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Abstract—Data centres that use consumer-grade disks drives
and distributed peer-to-peer systems are unreliable environments
to archive data without enough redundancy. Most redundancy
schemes are not completely effective for providing high availabil-
ity, durability and integrity in the long-term. We propose alpha
entanglement codes, a mechanism that creates a virtual layer
of highly interconnected storage devices to propagate redundant
information across a large scale storage system. Our motivation
is to design flexible and practical erasure codes with high fault-
tolerance to improve data durability and availability even in
catastrophic scenarios. By “flexible and practical”, we mean code
settings that can be adapted to future requirements and practical
implementations with reasonable trade-offs between security,
resource usage and performance. The codes have three param-
eters. Alpha increases storage overhead linearly but increases
the possible paths to recover data exponentially. Two other
parameters increase fault-tolerance even further without the need
of additional storage. As a result, an entangled storage system can
provide high availability, durability and offer additional integrity:
it is more difficult to modify data undetectably. We evaluate how
several redundancy schemes perform in unreliable environments
and show that alpha entanglement codes are flexible and practical
codes. Remarkably, they excel at code locality, hence, they reduce
repair costs and become less dependent on storage locations with
poor availability. Our solution outperforms Reed-Solomon codes
in many disaster recovery scenarios.

I. INTRODUCTION

Redundancy schemes play a key role in the security and
performance of storage systems. Many cloud-based centralised
solutions use replication or RAID-like techniques [1], the latter
often built with erasure codes [2] like Reed-Solomon (RS)
codes. In decentralised systems, replication is widely used
due to the higher bandwidth requirements of erasure coding,
particularly to rebuild single-failures. Choosing a redundancy
scheme, for the most part, involves finding a good compromise
between reliability, performance, and costs of additional stor-
age, repair and maintenance of redundancy. The estimation of
these variables is a subtle task, especially for archival systems
that are expected to maintain data accessibility and integrity
for the long term in unreliable environments.

Some of the most remarkable works in the last 20 years of
research propose scalable redundancy mechanisms to address
availability and/or correlated failures: The Eternity Service
(1996) [3], PASIS (2000) [4], FARSITE (2002) [5], Glacier
(2005) [6] and Carbonite (2006) [7] and recently RESAR
(2016) [8]. In the same period of time, the storage scale has

been changing abruptly and such change suggest us to rethink
the schemes used to store data redundantly.

The industry sector puts strong emphasis on storage costs,
which means that their service usually rely on hybrid redun-
dancy schemes. For instance, Google uses multi-cell replica-
tion to survive data centre failures, and RS encoding for local
failures [9]. Facebook uses geo-replicated XOR-based codes
to provide fault-tolerance at the data centre level, and RS
encoding within a single data centre [10]. RS codes are optimal
storage codes, however, the overall storage overhead of the
redundancy scheme is significant when used in combination
with replication.

RS codes are designed to protect data against massive
correlated failures, but, in practice, the parameter values are
restricted to a small range due to poor performance. A system
that uses RS(k,m) codes tolerates m failures, but requires k
I/O accesses and k · B bandwidth to repair a single failure
of B bytes. Some solutions to reduce the repair overhead
were proposed [11]–[14]. Real-world systems advocate small
values: RS(6,3) in Google’s single-cell scheme [9], RS(10,4)
in Facebook’s f4 system [10] and k +m 6 20 in Microsoft
Azure [13]. With settings like those mentioned, systems
can keep data safe only with the existence of continuous
monitoring and repairing operations that increase storage cost.
Another limitation is that reliability requirements may change
over time but RS parameters are not dynamic: data must be
encoded again to change k and m.

In this work, we design a robust and flexible redundancy
scheme that uses storage and bandwidth resources efficiently,
accommodate future reliability needs and its implementation
does not require “magic numbers”. We present alpha entan-
glement codes, AE(α, s, p), a family of erasure codes that
is fundamentally centered around the new concept of redun-
dancy propagation. Thus, an entangled storage system would
provide permanent storage with high availability, durability
and integrity despite external and internal threats. This work
generalizes our earlier entanglement algorithms [15], [16],
including them as special cases, defines redundancy propaga-
tion, discusses centralised and decentralised entangled storage
systems, and improves evaluations done in other works [17].

AE codes create redundancy by tangling (mixing) new data
blocks with old ones, building entangled data chains that are
woven into a growing mesh of interdependent content. The
robust connectivity provides high fault-tolerance. The only
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assumption is that data are stored permanently, deletions are
only possible at the beginning of the mesh. The propagation is
controlled by the code parameters: (i) α determines the local
connectivity, (ii) s and p determine the global connectivity of
data blocks in the grid. Single-entanglements (α = 1) com-
pute 1 parity per data block, double-entanglements (α = 2)
compute 2 parities, triple-entanglements (α = 3) compute 3
parities and so on. Although the storage overhead increases
linearly with the number of parities per data block, the number
of possible data recovery paths grows exponentially. Due to
the redundancy propagation, AE codes reveal a combination
of features previously unavailable for storage systems.

Alpha entanglements are irregular codes. In simple words,
the fault tolerance of irregular codes [18] goes beyond the
m failures tolerated in (k,m)-codes but the extra tolerated
failures are not arbitrary. The usual metrics to measure irreg-
ular fault tolerance are based in the distribution of the failure
patterns that the code cannot tolerate. We use a variation of
previously proposed metrics [18], [19] to show the benefits
of redundancy propagation. Larger values in α, s, and/or p
increase the size of minimal erasure patterns, |ME(x)|, that
cause the irrecoverable loss of x data blocks. For example,
we will show that a pattern that cause the loss of two data
blocks for code setting AE(3,1,4) is |ME(2)| = 8 and it
becomes considerable larger, |ME(2)| = 14, for code setting
AE(3,4,4). A remarkable aspect of redundancy propagation
is that tuning the parameters (s,p) does not modify the
storage overhead and that none of the three parameters can
change the cost of a single failure, which is always repaired
by XORing two blocks. Another characteristic is that alpha
entanglements permit changes in the parameters without the
need to encode the content again. This property opens the
possibility of a dynamic fault-tolerance, which is an interesting
feature for long-term storage systems. As far as we know, these
characteristics are not found in state-of-the-art codes.

The next section provides the background and the moti-
vation for this work. We present alpha entanglement codes in
Section III and provide a guideline of how they can be adapted
to diverse applications and storage architectures in Section IV.
The results of our evaluation are presented in Section V. First,
we investigate the impact of different code settings on fault
tolerance and write performance. Second, we run simulations
over millions of synthetically generated blocks to evaluate
data loss, redundancy degradation and repair performance in
catastrophic failures to compare alpha entanglement codes and
(k,m)-codes. Finally, we show that alpha entanglement codes
outperform Reed-Solomon codes when are used in unreliable
environments with poor maintenance. Alpha entanglement
codes excel at code locality, hence they reduce repair cost and
are less dependent on storage locations with poor availability.

II. BACKGROUND AND MOTIVATION

Mixing data is being actively investigated in network coding
[20]–[22] as well as in storage applications [23]–[26]. More
specifically, document entanglement [25], [26] was proposed
for censorship resistant systems but as pointed by others

an efficient and practical method is not straightforward to
devise [23]. We revisited the problem in the context of fault-
tolerant systems and proposed helical entanglement codes
(HEC) [15]. The code computes the exclusive-or (XOR) of
two blocks: a parity and a data block. Every new data block
is entangled with three parities. The three outputs contribute
to enlarge three specific strands (chains of interleaved data
and parity blocks) determined by the algorithm. The pattern
is repetitive, i.e. the new parity block is used together with
a newcomer block as input for the next XOR operation.
Hence, the algorithm propagates redundant information in
regular patterns into disks arrays. The code is also known
as p-HEC because its p double-helix strands that resemble a
DNA topology. The code builds, in total, 2 horizontal and
2× p helical strands. In a short paper, we gave some insights
into the complex calculation of reliability in entangled storage
systems by analysing 5-HEC reliability with a hierarchical
decomposition of serial and parallel subsystem [17]. Recently,
we proposed a simpler algorithm, which merely uses one
single strand, showed that entanglements can provide more
fault tolerance than mirroring arrays [16]. The early evidence
of high reliability in entanglement codes is promising. Hence,
it has motivated our study to answer important questions about
redundancy propagation and its impact on a storage system.

Alpha entanglement codes provide a general model and
unifying theory for the design of practical entanglement codes.
We define α-entanglement families and evaluate them in detail.
This work significantly extends previous studies on entangle-
ment codes, which become particular entanglement cases of
AE codes. The previous defined p-HEC method corresponds
to the family of triple-entanglements with s = 2, in short
AE(3, 2, p). Our motivation is to design practical erasure codes
for large scale environments instead of another code based on
traditional erasure codes originally designed for data transmis-
sion over erasure channels. We believe that, as indicated by
other authors [27], the translation of communication channel
into a storage device is a simplification that hides maintenance
costs in long-term storage. This awareness motivated this work
that investigates further on entanglement models and their
implementation to build an entangled storage system.

III. ALPHA ENTANGLEMENT CODES

α-entanglements(s, p) is a family of erasure codes to tangle
data and redundant blocks with the goal of increasing the
scope of redundant information by means of propagation. The
encoder builds block chains, strands, that alternate data and
redundant blocks. The entanglement function computes the
exclusive-or (XOR) of two consecutive blocks at the head of
a strand and inserts the output adjacent to the last block. The
strands are intertwined creating a mesh of entangled blocks.

A. What Is Redundancy Propagation? Why We Should Care?

Our notion of redundancy propagation challenges the tra-
ditional notion of redundancy. In engineering, the redundancy
of a system is explained in terms of how the components are
arranged in serial and parallel combinations. If elements are
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Figure 2: AE codes create concentric/parallel paths for each
data block. Any path that connects in-out is valid to read the
central block. Paths that are closer to the center have less
elements in serial combinations while paths that are further
away require more blocks but increase the chances of success.

arranged in series, it means that the system needs all elements
to satisfactorily perform the task. Elements that are arranged
in parallel increase the chances that the system will operate
successfully. Indeed, an encoder algorithm creates paths that
connect data blocks in serial and parallel arrangements. A
decoder algorithm uses the paths to decode data.

Fig. 1 illustrates the classic methods to store data redun-
dantly in a system. Replication improves reliability by creating
n parallel paths of single blocks. RS codes and RAID-like
codes improve performance by using serial paths of k blocks.
They also improve reliability by creating virtual parallel paths
since any combination of k-out-of-n blocks, with n = k+m,
are useful to read the k data blocks. The paths are virtual
since blocks are not replicated, hence, this method is storage
efficient. Though, it is not optimal in terms of bandwidth and
I/O operations, in particular for single failure repairs.

Fig. 2 illustrates the concept of redundancy propagation.
Any arbitrary data block propagates redundant information
to other blocks. The figure shows many valid paths to read
the block located at the center of the image. The block
is at the center of its loosely called propagation sphere.
The entanglement codes create, with a few simple rules, an
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CE_alfa_entanglementsFigure 3: Single- and double-entanglements. A node, di,
represents a data block and an edge, pi,j , represents a parity
block. Nodes are added to the graph in sequential order. They
are uniquely identified by its position i, indicated inside the
nodes.

arrangement of overlapping-spheres packing (each data block
shown in the figure is at the core of its own propagation
sphere, which are not shown for simplicity). In spite of the
overlapping, each data block is uniquely identified by its
position in a lattice, which determines unique combinations
of two or more blocks that are useful to read the block. The
entanglement process creates concentric paths for each data
block. The paths that are close to the center have less elements
in serial combinations while the paths that are more distant
require more blocks. The decoder uses the shortest available
path to repair a missing data block. It rarely needs to use a
long path since single failures are efficiently repaired using two
blocks. Since the decoder can repair multiple single failures
in parallel, a long path affected by two or more failures may
be repaired in a single round. Otherwise, the decoder tries
again in the next round. Redundancy propagation increases
the probability of successfully recovering from catastrophic
failures. It also makes difficult tampering with data because
information is propagated to many elements in the system.

B. How Do We Achieve Redundancy Propagation?

AE codes are a family of codes composed by: (i) Single
entanglements or 1-entanglements, α = 1, built with a single
horizontal strand. (ii) Double entanglements or 2-entangle-
ments(s,p), α = 2, built with s horizontal strands and one
class of p helical strands. (iii) Triple entanglements or 3-en-
tanglements(s,p), α = 3, built with s horizontal strands and
two classes of p helical strands. (iv) n-Tuple entanglements or
n-entanglements(s,p), α = n, built with s horizontal strands
and n−1 classes of p helical strands. Fig. 3 shows examples. A
node, di, represents a data block and an edge, pi,j , represents
a parity block. The entanglement creates new parities and
builds strands by adding elements sequentially. Strands are
intertwined forming a graph. A node is uniquely identified by



its position i in the graph. An edge pi,j connects nodes di and
dj . It represents a parity block that is computed by XORing
the last parity and data block of the same strand.
Strands. Each individual strand corresponds to a single
entanglement. The complex combination of strands brings
additional properties and increases fault tolerance. One of the
emergent properties of α-entanglements is that failure pat-
terns that are not tolerated with single entanglements become
innocuous in entanglements with α > 1 since data blocks
are reconstructed through any of the α strands in which they
participate. We define three classes of strands, the horizontal
(H), the right-handed (RH) and the left- handed (LH) strands.
In a 3D space, the helical strands revolve around a central
horizontal axis and grow towards the right direction. This work
considers helical strands that connect horizontal strands with
a diagonal of slope 1. If possible, there is a balanced quantity
of RH and LH strands. In other words, 2-entanglements are
composed with one class of helical strands (RH or LH) and
3-entanglements are composed with both classes of strands.

A lattice is composed by s horizontal strands, and α − 1
helical strand classes. Hence, the total number of strands is
given by the formula s+ (α− 1) · p.
Code Parameters. Data propagation is tailored with three
parameters: α, s, p. The parameter α specifies the number of
parities created per data block. It also describes the number of
strands in which one data block participates. Tuning α impacts
on the resilience of the structure. More parities create more
redundancy, on the other side, the storage overhead increases.
The parameter α determines the code rate, which is computed
with 1

α+1 . Optionally, systems that only store parities have an
improved rate of 1

α . This work focuses on codes with α ∈ [1, 3]
and gives some guidelines for large values of α. The parameter
p specifies the number of helical strands, and the parameter s
defines the number of horizontal strands. Increasing s and/or p
impacts positively on the structure’s resilience without adding
storage overhead.

The parameter α and the lattice geometry put some con-
straints on the parameters. 1-entanglements are formed with
only one chain of entanglements, therefore, s = 1 and p = 0.
α-entanglements with α > 1 are valid when p ≥ s. An invalid
setting, i.e. p < s, causes a deformed lattice.
Code Specification. The encoder constructs a helical lattice
using data and parity blocks with identical size. Data blocks
are represented by nodes, and parities are represented by
edges. Each node belongs to α strands, each edge belongs
to only one strand. There are three categories: top, central and
bottom nodes that determine the encoder rule. The encoder
processes data blocks iteratively and keeps a counter c that
indicates the last processed block. First, a new data block is
assigned an index i = c+1 that indicates its lattice’s position.
We refer to this data block as di. Second, the node category is
determined by: top if i ≡ 1 mod s, bottom if i ≡ 0 mod s,
and central if i > 1 mod s. Third, the encoder computes α
parities for block di. Each new parity pi,j is computed by
XORing the data block di with an existing parity block ph,i,
whose index h and j are determined using rules tables. Fig. 4

TABLE I: 3-entanglement INPUT rules. AE(3,5,5) example:
on RH strand top node d26 is tangled with p25,26

di is tangled with ph,i, and h index is
di position H strand RH strand LH strand

top i− s i− s · p+ (s2 − 1) i− (s− 1)
central i− s i− (s+ 1) i− (s− 1)
bottom i− s i− (s+ 1) i− s · p+ (s− 1)2

TABLE II: 3-entanglement OUTPUT rules. AE(3,5,5) exam-
ple: on RH strand top node d26 entanglement creates p26,32

di entanglement creates pi,j , and j index is
di position H strand RH strand LH strand

top i+ s i+ s+ 1 i+ s · p− (s− 1)2

central i+ s i+ s+ 1 i+ s− 1
bottom i+ s i+ s · p− (s2 − 1) i+ s− 1
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Figure 4: AE(3,5,5) lattice with s=5 (rows) and p=5 (column-
s/diagonals). Any node di participates in α = 3 strands, e.g.
d26 is a top node that belongs to H1, RH1 and LH2 strands.
Colored nodes are at one hop of node d26.

shows a lattice created with AE(3,5,5) using the rules given
in Tables I and II. The lattice is composed by 15 strands:
5 H strands H1−5, 5 RH strands RH1−5, and 5 LH strands
LH1−5. The decoder repairs a node using two adjacent edges
that belong to the same strand, thus, there are α options.
To illustrate, to repair d26 from Fig. 4 using H strand, the
decoder computes the XOR(p21,26,p26,31), whose indexes are
determined with Tables I and II respectively. The decoder
repairs an edge using any of the two incident nodes on the
damaged edge and its corresponding adjacent edge, hence,
there are always two options. For instance, using the same
figure, to repair p21,26, it computes the XOR(d21,p16,21).
Implementation Details. The lattice acts as a virtual layer on
top of the storage devices, or storage nodes in a p2p applica-
tion. As with any other redundancy method, storage systems
use mapping algorithms to store and locate encoded blocks
according a placement policy and the available resources.
The encoding and decoding implementation may use a client-
based, middleware-based, or backend-based approach.
Reducing Storage Overhead. The storage overhead does not
grow gradually, i.e., increasing α in one unit means that the



storage overhead increases in steps of 100%. We propose two
strategies to enhance the code rate. A first option is to start
with a low α and increase the value later as required. A
second option is to puncture the code. Puncturing is a standard
technique use in coding theory in which, after encoding, some
of the parities are not stored in the system. We will report our
findings on this subject in the near future.
Anti-tampering Property. The protection against data ma-
nipulation is an emergent property. To go undetected, an
attacker should modify the α strands in which the targeted
block participates by replacing all the parities computed from
its position to the closest strand extremity. For example, to
tamper d26 in AE(3,5,5) shown in Fig. 4, the attacker needs
to recompute d26,31, d31,36 and all the parities on the strand
until the end of H1 and do the same for RH1 and LH2.

IV. ENTANGLED STORAGE SYSTEM

In this section, we explain how AE codes can be adapted
to diverse applications without being restricted to a particular
storage architecture. We describe two cases: (i) a cooperative
storage system built on top of a decentralised database, and
(ii) a centralised storage architecture (disk arrays).

A. Use Case: A Geo-Replicated Backup

A community creates a cooperative storage network to share
storage and bandwidth resources. Users keep their own data in
their local computers (nodes) and upload redundant informa-
tion to geographically distributed nodes. The storage capacity
used by each user has to be agreed at the beginning and
renegotiated as needed. The system is a two-tiered architecture
that aims at supporting efficient data protection and integrity.
The lower tier is composed of storage nodes that share space
to store parity blocks from other users. The upper tier consists
of broker nodes that encode and decode data. In this example
a single node has both roles a broker and storage node. The
nodes are organized in a loosely connected cluster. In order to
avoid confusion with the helical lattice graph, the text clarifies
if “node” refers to a graph vertex; otherwise we use the terms
d-block for a vertex and p-block for an edge. It is worth
noticing that the final design requires consideration of various
types of attacks such as free riding abuses that are beyond the
scope of this work. In particular, methods to defend against
free riding were proposed previously by other authors [28].
Redundancy Scheme. Each user manages his own entangle-
ment lattice via the broker, hence multiple lattices coexist in
the system. Moreover, the system could keep lattices with
different settings. In the simplest scenario, the broker is a
service running in the user’s computer. In more complex
scenarios, the broker could be a super node that encodes
data on behalf a group of users. The broker recognizes files
for backup. First, it prepares the file by splitting it into d-
blocks. To entangle them, it needs to fetch some parities (p-
blocks) from remote nodes. For performance, it can keep the
parities from previous encodings in memory. In that case,
the memory footprint of the broker is linear in the number
of distinct strands that create the entanglement lattice. For
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Figure 5: Failure mode. In a healthy AE(3,5,5) lattice each d-
block has three pp-tuples stored at remote nodes. Unavailable
nodes degrade redundancy. Each lattice is affected differently.

TABLE III: Node 1 recomputes p21,26 after failure.

Steps Example
1. Obtain dp-tuple id: {key21, key16,21},{key26, key26,31}
2. Choose p-block id: key16,21
3. Compute location key: n5

4. Get block: p16,21
5. Repair block: p21,26

instance, AE(3,5,5) requires to keep in memory the last p-
block of its 15 strands. If the broker crashes, it only needs
to retrieve the p-blocks from the remote nodes. Blocks are
located by their key, which can be a value derived from the
node id and the block position in the lattice (such as a hash of
both values). Parities are mapped to the storage nodes using a
deterministic or random placement algorithm. In a failure-free
environment, users can access their data directly from their
local computers. In other words, decoding is not required.
Failure Mode. Repairs occur when users do not have access
to their local d-blocks or when their lattices deteriorate due to
faulty or unavailable nodes. How node failures are detected
and notified is not discussed here but there is plenty of
literature on this topic. Fig. 5 shows a scenario in which
three nodes are unavailable and illustrates how the incident
impacts on multiple elements in distinct lattices. The size and
characteristics of the incident dictate the patterns formed on
the lattices. Parity block repair is automatically distributed,
assuming that all users will be interested in the regeneration
of their lattices to maintain the same level of redundancy for
their data. If a node is not able to repair the lattice, other nodes
can do repairs on their behalf as well.

Repairing d-blocks requires complete pp-tuples (two p-
blocks) and repairing p-blocks requires complete dp-tuples
(one d-block and one p-block). Fig. 5 indicates redundancy
degradation. Some nodes have incomplete tuples. Each un-
available block generates a single-failure repair. Table III
enumerates the steps to regenerate the parities located in faulty
nodes and illustrates with an example. Node 1 performs the
steps 1-3 and 5 locally, and node 5 answers step 4.

B. Use Case: Disk Arrays

Disk arrays can increase the performance of a system be-
cause individual requests are served faster when multiple disks
collaborate to increase throughput. In addition, the possibility
to answer multiple requests in parallel gives the chance to
increase the system’s I/Os rate. Some form of redundancy is
required to compensate the increase of combined disk failure



rate when writing to disk arrays. RAID organizations [1] are
a well-established solution for the industry and the home user
to increase the performance and reliability of large arrays
of inexpensive disks. Although there is still future for cheap
spinning disks in data centres and home solutions, the market
changed substantially in the last decades.

Storage at exabyte scale brings difficult challenges: (i) Re-
build time may take hours or days. Systems that tolerate 2
failures dominate the market. More failures during rebuilds are
a source for data loss. (ii) The disparity between technology
development means that disk capacity has been grown steadily
while bandwidth lays behind. (iii) Cloud-based storage has
received more research attention than RAID solutions, even
though RAID is still in use for many reasons, e.g. privacy.
(iv) Failure rate is mostly related to system’s size [29].
(v) Failure correlation is frequently disregarded. The as-
sumption that failures are independent and that time between
failures is exponentially distributed is not valid [30].

We propose to rethink disk arrays with the use of AE
codes. The acronym RAID states for redundant arrays
of independent1 disks. Given that AE codes creates
interdependencies between devices, it makes sense to drop
the term “independent” and replace it with “interdependent”.
Note that this use case is valid for log-structured append-only
storage systems.

1) Entangled Mirror: In earlier work, we proposed two dif-
ferent array organizations based on simple entanglements [16].
Both organizations require equal numbers of data and parity
drives; therefore, the array has the same space overhead as
mirroring. For the sake of completeness, a quick recap is
included in this subsection.
Full Partition. In this approach, a node represents a data
drive and an edge represents a parity drive. Blocks are written
sequentially on the same drive type. The process does not
spread content across drives. Most of the drives will remain
idle and can be powered off as in a massive arrays of idle disks,
MAID, configuration [31], which could result in significant
energy savings.
Block-level Striping. This second approach distributes data
over all available drives to improve performance.

In an entanglement chain, blocks that are located at the
extremities have less redundancy. This problem has more
impact on full partition where the content that is at extremity
of the chain is equivalent to the stored data in one disk. At
block-level striping, the amount of data is equivalent to the
block size. We proposed open and closed chains, the second
approach to address this problem. We showed that in full
partitions both approaches provide better 5-year reliability than
mirroring, reducing the probability of data loss by respectively
90 and 98 percent.

2) RAID-AE: Storing data in disk arrays is often held as
an outdated solution. Given the scalability issues of RAID

1Patterson et al. used the word “inexpensive” but solutions became complex
and expensive and “independent” was gradually adopted.

and the growing cloud market, some organizations move
data to the cloud. However, in-house storage is still used by
many industries, e.g. finance market, government, and research
institutions. On the other side, many cloud storage services are
built on infrastructures that use RAID-like storage solutions.
For example, Backblaze’s backup service uses a RAID system
built on top of Linux and RS codes [32].

There are three ways to increase the redundancy of data
when configuring disk arrays: mirroring (discussed previ-
ously), parities and erasure codes. RS codes became a sort of
de-facto industry standard for erasure coding, and particularly
to archive data. Perhaps the main reason for their broadly
acceptance is because, when the storage market became to
grow, they were already an established solution for digital
communications. In brief, RS codes are storage efficient, well-
understood, and open-source libraries are available. But the
bandwidth and I/O cost during the repair process is only
partially solved with optimal locally repairable codes [11].

We briefly discuss the properties of a RAID built with our
entangled-based solution.
Scalability. RAID-AE can make improvements for both hor-
izontal and vertical scalability. In a RAID-AE array, it is
possible to add more disks and change the storage capacity
by replacing disks or creating volumes. Both actions may be
done dynamically without interrupting the service and without
encoding data again.
Never-ending Stripe. Entanglement codes change the clas-
sical notion of stripe due to the possibility for writing on
a never-ending stripe (a lattice has no limits), on the other
side, the write penalty is α + 1. For clear examples, we
use RAID5 but with more complex RAID organizations the
situation remains the same. The way to compute parities is
based on a fixed-width stripe, e.g. in a 6+1 disk RAID5, one
parity unit is computed using 6 data units. When one disk is
added to the array, the new array 7+1 disk RAID5 requires
re-encoding parities, one parity unit is now computed using 7
data units. Additionally, there is a large penalty when a disk
fails because of the bandwidth and I/O overhead to repair each
missing unit. Parity declustering [33] reduces the rebuild time
by distributing repairs across devices in a large array but this
technique cannot reduce the overhead mentioned above. We
argue that the scope for major improvements is limited by the
stripe size, increasing the length of a stripe has a prohibitive
effect in repairing data.
Degraded Reads. The stripe size impacts on degraded reads in
RAID-like solutions. In data centre environments where disks
are distributed in different machines and racks, the perfor-
mance of degraded reads matters. RAID-AE provides many
alternative paths to read data that is temporarily unavailable
due to software updates, schedule restarts, etc.
Other Features. RAID-AE can be implemented to provide
distributed repairs and load balance for read intensive work-
loads. One important difference in our model is that we do
not assume failure independence and because the parameter α
can change in future, the system can scale in fault tolerance.

In sum, RAID-AE will permit different arrangements with
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I
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|ME(2)=3|

|ME(2)=6|

available

unavailable

Figure 6: Primitive forms. Single entanglements cannot toler-
ate I) triple failures affecting two adjacent nodes and their
incident shared edge and II) its extended form in which
the nodes are not adjacent but all the connecting edges are
unavailable.

Complex Forms

▶︎ ⍺ = 1, s=1 ◀ ▶︎ ⍺ = 2, s=1, p=1 ◀ ▶︎ ⍺ = 3, s=1, p=1 ◀

▶︎ ⍺ = 3, s=1, p=4 ◀ ▶︎ ⍺ = 3, s=4, p=4 ◀

Primitive Form I A B

C D

|ME(2)=4| |ME(2)=5|

|ME(2)=8| |ME(2)=14|

Figure 7: Complex forms. When α ≥ 2 primitive forms do not
cause data loss only their combinations into complex forms as
shown in patterns A-D.

trade-offs between capacity overhead, network bandwidth
overhead, rebuild time and fault tolerance.

V. EVALUATION

We examine the design of AE codes to understand how the
code settings impact on fault tolerance and write performance.
Then, we compare AE codes with traditional redundancy
schemes (RS codes and replication) in disaster recovery by
measuring data loss and vulnerable data. RS codes conceptu-
alize the idea of an “ideal code” that has optimal characteristics
and for that reason can be used as a baseline to compare with
other codes [34]. In addition, RS codes are well-understood
and many other codes are built on top of them. Given the
radical differences of AE codes with other codes the com-
parison is not a trivial task. AE codes construct a scalable
fabric of interdependent data that propagates redundancy, and
this overlay can be mapped to the physical storage layer.
To the best of our knowledge, our notion of redundancy
propagation has never been explored at this level in other
codes. Oversimplification of our model would lead to unfair
results and adding more codes in the comparison would create
unnecessary complications. Instead, we design metrics that
focus on the main characteristics presented in the previous
sections to study them from different angles. To complete this
study, we draw attention to the hidden role of maintenance
and the risk of data loss in unreliable environments. We
investigate how much redundant data are needed in unreliable
environments. Finally, we show evidence on the impact of data
placements for different redundancy schemes.

A. Code Parameters and Fault Tolerance

We have conducted a large study on the erasure patterns
that a helical lattice cannot tolerate. The motivation was
to understand how the code parameters impact on the fault
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Figure 8: |ME(2)| increases with larger s and p.
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Figure 9: |ME(4)| remains constant for α = 2, and increases
with s for α = 3.

tolerance. More specifically, we show visual evidence of how
the parameters s and p increase fault tolerance without the
need of additional storage or bandwidth.

A minimal erasure (ME) is an irreducible pattern that
causes the loss of data and parity blocks. These patterns are
irreducible in the sense that the removal of any of their blocks
enables the possibility to recover some of the erased blocks.
The MEL [19] is the enumeration of all minimal erasures in
irregular XOR-based flat codes. We use a variation of Wiley’s
study to gain more knowledge about the pattern size and its
impact on data block loss. Wiley focused on characterizing
failure patterns by their size without making the distinction
between pattern size and actual data loss, or the impact that
code parameters have in those failure patterns. Our goal is to
characterize minimal erasure patterns by their size and amount
of data loss. Our modification includes the notion that an
erasure pattern of size y blocks only has x data blocks, with
y > x. Ideally, we want patterns with y � x since that means
a high fault-tolerance, which decreases the probability that
the decoder fails, but when it fails only a small fraction of
blocks are data blocks. For many patterns we can increase
the ratio y/x using the code parameters. An outstanding
characteristic is that the parameters s and p permit increasing
the ratio y/x without generating more storage overhead or
increasing the repair cost of single failures. The increase in
fault tolerance when tuning the parameters is evidenced by a
cross-study comparison of the size of minimal erasure patterns
for different code parameters. This study does not identify all
erasure patterns for α-entanglements. To minimize the burden
of such task, we concentrate only on the most relevant patterns



to determine which of them have lower and upper bounds for
the redundancy propagation achieved by entanglement codes.
Fig. 6 and 7 present examples for ME(2). Our findings come
from visual inspections and from verifications conducted with
a tool2 implemented in the Prolog language.
Results. Fig. 8 and 9 show that |ME(x)| is minimal when
s = p, i.e. the code provides the minimum possible fault-
tolerance for a given α and s. Although the code can provide
more fault-tolerance when p increases, the setting s = p
cannot be judge as good or bad per se. Trade-offs between
performance and reliability should be considered to choose
the best parameters. Fig. 9 shows the impact of α on patterns
ME(2α). In this case, the parameters s and p have insignificant
impact on fault tolerance. The reason behind this behaviour is
that with α = 2 redundancy is propagated across elements
that form a square pattern (4 nodes and 4 edges, hence
|ME(4)| = 8) and these elements cannot be repaired if all
are lost. With α = 3, |ME(4)| becomes larger with s but not
with p, in this dimension, redundancy is propagated across a
cube pattern, hence |ME(8)| = 20 for AE(3,3,3), not shown
for space reasons.
Beyond α = 3. We are still investigating entanglement codes
with α > 3. We can safely speculate that the fault-tolerance
would improve substantially. We expect to find upper bounds
for fault tolerance defined by the size of an n-hypercube. This
upper bound has impact on |ME(x)| with x = 2α, for example,
for x = 16 redundancy propagation would be enclosed in a
tesseract (4-cube). In addition, for larger α values we expect
improvements in repair performance. However, it is not clear
how to connect the extra helical strands. In double- and triple-
entanglements the RH and LH strands are defined along a
diagonal of slope 1. One possible option is to add additional
helical strands with a different slope.

B. Code Parameters and Write Performance

The values of parameters s and p impact on the number
of data blocks that need to wait to be entangled. When s =
p, this number is maximized and entanglements can be done
in parallel operations, see Fig. 10. A sealed bucket contains
a data block and the α parities created by the entanglement
process. A data block can be fully entangled when the α input
parities needed in the process are already computed and kept
in memory. The memory requirement for full-writes is O(N),
where N is the number of parities computed in the full-write.

C. Simulations

We run simulations to understand the scalable behavior of
AE codes, assess them against catastrophic failures, compare
them with (k,m)-codes and address the question of how
much redundancy is needed to keep data safe in unreliable
environments that have minimal (or zero) maintenance, i.e.,
repairs and efforts to restore redundancy after failures.
Examples of Unreliable Environments. An unreliable envi-
ronment could be a peer-to-peer (p2p) network where nodes

2Available at request.
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Figure 10: Write performance for p > s and s = p. Full-
writes are optimized when s = p since all the parities needed
to complete triple-entanglements and seal the buckets are
available in memory. When p > s, one option is to do full-
writes for s elements, a second option is to write buckets
partially using the available parities.

join and leave frequently. Redundancy helps to protect data
from real node departures and for maintaining high availability
when hosts are offline. A relevant work on p2p storage showed
a large-scale cooperative storage is limited by unreasonable
cross-system bandwidth [35]. Although this study from 2003
has some results that need update like current hardware trends
and Internet connections, there are interesting insights from
real world p2p networks. Nodes availability in a p2p network is
very variable and maintenance swallows up most of the node’s
resources. Another relevant remark from the same work is that
a system needs up to 120 copies to achieve high availability
(6 nines) using replication, while erasure codes reach 6 nines
with only 15 times the original storage needs. In archival
storage systems, data durability is an endeavour that depends
on the engineering aspects of the system but on the economics
too [36], [37]. From the perspective of data centers, hard disks
are unreliable components that contribute to high maintenance
cost. To give a rough idea, the annual cost due to hardware



repairs (mostly due to hard disks failures) for a data center
with more than 100,000 servers was estimated to be over a
million dollar by Microsoft’s researchers in 2010 [38].
Selected Redundancy Schemes. We study 4 different settings
for Reed-Solomon codes and 3 different settings for alpha
entanglement codes, see Table IV. In addition, we compare up
to 4-way replication since 300% is the maximum additional
storage considered in this paper. Replication requires much
more storage to offer high fault tolerance but it does not have
overheads for single failures. This evaluation substantially
improves previous evaluations [17] since we include many
more code settings, millions of blocks and placements.
Simulation Environment. We investigate what happens with
data in environments that either accumulate plenty of failures
before repairs take place or a large number of failures happen
all at once. The metrics described in this section follows the
criteria used in an on-going project intended to help in the
comparison of codes [39]. All experiments are done with 1
million data blocks and the corresponding number of encoded
blocks for each code setting, e.g. RS(10,4) generates 400,000
encoded blocks while RS(8,2) generates 250,000 encoded
blocks. That means that the number of stripes is different
for each code setting, e.g. RS(8,2) creates 125,000 stripes,
and RS(5,5) creates 200,000 stripes. Blocks are synthetically
generated and stored in tables adapted for each code method.
Table V shows a simplified version of the AE table that uses
three columns to identify the block, one column to determine
the location, one column to determine the availability of the
block and one final column to specify if the block is repaired.
Block Placements. Blocks are distributed in n locations using
random placements, i.e., each block is assigned a random
number from 0 to n−1. We present the results of simulations
for medium size (n = 100) storage system For example,
the 1 million data blocks and 0.4 million encoded blocks
created with RS(10,4) are distributed to 100 locations with
a mean of 14,000 blocks per site and a standard deviation
σ = 130.88. When locations are selected at random, it can
happen that blocks from the same RS stripe are assigned to the
same location. In our previous example, in a total of 100,000
stripes, only 38,429 had their 14 blocks distributed to different
locations. The rest of the stripes were distributed in locations
(stripes): 8 (5), 9 (39), 10 (475), 11 (3,746), 12 (17,076),
13 (40,230). As expected, blocks had a fairly balanced dis-
tribution by increasing n, e.g., 91,167 stripes had their 14
blocks in different locations with n = 1, 000. Spreading blocks
evenly over nodes is a well-known scalability problem that
affect load balance and system’s reliability. While, at first
sight, the distribution of RS encoded blocks is not even for
a medium size system, we have run other simulations with
a larger number of distinct locations and the comparisons
remain close to the ones presented here. An important remark
is that the random distribution of alpha entanglement encoded
blocks in a medium size system affects the code performance
in a worse way. For AE(3,2,5), the equivalent of 5-HEC,
a lattice section of 80 elements (data and parities) need to
be distributed in different failure domains. The number was
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Figure 11: Data blocks that the decoder failed to repair.

obtained from previous work [17], where we assumed a
round robin placement policy. This requirement assures that
neighbour elements have more chances to be available in
repairs that involved multiple blocks. We think a round robin
placement might be difficult to implement. Therefore, this
study answers what happens if we use random placements.
It is expected that the subset of 80 blocks will not be fairly
spread over all 100 locations, but does it affect the ability of
the code to recover from disasters?
Disaster Recovery. The framework simulates disasters by
changing the availability of a certain number of locations
(10-50%) and trying to repair the missing data blocks. When
locations are unavailable, e.g., due to a faulty storage device,
the repair process has to handle a very large number of
single failures since a single location failure cause damage
to multiple positions in the helical lattice.

1) Metric: Data Loss: This metric only counts data blocks
that satisfy the following conditions: a) its location is unavail-
able, b) the repair process was unsuccessful. Other available
data blocks that belong to damaged stripes are not counted
as lost. A RS stripe is damaged when more than m blocks
are unavailable. For example, a RS(8,2) stripe that has one
encoded block and two data blocks in unavailable locations
only contributes to the metric with two data blocks and the
other six data blocks are considered available. In real-world
implementations, it is probably that a RS damaged stripe cause
more data loss than the one indicated with our metric. In AE
codes, each block is encoded individually and data loss counts
exactly how many data blocks are lost. Fig. 11 shows that
AE(3,2,5) outperforms RS(4,12) even though both have the
same storage overhead. Data loss for AE(1,-,-) is one order
more than RS(5,5), a code that uses the same storage overhead,
but the gap between both curves decreases when the number



TABLE IV: Redundancy schemes (examples for trivial replication cases not shown). AS: additional storage, SF: single failures

Cost RS(k,m) AE(α, s, p) n-way replication RS(10,4) RS(8,2) RS(5,5) RS(4,12) AE(1,-,-) AE(2,2,5) AE(3,2,5)
AS m

k
· 100% α · 100% (n− 1) · 100% 40% 25% 100% 300% 100% 200% 300%

SF k 2 1 10 8 5 4 2 2 2

TABLE V: AE: d-block d26 and p-blocks p21,26, p26,31,
p22,26, p26,35, p25,26, p26,32. Locations 3,12,47,56 are unavail-
able. Block d26 is repaired via RH strand’s p-blocks.

i j Type/Strand Location Available Repaired
26 26 d 56 FALSE TRUE
21 26 h 3 FALSE TRUE
26 31 h 47 FALSE FALSE
22 26 lh 12 FALSE FALSE
26 35 lh 28 TRUE FALSE
25 26 rh 91 TRUE FALSE
26 32 rh 39 TRUE FALSE
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Figure 12: Data blocks without redundancy.

of unavailable locations increases. In fact, the RS(5,5) curve
shows an interesting behavior of RS codes. When the disaster
size is relatively small (10%), data loss of RS(5,5) is equivalent
to 4-way replication. But the quality of RS declines with larger
disasters, i.e., with 30% of unavailable locations data loss of
RS(5,5) is equivalent to 3-way replication and with 50% of
unavailable locations RS(5,5) causes the same data loss as 2-
way replication. AE(2,2,5) excel at repairing blocks and the
storage requirement is equivalent to using 3-way replication.

2) Metric: Vulnerable Data: This metric represents the
total number of data blocks that are not protected by any
other redundant block after the repair process finishes data
recovering. It illustrates how the level of redundancy decays
when only minimal maintenance operations are done in the
system. Minimal maintenance happens when the decoder
repairs unavailable data blocks but make no attempts to repair
unavailable parities. However, some parities are repaired if
they are part of the same stripe of an unavailable data block.
A storage system can receive little maintenance under the
following common scenarios: data block repairs are given
priority, there is a lack of incentive to recover parities, missing
parities may be difficult to detect when repairs are triggered
by data block read failures. Minimal maintenance can pose a
threat to a big portion of the data in a storage system. Fig. 12
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Figure 13: What part of repairs are single failure repairs?

shows the high percentage of data blocks that remain without
redundancy after blocks repairs with RS codes. We observe
that RS(5,5) performs worse than AE(1,-,-) and leaves more
data without redundancy when failures affect more than 20%
of the locations. This result explains why in Fig. 11 the gap
between the data loss curves for both codes becomes closer in
large disaster scenarios. The RS(4,12) code is the only compa-
rable to the high protection provided by AE codes. Our results
are somehow related with the impact of combinatorial effects
and peer availability effects mentioned by other authors [40].
These two effects explain the factors that benefit erasure codes
and replication codes in p2p systems. Erasure codes take
benefit of the combinatorial effect, however, they are more
dependent of the availability of multiple locations. The authors
added that when the peer availability is low, replication can
be better than erasure codes. Alpha entanglements are less
affected by the peer availability effect since only two blocks
are used for repairs but they profit from the combinatorial
effect as illustrated in Fig. 2.

3) Metric: The Cost of Single Failures: In (k,m)-codes,
repairing single failures (SF) is expensive. SF require k times
bandwidth overhead and I/O operations at k locations. Alpha
entanglement codes handle single failures with a radically
different approach. SF are repaired with a fixed “k=2” (two
parity blocks) for any code setting. However, repairing the
full system may require several rounds. Fig. 13 shows the
percentage of data blocks that required SF repairs. For AE
codes, we computed the proportion between all single failures
solved at the first round and the total data loss repaired in
the system. For reference, we compute the same proportion
(without considering rounds) for RS(4,12), which is the code
with highest locality among our selected RS codes and supe-
rior than other locally repairable codes like the HDFS-Xorbas
implementation [14]. For RS codes, the repair efficiency is
very bad for small disasters. It improves for larger disasters
because the number of single failures decreases.



TABLE VI: AE codes: Number of repair rounds.

Code 10% 20% 30% 40% 50%
AE(1,-,-) 6 7 9 10 10
AE(2,2,5) 3 6 9 17 30
AE(3,2,5) 3 4 7 10 15

4) Metric: Code Performance: At each round, our AE
decoder computes 1 XOR between two available blocks for
any data and parity blocks that is repaired. When data blocks
cannot be repaired at the first round, the decode will do it at the
second round if other required data or parity block becomes
available. Fig. 13 shows that most data are repaired at the
first round. The amount of blocks that is repaired per round
decreases abruptly, normally the last round repairs only 1-2
blocks. The number of rounds that were needed to repair all
data blocks are summarized in Table VI.

VI. RELATED WORK

Data Entanglement in Censorship Resistant Systems. The
main spirit is the creation of a legal conundrum with the hope
that a censor will not delete documents if a vast number of
legal documents must be deleted to permanently delete an
illegal document. If the system creates strong dependencies
among the files, data loss can be recovered by exploiting
the relationships between files. The idea was explored in
Tangler [25], Dagster [26], STEP-archival [41] and Entangled
Cloud [42]. Aspnes et al. studied the theoretical aspects [23].
Data Entanglement to Reduce Storage. Friendstore [28]
is a cooperative backup system. Its redundancy scheme is
called xor(1,2). It provides simultaneously redundancy for files
owned by different users. It only encodes data when disk space
is limited. The novelty was to trade-off bandwidth for storage.
RAID. Disks arrays are organized in diverse ways: mirror-
ing, RAID level 5 [1], [43], RAID level 6 [44], [45], two-
dimensional RAID arrays [46], [47]. Single-entanglements are
close to SSpiral codes [48], [49]. Row-Diagonal Parity, also
known as RAID-DP, protects data against double disk fail-
ures [50]. Researchers explored RAID at a petabyte scale [51].
Other Relevant Codes. Parallel concatenated convolutional
codes [52] and staircase codes [53] have some similarities
with our work. Pyramid codes [54] combine local and global
parities to increase read efficiency during failures. RESAR
uses a virtual layer to survive double-failures with low storage
overhead and efficient updates [8]. LDPC codes [55], [56] and
regeneration codes [57] have valued properties for efficient
repair but they are not widely understood by the system
community and require complex parameterization [58], [59].

VII. CONCLUSION

Alpha entanglement codes are practical and flexible erasure
codes designed to increase the reliability and integrity of a
storage system, primarily for archiving data in unreliable envi-
ronments. These mechanisms, based on the novel redundancy
propagation, are not only very robust and sound, but they
are also efficient and easily implementable in real systems.
The encoder and decoder are lightweight—essentially based

on exclusive-or operations—and offer promising trade-offs be-
tween security, resource usage and performance. We describe
use cases for distributed and centralised storage systems.

The current research trend is to reduce to the maximum
possible the storage overhead while improving the efficiency of
repairs. While reducing storage costs satisfies industry needs,
other problems are neglected. If we consider the potential
savings on maintenance cost, AE codes make sense in a wide
variety of scenarios whether they are decentralised or not.
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J.-F. Pâris, “RESAR: Reliable storage at exabyte scale,” in Proceedings
of the 24th IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS
2016), Sep. 2016.

[9] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed storage
systems.” in OSDI, 2010, pp. 61–74.

[10] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang et al., “f4: Facebook’s warm blob
storage system,” in 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), 2014, pp. 383–398.

[11] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
IEEE Transactions on Information Theory, vol. 60, no. 10, pp. 5843–
5855, 2014.

[12] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang, “Rethinking
erasure codes for cloud file systems: minimizing i/o for recovery and
degraded reads.” in FAST, 2012, p. 20.

[13] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure coding in windows azure storage,” in Presented
as part of the 2012 USENIX Annual Technical Conference (USENIX
ATC 12), 2012, pp. 15–26.



[14] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “Xoring elephants: Novel erasure
codes for big data,” in Proceedings of the 39th international conference
on Very Large Data Bases, vol. 6, no. 5. VLDB Endowment, 2013.

[15] V. E. Galinanes and P. Felber, “Helical entanglement codes: An efficient
approach for designing robust distributed storage systems,” in Sympo-
sium on Self-Stabilizing Systems. Springer, 2013, pp. 32–44.
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