
Vol.:(0123456789)1 3

Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-023-01884-6

Design Space Exploration for Partitioning Dataflow Program
on CPU‑GPU Heterogeneous System

Aurelien Bloch1 · Simone Casale‑Brunet1 · Marco Mattavelli1

Received: 19 January 2023 / Revised: 11 July 2023 / Accepted: 13 July 2023
© The Author(s) 2023

Abstract
Dataflow programming is a methodology that enables the development of high-level, parametric programs that are independ-
ent of the underlying platform. This approach is particularly useful for heterogeneous platforms, as it eliminates the need to
rewrite application software for each configuration. Instead, it only requires new low-level implementation code, which is
typically automatically generated through code generation tools. The performance of programs running on heterogeneous
parallel platforms is highly dependent on the partitioning and mapping of computation to different processing units. This is
determined by parameters that govern the partitioning, mapping, scheduling, and allocation of data exchanges among the
processing elements of the platform. Determining the appropriate parameters for a specific application and set of architectures
is a complex task and is an active area of research. This paper presents a novel methodology for partitioning and mapping
dataflow programs onto heterogeneous systems composed of both CPUs and GPUs. The objective is to identify the program
configuration that provides the most efficient way to process a typical dataflow program by exploring its design space. This
is an NP-complete problem that we have addressed by utilizing a design space exploration approach that leverages a Tabu
search meta-heuristic optimization algorithm driven by analysis of the execution trace graph of the program. The heuristic
algorithm effectively identifies a solution that maps actors to processing units while improving overall performance. The
parameters of the heuristic algorithm, such as the time limit and the proportion of neighboring solutions explored during each
iteration, can be fine-tuned for optimal results. Additionally, the proposed approach allows for the exploration of solutions
that do not utilize all hardware resources if it results in better performance. The effectiveness of the proposed approach is
demonstrated through experimental results on dataflow programs.

Keywords Heterogeneous systems · GPU programming · Source-to-source compiler · Parallel computing · RVC-CAL ·
Dynamic dataflow programs · Design space exploration · Tabu-search

1 Introduction

The increasing demand for high computational power in pro-
cessing platforms is driven by the growing needs of mod-
ern application programs. The limitations of Moore’s Law
in creating smaller circuit components and the challenges
posed by rising logic gate frequencies have led to the growing

adoption of heterogeneous processing platforms. In order to
effectively leverage the available computational power of
these platforms, advanced levels of domain-specific hard-
ware specialization need to be explored as opposed to sim-
ply scaling up existing processing elements. As examples,
Microsoft Arm [1], Nvidia Grace [2] and Jetson [3, 4], Apple
silicon [5]) are all clear demonstrations of this trend whether
it is for embedded system, personal computing or data center.

Dataflow programming has been demonstrated to be an
effective method for managing large and parallel applica-
tions, addressing portability concerns across different plat-
forms, and effectively exploring and exploiting parallelism
opportunities [6, 7]. This is because dataflow languages are
designed to expose the parallelism inherent in the process
of executing tasks on data. This enables the rapid evalua-
tion of various settings, such as mapping software kernels

 * Aurelien Bloch
 aurelien.bloch@epfl.ch

 Simone Casale-Brunet
 simone.casalebrunet@epfl.ch

 Marco Mattavelli
 marco.mattavelli@epfl.ch

1 EPFL SCI-STI-MM, École Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland

http://orcid.org/0000-0003-3893-5103
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01884-6&domain=pdf

 Journal of Signal Processing Systems

1 3

to hardware processing elements, without incurring the
costly redesigns required in traditional imperative and/or
platform-specific software programming. These redesigns
often require manual rewriting and can consume significant
amounts of developer time.

Over time, dataflow-based computing models have been
effectively utilized in a plethora of industries, including,
but not limited to, digital codecs implementation, high-
frequency financial applications, and genomics analysis.
Due to their expressiveness, mathematical rigor in the
models, and independence from a specific architecture,
these models have also been employed as a reference and
standardization language in digital video coding, specifi-
cally for the definition of the recently developed MPEG
AVC and HEVC video codecs [8–11].

As the utilization of diverse processing platforms
becomes more prevalent, new areas of inquiry have emerged
pertaining to the optimal configuration for scheduling, map-
ping, and partitioning of dataflow-based applications on a
given platform. The dataflow model, as it is based on the
concept of independent black-boxed units that communi-
cate with one another using specific data channels. These
boxes encapsulate the execution kernels that independently
and atomically execute the operations designated for them.
Communication between these boxes occurs solely through
communication buffers, where data packets (termed tokens)
are utilized for information exchange. However, even for
simple applications, the number of configurations that must
be evaluated is excessive for developers to test through trial
and error or to exhaustively test all possible combinations.
Therefore, systematic and automated methods are essential
for identifying and evaluating efficient configurations and
designs. Consequently, design space exploration methodolo-
gies and tools are crucial in the design process and explora-
tion of effective design points. To effectively identify an
efficient set of configuration parameters that meet specific
performance requirements, automation tools are impera-
tive. One such tool is TURNUS, a design space explora-
tion tool developed through research by the authors of this
paper. The methodology underlying this tool is based on
the analysis of an execution graph of the program, called
Execution Trace Graph (ETG). In this graph, each execu-
tion of a kernel (actor) is represented by a vertex, which are
then connected based on functional and data dependencies.
This design space exploration technique is made effective
because, thanks to the program’s dataflow computation
model (MoC), it is possible to systematically assign weights
to each node and edge of the graph and analyze it through
heuristics based on graph theory [12, 13]. This design space
exploration methodology has been successfully applied on a
wide range of heterogeneous hardware platforms, including
Many-Core [14], FPGAs [15], and MPSoCs [16, 17] plat-
forms. These platforms can be standalone or integrated as a

component of a larger heterogeneous system. However, the
automatic design space exploration for CPU-GPU heteroge-
neous systems remains an open area of research. The unique
architecture of GPUs poses challenges, such as limited con-
trol over scheduling and mapping on hardware resources and
the dissimilar APIs used to program them.

This work aims to expand upon and provide a compre-
hensive summary of the design and optimization meth-
odology that is based on dataflow models, as previously
presented in [18, 19]. To do so, this work uses the hetero-
geneous CPU/GPU dataflow methodology from [20] and
expand and integrate the profiling and performance esti-
mation methodologies from [21–23]. The ultimate objec-
tive of this work is to automatically explore the design
space for the partitioning and mapping of dataflow appli-
cations onto heterogeneous systems using a Tabu search
meta-algorithm.

The main novel contributions of this work can be sum-
marized as follows:

• The adaptation and development of an extension of the
Tabu search algorithm to specifically address the needs
and requirements of the heterogeneous platform meth-
odology. This includes ensuring that the algorithm can
efficiently and effectively handle the unique challenges
presented by a heterogeneous system.

• The development of new static and dynamic analysis
methodologies suitable for heterogeneous CPU-GPU sys-
tems, specifically tailored to the characteristics of these
systems, which can help to improve the performance of
dataflow applications running on them.

• The further extension and improvement of a simulator
engine suitable for performance estimation of dynamic
applications. This simulator engine is designed to pro-
vide accurate and reliable performance estimates for
dataflow applications running on heterogeneous systems.

• The adaptation of the neighboring move generator to the
specific heterogeneous CPU-GPU context. Addition-
ally, it allows for the under-utilization of resources when
necessary to optimize performance and achieve the best
possible outcomes.

The paper is structured as follows: Section 2 outlines the
necessary components for exploring the design space of a
heterogeneous CPU-GPU platform. In Section 3, the Tabu
search algorithm developed for this work is presented, while
Section 4 defines and describes the neighborhood move gen-
erator. Section 5 introduces the three different methodolo-
gies used for evaluating the design points. The experimen-
tal results and comparisons of the different methodologies
are presented in Section 6. Finally, Section 7 concludes the
paper and highlights potential research objectives and future
directions.

Journal of Signal Processing Systems

1 3

2 Design Space Exploration

This section presents a summary of the main features of
a dataflow programming model that utilizes the concept
of actors. Additionally, a review of the key elements nec-
essary for exploring the design space of dataflow appli-
cations using the analysis and optimization methodology
developed by the authors in [12, 13] is provided.

2.1 Dataflow Programming Model

A Dataflow Process Network (DPN) is a system in which
multiple processes operate simultaneously and exchange
information through unidirectional, first-in-first-out (FIFO)
channels [24]. In this model, writing to the channel is done
without interruption, while reading from it is blocking.
In a dataflow process network, processes are made up
of repeated cycles of computation known as firings of a
dataflow actor. An actor defines a set of often functional,
atomic tasks that comprise the overall processing.

In a dataflow network, the flow of data (referred to
as tokens) between actors is clearly defined and access
to shared data is only possible by transmitting packets of
data. The research illustrated in this work is based on a
dynamic dataflow Model of Computation (MoC) that uses
a variation of the DPN mentioned previously. A key aspect
of this MoC is that an actor’s execution is broken down
into a series of atomic computations, also known as fir-
ings. During each firing, an actor can retrieve a certain
amount of input data, transmit a certain amount of output
data, and modify its local memory if necessary, based on
the input tokens and the values of its state variables. The
specific computation performed by a single actor during
a firing is referred to as an action. The action executed
at any given time is determined by the input tokens and
the values of the actor’s state variables. This lack of data
race and critical sections leads to more robust behavior
in dataflow software, regardless of the computation poli-
cies being used, whether they are fully parallel or involve
interleaving of actor executions [25].

In recent years, a wide range of software languages have
been utilized to execute the semantics of dataflow pro-
grams [26]. Some imperative languages such as Python,
Java, and C/C++ have been improved by incorporating
parallel operators while new languages supporting data-
flow features like SISAL [27] and Ptolemy [28] have been
created and standardized. Among this diverse selection,
RVC-CAL [8] is the only formalized dataflow program-
ming language that has ISO compliance and fully encom-
passes the complete behavioral characteristics of the DPN
MoC. RVC-CAL has been employed as a reference and

standardization language for novel digital video codec
standards such as MPEG AVC and HEVC [8–11]. Each
RVC-CAL actor is made up of a group of atomic firing
functions, referred to as actions, and a set of internal mem-
ory that cannot be accessed by other actors, whether they
are neighboring or not. Only one function can be executed
at a time while the actor is in operation. To put it another
way, for each actor, the collection of firing rules deter-
mines when an action is permitted to be fired. Each of
these rules can be expressed as a function of the actor’s
internal variables and the availability and values of input
tokens. More specifically, a firing rule can be defined as a
Boolean function, including a selection of the action input
pattern (i.e., specifying the required number of tokens for
the action to be fired and to be removed from FIFO buff-
ers) and the action guard condition (i.e., a Boolean expres-
sion defined using the actor’s internal memory and the
values of consumed input data).

The concepts in question are illustrated through the use of
Fig. 1, which presents a basic example of an RVC-CAL data-
flow application software. The graphic model of the network
of actors in the example can be found in Fig. 1a. The data-
flow program is made up of five instances of actors, including
Prod, PingPong, CopyTokensA, CopyTokensB, and Merger.
The RVC-CAL software code for the Prod actor is depicted
in Fig. 1b, which features a single action that generates one
token per execution and increments an internal counter. Addi-
tionally, a guard is in place to prevent the action from being
executed more than four times. In the implementation of the
PingPong actor, as seen in Fig. 1d, a schedule expression that
function as a Finite State Machine (FSM). The execution of
actions triggers a change in the actor’s state, and the FSM acts
as an additional element in determining which action will be
executed next. In this example, the FSM alternates between
executing the two available actions.

The RVC-CAL programming language is known for its
high level of abstraction, making it platform-independent.
By utilizing a high level representation of the program’s
execution, it is possible to create optimized, low-level code
for various parallel architectures and platforms. The article
utilizes the Open RVC-CAL Compiler (Orcc) [29, 30], for its
compilation process. It’s worth mentioning that RVC-CAL
compilation is also supported by other open-source compil-
ers such as Caltoopia [31, 32], Tÿcho [33], Cal2Many [34,
35], DAL [36] or StreamBlocks [37].

2.2 Execution Modeling

Dataflow programs can be effectively partitioned and
mapped, resulting in correct executions without the need
for software rewriting. However, this approach presents its
own challenges in terms of identifying the most efficient

 Journal of Signal Processing Systems

1 3

configurations for partitioning, mapping, and scheduling.
Even for simple designs, the number of possible design
points is so large that it would be impractical or infeasible to
be done manually through trial and error. This necessitates
the use of automatic and systematic methods for identifying
and evaluating optimal design point configurations.

TURNUS [12, 13] is a design space exploration frame-
work that has been developed by the authors of this work
to address this purpose. The tool is based on a high-level
abstract model of computation, generated by the dataflow
network structure and the actor execution model, which

is further enriched by profiling measures of each atomic
execution obtained on the specific heterogeneous process-
ing platform. This allows for the exploration of the con-
figuration design space and identification of efficient con-
figurations. Figure 2 shows the design space exploration
tool flow used when working with TURNUS to optimize
dataflow program in the ORCC framework. First of all the
CAL representation of the application program together with
the different configurations files (network, partition, buffer
sizes) are fed to the compiler. An optimization loop is ini-
tiated, which continues until the user is satisfied with the
performance achieved. The optimization objectives can vary,
such as critical path reduction, minimizing overall execu-
tion time, maximizing resource utilization, and so on. In
the particular context of this paper, the loop runs for a fixed
amount of time predetermined by the user at the start of the
process. This loop start by the compiler generating a plat-
form specific source code implementation for the targeted
architecture containing performance evaluation code. Then,

(a)

(b)

(c)

(d)

(e)

Figure 1 RVC-CAL program example: dataflow network topology
and actors source code.

Figure 2 Design space Exploration - Tool flow for parameters opti-
mization.

Journal of Signal Processing Systems

1 3

this code is compiled or synthesized to an executable using
compilers specific to the platform (here the Exelixi CUDA
backend). Once executed and the performance metric from
the platform extracted and the Execution trace graph (ETG)
is labeled, the performance estimation of the application can
then be evaluated with different configuration, without the
necessity to compile and execute each time. The system then
perform analysis of the ETG to evaluate different evaluation
such as the critical path evaluation or the buffer dimensions
to propose new configurations to be tested on the platform.

2.3 Heterogeneous CPU/GPU Platform Modeling

The field of automatic design space exploration for CPU/
GPU heterogeneous systems remains an open research
topic. Although GPU platforms are also programmable
through software, the methods used for multi-core architec-
tures cannot be directly applied to CPU/GPU heterogene-
ous systems due to numerous differences between the two.
One such difference is the limited granularity of the APIs
available. Even the advanced CUDA API, which provides
fine-grained control over the hardware and open access to
software context and data movement, does not offer access
to scheduling and mapping of software kernels to avail-
able computational resources, as this task is delegated to
the CUDA runtime. Another difference is clock-accurate
profiling, which becomes more challenging with actors
running on platforms with different frequencies. This issue
is addressed in the methodology presented in Sections 5.1
and 5.2 through data normalization. Another crucial aspect
is data movement, as on-chip cache coherency cannot handle
this issue automatically. To transfer data between the CPU
main memory and the GPU main memory, as well as the
faster GPU shared memory and register-file, explicit data
movement is required. Therefore, proper profiling of FIFO
communication is essential, particularly for SIMD reads and
writes. For a more detailed discussion of this issue, inter-
ested readers can refer to [23]. Additionally, compared to
FPGA platform synthesis, software generation, compilation,
and dataflow application loading on CPU/GPU heterogene-
ous platforms are relatively fast. This advantage is lever-
aged in the design point evaluation methodology presented
in Sections 5.2 and 5.3 by enabling direct execution on the
platform at each iteration.

3 Tabu Search

The Tabu Search (TS), introduced by Glover [38], is a meta-
heuristic optimization algorithm that can be applied to solve
a wide range of optimization problems. TS involves itera-
tively exploring the solution space, making moves to solu-
tions that are deemed "better" than the current one based on

the given evaluation function. In the context of this study,
the evaluation function refers to the minimal overall runtime
of the application that needs to be optimized.

The core algorithm incorporates an explicit memory
structure, known as the Tabu list, to prevent revisiting pre-
viously explored solutions and promote the exploration of
the solution space, thereby avoiding getting stuck in local
optima. This list, known as the Tabu list, can be adjusted in
size and content to balance between exploration and exploi-
tation in the search, and to ensure good overall performance
in terms of quality of results, speed, robustness, simplicity
and flexibility. It can be applied to problems with continuous
or discrete variables, multiple objectives and is often used
when the search space is large or the optimization problem
is difficult to solve with other methods. In order to adapt
TS to a specific problem, the representation of solutions,
the neighborhood structure, the Tabu list structure, and the
stopping criterion must be designed.

The Tabu meta-algorithm is applied in the context of par-
titioning actors across CPU and GPU partitions in order to
find a solution that is defined as a map of actors and process-
ing units (sequential CPU partitions or the parallel GPU par-
tition). The number of actors is fixed by the dataflow appli-
cation model, and the initial partition provides the upper
bounds for the number of CPU and GPU partitions that can
be used in a valid solution. It is not required that all parti-
tions be used (meaning, no actor is be mapped to them), and
allowing empty partitions as valid solutions allows for the
discovery of optimal solutions that may not use all hardware
resources if it results in better performance. It is important to
note that not all actors are necessarily compatible with being
run on the GPU, so the initial partition provided to the TS
meta-algorithm should assign actors that can be mapped to
either the CPU or GPU to the GPU partition, and actors that
can only run on the CPU to a CPU partition.

To move from a valid solution to a neighboring one, the
following types of moves are possible:

• REINSERT: move an actor from one partition to another.
• SWAP: exchanging the partitions of two actors that are

currently assigned to different partitions. This can be
done by moving each actor to the other actor’s partition.

These basic moves can be combined in various ways to cre-
ate different exploration strategies. Some examples of these
strategies are discussed in Section 4.

TS can tuned using a couple of parameters a, b, t
ab

 ,
� and T. When an actor, j, is transferred from one par-
tition, � , to another, it is prohibited from returning to �
for a certain number of iterations, t

ab
 . This number, t

ab
 ,

is a randomly chosen integer from the range [a, b], and
in previous experiments outlined in [18], the values of a
and b were set to 5 and 15, respectively. Smaller values

 Journal of Signal Processing Systems

1 3

of t
ab

 do not allow for escape from local optima, while
larger values do not allow for intensification of the search
around promising solutions. There are two other adjust-
able parameters in the TS algorithm: � (the proportion of
neighboring solutions explored during each iteration) and
T (the time limit). If the time limit T is reached, the search
will be immediately terminated and the best solution found
thus far will be returned. With a fixed T, a small value
of � results in more iterations being performed but fewer
neighbors being examined in each iteration, resulting in
more diversification. A large value of � , on the other hand,
plays an intensification role (more solutions around the
current one are explored). Finally, a small (large) value of
t
ab

 strengthens the intensification (diversification) ability
of the search, respectively.

Figure 3 shows the generic design flow for using TS
for design space exploration in the context of this work.
The optimization process begins with a user-provided
initial mapping and execution trace, and generates a
tentative new mapping solution. The initial mapping
and execution trace provided by the user can have a big
impact on the efficacy of the solution. Regarding the
execution trace the input stimulus provided to the appli-
cation during the trace generation need to be a good
representation of the general input space so that the con-
clusion drawn would be applicable to the performance
of the application in production. Regarding the initial
mapping, since the size of the design space is too big
to feasibly be fully explore, starting from an initially
good partition is very important to lead to best possible
results using this methodology. This new suggested solu-
tion is then evaluated to determine its performance and
analyzed to provide the meta-algorithm with sufficient
information to continue exploring the design space.

4 Neighborhood Move Generator

Below is a list of neighborhood move generators used in this
work during the Tabu search. They are mainly implemented
using REINSERT moves. They can be used on their own
during a design space exploration loop, or multiple of them
can be combined.

• Balancing (N(B)): move randomly an actor from the parti-
tion with the least idle time and move it to the partition
with the most idle time. The partition idle time is defined
as the time frame during which no actor are executing
due to constraint such as dependency or others.

• Idle (N(I)): move consecutively each actor whose idle
time is greater than its processing time to the most idle
partition that is different from the current partition of
that actor. The idle time of an actor is defined as the time
frame when it could execute according to the satisfac-
tion of its firing rules, but it has to wait to be scheduled
because another actor in the same partition is currently
executing.

• Communication frequency (N(CF)): if an actor has a
higher communication frequency (i.e., more token trans-
fers) with actors in a given partition than with the ones in
its current partition, move the actor to that partition.

• Random (N(R)): choose randomly an actor and move it to
a different partition also randomly chosen.

5 Design Point Evaluations

Three different DSE optimization loops have been developed
and used for comparison in this paper. Each of them uses a
different design point evaluation methodology. These are
the Static, Dynamic, and Measured methodologies and are
presented in the following subsections.

5.1 Static Evaluation

In this version of the Tabu search design space exploration,
the static heterogeneous estimation is used to evaluate the
performance of the proposed new mapping configuration,
as described in [22]. To evaluate performance, profiling
weights are necessary for all possible combinations of FIFO
buffers and actor platform assignments (i.e., CPU or GPU).
Four distinct configurations were analyzed and are depicted
in Fig. 4. The first and second configurations consist of all
actors assigned to either CPUs or GPUs respectively, allow-
ing for the evaluation of computation time of the action body
and scheduling time on each platform. The other two con-
figurations involve the use of a special HostFifo represented

Figure 3 Generic design flow when doing design space exploration
using tabu search.

Journal of Signal Processing Systems

1 3

in blue with the number 2, allowing for the measurement of
data transmission time for cross-platform communication
(i.e., CPU-to-GPU or GPU-to-CPU). This approach consid-
ers all possible design points.

Figure 5 illustrates this methodology variant. Initially, the
initial mapping is provided, along with the execution trace
and a heterogeneous set of weights (generated as described
previously) that have been generated using that initial map-
ping on the actual hardware platform using the profiled
application generated by the Exelixi CUDA backend. This
information is then used to suggest a new mapping, which is

fed to the ’Weights Updater’. The appropriate weights from
the heterogeneous set of weights are selected based on the
new mapping, meaning that the appropriate set of weights
will be used depending on whether an actor is being mapped
to a CPU or GPU. The same applies for the four sets of
communication weights (CPU-CPU, CPU-GPU, GPU-CPU,
GPU-GPU) based on the platform the actor it is communi-
cating to is assigned. Finally, the updated weights are fed to
the performance estimation engine, and the model analysis
is conducted to extract information that helps with the neigh-
boring move generation, after which the optimization loop
can start again.

This methodology does not necessitate continuous access
to the hardware platform as only the four static configura-
tions need to be evaluated beforehand. During the design
space exploration loop, only post-mortem access to the
weights and execution trace is needed. This methodology
places no restrictions on the move generators that can be
used and any of the Neighborhood move generators defined
in Section 4 or others can be used. However, it should be
noted that this solution is not the most precise in terms of
performance evaluation and may be relatively slow due to
the use of the TURNUS performance estimation engine.

5.2 Dynamic Evaluation

In this version of the Tabu search design space exploration,
the dynamic heterogeneous estimation described in [23] is
used to evaluate the performance of the proposed new map-
ping configuration. In summary, the dynamic methodology
leverages a feature from the Exelixi CUDA backend that
generates a tailored version of the application for optimi-
zation. This software implementation packages both the
instrumented CPU and GPU versions for each actor within
the same binary. At runtime, the actual mapping configura-
tion is provided and only the correct version is instantiated
with the appropriate communication channel using the cor-
rect FIFO implementation. This allows for the generation
of performance weights in the exact configuration, with the
same resource contention and utilization as during the actual
execution of the application program.

Figure 6 depicts this methodology variant. First, the
initial mapping and the execution trace is provided by the
user to the Tabu search meta-algorithm. In addition, a com-
piled version of the application using the profiled dynamic
network methodology and generated by the Exelixi CUDA
backend is made available to the optimization loop and is
depicted in dark blue on the schema. During each iteration
of the loop, the new mapping configuration is fed to the
dynamic app, which is executed with this new mapping and
generates new performance weights directly on the hard-
ware platform. These new weights are then integrated into
the execution trace and used by the TURNUS performance

(a) (b) (c) (d)

Figure 4 Illustration of the four static configurations required during
profiling.

Figure 5 Design flow when doing design space exploration using
tabu search and the static evaluation strategy.

 Journal of Signal Processing Systems

1 3

estimation engine to estimate the performance and provide
insight for the analysis, allowing for the generation of neigh-
boring moves.

This methodology requires continuous access to the hard-
ware platform, as each new candidate mapping configuration
needs to be evaluated by executing the profiled application.
This methodology has no restrictions on the move genera-
tors that can be used; all the Neighborhood move generators
defined in Section 4 and more can be used. This solution is
relatively precise compared to the static methodology. How-
ever, it is the slowest due to the combination of full execu-
tion on the hardware platform with profiling weight genera-
tion and the TURNUS performance estimation engine.

5.3 Measured Evaluation

In this version of the Tabu search design space exploration,
no estimation methodology is used, instead the performance
are directly measure using the actual application on the hard-
ware platform. Figure 7 depicts this methodology variant.
First, the initial mapping and the execution trace is provided
by the user to the Tabu search meta-algorithm. In addition,
a compiled version of the application using the dynamic
network methodology and generated by the Exelixi CUDA
backend is made available to the optimization loop and is
depicted in dark blue on the schema. During each iteration
of the loop, the new mapping configuration is fed to the
dynamic app, which is executed with this new mapping
directly on the hardware platform and the total execution
time is measured. This information is then used directly to
generate neighboring moves.

This methodology requires continuous access to the hard-
ware platform, as each new candidate mapping configuration

needs to be evaluated by executing the dynamic application.
This solution is the most precise, as the evaluation takes
place in a setting that is quasi-identical to the ’production
execution’ and is also the fastest, as no post-mortem analysis
is required and the performance evaluation time is as fast
as the final execution time. However, not all the Neighbor-
hood move generators defined in Section 4 can be used. In
particular, generators that use insight from the performance
estimation engine to suggest a new mapping cannot be used.
This is the case for the Balancing and Idle generators, which
use the Idle metrics provided by the analysis.

6 Results

A simple program example has been selected to evaluate
the methodologies introduced in this work. The application
is based on well-known code and can be freely downloaded
from the open-source Orc-apps Github project [39]. The
goal is to determine how the different neighborhood move
generators and design point evaluations affect the results
obtained when exploring the design space using Tabu
search. This example also illustrates how the method can be
applied to optimize any particular application.

6.1 Experimental Setup

This methodology can be applied to any heterogeneous plat-
form that is compatible with the CUDA computing platform
and programming interface, whether it is an embedded plat-
form like NVIDIA Jetson or a data center platform such as
NVIDIA Grace. The experimental results were performed
using the Nvidia GeForce GTX 1660 SUPER, which has
6 Gigabytes of VRAM, as the GPU and the Intel Skylake

Figure 6 Design flow when doing design space exploration using
tabu search and the dynamic evaluation strategy.

Figure 7 Design flow when doing design space exploration using
tabu search and the measured evaluation strategy.

Journal of Signal Processing Systems

1 3

i5-6600, which has 16 Gigabytes of DDR4 memory, as the
CPU. To ensure reproducibility, the clock speed of the GPU
was kept at 1.8GHz and the clock speed of the CPU at 2.9GHz.

6.2 IDCT Example

The synthetic application used to demonstrate this technique
is derived from the JPEG decoder available on the Orc-app
Github project [39]. Figure 8 illustrates the top-level repre-
sentation of the dataflow network. It consists of a Source and
a Sink actor, which are responsible for feeding and pulling
data to and from the network, respectively. Additionally, the
network comprises a chain of five IDCT actors that compute
the two-dimensional inverse discrete cosine transform on
their input, this algorithm is used in video and image decod-
ing [40, 41]. The IDCT operates on an 8x8 matrix containing
frequency domain information to convert it into a block of
image data. To execute the two-dimensional IDCT, it is bro-
ken down into a combination of two separate one-dimensional
IDCTs through a process known as row-column decomposi-
tion. This chain of actors is a representation of an intensive
computation that could be found in a real-world application.

All results have been generated allowing the solution to
use a single CPU core and the parallel GPU partition. The
initial partition for all DSE runs is set to the sequential CPU
partition, with all actors mapped to it. The value T has been
set to 20 minutes as in the related work [18], meaning the
algorithm halt after 20 minutes without discovering a better-
performing configuration.

Table 1 presents the summary of experimental results
obtained using three evaluation methods (Static, Dynamic,
Measured) and four neighboring move generators (Balanc-
ing, Communication Frequency, Idle, Random). Addition-
ally, two composite generators were used: Joint, which com-
bines moves from the four move generators, and Prob, which
selects moves from one of the four generators with a 25%
probability initially, increasing over time if the generator
yields better configurations. The third column in the table
displays the number of configurations evaluated, while the
fourth column shows the number of empty iterations, or the
number of iterations where the move generator could not
suggest a neighboring configuration from the current one.
The "Time to best" column indicates the amount of time, in
minutes, required to find the best-performing configuration
among those tested. The "Best Perf" column shows the over-
all time needed, in seconds, to run the program using the best
configuration found by the Tabu search algorithm. Table 2,
shows the mapping of the bests/worst partitions between
CPU and GPU and there corresponding performances.

The results show that the Measured evaluation methodol-
ogy was able to find the best time for mapping all actors to
the GPU. The Joint Generator was found to be the most effi-
cient, as it found the best-performing configuration in under 3

Table 1 Summary table of
results with three evaluation
methods (Static, Dynamic,
Measured), and four
neighboring move generators

Evaluation Generator # Iterations # Empty Iterations Time to Best
[min]

Best Perf [sec]

Static Balancing 2 0 x 1.35
Comm Freq 1 x x 1.35
Idle 2 0 x 1.35
Random 2 0 x 1.35
Joint 2 0 x 1.35
Prob 2 0 x 1.35

Dynamic Balancing 2 0 20 5.6
Comm Freq 1 x x 1.35
Idle 2 0 21 4.86
Random 2 0 39 2.64
Joint 2 0 22 4.66
Prob 2 0 23 4.94

Measured Comm Freq 1 x x 1.35
Random 212 77 5 1.17
Joint 205 71 3 1.17
Prob 3030426 3030376 5 1.17

Figure 8 Illustration of the test RVC-CAL IDCT dataflow network.

 Journal of Signal Processing Systems

1 3

minutes with the lowest number of total tries (205). In contrast,
the Static and Dynamic methodologies were found to be too
slow to generate meaningful results within the given time limit,
with one simulation taking around 18 minutes. This approach
would likely require increasing significantly the T value. How-
ever, the insights offered by these two other methods are still
valuable as shown in the related work cited in the introduction
of this paper. This showed that to improve the results, it would
be beneficial to investigate, in further research, combining
the speed of the Measured evaluation methodology with the
insights gained from the Static and Dynamic methods.

It should be noted that the limited information available
for the Communication Frequency move generator is due
to the fact that, starting from the initial configuration, it is
unable to generate any neighboring configurations as the
mapping is already balanced. However, this does not mean
that this move generator is not useful.

It is also interesting to note that the Measured Joint
method outperforms the Measured Random and Comm
Freq methods. The Measured Joint method combines the
benefits of different generators, which leads to a faster and
more efficient search for good partitions. The Random gen-
erator is good for exploring the search space and avoiding
getting stuck in a local minimum. On the other hand, other
generators may converge faster to a good local partition. By
combining these generators in the Measured Joint method,
the algorithm can explore the search space efficiently and
converge quickly to a good partition. Overall, the Meas-
ured Joint method seems to strike a good balance between
exploration and exploitation of the search space, leading to
improved performance compared to other methods.

7 Conclusions

The presented work describes an effective design space explora-
tion approach for partitioning and mapping dataflow programs
on CPU-GPU heterogeneous systems. To do so it used the
Tabu search meta-heuristic optimization algorithm with sev-
eral implemented exploration strategies to find efficient design
point. Through experimentation on a dataflow program, the
effectiveness of this approach in addressing the NP-complete
problem of partitioning and mapping dataflow components

onto heterogeneous processing elements was demonstrated.
The efficiency and quality of the different move generators
and design point evaluation methodology have been compared.

As a potential future research direction, the design space
methodology could be expanded by incorporating SIMD
parameters as part of the configuration input for each actor.
The specific number of SIMD cores assigned to a specific
action of a specific actor can significantly impact perfor-
mance. For the dynamic and measured method, this would
require defining a proper input method or API to specify the
number of SIMD cores used at instantiation time. For the
static methodology, it would involve profiling actors with a
range of different SIMD numbers and providing all of these
weights as input at the beginning of the DSE.

Funding Open access funding provided by EPFL Lausanne.

Data Availability The data and results obtained during the course of
this work are presented within this publication. The software utilized
to acquire said data is accessible through the following references: [12,
30, 39, 42].

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Microsoft ARM. https:// www. micro soft. com/ en- us/ surfa ce/ busin ess/
surfa ce- pro-x/ proce ssor. Online, Accessed January 2023.

 2. Nvidia grace. https:// nvidi anews. nvidia. com/ news/ nvidia- intro duces-
grace- cpu- super chip. Online, Accessed January 2023.

 3. Jetson AGX Xavier. https:// devel oper. nvidia. com/ embed ded/ jetson- agx-
xavier. Online, Accessed May 2020.

 4. NVIDIA Jetson Nano is a tiny AI computer for $99 and up. https://
lilip uting. com/ nvidia- jetson- nano- is-a- tiny- ai- compu ter- for- 99-
and- up. online, Accessed January 2023.

 5. Apple M1. https:// www. apple. com/ newsr oom/ 2020/ 11/ apple-
unlea shes- m1. Online, Accessed January 2023.

 6. Michalska, M., Casale-Brunet, S., Bezati, E., & Mattavelli,
M. (2017). High-precision performance estimation for the
design space exploration of dynamic dataf low programs.
IEEE Transactions on Multi-Scale Computing Systems, 4(2),
127–140.

 7. Goens, A., Khasanov, R., Castrillon, J., Hähnel, M., Smejkal T.,
& Härtig, H. (2017). Tetris: a multi-application run-time system
for predictable execution of static mappings. In Proceedings of
the 20th International Workshop on Software and Compilers for
Embedded Systems, pp. 11–20.

Table 2 Mapping of the bests/worst partitions between CPU and
GPU and there corresponding performances

Partition Perf [sec]

CPU GPU

Best Measured x All actors 1.17
Best Dynamic/Static All actors x 1.35
Worst All other actors Idct_5 5.6

http://creativecommons.org/licenses/by/4.0/
https://www.microsoft.com/en-us/surface/business/surface-pro-x/processor
https://www.microsoft.com/en-us/surface/business/surface-pro-x/processor
https://nvidianews.nvidia.com/news/nvidia-introduces-grace-cpu-superchip
https://nvidianews.nvidia.com/news/nvidia-introduces-grace-cpu-superchip
https://developer.nvidia.com/embedded/jetson-agx-xavier
https://developer.nvidia.com/embedded/jetson-agx-xavier
https://liliputing.com/nvidia-jetson-nano-is-a-tiny-ai-computer-for-99-and-up
https://liliputing.com/nvidia-jetson-nano-is-a-tiny-ai-computer-for-99-and-up
https://liliputing.com/nvidia-jetson-nano-is-a-tiny-ai-computer-for-99-and-up
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1

Journal of Signal Processing Systems

1 3

 8. I. 23001-4:2011. (2011). Information technology - MPEG systems
technologies - Part 4: Codec configuration representation.

 9. Ab Rahman, A. A. -H., Casale Brunet, S., Alberti, C., & Mattavelli,
M. (2013). Dataflow program analysis and refactoring techniques for
design space exploration: Mpeg-4 avc/h.264 decoder implementa-
tion case study. In 2013 Conference on Design and Architectures for
Signal and Image Processing, pp. 63–70.

 10. de Saint Jorre, D., Alberti, C., Mattavelli, M., & Casale-Brunet, S.
(2014). Exploring mpeg hevc decoder parallelism for the efficient
porting onto many-core platforms. In 2014 IEEE International
Conference on Image Processing (ICIP), pp. 2115–2119.

 11. Jerbi, K., Renzi, D., de Saint-Jorre, D., Yviquel, H., Raulet,
M., Alberti, C., & Mattavelli, M. (2014). Development and opti-
mization of high level dataflow programs: the HEVC decoder
design case. In 48th Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, USA.

 12. TURNUS source code repositoy. http:// github. com/ turnus. Online,
Accessed January 2023.

 13. Casale-Brunet, S. (2015). Analysis and optimization of dynamic
dataflow programs, Ph.D. dissertation, EPFL STI, Lausanne.

 14. Michalska, M., Casale-Brunet, S., Bezati, E., Mattavelli, M.,
& Janneck, J. (2016). Trace-based manycore partitioning of
stream-processing applications. In 2016 50th Asilomar Confer-
ence on Signals, Systems and Computers, pp. 422–426.

 15. Casale-Brunet, S., Bezati, E., & Mattavelli, M. (2017). Design
space exploration of dataflow-based smith-waterman fpga imple-
mentations, in. IEEE International Workshop on Signal Process-
ing Systems (SiPS), 2017, 1–6.

 16. Brunet, S. C., Bezati, E., Bloch, A., & Mattavelli, M. (2017). Pro-
filing of dynamic dataflow programs on mpsoc multi-core archi-
tectures. In 2017 51st Asilomar Conference on Signals, Systems,
and Computers, pp. 504–508.

 17. Bezati, E., Brunet, S. C., & Mattavelli, M. (2017). Execution trace
graph based interface synthesis of signal processing dataflow pro-
grams for heterogeneous mpsocs. In 2017 51st Asilomar Confer-
ence on Signals, Systems, and Computers, pp. 494–498.

 18. Michalska, M., Zufferey, N., & Mattavelli, M. (2016). Tabu search
for partitioning dynamic dataflow programs. Procedia Computer
Science, 80, 1577–1588.

 19. Michalska, M. M. (2017). Systematic design space exploration
of dynamic dataflow programs for multi-core platforms, Ph.D.
dissertation, EPFL STI, Lausanne.

 20. Bloch, A., Bezati, E., & Mattavelli, M. (2020). Programming Heteroge-
neous CPU-GPU Systems by High-Level Dataflow Synthesis. In 2020
IEEE Workshop on Signal Processing Systems (SiPS). IEEE, 1–6.

 21. Bloch, A., Casale-Brunet, S., & Mattavelli, M. (2021). Methodol-
ogies for synthesizing and analyzing dynamic dataflow programs
in heterogeneous systems for edge computing. IEEE Open Journal
of Circuits and Systems, 2, 769–781.

 22. Bloch, A., Brunet, S. C., & Mattavelli, M. (2021). Performance
estimation of high-level dataflow program on heterogeneous plat-
forms. In 2021 IEEE 14th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC). IEEE, 69–76.

 23. Bloch, A., Casale-Brunet, S., & Mattavelli, M. (2022). Perfor-
mance estimation of high-level dataflow program on heterogeneous

platforms by dynamic network execution. Journal of Low Power
Electronics and Applications, 12(3), 36.

 24. Lee, E., & Parks, T. (1995) Dataflow Process Networks. In Pro-
ceedings of the IEEE, pp. 773–799.

 25. Casale-Brunet, S. (2015). Analysis and optimization of dynamic
dataflow programs, Ph.D. dissertation.

 26. Johnston, W., Hanna, J., & Millar, R. (2004). Advances in dataflow pro-
gramming languages. ACM Computing Surveys (CSUR), 36(1), 1–34.

 27. Feo, J. T., Cann, D. C., & Oldehoeft, R. R. (1990). A report on
the sisal language project. Journal of Parallel and Distributed
Computing, 10(4), 349–366.

 28. Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J., Neuendorffer,
S., Sachs, S., & Xiong, Y. (2003). Taming heterogeneity - the ptolemy
approach. Proceedings of the IEEE, 91(1), 127–144.

 29. Yviquel, H., Lorence, A., Jerbi, K., Cocherel, G., Sanchez, A.,
& Raulet, M. (2013). Orcc: Multimedia Development Made Easy.
In Proceedings of the 21st ACM International Conference on Mul-
timedia, ser. MM ’13. ACM, pp. 863–866.

 30. Orcc source code repositoy. http:// github. com/ orcc/ orcc. Online,
Accessed January 2023.

 31. Siyoum, F., Geilen, M., Eker, J., von Platen, C., & Corporaal, H.
(2013). Automated extraction of scenario sequences from disci-
plined dataflow networks. In 2013 Eleventh ACM/IEEE Interna-
tional Conference on Formal Methods and Models for Codesign
(MEMOCODE 2013). IEEE, pp. 47–56.

 32. Caltoopia. https:// github. com/ Calto opia. Online, Accessed January
2023.

 33. Cedersjö, G., & Janneck, J. W. (2019). Tÿcho: a framework for
compiling stream programs. ACM Transactions on Embedded
Computing Systems (TECS), 18(6), 1–25.

 34. Gebrewahid, E. (2017). Tools to compile dataflow programs for
manycores, Ph.D. dissertation, Halmstad University Press.

 35. Savas, S., Ul-Abdin, Z., & Nordström, T. (2020). A framework to
generate domain-specific manycore architectures from dataflow
programs. Microprocessors and microsystems, 72, 102908.

 36. Boutellier, J., & Ghazi, A. (2015). Multicore execution of dynamic
dataflow programs on the distributed application layer. In IEEE
2015 global conference on signal and information processing
(GlobalSIP). IEEE, 893–897.

 37. Bezati, E., Emami, M., Janneck, J., & Larus, J. (2021). Stream-
blocks: A compiler for heterogeneous dataflow computing (tech-
nical report), arXiv preprint arXiv: 2107. 09333

 38. Glover, F. (1989). Tabu search-part i. ORSA Journal on comput-
ing, 1(3), 190–206.

 39. Orcc-Apps source code repositoy. https:// github. com/ orcc/ orc-
apps. Online, Accessed January 2023.

 40. Wallace, G. (1992). The jpeg still picture compression standard.
IEEE Transactions on Consumer Electronics, 38(1), xviii–xxxiv.

 41. Eric, H. (1992). Jpeg file interchange format version 1.02. http://
www. w3. org/ Graph ics/ JPEG/ jfif3. pdf

 42. CAL Exelixi Backends source code repositoy. https:// bitbu cket.
org/ exeli xi/ exeli xi- backe nds. Online, Accessed January 2023.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://github.com/turnus
http://github.com/orcc/orcc
https://github.com/Caltoopia
http://arxiv.org/abs/2107.09333
https://github.com/orcc/orc-apps
https://github.com/orcc/orc-apps
http://www.w3.org/Graphics/JPEG/jfif3.pdf
http://www.w3.org/Graphics/JPEG/jfif3.pdf
https://bitbucket.org/exelixi/exelixi-backends
https://bitbucket.org/exelixi/exelixi-backends

	Design Space Exploration for Partitioning Dataflow Program on CPU-GPU Heterogeneous System
	Abstract
	1 Introduction
	2 Design Space Exploration
	2.1 Dataflow Programming Model
	2.2 Execution Modeling
	2.3 Heterogeneous CPUGPU Platform Modeling

	3 Tabu Search
	4 Neighborhood Move Generator
	5 Design Point Evaluations
	5.1 Static Evaluation
	5.2 Dynamic Evaluation
	5.3 Measured Evaluation

	6 Results
	6.1 Experimental Setup
	6.2 IDCT Example

	7 Conclusions
	References

