Journal of Signal Processing Systems
https://doi.org/10.1007/511265-023-01884-6

=

Check for
updates

Design Space Exploration for Partitioning Dataflow Program
on CPU-GPU Heterogeneous System

Aurelien Bloch'® - Simone Casale-Brunet’ - Marco Mattavelli’

Received: 19 January 2023 / Revised: 11 July 2023 / Accepted: 13 July 2023
© The Author(s) 2023

Abstract

Dataflow programming is a methodology that enables the development of high-level, parametric programs that are independ-
ent of the underlying platform. This approach is particularly useful for heterogeneous platforms, as it eliminates the need to
rewrite application software for each configuration. Instead, it only requires new low-level implementation code, which is
typically automatically generated through code generation tools. The performance of programs running on heterogeneous
parallel platforms is highly dependent on the partitioning and mapping of computation to different processing units. This is
determined by parameters that govern the partitioning, mapping, scheduling, and allocation of data exchanges among the
processing elements of the platform. Determining the appropriate parameters for a specific application and set of architectures
is a complex task and is an active area of research. This paper presents a novel methodology for partitioning and mapping
dataflow programs onto heterogeneous systems composed of both CPUs and GPUs. The objective is to identify the program
configuration that provides the most efficient way to process a typical dataflow program by exploring its design space. This
is an NP-complete problem that we have addressed by utilizing a design space exploration approach that leverages a Tabu
search meta-heuristic optimization algorithm driven by analysis of the execution trace graph of the program. The heuristic
algorithm effectively identifies a solution that maps actors to processing units while improving overall performance. The
parameters of the heuristic algorithm, such as the time limit and the proportion of neighboring solutions explored during each
iteration, can be fine-tuned for optimal results. Additionally, the proposed approach allows for the exploration of solutions
that do not utilize all hardware resources if it results in better performance. The effectiveness of the proposed approach is
demonstrated through experimental results on dataflow programs.

Keywords Heterogeneous systems - GPU programming - Source-to-source compiler - Parallel computing - RVC-CAL -
Dynamic dataflow programs - Design space exploration - Tabu-search

1 Introduction adoption of heterogeneous processing platforms. In order to

effectively leverage the available computational power of

The increasing demand for high computational power in pro-
cessing platforms is driven by the growing needs of mod-
ern application programs. The limitations of Moore’s Law
in creating smaller circuit components and the challenges
posed by rising logic gate frequencies have led to the growing

< Aurelien Bloch
aurelien.bloch@epfl.ch

Simone Casale-Brunet
simone.casalebrunet@epfl.ch

Marco Mattavelli
marco.mattavelli@epfl.ch

' EPFL SCI-STI-MM, Ecole Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland

Published online: 31 July 2023

these platforms, advanced levels of domain-specific hard-
ware specialization need to be explored as opposed to sim-
ply scaling up existing processing elements. As examples,
Microsoft Arm [1], Nvidia Grace [2] and Jetson [3, 4], Apple
silicon [5]) are all clear demonstrations of this trend whether
it is for embedded system, personal computing or data center.

Dataflow programming has been demonstrated to be an
effective method for managing large and parallel applica-
tions, addressing portability concerns across different plat-
forms, and effectively exploring and exploiting parallelism
opportunities [6, 7]. This is because dataflow languages are
designed to expose the parallelism inherent in the process
of executing tasks on data. This enables the rapid evalua-
tion of various settings, such as mapping software kernels

@ Springer

http://orcid.org/0000-0003-3893-5103
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01884-6&domain=pdf

Journal of Signal Processing Systems

to hardware processing elements, without incurring the
costly redesigns required in traditional imperative and/or
platform-specific software programming. These redesigns
often require manual rewriting and can consume significant
amounts of developer time.

Over time, dataflow-based computing models have been
effectively utilized in a plethora of industries, including,
but not limited to, digital codecs implementation, high-
frequency financial applications, and genomics analysis.
Due to their expressiveness, mathematical rigor in the
models, and independence from a specific architecture,
these models have also been employed as a reference and
standardization language in digital video coding, specifi-
cally for the definition of the recently developed MPEG
AVC and HEVC video codecs [8-11].

As the utilization of diverse processing platforms
becomes more prevalent, new areas of inquiry have emerged
pertaining to the optimal configuration for scheduling, map-
ping, and partitioning of dataflow-based applications on a
given platform. The dataflow model, as it is based on the
concept of independent black-boxed units that communi-
cate with one another using specific data channels. These
boxes encapsulate the execution kernels that independently
and atomically execute the operations designated for them.
Communication between these boxes occurs solely through
communication buffers, where data packets (termed tokens)
are utilized for information exchange. However, even for
simple applications, the number of configurations that must
be evaluated is excessive for developers to test through trial
and error or to exhaustively test all possible combinations.
Therefore, systematic and automated methods are essential
for identifying and evaluating efficient configurations and
designs. Consequently, design space exploration methodolo-
gies and tools are crucial in the design process and explora-
tion of effective design points. To effectively identify an
efficient set of configuration parameters that meet specific
performance requirements, automation tools are impera-
tive. One such tool is TURNUS, a design space explora-
tion tool developed through research by the authors of this
paper. The methodology underlying this tool is based on
the analysis of an execution graph of the program, called
Execution Trace Graph (ETG). In this graph, each execu-
tion of a kernel (actor) is represented by a vertex, which are
then connected based on functional and data dependencies.
This design space exploration technique is made effective
because, thanks to the program’s dataflow computation
model (MoC), it is possible to systematically assign weights
to each node and edge of the graph and analyze it through
heuristics based on graph theory [12, 13]. This design space
exploration methodology has been successfully applied on a
wide range of heterogeneous hardware platforms, including
Many-Core [14], FPGAs [15], and MPSoCs [16, 17] plat-
forms. These platforms can be standalone or integrated as a

@ Springer

component of a larger heterogeneous system. However, the
automatic design space exploration for CPU-GPU heteroge-
neous systems remains an open area of research. The unique
architecture of GPUs poses challenges, such as limited con-
trol over scheduling and mapping on hardware resources and
the dissimilar APIs used to program them.

This work aims to expand upon and provide a compre-
hensive summary of the design and optimization meth-
odology that is based on dataflow models, as previously
presented in [18, 19]. To do so, this work uses the hetero-
geneous CPU/GPU dataflow methodology from [20] and
expand and integrate the profiling and performance esti-
mation methodologies from [21-23]. The ultimate objec-
tive of this work is to automatically explore the design
space for the partitioning and mapping of dataflow appli-
cations onto heterogeneous systems using a Tabu search
meta-algorithm.

The main novel contributions of this work can be sum-
marized as follows:

e The adaptation and development of an extension of the
Tabu search algorithm to specifically address the needs
and requirements of the heterogeneous platform meth-
odology. This includes ensuring that the algorithm can
efficiently and effectively handle the unique challenges
presented by a heterogeneous system.

e The development of new static and dynamic analysis
methodologies suitable for heterogeneous CPU-GPU sys-
tems, specifically tailored to the characteristics of these
systems, which can help to improve the performance of
dataflow applications running on them.

e The further extension and improvement of a simulator
engine suitable for performance estimation of dynamic
applications. This simulator engine is designed to pro-
vide accurate and reliable performance estimates for
dataflow applications running on heterogeneous systems.

e The adaptation of the neighboring move generator to the
specific heterogeneous CPU-GPU context. Addition-
ally, it allows for the under-utilization of resources when
necessary to optimize performance and achieve the best
possible outcomes.

The paper is structured as follows: Section 2 outlines the
necessary components for exploring the design space of a
heterogeneous CPU-GPU platform. In Section 3, the Tabu
search algorithm developed for this work is presented, while
Section 4 defines and describes the neighborhood move gen-
erator. Section 5 introduces the three different methodolo-
gies used for evaluating the design points. The experimen-
tal results and comparisons of the different methodologies
are presented in Section 6. Finally, Section 7 concludes the
paper and highlights potential research objectives and future
directions.

Journal of Signal Processing Systems

2 Design Space Exploration

This section presents a summary of the main features of
a dataflow programming model that utilizes the concept
of actors. Additionally, a review of the key elements nec-
essary for exploring the design space of dataflow appli-
cations using the analysis and optimization methodology
developed by the authors in [12, 13] is provided.

2.1 Dataflow Programming Model

A Dataflow Process Network (DPN) is a system in which
multiple processes operate simultaneously and exchange
information through unidirectional, first-in-first-out (FIFO)
channels [24]. In this model, writing to the channel is done
without interruption, while reading from it is blocking.
In a dataflow process network, processes are made up
of repeated cycles of computation known as firings of a
dataflow actor. An actor defines a set of often functional,
atomic tasks that comprise the overall processing.

In a dataflow network, the flow of data (referred to
as tokens) between actors is clearly defined and access
to shared data is only possible by transmitting packets of
data. The research illustrated in this work is based on a
dynamic dataflow Model of Computation (MoC) that uses
a variation of the DPN mentioned previously. A key aspect
of this MoC is that an actor’s execution is broken down
into a series of atomic computations, also known as fir-
ings. During each firing, an actor can retrieve a certain
amount of input data, transmit a certain amount of output
data, and modify its local memory if necessary, based on
the input tokens and the values of its state variables. The
specific computation performed by a single actor during
a firing is referred to as an action. The action executed
at any given time is determined by the input tokens and
the values of the actor’s state variables. This lack of data
race and critical sections leads to more robust behavior
in dataflow software, regardless of the computation poli-
cies being used, whether they are fully parallel or involve
interleaving of actor executions [25].

In recent years, a wide range of software languages have
been utilized to execute the semantics of dataflow pro-
grams [26]. Some imperative languages such as Python,
Java, and C/C++ have been improved by incorporating
parallel operators while new languages supporting data-
flow features like SISAL [27] and Ptolemy [28] have been
created and standardized. Among this diverse selection,
RVC-CAL [8] is the only formalized dataflow program-
ming language that has ISO compliance and fully encom-
passes the complete behavioral characteristics of the DPN
MoC. RVC-CAL has been employed as a reference and

standardization language for novel digital video codec
standards such as MPEG AVC and HEVC [8-11]. Each
RVC-CAL actor is made up of a group of atomic firing
functions, referred to as actions, and a set of internal mem-
ory that cannot be accessed by other actors, whether they
are neighboring or not. Only one function can be executed
at a time while the actor is in operation. To put it another
way, for each actor, the collection of firing rules deter-
mines when an action is permitted to be fired. Each of
these rules can be expressed as a function of the actor’s
internal variables and the availability and values of input
tokens. More specifically, a firing rule can be defined as a
Boolean function, including a selection of the action input
pattern (i.e., specifying the required number of tokens for
the action to be fired and to be removed from FIFO buff-
ers) and the action guard condition (i.e., a Boolean expres-
sion defined using the actor’s internal memory and the
values of consumed input data).

The concepts in question are illustrated through the use of
Fig. 1, which presents a basic example of an RVC-CAL data-
flow application software. The graphic model of the network
of actors in the example can be found in Fig. 1a. The data-
flow program is made up of five instances of actors, including
Prod, PingPong, CopyTokensA, CopyTokensB, and Merger.
The RVC-CAL software code for the Prod actor is depicted
in Fig. 1b, which features a single action that generates one
token per execution and increments an internal counter. Addi-
tionally, a guard is in place to prevent the action from being
executed more than four times. In the implementation of the
PingPong actor, as seen in Fig. 1d, a schedule expression that
function as a Finite State Machine (FSM). The execution of
actions triggers a change in the actor’s state, and the FSM acts
as an additional element in determining which action will be
executed next. In this example, the FSM alternates between
executing the two available actions.

The RVC-CAL programming language is known for its
high level of abstraction, making it platform-independent.
By utilizing a high level representation of the program’s
execution, it is possible to create optimized, low-level code
for various parallel architectures and platforms. The article
utilizes the Open RVC-CAL Compiler (Orcc) [29, 30], for its
compilation process. It’s worth mentioning that RVC-CAL
compilation is also supported by other open-source compil-
ers such as Caltoopia [31, 32], T¥cho [33], Cal2Many [34,
35], DAL [36] or StreamBlocks [37].

2.2 Execution Modeling
Dataflow programs can be effectively partitioned and
mapped, resulting in correct executions without the need

for software rewriting. However, this approach presents its
own challenges in terms of identifying the most efficient

@ Springer

Journal of Signal Processing Systems

CopyTokenA CopyTokenB
In Out! In Out

PingPong

(a) An example with five actors (i.e. Prod, CopyTo-
kenA, CopyTokenB, PingPong and Merger).

1 | actor Producer () ==> int 0:

2 uint counter := 0;

3

4 p: action ==> 0:[counter]

5 guard counter < 4

6 do counter := counter + 1; end

7 end

(b) Producer.cal

1 actor CopyTokens (String name) int I ==> int O0:
2 c: action I:[val] ==> 0:[val] end

3 end

(¢) CopyTokens.cal

1 actor PingPong () int I ==> int O0:

2

3 ppl: action I:[val] ==> 0:[val]

4 do println("PingPonglpplil:" + val); end
5

6 pp2: action I:[val] ==> 0:[-vall

7 do println("PingPongl[pp2]:" + val); end
8

9 schedule fsm a_ppil:
10 a_ppl(ppl) --> a_pp2;
11 a_pp2(pp2) --> a_ppl;
12 end
13 end

(d) PingPong.cal

1 | actor Merger () int I1, int I2 ==> :

2 uint counter := 0;

3

4 m: action I1:[v1], I2:[v2] ==>

5 do

6 println("Merger ("+counter+") :"+vi+";"+v2);
7 counter := counter + 1;

8 end

9 end

(e) Merger.cal

Figure T RVC-CAL program example: dataflow network topology
and actors source code.

configurations for partitioning, mapping, and scheduling.
Even for simple designs, the number of possible design
points is so large that it would be impractical or infeasible to
be done manually through trial and error. This necessitates
the use of automatic and systematic methods for identifying
and evaluating optimal design point configurations.
TURNUS [12, 13] is a design space exploration frame-
work that has been developed by the authors of this work
to address this purpose. The tool is based on a high-level
abstract model of computation, generated by the dataflow
network structure and the actor execution model, which

@ Springer

Network
Partitions
Mapping

Actor
Code

Configs

¥

Profiling
mmn and
Analysis

Code
Generation

Synthesis
or
Compilation

Performance
Estimation

Implementation

Figure 2 Design space Exploration - Tool flow for parameters opti-
mization.

is further enriched by profiling measures of each atomic
execution obtained on the specific heterogeneous process-
ing platform. This allows for the exploration of the con-
figuration design space and identification of efficient con-
figurations. Figure 2 shows the design space exploration
tool flow used when working with TURNUS to optimize
dataflow program in the ORCC framework. First of all the
CAL representation of the application program together with
the different configurations files (network, partition, buffer
sizes) are fed to the compiler. An optimization loop is ini-
tiated, which continues until the user is satisfied with the
performance achieved. The optimization objectives can vary,
such as critical path reduction, minimizing overall execu-
tion time, maximizing resource utilization, and so on. In
the particular context of this paper, the loop runs for a fixed
amount of time predetermined by the user at the start of the
process. This loop start by the compiler generating a plat-
form specific source code implementation for the targeted
architecture containing performance evaluation code. Then,

Journal of Signal Processing Systems

this code is compiled or synthesized to an executable using
compilers specific to the platform (here the Exelixi CUDA
backend). Once executed and the performance metric from
the platform extracted and the Execution trace graph (ETG)
is labeled, the performance estimation of the application can
then be evaluated with different configuration, without the
necessity to compile and execute each time. The system then
perform analysis of the ETG to evaluate different evaluation
such as the critical path evaluation or the buffer dimensions
to propose new configurations to be tested on the platform.

2.3 Heterogeneous CPU/GPU Platform Modeling

The field of automatic design space exploration for CPU/
GPU heterogeneous systems remains an open research
topic. Although GPU platforms are also programmable
through software, the methods used for multi-core architec-
tures cannot be directly applied to CPU/GPU heterogene-
ous systems due to numerous differences between the two.
One such difference is the limited granularity of the APIs
available. Even the advanced CUDA API, which provides
fine-grained control over the hardware and open access to
software context and data movement, does not offer access
to scheduling and mapping of software kernels to avail-
able computational resources, as this task is delegated to
the CUDA runtime. Another difference is clock-accurate
profiling, which becomes more challenging with actors
running on platforms with different frequencies. This issue
is addressed in the methodology presented in Sections 5.1
and 5.2 through data normalization. Another crucial aspect
is data movement, as on-chip cache coherency cannot handle
this issue automatically. To transfer data between the CPU
main memory and the GPU main memory, as well as the
faster GPU shared memory and register-file, explicit data
movement is required. Therefore, proper profiling of FIFO
communication is essential, particularly for SIMD reads and
writes. For a more detailed discussion of this issue, inter-
ested readers can refer to [23]. Additionally, compared to
FPGA platform synthesis, software generation, compilation,
and dataflow application loading on CPU/GPU heterogene-
ous platforms are relatively fast. This advantage is lever-
aged in the design point evaluation methodology presented
in Sections 5.2 and 5.3 by enabling direct execution on the
platform at each iteration.

3 Tabu Search

The Tabu Search (TS), introduced by Glover [38], is a meta-
heuristic optimization algorithm that can be applied to solve
a wide range of optimization problems. TS involves itera-
tively exploring the solution space, making moves to solu-
tions that are deemed "better" than the current one based on

the given evaluation function. In the context of this study,
the evaluation function refers to the minimal overall runtime
of the application that needs to be optimized.

The core algorithm incorporates an explicit memory
structure, known as the Tabu list, to prevent revisiting pre-
viously explored solutions and promote the exploration of
the solution space, thereby avoiding getting stuck in local
optima. This list, known as the Tabu list, can be adjusted in
size and content to balance between exploration and exploi-
tation in the search, and to ensure good overall performance
in terms of quality of results, speed, robustness, simplicity
and flexibility. It can be applied to problems with continuous
or discrete variables, multiple objectives and is often used
when the search space is large or the optimization problem
is difficult to solve with other methods. In order to adapt
TS to a specific problem, the representation of solutions,
the neighborhood structure, the Tabu list structure, and the
stopping criterion must be designed.

The Tabu meta-algorithm is applied in the context of par-
titioning actors across CPU and GPU partitions in order to
find a solution that is defined as a map of actors and process-
ing units (sequential CPU partitions or the parallel GPU par-
tition). The number of actors is fixed by the dataflow appli-
cation model, and the initial partition provides the upper
bounds for the number of CPU and GPU partitions that can
be used in a valid solution. It is not required that all parti-
tions be used (meaning, no actor is be mapped to them), and
allowing empty partitions as valid solutions allows for the
discovery of optimal solutions that may not use all hardware
resources if it results in better performance. It is important to
note that not all actors are necessarily compatible with being
run on the GPU, so the initial partition provided to the TS
meta-algorithm should assign actors that can be mapped to
either the CPU or GPU to the GPU partition, and actors that
can only run on the CPU to a CPU partition.

To move from a valid solution to a neighboring one, the
following types of moves are possible:

e REINSERT: move an actor from one partition to another.
e SWAP: exchanging the partitions of two actors that are
currently assigned to different partitions. This can be
done by moving each actor to the other actor’s partition.

These basic moves can be combined in various ways to cre-
ate different exploration strategies. Some examples of these
strategies are discussed in Section 4.

TS can tuned using a couple of parameters a, b, t,,
€ and T. When an actor, j, is transferred from one par-
tition, p, to another, it is prohibited from returning to p
for a certain number of iterations, #,,. This number, 7,
is a randomly chosen integer from the range [a, b], and
in previous experiments outlined in [18], the values of a
and b were set to 5 and 15, respectively. Smaller values

@ Springer

Journal of Signal Processing Systems

of t,, do not allow for escape from local optima, while
larger values do not allow for intensification of the search
around promising solutions. There are two other adjust-
able parameters in the TS algorithm: e (the proportion of
neighboring solutions explored during each iteration) and
T (the time limit). If the time limit 7' is reached, the search
will be immediately terminated and the best solution found
thus far will be returned. With a fixed 7, a small value
of € results in more iterations being performed but fewer
neighbors being examined in each iteration, resulting in
more diversification. A large value of €, on the other hand,
plays an intensification role (more solutions around the
current one are explored). Finally, a small (large) value of
t,, strengthens the intensification (diversification) ability
of the search, respectively.

Figure 3 shows the generic design flow for using TS
for design space exploration in the context of this work.
The optimization process begins with a user-provided
initial mapping and execution trace, and generates a
tentative new mapping solution. The initial mapping
and execution trace provided by the user can have a big
impact on the efficacy of the solution. Regarding the
execution trace the input stimulus provided to the appli-
cation during the trace generation need to be a good
representation of the general input space so that the con-
clusion drawn would be applicable to the performance
of the application in production. Regarding the initial
mapping, since the size of the design space is too big
to feasibly be fully explore, starting from an initially
good partition is very important to lead to best possible
results using this methodology. This new suggested solu-
tion is then evaluated to determine its performance and
analyzed to provide the meta-algorithm with sufficient
information to continue exploring the design space.

initial mapping &
extracted information trace

[(2R}

t

new mapping

Figure 3 Generic design flow when doing design space exploration
using tabu search.

@ Springer

4 Neighborhood Move Generator

Below is a list of neighborhood move generators used in this
work during the Tabu search. They are mainly implemented
using REINSERT moves. They can be used on their own
during a design space exploration loop, or multiple of them
can be combined.

e Balancing (N®): move randomly an actor from the parti-
tion with the least idle time and move it to the partition
with the most idle time. The partition idle time is defined
as the time frame during which no actor are executing
due to constraint such as dependency or others.

e Idle (N®): move consecutively each actor whose idle
time is greater than its processing time to the most idle
partition that is different from the current partition of
that actor. The idle time of an actor is defined as the time
frame when it could execute according to the satisfac-
tion of its firing rules, but it has to wait to be scheduled
because another actor in the same partition is currently
executing.

e Communication frequency (N©P): if an actor has a
higher communication frequency (i.e., more token trans-
fers) with actors in a given partition than with the ones in
its current partition, move the actor to that partition.

e Random (N®): choose randomly an actor and move it to
a different partition also randomly chosen.

5 Design Point Evaluations

Three different DSE optimization loops have been developed
and used for comparison in this paper. Each of them uses a
different design point evaluation methodology. These are
the Static, Dynamic, and Measured methodologies and are
presented in the following subsections.

5.1 Static Evaluation

In this version of the Tabu search design space exploration,
the static heterogeneous estimation is used to evaluate the
performance of the proposed new mapping configuration,
as described in [22]. To evaluate performance, profiling
weights are necessary for all possible combinations of FIFO
buffers and actor platform assignments (i.e., CPU or GPU).
Four distinct configurations were analyzed and are depicted
in Fig. 4. The first and second configurations consist of all
actors assigned to either CPUs or GPUs respectively, allow-
ing for the evaluation of computation time of the action body
and scheduling time on each platform. The other two con-
figurations involve the use of a special HostFifo represented

Journal of Signal Processing Systems

(a) Full
CPU

(b) Full
GPU

(¢) CPU
HostFifo

(d) GPU HostFifo

Figure 4 Tllustration of the four static configurations required during
profiling.

in blue with the number 2, allowing for the measurement of
data transmission time for cross-platform communication
(i.e., CPU-to-GPU or GPU-to-CPU). This approach consid-
ers all possible design points.

Figure 5 illustrates this methodology variant. Initially, the
initial mapping is provided, along with the execution trace
and a heterogeneous set of weights (generated as described
previously) that have been generated using that initial map-
ping on the actual hardware platform using the profiled
application generated by the Exelixi CUDA backend. This
information is then used to suggest a new mapping, which is

initial mapping &
trace &
heterogeneous

extracted information weights

¥

Profiling
and
Analysis

Performance
Estimation

Weights
Updater

weights

Figure 5 Design flow when doing design space exploration using
tabu search and the static evaluation strategy.

fed to the *Weights Updater’. The appropriate weights from
the heterogeneous set of weights are selected based on the
new mapping, meaning that the appropriate set of weights
will be used depending on whether an actor is being mapped
to a CPU or GPU. The same applies for the four sets of
communication weights (CPU-CPU, CPU-GPU, GPU-CPU,
GPU-GPU) based on the platform the actor it is communi-
cating to is assigned. Finally, the updated weights are fed to
the performance estimation engine, and the model analysis
is conducted to extract information that helps with the neigh-
boring move generation, after which the optimization loop
can start again.

This methodology does not necessitate continuous access
to the hardware platform as only the four static configura-
tions need to be evaluated beforehand. During the design
space exploration loop, only post-mortem access to the
weights and execution trace is needed. This methodology
places no restrictions on the move generators that can be
used and any of the Neighborhood move generators defined
in Section 4 or others can be used. However, it should be
noted that this solution is not the most precise in terms of
performance evaluation and may be relatively slow due to
the use of the TURNUS performance estimation engine.

5.2 Dynamic Evaluation

In this version of the Tabu search design space exploration,
the dynamic heterogeneous estimation described in [23] is
used to evaluate the performance of the proposed new map-
ping configuration. In summary, the dynamic methodology
leverages a feature from the Exelixi CUDA backend that
generates a tailored version of the application for optimi-
zation. This software implementation packages both the
instrumented CPU and GPU versions for each actor within
the same binary. At runtime, the actual mapping configura-
tion is provided and only the correct version is instantiated
with the appropriate communication channel using the cor-
rect FIFO implementation. This allows for the generation
of performance weights in the exact configuration, with the
same resource contention and utilization as during the actual
execution of the application program.

Figure 6 depicts this methodology variant. First, the
initial mapping and the execution trace is provided by the
user to the Tabu search meta-algorithm. In addition, a com-
piled version of the application using the profiled dynamic
network methodology and generated by the Exelixi CUDA
backend is made available to the optimization loop and is
depicted in dark blue on the schema. During each iteration
of the loop, the new mapping configuration is fed to the
dynamic app, which is executed with this new mapping and
generates new performance weights directly on the hard-
ware platform. These new weights are then integrated into
the execution trace and used by the TURNUS performance

@ Springer

Journal of Signal Processing Systems

initial m