15)

as two alternative feature vectors, which differ only in the
first feature f (a2) or f (a1), which sum accelerations’ squares or
smooth magnitudes, respectively.

We normalize features and weights to reveal their relative
importance. Let f̃(E) := P E

80 {f} define the normalizer for
any feature f as its 80-th percentile over a sample set E .
Then, for any feature f and the respective weight w, we define
the corresponding normalized feature as ϕ := f/f̃ and the
corresponding normalized weight as θ := wf̃ , such that the
corresponding term of the cost function can be written equally
as wf = θϕ.

IV. LEARNING EXPERIMENTS
We apply our IRL approach to real-world multi-agent

trajectory data from the public datasets DIAMOR [15] and
ETH [16]. Using f(a2) and f(a1) as feature vectors, we
learn two respective cost functions J(a2) and J(a1), which
model multiple agents’ navigation choices, and we evaluate
their accuracy on both datasets. The datasets DIAMOR and
ETH have been recorded in a shopping mall and on a
university campus, respectively, and include wheelchair users
(DIAMOR) and pedestrians (both). Our code is available at
https://github.com/epfl-lasa/navioc.

A. Data Pre-processing

We obtain multi-agent examples of individual trajectory
segments and associated desired velocities as follows.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3289770

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023

1) Fitting individual trajectories: The (noisy) trajectory
data of an agent, as given originally in a dataset, is denoted as{
t̄(i), p̄(i)

}M

i=1
, consisting of M sequential time values t̄(i)

and corresponding positions p̄(i). A state–action trajectory
S, describing the single agent at hand (n=1) according to
Sect. III-A, is fit to the data by solving the following quadratic
program. We jointly optimize X , U and a sequence of inter-
polated positions P̂ :=

{
p̂(i)

}M

i=1
in the problem

min
X ,U,P̂

M∑
i=1

∣∣∣p̂(i) − p̄(i)
∣∣∣2 + α

K∑
k=1

∣∣∣u(k)
∣∣∣2 (16)

s.t. x(k+1) = Ax(k) +Bu(k+1), k = 0, . . .K − 1

p̂(i) =
[
I hiI

]
x(κ(i)) +

h2i
2
u(κ(i)+1), i = 1, . . .M,

where α > 0 is a regularizer controlling smoothness, κ(i) :=
floor((t̄(i) − t(0))/h) indicates for each t̄(i) the temporally
closest foregoing state/action extrapolating p̂(i), and hi :=
t̄(i) − t(0) − hκ(i) denotes the extrapolation time step.

Trajectories longer than 100 h are fit in an incremental
fashion, in order to keep the dimensionality of the optimization
problem (16) at an efficiently tractable level. Namely, we
sequentially fit multiple temporally overlapping state–action
trajectories of 100 time steps each to sub-sequences of the
original trajectory’s data, where additional constraints enforce
continuity at stitching points. The Fig. 2 shows original tracks
from DIAMOR, and the corresponding fit trajectories for
h = 0.05 s and α = 0.01s4.

2) Estimating desired velocities: We assume each agent to
have a constant desired speed v̆, and we estimate v̆ as the mode
of the agent’s speed histogram, disregarding speeds below a
threshold vmin=0.3 m/s.

The desired orientation of any agent is assumed to be time-
varying and denoted here as φ̆(k). For DIAMOR, any agent’s
φ̆(k) is estimated to be left or right dependent on the actual
velocity v(k)x being negative or positive, respectively. For ETH,
we first identify any agent’s goal among the dataset’s four
designated goals as the one which the agent is facing mostly
during the later half of its trajectory. Secondly, φ̆(k) is defined
as the orientation of the vector from the agent to the goal at
each instant k. Finally, for each agent, the desired velocity is
defined as v̆(k) := v̆[cos φ̆(k) sin φ̆(k)]T, if |v(k)| > vmin, or as
zero, else. Thus, for each agent, a sequence V̆ := {v̆(k)}Kk=0

of desired velocities is obtained.
3) Sampling multi-agent trajectories: The time domain

covered by individual trajectory fits (per dataset) is divided
into adjacent intervals of uniform duration T=4.8 s, by conven-
tion [2]. For each such interval, the parts of those trajectories
which are defined on the entire interval are aggregated into a
multi-agent state-action trajectory. The agents’ desired veloci-
ties are taken as constant over each interval and equal to their
values at the interval’s initial time. For DIAMOR, trajectory
parts that do not overlap with the area of interest in the corridor
(shown partially in Fig. 2) are disregarded, whereas for ETH,
all agents are considered.

4) Defining training and test sets: We inspect each multi-
agent sample obtained from DIAMOR and discard those which

Fig. 3. For the three datasets E1, E2, and E3, histograms of the number of
agents n in a given sample are shown.

TABLE I
FEATURES’ NORMALIZERS f̃ AND LEARNED NORMALIZED WEIGHTS θ

f 10f̃ θ(a2) θ(a1) Parameters

f (a2) 0.185 m2/s4 1.0000 n.a. –
f (a1) 1.039 m/s2 n.a. 1.0000 λ=10 s2/m
f (v) 0.131 m2/s2 0.0385 7.5471 –
f (c) 0.635 0.0007 0.0976 σ=0.5 m

f (e) 0.021 0.0137 0.6593

{
η=1 s2, s=25s2/m2

R=0.4 m, ε2=0.01 m2/s2

contain agents whose desired motion does not seem aligned
with the x-direction, e.g. because they traverse the corridor
along the y-direction or diagonally due to intrinsic motives and
not to perform avoidance maneuvers. To group the remaining
samples from DIAMOR in a training set E1 and a test set
E2, they are sorted in their temporal order and then assigned
in an alternating fashion to E1 or E2, to ensure that the two
sets reflect similar crowd conditions. In contrast, all multi-
agent samples obtained from ETH are grouped in the set E3,
without performing any manual selection. The Fig. 3 shows
the histogram of the number of agents n per sample for each of
the three datasets. Their respective sizes are |E1|=22, |E2|=21,
and |E3|=99.

B. Training

We have adapted the publicly available software package1

by [6] to learn from examples of varying dimensionality (due
to varying numbers of agents) and complemented the package
with our system and feature definitions. Training on the dataset
E1 takes around 4 and 7 minutes for the feature vectors f(a2)

and f(a1), respectively.
For any feature f , the Table I reports the normalizer

f̃(E1 ∪ E2), which has been computed with respect to all the
selected samples from DIAMOR, and the learned normalized
weights θ(a2) and θ(a1) for the feature vectors f(a2) and f(a1),
respectively. Weight vectors have been scaled such that the
acceleration feature’s normalized weight equals one.

1) Choice of hyper parameters: The weights θ are initial-
ized as random noise with zero mean and standard deviation
0.01, except for the acceleration weight, which needs to be
negative for convergence and thus is set to -1. We observe
that for too small α, only a negligible weight is learned for the

1https://graphics.stanford.edu/projects/cioc/

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3289770

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

GONON et al.: INVERSE REINFORCEMENT LEARNING OF PEDESTRIAN–ROBOT COORDINATION 5

Fig. 4. The plots show multi-agent trajectories from the example sets (left column) and their optimized counter parts generated from our two models J(a2)
(middle column) and J(a1) (right column). Agents are depicted by their bounding circles of diameter R centered at their positions over time, such that circles
for later instants are drawn on top of earlier circles and in more saturated colors. Red arrows indicate the most recent velocity, whereas black arrows indicate
the assumed desired velocity for each agent. The examples in (1.a, 2.a, 3.a) belong to the sets E1, E2 and E3, respectively.

TABLE II
NUMBER OF COLLISIONS

Dataset Ground truth J(a2) J(a1) CV

E1 0 0 0 5
E2 0 0 0 5
E3 2 4 0 38

interaction feature f (e). The sharpness s for the feature f(a1)

strongly affects the learned behavior, as for both very small
or large s, acceleration is penalized more strongly relative to
the velocity error, such that agents slowly adopt their target
velocity.

C. Evaluation

To evaluate the learned models on a given example, we
optimize a multi-agent trajectory according to (5) under the
learned cost functions. For examples from E1 and E2, each
local optimization is initialized by the respective example’s
complete actual trajectory, and xo is specified as the exam-
ple’s initial state obtained by non-causal fitting according to
Sect. IV-A1. In contrast, for E3, each local optimization is
initialized with U ≡ 0, and xo is specified as the causal
estimate of each agent’s state at time zero which is provided
in the ETH dataset. We denote the euclidean distance between
the optimized positions and ground truth as the modeling error
emodel, for E1 and E2, and as the prediction error epredict, for E3.
As a baseline, we also evaluate on all example sets a model
assuming constant velocity (CV) after starting from a given
initial state xo.

Examples of actual and reproduced trajectories are shown in
Fig. 4. For both our models and CV, Fig. 5 plots the modeling
error emodel on the DIAMOR training and test sets E1 and E2,
respectively, as a function of time ∆t after the initial time of
the trajectories considered. The Fig. 6 compares the prediction
error epredict on the test set E3 from ETH for our models, CV,
and the corresponding results reported in [2] for their IRL
approach.

Fig. 5. The modeling error is calculated as the distance between agents’
observed and re-optimized positions as a function of time ∆t from the
trajectory’s initial time. The modeling error’s sample mean and the interval
between its lower and upper quartiles (shaded area) are shown for our two
models J(a2) and J(a1), as well as the sample mean for a baseline model
assuming constant velocity. They are evaluated on (a) the training set E1 and
(b) on the test set E2, which are both sampled from the dataset DIAMOR [15].

The Table II reports the number of collisions for all example
sets, comparing ground truth with the learned models and CV.
Here, any isolated period in which the distance between two
agents is below their combined radius R=0.4 m counts as a
single collision. The Table II shows that our models generate
very few (J(a2)) or zero (J(a1)) collisions.

D. Discussion

It can be seen from Fig. 5 that both learned models provide a
more accurate description of pedestrians’ trajectories than the
baseline model CV assuming constant velocity, and that good
generalization from the training to the test set is achieved for
both models J(a2) and J(a1). In terms of mean modeling error,

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3289770

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023

Fig. 6. The prediction error is calculated as the distance between agents’
observed and predicted positions as a function of time ∆t from the instant at
which the prediction is issued. The plot shows the prediction error’s sample
mean and the interval between its lower and upper quartiles (shaded area) for
our two models J(a2) and J(a1), as well as the sample mean reported in [2]
for their IRL approach and the sample mean for a baseline assuming constant
velocity, all for the test set E3 sampled from the dataset ETH [16].

J(a2) outperforms J(a1) especially at low ∆t. Similarly, Fig. 6
shows that our models generate more accurate predictions
than the baseline. For ∆t<4 s, our models’ predictions are
also more accurate than those by [2]. Comparing J(a2) and
J(a1), it is again visible that for low ∆t, predictions by J(a2)

are more accurate on average than those by J(a1), whereas
for high ∆t, the opposite can be said. For ∆t >4 s, it
seems that the approach by [2] would yield the most accurate
predictions, considering the trend in the error curve (which
remains speculation, however, due to missing data in this
regime).

Regarding Fig. 6, it is noteworthy that the error curves’
sense of curvature differs across models, namely, the curves
for J(a2) and CV bend upwards, whereas the curve by [2]
bends downwards, and the curve for J(a1) is rather straight.
This observation is related to how the different approaches
take into account the agents’ desired velocities or goals on
the one hand, and their initial velocities on the other hand.
In the framework of [2], trajectories’ endpoints are specified
a priori. Thus, when accurate goal estimates are available,
predicted and actual trajectories will tend to converge again for
later points in time with their method. In contrast, our models
consider desired velocities and trade off following them versus
keeping accelerations small. Since J(a2) gives higher weight
to accelerations than J(a1) (cf. Table I), it leads to slower
adoption of desired velocities in favor of maintaining initial
velocities (similarly as CV). This difference is also visible in
the reproduced trajectories, comparing e.g. the ones shown in
Fig. 4-(2.b, 2.c).

V. ROBOT EXPERIMENTS

To investigate our IRL method’s capability to guide a robot
through human crowds, we implement an optimal control
system on the smart wheelchair Qolo [17] and deploy the robot
on EPFL campus, in a (usually) busy corridor (cf. Fig. 8). Our

IRL [6]

Features

MinFunc

LiDAR

Robot
Velocity
ControlCost

Tracker

o
ffl

in
e

Trajectories

Fig. 7. A cost function, which is parametrized by weights w, is learned offline
via IRL from a set E of multi-pedestrian trajectories. The robot navigates on-
line by seeking collective actions u∗ which optimize the learned cost, given
the robots’ and tracked pedestrians’ estimated state xo.

Fig. 8. In our experiments, the robot Qolo (encircled) drives in a busy corridor
on EPFL campus by optimizing the learned objective J(a1) on-line.

experiments were conducted under approval by the Human
Research Ethical Committee of EPFL under review no. HREC-
032-2019, renewed in January 2022.

1) Implementation: We use the package MinFunc2 to opti-
mize a cost over the actions of the robot and of tracked pedes-
trians on-line (cf. Fig. 7). The optimal controller’s objective is
defined by the learned model J(a1), which allows to command
the robot via its desired velocity, as the respective feature’s
weight θ(v)

(a1) is sufficiently high. When formulating the optimal
control problem (5) to be solved on-line, we increase the time
step to h=0.4 s and use only K=12 steps, in order to obtain the
same planning time horizon of 4.8 s as in the learning phase
at lower computational cost. To account for the robot’s larger
diameter, we set R=0.6 m for the interaction energy feature.
The robot’s desired velocity is set equal to v̆=[1 m/s, 0], in a
reference frame whose x-axis aligns with the corridor.

We implement an on-board tracking system3 for pedestrians,
using the Robot Operating System (ROS) and a LiDAR sensor
mounted on the robot’s front to detect legs. Firstly, planar
laserscans are segmented by breakpoints [18]. Then, circles are
fit to segments, and those with radius below 7 cm are retained
as detections. Each detection is associated with the track with
closest predicted position, if its distance is below 0.75 m, or
initiates a new track otherwise. Tracks’ states are estimated by
α-β-filtering (α=0.15, β=0.02).

To maintain the problem size tractable on-line, the state xo

describes the robot and, at most, 3 pedestrians, namely those
maximizing a score ζ := −|y|−0.25max(x, 0)+3min(x, 0),
where x and y denote a given pedestrian’s position relative to
the robot in its forward and lateral direction, respectively.

2) Static obstacle: We perform a preliminary experiment,
involving only the robot and a static obstacle of cylindrical
shape to be detected as a leg by the robot’s tracking system.

2https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
3https://go.epfl.ch/leg-tracker

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3289770

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

GONON et al.: INVERSE REINFORCEMENT LEARNING OF PEDESTRIAN–ROBOT COORDINATION 7

Fig. 9. The robot’s estimated trajectory is shown (black circles) as it
avoids a static obstacle (red/blue), which it detects and tracks using its on-
board tracking system. Darker colors indicate later points in time. The static
obstacle’s apparent motion is due to errors in the robot’s self-localization.
(a) The robot follows a reference trajectory (green) planned on-line by our
model J(a1). (b) The robot uses a Velocity Obstacle approach based on [19]
to determine its velocity command, where the time horizon is set to τvo=7 s.

In each trial, the robot is positioned around 12 m away from
the obstacle and oriented such that it is facing the obstacle
as precisely as possible. We perform two trials, using our
method J(a1) and a Velocity Obstacle approach based on [19],
respectively.

3) Human crowds: For experiments in human crowds,
the robot uses our method to drive autonomously over a
distance of around 15 m between uninformed pedestrians and
a supervisor who is ready to remotely stop the robot at any
moment. The supervisor usually walks behind the robot or by
its side at a distance of around 2-5 m, except in one trial, where
the supervisor deliberately interacts with the robot, shown in
Fig. 10-d. In total, 5 trials are performed.

A. Results

The Fig. 9 shows the robot’s motion in the preliminary
experiments with the static obstacle. It successfully avoids and
passes the obstacle on the left side with either method.

For the crowd experiments, Fig. 10 plots estimated trajec-
tory segments for the five trials. In one case (cf. 10-b.3), a
distracted pedestrian stands in the robot’s way, such that the
robot needs to avoid a collision by itself. Here, the robot
exhibits the correct tendency but does not achieve sufficient
clearance, and thus, the supervisor needs to stop it for safety
reasons. In the remaining 4 out of 5 trials, the robot travels the
full distance without interruption. The robot’s speed’s average
and standard deviation over all trials are 0.82±0.16 m/s. For
the distance traveled along the x-axis and the duration of a
trial, the mean and standard deviation are 15.48±4.83 m and
18.80±5.17 s, respectively.

We generally observe that, in order to prevent imminent
collisions, pedestrians adapt more to the robot than vice-versa.
Nonetheless, the robot’s contribution to collision avoidance
is mostly constructive, i.e. it changes direction in such a
way that the minimum predicted distance increases. This is
exemplified by the situations depicted in Fig. 10-(a.1, b.3, c.2,
d.2, e). We also observe one case where the robot’s response
to an imminent collision does not match that of the involved
pedestrian, as the robot plans to avoid the pedestrian on the
right, whereas the pedestrian plans to avoid the robot on the
left, which is depicted in Fig. 10-(b.1, b.2). There, at a time
when the pedestrian has already changed direction such that
their paths would not cross, the robot rotates, attempting to

Fig. 10. Exemplary motions, recorded during our experiments with the robot
Qolo on EPFL Campus, are visualized. The robot (black) and pedestrians
(various colors) are depicted by circles of diameter 0.4 m, such that circles for
later instants are drawn on top of earlier circles and in more saturated colors.
Red arrows indicate the most recent velocity. Similarly, the robot’s recently
planned paths are drawn (green, dotted), where more saturated colors indicate
later plans, and its current plan is drawn as well (green, solid). Each row of
subfigures depicts a different situation, where time increases from left to right.
(a.1) The robot starts to move and immediately avoids a pedestrian (green)
heading the other way. (a.2) The robot has joined a lane of pedestrians, and
one of them (green) steps away from the robot. (b.1) The robot attempts to
avoid a pedestrian (red) on the less efficient side. (b.2) The pedestrian (red) has
avoided the robot on the more efficient side, and the robot attempts to avoid
a standing pedestrian (blue). (b.3) The robot attempts to pass in between the
two standing pedestrians (blue and green/purple) and is about to be stopped
by the supervisor. (c.1-2) At first, the robot plans to avoid a pedestrian (green),
but the pedestrian changes course faster, such that the robot’s plan changes
back to a straight path. (d.1-2) The robot and a pedestrian (the supervisor)
reciprocally avoid each other. (e) A pedestrian (red) overtakes the standing
robot and then changes direction away from the robot as it starts moving;
subsequently, the robot shows slight adaptation to approaching pedestrians
(green, purple).

cross the pedestrian’s future path. In two cases (cf. Fig. 10-
a.2,-e), a pedestrian actively increases clearance to the robot,
which is driving behind the pedestrian.

B. Discussion

The robot’s contribution to collision avoidance is often
constructive, as shown by the examples in Fig. 10, but
relatively small, in comparison to pedestrians’ contributions.
On the one hand, the robot’s ability to execute planned
trajectories is limited by the robot’s acceleration bounds and
the absence of position-feedback for tracking the trajectory
(since our system’s position estimates were found to be too
unreliable for feedback control). On the other hand, in the
example depicted in Fig. 10-(b.1), it is visible that planned

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3289770

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2023

trajectories may lack consistency over time, i.e. they may
fluctuate between alternative plans, such as avoiding someone
on the left or on the right. It is clear that the robot will not
execute either of the alternative plans properly as long as it
keeps switching between them. A remedy could be found in
restricting solutions to some admissible set, or in performing
some global analysis to guarantee that a local minimum is
chosen in a unique fashion.

In the situation depicted in Fig. 10-b.3, the robot plans
its path between two pedestrians, but they do not stand far
enough apart and one of them does not see the robot. The
robot’s failure to avoid a collision can be explained by (i.) a
non-zero velocity estimate for the actually standing pedestrian
due to the robot’s inaccurate estimation of its own angular
velocity, (ii.) poor approximation of E by Ẽ at low distances
due to ε1, (iii.) the aforementioned limited trajectory tracking
performance, and (iv.) the wrong assumption that the pedes-
trian will cooperate. Our approach generates motion plans in
which all agents contribute to minimizing a collective cost by
adapting to some extent to each other. Thus, such plans cannot
account properly for non-interacting agents. Still, by updating
its plan at a high frequency, the robot may successfully avoid
completely passive agents or static objects (cf. Fig. 9).

Another limitation stems from assuming that the desired
velocities of agents equal their current velocities, which could
be overcome by a more elaborate probabilistic estimation
technique. Arguably, this would help to predict the crossing
order in situations as in Fig. 10-(b.1, b.2).

VI. CONCLUSION
We have applied IRL in a continuous framework [6] to

multi-agent navigation. We employ a novel cost feature which
smoothly approximates an interaction energy proposed by an
empirical study of crowd motion [4]. Two alternative feature
vectors are constructed, quantifying acceleration either by
its squared or smoothed magnitude, respectively, and their
weights are trained on examples from the public dataset
DIAMOR [15]. While both cost functions avoid collisions, the
one based on squared accelerations favors smooth motions,
whereas the alternative one lets agents adopt their target
velocities quickly. We evaluate the models quantitatively on
DIAMOR and the public dataset ETH [16]. In comparison
with a prior approach to linear IRL of multi-agent naviga-
tion [2], our models yield better predictions for ETH on
average, particularly in the short term, because they penalize
for sharp motions.

Experiments with the robot Qolo have demonstrated that our
approach can plan reasonable trajectories on-line in real-world
interactions with pedestrians. However, to avoid collisions
reliably, our approach requires further developments in order
to 1. stick to a decision on which side to avoid a given
pedestrian, 2. penalize more strongly for contact at low relative
velocities, and 3. take into account the robot’s non-holonomic
kinematics and dynamic constraints.

REFERENCES

[1] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-
based prediction of trajectories for socially compliant navigation,” in

Proceedings of Robotics: Science and Systems, Sydney, Australia, July
2012.

[2] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learning,”
The International Journal of Robotics Research, vol. 35, no. 11,
pp. 1289–1307, 2016. [Online]. Available: https://doi.org/10.1177/
0278364915619772

[3] Y. Che, A. M. Okamura, and D. Sadigh, “Efficient and trustworthy social
navigation via explicit and implicit robot–human communication,” IEEE
Transactions on Robotics, vol. 36, no. 3, pp. 692–707, 2020.

[4] I. Karamouzas, B. Skinner, and S. J. Guy, “Universal power law
governing pedestrian interactions,” Phys. Rev. Lett., vol. 113, p.
238701, Dec 2014. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevLett.113.238701

[5] I. Karamouzas, N. Sohre, R. Narain, and S. J. Guy, “Implicit
crowds: Optimization integrator for robust crowd simulation,” ACM
Trans. Graph., vol. 36, no. 4, jul 2017. [Online]. Available:
https://doi.org/10.1145/3072959.3073705

[6] S. Levine and V. Koltun, “Continuous inverse optimal control with
locally optimal examples,” in ICML ’12: Proceedings of the 29th
International Conference on Machine Learning, 2012.

[7] A.-H. Olivier, A. Marin, A. Crétual, and J. Pettré, “Minimal
predicted distance: A common metric for collision avoidance
during pairwise interactions between walkers,” Gait & Posture,
vol. 36, no. 3, pp. 399–404, 2012. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0966636212001117

[8] B. Kim and J. Pineau, “Socially adaptive path planning in human en-
vironments using inverse reinforcement learning,” International Journal
of Social Robotics, vol. 8, no. 1, pp. 51–66, 2016.

[9] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A.
Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa, “Planning-based
prediction for pedestrians,” in 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2009, pp. 3931–3936.

[10] R. Alsaleh and T. Sayed, “Modeling pedestrian-cyclist interactions
in shared space using inverse reinforcement learning,” Transportation
Research Part F: Traffic Psychology and Behaviour, vol. 70, pp. 37–
57, 2020. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1369847819306552

[11] M. Fahad, Z. Chen, and Y. Guo, “Learning how pedestrians navigate:
A deep inverse reinforcement learning approach,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 819–826.

[12] D. Vasquez, B. Okal, and K. O. Arras, “Inverse reinforcement learning
algorithms and features for robot navigation in crowds: An experimental
comparison,” in Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems, Chicago, IL, USA, Sep. 2014, pp. 1341–1346.

[13] M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Siegwart,
“Predicting actions to act predictably: Cooperative partial motion plan-
ning with maximum entropy models,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016, pp. 2096–
2101.

[14] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al., “Maximum
entropy inverse reinforcement learning.” in Aaai, vol. 8. Chicago, IL,
USA, 2008, pp. 1433–1438.

[15] F. Zanlungo, T. Ikeda, and T. Kanda, “Potential for the dynamics of
pedestrians in a socially interacting group,” Phys. Rev. E, vol. 89, p.
012811, Jan 2014. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevE.89.012811

[16] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool, “You’ll never walk
alone: Modeling social behavior for multi-target tracking,” in 2009 IEEE
12th International Conference on Computer Vision, 2009, pp. 261–268.

[17] D. Paez Granados, H. Kadone, and K. Suzuki, “Unpowered Lower-Body
Exoskeleton with Torso Lifting Mechanism for Supporting Sit-to-Stand
Transitions,” in Proc. IEEE International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, Oct. 2018, pp. 2755–2761.

[18] G. A. Borges and M.-J. Aldon, “Line extraction in 2d range images for
mobile robotics,” Journal of intelligent and Robotic Systems, vol. 40,
no. 3, pp. 267–297, 2004.

[19] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body
collision avoidance,” in Robotics Research, C. Pradalier, R. Siegwart,
and G. Hirzinger, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 3–19.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3289770

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

