
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Multi-agent Learning with Privacy Guarantees

Elsa RIZK

Thèse n° 9939

2023

Présentée le 22 juin 2023

Prof. M. Jaggi, président du jury
Prof. A. H. Sayed, directeur de thèse
Prof. V. Matta, rapporteur
Prof. A. Zoubir, rapporteur
Prof. V. Cevher, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire de Systèmes Adaptatifs
Programme doctoral en informatique et communications

To my family. . .

Acknowledgements
I would like to express my deepest gratitude to all those who have contributed to the
completion of this thesis.

First and foremost, I would like to thank my thesis advisor, Professor Ali H. Sayed,
for his unwavering support, guidance, and encouragement throughout this journey. His
knowledge, expertise, and patience were invaluable, and I could not have completed this
thesis without his mentorship. He motivated me to exceed what I believed were my
limitations. Among other competencies, I have honed my writing and communication
skills, which I plan to apply in my future professional endeavors.

I would also like to extend my appreciation to the members of my thesis committee, Pro-
fessor Martin Jaggi, Professor Volkan Cevher, Professor Vincenzo Matta, and Professor
Abdelhak Zoubir, for their valuable feedback and insightful comments. Their expertise
and critical insights helped fine-tune this thesis, and I am grateful for their time and effort.

I next would like to thank all the collaborators and colleagues I had the pleasure
of meeting from the Adaptive Systems Lab at EPFL, Virginia Bordignon, Haoyuan Cai,
Ying Cao, Lucas Cassano, Ping Hu, Mert Kayaalp, Malek Khammassi, Professor Visa
Koivunen, Professor Ricardo Merched, Professor Roula Nassif, Konstantinos Ntemos,
Flávio Pavan, Augusto Santos, Valentina Shumovskaia, Professor Stefan Vlaski, Professor
Kun Yuan, Ainur Zhaikhan, and anyone else that might have worked with the lab. The
discussions we had were instrumental in shaping the findings of this thesis. The sense
of camaraderie among the lab members fostered a positive lab culture that facilitated
collaboration to thrive rather than competition. My appreciation extends to Patricia
Vonlanthen for her assistance with administrative tasks.

Next, I would like to thank all my friends made here in Switzerland and the ones
across the globe. They have been crucial in re-energizing me whenever the work was
demotivating. The fun times we shared helped me take my mind-off of what could
sometimes be a challenging journey. I thank Ahmad, Bernd, Christina, Daniella, Danielle,
Frank, Jacques, Karen, Maissa, Marie-Line, Maya, Nadine, Roman, Roula, Sarah, Tania,
Virginia, the EPIC committee members, and anyone else who I met in Lausanne with
whom many laughs were shared.

i

Acknowledgements

Finally, I am forever grateful for my family. During difficult times, they have been
my support system and knew how to alleviate my stress. I want to thank my parents
who provided me with the strength, guidance, and protection I needed to push with my
work. I want to thank my sister Yara who acted as an advisor, supporter, and role model.
I am also grateful for having my sister Lynn and her husband Jose with me in Lausanne.
They offered a local safe-haven for me whenever the stresses of this journey were taking
over. If it were not for my family, I would not be standing today with a completed thesis,
which is why I dedicate this work to them.

To everyone who has played a part in this thesis, I offer my sincere thanks. Your
contributions have been immeasurable, and I am grateful for your support and guidance
along the way.

Lausanne, February 2023 E. R.

ii

Abstract
A multi-agent system consists of a collection of decision-making or learning agents sub-
jected to streaming observations from some real-world phenomenon. The goal of the
system is to solve some global learning or optimization problem in a distributed or
decentralized manner, where agents collect data locally and interact either with their
neighbours or with some central processor.

Such multi-agent systems are prevalent in multiple real-world applications, such as
autonomous driving, multi-robot systems, multi-sensor systems, target surveillance, and
disaster response, to name a few. Decentralized and distributed solutions are often
motivated by the nature of the system, e.g., weather data is naturally distributed across
different geographic locations, or these solutions are preferable due to their enhanced
robustness to link and node failures.

In designing multi-agent systems, one normally formulates a global risk function, consist-
ing of the aggregate of local risks, and then seeks to approximate its optimizer through
localized interactions among neighbouring agents. During this process, the agents will
be required to share processed data and/or iterates with their neighbours. The issue
of privacy then becomes critical in enabling the safe communication of information
over edges linking the elements of the multi-agent network. There have been several
works in the literature that enforce privacy by adding random noise sources on top of
the shared information. Most of these works establish that the resulting architectures
are differentially private, but they assume that the gradients of the risk functions are
bounded. Unfortunately, this condition is rarely valid in practice and this fact is often
overlooked in most studies. For example, even quadratic risk functions have unbounded
gradients because these gradients will be affine functions of the unknown parameter.
Moreover, most studies fail to recognise that their differentially private solutions and
the added noise sources end up degrading the mean-square error (MSE) performance
of the learning algorithms from O(µ) down to O(µ−1), where µ is the small learning
parameter. These are serious limitations that remain unaddressed in existing approaches
to differential privacy in multi-agent systems.

In this dissertation, we resolve these two issues. First, we do not assume bounded
gradients for the risk functions. And yet, we are still able to establish that the multi-

iii

Abstract

agent systems remain differentially private, albeit with high probability. We achieve this
conclusion by showing that the noise sources should not be added in an ad-hoc manner,
as is common in existing approaches, but rather that they should be constructed in a
manner that is cognizant of the graph topology. Otherwise, the noises end up generating
a magnifying effect that degrades performance. For this reason, we introduce a locally
homomorphic noise construction and show that, under this process, the MSE performance
of the multi-agent system will remain at O(µ) while being differentially private at the
same time. This is a reassuring conclusion. We illustrate these results for the special
case of federated learning architectures, but also extend them to more general distributed
learning and optimisation strategies over decentralised architectures.

Motivated by these considerations, the first part of the dissertation studies a particular
distributed multi-agent system, known as federated learning (FL). The federated setting
consists of a central server that orchestrates the learning process among a collection of
edge devices. We refer to this set-up as a distributed architecture (as opposed to the
decentralized architecture without central processing, studied in the third part of the
dissertation). Some use cases of the technology can be found in the healthcare industry,
the insurance sector, IoT applications, and other technologies such as predictive text or
voice recognition. We examine a couple of questions related to the performance of the
FL algorithm. First, we establish its convergence under three demanding characteristics
related to data heterogeneity, asynchronous operation, and partial agent participation.
Then, we show how performance can be improved by introducing a mechanism based
on importance sampling to choose the participating agents and the data samples during
each stage of the learning process in some optimized manner. Finally, we introduce a
privatization layer and explain how its implementation does not degrade performance.

The second part of the dissertation introduces a more realistic architecture for the
federated setting. Instead of assuming a single-server structure, we now consider a
network of servers linked together by a graph topology. In other words, we use the results
from the first part to show how to construct a reliable multi-server (or graph-based) FL
architecture with privacy guarantees. The new setting is referred to as graph federated
learning (GFL), and it is more robust to server breakdowns and communication failures.
We examine two privacy schemes, one of them is similar to earlier approaches in the
literature for multi-agent systems and relies on the addition of ad-hoc Laplacian noise
over the edges, while the second approach relies on graph-homomorphic noise sources.
We show how these schemes influence performance, with the second method keeping the
MSE performance at expected levels while guaranteeing privacy.

Finally, in the third part of the dissertation, we consider a broader multi-agent set-
ting, without a centralized processor. It consists of a decentralized architecture where
all processing is localized and agents can only interact with their neighbours. We again
devise a reliable privatization scheme for this more general setting, which is useful for

iv

Abstract

decentralized optimization and learning strategies. The scheme again ensures differential
privacy without degrading the expected MSE performance of the network.

Keywords: multi-agent system, distributed learning, decentralized learning, federated
learning, diffusion learning, differential privacy.

v

Résumé
Un système multi-agents consiste en un ensemble d’agents décisionnels ou d’apprentissage
soumis à des observations en continu d’un phénomène du monde réel. L’objectif du
système est de résoudre un problème global d’apprentissage ou d’optimisation de manière
distribuée ou décentralisée, les agents collectant des données localement et interagissant
soit avec leurs voisins, soit avec un processeur central.

Ces systèmes multi-agents sont prévalents dans de nombreuses applications du monde réel,
telles que la conduite autonome, les systèmes multi-robots, les systèmes multi-capteurs, la
surveillance des cibles et la réponse aux catastrophes, pour n’en citer que quelques-unes.
Les solutions décentralisées et distribuées sont souvent imposées par la nature du système,
par exemple, les données météorologiques sont naturellement distribuées sur différents
sites géographiques, ou ces solutions sont préférables en raison de leur robustesse accrue
aux défaillances des liens et des nœuds.

Lors de la construction de systèmes multi-agents, on formule normalement une fonction de
risque globale, constituée de l’agrégat des risques locaux, puis on cherche à approcher son
optimiseur par des interactions localisées entre agents voisins. Au cours de ce processus,
les agents devront partager les données traitées et/ou les itérations avec leurs voisins. La
question de la confidentialité devient alors critique pour permettre une communication
sûre des informations sur les bords reliant les éléments du réseau multi-agents. Il existe
plusieurs études dans la littérature qui renforcent la confidentialité en ajoutant des
sources de bruit aléatoires en plus des informations partagées. La plupart de ces travaux
établissent que les architectures résultantes sont différentiellement confidentiel, mais ils
doivent supposer que les gradients des fonctions de risque sont bornés. Malheureusement,
cette condition est rarement valable en pratique et ce fait est souvent négligé dans la
plupart des études. Par exemple, même les fonctions de risque quadratiques ont des
gradients non bornés car ces gradients seront des fonctions affines du paramètre inconnu.
En outre, la plupart des études ne reconnaissent pas que leurs solutions différentiellement
confidentielles et les sources de bruit ajoutées finissent par dégrader la performance
quadratique moyenne des algorithmes d’apprentissage de O(µ) à O(µ−1), où µ est le
petit paramètre d’apprentissage. Il s’agit d’une limitation sérieuse qui n’est toujours pas
prise en compte dans les approches existantes de la confidentialité différentielle dans les
systèmes multi-agents.

vii

Résumé

Dans cette thèse, nous résolvons ces deux problèmes. Premièrement, nous ne supposons
pas de gradients bornés pour les fonctions de risque. Et pourtant, nous serons toujours
capables d’établir que les systèmes multi-agents restent différentiellement confidentiels
dans le sens de la haute probabilité. Nous parvenons à cette conclusion en montrant que
les sources de bruit ne doivent pas être ajoutées de façon ad hoc, comme c’est souvent le
cas dans les approches existantes, mais qu’elles doivent être construites en tenant compte
de la topologie du graphe. Sinon, les bruits finissent par générer un effet amplifiant qui
dégrade la performance. Pour cette raison, nous introduisons une construction de bruit
homomorphique localement et montrons que, sous ce processus, la performance de l’erreur
quadratique moyenne du système multi-agent restera à O(µ) tout en étant différentielle-
ment confidentielle en même temps. Il s’agit d’une conclusion rassurante. Nous illustrons
ces résultats pour le cas particulier des architectures d’apprentissage fédérées, mais nous
les étendons également à des stratégies d’apprentissage et d’optimisation distribuées plus
générales sur des architectures décentralisées.

Motivée par ces considérations, la première partie de la thèse étudie un système multi-
agent distribué particulier, connu sous le nom d’apprentissage fédéré (FL). Le cadre
fédéré consiste en un serveur central qui orchestre le processus d’apprentissage parmi une
collection de dispositifs périphériques. Nous appelons cette configuration une architecture
distribuée (par opposition à l’architecture décentralisée sans traitement central, étudiée
dans la troisième partie de la thèse). Certains cas d’utilisation de la technologie peuvent
être trouvés dans l’industrie des soins de santé, le secteur des assurances, les applications
IoT, et d’autres technologies telles que le texte prédictif ou la reconnaissance vocale. Nous
examinons quelques questions liées à la performance de l’algorithme FL. D’abord, nous
établissons sa convergence sous trois caractéristiques exigeantes liées à l’hétérogénéité
des données, au fonctionnement asynchrone et à la participation partielle des agents.
Ensuite, nous montrons comment la performance peut être améliorée en introduisant un
mécanisme basé sur l’échantillonnage par importance pour choisir les agents participants
et les échantillons de données à chaque étape du processus d’apprentissage de manière
optimisée. Enfin, nous introduisons une couche de privatisation et expliquons comment
sa mise en œuvre ne dégrade pas les performances.

La deuxième partie de la thèse introduit une architecture plus réaliste pour le cadre
fédéré. Au lieu de supposer une structure à serveur unique, nous considérons maintenant
un réseau de serveurs reliés entre eux par une topologie de graphe. En d’autres termes,
nous utilisons les résultats de la première partie pour montrer comment construire une
architecture FL fiable multi-serveur (ou basée sur un graphe) avec des garanties de
confidentialité. Ce nouveau paramètre est appelé apprentissage fédéré par graphe (GFL),
et il est plus robuste aux pannes de serveur et aux défaillances de communication. Nous
examinons deux schémas de confidentialité, l’un d’entre eux est similaire aux approches
précédentes dans la littérature pour les systèmes multi-agents et repose sur l’ajout de

viii

Résumé

bruit Laplacien ad-hoc sur les bords, tandis que la seconde approche repose sur des
sources de bruit homomorphiques au graphe. Nous montrons comment ces schémas
influencent les performances, la seconde méthode maintenant les performances MSE aux
niveaux attendus tout en garantissant la confidentialité.

Enfin, dans la troisième partie de la thèse, nous considérons un cadre multi-agent
plus large, sans processeur centralisé. Il s’agit d’une architecture décentralisée où tous les
traitements sont localisés et où les agents ne peuvent interagir qu’avec leurs voisins. Nous
concevons à nouveau un schéma de privatisation fiable pour ce cadre plus général, qui
est utile pour les stratégies d’optimisation et d’apprentissage décentralisées. Le schéma
garantit à nouveau la confidentialité différentielle sans dégrader la performance MSE
attendue du réseau.

Mots-clés : système multi-agent, apprentisage distribué, apprentisage decentralizé,
apprentisage fédéré, apprentissage par diffusion, confidentialité différentielle.

ix

Contents
Acknowledgements i

Abstract (English/Français) iii

1 Introduction 1
1.1 Multi-agent Systems . 1
1.2 Empirical Risk Minimization . 3
1.3 Single-agent Learning . 4
1.4 Multi-agent Learning . 7
1.5 Privacy in Multi-agent Systems . 9
1.6 Organization and Main Contribution . 11

2 Federated Learning under Importance Sampling 13
2.1 Introduction . 13

2.1.1 Related Work . 14
2.1.2 Sampling and Inclusion Probabilities 17

2.2 Algorithm Derivation . 18
2.3 Convergence Analysis . 19

2.3.1 Modeling Conditions . 19
2.3.2 Error Recursion . 20
2.3.3 Main Theorem . 25

2.4 Importance Sampling . 26
2.4.1 Agent Level: Importance Sampling of Data 27
2.4.2 Cloud Level: Importance Sampling of Agents 27
2.4.3 Practical Issues . 28

2.5 Privacy Analysis . 30
2.6 Experimental Results . 33

2.6.1 Regression . 33
2.6.2 Classification . 35
2.6.3 Effect of Parameters . 36
2.6.4 Effect of Privatization . 38

2.7 Conclusion . 39
2.A Result on the Variance of the Mini-batch Estimate 40

xi

Contents

2.B Proof of Lemma 2.1 . 43
2.C Proof of Lemma 2.2 . 47
2.D Proof of Lemma 2.3 . 48
2.E Proof of Lemma 2.4 . 50
2.F Proof of Lemma 2.5 . 51
2.G Proof of Theorem 2.2 . 54

3 Privatized Graph Federated Learning 57
3.1 Introduction . 57
3.2 Graph Federated Architecture . 59
3.3 Performance Analysis . 61

3.3.1 Modeling Conditions . 61
3.3.2 Network Centroid Convergence 62
3.3.3 Graph Homomorphic Perturbations 68

3.4 Privacy Analysis . 69
3.5 Experimental Results . 71

3.5.1 Regression . 71
3.5.2 Classification . 75

3.6 Conclusion . 76
3.A Auxiliary Result on Individual MSE Performance 76
3.B Proof of Lemma 3.3 . 78
3.C Proof of Theorem 3.1 . 81
3.D Secondary Result on the Extended Model Error 82
3.E Proof of Theorem 3.2 . 83

4 Privacy in Decentralized Learning 85
4.1 Introduction . 85
4.2 Problem Setup . 87

4.2.1 Modeling Conditions . 87
4.3 Decentralized Learning . 90

4.3.1 Generalized Decentralized Learning 90
4.3.2 Privacy Learning . 91
4.3.3 Graph-Homomorphic Noise . 96
4.3.4 Local Graph-Homomorphic Noise 97

4.4 Experimental Results . 101
4.4.1 Generalized Decentralized Privacy Learning 101
4.4.2 Classification in Decentralized Learning 103

4.5 Conclusion . 104
4.A Sensitivity of the Decentralized Algorithm 104
4.B Proof of Theorem 4.1 . 106
4.C Proof of Lemma 4.1 . 109
4.D Proof of Theorem 4.2 . 110
4.E Proof of Theorem 4.3 . 112

xii

Contents

5 Conclusion 115
5.1 Summary of Main Results . 115
5.2 Future Directions . 116

Bibliography 128

Curriculum Vitae 129

xiii

1 Introduction

From the study of simulated life [1], to target surveillance [2, 3], and digital health [4, 5],
a system of multiple cognitive agents interacting together is at the core of such examples.
We refer to these configurations as multi-agent systems, and they are used in a wide
range of applications [6–9]. These structures do not rely on a single intelligent agent to
perform the task of interest and are, therefore, more resilient to failure and also more
scalable [10]. One important problem setting for multi-agent systems is the concept
of decentralized learning. It is useful to solve machine learning problems of various
types, such as classification, detection, segmentation, and inference. Examples include
recommender systems to chatbots and medical image processing.

In what follows, we introduce some key concepts that will be called upon in the future
chapters. In particular, we explain the difference between various multi-agent systems:
centralized, distributed, and decentralized. We also formulate a typical global empirical
risk minimization problem and describe algorithms for its solution based on stochastic
gradient descent, mini-batch, and importance sampling implementations. Moreover, since
agents need to share information among themselves in a distributed setting, the question
of privacy becomes critical. We therefore review briefly the concept of differential privacy
in preparation for its application in future chapters.

1.1 Multi-agent Systems

Multi-agent systems consist of intelligent agents that interact to solve problems that
surpass individual capabilities. We distinguish among three popular architectures.

We start with the centralized architecture, which consists of a central processor that
either aggregates all the data in one location or at multiple locations (Figure 1.1 left).
The central processor is responsible for running the learning algorithm and for processing
all the data. Examples of such systems include social media platforms like Twitter
or Facebook where the companies control the entire system and its data. In domains

1

Chapter 1. Introduction

where a global view from a single processor is present and the distribution of the task is
impossible, it becomes more sensical to adopt such a viewpoint. These systems are less
complex and easier to control. However, they are more vulnerable to security attacks,
bottlenecks, and system breakdowns.

In comparison, a distributed system consists of one server that is connected to multiple
agents with their own local data (Figure 1.1 middle). The central server works as the
orchestrator of the whole system, while the agents act as data processors and learners.
An example of such system is federated learning [11], which can be used for digital
health applications [5], smart homes/cities [12], and text prediction [13], among other
applications. The advantage of such systems is that we no longer require large bandwidth
for data transferring, and processing is moved towards the local agents. Furthermore,
these systems are more agile and more resilient than fully centralized architectures.
However, they continue to rely on one central entity for the organization. Thus, they
remain sensitive to breakdowns and failures.

Figure 1.1 – An illustration of multi-agent systems.

A fully distributed architecture is what we refer to as a decentralized system. It drops
the central server and transfers all work to the agents (Figure 1.1 right). The agents
are connected by a graph topology and they work together as equals. Such systems can
be found in swarm learning [14], social networks [15], and blockchains [16], for example.
Compared to centralized and distributed systems, decentralized architectures are more
tolerent to edge or node failures. They are also more resilient and robust, and can match
the performance of fully centralized solutions. However, decentralized systems are more
vulnerable to attacks from malicious agents and need more care with privacy.

We will associate a combination matrix A with every decentralized architecture. We
denote the elements of the matrix by amp, which is the weight attributed by agent p to
information arriving from agent m. We consider stochastic matrices; either left-stochastic

2

1.2. Empirical Risk Minimization

satisfying:

1TA = 1, amp ≥ 0, (1.1)

or doubly stochastic satisfying:

1TA = 1, A1 = 1, amp ≥ 0. (1.2)

We will also assume that the graph is strongly connected, which guarantees that the
combination matrix A is primitive. This fact implies from the Peron-Frobenius theorem
[9, 17] that A has a single eigenvalue at one with all other eigenvalues inside the unit
circle. We refer to the eigenvector corresponding to the eigenvalue at one as the Perron
eigenvector. It satisfies the following properties:

Aq = q, qp > 0, 1Tq = 1. (1.3)

For a doubly stochastic matrix of size P × P , the Perron eigenvector is given by:

q = 1
P
1. (1.4)

1.2 Empirical Risk Minimization

In this dissertation we study multi-agent systems that focus on learning. These learning
algorithms generally result from optimization problems seeking some model w? that
fits the data distribution. We motivate the setting by focusing initially on single-agent
learning. We consider strongly-convex optimization problems, where the optimizer w?

is unique. The optimal model is defined as the minimizer of the expectation of some
convex loss function Q(w;x) over the distribution of the random data x:

w? = argmin
w

ExQ(w;x). (1.5)

The main issue with the above formulation is that the distribution of the data is usually
unknown beforehand, and thus the stochastic risk is unknown in closed form. Instead,
samples xn of the data are accessible, and thus the optimization problem is usually
reformulated into an empirical risk minimization:

wo = argmin
w

{
J(w) ∆= 1

N

N∑
n=1

Q(w;xn)
}
, (1.6)

where J(w) denotes the risk function defined as a sample average over the data. The
minimizer of the empirical risk, now denoted by wo, is dependent on the sample data
{xn}Nn=1. Therefore, if the available dataset is not descriptive of the data distribution, then
the optimal model wo is not general enough. This is what is referred to as generalization

3

Chapter 1. Introduction

error. Thus, wo is as good as the available dataset. It can be shown that wo is close
enough to w? under the assumption of ergodicity and for large enough sample size N
[17–21].

1.3 Single-agent Learning

There exist various algorithms to learn (i.e., approximate) wo. The classical gradient
descent (GD) algorithm is given by [17,22]:

wi = wi−1 − µ∇wTJ(wi−1), (1.7)

with i indicating the iteration index and µ the step-size. With enough time, and under
some assumptions on the risk and loss functions, GD reaches wo with zero error. However,
the main problem with the GD algorithm is the calculation of the true gradient of J(w).
In the case of streaming data, we would need to wait for all data points to become
available in order to calculate the gradient during each iteration. Furthemore, the
calculation of the gradient may be costly when the number of samples is large.

Therefore, one solution is to approximate the gradient by using:

∇̂wTJ(·) = ∇wTQ(·;xbi), (1.8)

for some randomly chosen sample b ∈ {1, 2, · · · , N}. The resulting stochastic gradient
(SG) algorithm is given by:

wi = wi−1 − µ∇wTQ(wi−1;xbi). (1.9)

The iterate wi is now denoted in boldface to indicate the randomness introduced from
sampling the data point xbi . Due to this randomness, the performance of the algorithm
is affected. It is known that, on average, SG results in a final model whose mean-square
error (MSE) is O(µ) away from the minimizer wo [17]. That is:

lim sup
i→∞

E‖wo −wi‖2 = O(µ) (1.10)

To improve the margin of error, we can approximate the gradient by using a mini-batch:

∇̂wTJ(·) = 1
B

∑
b∈Bi

∇wTQ(·;xb), (1.11)

4

1.3. Single-agent Learning

where Bi is the set of sampled data points at iteration i. The algorithm will then become:

wi = wi−1 − µ
1
B

∑
b∈Bi

∇wTQ(wi−1;xb). (1.12)

The sampling of the mini-batch can be done with or without replacement. Both methods
reduce the error by some factor τB, i.e., mini-batch SG reaches a final model whose MSE
is in the neighbourhood of O(µ)/τB from wo. This factor is given by [17]:

τB =

B, with replacement
B N−1
N−B . without replacement

(1.13)

Thus, given a choice, it is preferable to sample the data points without replacement.

Even more generally, we can assign probabilities to the training samples in order to
further reduce the error. This procedure is justified when some data samples happen to
be more relevant to the learning process. For example, a data sample that has a large
gradient makes the algorithm take larger steps away from the previous iterate. Thus,
assigning higher probabilities to such samples will result in them being sampled more
often. Thus, if we let pn be the sampling probability of sample n, then the gradient is
approximated by:

∇̂wTJ(·) = 1
B

∑
b∈Bi

1
Npb
∇wTQ(·;xb), (1.14)

and the new algorithm becomes:

wi = wi−1 − µ
1
B

∑
b∈Bi

1
Npb
∇wTQ(wi−1;xb). (1.15)

We now add the factor 1/(Npb) to ensure that the stochastic gradient remains an unbiased
estimate of the true gradient, i.e.:

E∇̂wTJ(·) = ∇wTJ(·). (1.16)

We can retrieve the original mini-batch estimate if we were to set pb = 1/N .

With the stochastic gradient (1.14), we can show for B = 1 that the variance of the
gardient noise si, defined as the difference between the true gradient and the stochastic
gradient, is bounded as [17]:

E‖si‖2 ≤ β2
sE‖wo −wi−1‖2 + σ2

s , (1.17)

5

Chapter 1. Introduction

for some constant β2
s and where:

σ2
s

∆= 2
N2

N∑
n=1

1
pn
‖∇wTQ(wo;xn)‖2. (1.18)

Thus, knowing that σ2
s appears in the bound of the mean-square error (MSE), we can

choose the probabilities pn to minimize the error variance. In particular, by setting the
sampling probabilities to:

pon = ‖∇wTQ(wo;xn)‖
N∑
b=1
‖∇wTQ(wo;xb)‖

, (1.19)

we reduce the bound on the MSE. However, this expression is a function of the minimizer
wo. One remedy is to replace it by the iterates wi−1 to get:

p̂on = ‖∇wTQ(wi−1;xn)‖
N∑
b=1
‖∇wTQ(wi−1;xb)‖

. (1.20)

The above expression is still inefficient due to the calculation in the denominator. We can
replace the denominator by a mini-batch approximation, and only update the probabilities
of the agents that were sampled, i.e., for n ∈ Bi the approximate optimal probability
becomes:

p̂on = ‖∇wTQ(wi−1;xn)‖∑
b∈Bi
‖∇wTQ(wi−1;xb)‖

1−
∑
b∈Bci

p̂ob

 , (1.21)

where the multiplicative factor ensures the probabilities add up to one. We set the initial
probabilities to the uniform case, p̂on = 1/N .

For example, assume we have a total of five samples (N = 5), and during each iteration
B = 2 samples are chosen. At time i = 1, we start with the initial probabilities set to
p̂on = 1/5. Say, samples one and two are chosen B1 = {1, 2}, then the new probability for
sample one is updated as follows:

p̂o1 = ‖∇wTQ(w0;x1)‖∑
b=1,2

‖∇wTQ(w0;xb)‖

(
1−

5∑
b=3

p̂ob

)
= 2

5
‖∇wTQ(w0;x1)‖∑

b=1,2
‖∇wTQ(w0;xb)‖

, (1.22)

and a similar expression is found for the second sample. We can verify that the probabil-

6

1.4. Multi-agent Learning

ities add up to 1:

5∑
n=1

p̂on = 2
5

‖∇wTQ(w0;x1)‖∑
b=1,2

‖∇wTQ(wi−1;xb)‖
+ 2

5
‖∇wTQ(w0;x2)‖∑

b=1,2
‖∇wTQ(w0;xb)‖

+
5∑
b=3

1
5

= 2
5 + 3

5 = 1. (1.23)

If during the next iteration samples three and four are chosen instead, then their
probabilities will be updated, for n = 3, 4:

p̂on = 2
5
‖∇wTQ(w0;xn)‖∑

b=3,4
‖∇wTQ(w0;xb)‖

. (1.24)

1.4 Multi-agent Learning

We now motivate learning algorithms for multi-agent systems.

To begin with, the centralized system is, in fact, equivalent to the single agent case. Thus,
the above-listed algorithms can be directly applied.

As for decentralized and distributed systems, we first reformulate the empirical risk
minimization problem. If we assume there are K agents equipped with a local dataset
{xk,n}Nkn=1, then the overall risk function is the average of the local risks:

wo = argmin
w

1
K

K∑
k=1

Jk(w) ∆= 1
Nk

Nk∑
n=1

Q(w;xk,n)

 . (1.25)

One algorithm for the distributed system is federated averaging (FedAvg) [11]. It assumes
during each iteration, that the server possesses a past model wi−1. It then samples a
subset L of the K agents, which we denote by Li, to participate in this round. Each
agent k ∈ Li is sent the past model wi−1 and runs a total of Ek local update steps called
epochs to get a new model wk,Ek . At the end of the local update steps, the agents share
their final model with the server to be aggregated. The new updated model wi is the
average of all the final local models wk,Ek . Thus, if we denote by wk,e the local model of
agent k at epoch e, and we let wk,0 = wi−1, then the local update steps are given by:

wk,e = wk,e−1 − µ∇̂wTJk(wk,e−1), (1.26)

and the aggregation step at the server is defined as:

wi = 1
L

∑
k∈Li

wk,Ek . (1.27)

7

Chapter 1. Introduction

The above two steps can then be written more compactly as:

wi = wi−1 − µ
1
L

∑
k∈Li

Ek∑
e=1
∇̂wTJk(wk,e−1). (1.28)

This description resembles the centralized solution with a stochastic gradient defined as:

∇̂wTJ(·) = 1
L

∑
k∈Li

Ek∑
e=1
∇̂wTJk(·), (1.29)

and evaluated at different models. The main problem with such a derivation is that
even though the stochastic gradient is evaluated at the previous global model wi−1, it is
not an unbiased estimate of the true gradient. We observe that it suffices to divide the
local stochastic gradients ∇̂wTJk(·) by the total epoch Ek. Thus in the remainder of this
dissertation, we will use the following federated learning algorithm description; the new
local step is given by:

wk,e = wk,e−1 − µ
1
Ek
∇̂wTJk(wk,e−1), (1.30)

and the centralized description is now:

wi = wi−1 − µ
1
L

∑
k∈Li

1
Ek

Ek∑
e=1
∇̂wTJk(wk,e−1). (1.31)

We move on to algorithms for decentralized networks. The goal is still to solve the
optimization problem (1.25). The main algorithms can be split into two steps: an
adaptation step and a communication step. The adaptation step consists of updating the
local model, while the communication step involves the sharing of information between
neighbours. The different algorithms differ in the order of the two steps and the nature
of the updates.

We first start with the consensus strategy [17,23,24]:

ψk,i−1 =
∑
`∈Nk

a`kw`,i−1, (1.32)

wk,i = ψk,i−1 − µ∇̂wTJk(wk,i−1), (1.33)

which consists of a communication step followed by an adaptation step. The neighbours
first communicate their past models, and then update the aggregate of the past models.
The adaptation step is unbalanced since it evluates the gradient at a different model
wk,i−1 than the model that is being updated, ψk,i−1. This issue has been shown to cause
problems with the convergence of the algorithm [25].

8

1.5. Privacy in Multi-agent Systems

Next, we present two diffusion algorithms, combine-then-adapt (CTA) diffusion and
adapt-then-combine (ATC) diffusion [17,25]. They solve the imbalance in consensus by
making sure the gradients are evaluated at the same model that is being updated. In
CTA diffusion, agents first share their past models and then perform the adaptation step:

ψk,i−1 =
∑
`∈Nk

a`kw`,i−1, (1.34)

wk,i = ψk,i−1 − µ∇̂wTJk(ψk,i−1). (1.35)

ATC diffusion switches the steps; first comes adapatation and then the sharing of models:

ψk,i−1 = wk,i−1 − µ∇̂wTJk(wk,i−1), (1.36)

wk,i =
∑
`∈Nk

a`kψ`,i−1. (1.37)

Both diffusion algorithms overcome the convergence issues faced by the consensus algo-
rithm.

A more general description of distributed algorithms can be derived that encapsulates the
three previously described algorithms.The agents start by aggregating the past models
from their neighbours. They then perform a local update step. They finally aggregate
the updated models from their neighbours. Thus, we consider three combination matrices
A0, A1, A2, and we write the algorithm as:

φk,i−1 =
∑
`∈Nk

a1,`kw`,i−1, (1.38)

ψk,i =
∑
`∈Nk

a0,`kφ`,i−1 − µ∇̂wTJk(φk,i−1), (1.39)

wk,i =
∑
`∈Nk

a2,`kψ`,i. (1.40)

By setting A0 = A and the rest to identity, the algorithm reduces to consensus. By
choosing A1 = A or A2 = A, with the other matrices set to identity, we get the CTA
diffusion and ATC diffusion, respectively.

1.5 Privacy in Multi-agent Systems

In multi-agent systems where data is distributed amongst different agents, it is important
to safeguard sensitive information whether from the central server, or the neighbours.

Privatization schemes generally fall under two umbrellas. The first set of mechanisms
are referred to as cryptographic methods, and examples of these methods include secure
multiparty computation [26], homomorphic encryption [27], secure aggregation [28], and
zero-knowledge proofs [29]. The second group of privatization schemes is what is referred

9

Chapter 1. Introduction

to as differentially private methods. The key difference between these two paradigms is
that the former relies on sophisticated deterministic functions that ensure information
leakage is minimal yet still performs the required task, while the latter uses different
masking schemes based on random noises that might alter the result of the performed
task. For example, if we are calculating the average of the models generated by multiple
agents, secure multiparty computation modifies the local models without altering the
average. In comparison, a differentially private mechanism adds random noise to the
models and modifies the computed average. Thus, cryptographic methods might be more
complicated to implement, but they preserve the outcome. Yet, generating random noise
is generally easier to implement, except they change the outcome.

Since in this dissertation, we focus on differentially private methods, we describe them in
more detail. To gain some intuition about the concept, we walk through an example.
Assume Alice, Bob, and Charlie are trying to calculate their average income. No person is
comfortable sharing this information. If Alice is adamant on not announcing her income,
then she will alter it in a way that does not raise suspicions.

Assume Alice works in the banking sector, and the typical income of someone in her
position is US$140,000. Then, if she claims she earns US$135,000 when in fact she earns
US$150,000, neither Bob nor Charlie would question her answer. However, if Alice claims
she earns US$100,000, then that would give reason for Bob and Charlie to be suspicious.
Therefore, Alice would need to choose a probable income for someone in her position,
yet far enough from her actual income such that her answer does not give too much
information away.

Differential privacy tries to abstract the above concept into a measure of privacy. Let wa
denote the true income of Alice, and let w′a be the answer she reveals. She will not reveal
her answer without privatizing it first using some privatization mechanism. We would
say that the mechanism adopted by Alice to share her income is differentially private if
the outcome of the mechanism when w′a is used is close in distribution to when wa were
used. This translates into the following condition:

P(M(wa) ∈ O) ≤ eε × P(M(w′a) ∈ O), (1.41)

where M(·) denotes the privatization mechanism (which replaces w by M(w)), O is a
subset of possible outcomes under this mechanism, and ε is some positive constant. Thus,
the smaller the value of ε is, the closer the distributions are to each other, and the harder
it is to guess if Alice shared wa or w′a.

One commonly used scheme for differential privacy is the Laplace mechanism. It consists
of perturbing the message with a Laplacian noise, g ∼ Lap(0, σg). Alice, Bob, and
Charlie would share their income masked by some Laplacian noise. To show that this
mechanism is indeed ε−differentially private, it is enough to check condition (1.41). If

10

1.6. Organization and Main Contribution

ga is the Laplacian noise added to Alice’s message, then the density function is given by:

f(wa + ga) =
√

2
2σg

exp
(
−
√

2
σg
|wa + ga|

)
, (1.42)

and the condition (1.41) for a continuous random variable is given by:

f(wa + ga)
f(w′a + ga)

= exp
(√

2
σg

(
|w′a + ga| − |wa + ga|

))

≤ exp
(√

2
σg
|w′a − wa|

)
. (1.43)

Thus, the Laplace mechanism is ε−differentially private with:

ε =
√

2
σg
|w′a − wa|. (1.44)

The larger the noise variance is, the harder it is for an attacker to extract private
information. However, the worse the output is. Thus, if in the previous example the
true average income is US$130,000, and each of Alice, Bob, and Charlie mask their true
income with a Laplacian noise with high variance such that the new average income is
now US$155,000 (see Table 1.1), this new average is misleading and not representative of
the actual income distribution. Therefore, the choice of the noise variance is crucial to
ensure privacy while still maintaining the integrity of the process.

Table 1.1 – Example of the average income among three people.

Alice Bob Charlie Average
Income US$150,000 US$90,000 US$120,000 US$120,000

Perturbed Income US$200,000 US$160,000 US$105,000 US$155,000

In the context of learning algorithms, agents would add some random noise to the shared
models. Perturbing the models will affect the ability of the algorithm to estimate the
optimal model. Thus, in differential privacy, a utility-privacy trade-off exists, and it is
up to the designer to construct a masking scheme that ensures privacy without rendering
the learned model useless.

1.6 Organization and Main Contribution

In this dissertation, we tackle the issue of privacy in multi-agent systems. We resolve
two limitations that have yet to be addressed in the literature. Most studies assume the
gradients of the risk and loss functions are bounded, which is rarely the case. Instead,
we avoid this condition and are still able to devise a scheme that is differentially private

11

Chapter 1. Introduction

with high probability. Additionally, the designed privatization schemes severly hinder
performance by increasing the bound on the MSE from O(µ) to O(µ−1). By introducing
a local graph-homomorphic scheme for decentralized systems, and by using a gradient
perturbation method for distributed systems, we are able to maintain the bound on the
MSE at O(µ).

The first chapter considers federated learning, a specific distributed system that consists of
a central manager of the learning algorithm. We first establish convergence of federated
averaging (FedAvg). Next, we improve performance by studying optimal sampling
policies for selecting agents and their data. Usually, only uniform sampling schemes are
used. However, in the first chapter, we examine the effect of importance sampling and
devise schemes for sampling agents and data non-uniformly guided by a performance
measure. Finally, we show that improvement in the differentially private federated
learning algorithm can be attained through the addition of random noise to the updates,
as opposed to the models.

The second chapter extends the federated structure into a network of federated units,
which we call graph federated learning (GFL). The federated architecture is not robust
and is sensitive to communication and computational overloads due to its one-master
multi-client structure. We investigate two noise generation schemes. The first is the
commonly used method that generates ad-hoc noise; while the second, graph-homorphic
process, generates dependent noise that is well tuned to the graph structure. We show
that the latter method improves the effect of the added noise on the MSE performance,
as opposed to the former method.

Finally, the third chapter considers a network of agents and drops the central controlling
unit. We study the privatization of decentralized learning and optimization strategies.
We exploit an alternative graph-homorphic construction and show that it improves
performance while guaranteeing privacy.

12

2 Federated Learning under Impor-
tance Sampling

In this chapter, we study a particular multi-agent system, known as federated learning
(FL). It consists of a central server that coordinates the learning process among a collection
of edge devices. We refer to this set-up as a distributed architecture (as opposed to the
decentralized architecture without central processing, studied in the third part of the
dissertation). Some use cases of the technology can be found in the healthcare industry,
the insurance sector, IoT applications, or other technologies such as predictive text or
voice recognition. We examine a couple of questions related to the performance of the
FL algorithm. First, we establish its convergence under three demanding characteristics
related to data heterogeneity, asynchronous operation, and partial agent participation.
Then, we show that its performance can be improved by introducing a mechanism
that is based on importance sampling to choose the participating agents and the data
samples during each stage of the learning algorithm. Finally, we introduce a privatization
layer and show that it enforces differential privacy without significant degradation to
performance. The material in this chapter is based on the work in [30].

2.1 Introduction

We focus on algorithms that fall into the broad class of stochastic gradient (SG) methods.
We consider a collection of K heterogeneous agents that may have different computational
powers. Each agent k has locally Nk data points, which we denote by {xk,n}; the subscript
k refers to the agent, while the subscript n denotes the sample index within agent k’s
dataset. The goal of the agents is to find an optimizer for the aggregate risk function:

wo
∆= argmin

w∈RM

1
K

K∑
k=1

Jk(w), (2.1)

13

Chapter 2. Federated Learning under Importance Sampling

where each Jk(·) is an empirical risk defined in terms of a loss function Qk(·; ·):

Jk(w) ∆= 1
Nk

Nk∑
n=1

Qk(w;xk,n). (2.2)

Multiple strategies exist for solving such problems. They can be categorized into two
main classes: a) partially decentralized strategies, which include a central processor with
access to all data and which controls the distribution of the data into the nodes for
processing [25, 31–33]; and b) fully decentralized strategies, which consist of multiple
agents connected by a graph topology and operating locally without oversight by a central
processor [9, 34–36]. Federated learning [11,28,37–47] offers a midterm solution, which
consists of several agents collecting and processing local data that are then aggregated at
the central processor.

When implementing SG, most strategies choose the samples from the training data
according to a uniform distribution. In this chapter, we will consider more general non-
uniform sampling schemes, where the agents are sampled according to some distribution
πk and the local data at agent k are in turn sampled according to some other distribution
π

(k)
n . The index k in πk and π

(k)
n refers to the agents, while the subscript n in π

(k)
n

refers to the data. In this setting, the central processor selects the subset of agents for
processing according to πk and, once selected, an agent k will sample its data according
to π(k)

n . The importance sampling process in this chapter therefore involves two layers.
We use the superscript (k) to denote the sampling distribution of the data at agent k.
The sampling distributions {πk, π

(k)
n } are not fixed; instead we will show how to adapt

them in order to enhance performance. At the same time, we will provide a detailed
convergence analysis and establish performance and privacy limits.

2.1.1 Related Work

Several works studied the convergence of the federated learning algorithm under differing
assumptions. These assumptions usually relate to the nature of the data (iid or non-iid),
nature of the risk function (convex or non-convex), agent participation (full or partial),
and operation (synchronous or asynchronous) [37, 38, 48–58]. Moreover, the data at
different agents may not be sampled from the same distribution; this may occur in
personalization problems, like recommender systems. One main difference between FL
and other distributed paradigms is that FL does not require each agent to participate
during each iteration of the learning process. This is what is referred to as partial agent
participation. The second main difference is that participating agents during any given
iteration would run multiple local steps, whose number may differ among the agents.
In other words, while one agent may be able to run 5 local steps before it is required
to share its final model with the server, another agent may only be able to run 2 local

14

2.1. Introduction

steps. Other works examine the convergence behavior of variations of the traditional FL
algorithm, such as FedProx [37], hierarchical version of federated averaging (FedAvg) [58],
multi-task federated learning [38], and dynamic FedAvg [59] — see Table 2.1.

By contrast, not much work has been done on selection schemes for agents and data
in federated learning. Given the architecture of a federated learning solution, this is a
natural and important question to consider. The existing works in client scheduling can
be split into two categories: those seeking better performance, and those seeking fairness.
Of the works pertaining to the first category, reference [60] develops a new client selection
scheme, called FedCS, where the goal of the central server is to choose as many agents as
possible that can complete an iteration by a required deadline, after acquiring information
about the agents’ resources. Reference [61] builds on this previous work to deal with non-
IID data, and allows the server to collect some of the data from the agents and participate
in the training of the model. The authors of [62] consider non-uniform sampling of agents
and suggest approximate sampling probabilities that maximize the average inner product
of the local gradient with the global gradient. To increase the convergence rate, [63]
introduces a multi-armed bandit online client scheduling scheme in federated learning.
References [64, 65] formulate an optimization problem over resource allocation and agent
selection to improve training loss and energy transmission. References [66–68] fall under
the second category; in agnostic federated learning [66], the data distribution is assumed
to be a mixture of the local distributions, and a minimax problem for agent selection
is solved. Reference [67] generalizes the previous work by reweighting the cost function
and assigning higher weights to agents with higher loss. The work in [68] study different
agent selection schemes, random scheduling, round robin, and proportional fairness, in
a wireless federated learning network under a limited bandwidth constraint; while the
authors in [69] propose a selection scheme that takes into account the staleness of the
received parameters and the instantaneous channel qualities. The work in [70] proposes
a budget dividing scheme among different agents by maximizing the global utility and
minizing the inequality among the agents.

While there exist works that study the effect of importance sampling in distributed
learning [71–75], all of these works apply importance sampling to the data at each agent.
To our knowledge, there are no works that examine the combined effect of two hierarchical
layers of sampling: one for the nodes and another for their data. By introducing a two-
layer importance sampling scheme to the federated learning paradigm, we can tackle the
problem of importance sampling both in relation to agents and in relation to data.

The main difference between this work and those falling under agent scheduling is the
reason behind the sampling mechanism, i.e., agents and data points are chosen with the
purpose of minimizing the variance of the gradient noise. This work can also be compared
to active learning. However, active learning is a semi-supervised learning scheme which
aims at labelling unlabelled data.

15

Chapter 2. Federated Learning under Importance Sampling

Ta
bl
e
2.
1
–
Li
st

of
re
fe
re
nc
es

on
th
e
co
nv

er
ge
nc
e
an

al
ys
is
of

fe
de
ra
te
d
le
ar
ni
ng

un
de
r
di
ffe

re
nt

as
su
m
pt
io
ns
.
T
hi
s
ch
ap

te
r
ba

se
d
on

[3
0]

al
on

g
w
ith

ou
r
pr
ev
io
us

w
or
k
in

[5
9]

ar
e
th
e
on

ly
on

es
to

ta
ck
le

th
e
3
ch
al
le
ng

es
of

fe
de

ra
te
d
le
ar
ni
ng

(n
on

-ii
d
da

ta
,a

sy
nc
hr
on

ou
s

m
od

e
of

op
er
at
io
n,

an
d
pa

rt
ia
la

ge
nt

pa
rt
ic
ip
at
io
n)
.

R
ef
er
en

ce
s

A
lg
or
it
hm

Fu
nc
ti
on

T
yp

e
D
at
a
H
et
er
og
en

ei
ty

O
pe

ra
ti
on

A
ge
nt

P
ar
ti
ci
pa

ti
on

O
th
er

A
ss
um

pt
io
ns

[4
9]

di
st
.
gr
ad

ie
nt

de
sc
en
t

co
nv

ex
no

n-
ii

d
sy
nc
hr
on

ou
s

fu
ll

sm
oo

th
[5
0]

di
st
.
SG

D
co
nv

ex
iid

sy
nc
hr
on

ou
s

fu
ll

sm
oo

th
[5
1,
52
]

di
st
.
SG

D
no

n-
co
nv

ex
iid

sy
nc
hr
on

ou
s

fu
ll

sm
oo

th

[5
3]

di
st
.
SG

D
no

n-
co
nv

ex
no

n-
ii

d
iid

sy
nc
hr
on

ou
s

as
yn

ch
ro

no
us

fu
ll

-

[5
4]

di
st
.
SG

D
co
nv

ex
no

n-
ii

d
sy
nc
hr
on

ou
s

fu
ll

bo
un

de
d
gr
ad

ie
nt
s

[5
5]

di
st
.
m
om

en
tu
m

SG
D

no
n-
co
nv

ex
no

n-
ii

d
sy
nc
hr
on

ou
s

fu
ll

-

[5
6]

Fe
dA

vg
co
nv

ex
so
m
e
no

n-
co
nv

ex
no

n-
ii

d
as

yn
ch

ro
no

us
fu
ll

-

[5
7]

Fe
dA

vg
co
nv

ex
no

n-
ii

d
sy
nc
hr
on

ou
s

pa
rt

ia
l

bo
un

de
d
gr
ad

ie
nt
s

[3
7]

Fe
dP

ro
x

no
n-
co
nv

ex
no

n-
ii

d
as

yn
ch

ro
no

us
pa

rt
ia

l
-

[5
8]

H
ie
rF
AV

G
co
nv

ex
no

n-
co
nv

ex
no

n-
ii

d
sy
nc
hr
on

ou
s

fu
ll

-

[3
8]

M
O
C
H
A

co
nv

ex
no

n-
ii

d
sy
nc
hr
on

ou
s

fu
ll

-
[5
9]

D
yn

am
ic

Fe
dA

vg
co
nv

ex
no

n-
ii

d
as

yn
ch

ro
no

us
pa

rt
ia

l
m
od

el
dr
ift

[3
0]

IS
Fe

dA
vg

co
nv

ex
no

n-
ii

d
as

yn
ch

ro
no

us
pa

rt
ia

l
im

po
rt
an

ce
sa
m
pl
in
g

16

2.1. Introduction

2.1.2 Sampling and Inclusion Probabilities

Before describing the problem setting, we need to clarify the difference between two
notions: (a) sampling probability and (b) inclusion probability. Consider the follow-
ing illustrative example. Consider N = 4 balls of which we wish to choose B = 2
balls non-uniformly and without replacement. Let the sampling probabilities be πn =
{1/3, 1/6, 1/3, 1/6}. This means that, initially, balls 1 and 3 are twice as likely to be
selected compared to balls 2 and 4. For the first trial, all the inclusion probabilities are
equal to the sampling probabilities, i.e.:

P(n chosen on 1st trial) = πn. (2.3)

However, since we are sampling without replacement, the inclusion probabilities for the
second trial depend on the outcome of the first trial, i.e.:

P(n chosen on 2nd trial|m chosen on 1st trial) = πn
(1− πm) . (2.4)

Using the sampling probabilities, we can evaluate the likelihood that each ball will end
up belonging to the selected set of 2 balls. In particular, the probability that ball 1 is
chosen either in the first or second trial is given by:

P(1 chosen) =
4∑

n=2
P
(
1 chosen on 1st trial & n chosen on 2nd trial)

+ P
(
n chosen on 1st trial & 1 chosen on 2nd trial)

=
4∑

n=2

(
π1

πn
1− π1

+ πn
π1

1− πn

)
. (2.5)

Thus, the sampling probability is the working probability. It is the probability used to
actually choose the samples, while the inclusion probability is a descriptive probability
that indicates the likelihood of a ball being included in the final selected subset. Observe
that the inclusion probabilities depend on the sampling scheme, while the sampling
probabilities do not. When considering uniform sampling without replacement, the
inclusion probability is a multiple of the sampling probability. For example, sampling B
numbers from {1, 2, · · · , N} with sampling probabilities 1/N , the inclusion probability is
found to be P(n ∈ B) = B/N . Note further that while the sampling probabilities sum
to 1 over all the sampling space, the inclusion probabilities P(n ∈ B) sum to B. In our
derivations, we will be relying frequently on the inclusion probabilities.

Next, we consider a total number of K agents. At each iteration i of the algorithm, a
subset of agents Li of size L is chosen randomly without replacement. We denote the

17

Chapter 2. Federated Learning under Importance Sampling

probability that agent k is included in the sample by Lpk [76], i.e.,

pk
∆=

P
(
k ∈ Li

)
L

. (2.6)

In addition, each sampled agent k will run a mini-batch SGD by sampling Bk data points
Bk,i without replacement from its local data. We denote the probability of inclusion of
data point n by Bkp

(k)
n , i.e.,

p(k)
n

∆=
P
(
n ∈ Bk,i

)
Bk

. (2.7)

We refer to pk and p(k)
n as the normalized inclusion probabilities. They sum to 1 over the

sampling space; pk sums to 1 over all agents and p(k)
n over the data at each agent.

2.2 Algorithm Derivation

The goal of the federated learning algorithm is to approximate the centralized solution
wo while dealing with the constraint of distributed data. The goal is achieved by using an
unbiased estimate of the gradient of the risk function, 1

K

∑K
k=1∇wTJk(w). As explained

in [59] for the case of uniform sampling, if we assume each agent k runs Ek epochs
per iteration i (with each epoch using Bk samples in Bk,i,e), then we can construct an
unbiased estimate for the true gradient by considering the following estimator:

1
L

∑
k∈Li

1
EkBk

Ek∑
e=1

∑
b∈Bk,i,e

∇wTQk(w;xk,b), (2.8)

as opposed to the original estimator from [11], where the main difference is the scaling
by the epoch size Ek. This correction is important for the performance of the averaged
model. Since the number of epochs Ek can be non-uniform across the agents, then,
without correction, agents with large epoch sizes will bias the solution by driving it
towards their local model and away from wo.

Expression (2.8) is still not sufficient for our purposes in this chapter, since agents and
data are allowed to be sampled non-uniformly without replacement. In this case, we need
to adjust (2.8) by including the inclusion probabilities [71]. They are necessary to ensure
the estimate is unbiased, as will later be seen in Lemma 2.1. The local estimate of the
gradient at agent k becomes 1

Kpk
∇̂wTJk(w), with:

∇̂wTJk(w) ∆= 1
EkBk

Ek∑
e=1

∑
b∈Bk,i,e

1
Nkp

(k)
b

∇wTQk(w;xk,b). (2.9)

18

2.3. Convergence Analysis

Motivated by (2.9), we can write down a stochastic gradient update at each agent k at
epoch e, and at the central processor at iteration i:

wk,e =wk,e−1 −
µ

KpkEkBk

∑
b∈Bk,i,e

1
Nkp

(k)
b

∇wTQk(wk,e−1;xk,b), (2.10)

wi = 1
L

∑
k∈Li

wk,Ek , (2.11)

where at each iteration i, step (2.10) is repeated for e = 1, 2, · · · , Ek. We arrive at the
Algorithm 2.1, which we refer to as Importance Sampling Federated Averaging (ISFedAvg).

Algorithm 2.1: (Importance Sampling Federated Averaging)
initialize w0;
for each iteration i = 1, 2, · · · do
Select the set of participating agents Li by sampling L times from {1, . . . ,K}
without replacement according to the sampling probabilities πk.
for each agent k ∈ Li do
initialize wk,0 = wi−1
for each epoch e = 1, 2, · · ·Ek do
Find indices of the mini-batch sample Bk,i,e by sampling Bk times from
{1, . . . , Nk} without replacement according to the sampling probabilities π(k)

n .

g = 1
Bk

∑
b∈Bk,i,e

1
Nkp

(k)
b

∇wTQk(wk,e−1;xk,b)

wk,e = wk,e−1 − µ
1

EkKpk
g

end for
end for

wi = 1
L

∑
k∈Li

wk,Ek

end for

2.3 Convergence Analysis

2.3.1 Modeling Conditions

To facilitate the analysis of the algorithm, we list some common assumptions on the
nature of the local risk functions and their respective minimizers. Specifically, we assume
convex loss functions with Lipschitz continuous gradients.

19

Chapter 2. Federated Learning under Importance Sampling

Assumption 2.1 (Convexity and smoothness). The functions Jk(·) are ν−strongly
convex, and Qk(·;xk,n) are convex, namely:

Jk(w2) ≥ Jk(w1) +∇wTJk(w1)(w2 − w1) + ν

2‖w2 − w1‖2, (2.12)

Qk(w2;xk,n) ≥ Qk(w1;xk,n) +∇wTQk(w1;xk,n)(w2 − w1). (2.13)

Also, the functions Qk(·;xk,n) have δ−Lipschitz gradients:

‖∇wTQk(w2;xk,n)−∇wTQk(w1;xk,n)‖ ≤ δ‖w2 − w1‖. (2.14)

We further assume that the individual minimizers:

wok = argmin
w∈RM

Jk(w), (2.15)

do not drift too far away from wo. Such an assumption is viable, since in the case when the
local models varry significantly among the different agents, collaboration is non-sensical.
A multi-task formulation would make more sense in that case. This assumption does not
reduce the non-iid assumption in federated learning, but instead bounds its degree. If we
consider the example of text prediction on mobile phones, users using different languages
will have differing models, and collaboration amongst them is not optimal. However,
users using the same language, still have non-iid data, but most probably, their local
models are relatively close and collaboration is advocated.

Assumption 2.2 (Model drifts). The distance of each local model wok to the global
model wo is uniformly bounded over the data, ‖wok − wo‖ ≤ ξ.

2.3.2 Error Recursion

Iterating the local update (2.10) over multiple epochs and combining according to (2.11),
we obtain the following update for the centralized iterate:

wi = wi−1 − µ
1
L

∑
k∈Li

1
KpkEkBk

Ek∑
e=1

∑
b∈Bk,i,e

1
Nkp

(k)
b

∇wTQk(wk,e−1;xk,b). (2.16)

20

2.3. Convergence Analysis

To simplify the notation, we introduce the error terms:

si
∆= 1

L

∑
`∈Li

1
Kp`
∇̂wTJ`(wi−1)− 1

K

K∑
k=1
∇wTJk(wi−1), (2.17)

qi
∆= 1

L

∑
`∈Li

1
Kp`E`B`

E∑̀
e=1

∑
b∈B`,i,e

1
N`p

(`)
b

(
∇wTQk(w`,e−1;x`,b)−∇wTQk(wi−1;x`,b)

)
.

(2.18)

The first error term si, which we call gradient error, captures the error from approximating
the true gradient by using subsets of agents and data; while the second error term qi,
which we call incremental error, captures the error resulting from the incremental
implementation, where at each epoch during one iteration, the gradient is calculated at
the local iterate wk,e−1. Note that this second error evaluates the loss function at the
local and global iterates. As we will show later, the incremental error will play a minor
role, and the dominant factor will be the gradient error. Before establishing the main
result in Theorem 2.1 on the convergence of ISFedAvg algorithm, we present preliminary
results that will lead to it. Thus, to show the convergence of the algorithm, we must
assure the gradient noise si has zero mean and bounded variance, and the incremental
noise qi has bounded variance. Furthermore, since we split the noise due to the stochastic
gradient into incremental and gradient noise, we can split the analysis into that of the
centralized steps and the local epochs. By proving that both the centralized and local
steps converge, we show the global algorithm converges too.

Replacing the two error terms (2.17) and (2.18) into recursion (2.16) and subtracting wo

from both sides of the equation, we get the following error recursion:

w̃i = w̃i−1 + µ
1
K

K∑
k=1
∇wTJk(wi−1) + µsi + µqi, (2.19)

where w̃i = wo −wi. To bound the `2−norm of the error, we split it into two terms,
centralized and incremental, using Jensen’s inequality with some constant α ∈ (0, 1) to
be defined later:

‖w̃i‖2 ≤
1
α

∥∥∥∥∥w̃i−1 + µ
1
K

K∑
k=1
∇wTJk(wi−1) + µsi

∥∥∥∥∥
2

+ 1
1− αµ

2‖qi‖2. (2.20)

We start with the first term that represents the centralized solution. We need to show
that it converges. To do so, we start with the gradient noise, and we establish in Lemma
2.1 that it remains bounded. We bound the gradient noise si under two constructions:
sampling with replacement, and sampling without replacement.

21

Chapter 2. Federated Learning under Importance Sampling

Lemma 2.1 (Estimation of moments of the gradient noise). The gradient noise
defined in (2.17) has zero mean E{si|wi−1} = 0, with bounded variance, regardless of the
sampling scheme. More specifically, sampling agents and data with replacement, results
in the following bound:

E{‖si‖2|wi−1} ≤β2
s‖w̃i−1‖2 + σ2

s , (2.21)

where w̃i−1 = wo −wi−1 and the constants:

β2
s

∆= 3δ2

L
+ 1
LK2

K∑
k=1

1
pk

(
β2
s,k + 3δ2

)
, (2.22)

σ2
s

∆= 1
LK2

K∑
k=1

1
pk

{
σ2
s,k +

(
3 + 6

EkBk

)
‖∇wTJk(wo)‖2

}
, (2.23)

β2
s,k

∆= 3δ2

EkBk

1 + 1
N2
k

Nk∑
n=1

1
p

(k)
n

 , (2.24)

σ2
s,k

∆= 6
EkBkN

2
k

Nk∑
n=1

1
p

(k)
n

‖∇wTQk(wo;xk,n)‖2. (2.25)

On the other hand, sampling agents and data without replacement results in the same
bound but without the scaling by L in the constants β2

s and σ2
s .

Proof. Proof in Appendix 2.B.

The term σ2
s,k in the bound captures what we call data variability. It is controlled by the

mini-batch size Bk; as the mini-batch increases the effect of this term is reduced. The
‖∇wTJk(wo)‖ term quantifies the suboptimality of the global model locally; we call its
effect model variability. It is reduced when the data and agents are more heterogeneous.
From Assumption 2.2, we can bound it uniformly. Both these terms capture the inherent
differences in the distribution of the data. The data variability is a direct measure of it,
while the model variablity is an indirect measure.

Now that we have identified the mean and variance of the gradient noise, we can proceed
to establish the important conclusion that the following centralized solution:

wi = wi−1 − µ
1
L

∑
`∈Li

∇̂wTJ`(wi−1), (2.26)

22

2.3. Convergence Analysis

converges exponentially to an O(µ)−neighbourhood of the optimizer. In this implemen-
tation, the center processor aggregates the approximate gradients of the selected agents.
We will subsequently call upon this result to examine the convergence behavior of the
proposed federated learning solution.

Lemma 2.2 (Mean-square error convergence of centralized solution). Consider
the centralized recursion (2.26) where the cost functions satisfy Assumption 2.1, and where
the first and second order moments of the gradient noise process satisfy the conditions
in Lemma 2.1. Also, the samples are chosen without replacement. For step-size values
satisfying µ < 2ν/(δ2 + β2

s), it holds that E‖w̃i‖2 converges exponentially fast according
to the recursion (2.27), where λ = 1− 2µν + µ2(δ2 + β2

s) ∈ [0, 1) :

E‖w̃i‖2 ≤ λE‖w̃i−1‖2 + µ2σ2
s . (2.27)

It follows from (2.27) that, for sufficiently small step-sizes:

E‖w̃i‖2 ≤ λiE‖w̃0‖2 + 1− λi

1− λ µ
2σ2
s . (2.28)

Proof. see Appendix 2.C.

We next bound the incremental noise qi. To do so, we introduce the local terms:

qk,i,e
∆= 1
Kpk

 1
Bk

∑
b∈Bk,i,e

1
Nkp

(k)
b

∇wTQk(wk,e−1;xk,b)−∇wTJk(wk,e−1)

. (2.29)

We show in the next lemma that the local gradient noise qk,i,e has zero mean and bounded
variance. This result is useful for showing that the local SGD steps converge in the
mean-square error sense towards their local models wok.

Lemma 2.3 (Estimation of moments of the local gradient noise). The local
gradient noise defined in (2.29) has zero mean E

{
qk,i,e

∣∣∣Fe−1,Li
}

= 0, and bounded
variance, regardless of the sampling scheme:

E
{
‖qk,i,e‖2

∣∣∣Fe−1,Li
}
≤ Ek
K2p2

k

β2
s,k‖w̃k,e−1‖2 + 1

K2p2
k

σ2
q,k, (2.30)

where Fe−1 = {wk,0, wk,1, · · · , wk,e−1} is the filtration describing all sources of randomness
due to the previous iterates, w̃k,e = wok −wk,e, and the constants are as defined in (2.24)

23

Chapter 2. Federated Learning under Importance Sampling

and:

σ2
q,k = 3

BkN
2
k

Nk∑
n=1

1
p

(k)
n

‖∇wTQk(wok;xk,n)‖2. (2.31)

Proof. Proof in Appendix 2.D.

Now that we have shown that the local gradient noise of the incremental step has bounded
variance, we can study the mean square deviation of the local SGD.

Lemma 2.4 (Mean-square error convergence of local incremental step). For
every agent k, consider the local stochastic gradient recursion (2.10) where the cost
function is subject to Assumption 2.1, and where the first and second order moments
of the gradient noise process satisfy the conditions in Lemma 2.3. For step-size values
satisfying:

µ <
2ν

δ2 + Ek
K2p2

k
β2
s,k

, (2.32)

it holds that E‖w̃k,e‖2 converges exponentially fast according to the recursion:

E‖w̃k,e‖2 ≤ λkE‖w̃k,e−1‖2 + µ2σ2
q,k, (2.33)

where:
λk = 1− 2νµ+ µ2

(
δ2 + Ek

K2p2
k

β2
s,k

)
∈ [0, 1). (2.34)

It follows from (2.33) that, for sufficiently small step-sizes:

E‖w̃k,e‖2 ≤ λekE‖w̃k,0‖2 + 1− λek
1− λk

µ2σ2
q,k. (2.35)

Proof. Proof in Appendix 2.E.

We can finally bound the incremental noise in the following lemma.

24

2.3. Convergence Analysis

Lemma 2.5 (Estimation of the second order moment of incremental noise).
The incremental noise defined in (2.18) has bounded variance:

E‖qi‖2 ≤ O(µ)E‖w̃i−1‖2 +O(µ)ξ2 +O(µ2) 1
K

K∑
k=1

σ2
q,k, (2.36)

where the O(·) terms depend on epoch sizes, local convergence rates, total number of data
samples, number of agents, Lipschitz constant, and data and agent normalized inclusion
probabilities. Thus, E‖qi‖2 = O(µ).

Proof. Proof in Appendix 2.F.

We observe an average data variability term across agents σ2
q,k, and a model variability

term ξ2. However, the effect of the latter dominates since it is multiplied by an O(µ)1

term as opposed to O(µ2). Furthermore, the variance of the incremental noise is non-zero,
however it is bounded by the step-size.

2.3.3 Main Theorem

Now that we have bounded each term of (2.20) and using Lemmas 2.2 and 2.5, we find:

E‖w̃i‖2 ≤
1
α

(
λE‖w̃i−1‖2 + µ2σ2

s

)
+ O(µ3)

1− α
(
E‖w̃i−1‖2 + ξ2

)
+ O(µ4)

1− α
1
K

K∑
k=1

σ2
q,k

= λ′E‖w̃i−1‖2 + µ2σ2
s

α
+ O(µ3)

1− α ξ
2 + O(µ4)

1− α
1
K

K∑
k=1

σ2
q,k, (2.37)

where:

λ′
∆= λ

α
+ O(µ3)

1− α

= 1− 2µν + µ2(δ2 + β2
s)

α
+ O(µ3)

1− α

= O

(1
α

)
+O

(
µ

α

)
+O

(
µ2

α

)
+O

(
µ3

1− α

)
. (2.38)

1The O(µ) notation replaces a constant multiplying µ, i.e., O(µ) = cµ for some c ∈ R+.

25

Chapter 2. Federated Learning under Importance Sampling

Applying this bound recursively we obtain:

E‖w̃i‖2 ≤
(
λ′
)i E‖w̃0‖2 + 1− (λ′)i

1− λ′

µ2σ2
s

α
+ O(µ3)

1− α ξ
2 + O(µ4)

1− α
1
K

K∑
k=1

σ2
q,k

, (2.39)

and if we were to repeat the algorithm infinitly many times, i.e., taking limit i→∞, we
would get the following bound:

lim sup
i→∞

E‖w̃i‖2 ≤
1

1− λ′

(
µ2σ2

s

α
+ O(µ3)

1− α ξ
2 + O(µ4)

1− α
1
K

K∑
k=1

σ2
q,k

)
, (2.40)

for λ′ < 1, which for α =
√
λ is achieved when:

µ < min

 2ν
δ2 + β2

s

,
2ν

δ2 + Ek
K2p2

k
β2
s,k

 , (2.41)

O(µ3) < (1−
√
λ)2. (2.42)

Thus, since α = O(1), 1− α = O(µ), and 1− λ′ = O(µ):

lim sup
i→∞

E‖w̃i‖2 ≤ O(µ)σ2
s +O(µ)ξ2 +O(µ2) 1

K

K∑
k=1

σ2
q,k. (2.43)

The result is summarized in the theorem.

Theorem 2.1 (Mean-square error convergence of FL under importance sam-
pling). Consider the iterates wi generated by the importance sampling federated averaging
algorithm. For sufficiently small step-size µ, it holds that the mean-square error converges
exponentially fast:

E‖w̃i‖2 ≤λ′E‖w̃i−1‖2 +O(µ2)
(
σ2
s + ξ2

)
+O(µ3) 1

K

K∑
k=1

σ2
q,k, (2.44)

where λ′ = 1−O(µ) +O(µ2) ∈ [0, 1).

2.4 Importance Sampling

Due to the heterogeneity of nodes, which arise from their data and computational
capabilities, it is important to guide the algorithm based on the potential contribution
that each agent can have on the overall performance. By allowing asynchronicity, i.e.,
different epoch sizes among agents, we can take advantage of the varying computational

26

2.4. Importance Sampling

capabilities. From [71], we know that the choice of samples at each iteration affects the
solution. Therefore, instead of choosing the samples uniformly, we consider importance
sampling where samples are chosen according to some distribution to be determined. A
similar scheme can be enforced on the participating agents. In what follows, we show
that using importance sampling enhances the overall performance.

2.4.1 Agent Level: Importance Sampling of Data

Every agent k at each epoch must select a mini-batch of data based on the normalized
inclusion probabilities p(k)

n . To find the optimal probabilities, we minimize the bound on
the variance of the local gradient noise σ2

s,k, namely:

{
p(k),o
n

}Nk
n=1

= argmin∑Nk
n=1 p

(k)
n =1

σ2
s,k. (2.45)

We solve the problem for both cases when sampling is done with replacement and without
replacement. The results are the same for both sampling schemes.

Lemma 2.6 (Optimal local data inclusion probabilities). The optimal local data
normalized inclusion probabilities are given by:

p(k),o
n

∆= ‖∇wTQk(wo;xk,n)‖∑Nk
m=1 ‖∇wTQk(wo;xk,m)‖

. (2.46)

Proof. We first introduce a Lagrange multiplier and then calculate the probabilities by
setting the derivatives with respect to p(k)

n and the Lagrange multiplier to 0.

As seen in Lemma 2.6, more weight is given to a data point that has a greater gradient
norm, thus increasing its chances of being sampled and resulting in a faster convergence
rate. In addition, we observe that the more homogeneous the data is the more uniform
the inclusion probability is.

2.4.2 Cloud Level: Importance Sampling of Agents

At each iteration, the cloud must select a subset of agents to participate. The agents are
selected in accordance with the normalized inclusion probabilities pk. To find the optimal
probabilities, we minimize the bound on the variance of the gradient noise σ2

s , namely:

{pok}
K
k=1 = argmin∑K

k=1 pk=1
σ2
s . (2.47)

27

Chapter 2. Federated Learning under Importance Sampling

The following result holds for sampling with and without replacement, since the gradient
noise only differ by a multiplicative factor.

Lemma 2.7 (Optimal agent inclusion probabilities for sampling with replace-
ment). The optimal agent normalized inclusion probabilities are given by:

pok
∆=

√
σ2
s,k + αk‖∇wTJk(wo)‖2∑K

`=1

√
σ2
s,` + α`‖∇wTJ`(wo)‖2

. (2.48)

where:
αk =

(
3 + 6

EkBk

)
. (2.49)

Proof. The proof follows similarly to that of Lemma 2.6.

We observe that the normalized inclusion probabilities will be closer to a uniform
distribution the more the data and model variability terms are similar across agents.

2.4.3 Practical Issues

In the previous subsections, we focused on finding the optimal inclusion probabilities
for the agents and data. However, several practical issues arise. The first is that all
probabilities are calculated based on the optimal model wo, which we do not have access
to. To overcome this issue, we estimate the probabilities at each iteration by calculating
them according to the current model wi−1. The current model is the best estimate of
the true model, and as we perform more iterations of the algorithm, we improve the
estimate of the model and thus, in turn, improve the estimate of the probabilities. Thus,

p̂(k),o
n = ‖∇wTQk(wi−1;xk,n)‖∑Nk

m=1 ‖∇wTQk(wi−1;xm)‖
, (2.50)

p̂ok =

√
σ2
s,k + αk‖∇wTJk(wi−1)‖2∑K

`=1

√
σ2
s,` + α`‖∇wTJ`(wi−1)‖2

. (2.51)

28

2.4. Importance Sampling

In addition, since calculating the true gradient of the local loss function is costly, we
replace it with the mini-batch approximation when calculating pok:

p̂ok =

√
σ2
s,k + αk

∥∥∥∇̂wTJk(wi−1)
∥∥∥2

∑K
`=1

√
σ2
s,` + α`

∥∥∥∇̂wTJ`(wi−1)
∥∥∥2
. (2.52)

Furthermore, every agent has access to all of its data and consequently to all of the
gradients. However, the cloud does not have access to the gradients of all agents, and in
turn cannot calculate the denominator of pk. Instead, we propose the following solution:
at iteration 0, all probabilities are set to pk = 1

K ; then, during the ith iteration, after
the participating agents ` ∈ Li send the cloud the norm of their stochastic gradients
‖∇̂wTP`(wi−1)‖, the probabilities are updated as follows:

p̂ok =

√
σ2
s,k + αk

∥∥∥∇̂wTJk(wi−1)
∥∥∥2

∑
`∈Li

√
σ2
s,` + α`

∥∥∥∇̂wTJ`(wi−1)
∥∥∥2

1−
∑
`∈Lci

p̂o`

 , (2.53)

where the multiplicative factor follows from ensuring all the probabilities p̂ok sum to 1.
Similarly for the local probabilities, since we are implementing mini-batch SGD, we only
update the probabilities of the data points that were sampled:

p̂(k),o
n = ‖∇wTQk(wi−1;xk,n)‖∑

b∈Bk,i,e ‖∇wTQk(wi−1;xb)‖

1−
∑

b∈Bc
k,i,e

p̂
(k),o
b

 . (2.54)

Finally, the last problem arises when sampling without replacement. We have found the
optimal inclusion probabilities and not the optimal sampling probabilities, and moving
from the former to the latter is not trivial. Thus, we rely on the literature under sampling
without replacement with unequal probabilities. Multiple sampling schemes exist such
that the sampling probabilities do not need to be calculated explicitly. In general, there
are multiple non-uniform sampling without replacement schemes that guarantee the
same inclusion probabilities. We choose to implement the sampling scheme proposed
in [77], which ensures the inclusion probabilities are pok and p(k),o

n for the agents and data,
respectively. More explicitly, we first calculate the progressive totals of the inclusion
probabilities:

Πk =
k∑
`=1

Lpok, (2.55)

for k = 1, 2, · · · ,K, and we set Π0 = 0. Then, we select uniformly at random a uniform
variate d ∈ [0, 1). Then, we select the L agents that satisfy Πk−1 ≤ q + ` < Πk, for some
` = 0, 1, · · · , L−1, i.e., for every q+`, the agent satisfying the previous condition is selected.
The same is done for the samples at the agents. To further understand the scheme, we

29

Chapter 2. Federated Learning under Importance Sampling

include the following example: consider we have a set of 6 elements, and we wish to select 2.
The inclusion probabilities are given by: {15/200, 81/200, 26/200, 42/200, 20/200, 16/200}.
We calculate the progerssing totals to get Π = {0.15, 0.96, 1.22, 1.64, 1.84, 2}. If we choose
d = 0.57, then for ` = 0, 1, we have d+ ` = 0.57, 1.57. Thus, the first and fourth elements
are chosen.

2.5 Privacy Analysis

We next show that it is preferable for the FL algorithm to share gradient information, as
opposed to model iterates, in order to enhance privacy. For the sake of simplicity we
assume agents and data points are sampled uniformly. Thus, if we were to introduce
differential privacy to federated learning, then a random Laplacian noise gk,i should
be added to each model by the client before aggregation by the server, and the new
privatized aggregation step becomes:

wi = 1
L

∑
k∈Li

wk,i + gk,i. (2.56)

However, if we were to study the MSE convergence of the privatized algorithm, we would
notice a new O(µ−1)σ2

g term in the bound of Theorem 3.1 in Chapter 3. Thus, we
now describe an alternative implementation that shares gradients as opposed to weight
estimates. Note first that the FL algorithm can be expressed in a single step taken from
the server’s perspective:

wi = wi−1 − µ
1
L

∑
k∈Li

1
Ek

Ek∑
e=1
∇̂wTJk(wk,e−1). (2.57)

This suggests that instead of every agent sharing its final model wk,i, they could share
the total update:

1
Ek

Ek∑
e=1
∇̂wTJk(wk,e−1). (2.58)

The server then aggregates the updates from all participating agents and updates the
previous model wi−1. In this case, if we were to privatize this new version of the algorithm,
we would add random noise to the updates which are then scaled by the step-size:

ψk,i−1 = 1
Ek

Ek∑
e=1
∇̂wTJk(wk,e−1), (2.59)

wi = wi−1 − µ
1
L

∑
k∈Li

(ψk,i−1 + gk,i) . (2.60)

We show in the following theorem the effect of the added noise to the new FL algorithm.

30

2.5. Privacy Analysis

It turns out the noise introduces an O(µ) error instead of O(µ−1).

Theorem 2.2 (MSE convergence of privatized FL). Under assumptions 2.1 and
2.2, the privatized FL algorithm (2.59)−(2.60) converges exponentially fast for a small
enough step-size to a neighbourhood of the optimal model:

E‖w̃i‖2 ≤ λ E‖w̃i−1‖2 +O(µ2)σ2
s +O(µ2)ξ2 + µ2

L
σ2
g +O(µ3). (2.61)

where λ =
√

1− 2νµ+ (β2
s + δ2)µ2 +O(µ2) ∈ (0, 1). Then, in the limit:

lim sup
i→∞

E‖w̃1,i‖2 ≤ O(µ)(σ2
s + ξ2 + σ2

g) +O(µ2). (2.62)

Proof. See Appendix 2.G.

Thus, sharing the updates instead of the models is more advantageous since the effect of
the added noise on the performance is reduced. The O(µ) factor allows us to increase
the value of the noise variance while ensuring the model utility does not deteriorate
significantly. Therefore, to guarantee an ε(i)−differentially private algorithm, we let the
added noise be a zero-mean Laplacian random variable with σ2

g variance. To show this,
we first bound the sensitivity of the algorithm by assuming without loss of generality
that agent 1 replaces its original dataset by {x′1,n} and thus resulting in new model
trajectories w′i. For some constants B and B′ it can be shown that the sensitivity is
bounded as follows:

∆(i) ∆= ‖wi −w′i‖
≤ ‖w̃i‖+ ‖w̃′i‖+ ‖wo − w′o‖
≤ B +B′ + ‖wo − w′o‖, (2.63)

with high probability given by:

P
(
∆(i) ≤ B +B′ +

√
P‖wo − w′o‖

)
≥
(

1− λiE‖w̃0‖2 +O(µ)
B2

)

×
(

1− λ′iE‖w̃′0‖2 +O(µ)
B′2

)
. (2.64)

Using Markov’s inequality and Theorem 2.2, we can bound the probability that the errors

31

Chapter 2. Federated Learning under Importance Sampling

are unbounded:

P(‖w̃i‖ ≥ B) ≤ E‖w̃i‖2

B2 ≤ λiE‖w̃0‖2 +O(µ)
B2 , (2.65)

P(‖w̃′i‖ ≥ B′) ≤
E‖w̃′i‖2

B′2
≤ λ′iE‖w̃′0‖2 +O(µ)

B′2
, (2.66)

and then conclude (2.64). Now that we have a bound on the sensitivity, we can show
ε(i)−differential privacy by first starting with the condition in the definition of differential
privacy.

Definition 2.1 (ε(i)−Differential privacy). We say that the algorithm given in (2.59)–
(2.60) is ε(i)−differentially private at time i if the following condition holds on the joint
distribution f(·):

f

({
{ψk,j−1 + gk,j}k∈Li

}i
j=1

)
f

({{
ψ′k,j−1 + gk,j

}
k∈Li

}i
j=1

) ≤ eε(i). (2.67)

We can bound the ratio of the joint distributions by first using Bayes’ rule and the
independence of the added noise to get a product of Laplacian distributions, and then
using triangle inequality and the bound on the sensitivity:

f

({
{ψk,j−1 + gk,j}k∈Li

}i
j=1

)
f

({{
ψ′k,j−1 + gk,j

}
k∈Li

}i
j=1

) =
i∏

j=1

exp
(
−
√

2
σg
‖ψk,j−1 + gk,j‖

)
exp

(
−
√

2
σg
‖ψ′k,j−1 + gk,j‖

)

≤ exp

√2
σg

i∑
j=1
‖ψk,i−1 −ψ′k,i−1‖

≤ exp

√2
σg

i∑
j=1

∆(j)

= exp

(√
2

σg
(B +B′ + ‖wo − w′o‖)i

)
. (2.68)

Thus, the algorithm is ε(i)−differentially private for:

ε(i) =
√

2
σg

(B +B′ + ‖wo − w′o‖)i, (2.69)

32

2.6. Experimental Results

and with high probability.

2.6 Experimental Results

To illustrate the theoretical results, we devise two experiments. The first consists of
simulated data with quadratic risk functions, and the second consists of a real dataset with
logistic risk functions. We further study the effect of some architectural and algorithmic
constants.

2.6.1 Regression

We first validate the theory on a regression problem. We consider K = 300 agents, for
which we generate Nk = 100 data points for each agent k as follow: Let uk,n denote an
independent streaming sequence of two-dimensional random vectors with zero mean and
covariance matrix Ruk = E uk,iuT

k,i. Let dk(n) denote a streaming sequence of random
variables that have zero mean and variance σ2

dk
= E d2

k(n). Let rdkuk = E dk(n)uk,n
be the cross-variance vector. The data {dk(n),uk,n} are related by the following linear
regression model:

dk(n) = uTk,nw
? + vk(n), (2.70)

for some randomly generated parameter vector w? and where vk(n) is a zero mean white
noise process with variance σ2

vk
= Ev2

k(n), independent of uk,n. The local risk is given
by:

Jk(w) = 1
Nk

Nk∑
n=1
‖dk(n)− uT

k,nw‖2 + ρ‖w‖2, (2.71)

and so the loss function becomes:

Qk(w;dk(n),uk,n) = ‖dk(n)− uT
k,nw‖2 + ρ‖w‖2. (2.72)

We set ρ = 0.001, while the batch sizes Bk and the epoch sizes Ek are chosen uniformly
at random from the range [1, 10] and [1, 5], respectively. During each iteration, there
are L = 6 active agents. To test the performance of the algorithm, we calculate at each
iteration the mean-square deviation (MSD) of the parameter vector wi with respect to
the true model wo:

MSDi = ‖wi − wo‖2. (2.73)

The optimization problem has the closed form expression:

wo =
(
R̂u + ρI

)−1
R̂uw

? +
(
R̂u + ρI

)−1
r̂uv, (2.74)

33

Chapter 2. Federated Learning under Importance Sampling

where:

R̂u
∆= 1

K

K∑
k=1

1
Nk

Nk∑
n=1

uT
k,nuk,n, (2.75)

r̂uv
∆= 1

K

K∑
k=1

1
Nk

Nk∑
n=1

vk(n)uk,n. (2.76)

4646(2.50)-(2.51)
(2.53)-(2.54)

Figure 2.1 – MSD plots of the regression problem: blue curve is the standard mini-batch
implementation, green curve is the importance sampling implementation with the true
probabilities, red curve is the importance sampling implementation with approximate
probabilities (2.50)–(2.51), purple curve is the importance sampling implementation with
approximate probabilities (2.53)–(2.54).

We run four tests: we first run the standard FedAvg algorithm where the mini-batches are
chosen uniformly with replacement. We then run Algorithm 2.1, once with the optimal
probabilities p(k)

n and pk in (2.46)–(2.48), once with the approximate probabilities (2.50)–
(2.51), and once with (2.53)–(2.54). We implement the sampling scheme from [77]. We
set the step-size µ = 0.01. Each test is repeated 100 times, and the resulting MSD
is averaged. We get the curves as shown in Figure 2.1. We see that the importance
sampling scheme does better than the standard sampling algorithm. This comes as
no surprise, since the probabilities were chosen to minimize the bound on the MSD.
The importance sampling scheme (green curve) improved the MSD bound by 13.1 dB
compared to the standard federated learning scheme (blue curve), i.e., it resulted in a
lower gradient noise variance. In addition, both schemes converge exponentially fast,
namely in the transient state the effect of the previous error is decreasing due to the
multiplication by the convergence rate λ′ (see first term in Theorem 2.1). In the steady

34

2.6. Experimental Results

state, the MSD plateaus at a constant that is mainly dependent on the gradient noise
variance σ2

s and the model variability ξ2. Furthermore, we observe that approximate
probabilities do not degrade the performance of the algorithm. Our proposed approximate
solution (2.53)–(2.54) (purple curve) performs just as well as using the true probabilities.
In fact, we observe that the approximate probabilities converge quadratically to the
true ones. Similarly, the approximate probabilities (2.51)–(2.50) do not degrade the
overall performance. They, in fact, outperform the other solutions and converge faster
(red curve). This is not surprising, since, at each iteration, we are attributing higher
probabilities to agents and data points that have greater gradients. We are increasing
their chances of being selected and thus taking steeper steps towards the true model.

2.6.2 Classification

We next study the theory in a classification context. We consider the ijcnn1 dataset [78].
The dataset consists of 35000 training samples and 91701 testing samples of M = 22
attributes. We distribute the data randomly in a non-IID fashion to K = 100 agents.
Each agent receives a random number Nk of data points, where Nk ranges from 79 to
688. We run the two algorithms FedAvg and ISFedAvg. We set µ = 0.25, ρ = 0.0001,
L = 10, and Bk and Ek chosen as before. We also consider the Avazu click through
dataset [79] that consists of 10 days worth of data points to study a click prediction
system of online adds. We split 5101 data points each of 106 features to K = 20 agents,
each receiving between Nk = 235 to Nk = 780 data points. Since the data is IID, we add
Guassian noise to the data points of each agent. The noise is non-IID accross the agents.
We set µ = 0.1, ρ = 0.01, L = 3, Bk ∈ [1, 20] and Ek ∈ [1, 10]. We plot the testing error
in Figure 2.2. We observe that importance sampling improves the testing error from
22.45% to 18.46% for ijcnn1 and from 22.26% to 14.45%. This is because importance
sampling is more sample efficient.

0 100 200 300 400 500
i

20

40

60

80

Te
st

in
g

Er
ro

r (
%

)

FedAvg
ISFedAvg

(a) IJCNN1 Dataset

0 20 40 60 80 100
i

20

30

40

50

60

Te
st

in
g

Er
ro

r (
%

)

FedAvg
ISFedAvg

(b) Avazu Dataset

Figure 2.2 – Testing error plots of the classification problem.

35

Chapter 2. Federated Learning under Importance Sampling

2.6.3 Effect of Parameters

We return to the regression problem to study the effect of the number of sampled agents
L, the epoch size Ek, and the non-iid factor of the data captured by ξ. We study their
effect in the regression setting since it is a more controlled environment that will allow
us to limit the effect of unknown factors.

We first look at the effect of the number of sampled agents L per iteration. We varry
L ∈ {6, 30, 60} and compare the difference between FedAvg using uniform sampling
versus importance sampling. We plot the results in Figure 2.3. We choose to not plot
the MSD in the log domain since in the linear domain the effect is clearer. We observe
that as the value of L increases the improved performance of ISFedAvg decreases. Thus,
for large values of L, ISFedAvg is not much more advantageous than FedAvg. We also
observe that as L increases both algorithms perform better. This is not surprising, since
as we increase L we improve our estimate of the true gradient taken over all the K agents,
i.e., decreasing the gradient noise si.

Figure 2.3 – MSD plots of the regression problem with varying L.

We next study the effect of varrying the epoch size Ek. We run three experiments for
different range values of Ek. During each of these experiments we compare FedAvg with
ISFedAvg. The corresponding plots are found in Figure 2.4. We observe that as Ek
increases, the perfomance of FedAvg and ISFedAvg does not change much. This is not
surprising, since in our modified version of FedAvg we normalize the gradient by Ek. If
we were to repeat the same experiments with the standard FedAvg algorithm originally
proposed by [11], increasing Ek would deteriorate the performance.

36

2.6. Experimental Results

Figure 2.4 – MSD plots of the regression problem with varying Ek.

Finally, to study the effectc of the non-iid date, we vary the variability among the data
distribution between the different agents. We control that by the covariance of the added
noise {vk}Kk=1. To make the data more non-identical we increase the covariance and thus
resulting in a higher value of ξ. We run four experiments for four different values of
the covariance matrix, and we approximate the corresponding ξ ∈ {0.297, 1.5, 4.94, 10}.
Observing the MSD plots in Figure 2.5a, we see that as ξ increases, i.e., the data is more
non-IID, the performance of both algorithms worsens. However, ISFedAvg always does
better than FedAvg. In addition, we would like to point out by increasing ξ even more
we run the risk of both algorithms diverging. As seen in Figure 2.5b, we can conclude
that there exists a range of values of ξ for which FedAvg diverges while ISFedAvg still
manages to converge. Thus, FedAvg is more sensitive to the values of ξ.

(a) Varying ξ. (b) Diverging ξ.

Figure 2.5 – MSD plots of the regression problem with varying ξ.

37

Chapter 2. Federated Learning under Importance Sampling

2.6.4 Effect of Privatization

We assume we have K = 1000 agents of which we choose L = 30 at a time. We generate
non-iid datasets of varying size for each agent as in the previous section. We allow each
agent to run varying epochs Ek ∈ [1, 10] during an iteration of the algorithm. We set the
step-size µ = 0.2, ρ = 0.007 and σ2

g = 0.02. We compare three algorithms: the standard
FL algorithm, the privatized FL algorithm with sharing of models, and the privatized FL
algorithm with sharing of updates. We plot the average MSD curves after repeating the
experiment 100 times. As expected, the effect of the added noise is worse when models
are shared (Figure 2.6 yellow curve) than when updates are shared (Figure 2.6 red curve).

0 500 1000 1500 2000
Iteration

15

10

5

M
SD

 (d
B)

FL
No Pert.
Pert. to Model
Pert. to Grad

Figure 2.6 – MSD plots of privatized FL.

We next study the effect of the step-size on the MSD of the privatized FL algorithm. We
expect that as µ is increased the MSD increases for the FL algorithm when updates are
shared. While, when models are shared, since the gradient noise variance is tuned by µ
and the added noise variance by µ−1, we expect to observe a trade-off. On one hand,
as µ is increased the effect of the gradient noise is increased while that of the added
noise is diminished. On the other hand, as µ is decreased, the effect of the added noise
overpowers that of the gradient noise. Indeed, we observe this phenomenon in (a) and
(b) of Figure 2.7.

Finally, we study the effect of the variance of the added noise. We fix the step-size at
µ = 0.2 and vary the noise variance σ2

g = {0.01, 0.05, 0.1, 0.5}. In the two cases, as we
increase σ2

g the performance diminishes ((c), (d) of Figure 2.7). However, the larger
values of the added noise variance affect the perturbed models more than the perturbed
gradients. The algorithm diverges for lower values of σ2

g in the case when models are
shared as opposed to when gradients are shared. Thus, sharing updates can handle larger

38

2.7. Conclusion

0 500 1000 1500 2000
Iteration

15.0

12.5

10.0

7.5

5.0

2.5
M

SD
 (d

B)
FL: Perturbation to Gradients

= 0.1
= 1
= 10

(a) Varying µ

0 500 1000 1500 2000
Iteration

12.5

10.0

7.5

5.0

2.5

M
SD

 (d
B)

FL: Perturbation to Models
= 0.1
= 1
= 10

(b) Varying µ

0 500 1000 1500 2000
Iteration

15

10

5

0

5

M
SD

 (d
B)

FL: Perturbation to Gradients
2
g = 0.01
2
g = 0.05

2
g = 0.1
2
g = 0.5

(c) Varying σ2
g

0 500 1000 1500 2000
Iteration

10

0

10

M
SD

 (d
B)

FL: Perturbation to Models
2
g = 0.01
2
g = 0.05

2
g = 0.1
2
g = 0.5

(d) Varying σ2
g

Figure 2.7 – MSD plots of privatized FL with varying step-size and variance of added
noise.

values of σ2
g before the algorithm diverges. In addition, since the variance is tuned by

the step-size, we can always find a suitable µ to decrease its effect.

2.7 Conclusion

The work presented in this chapter incorporates two levels of importance sampling into
the operation of federated learning: one for selecting agents and the other for selecting
data batches at the agents. Optimal dynamical choices for the sampling probabilities are
derived, and a detailed convergence analysis is performed. We also provided approximate
expressions for the optimal sampling policies and illustrate the theoretical findings and the
performance enhancement by means of simulations. Finally, we introduced privatization
to federated learning by masking the messages. We showed that perturbing the updates
instead of the models does not hinder performance. We dropped the assumption on
the bounded gradients that rarely holds and showed the privatized federated learning
algorithm is differentially private with high probability.

39

Chapter 2. Federated Learning under Importance Sampling

2.A Result on the Variance of the Mini-batch Estimate

Let {S = xn ∈ RM}Nn=1 denote a set of N independent random variables, each with mean
Exn = xn and variance σ2

n = E‖xn − Exn‖2. We consider the problem of estimating the
expected value of the sample mean2:

x , E
(

1
N

N∑
n=1

xn

)
(2.77)

We consider two estimators for x, both constructed by considering a mini-batch of
samples, where xr

b is sampled from S with replacement and xnr
b without replacement. Let

pn be the normalized inclusion probability of xn. We then define the two estimators:

x̂r ,
1
B

B∑
b=1

1
Npb

xr
b, (2.78)

x̂nr ,
1
B

B∑
b=1

1
Npb

xnr
b . (2.79)

Both estimators are unbiased, and it holds that:

E‖x̂r − x‖2 = 1
B

N∑
n=1

pn

(
1

N2p2
n

σ2
n +

∥∥∥∥ 1
Npn

xn − x
∥∥∥∥2
)
, (2.80)

E‖x̂nr − x‖2 ≤
N∑
n=1

pn

(
1

N2p2
n

σ2
n +

∥∥∥∥ 1
Npn

xn − x
∥∥∥∥2
)
. (2.81)

Proof. We begin with the with-replacement setting. The randomness of the samples
introduces some intricacies that need to be accounted for in the notation. For the mean,
we have:

Ex̂r = 1
B

B∑
b=1

E
(1
Npb

xr
b

)
= 1
B

B∑
b=1

E
{
E
{

1
Npb

xr
b

∣∣∣∣∣S
}}

= 1
B

B∑
b=1

E
{

N∑
n=1

pn
1

Npn
xn

}
= 1
B

B∑
b=1

x = x. (2.82)

2We introduce the following auxiliary result that is a slight variation of known results [80].

40

2.A. Result on the Variance of the Mini-batch Estimate

For the variance we find:

E‖x̂r − x‖2

= E
∥∥∥∥∥ 1
B

B∑
b=1

1
Npb

xr
b − x

∥∥∥∥∥
2

= E
∥∥∥∥∥ 1
B

B∑
b=1

(1
Npb

xr
b − x

)∥∥∥∥∥
2

= 1
B2

B∑
b=1

E
∥∥∥∥ 1
Npb

xr
b − x

∥∥∥∥2
+ 1
B2

∑
b1 6=b2

E
{(1

Npb1

xb1 − x
)T(1

Npb2

xb2 − x
)}

(a)= 1
B2

B∑
b=1

E
∥∥∥∥ 1
Npb

xr
b − x

∥∥∥∥2
+ 1
B2

∑
b1 6=b2

E
{ 1
Npb1

xb1 − x
}
E
{ 1
Npb2

xb2 − x
}

(b)= 1
B2

B∑
b=1

E
∥∥∥∥ 1
Npb

xr
b − x

∥∥∥∥2
, (2.83)

where (a) is a result of the fact that the elements of S are independent and xr
b is sampled

from S independently, and hence xb1 and xb2 are independent. Step (b) then follows
from:

E
(1
Npb

xb

)
= E

(
1
N

N∑
n=1

xn

)
= x. (2.84)

Then:

E‖x̂r − x‖2= 1
B2

B∑
b=1

E
∥∥∥∥ 1
Npb

xr
b − x

∥∥∥∥2

= 1
B2

B∑
b=1

E
{
E
∥∥∥∥ 1
Npb

xr
b − x

∥∥∥∥2
∣∣∣∣∣S
}

= 1
B2

B∑
b=1

E
{

N∑
n=1

pn

∥∥∥∥ 1
Npn

xn − x
∥∥∥∥2
}

= 1
B2

B∑
b=1

N∑
n=1

pnE
∥∥∥∥ 1
Npn

xn − x
∥∥∥∥2

= 1
B

N∑
n=1

pnE
∥∥∥∥ 1
Npn

xn −
1

Npn
xn + 1

Npn
xn − x

∥∥∥∥2

= 1
B

N∑
n=1

pn

(
E
∥∥∥∥ 1
Npn

xn −
1

Npn
xn

∥∥∥∥2
+
∥∥∥∥ 1
Npn

xn − x
∥∥∥∥2
)

= 1
B

N∑
n=1

pn

(
1

N2p2
n

σ2
n +

∥∥∥∥ 1
Npn

xn − x
∥∥∥∥2
)
. (2.85)

We now proceed to study the efficiency of the without replacement mini-batch mean.

41

Chapter 2. Federated Learning under Importance Sampling

The fact that the xb are sampled from S without replacement causes pairs xb1 ,xb2 to no
longer be independent. We denote the set of points sampled from S without replacement
by Bnr and introduce the activation function by:

In ,

1, if xn ∈ Bnr,

0, if xn /∈ Bnr.
(2.86)

Then, the estimator x̂nr can be written equivalently as:

x̂nr = 1
B

N∑
n=1

In
1

Npn
xn. (2.87)

For the mean, we have:

Ex̂nr = 1
B

N∑
n=1

E
{
In

1
Npn

xn

}
= 1
B

N∑
n=1

EInE
1

Npn
xn

= 1
B

N∑
n=1

Bpn
1

Npn
xn = 1

N

N∑
n=1

xn = x. (2.88)

For the variance, we have:

E ‖x̂nr − x‖2 = E
∥∥∥∥∥ 1
B

N∑
n=1

In
(1
Npn

xn − x
)∥∥∥∥∥

2

= 1
B2

N∑
n=1

E
∥∥∥∥In (1

Npn
xn − x

)∥∥∥∥2

+ 1
B2

∑
n1 6=n2

E

In1

(1
Npn1

xn1 − x
)
In2

(1
Npn2

xn2 − x
). (2.89)

We begin with:

E
∥∥∥∥In (1

Npn
xn − x

)∥∥∥∥2
= E

{∥∥∥∥In (1
Npn

xn − x
)∥∥∥∥2

∣∣∣∣∣In = 1
}
P (In = 1)

+ E
{∥∥∥∥In (1

Npn
xn − x

)∥∥∥∥2
∣∣∣∣∣In = 0

}
P (In = 0)

=Bpn

(
E
∥∥∥∥ 1
Npn

xn −
1

Npn
xn + 1

Npn
xn − x

∥∥∥∥2
)

=Bpn

(
1

N2p2
n

E‖xn − xn‖2 +
∥∥∥∥ 1
Npn

xn − x
∥∥∥∥2
)

=Bpn

(
1

N2p2
n

σ2
n +

∥∥∥∥ 1
Npn

xn − x
∥∥∥∥2
)
. (2.90)

42

2.B. Proof of Lemma 2.1

For the cross-term we have:

E
{
In1

(1
Npn1

xn1 − x
)
In2

(1
Npn2

xn2 − x
)}

= E
{(1

Npn1
xn1 − x

)(1
Npn2

xn2 − x
) ∣∣∣∣∣In1 = 1, In2 = 1

}
P (In1 = 1, In2 = 1)

= P (In2 = 1, In1 = 1)
(1
Npn1

Exn1 − x
)(1

Npn2
Exn2 − x

)
= P (In2 = 1, In1 = 1)

(1
Npn1

xn1 − x
)(1

Npn2
xn2 − x

)
. (2.91)

We then get the desired result.

2.B Proof of Lemma 2.1

We start with the sampling with-replacement construction. We have K agents from which
we sample L. Thus, N and B in the previous Appendix 2.A are K and L, respectively.
Let also:

xk = ∇̂wTJk(wi−1), (2.92)
xk = ∇wTJk(wi−1), (2.93)

x = 1
K

K∑
k=1
∇wTJk(wi−1). (2.94)

Then σ2
k, which quantifies the second order moment of the local gradient noise, becomes:

σ2
k = E

{∥∥∥∇̂wTJk(wi−1)−∇wTJk(wi−1)
∥∥∥2
∣∣∣∣∣wi−1

}

= 1
E2
kB

2
k

Ek∑
e=1

∑
b∈Bk,i,e

E

∥∥∥∥∥ 1
Nkp

(k)
b

∇wTQk(wi−1;xk,b)−∇wTJk(wi−1)
∥∥∥∥∥

2∣∣∣∣∣wi−1

= 1
EkB

2
k

∑
b∈Bk,i,e

E

∥∥∥∥∥ 1
Nkp

(k)
b

∇wTQk(wi−1;xk,b)
1

Nkp
(k)
b

∇wTQk(wo;xk,b)

+ 1
Nkp

(k)
b

∇wTQk(wo;xk,b)−∇wTJk(wo) +∇wTJk(wo)−∇wTJk(wi−1)
∥∥∥∥∥

2∣∣∣∣∣wi−1

43

Chapter 2. Federated Learning under Importance Sampling

(a)
≤ 3
EkB

2
k

∑
b∈Bk,i,e

Nk∑
n=1

p(k)
n

∥∥∥∥∥ 1
Nkp

(k)
n

∇wTQk(wi−1;xk,n)− 1
Nkp

(k)
n

∇wTQk(wo;xk,n)
∥∥∥∥∥

2

+
Nk∑
n=1

p(k)
n

∥∥∥∥∥ 1
Nkp

(k)
n

∇wTQk(wo;xk,n)−∇wTJk(wo)
∥∥∥∥∥

2

+ ‖∇wTJk(wo)−∇wTJk(wi−1)‖2

(b)
≤ 3
EkB

2
k

∑
b∈Bk,i,e

1 +

Nk∑
n=1

1
N2
kp

(k)
n

 δ2‖w̃i−1‖2

+
Nk∑
n=1

p(k)
n

∥∥∥∥∥ 1
Nkp

(k)
n

∇wTQk(wo;xk,n)−∇wTJk(wo)
∥∥∥∥∥

2

(c)
≤ 3δ2

EkBk

1 + 1
N2
k

Nk∑
n=1

1
p

(k)
n

 ‖w̃i−1‖2 + 6
EkBkN

2
k

Nk∑
n=1

1
p

(k)
n

‖∇wTQk(wo;xk,n)‖2

+ 6
EkBk

‖∇wTJk(wo)‖2

= β2
s,k‖w̃i−1‖2 + σ2

s,k + 6
EkBk

‖∇wTJk(wo)‖2 , (2.95)

where (a) and (c) follow from using Jensen’s inequality, and (b) follows from using
the δ−Lipschitz property of the gradients. Thus, using Appendix 2.A, we bound the
stochastic noise variance as follows:

E
{
‖si‖2|wi−1

}
= 1
L

K∑
k=1

pk

 1
K2p2

k

σ2
k +

∥∥∥∥∥ 1
Kpk

∇wTJk(wi−1)− 1
K

K∑
`=1
∇wTJ`(wi−1)

∥∥∥∥∥
2.

(2.96)

We focus on the second term since the first term has already been bounded. Using first
Jensen’s inequality to split into three terms and then Lipschitz condition of the gradients,
we get:

∥∥∥∥∥ 1
Kpk

∇wTJk(wi−1)− 1
K

K∑
`=1
∇wTJ`(wi−1)

∥∥∥∥∥
2

= 1
K2

∥∥∥∥∥ 1
pk
∇wTJk(wi−1)− 1

pk
∇wTJk(wo) + 1

pk
∇wTJk(wo) +

K∑
`=1
∇wTJ`(wo)

−
K∑
`=1
∇wTJ`(wi−1)

∥∥∥∥∥
2

≤ 3δ2
(

1 + 1
K2p2

k

)
‖w̃i−1‖2 + 3

K2p2
k

‖∇wTJk(wo)‖2 . (2.97)

44

2.B. Proof of Lemma 2.1

Then, putting things together, we get:

E
{
‖si‖2|wi−1

}
≤
(

3δ2

L
+ 1
LK2

K∑
k=1

1
pk

(
β2
s,k + 3δ2

))
‖w̃i−1‖2

+ 1
LK2

K∑
k=1

1
pk

{
σ2
s,k +

(
3 + 6

EkBk

)
‖∇wTJk(wo)‖2

}
= β2

s‖w̃i−1‖2 + σ2
s . (2.98)

Next, we move to the sampling without replacement construction. The variance σ2
k

becomes:

σ2
k = E

{∥∥∥∇̂wTJk(wi−1)−∇wTJk(wi−1)
∥∥∥2
∣∣∣∣∣wi−1

}

= E

∥∥∥∥∥ 1
EkBk

Ek∑
e=1

Nk∑
n=1

In
1

Nkp
(k)
n

∇wTQk(wi−1;xn)−∇wTJk(wi−1)
∥∥∥∥∥

2∣∣∣∣∣wi−1

= 1
EkB

2
k

Nk∑
n=1

E

∥∥∥∥∥In 1

Nkp
(k)
n

∇wTQk(wi−1;xn)−∇wTJk(wi−1)
∥∥∥∥∥

2∣∣∣∣∣wi−1

+ 1
EkB

2
k

∑
n1 6=n2

E

In1

(
1

Nkp
(k)
n1

∇wTQk(wi−1;xn1)−∇wTJk(wi−1)
)

× In2

(
1

Nkp
(k)
n2

∇wTQk(wi−1;xn2)−∇wTJk(wi−1)
)∣∣∣∣∣wi−1

. (2.99)

Starting with the first term, we use Jensen’s inequality in (a) and (c) and the Lipschitz
condition in (b) to get:

1
EkB

2
k

Nk∑
n=1

P(In = 1)E

∥∥∥∥∥ 1
Nkp

(k)
n

∇wTQk(wi−1;xk,n)−∇wTJk(wi−1)
∥∥∥∥∥

2∣∣∣∣∣wi−1, In = 1

= 1
EkBk

Nk∑
n=1

p(k)
n

∥∥∥∥∥ 1
Nkp

(k)
n

∇wTQk(wi−1;xk,n)− 1
Nkp

(k)
n

∇wTQk(wo;xk,n)

+ 1
Nkp

(k)
n

∇wTQk(wo;xk,n)−∇wTJk(wo) +∇wTJk(wo)−∇wTJk(wi−1)
∥∥∥∥∥

2

45

Chapter 2. Federated Learning under Importance Sampling

(a)
≤ 3
EkBk

Nk∑
n=1

 1
N2
kp

(k)
n

‖∇wTQk(wi−1;xk,n)−∇wTQk(wo;xk,n)‖2

+ p(k)
n

∥∥∥∥∥ 1
Nkp

(k)
n

∇wTQk(wo;xk,n)−∇wTJk(wo)
∥∥∥∥∥

2

+ 3
EkBk

‖∇wTJk(wo)−∇wTJk(wi−1)‖2 ,

(b)
≤ 3δ2

EkBk

1 + 1
N2
k

Nk∑
n=1

1
p

(k)
n

 ‖w̃i−1‖2

+ 3
EkBk

Nk∑
n=1

p(k)
n

∥∥∥∥∥ 1
Nkp

(k)
n

∇wTQk(wo;xk,n)−∇wTJk(wo)
∥∥∥∥∥

2

(c)
≤ 3δ2

EkBk

1 + 1
N2
k

Nk∑
n=1

1
p

(k)
n

 ‖w̃i−1‖2

+ 6
EkBk

Nk∑
n=1

1
N2
kp

(k)
n

‖∇wTQk(wo;xk,n)‖2 + 6
EkBk

‖∇wTJk(wo)‖2

= β2
s,k‖w̃i−1‖2 + σ2

s,k + 6
EkBk

‖∇wTJk(wo)‖2, (2.100)

The cross-term reduces to 0 by first conditioning over In1 = 1, In2 = 1 and then splitting
the expectation. Each of the two terms are zero. Thus, putting everything together, we
get:

σ2
k ≤ β2

s,k‖w̃i−1‖2 + σ2
s,k + 6

EkBk
‖∇wTJk(wo)‖2. (2.101)

Next, to bound the second order moment of the gradient noise, we use (2.81):

E
{
‖si‖2|wi−1

}
≤

K∑
k=1

pk

 1
K2p2

k

σ2
k +

∥∥∥∥∥ 1
Kpk

∇wTJk(wi−1)− 1
K

K∑
`=1
∇wTJ`(wi−1)

∥∥∥∥∥
2.

(2.102)

The second term is of the same form as for sampling with replacement, and thus can be
bounded similarly:

E{‖si‖2|wi−1} ≤
K∑
k=1

pk

 β2
s,k

K2p2
k

‖w̃i−1‖2 + 1
K2p2

k

σ2
s,k + 6

K2p2
kEkBk

‖∇wTJk(wo)‖2

+ 3
K2p2

k

‖∇wTJk(wo)‖2 + 3δ2
(

1 + 1
K2p2

k

)
‖w̃i−1‖2

= β2

s‖w̃i−1‖2 + σ2
s . (2.103)

46

2.C. Proof of Lemma 2.2

2.C Proof of Lemma 2.2

We first note the following result by using 1
K

K∑
k=1
∇wTJk(wo) = 0:

∥∥∥∥∥w̃i−1 + µ
1
K

K∑
k=1
∇wTJk(wi−1)

∥∥∥∥∥
2

= ‖w̃i−1‖2 + µ2
∥∥∥∥∥ 1
K

K∑
k=1
∇wTPk(wo)−∇wTJk(wi−1)

∥∥∥∥∥
2

+ 2µw̃T
i−1

1
K

K∑
k=1
∇wTJk(wi−1)

(a)
≤ ‖w̃i−1‖2 + µ2 1

K

K∑
k=1
‖∇wTJk(wo)−∇wTJk(wi−1)‖2 + 2µw̃T

i−1
1
K

K∑
k=1
∇wTJk(wi−1)

(b)
≤ (1 + µ2δ2)‖w̃i−1‖2 + 2µw̃T

i−1
1
K

K∑
k=1
∇wTJk(wi−1)

(c)
≤ (1 + µ2δ2)‖w̃i−1‖2 + 2µ 1

K

K∑
k=1

(
Jk(wo)− Jk(wi−1)− ν

2‖w̃i−1‖2
)

(d)
≤ (1 + µ2δ2)‖w̃i−1‖2 − 2µ 1

K

K∑
k=1

ν‖w̃i−1‖2

= (1− 2µν + µ2δ2)‖w̃i−1‖2, (2.104)

where (a) follows from Jensen’s inequality, (b) from the Lipschitz condition, and (c) and
(d) from strong convexity.

Returning to the main expression:

w̃i−1 + µ
1
K

K∑
k=1
∇wTJk(wi−1) + µsi, (2.105)

and taking conditional expectations, we obtain:

E

∥∥∥∥∥w̃i−1 + µ

1
K

K∑
k=1
∇wTJk(wi−1) + µsi

∥∥∥∥∥
2 ∣∣∣∣∣∣wi−1

(a)= E

∥∥∥∥∥w̃i−1 + µ

1
K

K∑
k=1
∇wTJk(wi−1)

∥∥∥∥∥
2 ∣∣∣wi−1

+ µ2E
{
‖si‖2

∣∣∣wi−1
}

(b)
≤ (1− 2µν + µ2δ2)‖w̃i−1‖2 + µ2

(
β2
s‖w̃i−1‖2 + ηs‖w̃i−1‖+ σ2

s

)
, (2.106)

where the cross-term in (a) is zero because of the zero mean property of the gradient
noise, and (b) follows from (2.104) and using the bound on the second order moment of
the gradient noise.

47

Chapter 2. Federated Learning under Importance Sampling

Next, taking expectation again to remove the conditioning we get:

E
∥∥∥∥∥w̃i−1 + µ

1
K

K∑
k=1
∇wTJk(wi−1) + µsi

∥∥∥∥∥
2

≤
(
1− 2µν + µ2(δ2 + β2

s)
)
E‖w̃i−1‖2

+ µ2ηsE‖w̃i−1‖+ µ2σ2
s . (2.107)

2.D Proof of Lemma 2.3

To show the mean is zero, it is enough to calculate the mean of the approximate gradient.
We start with the sampling with replacement scheme where the samples are chosen
independently from each other:

E

 1
Bk

∑
b∈Bk,i,e

1
Nkp

(k)
b

∇wTQk(wk,e−1;xk,b)
∣∣∣Fe−1,Li

= 1
Bk

∑
b∈Bk,i,e

E
{

1
Nkp

(k)
b

∇wTQk(wk,e−1;xk,b)
∣∣∣Fe−1,Li

}

= 1
Nk

Nk∑
n=1
∇wTQk(wk,e−1;xk,n). (2.108)

As for the sampling without replacement scheme, since the samples are now dependent,
we introduce the indicator function In and the derivation goes as follows:

E

 1
Bk

∑
b∈Bk,i,e

1
Nkp

(k)
b

∇wTQk(wk,e−1;xk,b)
∣∣∣Fe−1,Li

= E

 1
Bk

Nk∑
n=1

In
Nkp

(k)
n

∇wTQk(wk,e−1;xk,n)
∣∣∣Fe−1,Li

= 1
Bk

Nk∑
n=1

P(In = 1)
Nkp

(k)
n

∇wTQk(wk,e−1;xk,n)

= 1
Nk

Nk∑
n=1
∇wTQk(wk,e−1;xk,n). (2.109)

Next, to bound the second order moment, we start with an intermediate step and
bound the second order moment of the individual gradient noise of one sample. The
derivation below holds regardless of the sampling scheme. By adding and subtracting

1
Nkp

(k)
n

∇wTQk(wok;xk,n), adding ∇wTJk(wok) = 0, and then using Jensen’s inequality and

48

2.D. Proof of Lemma 2.3

Lipschitz condition, we get:∥∥∥∥∥ 1
Nkp

(k)
n

∇wTQk(wk,e−1;xk,n)−∇wTJk(wk,e−1)
∥∥∥∥∥

2

≤ 3

∥∥∥∥∥∥ 1
Nkp

(k)
n

∇wTQk(wk,e−1;xk,n)− 1
Nkp

(k)
n

∇wTQk(wok;xk,n)

∥∥∥∥∥∥
2

+ 3
∥∥∥∥∥ 1
Nkp

(k)
n

∇wTQk(wok;xk,n)
∥∥∥∥∥

2

+ 3δ2‖w̃k,e−1‖2. (2.110)

Then, taking the conditional expectation and using the Lipschitz property, we get:

E

∥∥∥∥∥∥ 1
Nkp

(k)
n

∇wTQk(wk,e−1;xk,n)−∇wTJk(wk,e−1)

∥∥∥∥∥∥
2∣∣∣∣∣∣Fe−1,Li

≤

Nk∑
n=1

3p(k)
n

N2
k

(
p

(k)
n

)2

(
‖∇wTQk(wk,e−1;xk,n)−∇wTQk(wok;xk,n)‖2 + ‖∇wTQk(wok;xk,n)‖2

)
+ 3δ2‖w̃k,e−1‖2

≤
Nk∑
n=1

3
N2
kp

(k)
n

(
δ2‖w̃k,e−1‖2 + ‖∇wTQk(wok;xk,n)‖2

)
+ 3δ2‖w̃k,e−1‖2. (2.111)

Now going back to calculating the second order moment of the local incremental gradient
noise, we first start with the sampling with replacement. Using the fact that the samples
are independent we get:

E
{
‖qk,i,e‖2

∣∣∣Fe−1,Li
}

= 1
K2p2

kB
2
k

∑
b∈Bk,i,e

E

∥∥∥∥∥∥ 1
Nkp

(k)
b

∇wTQk(wk,e−1;xk,b)−∇wTJk(wk,e−1)

∥∥∥∥∥∥
2∣∣∣∣∣∣Fe−1,Li

≤ 3δ2

K2p2
kBk

1 + 1
N2
k

Nk∑
n=1

1
p

(k)
n

 ‖w̃k,e−1‖2 + 3
K2p2

kBkN
2
k

Nk∑
n=1

1
p

(k)
n

‖∇wTQk(wok;xk,n)‖2.

(2.112)

As for the sampling without replacement, we also introduce the indicator function and
write out the square of sums. The cross-terms disappear since each term has zero mean.
The derivation then follows similarly to that of the sampling with replacement. More

49

Chapter 2. Federated Learning under Importance Sampling

formally:

E
{
‖qk,i,e‖2

∣∣∣Fe−1,Li
}

= 1
K2p2

kB
2
k

Nk∑
n=1

P(In = 1)

× E

∥∥∥∥∥∥ 1
Nkp

(k)
n

∇wTQk(wk,e−1;xk,n)−∇wTJk(wk,e−1)

∥∥∥∥∥∥
2∣∣∣∣∣∣In = 1,Fe−1,Li

= 1
K2p2

kBk

Nk∑
n=1

p(k)
n

∥∥∥∥∥∥ 1
Nkp

(k)
n

∇wTQk(wk,e−1;xk,n)−∇wTJk(wk,e−1)

∥∥∥∥∥∥
2

≤ 3δ2

K2p2
kBk

1 + 1
N2
k

Nk∑
n=1

1
p

(k)
n

 ‖w̃k,e−1‖2 + 3
K2p2

kBkN
2
k

Nk∑
n=1

1
p

(k)
n

‖∇wTQk(wok;xk,n)‖2.

(2.113)

2.E Proof of Lemma 2.4

We subtract wok from both sides of (2.10) and use (2.29) to get:

w̃k,e = w̃k,e−1 + µ∇wTJk(wk,e−1) + µqk,i,e. (2.114)

We bound the first two terms and use the fact that ∇wTPk(wok) = 0, Lipschitz condition,
and the convexity of the cost function:

‖w̃k,e−1 + µ∇wTJk(wk,e−1)‖2

= ‖w̃k,e−1‖2 + 2µw̃T
k,e−1∇wTJk(wk,e−1) + µ2‖∇wTJk(wok)−∇wTJk(wk,e−1)‖2

≤ (1 + µ2δ2)‖w̃k,e−1‖2 + 2µw̃T
k,e−1∇wTJk(wk,e−1)

≤ (1− 2νµ+ µ2δ2)‖w̃k,e−1‖2. (2.115)

Returning to (2.114), squaring both sides, conditioning on the filtration Fe−1, and taking
expectations we obtain:

E
{
‖w̃k,e‖2

∣∣∣Fe−1
} (a)= E

{
‖w̃k,e−1 + µ∇wTJk(wk,e−1)‖2

∣∣∣Fe−1
}

+ µ2E
{
‖q2

k,i,e‖2
∣∣∣Fe−1

}
≤
(

1− 2νµ+ µ2
(
δ2 + Ek

K2p2
k

β2
s,k

))
‖w̃k,e−1‖2 + µ2 1

K2p2
k

σ2
q,k,

(2.116)

where the cross term in (a) is zero because of the zero mean property of the local
incremental gradient noise. Taking expectations on both sides again removes the condition
on the filtration and leads to the desired result. By further iterating recursion (2.33) we

50

2.F. Proof of Lemma 2.5

obtain:
E‖w̃k,e‖2 ≤ λekE‖w̃k,0‖2 + 1− λek

1− λk
µ2σ2

q,k. (2.117)

2.F Proof of Lemma 2.5

First, using Jensen’s inequality (a) and Lipschitz continuity (b), we obtain:

‖qi‖2
(a)
≤ 1
L

∑
`∈Li

1
K2p2

`E`B`

E∑̀
e=1

∑
b∈B`,i,e

‖∇wTQ`(w`,e−1;x`,b)−∇wTQ`(wi−1;x`,b)‖2

N2
`

(
p

(`)
b

)2

(b)
≤ δ2

L

∑
`∈Li

1
K2p2

`E`B`

E∑̀
e=1

∑
b∈B`,i,e

‖wi−1 −w`,e−1‖2

N2
`

(
p

(`)
b

)2 . (2.118)

Next, we focus on ‖wi−1 −w`,e−1‖2, and by applying Jensen’s inequality in (a) and (b)
and Lipschitz condition in (c) we obtain:

‖wi−1 −w`,e−1‖2

= µ2

∥∥∥∥∥∥ 1
E`B`

e−2∑
f=0

∑
b∈B`,i,f

1
N`p

(`)
b

∇wTQ`(w`,f ;x`,b)

∥∥∥∥∥∥
2

(a)
≤ µ2

E`B`

e−2∑
f=0

∑
b∈B`,i,f

1

N2
`

(
p

(`)
b

)2 ‖∇wTQ`(w`,f ;x`,b)−∇wTQ`(wo` ;x`,b) +∇wTQ`(wo` ;x`,b)‖2

(b)
≤ 2µ2

E`B`

e−2∑
f=0

∑
b∈B`,i,f

1

N2
`

(
p

(`)
b

)2

(
‖∇wTQ`(w`,f ;x`,b)−∇wTQ`(wo` ;x`,b)‖2

+ ‖∇wTQ`(wo` ;x`,b)‖2
)

(c)
≤ 2µ2

E`B`

e−2∑
f=0

∑
b∈B`,i,f

1

N2
`

(
p

(`)
b

)2

(
δ2‖w̃`,f‖2 + ‖∇wTQ`(wo` ;x`,b)‖2

)
.

Then, taking the expectation given the previous filtration Fe−2 and the participating
agents Li, we see that:

51

Chapter 2. Federated Learning under Importance Sampling

E

 1
B`

∑
b∈B`,i,e

‖wi−1 −w`,e−1‖2

N2
`

(
p

(`)
b

)2

∣∣∣∣∣∣Fe−2,Li

≤ E

 1
B`

∑
b∈B`,i,e

1

N2
`

(
p

(`)
b

)2

∣∣∣∣∣∣Fe−2,Li

2µ2δ2

E`B`

e−2∑
f=0
‖w̃`,f‖2E

∑

b∈B`,i,f

1

N2
`

(
p

(`)
b

)2

∣∣∣∣∣∣Fe−2,Li

+ 2µ2

E`B`

e−2∑
f=0

E

∑

b∈B`,i,f

‖∇wTQ`(wo` ;x`,b)‖2

N2
`

(
p

(`)
b

)2

∣∣∣∣∣∣Fe−2,Li

=

 1
B`

N∑̀
n=1

1
N2
` p

(`)
n

2µ2δ2

E`

e−2∑
f=0
‖w̃`,f‖2

N∑̀
n=1

1
N2
` p

(`)
n

+ 2µ2(e− 1)
3E`

σ2
q,`

. (2.119)

Then, taking expectation again over the filtration, we obtain:

E

 1
B`

∑
b∈B`,i,e

‖wi−1 −w`,e−1‖2

N2
`

(
p

(`)
b

)2

∣∣∣∣∣∣Li

≤ 1
B`

 N∑̀
n=1

1
N2
` p

(`)
n

2
2µ2δ2

E`

e−1∑
f=0

E
{
‖w̃`,f‖2

∣∣∣Li}+ 1
B`

N∑̀
n=1

1
N2
` p

(`)
n

2µ2(e− 1)
3E`

σ2
q,`

(a)
≤ 2µ2δ2

E`B`

 N∑̀
n=1

1
N2
` p

(`)
n

2
e−1∑
f=0

λf`E{‖w̃`,0‖2
∣∣∣Li}+ µ2

K2p2
`

1− λf`
1− λ`

σ2
q,`

+ 1
B`

N∑̀
n=1

1
N2
` p

(`)
n

2µ2(e− 1)
3E`

σ2
q,`

= 2µ2δ2

E`B`

 N∑̀
n=1

1
N2
` p

(`)
n

21− λe`
1− λ`

E
{
‖w̃`,0‖2

∣∣∣Li}+ µ2

K2p2
k

e(1− λ`)− 1 + λe`
(1− λ`)2 σ2

q,`

+ 1
B`

N∑̀
n=1

1
N2
` p

(`)
n

2µ2(e− 1)
3E`

σ2
q,`

(b)
≤ 2µ2δ2

E`B`

 N∑̀
n=1

1
N2
` p

(`)
n

221− λe`
1− λ`

E
{
‖w̃i−1‖2

∣∣∣Li}+ 21− λe`
1− λ`

E
{
‖wo − wo`‖2

∣∣∣Li}

+ µ2

K2p2
k

e(1− λ`)− 1 + λe`
(1− λ`)2 σ2

q,`

+ 1
B`

N∑̀
n=1

1
N2
` p

(`)
n

2µ2(e− 1)
3E`

σ2
q,`, (2.120)

52

2.F. Proof of Lemma 2.5

where we used Lemma 2.4 in (a), and in (b) we added and subtracted wo and used
Jensen’s inequality. Then, summing over e results in:

1
E`

E∑̀
e=1

E

 1
B`

∑
b∈B`,i,e

‖wi−1 −w`,e−1‖2

N2
`

(
p

(`)
b

)2

∣∣∣∣∣∣Li

≤ 2µ2δ2

E2
`B`

 N∑̀
n=1

1
N2
` p

(`)
n

22(E` + 1)(1− λ`)− 1 + λE`+1
`

(1− λ`)2

(
E
{
‖w̃i−1‖2

∣∣∣Li}

+E
{
‖wo − wo`‖2

∣∣∣Li})+ E`(E` + 1)(1− λ`)2 − 2E`(1− λ`) + 2λ` − 2λE`+1
`

(1− λ`)3
µ2

K2p2
k

σ2
q,`

+ 1
B`

N∑̀
n=1

1
N2
` p

(`)
n

E`(E` − 1)µ2

3E2
`

σ2
q,`. (2.121)

Taking the expectation of (2.118) given the choice of the agents and plugging the above
expression, we get:

E
{
‖qi‖2

∣∣∣Li} ≤ δ2

L

∑
`∈Li

1
K2p2

`

(
aµ2E

{
‖w̃i−1‖2

∣∣∣Li}+ aµ2E
{
‖wo − wo`‖2

∣∣∣Li}
+ (bµ4 + cµ2)σ2

q,`

)
, (2.122)

where we introduced constants a, b, c to make the notation simpler:

a
∆= 4

E2
`B`

(
N∑
n=1

1
N2
` p

(`)
n

)2
(E` + 1)(1− λ`)− 1 + λE`+1

`

(1− λ`)2 , (2.123)

b
∆= 2

E2
`B`

(
N∑
n=1

1
N2
` p

(`)
n

)2
E`(E` + 1)(1− λ`)2 − 2E`(1− λ`) + 2λ` − 2λE`+1

`

(1− λ`)3 , (2.124)

c
∆= 1

B`

N∑̀
n=1

1
N2
` p

(`)
n

E` − 1
3E`

. (2.125)

Then, taking again the expectation to remove the conditioning and using Assumption
2.2:

E‖qi‖2 ≤ δ2
K∑
k=1

1
K2pk

Nk∑
n=1

1
N2
kp

(k)
n

(
aµ2E‖w̃i−1‖2 + aµ2ξ2 + (bµ4 + cµ2)σ2

q,k

)
. (2.126)

Further simplifying the notation gives us the desired result. Thus, since a = O(µ−1),
b = O(µ−2) and c = O(1), we get E‖qi‖2 = O(µ).

53

Chapter 2. Federated Learning under Importance Sampling

2.G Proof of Theorem 2.2

We start by writing the error recursion:

w̃i =w̃i−1 + µ

K

K∑
k=1
∇wTJk(wi−1) + µsi + µqi + µ

L

∑
k∈Li

gk,i. (2.127)

We have already shown that the gradient noise is zero-mean and has bounded second
order-moment Lemma 2.1, while the incremental noise has bounded second order-moment
Lemma 2.5:

E{‖si‖2|Fi−1} ≤ β2
s‖w̃i−1‖2 + σ2

s , (2.128)
E‖qi‖2 ≤ O(µ)E‖w̃i−1‖2 +O(µ)ξ2 +O(µ2)σ2

q , (2.129)

where the constants β2
s , σ

2
s , σ

2
q are given by:

β2
s = 6δ2

L

(
1 + 1

K

K∑
k=1

1
Ek

)
, (2.130)

σ2
s = 1

LK

K∑
k=1

(12
Ek

+ 3
) 1
Nk

Nk∑
n=1
‖∇wTQk(wo;xk,n)‖2, (2.131)

σ2
q = 3

K

K∑
k=1

Nk∑
n=1
‖∇wTQk(wok;xk,n)‖2. (2.132)

Taking the conditional mean of the `2−norm of the error, we can split the noise term
from the rest and then apply Jensen’s inequality with some constant α ∈ (0, 1):

E{‖w̃i‖2|Fi−1,Li} = E

∥∥∥∥∥∥w̃i−1 + µ

K

K∑
k=1
∇wTJk(wi−1) + µsi + µqi

∥∥∥∥∥∥
2∣∣∣∣∣∣Fi−1,Li

+ µ2

L2

∑
k∈Li1

E‖gk,i‖2

≤ 1
α

∥∥∥∥∥w̃i−1 + µ

K

K∑
k=1
∇wTJk(wi−1)

∥∥∥∥∥
2

+ µ2

α
E{‖si‖2|Fi−1,Li}+ µ2

L
σ2
g

+ µ2

1− αE{‖qi‖
2|Fi−1,Li}. (2.133)

Using strong convexity and Lipschitz continuity of the functions we can bound the first
term as: ∥∥∥∥∥w̃i−1 + µ

K

K∑
k=1
∇wTJk(wi−1)

∥∥∥∥∥
2

≤ (1− 2νµ+ δ2µ2)‖w̃i−1‖2. (2.134)

54

2.G. Proof of Theorem 2.2

Then, taking the expectations again over the past models and the selected agents, and
using the bound on the gradient noise and incremental noise:

E‖w̃i‖2 ≤
(

1− 2νµ+ (β2
s,1 + δ2)µ2

α
+ O(µ3)

1− α

)
E‖w̃i−1‖2 + µ2

α
σ2
s + µ2

L
σ2
g .

+
O(µ3)ξ2 +O(µ4)σ2

q

1− α (2.135)

Then, recursively bounding the error with α =
√

1− 2νµ+ (β2
s + δ2)µ2:

E‖w̃i‖2 ≤ λiE‖w̃1,0‖2 + 1− λi

1− λ

(
O(µ2)σ2

s +O(µ2)ξ2 + µ2

L
σ2
g +O(µ3)σ2

q

)
, (2.136)

and taking the limit of i:

lim sup
i→∞

E‖w̃i‖2 ≤O(µ)(σ2
s + ξ2 + σ2

g) +O(µ2)σ2
q . (2.137)

55

3 Privatized Graph Federated
Learning

In the previous chapter, we considered the federated learning setting and studied its
convergence under importance sampling. We then perturbed the gradients to privatize
the algorithm and showed that the added noise does not deteriorate performance. In this
chapter, we adjust the original federated setting into a network of federated units. This
new system is both distributed and decentralized; the network of servers is a distributed
system, and each server with its clients forms a decentralized system. In this chapter,
we drop importance sampling for simplicity and use standard uniform sampling. We
focus on the privatization scheme between the servers and use the previously constructed
privatization mechanism for the clients. The material in this chapter is based on the
work in [81].

3.1 Introduction

Federated learning (FL) [11] is one particular distributed structure where training happens
in collaboration between different clients and the server. Compared to a fully decentralized
solution, communication occurs between the server and the clients (or agents), instead of
directly between the agents themselves. Such a distributed architecture is not robust
to communication failures and computational overloads, nor it is immune to privacy
attacks when agents are required to share their local updates. In standard FL, millions
of users can be connected to one server at a time. This means one server will need to be
responsible for the communication with all clients with significant computational burden,
thus rendering the system susceptible to communication failures. Furthermore, whether
clients send their gradient updates or their local models, information about their data
can be inferred from the exchanges and leaked [82–85]. Consider for instance the logistic
risk; the gradient of the loss function is a constant multiple of the feature vector. Thus,
even though the actual data samples are not sent to the server, information about them
can still be inferred from the gradient updates or the models.

57

Chapter 3. Privatized Graph Federated Learning

These considerations motivate us to propose a networked architecture for federated
learning with privacy guarantees. In particular, we introduce the graph federated
architecture, which consists of multiple servers, and we privatize the algorithm by
ensuring the communication ocuring between the servers and the clients is secure.
Graph homomorphic perturbations, which were initially introduced in [86], focus on
the communication between servers. They are based on adding correlated noise to the
messages sent between servers such that the noise cancels out if we were to take the
average of all messages across all servers. As for the privatization between the clients
and their servers, we share noisy updates as opposed to models. The two protocols make
sure the effect of the added noise is reduced.

Other works have also contributed to addressing the same challenges we are considering
in this work, albeit differently. For example, the work [87] introduces a hierarchical
architecture, where it is assumed there are multiple servers connected in a tree structure.
Such a solution still has one main server and faces the same robustness problem as
FL. The graph federated learning architecture in this work (and which appeared in the
earlier conference publication [88]) is a more general structure. While [89] has a similar
architecture to the GFL architecture proposed earlier in [88], it nevertheless does not deal
with privacy and employs different objective functions and a different learning algorithm
based on the alternating direction method of multipliers. Likewise, a plethora of solutions
exist that relate to privacy issues. These methods may be split into two sub-groups: those
using random perturbations to ensure a certain level of differential privacy [46,90–98],
or those that rely on cryptographic methods [99–103]. Both have their advantages and
disadvantages. While differential privacy is easy to implement, it hinders the performance
of the algorithm by reducing the model utility. As for cryptographic methods, they are
generally harder to implement since they require more computational and communication
power [104,105]. Furthremore, they restrict the number of participating users. Moving
forward, we go ahead with the study of differentially private methods.

The main contribution in this chapter is three-fold. We introduce a new generalized
and more realistic architecture for the federated setting where we now consider multiple
servers connected by some graph structure. Furthermore, many earlier works have
proposed adding Laplacian noise sources to the shared information among agents in
order to ensure some level of privacy. However, these works have largely ignored the fact
that these noises degrade the mean-square error (MSE) performance of the network from
O(µ) down to O(µ−1), where µ is the small learning parameter. To resolve this issue,
we define a new noise generation scheme that results in an O(1) bound on the MSE
while ensuring privacy. Although the work [98] proposed a noisy-distributed consensus
strategy, this reference lacks a useful construction method for the perturbations. In this
work, we devise a construction scheme. Moreover, we do not assume bounded gradients,
as commonly assumed in previous works [90,93,94], since this condition does not actually
hold in most situations in practice. Note, for instance, that even quadratic risks do not
have bounded gradients. For this reason, we will not rely on this condition, and will

58

3.2. Graph Federated Architecture

2
1

1

3
4

2

1

2

Figure 3.1 – The graph federated learning architecture.

instead be able to show that our noise construction is able to ensure differential privacy
with high probability for most cases of interest.

3.2 Graph Federated Architecture

In the graph federated architecture, which we initially introduced in [88], we consider P
federated units connected by a graph structure. Each federated unit consists of a server
and a set of K agents. Thus, the overall architecture can be represented as a graph
depicted in Figure 3.1. We denote the combination matrix connecting the servers by
A ∈ RP×P , and we write amp to refer to the elements of A. We assume each agent of
every server has its own dataset {xp,k,n}

Np,k
n=1 that is non-iid when compared to the other

agents. The subscript p refers to the federated unit, k to the agent, and n to the data
sample.

With this architecture, we associate a convex optimization problem that will take into
account the cost function at each federated unit. Thus, the optimization goal is to find
the optimal global model wo that minimizes an average empirical risk:

wo
∆= argmin

w∈RM

1
P

P∑
p=1

1
K

K∑
k=1

Jp,k(w), (3.1)

where each individual cost is an empirical risk defined over the local loss functions
Qp,k(·; ·):

Jp,k(w) ∆= 1
Np,k

Np,k∑
n=1

Qp,k(w;xp,k,n). (3.2)

59

Chapter 3. Privatized Graph Federated Learning

To solve problem (3.1) each federated unit p runs the standard federated averaging
(FedAvg) algorithm [11]. An iteration i of the algorithm consists of the server p selecting
a subset of L participating agents Lp,i. Then, in parallel, each agent runs a series of
stochastic gardient descent (SGD) steps. We call these local steps epochs, and denote an
epoch by the letter e and the total number of epochs by Ep,k. The sampled data point
at an agent k in the federated unit p during the eth epoch of iteration i is denoted by
b. Thus, during an iteration i, each participating agent k ∈ Lp,i updates the last model
wp,i−1 and sends its new model wp,k,Ep,k to the server after Ep,k epochs. During a single
epoch e, the agent updates its current local model wp,k,e−1 by running a single SGD step.
Thus, an agent repeats the following adaptation step for e = 1, 2, · · · , Ep,k:

wp,k,e =wp,k,e−1 −
µ

Ep,k
∇wTQp,k(wp,k,e−1;xp,k,b), (3.3)

with xp,k,b be the sampled data of agent k in federated unit p, and wp,k,0 = wp,i−1. After
all the participating agents k ∈ Lp,i run all their epochs, the server aggregates their final
models wp,k,Ep,k , which we rename as wp,k,i since it is the final local model at iteration i:

ψp,i = 1
L

∑
k∈Lp,i

wp,k,i. (3.4)

Next, at the server level, these estimates are combined across neighbourhoods using a
diffusion type strategy, where we first consider the previous steps (3.3) and (3.4) as the
adaptation step and the following step as the combination step:

wp,i =
∑
m∈Np

apmψm,i. (3.5)

To introduce privacy, the models communicated at each round between the agents and
the servers need to be encrypted in some way. We could either apply secure multiparty
computation (SMC) tools, like secret sharing, or use differential privacy. We focus on
differential privacy or masking tools that can be represented by added noise. Thus, we
let agent 1 in federated unit 2 add a noise component g2,1,i to its final model w2,1,i
at iteration i, and then let serever 2 add g12,i to the message ψ2,i it sends to server 1.
More generally, we denote by gpm,i the noise added to the message sent by server m
to server p at iteration i. Similarly, we denote by gp,k,i the noise added to the model
sent by agent k to server p during the ith iteration. We use unseparated subscripts pm
for the inter-server noise components to point out their ability to be combined into a
matrix structure. Contrarily, the agent-server noise components’ subscripts are separated
by a comma to highlight a hierarchical structure. Thus, the privatized algorithm can
be written as a client update step (3.6), a server aggregation step (3.7), and a server

60

3.3. Performance Analysis

combination step (3.8):

wp,k,i = wp,i−1 −
µ

Ep,k

Ep,k∑
e=1
∇wTQp,k(wp,k,e−1;xp,k,b), (3.6)

ψp,i = 1
L

∑
k∈Lp,i

wp,k,i + gp,k,i, (3.7)

wp,i =
∑
m∈Np

apm(ψm,i + gpm,i). (3.8)

The client update step (3.6) follows from (3.3) by combining the multiple epochs for
e = 1, 2, · · · , Ep,k into one update step, with wp,k,i = wp,k,Ep,k and wp,k,0 = wp,i−1,
namely:

wp,k,Ep,k = wp,k,Ep,k−1 −
µ

Ep,k
∇wTQp,k(wp,k,Ep,k−1;xp,k,b)

= wp,k,Ep,k,−2 −
µ

Ep,k

Ep,k∑
e=Ep,k−1

∇wTQp,k(wp,k,e−1;xp,k,b)

= wp,k,0 −
µ

Ep,k

Ep,k∑
e=1
∇wTQp,k(wp,k,e−1;xp,k,b). (3.9)

3.3 Performance Analysis

In this section, we show a list of results on the performance of the algorithm. We
study the convergence of the privatized algorithm (3.6)–(3.8), and examine the effect of
privatization on performance.

3.3.1 Modeling Conditions

To go forward with our analysis, we require certain reasonable assumptions on the graph
structure and cost functions.

Assumption 3.1 (Combination matrix). The combination matrix A describing the
graph is symmetric and doubly-stochastic, i.e.:

apm = amp,
P∑

m=1
amp = 1. (3.10)

61

Chapter 3. Privatized Graph Federated Learning

Furthermore, the graph is strongly-connected and A satisfies:

ι2
∆= ρ

(
A− 1

P
11

T
)
< 1. (3.11)

Assumption 3.2 (Convexity and smoothness). The empirical risks Jp,k(·) are
ν−strongly convex, and the loss functions Qp,k(·; ·) are convex, namely for ν > 0:

Jp,k(w2) ≥Jp,k(w1) +∇wTJp,k(w1)(w2 − w1) + ν

2‖w2 − w1‖2, (3.12)

Qp,k(w2; ·) ≥Qp,k(w1; ·) +∇wTQp,k(w1; ·)(w2 − w1). (3.13)

Furthermore, the loss functions have δ−Lipschitz continuous gradients, meaning there
exists δ > 0 such that for any data point xp,n:

‖∇wTQp,k(w2;xp,k,n)−∇wTQp,k(w1;xp,k,n)‖ ≤ δ‖w2 − w1‖. (3.14)

We also require a bound on the difference between the global optimal model wo and the
local optimal models wop,k that optimize Jp,k(·). This assumption is used to bound the
gradient noise and the incremental noise defined further ahead. It is not a restrictive
assumption, and it imposes a condition on when collaboration is sensical among different
agents. In other words, since the agents have non-iid data, sometimes their optimal
models are too different and collaboration would hurt their individual performance. For
example, when considering recommender systems, people in the same country are more
likely to get the same movie recommended as opposed to accross different countries.
This means, people of the same country might have different models but relatively close
contrary to different countries.

Assumption 3.3 (Model drifts). The distance of each local model wop,k to the global
model wo is uniformly bounded, i.e., there exists ξ ≥ 0 such that ‖wo − wop‖ ≤ ξ.

3.3.2 Network Centroid Convergence

We study the convergence of the algorithm from the network centroid’s wc,i perspective:

wc,i
∆= 1

P

P∑
p=1

wp,i. (3.15)

62

3.3. Performance Analysis

We write the central recursion as:

wc,i =wc,i−1 − µ
1
PL

P∑
p=1

∑
k∈Lp,i

1
Ep,k

Ep,k∑
e=1
∇wTQp,k(wp,k,e−1;xp,k,b)

+ 1
PL

P∑
p=1

∑
k∈Lp,i

gp,k,i + 1
P

P∑
p,m=1

apmgpm,i. (3.16)

Next, we define the model error as w̃c,i
∆= wo −wc,i and the average gradient noise:

si
∆= 1

P

P∑
p=1

sp,i, (3.17)

with the per-unit gradient noise sp,i:

sp,i
∆= ∇̂wTJp(wp,i−1)−∇wTJp(wp,i−1), (3.18)

and:

∇̂wTJp(·)
∆= 1

L

∑
k∈Lp,i

1
Ep,k

Ep,k∑
e=1
∇wTQp,k(·;xp,k,b). (3.19)

We introduce the average incremental noise qi and the local incremental noise qp,i, which
capture the error introduced by the multiple local update steps:

qi
∆= 1

P

P∑
p=1

qp,i, (3.20)

qp,i
∆= 1

L

∑
k∈Lp,i

1
Ep,k

Ek∑
e=1

(
∇wTQp,k(wp,k,e−1;xp,k,b)−∇wTQ(wp,i−1;xp,k,b)

)
(3.21)

We then arrive at the following error recursion:

w̃c,i = w̃c,i−1 + µ
1
P

P∑
p=1
∇wTJp(wp,i−1) + µsi + µqi − gi, (3.22)

where gi is the total added noise at iteration i:

gi
∆= 1

PL

P∑
p=1

∑
k∈Lp,i

gp,k,i + 1
P

P∑
p,m=1

apmgpm,i (3.23)

We estimate the first and second-order moments of the gradient noise in the following

63

Chapter 3. Privatized Graph Federated Learning

lemma. To do so, we use the fact, shown in the previous chapter (Lemma 2.1 in Chapter
2), that the individual gradient noise is zero-mean with a bounded second order moment:

E
{
‖sp,i‖2|Fi−1

}
≤ β2

s,p‖w̃p,i−1‖2 + σ2
s,p, (3.24)

where the constants are defined as:

β2
s,p

∆= 6δ2

L

(
1 + 1

K

K∑
k=1

1
Ep,k

)
, (3.25)

σ2
s,p

∆= 1
LK

K∑
k=1

(
12
Ep,k

+ 3
)

1
Np,k

Np,k∑
n=1
‖∇wTQp,k(wo;xp,k,n)‖2, (3.26)

and Fi−1 is the filtration defined over the randomness introduced by all the past subsam-
pling of the data for the calculation of the stochastic gradient. Using Assumption 3.3,
we can guarantee that σ2

s,p is bounded by bounding:

‖∇wTQp,k(wo;xp,k,n)‖2 ≤ 2‖∇wTQp,k(wop,k;xp,k,n)‖2 + 2δ2ξ2. (3.27)

Lemma 3.1 (Estimation of moments of the gradient noise). The gradient noise
defined in (3.17) is zero-mean and has a bounded second-order moment:

E
{
‖si‖2|Fi−1

}
≤ β2

s‖w̃c,i−1‖2 + σ2
s + 2

P

P∑
p=1

β2
s,p‖wp,i−1 −wc,i−1‖2 (3.28)

where the constants β2
s and σ2

s are given by:

β2
s

∆= 2
P

P∑
p=1

β2
s,p, σ2

s
∆= 1

P

P∑
p=1

σ2
s,p. (3.29)

Proof. The result follows from applying the Jensen’s inequality and the bounds on the
per-unit gradient noise sp,i:

E
{
‖si‖2|Fi−1

}
≤ 1
P

P∑
p=1

E
{
‖sp,i‖2|Fi−1

}

≤ 1
P

P∑
p=1

β2
s,p‖w̃p,i−1‖2 + σ2

s,p. (3.30)

64

3.3. Performance Analysis

The new term found in the bound of the gradient term is what we call the network
disagreement:

1
P

P∑
p=1
‖wp,i −wc,i‖2. (3.31)

It captures the difference in the path taken by the individual models versus the network
centroid. We bound this difference in Lemma 3.3. However, before doing so, we show
that the second order moment of the incremental noise is on the order of O(µ). From
Lemma 2.5 in Chapter 2, we can bound the individual incremental noise:

E‖qp,i‖2 ≤aµ2E‖w̃p,i−1‖2 + aµ2ξ2 + 1
K

K∑
k=1

(bkµ4 + ckµ
2)σ2

q,p,k, (3.32)

where the constants are given by:

a
∆= 4δ2

K

K∑
k=1

(Ep,k + 1)(1− λ)− 1 + λEp,k+1

E2
p,k(1− λ)2 , (3.33)

bk
∆= 2Ep,k(Ep,k + 1)(1− λ)2 − 4Ep,k(1− λ) + 4λ

E2
p,k(1− λ)3 − 2λEp,k+1

E2
p,k(1− λ)3 , (3.34)

ck
∆= Ep,k − 1

3Ep,k
, (3.35)

λ
∆= 1− 2νµ+ 4δ2µ2, (3.36)

σ2
q,p,k

∆= 3
Np,k∑
n=1
‖∇wTQp,k(wop,k;xp,k,n)‖2. (3.37)

The following result follows.

Lemma 3.2 (Estimation of second-order moment of the incremental noise).
The incremental noise defined in (3.20) has a bounded second-order moment:

E‖qi‖2 ≤O(µ)E‖w̃c,i−1‖2 +O(µ)ξ2 +O(µ2)σ2
q + O(µ)

P

P∑
p=1

E‖wp,i−1 −wc,i−1‖2, (3.38)

where the constant σ2
q is the average of σ2

q,p,k:

σ2
q

∆= 1
PK

P∑
p=1

K∑
k=1

(bkµ4 + ckµ
2)σ2

q,p,k. (3.39)

Proof. The result follows from applying the Jensen inequality and the bounds on the

65

Chapter 3. Privatized Graph Federated Learning

per-unit incremental noise qp,i:

E‖qi‖2 ≤
1
P

P∑
p=1

E‖qp,i‖2

≤ aµ2E‖w̃p,i−1‖2 + aµ2ξ2 + 1
K

(bkµ4 + ckµ
2)σ2

q,p,k. (3.40)

Furthermore, a = O(µ−1), bk = O(µ−1), and ck = O(1) reduce the expression to (3.38).

We now bound the network disagreement. To do so, we first introduce the eigendecom-
position of A = QHQT:

Q
∆=
[

1√
P
1 Qθ

]
, H

∆=
[
1 0
0 Hθ

]
, (3.41)

where Hθ is a diagonal matrix that includes the last (P − 1) eigenvalues of A and Qθ
their corresponding eigenvectors.

Lemma 3.3 (Network disagreement). The average deviation from the centroid is
bounded during each iteration i:

1
P

P∑
p=1

E‖wp,i −wc,i‖2 ≤
ιi2
P
E‖(Qε ⊗ I)W0‖2 + ι22

P

i−1∑
j′=0

ιj
′

2

P∑
p=1

µ2
(

2δ2

ι2(1− ι2) + β2
s,p

+O(µ)
)(

λj
′
p A

j′ [p]col
{
E‖w̃p,0‖2

}P
p=1

+
j′−1∑
j=0

λjpA
j [p]

× col
{
µ2σ2

s,p +O(µ2)ξ2 +O(µ3)σ2
q,p + σ2

g,p

}P
p=1

)

+ µ2 2‖∇wTJp(wo)‖2

ι2(1− ι2) + µ2σ2
s,p +O(µ3)ξ2 +O(µ4)σ2

q,p + 1
ι22
σ2
g,p

,
(3.42)

where W0
∆= col

{
wp,0

}P
p=1

and

λp
∆=
√

1− 2νµ+ δ2µ2 + β2
s,pµ

2 +O(µ2) ∈ (0, 1). (3.43)

66

3.3. Performance Analysis

Then, in the limit:

lim sup
i→∞

1
P

P∑
p=1

E‖wp,i −wc,i‖2 ≤
ι22

P (1− ι2)

P∑
p=1

µ2σ2
s,p + 1

ι22
σ2
g,p +O(µ)σ2

g,p +O(µ3).

(3.44)

Proof. See Appendix 3.B.

Thus, from the above lemma, we see that the individual models gravitate to the centroid
model with an error introduced due to the added privatization. The effect of the added
noise overpowers that of the gradient and incremental noise, since the later is on the
order of the step-size.

Then, using the above result, we can establish the convergence of the centroid model to
a neighbourhood of the true optimal model wo in the MSE sense.

Theorem 3.1 (Centroid MSE convergence). Under Assumptions 3.1, 3.2 and 3.3,
the network centroid converges to the optimal point wo exponentially fast for a sufficiently
small step-size µ:

E‖w̃c,i‖2 ≤λcE‖w̃c,i−1‖2 + µ2σ2
s +O(µ2)ξ2 +O(µ3)σ2

q + E‖gi‖2

+ O(µ)
P

P∑
p=1

E‖wp,i−1 −wc,i−1‖2, (3.45)

where:
λc =

√
1− 2νµ+ δ2µ2 + β2

sµ
2 +O(µ2) ∈ (0, 1). (3.46)

Then, letting i tend to infinity, we get:

lim sup
i→∞

E‖w̃c,i‖2 ≤
µ2σ2

s +O(µ2)ξ2 +O(µ3)σ2
q + E‖g‖2

1− λc
+

P∑
p=1

O(1)σ2
g,p +O(µ). (3.47)

Proof. See Appendix 3.C.

The main term in the above bound is the variance of the added noise with a dominating

67

Chapter 3. Privatized Graph Federated Learning

factor of µ−1, since:

1− λc = 1−
√

1−O(µ) +O(µ2)−O(µ2) = O(µ)−O(µ2) = O(µ) (3.48)

which allows us to rewrite the bound as follows:

lim sup
i→∞

E‖w̃c,i‖2 ≤ O(µ)σ2
s +O(µ)ξ2 +O(µ2)σ2

q +O(µ−1)E‖g‖2 +
P∑
p=1

O(1)σ2
g,p +O(µ),

(3.49)

with E‖g‖2 representing the variance of the total added noise, independent of time. While
in general decreasing the step-size improves performance, the above result shows that
this need not be the case with privatization. Thus, since the added noise impacts the
model utility negatively, it is important to choose a privatization scheme that reduces
the effect. In what follows, we look closely at such a scheme.

3.3.3 Graph Homomorphic Perturbations

We consider a specific privatization scheme and specialize the above results. The goal
of the scheme is to remove the O(µ−1) term from the MSE bounds. Thus, we wish to
cancel out the total added noise amongst servers, i.e.,

P∑
p,m=1

apmgpm,i = 0. (3.50)

To achieve this, we introduce graph homomorphic perturbations defined as follows [86].
We assume each server p draws a sample gp,i independently from the Laplace distribution
Lap(0, σg/

√
2) with variance σ2

g . Server p then sets the noise gmp,i added to the message
sent to its neighbour m as:

gmp,i =

gp,i, m 6= p

−1−app
app

gp,i, m = p
(3.51)

Thus, with such a scheme, the noise components proportional to O(µ−1) resulting from
the noise added between the servers cancel out in the error recursions, and the remaining
error introduced by the noise is controlled by the step-size. Thus, its effect can be
mitigated by using a smaller step-size. In the next corollary, we show that if no noise is
added amongst the clients and graph-homorphic perturbations are used amongst servers,
then the error converges to O(1)σ2

g .

68

3.4. Privacy Analysis

Corollary 3.1 (Centroid MSE convergence under graph homomorphic per-
turbations). Under Assumptions 3.1, 3.2 and 3.3, the network centroid with graph
homomorphic perturbations converges to the optimal point wo exponentially fast for a
sufficiently small step-size µ:

E‖w̃c,i‖2 ≤λcE‖w̃c,i−1‖2 + µ2σ2
s +O(µ2)ξ2 +O(µ3)σ2

q + O(µ)
P

P∑
p=1

E‖wp,i−1 −wc,i−1‖2.

(3.52)

Then, letting i tend to infinity, we get:

lim sup
i→∞

E‖w̃c,i‖2 ≤
µ2σ2

s +O(µ2)ξ2 +O(µ3)σ2
q

1− λc
+

P∑
p=1

O(1)σ2
g,p +O(µ). (3.53)

Proof. Starting from (3.47), and replacing E‖g‖2 = 0 because gi = 0, we get the final
result.

3.4 Privacy Analysis

We study the privacy of the algorithm (3.6)–(3.8) in terms of differential privacy. We focus
on graph homomorphic perturbations and show that the adopted scheme is differentially
private. To do so, we first define what it means for an algorithm to be ε−differentially
private. Therefore, without loss of generality, assume agent 1 in federated unit 1 decides
to not participate, and its data samples x1,1 are replaced by a new set x′1,1 with a
different distribution. Then, with the new data, the algorithm takes a different path. We
denote the new models by w′p,k,i. The idea behind differential privacy is that an outside
observant should not be able to distinguish between the two trajectories wp,k,i and w′p,k,i
and conclude whether agent one participated in the training. More formally, differential
privacy is defined bellow.

Definition 3.1 (ε(i)−Differential privacy). We say that the algorithm given in (3.6)–
(3.8) is ε(i)−differentially private for server p at time i if the following condition holds
on the joint distribution f(·):

f

({
{ψp,j + gpm,j}m∈Np\{p}

}i
j=0

)
f

({{
ψ′p,j + gpm,j

}
m∈Np\{p}

}i
j=0

) ≤ eε(i). (3.54)

69

Chapter 3. Privatized Graph Federated Learning

Thus, the above definition states that minimaly varried trajectories have comparable
probabilities. In addition, the smaller the value of ε is, the higher the privacy guarantee
will be. Thus, the goal will be to decrease ε as long as the model utility is not strongly
affected.

Next, in order to show that the algorithm is differentially private, we require the sensitivity
of the alogorithm to be bounded. The sensitivity at time i is defined as:

∆(i) = ‖Wi −W′i‖. (3.55)

It measures the distance between the original and perturbed weight vectors. It is shown
in Appendix 3.D that ∆(i) can be bounded as follows:

∆(i) ≤ B +B′ +
√
P‖wo − w′o‖, (3.56)

for constants B and B′ chosen by the designer. Moreover, the above bound holds with
high probability given by:

P
(
∆(i) ≤ B +B′ +

√
P‖wo − w′o‖

)
≥
(

1− λimaxE‖W0‖2 +O(µ) +O(µ−1)
B2

)

×
(

1− λ′imaxE‖W′0‖2 +O(µ) +O(µ−1)
B′2

)
. (3.57)

This result shows that the sensitivity can be bounded with high probability, which in
turn is dependent on the values chosen for B and B′. Larger values for these constants
increase the probability, but nevertheless lead to a looser bound for privacy (as shown in
Theorem 3.2). Therefore, the choice of B and B′ needs to be balanced judiciously to
ensure the desired level of privacy.

Using the bound on the sensitivity and from the definition of differential privacy, we can
finally show that the algorithm is differentially private with high probability.

Theorem 3.2 (Privacy of GFL algorithm). If the algorithm (3.6)–(3.8) adopts graph
homomorphic perturbations, then it is ε(i)−differentially private with high probability, at
time i for a standard deviation of:

σg =
√

2
ε(i)(B +B′ +

√
P‖wo − w′o‖)(i+ 1). (3.58)

Proof. See Appendix 3.E.

70

3.5. Experimental Results

Thus, the above theorem suggests, if we wish the algorithm to be ε(i)−differentially
private, then we need to choose the noise variance accordingly. The larger the variance is,
the more private the algorithm will be. However, the longer the algorithm is run, we will
require a larger noise variance to keep the same level of privacy guarantee. Said differently,
if we fix the added noise, then as time passes, the algorithm becomes less private, and
more information is leaked. However, with graph-homomorphic perturbations, we can
afford to increase the varianve since its effect is constant on the MSE, and thus decreases
the leakage.

3.5 Experimental Results

We conduct a series of experiments to study the influence of privatization on the GFL
algorithm. The aim of the experiments is to show the superior performance of graph
homomorphic perturbations to random perturbations and perturbations to gradients
versus models, and to study the effect of different parameters on the performance of the
algorithm.

3.5.1 Regression

We first start by studying a regression problem on simulated data. We do so for the
tractability of the problem. We consider the quadratic loss that has a closed form solution,
i.e., a formal expression for the true model wo is known, which makes the calculation of
the mean square error feasible and more accurate.

Therefore, consider a streaming feature vector up,k,n ∈ RM with output variable dp,k(n) ∈
R given by:

dp,k(n) = uT
p,k,nw

? + vp,k(n), (3.59)

where w? ∈ RM is some generating model, and vp,k(n) is some zero-mean Guassian
random variable with σ2

vp,k
variance and independent of up,k,n. Then, the optimal model

that solves the following problem:

min
w

1
P

P∑
p=1

1
K

K∑
k=1

1
Np,k

Np,k∑
n=1
‖dp,k(n)− uT

p,k,nw‖2 + ρ‖w‖2 (3.60)

is found to be:
wo = (R̂u + ρI)−1(R̂uw? + r̂uv), (3.61)

71

Chapter 3. Privatized Graph Federated Learning

where R̂u and r̂uv are defined as:

R̂u
∆= 1

P

P∑
p=1

1
K

K∑
k=1

1
Np,k

Nk∑
n=1

up,k,nu
T
p,k,n, (3.62)

r̂uv
∆= 1

P

P∑
p=1

1
K

K∑
k=1

1
Np,k

Nk∑
n=1

vp,k(n)up,k,n. (3.63)

We consider P = 10 units, each with K = 100 total agents. We assume, Np,k = 100
for each agent. We randomly generate two-dimensional feature vectors up,k(n) from a
Guassian random vector with zero-mean and a randomly generated covarinace matrix
Rup,k . We then calculate the corresponding outputs according to (3.59). To make the
data non-iid accross agents, we assume the covariance matrix Rup,k is different for each
agent, as well as the variance σ2

vp,k
of the added noise. When running the algorithm, we

assume each unit samples at random L = 11 agents, and each agent runs Ep,k ∈ [1, 10]
epochs and uses a mini-batch of Bp,k ∈ [5, 10] samples.

We compare three algorithms: the standard GFL algorithm, the privatized GFL algorithm
with random perturbations, and the privatized GFL with homomorphic perturbations.
We do not add noise between the clients and their server to focus on the effect of the
perturbations between the servers. In the first set of simulations, we fix the step-size
µ = 0.7 and the regularization parameter ρ = 0.1. We fix the variance of the added noise
for privatization in both schemes to σ2

g = 0.1. We then plot the mean-square deviation
(MSD) at each time step for the centroid model:

MSDi
∆= ‖wc,i − wo‖2, (3.64)

as seen in Figure 3.2. We observe that the privatized GFL with random perturbations
has lower performance compared to the other two algorithms. While, using homomorphic
perturbations does not result in such a decay in performance. Thus, our suggested scheme
does a good job at tracking the performance of the original GFL algorithm, while not
compromising with the privacy level.

We next study the extent of the effect of the noise on the model utility. Thus, we
run a series of experiments with varying added noise σ2

g = {0.001, 0.01, 0.1, 1, 2, 10}
for the two privatized GFL algorithms. We plot the resulting MSD curves in Figure
3.3a. We obsereve for a fixed step-size, as we increase the variance, the MSD of the
algorithm with random perturbations increases significantly as opposed to the algorithm
with homomorphic perturbations. Thus, we conclude that the algorithm with random
perturbtaions is more sensitive to the variance of the added noise. In fact, at some point,
while using random perturbations, for some variance, the algorithm breaks down. While
using graph homomorphic perturbations, delays that effect for much larger variance. In
addition, as long as the step-size is small enough, we can always control the effect of the

72

3.5. Experimental Results

0 20 40 60 80 100
Iteration

25

20

15

10

5

0

5

M
SD

 (d
B)

No Pert.
GH Pert.
Rand. Pert.

Figure 3.2 – Performance of GFL with no perturbations (blue), with graph homomorphic
perturbations (green), and random perturbations (red).

graph homomorphic perturbations.

However, if we were to look at the individual MSD for one federated unit, we would
discover that the performance of the algorithm decays as the noise variance is increased.
Nonetheless, it is not to the extent of random perturbations. We plot in Figure 3.3b the
average individual MSD for the varying noise variance:

MSDavg,i
∆= 1

P

P∑
p=1
‖wp,i − wo‖2. (3.65)

We observe that for a fixed noise variance, homomorphic perturbations results in a better
performance. Furthermore, as we increase the noise variance, the network disagreement
increases for both schemes. This comes as no surprise and is in accordance with Lemma
3.3. Furthermore, as previously mentioned, graph homomorphic perturbations have the
added value of not being negatively affected by the decrease in the step-size. In addition,
even though the improvement does not seem significant, the source of the error of the
two schemes is different. Furthemore, the information of the true model is distributed
in the network and can be retrieved by running at the end of the learning algorithm a
consensus-type step. At that point, the local models no longer contain information about
the local data, and thus agents can safely share their models. However, when random
perturbations are used, reconstruction is not possible since the information has been lost
in the netwrok due to the added perturbations.

We next fix the noise variance σ2
g = 0.1 and varying the step-size µ = {0.1, 0.5, 1, 5}.

According to Theorem 3.1, the MSD resulting from random perturbations includes an

73

Chapter 3. Privatized Graph Federated Learning

0 20 40 60 80 100
Iteration

20

10

0

Ce
nt

ra
l M

SD
 (d

B)

Graph Homorphic Perturbations
2
g = 0.001
2
g = 0.01
2
g = 0.1

2
g = 1
2
g = 2
2
g = 10

0 20 40 60 80 100
Iteration

20

10

0

10 Random Perturbations

(a) centroid model

0 20 40 60 80 100
Iteration

20

10

0

10

In
di

vi
du

al
 A

ve
ra

ge
 M

SD
 (d

B)

0 20 40 60 80 100
Iteration

20

10

0

10

(b) individual models

Figure 3.3 – Performance curves of privatized GFL with varying noise variance.

0 100 200 300 400
Iteration

20

10

0

Ce
nt

ra
l M

SD
 (d

B)

Graph Homorphic Perturbations
= 0.1
= 0.5

= 1
= 5

0 100 200 300 400
Iteration

15

10

5

0

5 Random Perturbations

Figure 3.4 – Performance curves of privatized GFL with varying step-size.

O(µ−1) term, which is not the case when using graph homomorphic perturbations. Thus,
we expect a decrease in the step-size will not significantly affect the privatized algorithm
with graph homomorphic perturbations as opposed to random perturbations. Indeed, as
seen in Figure 3.4, as µ is increased, the final MSD increases; this is probably due to the
O(µ)σ2

s term in the bound. In contrast, for significantly small or large µ, the performance
of the privatized algorithm with random perturbations decreases. In addition, what

74

3.5. Experimental Results

we observe for both privacy schemes, is that the rate of convergence slows down as we
decrease the step-size. Thus, there exists an optimal step-size that achieves a good
compromise between a fast convergence and a low MSD.

3.5.2 Classification

We now focus on a classification problem applied to a dataset on click rate prediction of
ads. We consider the Avazu click through dataset [79]. We split the 5101 data unequally
among a total of 50 agents. We assume there are P = 5 units each with K = 10
agents. We add non-idd noise to the data at each agent to change their distributions.
We again compare three algorithms: standard GFL, privatized GFL with homomorphic
perturbations, and privatized GFL with random perturbations. We use a regularized
logistic risk with regularization parameter ρ = 0.03. We set the step-size µ = 0.5. We
repeat the algorithms for multiple levels of privacy. We then settle on a noise variance
σ2
g = 0.6 for which the privatized algorithm with random perturbations still converges.

We plot in Figure 3.5 the testing error on a set of 256 clean samples that were not
perturbed with noise to change their distributions. We use the centriod model learned
during each iteration to calculate the corresponding testing error. We observe that the
graph homorphic perturbations do not hinder the performance of the privatized model.
As for random perturbations, they significantly reduce the utility of the learnt model.

0 50 100 150 200
Iteration

20

30

40

50

Te
st

in
g

er
ro

r (
%

)

No Pert.
GH Pert.
Rand. Pert.

Figure 3.5 – Testing error of GFL with no perturbations (blue), with graph homomorphic
perturbations (green), and random perturbations (red).

75

Chapter 3. Privatized Graph Federated Learning

3.6 Conclusion

In this chapter, we introduced graph federated learning and implemented an algorithm
that guarantees privacy of the data in a differential privacy sense. We showed general
privatization based on adding random perturbations to updates in federated learning
have a negative effect on the performance of the algorithm. Random perturbations drive
the algorithm farther away from the true optimal model. However, we showed by adding
graph homomorphic perturbations, which exploit the graph structure, performance can be
recovered with guaranteed privacy. We also showed that using dependent perturbations
does not result in the same trade-off between privacy and efficiency. Thus, we no longer
have to choose what to prioritize, and instead, we can have both a highly privatized
algorithm with a good model utility.

3.A Auxiliary Result on Individual MSE Performance

We first introduce the following theorem, which will be used to bound the network
disagreement. We loosely bound the individual MSE for each federated unit. A tighter
bound can be found, however, it is not needed.

Theorem 3.3 (Individual MSE convergence). Under Assumptions 3.1, 3.2 and 3.3,
the individual models converge to the optimal model wo exponentially fast for a sufficiently
small step-size:

col{E‖w̃p,i‖2}Pp=1

� Λicol{E‖w̃p,0‖2}Pp=1 +
i∑

j=0
Λjcol{µ2σ2

s,p +O(µ2)ξ2 +O(µ3)σ2
q,p + σ2

g,p}Pp=1, (3.66)

where � is the elementwise comparison, Λ is a diagonal matrix with the pth entry given
by:

λp =
√

1− 2νµ+ δ2µ2 + β2
s,pµ

2 +O(µ2) ∈ (0, 1), (3.67)

σ2
q,p the average of σ2

q,p,k, and σ2
g,p is the total variance introduced by the noise added at

server p. Then, taking the limit of i to infinity:

lim sup
i→∞

col
{
E‖w̃p,i‖2

}P
p=1
� (I − Λ)−1col

{
µ2σ2

s,p +O(µ2)ξ2 +O(µ3)σ2
q,p + σ2

g,p

}P
p=1

.

(3.68)

76

3.A. Auxiliary Result on Individual MSE Performance

Proof. Focusing on the error of a single server p, we can verify that:

E{‖w̃p,i‖2|Fi−1}

(a)= E

∥∥∥∥∥ ∑
m∈Np

apm
(
w̃m,i−1 + µ∇wTJm(wm,i−1) + µqm,i

)∥∥∥∥∥
2∣∣∣∣∣Fi−1

+ µ2E

∥∥∥∥∥ ∑
m∈Np

apmsm,i

∥∥∥∥∥
2∣∣∣∣∣Fi−1

+ E

∥∥∥∥∥ ∑
m∈Np

apm
L

∑
k∈Lm,i

gm,k,i

∥∥∥∥∥
2∣∣∣∣∣Fi−1

+ E

∥∥∥∥∥ ∑
m∈Np

apmgpm,i

∥∥∥∥∥
2∣∣∣∣∣Fi−1

 ,
(b)
≤

∑
m∈Np

apm

 1
α
‖w̃m,i−1 + µ∇wTJm(wm,i−1)‖2 + µ2

1− α
(
O(µ)‖w̃m,i−1‖2 +O(µ)ξ2

+O(µ2)σ2
q,m

)
+ µ2

(
σ2
s,m + β2

s,m‖w̃m,i−1‖2
)

+ 1
LK

K∑
k=1

E‖gm,k,i‖2 + E‖gpm,i‖2
,

(c)
≤

∑
m∈Np

apm

(1− 2νµ+ δ2µ2

α
+ β2

s,mµ
2 + O(µ3)

1− α

)
‖w̃m,i−1‖2 + µ2σ2

s,m

+
O(µ3)ξ2 +O(µ4)σ2

q,m

1− α + 1
LK

K∑
k=1

E‖gm,k,i‖2 + E‖gpm,i‖2
, (3.69)

where we define σ2
q,m to be the average of σ2

q,m,k. Step (a) follows from independence of
random variables and the zero-mean of the gradient noise and the added noise, (b) from
Jensen’s inequality and the bound on the gardient noise (3.24) and the incremental noise
(3.38), (c) from ν-strong convexity and δ-Lipschtz continuity. Then, choosing:

α =
√

1− 2νµ+ δ2µ2 = 1−O(µ), (3.70)

and taking the expectation over the filtration, we get:

E‖w̃p,i‖2 ≤
∑
m∈Np

apm
(
λmE‖w̃m,i−1‖2 + µ2σ2

s,m +O(µ2)ξ2 +O(µ3)σ2
q,m + σ2

g,m

)
,

(3.71)

where we introduce the constants λm and σ2
g,m, which is the total variance introduced by

the noise added at server m :

λm
∆=
√

1− 2νµ+ δ2µ2 + β2
s,mµ

2 +O(µ2). (3.72)

Next, taking the column vector of every local MSE, we get the following bound in which

77

Chapter 3. Privatized Graph Federated Learning

we drop the indexing from the column vectors:

col
{
E‖w̃p,i‖2

}
� ΛA col

{
E‖w̃p,i−1‖2

}
+A col

{
µ2σ2

s,p + σ2
g,p +O(µ2)ξ2

}
+A col

{
O(µ3)σ2

q,p

}
,

� ΛiAicol
{
E‖w̃p,0‖2

}
+

i∑
j=0

ΛjAjcol
{
µ2σ2

s,p + σ2
g,p

}
+ ΛjAjcol

{
O(µ2)ξ2 +O(µ3)σ2

q,p

}
,

� Λicol
{
E‖w̃p,0‖2

}
+

i∑
j=0

Λjcol
{
µ2σ2

s,p + σ2
g,p +O(µ2)ξ2 +O(µ3)σ2

q,p

}
, (3.73)

where we define the diagonal matrix Λ with λp as entries on the diagonal. Then choosing
µ small enough such that λp < 1 for every p, we know the limit of Λi as i goes to infinity
is zero. Furthermore, if the eigenvalues of Λ are less than 1, which they are, then the
geometric series converges to (I − Λ)−1. Thus, we get the desired result.

3.B Proof of Lemma 3.3

Consider the aggregate model vector, i.e., Wi
∆= col

{
wp,i

}P
p=1

, for which we write the
model recursion as:

Wi =(A⊗ I)T

Wi−1 − µcol
{
∇wTJp(wp,i−1) + sp,i + qp,i

}
+ col

 1
L

∑
k∈Lp,i

gp,k,i

+ diag
(
(A⊗ I)TGi

)
, (3.74)

where Gi is a matrix whose entries are the noise gpm,i, and the diag(·) function extracts
the diagonal entries of a matrix and transforms them into a column vector.

Since A is doubly-stochastic, then it admits an eigendecomposition of the form A =
QHQT, with the first eigenvalue equal to 1 and its corresponding eigenvector equal to
1/
√
P .

Next, we define the extended centroid model Wc,i
∆=
(

1
P 11

T ⊗ I
)
Wi, and write:

Wi −Wc,i =
(
I − 1

P
11T ⊗ I

)
Wi

=
(

(QT ⊗ I)(Q⊗ I)− 1
P
11T ⊗ I

)
Wi

= (QT
ε ⊗ I)(Qε ⊗ I)Wi

78

3.B. Proof of Lemma 3.3

= (QT
ε ⊗ I)Hε(Qε ⊗ I)

Wi−1 − µcol
{
∇wTJp(wp,i−1) + sp,i + qp,i

}

+(QT
ε ⊗ I)(Qε ⊗ I)diag

(
(A⊗ I)TGi

)
+ col

{ 1
L

∑
k∈Lp,i

gp,k,i
} . (3.75)

Then, taking the conditional expectation given the past models of ‖(Qε⊗ I)Wi‖2, we can
split the gradient noise and the added privacy noise from the model and the true gradient.
Taking again the expectation over the past data, and then using the sub-multiplicity
property of the norm followed by Jensen’s inequality, we have:

E‖(Qε ⊗ I)Wi‖2

≤ ‖Hε‖2
E ∥∥∥(Qε ⊗ I)Wi−1 − (Qε ⊗ I)µcol

{
∇wTJp(wp,i−1) + qp,i

}∥∥∥2

+µ2‖Qε ⊗ I‖2
P∑
p=1

E‖sp,i‖2 + ‖Qε ⊗ I‖2
P∑
p=1

E

∥∥∥∥∥∥ 1
L

∑
k∈Lp,i

gp,k,i

∥∥∥∥∥∥
2

+ ‖Qε ⊗ I‖2E‖diag
(
(A⊗ I)TGi

)
‖2

≤ ‖Hε‖2
 1
‖Hε‖

E‖(Qε ⊗ I)Wi−1‖2 + µ2‖Qε ⊗ I‖2

1− ‖Hε‖

P∑
p=1

E‖∇wTJp(wp,i−1) + qp,i‖2

+ µ2‖Qε ⊗ I‖2
P∑
p=1

E‖sp,i‖2 +‖Qε ⊗ I‖2
P∑
p=1

E

∥∥∥∥∥∥ 1
L

∑
k∈Lp,i

gk,p,i

∥∥∥∥∥∥
2

+ ‖Qε ⊗ I‖2E‖diag
(
(A⊗ I)TGi

)
‖2. (3.76)

Next, we focus on each individual term. Using Jensen for some constant α and then the
Lipschitz condition and the bound on the incremental noise, we can bound the below
norm as follows:

E‖∇wTJp(wp,i−1) + qp,i‖2 ≤
2
α

(
δ2E‖w̃p,i−1‖2 + ‖∇wTJp(wo)‖2

)
+ 1

1− α
(
O(µ)E‖w̃p,i−1‖2 +O(µ)ξ2 +O(µ2)σ2

q,p

)
. (3.77)

Using the bound on the gradient noise (3.24), we get another E‖w̃p,i−1‖2 term, which

79

Chapter 3. Privatized Graph Federated Learning

can be bounded by the result in Theorem 3.3. Thus, we write:

1
1− ‖Hε‖

E‖∇wTJp(wp,i−1) + qp,i‖2 + E‖sp,i‖2

≤
(

2δ2

α(1− ‖Hε‖)
+ β2

s,p + O(µ)
(1− α)(1− ‖Hε‖)

)
E‖w̃p,i−1‖2 + 2‖∇wTJp(wo)‖2

α(1− ‖Hε‖)
+ σ2

s,p

+
O(µ)ξ2 +O(µ2)σ2

q,p

(1− α)(1− ‖Hε‖)

≤
(

2δ2

α(1− ‖Hε‖)
+ β2

s,p + O(µ)
(1− α)(1− ‖Hε‖)

)λipAi[p]col{E‖w̃p,0‖2
}

+
i−1∑
j=0

λjpA
j [p]col

{
µ2σ2

s,p +O(µ2)ξ2 +O(µ3)σ2
q,p + σ2

g,p

}+ 2‖∇wTJp(wo)‖2

α(1− ‖Hε‖)
+ σ2

s,p

+
O(µ)ξ2 +O(µ2)σ2

q,p

(1− α)(1− ‖Hε‖)
. (3.78)

The noise term can be witten in a more compact way, ‖Qε ⊗ I‖2
P∑
p=1

σ2
g,p. Thus, putting

everything together, we get:

E‖(Qε ⊗ I)Wi‖2

≤ ‖Hε‖E‖(Qε ⊗ I)Wi−1‖2

+ µ2‖Qε ⊗ I‖2‖Hε‖2
P∑
p=1

(2δ2

α(1− ‖Hε‖)
+β2

s,p + O(µ)
(1− α)(1− ‖Hε‖)

)

×

λipAi[p]col{E‖w̃p,0‖2
}

+
i−1∑
j=0

λjpA
j [p]col

{
µ2σ2

s,p +O(µ2)ξ2 +O(µ3)σ2
q,p + σ2

g,p

}
+ 2‖∇wTJp(wo)‖2

α(1− ‖Hε‖)
+ σ2

s,p +
O(µ)ξ2 +O(µ2)σ2

q,p

(1− α)(1− ‖Hε‖)

+ ‖Qε ⊗ I‖2
P∑
p=1

σ2
g,p

≤ ‖Hε‖iE‖(Qε ⊗ I)W0‖2

+
i−1∑
j′=0
‖Hε‖j

′+2‖Qε ⊗ I‖2
µ2

P∑
p=1

(2δ2

α(1− ‖Hε‖)
+β2

s,p + O(µ)
(1− α)(1− ‖Hε‖)

)

×

λj′p Aj′ [p]col{E‖w̃p,0‖2
}

+
j′−1∑
j=0

λjpA
j [p]col

{
µ2σ2

s,p +O(µ2)ξ2 +O(µ3)σ2
q,p + σ2

g,p

}
+ 2‖∇wTJp(wo)‖2

α(1− ‖Hε‖)
+ σ2

s,p +
O(µ)ξ2 +O(µ2)σ2

q,p

(1− α)(1− ‖Hε‖)

+ 1
‖Hε‖2

P∑
p=1

σ2
g,p

. (3.79)

80

3.C. Proof of Theorem 3.1

Going back to the network disagreement, it is bounded by the above bound multiplied
by ‖QT

ε ⊗ I‖2/P . If we were to drive i to infinity, since ‖Hε‖ = ι2 < 1, with ι2 being the
second eigenvalue of A, and choosing α = ι2 we would have:

lim sup
i→∞

1
P

P∑
p=1

E‖wp,i −wc,i‖2

≤ ‖Qε ⊗ I‖
4ι22

P

µ2
P∑
p=1

(2δ2

ι2(1− ι2) + β2
s,p + O(µ)

(1− ι2)2

) ∞∑
j′=0

ιj
′

2

j′−1∑
j=0

λjpA
j [p]

× col
{
µ2σ2

s,p +O(µ2)ξ2 +O(µ3)σ2
q,p + σ2

g,p

}
+ 2‖∇wTJp(wo)‖2

ι2(1− ι2)2 +
σ2
s,p

1− ι2

+
O(µ)ξ2 +O(µ2)σ2

q,p

(1− ι2)3

+ 1
(1− ι2)ι22

P∑
p=1

σ2
g,p

≤ ι22
P

µ2
P∑
p=1

(2δ2

ι2(1− ι2) + β2
s,p + O(µ)

(1− ι2)2

)

×
∑
m∈Np

ι2(µ2σ2
s,m +O(µ2)ξ2 +O(µ3)σ2

q,m + σ2
g,m)

1− ι2λpapm
+ 2‖∇wTJp(wo)‖2

ι2(1− ι2)2

+
σ2
s,p

1− ι2
+
O(µ)ξ2 +O(µ2)σ2

q,p

(1− ι2)3

+ 1
(1− ι2)ι22

P∑
p=1

σ2
g,p

= ι22
P (1− ι2)

P∑
p=1

µ2σ2
s,p + 1

ι22
σ2
g,p +O(µ)σ2

g,p +O(µ3). (3.80)

3.C Proof of Theorem 3.1

First taking the conditional mean of the `2−norm of the centroid error given the past
models, splits the mean into three independent terms: the centralized recursion, the
gradient noise and the added noise. Then, taking the expectation again, we get:

E‖w̃c,i‖2

= E
∥∥∥∥∥w̃c,i−1 + µ

1
P

P∑
p=1
∇wTJp(wp,i−1) + µqi

∥∥∥∥∥
2

+ µ2E‖si‖2 + E‖gc,i‖2

(a)
≤ 1
α2E

∥∥∥∥∥w̃c,i−1 + µ
1
P

P∑
p=1
∇wTJp(wc,i−1)

∥∥∥∥∥
2

+ µ2

1− αE‖qi‖
2

+ δ2µ2

α(1− α)P

P∑
p=1

E‖wp,i−1 −wc,i−1‖2 + µ2E‖si‖2 + E‖gc,i‖2

81

Chapter 3. Privatized Graph Federated Learning

(b)
≤
(

1
α2 (1− 2νµ+ δ2µ2) + β2

sµ
2 + O(µ3)

1− α

)
E‖w̃c,i−1‖2 + µ2σ2

s + E‖gc,i‖2

+
(

δ2

α(1− α) + O(µ3)
1− α + β2

s,max

)
µ2

P

P∑
p=1

E‖wp,i−1 −wc,i−1‖2 +
O(µ3)ξ2 +O(µ4)σ2

q

1− α ,

(3.81)

where inequality (a) follows from Jensen with constant α ∈ (0, 1) and Lipshcitz, and (b)
from applying Lemma 3.1. Then, choosing:

α = 4
√

1− 2νµ+ δ2µ2 = 1−O(µ), (3.82)

the bound becomes:

E‖w̃c,i‖2 ≤λcE‖w̃c,i−1‖2 + µ2σ2
s + E‖gc,i‖2 +O(µ2)ξ2 +O(µ3)σ2

q

+ O(µ)
P

P∑
p=1

E‖wp,i−1 −wc,i−1‖2. (3.83)

Finally, using the result on the network disagreement, recusrively bounding the error,
and taking the limit of i, we get the final result:

lim sup
i→∞

E‖w̃c,i‖2 ≤
µ2σ2

s + E‖gc‖2 +O(µ2)ξ2 +O(µ3)σ2
q

1− λc
+

P∑
p=1

O(1)σ2
g,p +O(µ). (3.84)

3.D Secondary Result on the Extended Model Error

To show the sensitivity of the algorithm is bounded with high probability, we require a
bound on E‖W̃i‖2 and E‖W̃′i‖2. From Theorem 3.3 we can bound the individual errors
by:

E‖w̃p,i‖2 ≤ λpE‖w̃p,i−1‖2 + µ2σ2
s,p +O(µ2)ξ2 +O(µ3)σ2

q,p + σ2
g,p

≤ λmaxE‖w̃p,i−1‖2 + µ2σ2
s,p +O(µ2)ξ2 +O(µ3)σ2

q,p + σ2
g,p

≤ λimaxE‖w̃p,0‖2 + 1− λimax
1− λmax

(
µ2σ2

s,p +O(µ2)ξ2 +O(µ3)σ2
q,p + σ2

g,p

)
≤ λimaxE‖w̃p,0‖2 +O(µ) +O(µ−1), (3.85)

82

3.E. Proof of Theorem 3.2

where λmax = maxp λp. Then, E‖W̃i‖2 can be bounded as follows:

E‖W̃i‖2 =
P∑
p=1

E‖w̃p,i‖2

≤
P∑
p=1

λimaxE‖w̃p,0‖2 +O(µ) +O(µ−1)

= λimaxE‖W̃0‖2 +O(µ) +O(µ−1). (3.86)

It follows that for some constants B and B′, the probability that E‖W̃i‖ and E‖W̃′i‖ are
unbounded can be bounded using Markov’s inequality by:

P(‖W̃i‖ ≥ B) ≤ E‖W̃i‖2

B2

≤ λimaxE‖W̃0‖2 +O(µ) +O(µ−1)
B2 , (3.87)

and similarly for P(‖W̃′i‖ ≥ B′).

3.E Proof of Theorem 3.2

To evaluate the probability distribution in Definition 3.1, we note that the randomness
of the models ψp,j arises from the subsampling of the data for the calculation of the
stochastic gradient at each iteration. Thus, given the subsampled dataset, the models are
now deterministic and since the added noises gpm,j are Laplacian random variables, the
distribution of the added noise over the neighbourhood of agent p and over the iterations
is given by:

f

({
{ψp,j + gpm,j}m∈Np\{p}

}i
j=0

)
= f(y0)f(y1|y0) · · · f(yi|y0, · · · ,yi−1)

=
i∏

j=0

1√
2σg

exp
(
−
√

2
σg
‖ψp,j + gp,j‖

)

= 1√
2σg

exp
(
−
√

2
σg

i∑
j=0
‖ψp,j + gp,j‖

)
, (3.88)

83

Chapter 3. Privatized Graph Federated Learning

where yj = {ψp,j + gpm,j}m∈Np\{p} and the ratio in Definition 3.1 is bounded with high
probability:

exp
(
−
√

2
σg

i∑
j=0

(
‖ψp,j + gp,j‖ − ‖ψ′p,j + gp,j‖

))

≤ exp
(√

2
σg

i∑
j=0
‖ψp,j −ψ′p,j‖

)

≤ exp
(√

2
σg

i∑
j=0

∆(j)
)

≤ exp
(√

2
σg

i∑
j=0

(B +B′ +
√
P‖wo − w′o‖)

)

= exp
(√

2
σg

(B +B′ +
√
P‖wo − w′o‖)(i+ 1)

)
, (3.89)

where the inequalities follow from the triangle inequality and the bound on the sensitivity
of the algorithm.

84

4 Privacy in Decentralized Learning

In chapter 3 we examined a setting combining both decentralized and distributed learning.
We suggested a privatization scheme for the decentralized layer that improves the effect
of the added noise on the mean-square error from what was previously O(µ−1) to what
is now O(1). In this chapter, we focus on the more general decentralized setting and
show how to further reduce the effect of the added noise for privacy down to O(µ). The
material in this chapter is based on the work in [106].

4.1 Introduction

Decentralized learning and optimization strategies are relevant in many contexts in
real-world problems, such as in the design of robotic swarms for rescue missions, or the
design of cloud computing services, or the exchange of information over social networks.
Even in scenarios where a centralized solution is possible, it is often preferable to rely
on a decentralized implementation for various reasons. For instance, the centralized
solution tends to have high maintenance costs and is sensitive to the failure of the
central processor. Agents may also be reluctant to share their data with a remote central
processor due to privacy and safety considerations. The amount of data available at
each agent may be significant in size, which makes it difficult to regularly transmit large
amounts of data between the dispersed agents and the central processor. Decentralized
implementations offer an attractive and robust alternative. The architecture can tolerate
the failure of individual agents since processing can continue to occur among the remaining
agents. Also, agents are only required to share minimal processed information with their
neighbours.

There exist several schemes for decentralized optimization, which have been studied
extensively in the literature. Among these schemes we list the incremental strategy [107–
114], consensus strategy [23,35, 115–122], and diffusion strategy [9, 25, 123–128,128,129].
The incremental algorithm requires a renumbering of the agents over a cyclic path to

85

Chapter 4. Privacy in Decentralized Learning

cover the entire graph. This is usually a challenging task since the determination of an
appropriate cycle is an NP-hard problem and, moreover, the failure of any edge along
the path turns the solution moot. The consensus and diffusion strategies avoid the
need for a circular path over the graph. They rely on the local sharing of information
among neighbouring agents. One main difference between both classes of strategies is
that consensus updates are asymmetrical, where the starting point for the gradient-
descent step is different from the location where the gradient vector is evaluated — see
expression (4.16). It was shown in several earlier works (see, e.g., [9, 25,124]) that this
asymmetry reduces the stability range of consensus implementations in comparison to
diffusion solutions, especially in scenarios involving the need for continuous learning and
adaptation.

Now, one key aspect of decentralized architectures is that they require agents to share
information with their neighbours. This aspect raises an important privacy question
about whether the information that is being shared over the edges in the graph can be
intercepted. For instance, it is known that in algorithms that rely on gradient-descent
updates, information leakage can occur through the sharing of the local gradients or
the models that they estimate [82–85]. This can be problematic when the network is
dealing with classified or sensitive data such as healthcare or financial data. In such cases,
attackers may be able to recover certain elements of an individual’s personal information.
There is no question that it is useful to pursue decentralized strategies that guarantee a
certain level of privacy.

There exists several useful works in the literature that address privacy questions for de-
centralized algorithms. These contributions rely mainly on two types of tools: differential
privacy or cryptography. Cryptographic methods range from using secure aggregation
to multiparty computation and homomorphic encryption [99–102,130]. Although these
methods do not hinder the performance of the learned model, they add significant
computational and communication overhead.

On the other hand, differentially private methods mask the messages by adding some
random noise [46, 86, 90–97, 131]. They are simple to implement, but they introduce
errors into the learned model and reduce the overall utility of the network. One main
reason for this degradation is that the noise is often added at will without accounting for
the graph topology.

In this work, we focus on differential privacy since it is simpler to apply and more
scalable. We explain how to adjust its application to match the graph topology, while
ensuring privacy and performance guarantees. In particular, we examine the effect of
two differentially private schemes: the traditional random perturbations scheme and a
graph-homomorphic scheme. We establish the superiority of the latter over the former
in the mean-square error (MSE) sense. We also devise a third scheme, called local
graph-homormphic processing, which fully removes the degrading effect of the noise

86

4.2. Problem Setup

on performance. These results apply to a broad class of decentralized learning and
optimization formulations.

4.2 Problem Setup

We consider a graph topology with P agents, labelled p = 1, 2, . . . , P , as illustrated in
Figure 4.1. The objective is for the agents to approach the minimizer of an aggregate
convex optimization problem of the form:

wo
∆= argmin

w∈RM

1
P

P∑
p=1

Jp(w) ∆= 1
Np

Np∑
n=1

Qp(w;xp,n)

 , (4.1)

where the risk function Jp(·) is associated with the pth agent and is defined as an
empirical average of the corresponding loss function Qp(·; ·) evaluated at the local data
{xp,n}

Np
n=1. We associate two non-negative weights amp and apm with the edge linking

neighbouring agents m and p. In this notation, amp is the weight used by agent p to
scale information arriving from m, and similarly for apm; it scales information from p

toward m. The neighbourhood of an agent p is denoted by Np and consists of all agents
that are connected to p by an edge. We assume that Np includes agent p as well.

Figure 4.1 – Illustration of a network of agents.

4.2.1 Modeling Conditions

We assume the individual risk functions Jp(w) are strongly convex and the loss functions
Qp(w; ·) have Lipschitz continuous gradients and are twice differentiable. These conditions

87

Chapter 4. Privacy in Decentralized Learning

are common in the study of decentralized methods. Although the conditions can be
relaxed and the results extended to broader scenarios (see, e.g., [9, 17, 25, 132, 133]),
it is sufficient for the purposes of this work to illustrate the main ideas under these
assumptions.

Assumption 4.1 (Convexity and smoothness). The risks Jp(·) are ν−strongly con-
vex, and the losses Qp(·; ·) are convex and twice differentiable, namely for some ν > 0:

Jp(w2) ≥ Jp(w1) +∇wTJp(w1)(w2 − w1) + ν

2‖w2 − w1‖2, (4.2)

Qp(w2; ·) ≥ Qp(w1; ·) +∇wTQp(w1; ·)(w2 − w1). (4.3)

The loss functions have δ−Lipschitz continuous gradients, meaning there exists δ > 0
such that for any data point xp,n:

‖∇wTQp(w2;xp,n)−∇wTQp(w1;xp,n)‖ ≤ δ‖w2 − w1‖. (4.4)

Since we assume the loss functions are twice differentiable, then the above strong-convexity
and Lipschitz continuity conditions are equivalent to (see [9, 17,25]):

0 < νI ≤ ∇2
wTJp(w) ≤ δI. (4.5)

We further assume that the graph topology is strongly connected. This means that there
exist paths linking any arbitrary pair of agents (m, p) in both directions and, moreover,
at least one agent p in the network has a self-loop with app > 0. In other words, at least
one agent has some trust in its local information. The combination matrix A = [amp] is
usually left-stochastic meaning that its entries satisfy:

amp ≥ 0,
∑
m∈Np

amp = 1. (4.6)

That is, the weights on edges connecting agents are nonnegative, and the entries on
each column of A add up to one. The strong connectedness of the graph translates into
guaranteeing that A is a primitive matrix. As a result, it follows from the Peron-Frobenius
theorem [9] that A will have a single eigenvalue at one, while all other eigenvalues are
strictly inside the unit circle. Moreover, an eigenvector q will exist with positive entries
{qp} adding up to one and satisfying:

Aq = q, qp > 0, 1Tq = 1. (4.7)

We refer to q as the Peron eigenvector of A. Furthermore, it holds that ρ
(
A− q1T

)
< 1,

where ρ(·) denotes the spectral radius of its matrix argument.

88

4.2. Problem Setup

Next, let wo denote the global minimizer for (4.1) and let wop denote the local minimizer
for Jp(·). We assume that the difference between these global and local models is bounded
since, otherwise, collaboration would not be beneficial and one would instead follow a
different optimization approach such as multi-task learning [134].

To clarify this point further, we consider a simple example involving a quadratic loss.
Assume the data arriving at node p, denoted by dp(n), is generated by some linear
regression model under additive noise of the form:

dp(n) = uT
p,nw

? + op(n), (4.8)

where up,n is the feature vector and w? is the model. We can seek to estimate w? by
solving:

min
w

1
P

P∑
p=1

1
Np

Np∑
n=1

(dp(n)− uT
p,nw)2. (4.9)

The global minimizer in this case is given by:

wo = w? + R̂−1
u r̂uo, (4.10)

where:

R̂u
∆= 1

P

P∑
p=1

R̂p,u ∆= 1
Np

Np∑
n=1

up,nu
T
p,n

 , (4.11)

r̂uo
∆= 1

P

P∑
p=1

r̂p,uo ∆= 1
Np

Np∑
n=1

op(n)up,n

 , (4.12)

while the local minimizers of Jp(w) are given by:

wop = w? + R̂−1
p,ur̂p,uo. (4.13)

Thus, the global model (4.10) can be written as a weighted average of the local models
(4.13):

wo = 1
P

P∑
p=1

R̂−1
u R̂p,uw

o
p. (4.14)

This implies that the global model is a mixture of the local models. Therefore, the
bound imposed below on the model difference amounts to an assumption on how different
the distributions of the data across the agents are. This condition is weaker than a
uniform bound on the difference between the gradients of the cost functions, which is
more commonly assumed in the literature (see [135,136]).

89

Chapter 4. Privacy in Decentralized Learning

Assumption 4.2 (Model drifts). The distance of each local model wop to the global
model wo is uniformly bounded, i.e., there exists ξ ≥ 0 such that ‖wo − wop‖ ≤ ξ.

4.3 Decentralized Learning

4.3.1 Generalized Decentralized Learning

We focus on two main strategies: consensus and diffusion. The consensus strategy for
solving (1) takes the form:

ψp,i−1 =
∑
m∈Np

ampwm,i−1, (4.15)

wp,i = ψp,i−1 − µ∇̂wTJp(wp,i−1), (4.16)

where ∇̂wTJp(·) denotes a stochastic gradient approximation for the true gradient of
Jp(·). Usually, the approximation is taken as the gradient of the loss function, namely,
∇wTQp(wp,i−1,xp,i). Here, the quantities {ψp,i,wp,i} denote estimates for wo at node
p at time i. Observe that the gradient vector in (4.16) is evaluated at the prior local
model wp,i−1 and not at the intermediate model ψp,i−1. The diffusion strategy, in turn,
admits two related implementations known as combine-then-adapt (CTA) and adapt-
then-combine (ATC). They differ by the order in which the calculations are performed
with combination coming before adaptation in one case, and with the order reversed in
the other case. The CTA diffusion strategy is described by:

ψp,i−1 =
∑
m∈Np

ampwm,i−1, (4.17)

wp,i = ψp,i−1 − µ∇̂wTJp(ψp,i−1). (4.18)

Comparing with (4.15)–(4.16), observe now that the starting point in (4.18) for the
gradient-descent step is the same as the point where the gradient vector is evaluated.
Similarly, the ATC diffusion strategy is given by:

ψp,i = wp,i−1 − µ∇̂wTJp(wp,i−1), (4.19)

wp,i =
∑
m∈Np

ampψm,i. (4.20)

90

4.3. Decentralized Learning

The above three algorithms can be combined into a single general description as follows [9]:

φp,i−1 =
∑
m∈Np

a1,mpwm,i−1, (4.21)

ψp,i =
∑
m∈Np

a0,mpφm,i−1 − µ∇̂wTJp(φp,i−1), (4.22)

wp,i =
∑
m∈Np

a2,mpψm,i. (4.23)

where we are introducing three combination matrices, {A0, A1, A2}. By setting A0 = A

and A1 = A2 = I, we obtain consensus, while A1 = A and A0 = A2 = I leads to CTA
diffusion, and A2 = A and A0 = A1 = I leads to ATC diffusion. Other choices are
possible.

4.3.2 Privacy Learning

We now examine differentially private algorithms to safeguard the privacy of the infor-
mation that is shared among the agents. For illustration purposes, assume the data
{x1,n} at agent 1 is replaced by a different set {x′1,n}. The algorithm will thus take a
new trajectory, which we denote by {φ′p,i−1,ψ

′
p,i,w

′
p,i}. In a private implementation, an

external observer should be oblivious to this change at agent 1. Concretely, all we need
to do is add noise to the messages that need privatization. Most commonly, noise with
exponential distributions, such as Laplacian or Gaussian, is added [131]. Thus, we are
motivated initially to consider a privatized decentralized implementation of the following
form:

φp,i−1 =
∑
m∈Np

a1,mp (wm,i−1 + g1,mp,i) , (4.24)

ψp,i =
∑
m∈Np

a0,mp (φm,i−1 + g0,mp,i)− µ∇̂wTJp(φp,i−1), (4.25)

wp,i =
∑
m∈Np

a2,mp (ψm,i + g2,mp,i) , (4.26)

where the gj,mp,i denote zero-mean Laplacian random noises for j = 0, 1, 2 for every
m, p = 1, 2, · · · , P . For example, in (4.24), agent m shares wm,i−1 with agent p over
the edge that links them. During this transmission, an amount of Laplacian noise
g1,mp,i is added. The subscript mp is used to denote that this noise is for the directed
communication from m to p. Similarly, for the other noises.

We next define differential privacy formally [131], and show that the above algorithm is
indeed differentially private.

91

Chapter 4. Privacy in Decentralized Learning

Definition 4.1 (ε(i)−Differential privacy). We say that the algorithm given by
(4.24)−(4.26) is ε(i)−differentially private for agent p at time i if the following condition
on the probabilities for observing the respective events holds on the joint distribution
f(·) where the notation yp,j−1 represents any of the shared messages {wp,j−1,φp,j ,ψp,j},
g·,pm,j the corresponding added noise {g1,pm,j , g0,pm,j , g2,pm,j}:

f

({
{yp,j−1 + g·,pm,j}m∈Np\{p}

}i
j=1

)

f

({
{y′p,j−1 + g·,pm,j}m∈Np\{p}

}i
j=1

) ≤ eε(i). (4.27)

The above bounds ensure that for small ε(i), the distributions of the original and modified
trajectories are close to each other. This makes it difficult to infer information about
the data at the agents since we cannot distinguish the trajectories of the algorithm for
different combinations of participating agents. In other words, if agent 1 chooses to
replace its original dataset by {x′1,n}, then the resulting models {w′p,j−1,φ

′
p,j ,ψ

′
p,j} are

close enough in distribution to the original models {wp,j−1,φp,j ,ψp,j}, and an outside
observer will not be able to conclude what dataset was used. The two model trajectories
resulting from the use of the original and the alternative dataset are indistinguishable.

To show that algorithm (4.24)−(4.26) satisfies condition (4.27), we first calculate the
sensitivity of the algorithm. The sensitivity at time i is defined in Appendix 4.A as the
change in the trajectory of the algorithm if instead of using the original dataset, agent 1
uses the alternative dataset {x′1,n}. In Appendix 4.A the sensitivity is shown to satisfy:

∆(i) ∆= ‖Wi −W′i‖ ≤ B +B′ +
√
P‖wo − w′o‖, (4.28)

for some constants B and B′ and with high probability. That is, it holds that:

P
(
∆(i) ≤ B +B′ +

√
P‖wo − w′o‖

)
≥

1−
κ2

21
TΓi

[
E‖W̄0‖2

E‖W̌0‖2

]
+O(µ) +O(µ−1)

B2

×

1−
κ′22 1

TΓ′i
[
E‖W̄′0‖2

E‖W̌′0‖2

]
+O(µ) +O(µ−1)

B′2

 ,
(4.29)

92

4.3. Decentralized Learning

where Wi = col
{
wp,i

}P
p=1

, the model error at time zero is denoted by:

W̃0 = col
{
wo −wp,0

}P
p=1

, (4.30)

and the variables {W̄0, W̌0} arise from the partitioning:

VT
θ W̃0 = col{W̄0, W̌0}, (4.31)

with the matrix Γ and the constant κ2 defined in Appendix 4.B. Result (4.29) means that
the sensitivity ∆(i) is bounded with high probability. The bound constants B and B′ are
chosen by the user: larger values for B and B′ result in higher probability of bounded
sensitivity but, as shown in (4.34), they result in a larger privacy bound. In other words,
the values of B and B′ can be controlled to balance the trade-off between the privacy
level and the likelihood of bounded sensitivity. Next, if we denote the variance of the
Laplacian noise gj,mp,i by σ2

g , with yp,j−1 = wp,j−1 the fraction in (4.27) can be bounded
as follows with high probability:

f

({
{wp,j−1 + g0,pm,j}m∈Np\{p}

}i
j=1

)

f

({
{w′p,j−1 + g0,pm,j}m∈Np\{p}

}i
j=1

) (a)=
i∏

j=1

f
(
{wp,j−1 + g0,pm,j}m∈Np\{p}|Xj−1

)
f
(
{w′p,j−1 + g0,pm,j}m∈Np\{p}|X ′j−1

)

(b)=
i∏

j=1,m∈Np\{p}

exp
(
−
√

2‖wp,j−1 + g0,pm,j‖/σg
)

exp
(
−
√

2‖w′p,j−1 + g0,pm,j‖/σg
)

≤ exp
(√

2
σg

i∑
j=1,m∈Np\{p}

‖wp,j−1 −w′p,j−1‖
)

≤ exp
(√

2P
σg

i∑
j=1
‖Wj−1 −W′j−1‖

)
, (4.32)

where the first equality (a) follows from applying Bayes’ rule with:

Xj−1
∆= {wp,j−1} ∪

{
{wp,o−1 + g0,pm,o}m∈Np\{p}

}j−1

o=1
, (4.33)

and the second equality (b) follows from the independence of wp,j−1 + g0,pm,j for m ∈
Np \ {p} conditioned on wp,j−1. A similar bound can be found for yp,j−1 ∈ {φp,j ,ψp,j}.

Thus, the level of privacy is defined by the following choice for ε(i) in terms of the running
∆(j) values:

ε(i) =
√

2P
σg

i−1∑
j=0

∆(j) ≤
√

2P
σg

(B +B′ +
√
P‖wo − w′o‖)i. (4.34)

93

Chapter 4. Privacy in Decentralized Learning

These results show that in order to arrive at an ε(i)−differentially private algorithm, it is
sufficient to select the variance of the Laplacian noise to satisfy (4.34). Expression (4.34)
shows that ε(i) is a linear function of the iterations. This means that the process becomes
less private at a rate no greater than a linear rate. It is important to note here that most
earlier studies on differentially private schemes for multi-agent systems [90,93,94] assume
bounded gradients for the risk function. However, this condition is rarely satisfied in
practice. For instance, even quadratic risks have unbounded gradients. For this reason,
in our approach, we have avoided relying on this assumption. Instead, we are able to
establish that differential privacy continues to hold with high probability.

We still need to examine the effect of the added noises on performance. To do so, we
introduce the extended model Wi

∆= col
{
wp,i

}P
p=1

and write the three-step algorithm
(4.24)–(4.26) using one single recursion as follows:

Wi =AT
2AT

0AT
1Wi−1 − µAT

2 col
{
∇̂wTJp(φp,i−1)

}P
p=1

+AT
2AT

0 diag(AT
1G1,i)

+AT
2 diag(AT

0G0,i) + diag(AT
2G2,i), (4.35)

where for j = 0, 1, 2, Aj
∆= Aj ⊗ IM , and Gj,i is a matrix whose entries are the added

noises gj,mp,i. We denote the model error by:

W̃i
∆= col

{
wo −wp,i

}P
p=1

, (4.36)

and introduce the local gradient noise:

sp,i
∆= ∇̂wTJp(φp,i−1)−∇wTJp(φp,i−1). (4.37)

It is customary to assume that this gradient noise process has zero mean and bounded
second-order moment (see, e.g., [9, 17], where this property is actually shown to hold in
many important cases of interest and similar arguments can be applied to the current
case), namely:

E{‖sp,i‖2|Fi−1} ≤ β2
s,p‖φ̃p,i−1‖2 + σ2

s,p, (4.38)

for some nonnegative constants β2
s,p and σ2

s,p, and where the conditioning is taken over
all past models:

Fi−1
∆= filtration{wp,j}P,i−1

p=1,j=0. (4.39)

Then, using the extended gradient noise:

si
∆= col

{
sp,i

}P
p=1

, (4.40)

94

4.3. Decentralized Learning

the error recursion corresponding to (4.35) is given by:

W̃i =AT
2AT

0AT
1 W̃i−1 + µAT

2 col
{
∇wTJp(φp,i−1)

}P
p=1

+ µAT
2 si −AT

2AT
0 diag(AT

1G1,i)

−AT
2 diag(AT

0G0,i)− diag(AT
2G2,i). (4.41)

Since Jp(·) are twice differentiable, we appeal to the mean-value theorem to express the
gradient in the form [9]:

∇wTJp(φp,i−1) = −Hp,i−1φ̃p,i−1 −∇wTJp(wo), (4.42)

where:
Hp,i−1

∆=
∫ 1

0
∇2
wTJp(wo − tφp,i−1)dt. (4.43)

Then, introducing the quantities:

Bi−1
∆= AT

2 (AT
0 − µHi−1)AT

1 , (4.44)

Hi−1
∆= diag{Hp,i−1}Pp=1, (4.45)

b
∆= col

{
∇wTJp(wo)

}P
p=1

, (4.46)

we rewrite (4.41) as:

W̃i = Bi−1W̃i−1 + µAT
2 si − µAT

2 b+ µAT
2Hi−1diag(AT

1G1,i)− diag(AT
2G2,i)

−AT
2 diag(AT

0G0,i)−AT
2AT

0 diag(AT
1G1,i). (4.47)

We show in the next theorem that the weight-error size converges to the neighbourhood
of zero, with the size of the neighbourhood determined by the step-size and the added
noise variance.

Theorem 4.1 (MSE convergence of privatized decentralized learning). Under
assumptions 4.1 and 4.2, the decentralized recursions (4.24)−(4.26) converge exponentially
fast for a small enough step-size to a neighbourhood of the optimal model, i.e.:

lim sup
i→∞

E‖W̃i‖2 ≤ O(µ)σ2
s +O(µ) + (O(µ−1) +O(µ))σ2

g . (4.48)

Proof. See Appendix 4.B.

By examining the bound in (4.48) on the MSE, we observe that the noise variance σ2
g

appears multiplied by a term on the order of µ−1, which is detrimental to performance

95

Chapter 4. Privacy in Decentralized Learning

when µ is small. Therefore, the traditional approach of adding Laplacian noise over
the edges to ensre privacy is calamitous to performance and needs to be improved. We
describe next an alternative approach.

4.3.3 Graph-Homomorphic Noise

The noises added to the communication links in the previous section did not take into
account the graph topology. As a result, their effect gets magnified by O(µ−1) as shown
in (4.48). We now examine another strategy for adding noise, which relies on a graph-
homomorphic construction from [86]. Specifically, the noises are now constructed to
satisfy the following condition:

P∑
p,m=1

qpampgj,mp,i = 0, (4.49)

for j = 0, 1, 2, and where q = col
{
qp
}P
p=1

is the Perron eigenvector of AT
2A

T
0A

T
1 . This can

be satisfied if we continue to choose zero-mean Laplacian noises gj,p,i with variance σ2
g

and then set:

gj,pm,i =

apm
amp

gj,p,i, m 6= p

−1−aj,pp
aj,pp

gj,p,i, m = p.
(4.50)

Condition (4.49), along with construction (4.50), ensure that the net effect of the
additional noises cancel out over the entire graph during the local aggregation steps. We
show in the next theorem that the MSE bound improves in this case. To see this, we first
introduce the network centroid wc,i and study its convergence under graph-homomorphic
perturbations. Let:

wc,i
∆=

P∑
p=1

qpwp,i

= wc,i−1 − µ
P∑
p=1

qpsp,i − µ
P∑
p=1

qp∇wTJp

 ∑
m∈Np

a1,mp(wm,i−1 + g1,mp,i)

+
∑
p,m

qp (a1,mpg1,mp,i + a0,mpg0,mp,i + a2,mpg2,mp,i) . (4.51)

Since we are using graph-homomorphic perturbations, the sum of the noise terms in the
last line cancels out. We can therefore write the following error recursion:

w̃c,i = w̃c,i−1 + µ(qT ⊗ I)si + µ(qT ⊗ I)b− µ
P∑
p=1

qpHp,i−1
∑
m∈Np

a1,mp(w̃m,i−1 − g1,mp,i).

(4.52)

96

4.3. Decentralized Learning

Before stating the theorem on the MSE convergence, we bound the network disagreement
defined as the average second-order moment of the difference between the local models
and the centroid model.

Lemma 4.1 (Network disagreement). The average deviation from the centroid is
uniformly bounded during each iteration i, and, moreover, it holds asymptotically that:

lim sup
i→∞

1
P

P∑
p=1

E‖wp,i −wc,i‖2 ≤ O(1)σ2
g +O(µ) (4.53)

Proof. See Appendix 4.C.

Expression (4.53) shows that the local models will be at most O(1)σ2
g away from the

centroid model. Thus, if the centroid model manages to converge to the optimal model wo

with only a slight variation, then the local models will always be a constant, proportional
to the noise variance σ2

g , away from the true model. In the next theorem, we show that
the added noise only alters the centroid model by an O(1) factor.

Theorem 4.2 (MSE convergence of the network centroid). Under assumptions
4.1 and 4.2, the network centroid defined in (4.51) converges exponentially fast for a
small enough step-size to a neighbourhood of the optimal model:

lim sup
i→∞

E‖w̃c,i‖2 ≤O(µ)σ2
s +O(1)σ2

g +O(µ2). (4.54)

Proof. See Appendix 4.D.

Thus, the network centroid is at most O(1)σ2
g away from the true minimizer wo, even

with added noise, as opposed to O(µ−1)σ2
g . In Lemma 4.1, we showed that the individual

models wp,i are O(1)σ2
g away from the centroid model. Thus, by using the graph-

homomorphic perturbations (4.49)–(4.50), the MSE is not inversely proportional to µ
anymore, which is an improvement relative to (4.48).

4.3.4 Local Graph-Homomorphic Noise

We explain how to improve on the O(1)σ2
g deviation and replace it by O(µ)σ2

g , by relying
on the use of local graph-homomorphic noise. To do so, we construct the noises to satisfy

97

Chapter 4. Privacy in Decentralized Learning

the following alternative condition as opposed to (4.49):∑
m∈Np

aj,mpgj,mp,i = 0. (4.55)

Observe that we are requiring the sum of the noises to cancel out locally, rather than
globally as required in the previous section. The neighbours of every agent p must
collaborate together to generate dependent random noises that will cancel out locally
at p. The collaboration will occur through agent p, since a direct link might not exist
amongst these neighbours. A similar problem exists in blockchain applications where the
generation of a random number is required to occur in a decentralized manner [137].

We now devise a decentralized scheme that leads to noises that satisfy condition (4.55).
For the sake of demonstration, we describe the protocol through an example. Thus,
assume agent 1 is connected to 5 agents labelled 2, 3, 4, 5, 6 (Figure 4.2, left). Since
the neighbours of agent 1 need not be connected to each other through direct links, all
communications will take place through agent 1. In this subnetwork, we allow agent 1 to
be the orchestrator of the scheme. The first step is for agent 1 to split its neighbours into
two disjoint sets N1 = N+

⋃
N−. For example, we may collect the even numbered agents

into N+, and the odd numbered agents into N−. Then, we allow every pair of agents
from the two disjoint sets to agree on a noise value they will add to their message such
that they will cancel out at agent 1. We force agents from N− to multiply the noise they
will add to their messages by a negative sign. Therefore, agent 2 will add to its message
two noise terms, one generated with agent 3 and another with agent 5. We denote the
noise term generated by agents 2 and 3 that will be sent to agent 1 by g{23}1,i. Since the
messages are scaled by the weights attributed by agent 1 to its neighbours, the added
noise must then be divided by the weights, i.e., the message sent by agent 2 to agent 1 is
the original message w2,i and the two generated noises by agent 2 with agents 3 and 5
scaled by the corresponding weight a12:

w2,i +
g{23}1,i
a12

+
g{25}1,i
a12

. (4.56)

However, this requires that agent 2 know the weight attributed to its messages by agent
1. Thus, agent 1 will have to make the weights public in case of a non-doubly stochastic
combination matrix. The same process occurs between agents 4 and 6 with both 3 and 5.
Then, the aggregate messages sent to agent 1 will end up being the sum of the unmasked
weights:

∑
k∈N+

a1k

(
wk,i +

∑
`∈N−

g{k`}1,i
a1k

)
+
∑
k∈N−

a1k

(
wk,i −

∑
`∈N+

g{`k}1,i
a1k

)
=
∑
k∈N1

a1kwk,i.

(4.57)

We move to the method used to generate the pairwise noise terms g{k`}1,i. We rely on the

98

4.3. Decentralized Learning

Diffie-Helman key exchange protocol where each pair of agents shares a secret key that
is used to generate the added noise. Given two agents, say 2 and 3, we assume they have
individual secret keys v2 and v3, respectively. A known modulus π and base b is agreed
upon amongst the agents. Then, agent 2 broadcasts its public key V2 = (bv2 mod π)
and agent 3 does the same V3 = (bv3 mod π). Agent 2 then calculates, v23 = (V v2

3
mod π) = (bv2v3 mod π) which is the same as what agent 3 calculates v23 = (V v3

2
mod p) = (bv3v2 mod π). Thus, the two agents now share a secret key v23 only known
to them. This secret key can then be used as the added noise to mask the messages, i.e.,
g{23}1,i = v23. However, to make the process differentially private we need the resulting
added noise to be Laplacian, Lap(0, σg/

√
2). In what follows, we describe a scheme,

which we call the local graph-homomorphic processing scheme that ensures the added
noise is Laplacian. An illustration of this process is found in the right subfigure of Figure
4.2.

Figure 4.2 – Illustration of the local graph-homomorphic process. The figure on the left
describes the Diffie-Helman key exchange procedure. The figure on the right shows the
transformation the random variable goes through.

Definition 4.2 (Local graph-homomorphic process). We are given a subnetwork
of agent k, and neighbours ` ∈ N+ and m ∈ N−. Let agent ` sample two secrect keys v`
and v′` from a uniform distribution on [0, 1], and let agent m sample its keys vm and v′m
from a gamma distribution Γ(2, 1). Let π be some large prime number and let a be a
multiple of π. Then, for:

v`m = a e−v`vm mod π, (4.58)

v′`m = a e−v
′
`v
′
m mod π, (4.59)

99

Chapter 4. Privacy in Decentralized Learning

the desired Laplacian noise can be constructed as:

g{`m}k,i =
√

2
σg

ln
(
v`m
v′`m

)
. (4.60)

The local graph-homomorphic process proposed here is related to methods that fall
under secure aggregation (see [99]). However, the main difference between our method
and earlier investigations is that we devise a scheme for the more general decentralized
setting, while other works focus largely on the particular case of federated learning with
its specialized structure with a central processor. Furthermore, while we generate random
numbers making our scheme more secure, the work [99] adds pseudo-random numbers
to the shared messages. Since pseudo-random numbers are generated by deterministic
algorithms, it makes the noise predictable and susceptible to attacks, contrary to random
numbers. Furthermore, we quantify the privacy of our scheme as opposed to [99]. In the
next theorem, we show that using construction (4.60) results in a differentially private
algorithm.

Theorem 4.3 (Privacy with local graph-homomorphic perturbations). Under
the local graph-homomorphic process defined by (4.60) the resulting privatized algorithm
is ε(i)−differentially private with high probability and with ε(i) defined in (4.34).

Proof. See Appendix 4.E.

Note that since the noises cancel out locally during each iteration, the algorithm follows the
same trajectory as the non-privatized algorithm. This implies that the MSD performance
of the privatized decentralized learning algorithm with the local graph-homomorphic
perturbation (4.60) is the same as the non-privatized decentralized learning algorithm. In
particular, the results on the convergence of the non-privatized algorithm from Theorem
9.1 in [9] will continue to hold. This implies that the MSE will now be on the order of
O(µ)σ2

g .

The above result highlights one difficulty with differential privacy. Note that, in principle,
as the variance σ2

g of the added noise is increased, the level of privacy is also increased.
However, this process introduces an additional communication cost. For example, agent
1 needs to communicate to its neighbourhood the splitting into the positive agents and
negative agents. It will also need to communicate with almost half the neighbourhood
of its neighbours to agree on an added noise g{1m}k,i for k ∈ N1 and m ∈ Nk. Thus, in

100

4.4. Experimental Results

total, the communication cost for agent 1 will increase by at most |N1|+
∑6
k=2 |Nk|/2.

The additional communication cost is not captured by the privacy measure even though
it clearly affects the level of privacy. If we were to decrease the number of times a
random noise is generated by the local graph-homomorphic process and instead re-use
the noise, then we would be decreasing the communication cost but increasing the
chance of an attacker learning the noise and unmasking the messages. This reduces its
functionality and motivates the search for other privacy metrics, such as those based
on information-theoretic measures [55]. For example, one metric could be the mutual
information between the original message and the perturbed shared message [138]. Thus,
if we assume the individual messages {wk,i} are Guassian random variables with variance
σ2
w, and if we perturb them with a total Guassian noise gk,i of variance σ2

g , then the
mutual information is given by:

I(wk,i;wk,i + gi) = H(wk,i + gk,i)−H(wk,i + gk,i|wk,i)
= H(wk,i + gk,i)−H(gk,i)

= 1
2 log

(
1 + σ2

w

σ2
g

)
. (4.61)

Obeserve again that as we increase the noise variance σ2
g , mutual information decreases

while privacy increases. Mutual information again fails to capture the communication cost
incurred by the process. It appears that no metric capturing the communication-privacy
trade-off exists as of yet in the literature. This calls for the search of a more appropriate
privacy metric for secure aggregation methods.

4.4 Experimental Results

We run two experiments. In the first experiment we focus on a linear regression problem
with simulated data. We then study a classification problem on real data.

4.4.1 Generalized Decentralized Privacy Learning

For each of consensus, CTA, and ATC diffusion, we compare four algorithms: the
standard decentralized algorithm, the privatized algorithm with random perturbations,
the privatized algorithm with graph-homomorphic perturbations, and the privatized
algorithm with local graph-homomorphic perturbations. We consider a network of 30
agents (Figure 4.3) and a regularized quadratic loss function:

min
w∈R2

1
30

30∑
p=1

1
100

100∑
n=1

(dp(n)− uT
p,nw)2 + 0.01‖w‖2. (4.62)

We generate a random dataset {up,n,dp(n)}100
n=1 as follows: we let the two-dimensional

101

Chapter 4. Privacy in Decentralized Learning

Figure 4.3 – The generated network of agents.

feature vector up,n ∼ N (0;Ru), and add noise op(n) ∼ N (0;σ2
o,p) such that dp(n) =

uT
p,nw

? + op(n), for some generative model w? ∈ R2 and randomly set variance Ru and
added noise variance σ2

o,p. To make the data distributions non-iid, we use different noise
variances σ2

o,p across the agents. The optimal global model has a closed form solution
with R̂u and r̂uo as defined previously:

wo = (R̂u + 0.01I)−1(R̂uw? + r̂uo). (4.63)

We set the step-size µ = 0.4, the noise variance σ2
g = 0.01, and run the algorithms for

1000 iterations. We repeat the experiment 20 times and plot the MSD in the log domain
of the centroid model and the average of the individual MSDs:

MSDi
∆= ‖wc,i − wo‖2, (4.64)

MSDavg,i
∆= 1

P

P∑
p=1
‖wp,i − wo‖2. (4.65)

As we observe in Figure 4.4, graph-homomorphic perturbations do not hinder the
performance of the algorithm in approximating the true model as do random perturbations.
The random perturbations MSD curve (yellow) is significantly higher than the graph
homomorphic perturbations MSD curve (red) which is close to the non-perturbed MSD
curve (blue). If we examine the average MSD of the individual models, we observe that the
decay in performance is not as much as that for random perturbations. Moreover, since
local graph-homomorphic perturbations do not affect the performance of the algorithms,
we observe that the MSD curve follows that of the non-privatized algorithm.

102

4.4. Experimental Results

0 200 400 600 800 1000
Iteration

40

30

20

10

0

10
M

SD
 (d

B)
Consensus

No Pert.
Rand. Pert.
GH Pert.
Local GH Pert.

(a) Consensus: centroid MSD

0 200 400 600 800 1000
Iteration

25

20

15

10

5

M
SD

 (d
B)

Consensus
No Pert.
Rand. Pert.
GH Pert.
Local GH Pert.

(b) Consensus: avg. ind. MSD

0 200 400 600 800 1000
Iteration

40

30

20

10

0

10

M
SD

 (d
B)

ATC
No Pert
Rand Pert
GH Pert
Local GH Pert

(c) ATC: centroid MSD

0 200 400 600 800 1000
Iteration

25

20

15

10

5

M
SD

 (d
B)

ATC
No Pert.
Rand. Pert.
GH Pert.
Local GH Pert.

(d) ATC: avg. ind. MSD

0 200 400 600 800 1000
Iteration

40

30

20

10

0

10

M
SD

 (d
B)

CTA
No Pert
Rand Pert
GH Pert
Local GH Pert

(e) CTA: centroid MSD

0 200 400 600 800 1000
Iteration

25

20

15

10

5

M
SD

 (d
B)

CTA
No Pert.
Rand. Pert.
GH Pert.
Local GH Pert.

(f) CTA: avg. ind. MSD

Figure 4.4 – MSD plots for the three decentralized learning algorithms.

4.4.2 Classification in Decentralized Learning

We next run an experiment on a classification dataset. We use the Avazu click through
dataset [79], which contains a set of online add clicks. We distribute the data among
P = 50 agents. To get non-iid data, we add non-iid Gaussian noise to each agent’s
dataset. We let µ = 0.5, ρ = 0.001, and σ2

g = 0.8. We plot the testing error in Figure
4.5 of the standard algorithm, the privatized algorithm with random perturbations,
the privatized algorithm with graph-homomorphic perturbations, and the privatized

103

Chapter 4. Privacy in Decentralized Learning

algorithm with local graph-homomorphic perturbations. It comes as no surprise that
using graph-homomorphic perturbations does not hinder the testing error as random
perturbations do, and local graph-homomorphic perturbations do not change the testing
error.

0 100 200 300 400
Iteration

15
20
25
30
35
40
45

Te
st

in
g

er
ro

r (
%

)

No Pert.
Rand. Pert.
GH Pert.
Local GH Pert.

(a) Centroid testing error

0 100 200 300 400
Iteration

20

30

40

50

Te
st

in
g

er
ro

r (
%

)

No Pert.
Rand. Pert.
GH Pert.
Local GH Pert.

(b) Average individual testing error

Figure 4.5 – Testing error of standard ATC, privatized ATC with random perturbations,
and privatized ATC with graph-homomorphic perturbations.

4.5 Conclusion

The goal of this chapter has been to study the effect of privacy in decentralized learning.
We established the superiority of graph-homomorphic perturbations in the model perfor-
mance, as opposed to random perturbations. We then designed local graph-homomorphic
perturbations that ensure the added noise does not affect the model performance. Thus,
the main takeaway from this work is that graph-homomorphic perturbations are better
than random perturbations in decentralized learning.

4.A Sensitivity of the Decentralized Algorithm

We study the sensitivity of the decentralized learning algorithm (4.21)–(4.23), which is
defined at each time instant by the expression:

∆(i) = ‖Wi −W′i‖. (4.66)

This definition captures the change when the data samples of a single agent are changed.
The prime symbol represents the new trajectory. We can bound the sensitivity using the
triangle inequality by the individual errors and the difference in the optimal models:

∆(i) ≤ ‖W̃′i‖+ ‖W̃i‖+
√
P‖wo − w′o‖. (4.67)

104

4.A. Sensitivity of the Decentralized Algorithm

Then, for any constants B and B′ chosen by the desiger, we can use Markov’s inequality
to get the bounds:

P(‖W̃i‖ ≥ B) ≤ E‖W̃i‖2

B2 , (4.68)

P(‖W̃′i‖ ≥ B′) ≤
E‖W̃′i‖2

B′2
. (4.69)

Now we recal from Theorem 4.1 that:

E‖W̃i‖2 ≤ κ2
21

TΓi
[
E‖W̄0‖2

‖EW̌0‖2

]
+O(µ) +O(µ−1), (4.70)

E‖W̃′i‖2 ≤ κ′22 1TΓ′i
[
E‖W̄′0‖2

E‖W̌′0‖2

]
+O(µ) +O(µ−1). (4.71)

It follows that the sensitivity is bounded by:

∆(i) ≤ B +B′ +
√
P‖wo − w′o‖ (4.72)

with high probability given by:

P
(
∆(i) ≤ B +B′ +

√
P‖wo − w′o‖

)
≥
(

1− C +O(µ) +O(µ−1)
B2

)

×
(

1− C ′ +O(µ) +O(µ−1)
B′2

)
. (4.73)

where C and C ′ are given by:

C = κ2
21

TΓi
[
E‖W̄0‖2

E‖W̌0‖2

]
, (4.74)

C ′ = κ′22 1
TΓ′i

[
E‖W̄′0‖2

E‖W̌′0‖2

]
. (4.75)

105

Chapter 4. Privacy in Decentralized Learning

4.B Proof of Theorem 4.1

The following proof follows similar steps to those used in [9] for non-private algorithms.
Using the Jordan decomposition of AT

2A
T
0A

T
1 :

AT
2A

T
0A

T
1 = VθJV

−1
θ , (4.76)

Vθ
∆=
[
q VR

]
, (4.77)

V −1
θ

∆=
[
1T

V T
L

]
, (4.78)

J
∆=
[
1 0
0 Jθ

]
, (4.79)

where q is the Perron eigenvector of AT
2A

T
0A

T
1 and Jθ contains Jordan blocks of the

corresponding eigenvalues λ of the form (example of a 3× 3 matrix):λ 0 0
θ λ 0
0 θ λ

 , (4.80)

with a constant θ in the subdiagonal. We first write:

Bi−1 = (V−1
θ)T(J −DT

i−1)VT
θ , (4.81)

where:

V−1
θ

∆= V −1
θ ⊗ IM , (4.82)

Vθ
∆= Vθ ⊗ IM , (4.83)

J ∆= J ⊗ IM =
[
IM 0
0 Jθ

]
, (4.84)

DT
i−1

∆= µVT
θ AT

2Hi−1AT
1 (V−1

θ)T =
[
DT

11,i−1 DT
21,i−1

DT
12,i−1 DT

22,i−1

]
. (4.85)

It is shown in the proof of Theorem 9.1 in [9] that:

‖IM −D11,i−1‖ ≤ 1− σ11µ, (4.86)
‖Dij‖ ≤ σijµ, (4.87)

for some positive constants σij for i, j = 1, 2. Multiplying both sides of the error recursion
(4.47) from the left by VT

θ :

VT
θ W̃i = VT

θ Bi−1(V−1
θ)TVT

θ W̃i−1 + µVT
θ AT

2 si − µVT
θ AT

2 b+ µVT
θ AT

2Hi−1diag(AT
1G1,i)

− VT
θ diag(AT

2G2,i)− VT
θ AT

2 diag(AT
0G0,i)− VT

θ AT
2AT

0 diag(AT
1G1,i), (4.88)

106

4.B. Proof of Theorem 4.1

and introducing the new notation:

VT
θ W̃i =

[
(qT ⊗ IM)W̃i

(V T
R ⊗ I)W̃i

]
∆=
[
W̄i

W̌i

]
, (4.89)

µVT
θ AT

2 si = µ

[
(qT ⊗ IM)AT

2 si
(V T
R ⊗ I)AT

2 si

]
∆=
[
s̄i
ši

]
, (4.90)

µVT
θ AT

2 b = µ

[
(qT ⊗ IM)AT

2 b

(V T
R ⊗ I)AT

2 b

]
∆=
[
0
b̌

]
, (4.91)

we get:[
W̄i

W̌i

]
=
[
IM −DT

11,i−1 −DT
21,i−1

−DT
12,i−1 Jε

] [
W̄i−1
W̌i−1

]
+
[
s̄i
ši

]
+
[
0
b̌

]
+ µVT

θ AT
2Hi−1diag(AT

1G1,i)

− VT
θ diag(AT

2G2,i)− VT
θ AT

2 diag(AT
0G0,i)− VT

θ AT
2AT

0 diag(AT
1G1,i). (4.92)

Then, taking the expectation of the `2−norm, and using Jensen’s inequality, we have:

E‖W̄i‖2 ≤ (1− σ11µ)E‖W̄i−1‖2 + σ2
21µ

σ11
E‖W̌i−1‖2 + E‖s̄i‖2

+ 2µ2E‖(qT ⊗ IM)AT
2Hi−1diag(AT

1G1,i)‖2 + 2E‖(qT ⊗ IM)AT
2AT

0 diag(AT
1G1,i)‖2

+ E‖(qT ⊗ IM)diag(AT
2G2,i)‖2 + E‖(qT ⊗ IM)AT

2 diag(AT
0G0,i)‖2, (4.93)

and:

E‖W̌i‖2 ≤
(
ρ(Jθ) + θ + 2σ2

22µ
2

1− ρ(Jθ)− θ

)
E‖W̌i−1‖2 + 3σ2

21µ
2

1− ρ(Jθ)− θ
E‖W̄i−1‖2

+ 3‖b̌‖2

1− ρ(Jθ)− θ
+ E‖ši‖2 + 2µ2E‖(V T

R ⊗ IM)AT
2Hi−1diag(AT

1G1,i)‖2

+ E‖JT
ε (V T

R ⊗ IM)AT
2AT

0 diag(AT
1G1,i)‖2 + E‖(V T

R ⊗ IM)diag(AT
2G2,i)‖2

+ E‖(V T
R ⊗ IM)AT

2 diag(AT
0G0,i)‖2, (4.94)

with the cross terms equal to zero due to the independence of the zero-mean random
variables. Then, we bound the sum of the gradient noise:

E‖s̄i‖2 + E‖ši‖2 ≤ ‖Vθ‖2µ2
P∑
p=1

E‖sp,i‖2

≤ κ2
1µ

2
P∑
p=1

β2
s,pE‖φ̃p,i−1‖2 + σ2

s,p

≤ κ2
1µ

2
P∑
p=1

β2
s,p

P∑
m=1

(
E‖w̃m,i−1‖2 + E‖g1,mp,i‖2

)
+ σ2

s,p

107

Chapter 4. Privacy in Decentralized Learning

≤ κ2
1µ

2β2
sE‖W̃i−1‖2 + κ2

1µ
2σ2
s + κ2

1µ
2

P∑
p,m=1

β2
s,pE‖g1,mp,i‖2

≤ κ2
1κ

2
2µ

2β2
s

(
E‖s̄i‖2 + E‖ši‖2

)
+ κ2

1µ
2σ2
s + κ2

1µ
2

P∑
p,m=1

β2
s,pE‖g1,mp,i‖2, (4.95)

where we introduced the constants β2
s and σ2

s , which are the sums of β2
s,p and σ2

s,p,
respectively. Then, going back:

E‖W̄i‖2 ≤ (1− σ11µ+ κ2
1κ

2
2β

2
sµ

2)E‖W̄i−1‖2 +
(
σ2

21µ

σ11
+ κ2

1κ
2
2µ

2
)
E‖W̌i−1‖2 + κ2

1µ
2σ2
s

+ κ2
1

P∑
p,m=1

β2
s,pµ

2E‖g1,mp,i‖2 + 2µ2E‖(qT ⊗ IM)AT
2Hi−1diag(AT

1G1,i)‖2

+ 2E‖(qT ⊗ IM)AT
2AT

0 diag(AT
1G1,i)‖2 + E‖(qT ⊗ IM)diag(AT

2G2,i)‖2

+ E‖(qT ⊗ IM)AT
2 diag(AT

0G0,i)‖2, (4.96)

and:

E‖W̌i‖2

≤
(
ρ(Jθ) + θ + 3σ2

22µ
2

1− ρ(Jθ)− θ
+ κ2

1κ
2
2β

2
sµ

2
)
E‖W̌i−1‖2

+
(

3σ2
12µ

2

1− ρ(Jθ)− θ
+ κ2

1κ
2
2β

2
sµ

2
)
E‖W̄i−1‖2

+ 3‖b̌‖2

1− ρ(Jθ)− θ
+ κ2

1µ
2σ2
s + κ2

1µ
2

P∑
p,m=1

β2
s,pE‖g1,mp,i‖2

+ 2µ2E‖(V T
R ⊗ IM)AT

2Hi−1diag(AT
1G1,i)‖2 + E‖JT

θ (V T
R ⊗ IM)AT

2AT
0 diag(AT

1G1,i)‖2

+ E‖(V T
R ⊗ IM)diag(AT

2G2,i)‖2 + E‖(V T
R ⊗ IM)AT

2 diag(AT
0G0,i)‖2. (4.97)

Adding the two bounds:

E‖W̃i‖2

≤ κ2
2

(
γ̄E‖W̄i−1‖2 + γ̌E‖W̌i−1‖2 + 3‖b̌‖2

1− ρ(Jθ)− θ
+ 2κ2

1µ
2σ2
s + 2κ2

1µ
2

P∑
p,m=1

β2
s,pE‖g1,mp,i‖2

+ 2µ2E‖VT
θ AT

2Hi−1diag(AT
1G1,i)‖2 + E‖VT

θ AT
2AT

0 diag(AT
1G1,i)‖2

+ E‖VT
θ diag (AT

2G2,i)‖2 + E‖VT
θ AT

2 diag(AT
0G0,i)‖2

)

108

4.C. Proof of Lemma 4.1

≤ κ2
2

(
γ̄E‖W̄i−1‖2 + γ̌E‖W̌i−1‖2 + 3‖b̌‖2

1− ρ(Jθ)− θ
+ 2κ2

1µ
2σ2
s + 2κ2

1µ
2

P∑
p,m=1

β2
s,pE‖g1,mp,i‖2

+ κ2
1(1 + 2δ2µ2)E‖diag(AT

1G1,i)‖2 + κ2
1E‖diag(AT

2G2,i)‖2 + κ2
1E‖diag(AT

0G0,i)‖2
)
.

(4.98)

Then, recursively bounding the MSE and taking the limit as i tends to infinity, we get:

lim sup
i→∞

E‖W̃i‖2 ≤ κ2
21

T(I − Γ)−1

 κ2
1µ

2σ2
s +

(
4 + (2δ2 + Pβ2

s)µ2)σ2
g

3‖b̌‖2

1−ρ(Jθ)−θ + κ2
1µ

2σ2
s + κ2

1
(
3 + (2δ2 + Pβ2

s)µ2)σ2
g

= O(µ)σ2

s +O(µ) + (O(µ−1) +O(µ))σ2
g , (4.99)

where:

Γ ∆=

 γ̄
σ2

21µ
σ11

+ κ2
1κ

2
2µ

2

3σ2
12µ

2

1−ρ(Jθ)−θ + κ2
1κ

2
2β

2
sµ

2 γ̌

 . (4.100)

4.C Proof of Lemma 4.1

We define Wc,i
∆= (q1T ⊗ I)Wi and write:

Wi −Wc,i =
(
I − q1T ⊗ I

)
Wi

= (V T
L ⊗ I)(VR ⊗ I)Wi

= (V T
L ⊗ I)Jθ(VR ⊗ I)Wi−1 − µ(V T

L ⊗ I)(VR ⊗ I)col
{
∇wTJp(φp,i−1)

}
− µ(V T

L ⊗ I)(VR ⊗ I)si + (V T
L ⊗ I)(VR ⊗ I)

(
diag(AT

2G2,i) +AT
2 diag(AT

0G0,i)

+AT
2AT

0 diag(AT
1G1,i)

)
. (4.101)

We bound E‖(VR ⊗ I)Wi‖2 by using Jensen’s inequality with a constant ρ(Jθ) < 1 and
define κ2

1 = ‖Vθ‖2 and κ2
2 = ‖V−1

θ ‖2:

E‖(VR ⊗ I)Wi‖2

≤ ρ(Jθ)E‖(VR ⊗ I)Wi−1‖2 + κ2
1κ

2
2µ

2

1− ρ(Jθ)

P∑
p=1

E‖Hp,i−1φ̃p,i−1 +∇wTJp(wo)‖2

+ κ2
1κ

2
2µ

2
P∑
p=1

E‖sp,i‖2 + v2
1v

2
2

(
E‖diag(AT

2G2,i)‖2 + E‖AT
2 diag(AT

0G0,i)‖2

+ E‖AT
2AT

0 diag(AT
1G1,i)‖2

)

109

Chapter 4. Privacy in Decentralized Learning

≤ ρ(Jθ)E‖(VR ⊗ I)Wi−1‖2 + 2κ2
1κ

2
2µ

2‖b‖2

1− ρ(Jθ)
+ κ2

1κ
2
2µ

2
P∑
p=1

β2
s,p

∑
m∈Np

a1,mpE‖w̃m,i−1‖2

+ κ2
1κ

2
2µ

2σ2
s + κ2

1κ
2
2µ

2
P∑

p,m=1
a2

1,mpσ
2
g + κ2

1κ
2
2

P∑
p,m=1

(a2
2,mp + a2

0,mp + a2
1,mp)σ2

g . (4.102)

Then, the individual errors E‖w̃m,i−1‖2 can be bounded as shown in Theorem 4.1:

E‖w̃m,i−1‖2 ≤ E‖W̃i−1‖2

≤ κ2
21

T
(

Γi−1
[
E‖W̄0‖2

E‖W̌0‖2

]
+ (I − Γ)−1(I − Γi−1)

[
O(µ2) +O(1)
O(µ2) +O(1)

])
,

(4.103)

where the O(µ2) and O(1) terms are constants depending on the gradient noise variance,
the bias term b, and the noise variance. Also, the matrix Γ captures the rate of the
recursion and was previously defined in Appendix 4.B.

Then, we plug back this bound into the main inequality (4.102) and recursively bound
over i. The network disagreement is then bounded as:

1
P

P∑
p=1

E‖wp,i −wc,i‖2 ≤
κ2

2
P

E‖(VR ⊗ I)Wi‖2, (4.104)

and in the limit:

lim sup
i→∞

1
P

P∑
p=1

E‖wp,i −wc,i‖2 ≤
2κ2

1κ
4
2µ

2‖b‖2

P (1− ρ(Jθ))2 + κ2
1κ

4
2

P (1− ρ(Jθ))
σ2
g +O(µ)

+ κ2
1κ

4
2

P (1− ρ(Jθ))
(
O(µ2)σ2

s +O(µ2)σ2
g

)
. (4.105)

4.D Proof of Theorem 4.2

Starting from (4.52) and taking the conditional mean of the squared Euclidean norm
over the past models, we can split the norm into three independent terms: the model
error, the gradient noise, and the added noise. Taking again expectations and using

110

4.D. Proof of Theorem 4.2

Jensen’s with α =
√

1− 2νµ+ δ2µ2, we have:

E‖w̃c,i‖2 ≤ αE‖w̃c,i−1‖2 + µ2E
∥∥∥(qT ⊗ I)si

∥∥∥2

+ µ2

1− αE

∥∥∥∥∥∥
P∑
p=1

qpHp,i−1
∑
m∈Np

a1,mp(wm,i−1 −wc,i−1)

∥∥∥∥∥∥
2

+ µ2E

∥∥∥∥∥∥
P∑
p=1

qpHp,i−1
∑
m∈Np

a1,mpg1,mp,i

∥∥∥∥∥∥
2

≤ αE‖w̃c,i−1‖2 + µ2E
∥∥∥(qT ⊗ I)si

∥∥∥2
+ δ2µ2

1− α

P∑
p=1

E‖wp,i−1 −wc,i−1‖2

+ µ2E

∥∥∥∥∥∥
P∑
p=1

qpHp,i−1
∑
m∈Np

a1,mpg1,mp,i

∥∥∥∥∥∥
2

. (4.106)

We bound the gradient noise by starting from (4.38) and using Jensen’s inequality to
introduce w̃c,i−1:

E
∥∥∥(qT ⊗ I)s2

i

∥∥∥2
=

P∑
p=1

q2
pE‖sp,i‖2

≤
P∑
p=1

q2
pβ

2
s,pE‖φ̃p,i−1‖2 + q2

pσ
2
s,p

≤
P∑
p=1

q2
pβ

2
s,p

∑
m∈Np

a1,mpE‖w̃m,i−1‖2 + a1,mpE‖g1,mp,i‖2 + σ2
s

≤ 2β2
sE‖w̃c,i−1‖2 + σ2

s + β2
sσ

2
g

+ 2
P∑
p=1

q2
pβ

2
s,p

∑
m∈Np

a1,mpE‖wm,i−1 −wc,i−1‖2

≤ 2β2
sE‖w̃c,i−1‖2 + σ2

s + β2
sσ

2
g + 2β2

s

P∑
p=1

E‖wp,i−1 −wc,i−1‖2. (4.107)

The noise term can be bounded as follows by using twice Jensen’s inequality:

E

∥∥∥∥∥∥
P∑
p=1

qpHp,i−1
∑
m∈Np

a1,mpg1,mp,i

∥∥∥∥∥∥
2

≤ δ2σ2
g . (4.108)

111

Chapter 4. Privacy in Decentralized Learning

We plug the bounds on the gradient noise and the added privacy noise in (4.106):

E‖w̃c,i‖2 ≤
(
α+ 2β2

sµ
2
)
E‖w̃c,i−1‖2 + µ2σ2

s + (β2
s + δ2)µ2σ2

g

+
(

2β2
s + δ2

1− α

)
µ2

P∑
p=1

E‖wp,i−1 −wc,i−1‖2. (4.109)

We use the bound from Lemma 4.1. Recursively bounding the second-order moment of
the error and taking the limit:

lim sup
i→∞

E‖w̃c,i‖2 ≤
µ2
(
σ2
s + (β2

s + δ2)σ2
g

)
1− γc

+O(µ2) + µ

1− γc

(
2β2

s + δ2

1− α

)
κ2

1κ
4
2

1− ρ(Jθ)
σ2
g

= O(µ)σ2
s +O(1)σ2

g +O(µ2). (4.110)

4.E Proof of Theorem 4.3

It suffices to show the noise generated from the local graph-homomorphic process is
Laplacian since we already know that adding Laplacian noise makes the algorithm
differentially private (see [86, 131]) with high probability. Thus, it is well known that
the product of a uniform random variable U(0, 1) with a gamma random variable Γ(2, 1)
results in an exponential random variable Exp(1) [139]. Then e−v`vm is uniformly
distributed on [0, 1]:

P(e−v`vm ≤ c) = P(v`vm ≥ − ln c) = eln c = c. (4.111)

But multiplying it by a makes the resulting variable uniformly distributed on [0, a]. The
modulo p of a uniform random variable is uniform on [0, π] so long as a is a multiple of
π. Let a = tπ for some integer t and x ∼ U(0, a). We divide the intervel [0, a] into t
disjoint sub-intervals of length π, [0, a] = [0, 1)∪ [1, 2) · · · ∪ [(t− 1)π, a]. On each of these
sub-intervals [iπ, (i+ 1)π), x is uniformly distributed with:

P
(
x ≤ x|x ∈ [iπ, (i+ 1)π)

)
= x, (4.112)

and so will x mod π = x− bx/πc = x− iπ on [0, π]. Thus, since a = tπ we get:

P(x ≤ x) =
t−1∑
i=0

P
(
x ≤ x|x ∈ [iπ, (i+ 1)π)

)
+ P

(
x ∈ [iπ, (i+ 1)π)

)

=
t−1∑
i=0

x
π

a
= x. (4.113)

This now means that v`m ∼ U(0, π). Then, taking the difference of two exponential
random variables results in a Laplacian. Thus, we require to transform two uniform
random variables to two exponential random variables with parameter σg√

2 . Taking

112

4.E. Proof of Theorem 4.3

−
√

2
σg

ln v`m results in an exponential random variable:

P
(
−
√

2
σg

ln(v`m) ≤ c
)

= P
(
v`m ≥ e

− cσg√
2

)
= 1− e−

σgc√
2 . (4.114)

113

5 Conclusion

In this dissertation, we studied the effect of privatization on some multi-agent systems.
We dropped the common claim on the boundedness of the gradients of the risk or loss
functions, and introduced a local graph-homormorphic noise construction. Under these
conditions, we were able to show that the multi-agent systems continue to be differentially
private with high probability.

5.1 Summary of Main Results

In Chapter 2, we studied the convergence of federated learning and improved the
algorithm’s performance in the MSE sense by introducing importance sampling on
the level of client selection and data sampling. We then privatized the algorithm by
perturbing the gradients before they were sent to the server. We showed that the effect
of the added noise does not alter the bound on the MSE from O(µ) to O(µ−1) as it does
when noisy iterates are shared.

In Chapter 3, we extended the architecture of federated learning to a network of servers
connected to multiple clients. We then compared two privatization schemes of the
decentralized learning algorithms: random noise perturbation, and graph-homomorphic
perturbation. We showed that generating noise in accordance with the graph topology
only increases the bound on the MSE to O(1) as opposed to the O(µ−1) introduced by
constructing ad-hoc noise.

Finally, in Chapter 4, we focused on a fully decentralized network of agents. We studied
the privatization of the general decentralized learning algorithm. We introduced a noise
generation scheme called local graph-homomorphic process. We showed that it does not
affect the performance of the algorithm since it maintains the MSE bound at O(µ).

115

Chapter 5. Conclusion

5.2 Future Directions

The study of secure aggregation-type methods suggests that a privacy measure capturing
the trade-off between the communication cost and the level of privacy is required. From
our study of the local graph-homomorphic process in Chapter 4, we observe that such
mechanisms introduce extra communication between the agents to ensure the added
noise cancels out and its effect on the learned model is eliminated. Thus, such methods
canceled the utility-privacy trade-off and replaced it with a communication-privacy
trade-off. Differential privacy does a good job at capturing the former trade-off in the ε
parameter and its appearance in the MSE bound.

Another interesting study is personalization in federated learning. In applications where
the data is non-iid across agents, such as text prediction or recommender systems, person-
alization is a desired feature. Customizing the global model to target local requirements
might help improve performance locally at each agent and provide a more personalized
experience. In recommender systems, users would rather get recommendations based on
their own interests. We have done some preliminary work in this area. We introduced
a new personalization algorithm and are currently studying its performance. With the
introduction of personalization, a natural next question is its effect on privacy. By
introducing personalization, we could be leaking personal information. Thus, a privatized
personalization algorithm is needed.

Finding closed form expressions of the MSD for asynchronous networks and FL will
help us answer questions on the effect of the different parameters on performance. One
important parameter is the number of local steps. The problem with asynchronous
networks is that agents move toward their local models during the local steps. There
could be an optimal number of local steps that allow agents to utilize the information
in their local dataset and decrease the generalization error without biasing the learned
model. From the preliminary work done under this topic, we have shown that the number
of local steps does not affect the MSD expression. Instead, the effect appears in higher
order terms of the step-size µ.

Finally, similar to the sampling of the agents in FL, we could extend the study of the
sampling of agents to a decentralized network. In large networks with limited resources, it
might not always be efficient to allow all agents to participate during each iteration. Thus,
we could model such a scenario as a time-varying network where each agent samples its
neighbourhood. Then, to improve performance, we could introduce importance sampling
to ensure that the best neigbours are chosen during each iteration.

116

Bibliography

[1] C. G. Langton, Artificial life: An overview. MIT Press, 1997.

[2] W. Meng, Z. He, R. Teo, R. Su, and L. Xie, “Integrated multi-agent system
framework: decentralised search, tasking and tracking,” IET Control Theory &
Applications, vol. 9, no. 3, pp. 493–502, 2015.

[3] J. Hu, L. Xie, J. Xu, and Z. Xu, “Multi-agent cooperative target search,” Sensors,
vol. 14, no. 6, pp. 9408–9428, 2014.

[4] Q. Wang, M. Su, M. Zhang, and R. Li, “Integrating digital technologies and public
health to fight covid-19 pandemic: key technologies, applications, challenges and
outlook of digital healthcare,” International Journal of Environmental Research
and Public Health, vol. 18, no. 11, pp. 1–50, 2021.

[5] N. Rieke, J. Hancox, W. Li, F. Milletari, H. R. Roth, S. Albarqouni, S. Bakas,
M. N. Galtier, B. A. Landman, K. Maier-Hein et al., “The future of digital health
with federated learning,” NPJ Digital Medicine, vol. 3, no. 1, pp. 1–7, 2020.

[6] J. Xie and C.-C. Liu, “Multi-agent systems and their applications,” Journal of
International Council on Electrical Engineering, vol. 7, no. 1, pp. 188–197, 2017.

[7] M. Oprea, “Applications of multi-agent systems,” in Information Technology.
Springer, 2004, pp. 239–270.

[8] M. Wooldridge, An Introduction to Multiagent Systems. John Wiley & sons, 2009.

[9] A. H. Sayed, “Adaptation, learning, and optimization over networks,” Foundations
and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311–801, 2014.

[10] A. H. Bond and L. Gasser, Readings in Distributed Artificial Intelligence. Morgan
Kaufmann Publishers Inc., 2014.

[11] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al., “Communication-
efficient learning of deep networks from decentralized data,” Proc. International
Conference on Artificial Intelligence and Statistics, vol. 54, pp. 1273–1282, 20–22
April 2017.

117

Bibliography

[12] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V. Poor,
“Federated learning for internet of things: A comprehensive survey,” IEEE Com-
munications Surveys & Tutorials, vol. 23, no. 3, pp. 1622–1658, 2021.

[13] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eich-
ner, C. Kiddon, and D. Ramage, “Federated learning for mobile keyboard predic-
tion,” arXiv:1811.03604, 2018.

[14] S. Warnat-Herresthal, H. Schultze, K. L. Shastry, S. Manamohan, S. Mukherjee,
V. Garg, R. Sarveswara, K. Händler, P. Pickkers, N. A. Aziz et al., “Swarm learning
for decentralized and confidential clinical machine learning,” Nature, vol. 594, no.
7862, pp. 265–270, 2021.

[15] V. Bordignon, V. Matta, and A. H. Sayed, “Adaptive social learning,” IEEE
Transactions on Information Theory, vol. 67, no. 9, pp. 6053–6081, 2021.

[16] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized
Business Review, pp. 1–9, 2008.

[17] A. H. Sayed, Inference and Learning from Data. Cambridge University Press,
2022.

[18] V. Vapnik, “An overview of statistical learning theory,” IEEE Transactions on
Neural Networks, vol. 10, no. 5, pp. 988–999, 1999.

[19] M. J. Kearns and U. Vazirani, An introduction to Computational Learning Theory.
MIT Press, 1994.

[20] A. Blum, “On-line algorithms in machine learning,” Online algorithms, pp. 306–325,
1998.

[21] O. Bousquet, S. Boucheron, and G. Lugosi, Introduction to Statistical Learning
Theory. Springer, 2004.

[22] C. Lemaréchal, “Cauchy and the gradient method,” Doc Math Extra, vol. 251, no.
254, p. 10, 2012.

[23] M. H. DeGroot, “Reaching a consensus,” Journal of the American Statistical
Association., vol. 69, no. 345, pp. 118–121, 1974.

[24] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic
and stochastic gradient optimization algorithms,” IEEE Transactions on Automatic
Control, vol. 31, no. 9, pp. 803–812, 1986.

[25] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102, no. 4, pp.
460–497, April 2014.

118

Bibliography

[26] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and L. van der
Maaten, “Crypten: Secure multi-party computation meets machine learning,”
Advances in Neural Information Processing Systems, vol. 34, pp. 4961–4973, 2021.

[27] X. Sun, P. Zhang, J. K. Liu, J. Yu, and W. Xie, “Private machine learning
classification based on fully homomorphic encryption,” IEEE Transactions on
Emerging Topics in Computing, vol. 8, no. 2, pp. 352–364, 2020.

[28] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,
D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-
preserving machine learning,” in Proc. ACM SIGSAC Conference on Computer
and Communications Security, New York, Oct 2017, p. 1175–1191.

[29] C. Weng, K. Yang, X. Xie, J. Katz, and X. Wang, “Mystique: Efficient conversions
for {Zero-Knowledge} proofs with applications to machine learning,” in USENIX
Security Symposium, Aug 2021, pp. 501–518.

[30] E. Rizk, S. Vlaski, and A. H. Sayed, “Federated learning under importance sam-
pling,” IEEE Transactions on Signal Processing, vol. 70, pp. 5381–5396, 2022.

[31] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimization,” in
Advances in Neural Information Processing Systems, 2011, pp. 873–881.

[32] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochastic gradient
descent,” in Proc. Advances in Neural Information Processing Systems, 2010, pp.
2595–2603.

[33] D. P. Bertsekas, “A new class of incremental gradient methods for least squares
problems,” SIAM J. Optim, vol. 7, pp. 913–926, 1996.

[34] J. Chen and A. H. Sayed, “On the learning behavior of adaptive networks — part i:
Transient analysis,” IEEE Trans. Information Theory, vol. 61, no. 6, pp. 3487–3517,
June 2015.

[35] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61,
Jan 2009.

[36] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for distributed
optimization: Convergence analysis and network scaling,” IEEE Transactions on
Automatic Control, vol. 57, no. 3, pp. 592–606, 2012.

[37] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated
optimization in heterogeneous networks,” in ICML AMTL Workshop, Long Beach,
CA, June 2019, pp. 1–28.

119

Bibliography

[38] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-task
learning,” in Proc. Advances in Neural Information Processing Systems, Long
Beach, CA, December 2017, pp. 4424–4434.

[39] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, “Expanding the reach
of federated learning by reducing client resource requirements,” arXiv:1812.07210,
2018.

[40] F. Sattler, S. Wiedemann, K. Müller, and W. Samek, “Robust and communication-
efficient federated learning from non-i.i.d. data,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–14, November 2019.

[41] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Ba-
con, “Federated learning: Strategies for improving communication efficiency,”
arXiv:1610.05492, 2016.

[42] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” in Proc.
International Conference on Machine Learning, Long Beach, CA, Jun 2019, pp.
4615–4625.

[43] L. Corinzia and J. M. Buhmann, “Variational federated multi-task learning,”
arXiv:1906.06268, 2019.

[44] M. Khodak, M.-F. F. Balcan, and A. S. Talwalkar, “Adaptive gradient-based meta-
learning methods,” in Proc. Advances in Neural Information Processing Systems,
Vancouver, December 2019, pp. 5915–5926.

[45] F. Chen, M. Luo, Z. Dong, Z. Li, and X. He, “Federated meta-learning with fast
convergence and efficient communication,” arXiv:1802.07876, 2019.

[46] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated learning: A
client level perspective,” arXiv:1712.07557, 2017.

[47] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning differentially
private recurrent language models,” in Proc. International Conference on Learning
Representations, Vancouver, April 2018, pp. 1–14.

[48] P. Jiang and G. Agrawal, “A linear speedup analysis of distributed deep learning
with sparse and quantized communication,” in Proc. Advances in Neural Informa-
tion Processing Systems, Montreal, Canada, December 2018, pp. 2525–2536.

[49] A. Khaled, K. Mishchenko, and P. Richtárik, “First analysis of local gd on hetero-
geneous data,” arXiv:1909.04715, 2019.

[50] S. U. Stich, “Local SGD converges fast and communicates little,” in International
Conference on Learning Representations, New Orleans, May 2019, pp. 1–19.

120

Bibliography

[51] J. Wang and G. Joshi, “Cooperative sgd: A unified framework for the design and
analysis of communication-efficient sgd algorithms,” Journal of Machine Learning
Research, vol. 22, no. 213, pp. 1–50, 2021.

[52] F. Zhou and G. Cong, “On the convergence properties of a k-step averaging stochas-
tic gradient descent algorithm for nonconvex optimization,” Proc. International
Joint Conference on Artificial Intelligence, pp. 3219–3227, July 2018.

[53] H. Yu, S. Yang, and S. Zhu, “Parallel restarted sgd with faster convergence and
less communication: Demystifying why model averaging works for deep learning,”
in Proc. AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, July 2019,
pp. 5693–5700.

[54] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan,
“Adaptive federated learning in resource constrained edge computing systems,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1205–1221,
2019.

[55] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of communication
efficient momentum SGD for distributed non-convex optimization,” in Proc. In-
ternational Conference on Machine Learning, Long Beach, CA, Jun 2019, pp.
7184–7193.

[56] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv:1903.03934, 2019.

[57] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg
on non-iid data,” in International Conference on Learning Representations, Addis
Ababa, Ethiopia, 2020, pp. 1–26.

[58] L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, “Client-edge-cloud hierarchical
federated learning,” pp. 1–6, 2020.

[59] E. Rizk, S. Vlaski, and A. H. Sayed, “Dynamic federated learning,” in Proc. IEEE
SPAWC, Atlanta, Georgia, 26–29 May 2020, pp. 1–5.

[60] T. Nishio and R. Yonetani, “Client selection for federated learning with hetero-
geneous resources in mobile edge,” in Proc. IEEE International Conference on
Communications (ICC), Shanghai, China, 2019, pp. 1–7.

[61] N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, and R. Yonetani, “Hybrid-fl
for wireless networks: Cooperative learning mechanism using non-iid data,” in
Proc. IEEE International Conference on Communications (ICC), Dublin, Ireland,
2020, pp. 1–7.

[62] H. T. Nguyen, V. Sehwag, S. Hosseinalipour, C. G. Brinton, M. Chiang, and H. V.
Poor, “Fast-convergent federated learning,” IEEE Journal on Selected Areas in
Communications, vol. 39, no. 1, pp. 201–218, 2021.

121

Bibliography

[63] W. Xia, T. Q. Quek, K. Guo, W. Wen, H. H. Yang, and H. Zhu, “Multi-armed
bandit-based client scheduling for federated learning,” IEEE Transactions on
Wireless Communications, vol. 19, no. 11, pp. 7108–7123, 2020.

[64] Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient radio resource
allocation for federated edge learning,” in IEEE International Conference on
Communications Workshops, Jun 2020, pp. 1–6.

[65] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learning and
communications framework for federated learning over wireless networks,” IEEE
Transactions on Wireless Communications, vol. 20, no. 1, pp. 269–283, 2021.

[66] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” in Proc.
International Con-ference on Machine Learning (ICML), vol. 97, Long Beach, CA,
09–15 Jun 2019, pp. 4615–4625.

[67] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allocation in federated
learning,” in Proc. International Conference on Learning Representations, Addis
Ababa, Ethiopia, 2020, pp. 1–27.

[68] H. H. Yang, Z. Liu, T. Q. Quek, and H. V. Poor, “Scheduling policies for federated
learning in wireless networks,” IEEE Transactions on Communications, vol. 68,
no. 1, pp. 317–333, 2019.

[69] H. H. Yang, A. Arafa, T. Q. Quek, and H. V. Poor, “Age-based scheduling policy
for federated learning in mobile edge networks,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020,
pp. 8743–8747.

[70] H. Yu, Z. Liu, Y. Liu, T. Chen, M. Cong, X. Weng, D. Niyato, and Q. Yang,
“A fairness-aware incentive scheme for federated learning,” in Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society, New York, Feb 2020, p.
393–399.

[71] K. Yuan, B. Ying, S. Vlaski, and A. H. Sayed, “Stochastic gradient descent with
finite samples sizes,” in Proc. International Workshop on Machine Learning for
Signal Processing (MLSP), Salerno, Italy, 2016, pp. 1–6.

[72] G. Alain, A. Lamb, C. Sankar, A. Courville, and Y. Bengio, “Variance reduction
in SGD by distributed importance sampling,” arXiv:1511.06481, 2015.

[73] D. Needell, R. Ward, and N. Srebro, “Stochastic gradient descent, weighted sam-
pling, and the randomized kaczmarz algorithm,” in Proc. Advances in Neural
Information Processing Systems, Montreal, Canada, 2014, pp. 1017–1025.

[74] P. Zhao and T. Zhang, “Stochastic optimization with importance sampling for
regularized loss minimization,” in Proc. International Con-ference on Machine
Learning (ICML), Lille, France, 2015, pp. 1355–1363.

122

Bibliography

[75] S. U. Stich, A. Raj, and M. Jaggi, “Safe adaptive importance sampling,” in Proc.
Advances in Neural Information Processing Systems, Long Beach, CA, 2017, pp.
4381–4391.

[76] D. G. Horvitz and D. J. Thompson, “A generalization of sampling without re-
placement from a finite universe,” Journal of the American statistical Association,
vol. 47, no. 260, pp. 663–685, 1952.

[77] H. O. Hartley and J. N. K. Rao, “Sampling with unequal probabilities and without
replacement,” Ann. Math. Statist., vol. 33, no. 2, pp. 350–374, 06 1962.

[78] D. Prokhorov, “Ijcnn 2001 neural network competition,” 2001. [Online]. Available:
http://www.csie.ntu.edu.tw/-cj1in/libsvmtools/

[79] Avazu and Kaggle, “Avazu’s click-through rate prediction,” 2014. [Online].
Available: http://www.csie.ntu.edu.tw/-cj1in/libsvmtools/

[80] K. R. W. Brewer and M. Hanif, Sampling with Unequal Probabilities. Springer,
1983.

[81] E. Rizk, S. Vlaski, and A. H. Sayed, “Privatized graph federated learning,”
arXiv.2203.07105, 2022.

[82] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan: Informa-
tion leakage from collaborative deep learning,” in Proceedings of ACM SIGSAC
Conference on Computer and Communications Security, New York, Oct 2017, pp.
603–618.

[83] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended
feature leakage in collaborative learning,” in IEEE Symposium on Security and
Privacy (SP), San Francisco, CA, May 2019, pp. 691–706.

[84] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized and
federated learning,” in IEEE symposium on Security and Privacy (SP), San Jose,
CA, May 2019, pp. 739–753.

[85] L. Zhu and S. Han, “Deep leakage from gradients,” in Advances in Neural Infor-
mation Processing Systems, Vancouver, Canada, Dec 2019, pp. 17–31.

[86] S. Vlaski and A. H. Sayed, “Graph-homomorphic perturbations for private decen-
tralized learning,” in Proc. ICASSP, Toronto, Canada, June 2021, pp. 1–5.

[87] L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, “Client-edge-cloud hierarchical
federated learning,” in IEEE International Conference on Communications (ICC),
Jun 2020, pp. 1–6.

123

http://www.csie.ntu.edu.tw/-cj1in/libsvmtools/
http://www.csie.ntu.edu.tw/-cj1in/libsvmtools/

Bibliography

[88] E. Rizk and A. H. Sayed, “A graph federated architecture with privacy preserving
learning,” in IEEE International Workshop on Signal Processing Advances in
Wireless Communications, Lucca, Italy, Sep 2021, pp. 1–5.

[89] B. Wang, J. Fang, H. Li, X. Yuan, and Q. Ling, “Confederated learning: Federated
learning with decentralized edge servers,” arXiv:2205.14905, May 2022.

[90] R. Hu, Y. Guo, H. Li, Q. Pei, and Y. Gong, “Personalized federated learning with
differential privacy,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9530–9539,
2020.

[91] A. Triastcyn and B. Faltings, “Federated learning with bayesian differential privacy,”
in IEEE International Conference on Big Data, Los Angeles, CA, Dec 2019, pp.
2587–2596.

[92] S. Truex, L. Liu, K.-H. Chow, M. E. Gursoy, and W. Wei, “Ldp-fed: Federated learn-
ing with local differential privacy,” in Proceedings of the Third ACM International
Workshop on Edge Systems, Analytics and Networking, 2020, pp. 61–66.

[93] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek, and H. V.
Poor, “Federated learning with differential privacy: Algorithms and performance
analysis,” IEEE Transactions on Information Forensics and Security, vol. 15, pp.
3454–3469, 2020.

[94] B. Jayaraman, L. Wang, D. Evans, and Q. Gu, “Distributed learning without
distress: Privacy-preserving empirical risk minimization,” in Advances in Neural
Information Processing Systems, vol. 31, Montreal, Canad, Dec 2018.

[95] C. Li, P. Zhou, L. Xiong, Q. Wang, and T. Wang, “Differentially private distributed
online learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 30,
no. 8, pp. 1440–1453, 2018.

[96] J. Zhu, C. Xu, J. Guan, and D. O. Wu, “Differentially private distributed online
algorithms over time-varying directed networks,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 4, no. 1, pp. 4–17, 2018.

[97] M. A. Pathak, S. Rane, and B. Raj, “Multiparty differential privacy via aggregation
of locally trained classifiers.” in Advances in Neural Information Processing Systems,
Vancouver, Canada, Dec 2010, pp. 1876–1884.

[98] S. Gade and N. H. Vaidya, “Private learning on networks,” arxiv.1612.05236, 2016.

[99] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,
D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-
preserving machine learning,” in Proc. of ACM SIGSAC Conference on Computer
and Communications Security, New York, 2017, pp. 1175–1191.

124

Bibliography

[100] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur, and
D. Evans, “Privacy-preserving distributed linear regression on high-dimensional
data,” Proceedings on Privacy Enhancing Technologies, vol. 2017, no. 4, pp. 345–364,
2017.

[101] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving
machine learning,” in IEEE Symposium on Security and Privacy (SP), San Jose,
CA, May 2017, pp. 19–38.

[102] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft,
“Privacy-preserving ridge regression on hundreds of millions of records,” in IEEE
Symposium on Security and Privacy, Berkeley, CA, 19 – 22 May 2013, pp. 334–348.

[103] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Helen: Maliciously secure
coopetitive learning for linear models,” in IEEE Symposium on Security and Privacy
(SP), San Francisco, CA, May 2019, pp. 724–738.

[104] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Cryptography with constant
computational overhead,” in Proceedings Annual ACM Symposium on Theory of
Computing, Victoria, British Columbia, May 2008, pp. 433–442.

[105] I. Damgård, Y. Ishai, and M. Krøigaard, “Perfectly secure multiparty computation
and the computational overhead of cryptography,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, France, May
2010, pp. 445–465.

[106] E. Rizk, S. Vlaski, and A. H. Sayed, “Enforcing privacy in distributed learning
with performance guarantees,” arXiv.2301.06412, 2022.

[107] D. Bertsekas, “A new class of incremental gradient methods for least squares
problems,” SIAM J. Optim., vol. 7, pp. 913–926, Nov. 1997.

[108] D. Blatt, A. O. Hero, and H. Gauchman, “A convergent incremental gradient
method with a constant step size,” SIAM J. Optim., vol. 18, pp. 29–51, 2007.

[109] F. S. Cattivelli and A. H. Sayed, “Analysis of spatial and incremental lms processing
for distributed estimation,” IEEE Transactions on Signal Processing, vol. 59, no. 4,
pp. 1465–1480, 2011.

[110] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over distributed
networks,” IEEE Transactions on Signal Processing, vol. 55, no. 8, pp. 4064–4077,
2007.

[111] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental subgradient
method for distributed optimization in networked systems,” SIAM J. Optim.,
vol. 20, pp. 1157–1170, Jan 2009.

125

Bibliography

[112] E. S. Helou and A. R. De Pierro, “Incremental subgradients for constrained convex
optimization: A unified framework and new methods,” SIAM J. Optim., vol. 20,
no. 3, p. 1547–1572, Dec 2009.

[113] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for distributed
optimization,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 4,
pp. 798–808, 2005.

[114] A. Nedic and D. P. Bertsekas, “Incremental subgradient methods for nondifferen-
tiable optimization,” SIAM Journal on Optimization, vol. 12, no. 1, pp. 109–138,
2001.

[115] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems &
Control Letters, vol. 53, no. 1, pp. 65–78, Sep 2004.

[116] S. Barbarossa and G. Scutari, “Bio-inspired sensor network design,” IEEE Signal
Processing Magazine, vol. 24, no. 3, pp. 26–35, May 2007.

[117] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson, “Subgradient
methods and consensus algorithms for solving convex optimization problems,” in
Proc. IEEE Conf. Dec. Control (CDC), Cancun, Mexico, December 2008, pp.
4185–4190.

[118] W. Ren and R. Beard, “Consensus seeking in multiagent systems under dynamically
changing interaction topologies,” IEEE Transactions on Automatic Control, vol. 50,
no. 5, pp. 655–661, 2005.

[119] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,”
IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2508–2530, Jun 2006.

[120] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sensor networks
with imperfect communication: Link failures and channel noise,” IEEE Transactions
on Signal Processing, vol. 57, no. 1, pp. 355–369, Jan 2009.

[121] K. Srivastava and A. Nedic, “Distributed asynchronous constrained stochastic
optimization,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 4,
pp. 772–790, Aug 2011.

[122] O. Hlinka, O. Slučiak, F. Hlawatsch, P. M. Djurić, and M. Rupp, “Likelihood
consensus and its application to distributed particle filtering,” IEEE Transactions
on Signal Processing, vol. 60, no. 8, pp. 4334–4349, Aug 2012.

[123] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed optimiza-
tion and learning over networks,” IEEE Transactions on Signal Processing, vol. 60,
no. 8, pp. 4289–4305, Aug 2012.

126

Bibliography

[124] S.-Y. Tu and A. H. Sayed, “Diffusion strategies outperform consensus strategies
for distributed estimation over adaptive networks,” IEEE Transactions on Signal
Processing, vol. 60, no. 12, pp. 6217–6234, Dec 2012.

[125] J. Chen and A. H. Sayed, “On the learning behavior of adaptive networks—part i:
Transient analysis,” IEEE Transactions on Information Theory, vol. 61, no. 6, pp.
3487–3517, Dec 2015.

[126] S. Chouvardas, K. Slavakis, Y. Kopsinis, and S. Theodoridis, “A sparsity promot-
ing adaptive algorithm for distributed learning,” IEEE Transactions on Signal
Processing, vol. 60, no. 10, pp. 5412–5425, 2012.

[127] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex environments—part
I: Agreement at a linear rate,” IEEE Transactions on Signal Processing, vol. 69,
pp. 1242–1256, 2021.

[128] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive networks:
Formulation and performance analysis,” IEEE Transactions on Signal Processing,
vol. 56, no. 7, pp. 3122–3136, 2008.

[129] F. S. Cattivelli and A. H. Sayed, “Diffusion lms strategies for distributed estimation,”
IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1035–1048, 2009.

[130] D. Froelicher, J. R. Troncoso-Pastoriza, A. Pyrgelis, S. Sav, J. S. Sousa, J.-P.
Bossuat, and J.-P. Hubaux, “Scalable privacy-preserving distributed learning,”
Proceedings on Privacy Enhancing Technologies, vol. 2021, no. 2, pp. 323–347,
2021.

[131] C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy.”
Foundations and Trends in Theoretical Computer Science, vol. 9, no. 3-4, pp.
211–407, 2014.

[132] B. Ying and A. H. Sayed, “Performance limits of stochastic sub-gradient learning,
part ii: Multi-agent case,” Signal Processing, vol. 144, pp. 253–264, 2018.

[133] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex environments—part
i: Agreement at a linear rate,” IEEE Transactions on Signal Processing, vol. 69,
pp. 1242–1256, 2021.

[134] R. Nassif, S. Vlaski, C. Richard, J. Chen, and A. H. Sayed, “Multitask learning
over graphs: An approach for distributed, streaming machine learning,” IEEE
Signal Processing Magazine, vol. 37, no. 3, pp. 14–25, 2020.

[135] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan,
“Adaptive federated learning in resource constrained edge computing systems,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1205–1221,
2019.

127

Bibliography

[136] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg
on non-iid data,” in International Conference on Learning Representations, Addis
Ababa, Ethiopia, 2020, pp. 1–26.

[137] Ginar, “A review of random number generator (rng) on
blockchain,” Dec 2019. [Online]. Available: https://medium.com/ginar-io/
a-review-of-random-number-generator-rng-on-blockchain-fe342d76261b

[138] Y. Wang and H. V. Poor, “Decentralized stochastic optimization with inherent
privacy protection,” IEEE Transactions on Automatic Control, pp. 1–16, 2022.

[139] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions.
Wiley, 1995.

128

https://medium.com/ginar-io/a-review-of-random-number-generator-rng-on-blockchain-fe342d76261b
https://medium.com/ginar-io/a-review-of-random-number-generator-rng-on-blockchain-fe342d76261b

Curriculum Vitae

Elsa Rizk
elsa.rizk@epfl.ch

Education

Ecole Polytechnique Fédéral de Lausanne (EPFL) September 2018 – April 2023
PhD in Computer Science

American University of Beirut (AUB) September 2016 – July 2018
ME in Electrical Engineering

American University of Beirut (AUB) September 2012 – July 2016
BE in Computer Engineering

Research Experience

PhD Thesis September, 2018 – April, 2023
EPFL

• "Multi-agent Learning with Privacy Guarantees." Supervisor: Prof. Ali H. Sayed

ME Thesis September, 2016 – July, 2018
AUB

• "On the Entropy of Some Classes of Distributions and their Mixtures." Supervisor: Prof. Ibrahim Abou
Faycal

Research Intern May, 2015 – September, 2015
University of Maryland College Park

• "Studying Brain Connectivity at a Structural Level Using fMRI Images." Supervisor: Prof. Joseph Jaja

Research Publications

E. Rizk, S. Vlaski, and A. H. Sayed, "Federated learning under importance sampling,” IEEE Trans.
Signal Processing, vol. 70, pp. 5381-5396, 2022.

E. Rizk, S. Vlaski, and A. H. Sayed, “Enforcing privacy in distributed learning with performance
guarantees,” arXiv.2301.06412, pp. 1-13, Dec. 2022. (submitted for publication)

E. Rizk, S. Vlaski, and A. H. Sayed, "Privatized graph federated leaning," arxiv.2203.07105, pp.
1-13, Dec. 2022. (submitted for publication)

Rizk, E., Vlaski, S., and Sayed, A. H., “Local graph-homomorphic processing for privatized
distributed systems”, Proc. IEEE ICASSP, pp. 1-5, Rhodes Island, Greece, June 2023

M. Issa, R. Nassif, E. Rizk, and A. H. Sayed, "Decentralized semi-supervised learning over multitask
graphs,” Proc. Asilomar Conf. Signals, Systems, and Computers, pp. 1-7, Oct.-Nov. 2022.

E. Rizk and A. H. Sayed, "A graph federated architecture with privacy preserving learning," IEEE
International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1-5,
Lucca, Italy, 2021. 129

E. Rizk, S. Vlaski, and A. H. Sayed, "Optimal importance sampling for federated learning,” Proc.
IEEE ICASSP, pp. 1-5, Toronto, Canada, June 2021.

S. Vlaski, E. Rizk, and A. H. Sayed, "Second-order guarantees in federated learning,” Proc. Asilomar
Conference on Signals, Systems and Computers, pp. 1-8, Pacific Grove, CA, Nov. 2020.

S. Vlaski, E. Rizk, and A. H. Sayed, “Tracking performance of online stochastic learners,” IEEE
Signal Processing Letters, vol. 27, pp. 1385-1389, 2020.

E. Rizk, S. Vlaski, and A. H. Sayed, "Dynamic federated learning,” Proc. International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC), pp. 1-5, May 2020.

Awards & Honors

IC distinguished services award December, 2022
EPFL

IC distinguished services award December, 2021
EPFL

IC distinguished services award December, 2020
EPFL

Skills

Languages Coded: Python, Matlab, Java, C++, Labview, Latex
Languages Spoken: English, French, Arabic

130

	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	Multi-agent Systems
	Empirical Risk Minimization
	Single-agent Learning
	Multi-agent Learning
	Privacy in Multi-agent Systems
	Organization and Main Contribution

	Federated Learning under Importance Sampling
	Introduction
	Related Work
	Sampling and Inclusion Probabilities

	Algorithm Derivation
	Convergence Analysis
	Modeling Conditions
	Error Recursion
	Main Theorem

	Importance Sampling
	Agent Level: Importance Sampling of Data
	Cloud Level: Importance Sampling of Agents
	Practical Issues

	Privacy Analysis
	Experimental Results
	Regression
	Classification
	Effect of Parameters
	Effect of Privatization

	Conclusion
	Result on the Variance of the Mini-batch Estimate
	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Proof of Lemma 2.3
	Proof of Lemma 2.4
	Proof of Lemma 2.5
	Proof of Theorem 2.2

	Privatized Graph Federated Learning
	Introduction
	Graph Federated Architecture
	Performance Analysis
	Modeling Conditions
	Network Centroid Convergence
	Graph Homomorphic Perturbations

	Privacy Analysis
	Experimental Results
	Regression
	Classification

	Conclusion
	Auxiliary Result on Individual MSE Performance
	Proof of Lemma 3.3
	Proof of Theorem 3.1
	Secondary Result on the Extended Model Error
	Proof of Theorem 3.2

	Privacy in Decentralized Learning
	Introduction
	Problem Setup
	Modeling Conditions

	Decentralized Learning
	Generalized Decentralized Learning
	Privacy Learning
	Graph-Homomorphic Noise
	Local Graph-Homomorphic Noise

	Experimental Results
	Generalized Decentralized Privacy Learning
	Classification in Decentralized Learning

	Conclusion
	Sensitivity of the Decentralized Algorithm
	Proof of Theorem 4.1
	Proof of Lemma 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Conclusion
	Summary of Main Results
	Future Directions

	Bibliography
	Curriculum Vitae

