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Abstract
Dataflow programming is a methodology that enables the development of high-level, parametric programs that are independ-
ent of the underlying platform. This approach is particularly useful for heterogeneous platforms, as it eliminates the need to 
rewrite application software for each configuration. Instead, it only requires new low-level implementation code, which is 
typically automatically generated through code generation tools. The performance of programs running on heterogeneous 
parallel platforms is highly dependent on the partitioning and mapping of computation to different processing units. This is 
determined by parameters that govern the partitioning, mapping, scheduling, and allocation of data exchanges among the 
processing elements of the platform. Determining the appropriate parameters for a specific application and set of architectures 
is a complex task and is an active area of research. This paper presents a novel methodology for partitioning and mapping 
dataflow programs onto heterogeneous systems composed of both CPUs and GPUs. The objective is to identify the program 
configuration that provides the most efficient way to process a typical dataflow program by exploring its design space. This 
is an NP-complete problem that we have addressed by utilizing a design space exploration approach that leverages a Tabu 
search meta-heuristic optimization algorithm driven by analysis of the execution trace graph of the program. The heuristic 
algorithm effectively identifies a solution that maps actors to processing units while improving overall performance. The 
parameters of the heuristic algorithm, such as the time limit and the proportion of neighboring solutions explored during each 
iteration, can be fine-tuned for optimal results. Additionally, the proposed approach allows for the exploration of solutions 
that do not utilize all hardware resources if it results in better performance. The effectiveness of the proposed approach is 
demonstrated through experimental results on dataflow programs.

Keywords Heterogeneous systems · GPU programming · Source-to-source compiler · Parallel computing · RVC-CAL · 
Dynamic dataflow programs · Design space exploration · Tabu-search

1 Introduction

The increasing demand for high computational power in pro-
cessing platforms is driven by the growing needs of mod-
ern application programs. The limitations of Moore’s Law 
in creating smaller circuit components and the challenges 
posed by rising logic gate frequencies have led to the growing 

adoption of heterogeneous processing platforms. In order to 
effectively leverage the available computational power of 
these platforms, advanced levels of domain-specific hard-
ware specialization need to be explored as opposed to sim-
ply scaling up existing processing elements. As examples, 
Microsoft Arm [1], Nvidia Grace [2] and Jetson [3, 4], Apple 
silicon [5]) are all clear demonstrations of this trend whether 
it is for embedded system, personal computing or data center.

Dataflow programming has been demonstrated to be an 
effective method for managing large and parallel applica-
tions, addressing portability concerns across different plat-
forms, and effectively exploring and exploiting parallelism 
opportunities [6, 7]. This is because dataflow languages are 
designed to expose the parallelism inherent in the process 
of executing tasks on data. This enables the rapid evalua-
tion of various settings, such as mapping software kernels 
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to hardware processing elements, without incurring the 
costly redesigns required in traditional imperative and/or 
platform-specific software programming. These redesigns 
often require manual rewriting and can consume significant 
amounts of developer time.

Over time, dataflow-based computing models have been 
effectively utilized in a plethora of industries, including, 
but not limited to, digital codecs implementation, high-
frequency financial applications, and genomics analysis. 
Due to their expressiveness, mathematical rigor in the 
models, and independence from a specific architecture, 
these models have also been employed as a reference and 
standardization language in digital video coding, specifi-
cally for the definition of the recently developed MPEG 
AVC and HEVC video codecs [8–11].

As the utilization of diverse processing platforms 
becomes more prevalent, new areas of inquiry have emerged 
pertaining to the optimal configuration for scheduling, map-
ping, and partitioning of dataflow-based applications on a 
given platform. The dataflow model, as it is based on the 
concept of independent black-boxed units that communi-
cate with one another using specific data channels. These 
boxes encapsulate the execution kernels that independently 
and atomically execute the operations designated for them. 
Communication between these boxes occurs solely through 
communication buffers, where data packets (termed tokens) 
are utilized for information exchange. However, even for 
simple applications, the number of configurations that must 
be evaluated is excessive for developers to test through trial 
and error or to exhaustively test all possible combinations. 
Therefore, systematic and automated methods are essential 
for identifying and evaluating efficient configurations and 
designs. Consequently, design space exploration methodolo-
gies and tools are crucial in the design process and explora-
tion of effective design points. To effectively identify an 
efficient set of configuration parameters that meet specific 
performance requirements, automation tools are impera-
tive. One such tool is TURNUS, a design space explora-
tion tool developed through research by the authors of this 
paper. The methodology underlying this tool is based on 
the analysis of an execution graph of the program, called 
Execution Trace Graph (ETG). In this graph, each execu-
tion of a kernel (actor) is represented by a vertex, which are 
then connected based on functional and data dependencies. 
This design space exploration technique is made effective 
because, thanks to the program’s dataflow computation 
model (MoC), it is possible to systematically assign weights 
to each node and edge of the graph and analyze it through 
heuristics based on graph theory [12, 13]. This design space 
exploration methodology has been successfully applied on a 
wide range of heterogeneous hardware platforms, including 
Many-Core [14], FPGAs [15], and MPSoCs [16, 17] plat-
forms. These platforms can be standalone or integrated as a 

component of a larger heterogeneous system. However, the 
automatic design space exploration for CPU-GPU heteroge-
neous systems remains an open area of research. The unique 
architecture of GPUs poses challenges, such as limited con-
trol over scheduling and mapping on hardware resources and 
the dissimilar APIs used to program them.

This work aims to expand upon and provide a compre-
hensive summary of the design and optimization meth-
odology that is based on dataflow models, as previously 
presented in [18, 19]. To do so, this work uses the hetero-
geneous CPU/GPU dataflow methodology from [20] and 
expand and integrate the profiling and performance esti-
mation methodologies from [21–23]. The ultimate objec-
tive of this work is to automatically explore the design 
space for the partitioning and mapping of dataflow appli-
cations onto heterogeneous systems using a Tabu search 
meta-algorithm.

The main novel contributions of this work can be sum-
marized as follows:

• The adaptation and development of an extension of the 
Tabu search algorithm to specifically address the needs 
and requirements of the heterogeneous platform meth-
odology. This includes ensuring that the algorithm can 
efficiently and effectively handle the unique challenges 
presented by a heterogeneous system.

• The development of new static and dynamic analysis 
methodologies suitable for heterogeneous CPU-GPU sys-
tems, specifically tailored to the characteristics of these 
systems, which can help to improve the performance of 
dataflow applications running on them.

• The further extension and improvement of a simulator 
engine suitable for performance estimation of dynamic 
applications. This simulator engine is designed to pro-
vide accurate and reliable performance estimates for 
dataflow applications running on heterogeneous systems.

• The adaptation of the neighboring move generator to the 
specific heterogeneous CPU-GPU context. Addition-
ally, it allows for the under-utilization of resources when 
necessary to optimize performance and achieve the best 
possible outcomes.

The paper is structured as follows: Section 2 outlines the 
necessary components for exploring the design space of a 
heterogeneous CPU-GPU platform. In Section 3, the Tabu 
search algorithm developed for this work is presented, while 
Section 4 defines and describes the neighborhood move gen-
erator. Section 5 introduces the three different methodolo-
gies used for evaluating the design points. The experimen-
tal results and comparisons of the different methodologies 
are presented in Section 6. Finally, Section 7 concludes the 
paper and highlights potential research objectives and future 
directions.
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2  Design Space Exploration

This section presents a summary of the main features of 
a dataflow programming model that utilizes the concept 
of actors. Additionally, a review of the key elements nec-
essary for exploring the design space of dataflow appli-
cations using the analysis and optimization methodology 
developed by the authors in [12, 13] is provided.

2.1  Dataflow Programming Model

A Dataflow Process Network (DPN) is a system in which 
multiple processes operate simultaneously and exchange 
information through unidirectional, first-in-first-out (FIFO) 
channels [24]. In this model, writing to the channel is done 
without interruption, while reading from it is blocking. 
In a dataflow process network, processes are made up 
of repeated cycles of computation known as firings of a 
dataflow actor. An actor defines a set of often functional, 
atomic tasks that comprise the overall processing.

In a dataflow network, the flow of data (referred to 
as tokens) between actors is clearly defined and access 
to shared data is only possible by transmitting packets of 
data. The research illustrated in this work is based on a 
dynamic dataflow Model of Computation (MoC) that uses 
a variation of the DPN mentioned previously. A key aspect 
of this MoC is that an actor’s execution is broken down 
into a series of atomic computations, also known as fir-
ings. During each firing, an actor can retrieve a certain 
amount of input data, transmit a certain amount of output 
data, and modify its local memory if necessary, based on 
the input tokens and the values of its state variables. The 
specific computation performed by a single actor during 
a firing is referred to as an action. The action executed 
at any given time is determined by the input tokens and 
the values of the actor’s state variables. This lack of data 
race and critical sections leads to more robust behavior 
in dataflow software, regardless of the computation poli-
cies being used, whether they are fully parallel or involve 
interleaving of actor executions [25].

In recent years, a wide range of software languages have 
been utilized to execute the semantics of dataflow pro-
grams [26]. Some imperative languages such as Python, 
Java, and C/C++ have been improved by incorporating 
parallel operators while new languages supporting data-
flow features like SISAL [27] and Ptolemy [28] have been 
created and standardized. Among this diverse selection, 
RVC-CAL [8] is the only formalized dataflow program-
ming language that has ISO compliance and fully encom-
passes the complete behavioral characteristics of the DPN 
MoC. RVC-CAL has been employed as a reference and 

standardization language for novel digital video codec 
standards such as MPEG AVC and HEVC [8–11]. Each 
RVC-CAL actor is made up of a group of atomic firing 
functions, referred to as actions, and a set of internal mem-
ory that cannot be accessed by other actors, whether they 
are neighboring or not. Only one function can be executed 
at a time while the actor is in operation. To put it another 
way, for each actor, the collection of firing rules deter-
mines when an action is permitted to be fired. Each of 
these rules can be expressed as a function of the actor’s 
internal variables and the availability and values of input 
tokens. More specifically, a firing rule can be defined as a 
Boolean function, including a selection of the action input 
pattern (i.e., specifying the required number of tokens for 
the action to be fired and to be removed from FIFO buff-
ers) and the action guard condition (i.e., a Boolean expres-
sion defined using the actor’s internal memory and the 
values of consumed input data).

The concepts in question are illustrated through the use of 
Fig. 1, which presents a basic example of an RVC-CAL data-
flow application software. The graphic model of the network 
of actors in the example can be found in Fig. 1a. The data-
flow program is made up of five instances of actors, including 
Prod, PingPong, CopyTokensA, CopyTokensB, and Merger. 
The RVC-CAL software code for the Prod actor is depicted 
in Fig. 1b, which features a single action that generates one 
token per execution and increments an internal counter. Addi-
tionally, a guard is in place to prevent the action from being 
executed more than four times. In the implementation of the 
PingPong actor, as seen in Fig. 1d, a schedule expression that 
function as a Finite State Machine (FSM). The execution of 
actions triggers a change in the actor’s state, and the FSM acts 
as an additional element in determining which action will be 
executed next. In this example, the FSM alternates between 
executing the two available actions.

The RVC-CAL programming language is known for its 
high level of abstraction, making it platform-independent. 
By utilizing a high level representation of the program’s 
execution, it is possible to create optimized, low-level code 
for various parallel architectures and platforms. The article 
utilizes the Open RVC-CAL Compiler (Orcc) [29, 30], for its 
compilation process. It’s worth mentioning that RVC-CAL 
compilation is also supported by other open-source compil-
ers such as Caltoopia [31, 32], Tÿcho [33], Cal2Many [34, 
35], DAL [36] or StreamBlocks [37].

2.2  Execution Modeling

Dataflow programs can be effectively partitioned and 
mapped, resulting in correct executions without the need 
for software rewriting. However, this approach presents its 
own challenges in terms of identifying the most efficient 
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configurations for partitioning, mapping, and scheduling. 
Even for simple designs, the number of possible design 
points is so large that it would be impractical or infeasible to 
be done manually through trial and error. This necessitates 
the use of automatic and systematic methods for identifying 
and evaluating optimal design point configurations.

TURNUS [12, 13] is a design space exploration frame-
work that has been developed by the authors of this work 
to address this purpose. The tool is based on a high-level 
abstract model of computation, generated by the dataflow 
network structure and the actor execution model, which 

is further enriched by profiling measures of each atomic 
execution obtained on the specific heterogeneous process-
ing platform. This allows for the exploration of the con-
figuration design space and identification of efficient con-
figurations. Figure 2 shows the design space exploration 
tool flow used when working with TURNUS to optimize 
dataflow program in the ORCC framework. First of all the 
CAL representation of the application program together with 
the different configurations files (network, partition, buffer 
sizes) are fed to the compiler. An optimization loop is ini-
tiated, which continues until the user is satisfied with the 
performance achieved. The optimization objectives can vary, 
such as critical path reduction, minimizing overall execu-
tion time, maximizing resource utilization, and so on. In 
the particular context of this paper, the loop runs for a fixed 
amount of time predetermined by the user at the start of the 
process. This loop start by the compiler generating a plat-
form specific source code implementation for the targeted 
architecture containing performance evaluation code. Then, 

(a)

(b)

(c)

(d)

(e)

Figure  1  RVC-CAL program example: dataflow network topology 
and actors source code.

Figure 2  Design space Exploration - Tool flow for parameters opti-
mization.
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this code is compiled or synthesized to an executable using 
compilers specific to the platform (here the Exelixi CUDA 
backend). Once executed and the performance metric from 
the platform extracted and the Execution trace graph (ETG) 
is labeled, the performance estimation of the application can 
then be evaluated with different configuration, without the 
necessity to compile and execute each time. The system then 
perform analysis of the ETG to evaluate different evaluation 
such as the critical path evaluation or the buffer dimensions 
to propose new configurations to be tested on the platform.

2.3  Heterogeneous CPU/GPU Platform Modeling

The field of automatic design space exploration for CPU/
GPU heterogeneous systems remains an open research 
topic. Although GPU platforms are also programmable 
through software, the methods used for multi-core architec-
tures cannot be directly applied to CPU/GPU heterogene-
ous systems due to numerous differences between the two. 
One such difference is the limited granularity of the APIs 
available. Even the advanced CUDA API, which provides 
fine-grained control over the hardware and open access to 
software context and data movement, does not offer access 
to scheduling and mapping of software kernels to avail-
able computational resources, as this task is delegated to 
the CUDA runtime. Another difference is clock-accurate 
profiling, which becomes more challenging with actors 
running on platforms with different frequencies. This issue 
is addressed in the methodology presented in Sections 5.1 
and 5.2 through data normalization. Another crucial aspect 
is data movement, as on-chip cache coherency cannot handle 
this issue automatically. To transfer data between the CPU 
main memory and the GPU main memory, as well as the 
faster GPU shared memory and register-file, explicit data 
movement is required. Therefore, proper profiling of FIFO 
communication is essential, particularly for SIMD reads and 
writes. For a more detailed discussion of this issue, inter-
ested readers can refer to [23]. Additionally, compared to 
FPGA platform synthesis, software generation, compilation, 
and dataflow application loading on CPU/GPU heterogene-
ous platforms are relatively fast. This advantage is lever-
aged in the design point evaluation methodology presented 
in Sections 5.2 and 5.3 by enabling direct execution on the 
platform at each iteration.

3  Tabu Search

The Tabu Search (TS), introduced by Glover [38], is a meta-
heuristic optimization algorithm that can be applied to solve 
a wide range of optimization problems. TS involves itera-
tively exploring the solution space, making moves to solu-
tions that are deemed "better" than the current one based on 

the given evaluation function. In the context of this study, 
the evaluation function refers to the minimal overall runtime 
of the application that needs to be optimized.

The core algorithm incorporates an explicit memory 
structure, known as the Tabu list, to prevent revisiting pre-
viously explored solutions and promote the exploration of 
the solution space, thereby avoiding getting stuck in local 
optima. This list, known as the Tabu list, can be adjusted in 
size and content to balance between exploration and exploi-
tation in the search, and to ensure good overall performance 
in terms of quality of results, speed, robustness, simplicity 
and flexibility. It can be applied to problems with continuous 
or discrete variables, multiple objectives and is often used 
when the search space is large or the optimization problem 
is difficult to solve with other methods. In order to adapt 
TS to a specific problem, the representation of solutions, 
the neighborhood structure, the Tabu list structure, and the 
stopping criterion must be designed.

The Tabu meta-algorithm is applied in the context of par-
titioning actors across CPU and GPU partitions in order to 
find a solution that is defined as a map of actors and process-
ing units (sequential CPU partitions or the parallel GPU par-
tition). The number of actors is fixed by the dataflow appli-
cation model, and the initial partition provides the upper 
bounds for the number of CPU and GPU partitions that can 
be used in a valid solution. It is not required that all parti-
tions be used (meaning, no actor is be mapped to them), and 
allowing empty partitions as valid solutions allows for the 
discovery of optimal solutions that may not use all hardware 
resources if it results in better performance. It is important to 
note that not all actors are necessarily compatible with being 
run on the GPU, so the initial partition provided to the TS 
meta-algorithm should assign actors that can be mapped to 
either the CPU or GPU to the GPU partition, and actors that 
can only run on the CPU to a CPU partition.

To move from a valid solution to a neighboring one, the 
following types of moves are possible:

• REINSERT: move an actor from one partition to another.
• SWAP: exchanging the partitions of two actors that are 

currently assigned to different partitions. This can be 
done by moving each actor to the other actor’s partition.

These basic moves can be combined in various ways to cre-
ate different exploration strategies. Some examples of these 
strategies are discussed in Section 4.

TS can tuned using a couple of parameters a, b, t
ab

 , 
� and T. When an actor, j, is transferred from one par-
tition, � , to another, it is prohibited from returning to � 
for a certain number of iterations, t

ab
 . This number, t

ab
 , 

is a randomly chosen integer from the range [a, b], and 
in previous experiments outlined in [18], the values of a 
and b were set to 5 and 15, respectively. Smaller values 
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of t
ab

 do not allow for escape from local optima, while 
larger values do not allow for intensification of the search 
around promising solutions. There are two other adjust-
able parameters in the TS algorithm: � (the proportion of 
neighboring solutions explored during each iteration) and 
T (the time limit). If the time limit T is reached, the search 
will be immediately terminated and the best solution found 
thus far will be returned. With a fixed T, a small value 
of � results in more iterations being performed but fewer 
neighbors being examined in each iteration, resulting in 
more diversification. A large value of � , on the other hand, 
plays an intensification role (more solutions around the 
current one are explored). Finally, a small (large) value of 
t
ab

 strengthens the intensification (diversification) ability 
of the search, respectively.

Figure 3 shows the generic design flow for using TS 
for design space exploration in the context of this work. 
The optimization process begins with a user-provided 
initial mapping and execution trace, and generates a 
tentative new mapping solution. The initial mapping 
and execution trace provided by the user can have a big 
impact on the efficacy of the solution. Regarding the 
execution trace the input stimulus provided to the appli-
cation during the trace generation need to be a good 
representation of the general input space so that the con-
clusion drawn would be applicable to the performance 
of the application in production. Regarding the initial 
mapping, since the size of the design space is too big 
to feasibly be fully explore, starting from an initially 
good partition is very important to lead to best possible 
results using this methodology. This new suggested solu-
tion is then evaluated to determine its performance and 
analyzed to provide the meta-algorithm with sufficient 
information to continue exploring the design space.

4  Neighborhood Move Generator

Below is a list of neighborhood move generators used in this 
work during the Tabu search. They are mainly implemented 
using REINSERT moves. They can be used on their own 
during a design space exploration loop, or multiple of them 
can be combined.

• Balancing ( N(B) ): move randomly an actor from the parti-
tion with the least idle time and move it to the partition 
with the most idle time. The partition idle time is defined 
as the time frame during which no actor are executing 
due to constraint such as dependency or others.

• Idle ( N(I) ): move consecutively each actor whose idle 
time is greater than its processing time to the most idle 
partition that is different from the current partition of 
that actor. The idle time of an actor is defined as the time 
frame when it could execute according to the satisfac-
tion of its firing rules, but it has to wait to be scheduled 
because another actor in the same partition is currently 
executing.

• Communication frequency ( N(CF) ): if an actor has a 
higher communication frequency (i.e., more token trans-
fers) with actors in a given partition than with the ones in 
its current partition, move the actor to that partition.

• Random ( N(R) ): choose randomly an actor and move it to 
a different partition also randomly chosen.

5  Design Point Evaluations

Three different DSE optimization loops have been developed 
and used for comparison in this paper. Each of them uses a 
different design point evaluation methodology. These are 
the Static, Dynamic, and Measured methodologies and are 
presented in the following subsections.

5.1  Static Evaluation

In this version of the Tabu search design space exploration, 
the static heterogeneous estimation is used to evaluate the 
performance of the proposed new mapping configuration, 
as described in [22]. To evaluate performance, profiling 
weights are necessary for all possible combinations of FIFO 
buffers and actor platform assignments (i.e., CPU or GPU). 
Four distinct configurations were analyzed and are depicted 
in Fig. 4. The first and second configurations consist of all 
actors assigned to either CPUs or GPUs respectively, allow-
ing for the evaluation of computation time of the action body 
and scheduling time on each platform. The other two con-
figurations involve the use of a special HostFifo represented 

Figure  3  Generic design flow when doing design space exploration 
using tabu search.
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in blue with the number 2, allowing for the measurement of 
data transmission time for cross-platform communication 
(i.e., CPU-to-GPU or GPU-to-CPU). This approach consid-
ers all possible design points.

Figure 5 illustrates this methodology variant. Initially, the 
initial mapping is provided, along with the execution trace 
and a heterogeneous set of weights (generated as described 
previously) that have been generated using that initial map-
ping on the actual hardware platform using the profiled 
application generated by the Exelixi CUDA backend. This 
information is then used to suggest a new mapping, which is 

fed to the ’Weights Updater’. The appropriate weights from 
the heterogeneous set of weights are selected based on the 
new mapping, meaning that the appropriate set of weights 
will be used depending on whether an actor is being mapped 
to a CPU or GPU. The same applies for the four sets of 
communication weights (CPU-CPU, CPU-GPU, GPU-CPU, 
GPU-GPU) based on the platform the actor it is communi-
cating to is assigned. Finally, the updated weights are fed to 
the performance estimation engine, and the model analysis 
is conducted to extract information that helps with the neigh-
boring move generation, after which the optimization loop 
can start again.

This methodology does not necessitate continuous access 
to the hardware platform as only the four static configura-
tions need to be evaluated beforehand. During the design 
space exploration loop, only post-mortem access to the 
weights and execution trace is needed. This methodology 
places no restrictions on the move generators that can be 
used and any of the Neighborhood move generators defined 
in Section 4 or others can be used. However, it should be 
noted that this solution is not the most precise in terms of 
performance evaluation and may be relatively slow due to 
the use of the TURNUS performance estimation engine.

5.2  Dynamic Evaluation

In this version of the Tabu search design space exploration, 
the dynamic heterogeneous estimation described in [23] is 
used to evaluate the performance of the proposed new map-
ping configuration. In summary, the dynamic methodology 
leverages a feature from the Exelixi CUDA backend that 
generates a tailored version of the application for optimi-
zation. This software implementation packages both the 
instrumented CPU and GPU versions for each actor within 
the same binary. At runtime, the actual mapping configura-
tion is provided and only the correct version is instantiated 
with the appropriate communication channel using the cor-
rect FIFO implementation. This allows for the generation 
of performance weights in the exact configuration, with the 
same resource contention and utilization as during the actual 
execution of the application program.

Figure 6 depicts this methodology variant. First, the 
initial mapping and the execution trace is provided by the 
user to the Tabu search meta-algorithm. In addition, a com-
piled version of the application using the profiled dynamic 
network methodology and generated by the Exelixi CUDA 
backend is made available to the optimization loop and is 
depicted in dark blue on the schema. During each iteration 
of the loop, the new mapping configuration is fed to the 
dynamic app, which is executed with this new mapping and 
generates new performance weights directly on the hard-
ware platform. These new weights are then integrated into 
the execution trace and used by the TURNUS performance 

(a) (b) (c) (d)

Figure 4  Illustration of the four static configurations required during 
profiling.

Figure  5  Design flow when doing design space exploration using 
tabu search and the static evaluation strategy.
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estimation engine to estimate the performance and provide 
insight for the analysis, allowing for the generation of neigh-
boring moves.

This methodology requires continuous access to the hard-
ware platform, as each new candidate mapping configuration 
needs to be evaluated by executing the profiled application. 
This methodology has no restrictions on the move genera-
tors that can be used; all the Neighborhood move generators 
defined in Section 4 and more can be used. This solution is 
relatively precise compared to the static methodology. How-
ever, it is the slowest due to the combination of full execu-
tion on the hardware platform with profiling weight genera-
tion and the TURNUS performance estimation engine.

5.3  Measured Evaluation

In this version of the Tabu search design space exploration, 
no estimation methodology is used, instead the performance 
are directly measure using the actual application on the hard-
ware platform. Figure 7 depicts this methodology variant. 
First, the initial mapping and the execution trace is provided 
by the user to the Tabu search meta-algorithm. In addition, 
a compiled version of the application using the dynamic 
network methodology and generated by the Exelixi CUDA 
backend is made available to the optimization loop and is 
depicted in dark blue on the schema. During each iteration 
of the loop, the new mapping configuration is fed to the 
dynamic app, which is executed with this new mapping 
directly on the hardware platform and the total execution 
time is measured. This information is then used directly to 
generate neighboring moves.

This methodology requires continuous access to the hard-
ware platform, as each new candidate mapping configuration 

needs to be evaluated by executing the dynamic application. 
This solution is the most precise, as the evaluation takes 
place in a setting that is quasi-identical to the ’production 
execution’ and is also the fastest, as no post-mortem analysis 
is required and the performance evaluation time is as fast 
as the final execution time. However, not all the Neighbor-
hood move generators defined in Section 4 can be used. In 
particular, generators that use insight from the performance 
estimation engine to suggest a new mapping cannot be used. 
This is the case for the Balancing and Idle generators, which 
use the Idle metrics provided by the analysis.

6  Results

A simple program example has been selected to evaluate 
the methodologies introduced in this work. The application 
is based on well-known code and can be freely downloaded 
from the open-source Orc-apps Github project [39]. The 
goal is to determine how the different neighborhood move 
generators and design point evaluations affect the results 
obtained when exploring the design space using Tabu 
search. This example also illustrates how the method can be 
applied to optimize any particular application.

6.1  Experimental Setup

This methodology can be applied to any heterogeneous plat-
form that is compatible with the CUDA computing platform 
and programming interface, whether it is an embedded plat-
form like NVIDIA Jetson or a data center platform such as 
NVIDIA Grace. The experimental results were performed 
using the Nvidia GeForce GTX 1660 SUPER, which has 
6 Gigabytes of VRAM, as the GPU and the Intel Skylake 

Figure  6  Design flow when doing design space exploration using 
tabu search and the dynamic evaluation strategy.

Figure  7  Design flow when doing design space exploration using 
tabu search and the measured evaluation strategy.
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i5-6600, which has 16 Gigabytes of DDR4 memory, as the 
CPU. To ensure reproducibility, the clock speed of the GPU 
was kept at 1.8GHz and the clock speed of the CPU at 2.9GHz.

6.2  IDCT Example

The synthetic application used to demonstrate this technique 
is derived from the JPEG decoder available on the Orc-app 
Github project [39]. Figure 8 illustrates the top-level repre-
sentation of the dataflow network. It consists of a Source and 
a Sink actor, which are responsible for feeding and pulling 
data to and from the network, respectively. Additionally, the 
network comprises a chain of five IDCT actors that compute 
the two-dimensional inverse discrete cosine transform on 
their input, this algorithm is used in video and image decod-
ing [40, 41]. The IDCT operates on an 8x8 matrix containing 
frequency domain information to convert it into a block of 
image data. To execute the two-dimensional IDCT, it is bro-
ken down into a combination of two separate one-dimensional 
IDCTs through a process known as row-column decomposi-
tion. This chain of actors is a representation of an intensive 
computation that could be found in a real-world application.

All results have been generated allowing the solution to 
use a single CPU core and the parallel GPU partition. The 
initial partition for all DSE runs is set to the sequential CPU 
partition, with all actors mapped to it. The value T has been 
set to 20 minutes as in the related work [18], meaning the 
algorithm halt after 20 minutes without discovering a better-
performing configuration.

Table 1 presents the summary of experimental results 
obtained using three evaluation methods (Static, Dynamic, 
Measured) and four neighboring move generators (Balanc-
ing, Communication Frequency, Idle, Random). Addition-
ally, two composite generators were used: Joint, which com-
bines moves from the four move generators, and Prob, which 
selects moves from one of the four generators with a 25% 
probability initially, increasing over time if the generator 
yields better configurations. The third column in the table 
displays the number of configurations evaluated, while the 
fourth column shows the number of empty iterations, or the 
number of iterations where the move generator could not 
suggest a neighboring configuration from the current one. 
The "Time to best" column indicates the amount of time, in 
minutes, required to find the best-performing configuration 
among those tested. The "Best Perf" column shows the over-
all time needed, in seconds, to run the program using the best 
configuration found by the Tabu search algorithm. Table 2, 
shows the mapping of the bests/worst partitions between 
CPU and GPU and there corresponding performances.

The results show that the Measured evaluation methodol-
ogy was able to find the best time for mapping all actors to 
the GPU. The Joint Generator was found to be the most effi-
cient, as it found the best-performing configuration in under 3 

Table 1  Summary table of 
results with three evaluation 
methods (Static, Dynamic, 
Measured), and four 
neighboring move generators

Evaluation Generator # Iterations # Empty Iterations Time to Best 
[min]

Best Perf [sec]

Static Balancing 2 0 x 1.35
Comm Freq 1 x x 1.35
Idle 2 0 x 1.35
Random 2 0 x 1.35
Joint 2 0 x 1.35
Prob 2 0 x 1.35

Dynamic Balancing 2 0 20 5.6
Comm Freq 1 x x 1.35
Idle 2 0 21 4.86
Random 2 0 39 2.64
Joint 2 0 22 4.66
Prob 2 0 23 4.94

Measured Comm Freq 1 x x 1.35
Random 212 77 5 1.17
Joint 205 71 3 1.17
Prob 3030426 3030376 5 1.17

Figure 8  Illustration of the test RVC-CAL IDCT dataflow network.
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minutes with the lowest number of total tries (205). In contrast, 
the Static and Dynamic methodologies were found to be too 
slow to generate meaningful results within the given time limit, 
with one simulation taking around 18 minutes. This approach 
would likely require increasing significantly the T value. How-
ever, the insights offered by these two other methods are still 
valuable as shown in the related work cited in the introduction 
of this paper. This showed that to improve the results, it would 
be beneficial to investigate, in further research, combining 
the speed of the Measured evaluation methodology with the 
insights gained from the Static and Dynamic methods.

It should be noted that the limited information available 
for the Communication Frequency move generator is due 
to the fact that, starting from the initial configuration, it is 
unable to generate any neighboring configurations as the 
mapping is already balanced. However, this does not mean 
that this move generator is not useful.

It is also interesting to note that the Measured Joint 
method outperforms the Measured Random and Comm 
Freq methods. The Measured Joint method combines the 
benefits of different generators, which leads to a faster and 
more efficient search for good partitions. The Random gen-
erator is good for exploring the search space and avoiding 
getting stuck in a local minimum. On the other hand, other 
generators may converge faster to a good local partition. By 
combining these generators in the Measured Joint method, 
the algorithm can explore the search space efficiently and 
converge quickly to a good partition. Overall, the Meas-
ured Joint method seems to strike a good balance between 
exploration and exploitation of the search space, leading to 
improved performance compared to other methods.

7  Conclusions

The presented work describes an effective design space explora-
tion approach for partitioning and mapping dataflow programs 
on CPU-GPU heterogeneous systems. To do so it used the 
Tabu search meta-heuristic optimization algorithm with sev-
eral implemented exploration strategies to find efficient design 
point. Through experimentation on a dataflow program, the 
effectiveness of this approach in addressing the NP-complete 
problem of partitioning and mapping dataflow components 

onto heterogeneous processing elements was demonstrated. 
The efficiency and quality of the different move generators 
and design point evaluation methodology have been compared.

As a potential future research direction, the design space 
methodology could be expanded by incorporating SIMD 
parameters as part of the configuration input for each actor. 
The specific number of SIMD cores assigned to a specific 
action of a specific actor can significantly impact perfor-
mance. For the dynamic and measured method, this would 
require defining a proper input method or API to specify the 
number of SIMD cores used at instantiation time. For the 
static methodology, it would involve profiling actors with a 
range of different SIMD numbers and providing all of these 
weights as input at the beginning of the DSE.
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