
Monitoring and Workload
Characterization in the IPFS

Network

Master Semester Project

Simon Jacob

June 9, 2023

Supervisors: Dr. Vero Estrada-Galiñanes, Pasindu Nivanthaka Tennage,
Advisor: Prof. Dr. Bryan Ford

DEDIS Lab, EPFL

Acknowledgments

This semester project would not have been possible without the help of my
supervisors, Dr. Vero Estrada-Galiñanes and Pasindu Tennage. Specifically,
I want to thank Vero for shaping the general direction of the project and
Pasindu for contributing with his input on statistical methods.

I would also like to thank Prof. Dr. Bryan Ford for supervising this semester
project.

Finally, I would like to acknowledge the help of Leo Balduf, who is the
original creator of some tools used in this work and professionally answered
many questions about their usage.

i

Contents

Contents ii

1 Introduction 1
1.1 Internet Regulations and Online Censorship 2
1.2 Roadmap . 2

2 Background and Related Work 4
2.1 IPFS . 4

2.1.1 CIDs . 5
2.1.2 Peers and Providers . 6
2.1.3 IPNS . 7
2.1.4 Gateways . 8
2.1.5 DHT . 9
2.1.6 BitSwap . 9
2.1.7 Comparison between DHT and BitSwap 9

2.2 Wikipedia on IPFS . 9
2.3 Related Work . 11

3 Analysis of a Public Gateway Dataset 14
3.1 Overview . 14

3.1.1 Third-Party Websites using the IPFS Gateway 15
3.2 Grouping Related Requests . 16
3.3 Conclusion . 17

4 Measuring Wikipedia on IPFS 20
4.1 Overview . 20

4.1.1 Experiment Setup . 20
4.2 Results . 21
4.3 Conclusion . 23

5 Monitoring Data Requests with BitSwap 26

ii

Contents

5.1 Overview . 26
5.1.1 Anatomy of a JSON BitSwap Message 26
5.1.2 Explanation of Tools . 27
5.1.3 Results . 30
5.1.4 Conclusion . 31

6 Conclusion 32
6.1 Future Work . 32

Bibliography 34

iii

Chapter 1

Introduction

Decentralized networks offer the promise of a more resilient and egalitarian
landscape for data storage and content distribution. They enhance security
and redundancy by dispersing data across multiple nodes, and empower
users by eliminating reliance on centralized authorities. In an era charac-
terized by growing data privacy concerns, the vulnerability of centralized
networks to outages has become increasingly apparent. In this context,
understanding and enhancing decentralized networks like IPFS becomes
critical.

A key player driving this transformation is the InterPlanetary File System
(IPFS), an innovative protocol and network forging the way towards a decen-
tralized future.

This work aims to contribute to the ongoing discourse surrounding IPFS and
its role in shaping the future of decentral networks by making the following
concrete contributions:

1. Provides an analysis of a publicly available dataset, offering new in-
sights into the practical applications of IPFS (chapter 3), which can help
identify potential improvements.

2. Presents a method for measuring the level of decentralization and the
availability of resources of an important project that is using IPFS,
Wikipedia on IPFS (chapter 4). This helps us assert and measure the
independence and robustness of this project.

3. Repeats the data collection and evaluation based on a previously pub-
lished data request monitoring setup (chapter 5) from two years ago.
Having current results is important, as IPFS is constantly evolving.
For this part, we also make code modifications to the original setup
available to make future work easier.

1

1.1. Internet Regulations and Online Censorship

We also make the entire source code (mostly Python) that we wrote through-
out this work available, together with some additional results1.

1.1 Internet Regulations and Online Censorship

While internet regulations have always been crucial in curbing access to
illegal or illegitimate content, the rise of recent technologies increases the
risk of excessive internet censorship, threatening the freedom of information.
A particularly concerning aspect is that these systems are often deployed
without public transparency [1].

Even the open accessibility of Wikipedia, an important project for accessing
free knowledge all over the world, cannot be taken for granted as most of its
control is placed in the hands of a few, who oversee the domain name, the
database, and the front-end. A 2017 study found evidence of unexplained,
sudden changes in article access rates in 15 countries, suggesting the influence
of authoritarian governments on knowledge accessibility [2].

Moreover, access to Wikipedia appears to be influenced by government
entities even within Western democracies. A study conducted after the June
2013 NSA/PRISM surveillance revelations noted a decline in the traffic of
Wikipedia articles on privacy-sensitive topics. This decline suggests the
chilling effect of government surveillance, impacting the public’s willingness
to access certain information, despite its technical availability [3].

In contrast to the normal internet, as a decentralized system, IPFS inherently
resists censorship through its P2P architecture. If a single peer is taken
down or blocked, the shared content remains available on the network as
long as at least one peer provides it. With these circumstances in mind,
exploring potential solutions, such as decentralized networks, becomes even
more crucial in the ongoing fight for information freedom. This reinforces
the significance of our research on IPFS, as it offers a potential solution to
counteract the increasing trend of information control by centralized entities.

1.2 Roadmap

Chapter 2 outlines the motivation for this research, and provides an overview
of IPFS’s key concepts and more technical aspects necessary to understand
the subsequent chapters of this report.

Chapter 3 dives into a detailed analysis of a publicly available gateway
dataset published in a previous paper, shedding new light on the practical
applications and real-world use-cases of IPFS.

1https://github.com/dedis/student_23_ipfs_workload_analysis

2

https://github.com/dedis/student_23_ipfs_workload_analysis

1.2. Roadmap

Chapter 4 zooms in on an important project that is using IPFS, namely
Wikipedia on IPFS [4]. Here we propose and apply a method to measure the
level of decentralization and to assess the availability of Wikipedia articles
on IPFS by querying the DHT, a table that has a mapping between content
and nodes storing the content.

Finally, chapter 5 details our efforts to reproduce results from a data request
monitoring setup, originally published in a paper two years ago [5]. To
achieve this, we collect and analyze messages from the BitSwap protocol, a
crucial component for data transfer in IPFS.

Chapter 6 concludes this work by giving a short summary of the key findings
and sketching ideas for future work.

3

Chapter 2

Background and Related Work

This chapter gives an overview of relevant implementation and usage details
of IPFS that are important to keep in mind while reading this work and the
related code. For further information, we refer to the official documentation1

or documentation from the IPFS community2. It also introduces the Wikipedia
on IPFS project here and summarizes previous work related to our project.

2.1 IPFS

The IPFS (InterPlanetary File System) network3 is a peer-to-peer (P2P) dis-
tributed file system created in 2014 [6]. Its key features include tamper-
resistance due to content-based addressing of files, no single point of failure
due to decentralization and improved resilience against censorship due to
its P2P network structure, allowing content to persist across multiple nodes
even if some are taken offline or blocked. In addition, it strives to optimize
bandwidth, a resource that is critical in the current age of data.

Moreover, the architecture of IPFS inherently ensures data persistence. Even
if the original provider of the data goes offline, the data will continue to be
accessible on the network as long as any other node has the content stored
or cached, creating a robust system that is resistant to network failures.

The company behind IPFS, Protocol Labs4, is actively developing the project
and creating various services around it.

Several projects already make use of IPFS5. A notable example that we will
explore in more detail in chapter 4 is the Wikipedia on IPFS project, which

1https://docs.ipfs.tech/concepts/
2For example, https://dweb-primer.ipfs.io/
3https://ipfs.tech/
4https://protocol.ai/
5A list is available here: https://ecosystem.ipfs.tech/

4

https://docs.ipfs.tech/concepts/
https://dweb-primer.ipfs.io/
https://ipfs.tech/
https://protocol.ai/
https://ecosystem.ipfs.tech/

2.1. IPFS

seeks to provide an uncensorable version of Wikipedia6.

While IPFS markets itself as a file system, it is typically not used like a
traditional file system where files (e.g. a text document) are often changed
and overwritten. Instead, it is mainly used to store and share files that are
not expected to be changed frequently, as any changes to a file will generate
a new unique hash, thereby treating it as a different file entirely.

There are several clients available to interact with the IPFS network, the most
popular one being Kubo, a Go-based implementation that we also use for our
work 7.

2.1.1 CIDs

Unlike traditional file systems, IPFS uses content-based addressing instead of
location-based addressing. Content is addressed based on the content itself,
not the location of it. For each uploaded file, IPFS creates a so called CID
(Content IDentifier), a cryptographic hash based on the content of the file.
CIDs have two important properties:

1. Any difference in the content results in a different CID.

2. If two users upload the exact same content, the corresponding generated
CID will also be the same.

Note that CIDs come in two different versions:

1. The old version (CIDv0) is a base58-encoded hash, and easily recogniz-
able as a string of length 46 starting with ”Qm”.

2. The new version (CIDv1) is more flexible and can many different
encodings, although the default is a base32 encoding. CIDs created
with the new version tend to be a bit longer and always start with ”ba”.

The ipfs toolkit has a built-in command to convert from v0 to v1: ipfs cid

format -v 1 -b base32 <CID v0>

CID types

In IPFS, files and directories are handled in a unique way to optimize de-
centralized data storage and retrieval. When a directory is uploaded to
IPFS, it is represented as a special object with links to the contents of the
directory. Each of these links have a unique CID, that corresponds to a file or
subdirectory within the uploaded directory. When a larger file is uploaded
to IPFS, it is automatically split up into smaller chunks (the default chunk
size is 256KB, but can be changed) and unique CIDs are generated for each

6https://blog.ipfs.tech/24-uncensorable-wikipedia/
7https://docs.ipfs.tech/install/command-line/

5

https://blog.ipfs.tech/24-uncensorable-wikipedia/
https://docs.ipfs.tech/install/command-line/

2.1. IPFS

chunk. Similar to a directory, a large file is represented by an object with
links to these chunks. The chunks together then can be used to reassemble
the original file.

A CID can therefore correspond to any of the following:

• A single file or chunk of a file.

• A directory, represented by an object with links to the CIDs of these
parts.

• A file, split up into smaller parts, represented by an object with links to
the CIDs of these parts.

Similar to the CID of a file, the CID of a directory changes when a file in it is
changed, or if a file is added/removed.

To gain information about the type of CID and its size, the following com-
mand can be used: ipfs files stat /ipfs/<CID>.

There is also a special type of directory, called a HAMT sharded directory,
which is optimized for fast indexing of large directories. However, it seems
that this type of directory is only used for the Wikipedia on IPFS Project 8

Finally, to download a CID use ipfs get CID.

2.1.2 Peers and Providers

A peer is simply put a user running an IPFS node and therefore participating
in the network. When a peer initially connects to the network, he trusts
a few initial nodes known as ”bootstrap” nodes to connect to other peers.
The list of these bootstrap nodes can be inspected with the command ipfs

bootstrap list and it is possible to modify this list 9. Once the user is
connected to the network, the command ipfs swarm peers returns a list of
peers that are directly connected to the user.

If a peer has some CID stored and announces this to the network, he becomes
a provider for this CID. Note that a peer might be a provider for a directory
without being a provider for the contents of the directory. In this case, the
peer would simply provide the object representing the directory, but not the
contents of the directory itself.

Each peer is associated with a unique cryptographic hash called the PeerID.
Similar to the CID hash, the PeerID hash seems to be available in different
versions:

8https://ipfs-search.readthedocs.io/en/latest/ipfs_datatypes.html
9https://docs.ipfs.tech/how-to/modify-bootstrap-list/

6

https://ipfs-search.readthedocs.io/en/latest/ipfs_datatypes.html
https://docs.ipfs.tech/how-to/modify-bootstrap-list/

2.1. IPFS

1. A base58-encoded hash, starting with ”Qm” and total length of 46.
Careful: these PeerIDs can easily be confused with CIDs encoded with
CIDv0, as they look exactly the same.

2. A string starting with ”12D3” of length 52. This is the most common
format and probably also the new default.

Some useful commands that we used for our work:

• To find providers for a CID, the following command can be used ipfs

dht findprovs <CID>.

• To find more information about a specific peer, such as the IP address
and the protocols this peer supports, the following command can be
used ipfs dht findpeer <PeerID>. Note that this command can fail
sometimes (e.g. with Error: routing: not found) because peers
can be behind a firewall or unreachable for other reasons. In chapter 4,
we simply call such a peer unreachable.

• The command ipfs id <PeerID> returns additional information, such
as the client software the peer uses.

• The command ipfs swarm connect /ip4/<IP ADDRESS>/tcp/4001/p2p/<PeerID>

directly connects to a specific peer. Note that the connected peers
change constantly, due to churn (peers joining and leaving the net-
work), or, when requesting content, a connection to the corresponding
providers is build.

• The command ipfs config Identity.PeerID returns the peerID of
the current IPFS node.

With default network settings, i.e. Network Address Translation (NAT)
enabled and without forwarding any ports, a peer on IPFS is generally
connected to a few hundred peers at most, as evidenced in previous work[7].
This number can be massively increased up to 25,000-30,000 simultaneously
connected peers10 by exposing the machine to the internet, e.g. by disabling
NAT or by forwarding the port on which the peer announces itself to the
network (usually 4001). However, extra care must be taken, as exposing
a machine to the public internet leads to increased security risks. For a
tutorial on how an optimal configuration looks like, we refer to the official
documentation11.

2.1.3 IPNS

IPNS (InterPlanetary Name System) is a naming system that allows the map-
ping of human readable addresses to CIDs in IPFS. We only make use of this

10https://grafana.monitoring.ipfs.trudi.group/d/E0amoF3nk/

ipfs-realtime-monitoring
11https://docs.ipfs.tech/how-to/nat-configuration

7

https://grafana.monitoring.ipfs.trudi.group/d/E0amoF3nk/ipfs-realtime-monitoring
https://grafana.monitoring.ipfs.trudi.group/d/E0amoF3nk/ipfs-realtime-monitoring
https://docs.ipfs.tech/how-to/nat-configuration

2.1. IPFS

feature in 4 to get the CID belonging to a Wikipedia article. Here is a simple
example of how we use IPNS to resolve a Wikipedia URL to the correspond-
ing CID: ipfs resolve -r /ipns/en.wikipedia-on-ipfs.org/wiki/Book

2.1.4 Gateways

A gateway in IPFS provides access to content on the IPFS network through
traditional HTTP protocols, serving as a bridge between the traditional web
and the IPFS network. A basic gateway consists of two parts: A web server
(e.g. nginx) and an IPFS node. Note that these components may run on
different machines, i.e. the gateway web server and the associated IPFS peer
can have different IP addresses.

There are public gateways that are accessible to anyone on the internet and
private gateways, which can be configured to only accept requests from a
specific group of users or to retrieve a specified set of CIDs.

Protocol Labs maintains a list of available public gateways12.

Most public gateways implement some form of content blocking to prevent
misuse and legal issues. There are publicly available denylists available13 that
contain CIDs associated with potentially harmful or illegal content. This may
include copyright-infringing material, content subject to DMCA takedowns,
malware/phishing, or defamatory content.

Gateways can be used directly (e.g. by going to https://{gateway URL}/ipfs/{CID}/{optional
path to resource} in any modern browser) or indirectly, by browsing a
web site that loads content from the gateway (e.g. via an HTML tag <img

src=https://{gateway URL}/ipfs/{CID}/{optional path to resource} />).

Caching

Due to the immutable nature of content on IPFS (changes to a file result in a
new CID), gateways often have a large web server cache. One of the largest
IPFS gateway operators, Cloudflare, has claimed14 to achieve a cache hit ratio
of 97%, meaning that only 3% of all requests to the gateway are actually
forwarded to the IPFS network.

Caching in the web server of a gateway has one other key benefit besides
improving performance: If all providers for a specific CID are offline at
some point, the CID might still be available in the cache of a web server and
hence can still be served to users. This further enhances the robustness and
availability of content on the IPFS network.

12https://ipfs.github.io/public-gateway-checker/
13https://github.com/ipfs/infra/blob/master/ipfs/gateway/denylist.conf
14In a keynote at the DI2F workshop at IFIP Networking 2021.

8

https://ipfs.github.io/public-gateway-checker/
https://github.com/ipfs/infra/blob/master/ipfs/gateway/denylist.conf

2.2. Wikipedia on IPFS

2.1.5 DHT

At its core, IPFS is a DHT (Distributed Hash Table), a huge table that maps
content to the corresponding providers. This hash table is distributed, i.e.
no single peer has the entire table, but each peer has a subset of the table
stored as well as information on which peers have other subsets stored. The
process of uploading a file in IPFS can be thought of as creating a new entry
in the DHT that maps the CID of the file to the PeerID of the uploader. IPFS
uses a specific type of DHT known as Kademlia DHT [8], which has some
optimizations for network efficiency and speed.

2.1.6 BitSwap

BitSwap is a message-based protocol in IPFS, and plays an essential role in
exchanging (”swapping”) data blocks with other peers in the network. If
a user requests a CID, he communicates via so-called ”want-lists” to the
directly connected peers what CID he wants. The process goes through the
following steps, also displayed in 2.1:

• User sends ”want-have” containing the CID to all connected peers.

• Connected peers reply either with ”have” or ”dont-have”.

• User sends ”want-block” to the peers that responded with ”have” in
the previous step. If none of the connected peers replied with ”have”,
BitSwap queries the DHT to find providers of the CID and connect with
them (in an endless loop until a provider is found).

• Peers finally respond with the requested data.

2.1.7 Comparison between DHT and BitSwap

Table 2.1 summarizes the key differences between DHT and BitSwap.

Figure 2.1 shows the entire process that a peer goes through when attempting
to fetch content from the IPFS network.

2.2 Wikipedia on IPFS

As mentioned in the introduction, the influence of governmental entities
on information access underscores the need for a decentralized solution to
ensure the ongoing availability of free information.

Wikipedia on IPFS15 aims to preserve the accessibility of blocked articles
through by storing them decentral on IPFS. The Wikipedia on IPFS project,
therefore, presents substantial advantages over traditional Wikipedia, offering

15https://github.com/ipfs/distributed-wikipedia-mirror/

9

https://github.com/ipfs/distributed-wikipedia-mirror/

2.2. Wikipedia on IPFS

DHT BitSwap
Purpose Data structure used for stor-

ing and locating stored data,
acts as a lookup service in
IPFS to find providers for
CIDs

Protocol used for exchanging
blocks of data in IPFS

Data collection Active, to gather data we
make requests to the IPFS net-
work to locate data storage lo-
cations

Mostly passive, runs in the
background and collects re-
quests from other peers

Part of the Network Considers the entire network
for providers

Primarily interacts with the
directly connected peers for
data exchange, but can reach
out to other peers during a
content request if the directly
connected ones do not have
the requested data

What we measure - Decentralization
- Redundancy
- Content availability

- CID popularity
- Peer activity
- Other things [5]

Table 2.1: Comparison between DHT and BitSwap in IPFS.

Language Language Code Snapshot Date
English en 09.03.2021
Turkish tr 19.02.2021
Myanmar / Burmese my 22.02.2021
Arabic ar 26.03.2021
Chinese zh 16.03.2021
Ukrainian uk 09.03.2022
Russian ru 12.03.2022
Farsi / Persian fa 18.08.2021

Table 2.2: The 8 different languages currently available in Wikipedia on IPFS together with their
snapshot version.

a more robust mechanism for supporting Wikipedia’s mission of providing
universal access to information.

Wikipedia on IPFS is based on snapshots available as ZIM archives16, an open
format used to store compressed versions of Wikipedia. It is also possible to
view Wikipedia offline with a appropriate software.

Wikipedia on IPFS is currently available for 8 different languages, as shown

16https://wiki.openzim.org/wiki/OpenZIM

10

https://wiki.openzim.org/wiki/OpenZIM

2.3. Related Work

Figure 2.1: The entire process of content retrieval in IPFS, adapted from [5].

in table 2.2.

Some of these languages were added to the project in response to current
world events, e.g. the Turkish Wikipedia was added after the Turkish gov-
ernment issued a court order in April 201717, permanently restricting access
citizen’s access to Wikipedia.

2.3 Related Work

The creators of IPFS have analyzed various aspects of IPFS and have pub-
lished three public datasets in a SIGCOMM paper [9]:

1. Peer Data18: A SQL database containing information about peers that
are engaged in the DHT and their connection behaviour. We looked into
the data, but couldn’t find any use for this beyond what was already
published in the paper. For those interested, we provide the detailed
database structure in our code repository.

2. IPFS Gateway Usage Data19: A nginx log file from a single day of
the web server behind the public gateway https:ipfs.io/. It contains
about 7 million requests. As gateways are responsible for a large portion
of IPFS traffic, this is definitely the most interesting dataset out of these
three and we use it in chapter 3.

17https://turkeyblocks.org/2017/04/29/wikipedia-blocked-turkey/
18Available on IPFS as bafybeigkawbwjxa325rhul5vodzxb5uof73neszqe6477nilzziw5k5oj4
19Available on IPFS as bafybeiftyvcar3vh7zua3xakxkb2h5ppo4giu5f3rkpsqgcfh7n7axxnsa

11

https:ipfs.io/
https://turkeyblocks.org/2017/04/29/wikipedia-blocked-turkey/

2.3. Related Work

3. Performance Data20: A dataset containing data from performance
experiments related to the DHT lookup. While it might be interesting
to repeat this experiment with different parameters (e.g. different CID
sizes instead of always 0.5MB), there probably isn’t anything to learn
beyond what was published already.

While the paper contains a lot of information overall, it falls a bit short on
the detailed analysis of the public gateway.

A student in the 2022-2023 academic year further analysed the public gateway
dataset, providing more details than were published in the original paper [7].
However, the focus of her work lies on the entire dataset as a whole. Our
work aims to give new insights by focusing more on individual parts of the
dataset and finding patterns between related request. Another part of this
project was a performance analysis of an idle and empty IPFS and an idle
and empty Swarm node. In our work, we do not analyze the performance of
IPFS nodes, but rather try to learn something from the IPFS network. Our
IPFS nodes were also empty, because we did not attempt to share content, but
not idle, as they were collecting data from IPFS either active (DHT, chapter 4)
or passive (BitSwap, chapter 5).

A paper published in 2021 [5] contains a detailed methodology and related
tools to monitor data requests on IPFS by collecting BitSwap messages21.
In our work, we try to reproduce these results. However, this task proved
more complex than merely downloading and running the tools: In the last
two years the authors of the code and the paper have moved from the old
setup to a new setup which is more robust, but instead focuses on collecting
metrics related to BitSwap, not on the actual content of the BitSwap messages.
Consequently, some tools were left behind and no longer suitable to use with
the new format. We made adjustments some to integrate the tools compatible
with the older setup into the new one.

Other work focuses on different P2P networks, such as BitTorrent [10]. The
comparison to BitTorrent can be useful because it is a widely used P2P system.
While IPFS and BitTorrent have many differences, one could, for instance,
draw parallels between the role of BitTorrent seeders and content providers in
IPFS. The main conclusions of the paper highlight that decentralization has
its trade-offs, and that incentives play an important role in ensuring content
availability on P2P platforms. The incentives in BitTorrent often come from
community rules, reputation systems, and ratios maintained on torrent sites,
so called trackers. In contrast, IPFS provides an optional incentive mechanism
through Filecoin [11], a cryptocurrency developed by the same organization

20Available on IPFS: bafybeid7ilj4k4rq27lg45nceq4akdpetav6bcujgiym6vch5ml24tk2t4
21The tools are available here https://github.com/trudi-group/ipfs-tools and https:

//github.com/trudi-group/ipfs-metric-exporter

12

https://github.com/trudi-group/ipfs-tools
https://github.com/trudi-group/ipfs-metric-exporter
https://github.com/trudi-group/ipfs-metric-exporter

2.3. Related Work

as IPFS, where users can pay storage providers to ensure the persistence of
content.

13

Chapter 3

Analysis of a Public Gateway Dataset

Protocol Labs published a nginx log file1 from the web server running the
official gateway2 and provided a very basic analysis [9].

Other previous work [7] already analyzed the dataset in more detail. Our
analysis focused on requests originating from third-party websites, as these
were insufficiently explored or inadequately detailed in previous work.

3.1 Overview

The log file contains data collected over approximately a single day on January
2nd, 2021. After filtering out irrelevant entries and requests unrelated to
IPFS, the log provides information on nearly 7 million requests.

The nginx log file has 15 columns:

1. Encrypted IP address of the client: This column is not useful, because
the encryption is salted, i.e. even if the same IP address appears twice,
the encrypted IP address will be different. We will remove this column

2. Timestamp of the request (on the web server).

3. HTTP request information (method path, version): We kept only GET

requests.

4. HTTP response status code: A 2xx status code indicates success, while
a 4xx or 5xx status code indicates failure.

5. Bytes returned (body bytes sent).

6. Request length (in bytes).

7. Request time (in seconds).
1https://docs.nginx.com/nginx/admin-guide/monitoring/logging/
2https://ipfs.io/ipfs/

14

https://docs.nginx.com/nginx/admin-guide/monitoring/logging/
https://ipfs.io/ipfs/

3.1. Overview

8. Upstream response time (in seconds).

9. Upstream header time (in seconds).

10. Cache hit/miss: This is either ”HIT”, ”MISS”, or ”EXPIRED”, indicating
that this entry used to be in the cache some time ago, but no longer is.

11. HTTP referrer: This column indicates if the request is coming from a
third-party website or if it is made directly.

12. User agent: The software and version the client used. For our analysis,
we assume that each user agent corresponds to a unique user. However,
in reality it is highly likely that multiple different user have the same
user agent.

13. Server name: Can contain the CID.

14. HTTP host: Can contain the CID.

15. HTTP schema: Either http or https.

As previous work has explained, and mentioned in the list above, the relevant
CID may appear in one of three columns [7]:

• As part of the HTTP request information (GET ...).

• As part of the server name.

• As part of the HTTP host.

However, for our purpose, we treated these equally. We filtered out any rows
that did not contain any CID.

3.1.1 Third-Party Websites using the IPFS Gateway

We partitioned the dataset into two categories: requests generated directly
and those emanating from third-party websites. We focused our analysis
solely on the latter. Figure 3.1 shows that this is approximately a half-half
split.

We conducted a three-step manual investigation to classify the nature of the
top 100 websites:

1. 1. Check https://www.similarweb.com/.

2. 2. If no clear description is found in the previous step, use a popular
search engine to find information about the website.

3. 3. If no clear description is found in the previous step, visit the website.

We found that some NFT platforms were no longer accessible3.

3For example https://emoon.space/, which closed after a security incident

15

https://www.similarweb.com/
https://emoon.space/

3.2. Grouping Related Requests

Figure 3.1: Approximately half of the requests are coming from third-party websites, the other
half are generated directly.

Figure 3.2 shows the results of this manual investigation. Among the seven
websites related to movie streaming, the most popular one is a Chinese movie
streaming site, nunuyy.top, which alone accounts for 60% of all requests
originating from third-party websites.

3.2 Grouping Related Requests

We can group requests together that we believe to be related in the sense
that they together access a bigger resource, such as a movie or a folder with
images. To detect these grouped requests, we only consider data for a single
website, and then sort the dataset by user agent. We then use the following
criteria to group related requests together:

• The user agent is the same.

• The requested CID is the same. Note: In this context, a CID can either
be a larger file or a folder that is divided into multiple resources, each
with associated requests.

• The HTTP referrer is the same.

For this report, we only apply this strategy to the most popular website in
the dataset according to the number of requests, nunuyy.top. However, our
approach can be generally applied and extended to other websites as well.

Figure 3.3 shows for how long users generate streams of requests. In most
cases it is rather short, indicating that users rarely watch a movie for the

16

nunuyy.top
nunuyy.top

3.3. Conclusion

Figure 3.2: Classification of the types of websites that use the IPFS Gateway in their website
source code.

entire duration.

Figure 3.4 shows the cache hit ratio of the grouped requests. The U-shaped
distribution indicates that the gateway cache does not proactively preload
content into the cache, but rather only caches what it has served before. These
results show that the gateway cache hit ratio can be decently improved by
detecting these request patterns and prefetching content when such a pattern
is detected. As shown in previous work [9], cache misses negatively effect
the latency by up to four seconds.

3.3 Conclusion

When it comes to the classification of third party websites using IPFS, our
findings align with those of previous work [9], but give a much clearer view
on the distribution of the websites. By focusing on requests coming from a
single website and grouping related requests together, we discovered new
patterns in user behavior on this website. We have also found a potential
improvement to increase the cache hit ratio on the web server which works
by detecting request patterns and predicting the next requests. To verify that
this would indeed improve the cache hit ratio, this strategy would need to be
implemented and evaluated on a gateway for verification.

17

3.3. Conclusion

Figure 3.3: Most users only watch movies for shorter amounts of time. The vast majority of
users spend fewer than 200 minutes watching a movie. Some users also spend a much longer time
on a movie website, this happens most likely due to the users pausing a movie and continuing
several hours later.

18

3.3. Conclusion

Figure 3.4: The cache hit ratio for this website exhibits a U-shaped distribution.

19

Chapter 4

Measuring Wikipedia on IPFS

In this chapter, we present our approach to measure Wikipedia on IPFS 1 and
evaluate its current state as a decentralized project. We have also come up
with possible explanations for the results.

4.1 Overview

4.1.1 Experiment Setup

Hardware and Software details

We ran the scripts described in this chapter on a server equipped with an
Intel(R) Xeon(R) Silver 4216 CPU. We used a virtual machine with 4 vCPUs
and 16 GB RAM running Debian 10. We used the go-ipfs client2 version
0.20.0 with default configuration.

Strategy

We started the experiment on 09.05.2023 in the evening and kept it running
for approximately one month until 09.06.2023. In total, we repeated the main
loop approximately 680 times for each language3

The whole process is divided into three phases, the first and last of which
only need to be executed once:

1. Preparation: The preparation phase consists of two steps. For each
language:

1https://github.com/ipfs/distributed-wikipedia-mirror/
2https://docs.ipfs.tech/install/command-line/
3This is only an approximation, because we sometimes had to repeat the loop due to the

IPFS daemon crashing.

20

https://github.com/ipfs/distributed-wikipedia-mirror/
https://docs.ipfs.tech/install/command-line/

4.2. Results

a) Scrape URLs using recursion with a depth of one level on the
Wikipedia main page. We did this to reduce the total size of
articles, as processing millions of articles is infeasible. Even then,
for performance reasons we further had to reduce the set of URLs
by uniformly sampling a random set of URLs, based on the total
size of this set, see next step.

b) Convert URLs to CIDs using IPNS, as mentioned in the introduc-
tion. We only kept URLs that successfully resolve to a CID. This
unfortunately seems to be a limitation of IPNS, and is especially
likely to happen if obscure characters appear in the URL. Figure
4.1 shows how many articles we were sampling from in the end.

2. Main loop: The main loop consists of four steps. For better perfor-
mance, the main loop is highly parallelized. For each language:

a) Randomly sample 2.5% of articles (together with the correspond-
ing CID).

b) Check if the article is available on the website by requesting it and
examining the HTML response.

c) Run the command ipfs dht findprovs <CID> to find providers.

d) Check if providers are reachable using the command ipfs dht

findpeer <PeerID>. We consider providers unreachable if this
command is unsuccessful.

e) Check if the ipfs daemon has crashed as this has indeed happened
occasionally. In that case, rerun the previous steps.

We also built in some failure tolerance: if ipfs dht findprovs <CID>

fails to produce a reasonable output, we give it another try. If the article
website is not reachable on the website, we also retry once. Similarly,
if ipfs dht findpeer <PeerID> fails, we allow up to two additional
retries.

3. Post processing: For each language, we remove unreachable providers
from the list of providers.

4.2 Results

To analyze the data, we skipped files that didn’t have any providers for any
article. We know that the IPFS daemon process crashed occasionally, which
could be one reason for the existence of these files. However, the existence of
these files in cases where the daemon didn’t crash indicates that there may
be other factors at play. We suspect some other issue with our client setup,
as results with zero providers do not match with the rest of our results.

21

4.2. Results

Figure 4.1: The number of articles we were sampling from. A script that recursively collected
links from the main pages and one level below it found these articles. Then, we filtered out
articles that couldn’t resolve to a CID with IPNS. We also tried to compute the coverage to
compare these numbers with the current Wikipedia, however that wasn’t quite possible as the
Wikipedia website contains links to articles that don’t exist in the snapshot versions.

Figure 4.2 shows the number of unique peers that are contributing to the
Wikipedia on IPFS project, i.e. that have at least one article stored. We can
see that the English version of Wikipedia has the most contributing peers
with mostly between 16 and 18 in May, with a sudden decrease starting at
the end of May and continuing to decrease until the end of the experiment
with only 6 contributing peers. The situation is more concerning for other
languages at the end of the experiment, as only one to four peers were still
contributing. The only possible explanation we could come up with is that
several providers for the English Wikipedia must have disconnected in quick
succession.

Figure 4.3 shows the article availability on IPFS, which is given by the expres-
sion number of available articles

total number of sampled articles
. Available articles are articles that have at

least one reachable provider. We can see that it usually fluctuates around
99%-100% with a notable drop near the end of May. For the English language,
the article availability drops down to 65%, the lowest that we have measured
in our experiment. Interestingly, this drop seems to happen at around around
the same time as the decrease in peers contributing to the English version,
indicating that several significant providers may have gone offline.. However,
unlike the number of contributing peers, the article availability ratio quickly
recovers again.

Similarly, figure 4.2 shows the article availability on the website, which is
again given by the expression number of available articles

total number of sampled articles
, however, this

22

4.3. Conclusion

Figure 4.2: The number of peers contributing to the Wikipedia on IPFS project for different
languages. To smooth out short-term fluctuations and highlight longer term trends, the values
for the y-axis are calculated with a moving average of size 10.

time we define available articles as articles that are accessible on the website.
The website maintains a very high article availability throughout the entire
experiment: between 99% and 100% of Wikipedia articles remain accessible at
any given time. This indicates that even if articles are not accessible through
IPFS, they are likely to remain available on the website. We strongly suspect
that this high availability is due to caching on the web server running the
gateway. Another possible explanation, since we removed unreachable peers,
is that a provider of an article might have been unreachable for our IPFS
client for whatever reason. It could still have been reachable for the IPFS
client sitting behind the gateway. We believe that these results are reasonable,
as when manually browsing the website, it only happens very occasionally
that an article is inaccessible. Nonetheless, we encountered such a scenario
multiple times and show an example screenshot of such an occurrence in
figure 4.5.

Most of the time, when an article was unavailable on the website, it was also
not available on IPFS. However, on rare occasions, some articles that were
available on IPFS, but not on the website. One of these cases comes from an
article where our script seems to have stored the URL in a wrong format. In
other cases we believe that a temporary overload on the web server serving
Wikipedia on IPFS is the most likely reason for that.

4.3 Conclusion

The Wikipedia on IPFS project can be considered somewhat decentralized
with several peers contributing, especially for the English language, as it had

23

4.3. Conclusion

Figure 4.3: The article availability on IPFS for different languages. To smooth out short-term
fluctuations and highlight longer term trends, the values for the y-axis are calculated with a
moving average of size 10.

Figure 4.4: The article availability on the website for different languages. To smooth out
short-term fluctuations and highlight longer term trends, the values for the y-axis are calculated
with a moving average of size 10.

24

4.3. Conclusion

Figure 4.5: An example screenshot showing what happens when a Wikipedia article is not
available on the Website. In this case, we manually verified that the article about the ”Blue
whale” became temporarily unavailable both on the website and on IPFS for a short period of
time

.

up to 18 providers. The trend at the end of the experiment is a bit concerning,
with only one or a few peers contributing for many languages and we have
decided to continue our measurement for some time after the report to
further analyze this trend. The new results will be available in our code
repository. Both the website and IPFS manage to achieve an article availability
of over 99% throughout the entire experiment, with a small exception in the
availability on IPFS. We also believe that the website’s gateway cache plays
a critical role in maintaining constant article availability by offsetting any
drops in IPFS availability through its cache storage. Overall, we think that
the project could achieve even higher article availability ratios for both IPFS
and the website if more peers contributed to it.

Some questions that remain:

• Would using a different sample strategy and/or different sample size
yield different results?

• How much redundancy is there, i.e., what is the average number of
peers that have stored an article?

• Similarly, how is the content distributed over the peers, i.e. do all peers
contribute equally or do some peers contribute more than others?

25

Chapter 5

Monitoring Data Requests with
BitSwap

In this chapter, we delve deeper into the BitSwap protocol, showing how
we collect and analyze data requests from the IPFS network. By monitoring
BitSwap messages, we can measure how often CIDs are requested and how
peers behave.

This entire chapter heavily draws upon tools and methodologies from previ-
ous work [5]. However, due to the outdated nature of some of these tools,
we made some necessary adaptations1.

5.1 Overview

When a peer requests a CID, they follow the process depicted in figure 2.1 in
the introduction.

5.1.1 Anatomy of a JSON BitSwap Message

Listing 5.1 presents a BitSwap message example received in JSON format.
Under normal circumstances, we expect to receive each BitSwap message
twice:

• First, as a WANT HAVE broadcast indicating that a peer wants a spe-
cific CID and asks the connected peers if they have this CID stored.
This is indicated both by the field "cancel": false and by the field
"priority" being larger than zero.

1Our adaptations used for this report are currently available as a branch
here: https://github.com/S-u-m-u-n/ipfs-tools and https://github.com/S-u-m-u-n/

ipfs-metric-exporter

26

https://github.com/S-u-m-u-n/ipfs-tools
https://github.com/S-u-m-u-n/ipfs-metric-exporter
https://github.com/S-u-m-u-n/ipfs-metric-exporter

5.1. Overview

• Second, as a CANCEL broadcast, indicating that the peer is no longer
interested in this specific CID. This may be due to one of two reasons:

1. The peer has successfully retrieved the CID

2. The peer has manually cancelled the request and is suddenly no
longer interested in the CID, e.g. a user pressing CTRL+C after
running ipfs get <CID>

However, it’s also possible to receive multiple WANT HAVE requests without
any CANCEL in between.

Although we can analyze this JSON format, we further process the received
data using a BitSwap unification tool for two reasons:

1. To match the related WANT HAVE and CANCEL BitSwap requests.

2. Since we are using two monitoring nodes, to mark received duplicates.
1 {
2 "timestamp": "2023 -05 -16 T10 :15:03.921388813Z",
3 "peer": "12D3Ko ****",
4 "bitswap_message": {
5 "wantlist_entries": [
6 {
7 "priority": 2147483284,
8 "cancel": false ,
9 "send_dont_have": false ,

10 "cid": {
11 "/": "bafkre ****"
12 },
13 "want_type": 1
14 }
15],
16 "full_wantlist": false ,
17 "blocks": [],
18 "block_presences": [],
19 "connected_addresses": [
20 "/ip4 /65.1**.**.***/ udp /4001/ quic -v1"
21]
22 }
23 }

Listing 5.1: Full example of a BitSwap message in JSON format.

5.1.2 Explanation of Tools

This subsection covers the crucial concepts for understanding the BitSwap
monitoring setup. However, for more details, we recommend exploring the
repositories as they both contain decent documentation.

We use two different code repositories:

1. ipfs-metric-exporter2: This repository mainly contains a modified
version of Kubo (the go-ipfs client) to collect and export some met-
rics. We refer to each instance of this modified Kubo as a monitoring
node, or simply monitor, throughout the remainder of this section. This

2https://github.com/trudi-group/ipfs-metric-exporter

27

https://github.com/trudi-group/ipfs-metric-exporter

5.1. Overview

repository also contains the Docker setup which runs the entire setup
(see below). One handy feature of this plugin: Instead of using ipfs

swarm peers on each monitor to get the peers connected to each moni-
tor, we can make use of the HTTP API endpoints and simply call curl
http://127.0.0.1:8432/metric plugin/v1/sample peer metadata on
the host machine running the docker setup (or :8433 for the second
monitor) to get a list of connected peers (and more detailed information
about these peers).

2. ipfs-tools3: This repository contains code for Docker images that are
required for the setup. It also includes additional tools, some of which
we use and explain in the following sections.

The setup to collect BitSwap messages includes the following components:

• An AMQP server, in this case RabbitMQ.

• At least one monitoring node connected to the IPFS network pushing
messages to the AMQP server (in our setup, we use two monitoring
nodes).

• A BitSwap monitoring client: a TCP server that connects to the AMQP
server and receives the BitSwap messages.

BitSwap monitoring (bitswap-monitoring-client)

The BitSwap monitoring client is essentially a TCP server that connects to
the AMQP server and collects the received messages.

It also (optionally) logs the messages to disk as compressed JSON (.json.gz).
Note that it logs both BitSwap messages and connection events; an example
of a connection event is provided in listing 5.2. Connection events can be
used to better understand BitSwap messages, for example because a peer
might disconnect due to some network error and reconnect immediately
later.

1 {
2 "timestamp": "2023 -06 -06 T13 :28:48.075007897Z",
3 "peer": "12D3Ko ****",
4 "connection_event": {
5 "remote": "/ip4 /65.1**.***.***/ udp /4001/ quic",
6 "connection_event_type": 0
7 }
8 }

Listing 5.2: Full example of a connection event in JSON format. The 0 indicates that this peer
connected to us, a 1 would indicate that he disconnected.

To get the number of requested CIDs in a .json.gz file, the following bash
command can be used:

3https://github.com/trudi-group/ipfs-tools

28

https://github.com/trudi-group/ipfs-tools

5.1. Overview

zcat 2023-06-05 23-55-24 UTC.json.gz |

jq ’select(.bitswap message.wantlist entries != null) |

.bitswap message.wantlist entries[] |

select(.cancel == false) |

.cid."/"’ | wc -l

Identifying Public Gateways (ipfs-gateway-finder)

This tool downloads a list of public gateways4 and creates a small CID with
filled with random bytes for each gateway. It then sends requests for these
CIDs via the gateways, checking for the appearance of any BitSwap messages
containing this CID. If such a message appears, we conclude that it must
be coming from the gateway, as it is extremely unlikely that any other peer
would request the random CID.

Unifying BitSwap traces (unify-bitswap-traces)

This tool takes BitSwap traces collected from multiple monitors and ’unifies’
them, meaning it identifies and labels duplicate entries. The tool also matches
WANT HAVE requests with their corresponding CANCEL request.

The resulting CSV has 17 columns:

1. monitor id: Which monitor received this BitSwap message.

2. matched to monitor id: For inter-monitor requests, the monitor that
received it first.

3. match time diff ms: For inter-monitor requests, the time difference
between the requests. In our case, this will usually be 0, because we
were running the monitors on the same machine.

4. global duplicate time diff ms: For inter-monitor requests, the same
as the column before. However, for intra-monitor duplicates, the time
difference between this request and the last one.

5. message id: A simple ID, starting from 1 and counting up. Unique for
each row.

6. message type: Usually set to 1, indicating a normal message5.

7. timestamp seconds: Timestamp when the message was received in
seconds.

8. timestamp subsec milliseconds: Timestamp when the message was
received in milliseconds.

4Obtained here: https://ipfs.github.io/public-gateway-checker/
5Check the source code for the actual meaning: https://github.com/trudi-group/

ipfs-tools/blob/master/common/src/wantlist.rs#L54-L56

29

https://ipfs.github.io/public-gateway-checker/
https://github.com/trudi-group/ipfs-tools/blob/master/common/src/wantlist.rs#L54-L56
https://github.com/trudi-group/ipfs-tools/blob/master/common/src/wantlist.rs#L54-L56

5.1. Overview

9. peer id: The peer that sent this message.

10. address: The IP address and protocol this peer used.

11. priority: The priority of this message. Usually it’s either a very large
number (e.g. 2147483284), indicating the start of a new request or 0,
indicating that this message CANCELs an earlier request.

12. entry type: Usually either 1, indicating a CANCEL or 4, indicating a
WANT HAVE6.

13. cid: The requested CID.

14. duplicate status: Whether this message was received multiple times
without a CANCEL in between. 7

15. sliding window smallest match: Indicates the smallest sliding win-
dow that matched for a sliding window duplicate request entry. We
refer to the documentation of the unification tool to understand how it
uses sliding windows.

16. secs since earlier message: If the message CANCELs an earlier request,
the time between them in seconds.

17. upgrades earlier request: Whether this message upgrades an earlier
request. Usually set to false.

There are two kinds of duplicates:

1. Inter-monitor: Monitor A received a message and monitor B (possibly
a bit delayed) receives the same message or vice-versa. This usually
happens when a peer is connected to both monitors.

2. Intra-monitor: A monitor receives the same request (i.e. same peer
requesting the same CID), without a CANCEL or disconnect message
in between. These duplicates depend on the connection events and
are a bit unreliable to find, as it is possible that we have missed the
disconnection event of the peer and they also appear way less often.
Intra-monitor duplicates have a duplicate status value different from
0.

5.1.3 Results

We implement the following measurements, partially based on the method-
ologies outlined in previous work [5]:

6Check the source code for the actual meaning: https://github.com/trudi-group/

ipfs-tools/blob/master/common/src/wantlist.rs#L59-L66
7Check the source code for the actual meaning: https://github.com/trudi-group/

ipfs-tools/blob/master/common/src/wantlist.rs#L88-L93

30

https://github.com/trudi-group/ipfs-tools/blob/master/common/src/wantlist.rs#L59-L66
https://github.com/trudi-group/ipfs-tools/blob/master/common/src/wantlist.rs#L59-L66
https://github.com/trudi-group/ipfs-tools/blob/master/common/src/wantlist.rs#L88-L93
https://github.com/trudi-group/ipfs-tools/blob/master/common/src/wantlist.rs#L88-L93

5.1. Overview

• Received WANT HAVE Requests: The number of received requests for
CIDs, excluding CANCELs.

• CID Popularity: We quantify this by defining two different popularity
scores [5]:

1. RRP (Raw Request Popularity): Total number of requests received
for this particular CID. The focus here is more on the popularity
of a CID in IPFS.

2. URP (Unique Request Popularity): Number of distinct peers that
requested this particular CID. Here the focus lies more on the peer
behavior.

• IoU (Intersection over Union) of the peers connected to the monitors.

• IoU (Intersection over Union) of the received BitSwap messages.

• Gateway peers vs. non-gateway peers: To compare how much traffic
is generated by gateways compared to normal peers.

5.1.4 Conclusion

We first ran our setup in a sub-optimal way and learned that port forwarding
is essential to be connected to a lot of peers and to collect numerous BitSwap
messages. We were unable to gather sufficient useful data before the report
deadline. Therefore we have decided to repeat the BitSwap monitoring
setup and properly finish the rest of this chapter in a PDF in part 3 of our
code repository: https://github.com/dedis/student_23_ipfs_workload_
analysis.

31

https://github.com/dedis/student_23_ipfs_workload_analysis
https://github.com/dedis/student_23_ipfs_workload_analysis

Chapter 6

Conclusion

In chapter 3, we gained new insights into the gateway usage of IPFS by
continuing where previous work had stopped. We learned, in more detail,
what kinds of web services use IPFS, and how requests coming from these
web services relate to each other.

In chapter 4, we measured the decentralization and the article availability of
Wikipedia on IPFS using the DHT. We learned how many peers contribute to
Wikipedia on IPFS and explained how articles remain available on the website
through the gateway cache, even when no provider is currently online.

Finally, in chapter 5, we modified the code of an existing project that monitors
BitSwap messages, in order to analyze the results from the monitoring.

6.1 Future Work

While it is always possible to spend more time analyzing the public gate-
way dataset, we believe that future work would be better served trying to
obtain and analyze a different gateway dataset, either by contacting gateway
operators, or, even better, by running their own gateway and collecting data.

The script tools used in chapter 4 can be further improved, as they proved
to be not very robust. This experiment could also be repeated by sampling
different Wikipedia articles, e.g. articles from the top-100 or top-1000 list of all
times 1. However, it is unclear whether such an undertaking would really lead
to new insights into Wikipedia on IPFS. What is probably more interesting is
to see the methodology of measuring decentralization and article availability
applied to a different project that markets itself as decentralized or heavily

1Such a list can for example be obtained here: https://en.wikipedia.org/wiki/

Wikipedia:Top_100_most_viewed_articles

32

https://en.wikipedia.org/wiki/Wikipedia:Top_100_most_viewed_articles
https://en.wikipedia.org/wiki/Wikipedia:Top_100_most_viewed_articles

6.1. Future Work

depends on IPFS. Perhaps the same ideas can even be adapted to work with
a different P2P platform2.

Especially the BitSwap monitoring setup provides plenty of opportunities for
future work. Here are some concrete ideas on how future work could use
the BitSwap setup to improve the results from our work:

• The setup can be run with more monitors instead of just two. This
is as simple as adding some lines in the docker-compose.yml file and
making sure that the ports from the new monitor(s) are correctly set.
By how much can we increase the coverage of the IPFS network with
more monitors?

• Actively influence the connected peers of the monitors by e.g. re-
questing content, offering content, manually connecting, modifying the
bootstrap list, ... Can we also increase coverage of the IPFS network
with this strategy? How does it compare to adding more monitors?

• A more advanced concept: similar to how we find public gateways, can
we learn more about other peers (e.g. can we find restricted gateways?)
by influencing their behavior outside of the BitSwap protocol?

Another intriguing, yet more challenging task (which would require some
familiarity with Rust), involves modifying the code of the BitSwap monitoring
client to enable a real-time analysis and processing of BitSwap messages
as they are received. For example, this modification would allow us to
determine why a peer has sent a CANCEL request - is it because the peer
successfully downloaded the CID? We can find this out by checking if the
peer has the CID stored directly after the CANCEL.

2For example, there was a bounty for putting Wikipedia on Swarm, see https:

//bounties.gitcoin.co/issue/28926. The best solution as of now seems to be https:

//bzzwiki.xyz/, which is not nearly as mature as Wikipedia on IPFS, and also isn’t very
likely to be further improved in the near future

33

https://bounties.gitcoin.co/issue/28926
https://bounties.gitcoin.co/issue/28926
https://bzzwiki.xyz/
https://bzzwiki.xyz/

Bibliography

[1] N. Koumartzis and A. Veglis, “Internet regulation: The need for more
transparent internet filtering systems and improved measurement of
public opinion on internet filtering”, First Monday, vol. 16, Oct. 2011.
doi: 10.5210/fm.v16i10.3266.

[2] J. Clark, R. Faris, and R. Heacock Jones, “Analyzing accessibility of
wikipedia projects around the world”, Berkman Klein Center Research
Publication, no. 2017-4, May 2017. doi: 10.2139/ssrn.2951312. [Online].
Available: https://ssrn.com/abstract=2951312.

[3] J. Penney, “Chilling effects: Online surveillance and wikipedia use”,
Berkeley Technology Law Journal, vol. 31, no. 1, p. 117, 2016. [Online].
Available: https://ssrn.com/abstract=2769645.

[4] IPFS, Distributed wikipedia mirror, https://github.com/ipfs/distributed-
wikipedia-mirror/, Accessed: 29 May, 2023, 2023.

[5] L. Balduf, S. Henningsen, M. Florian, S. Rust, and B. Scheuermann,
“Monitoring data requests in decentralized data storage systems: A
case study of ipfs”, in 2022 IEEE 42nd International Conference on Dis-
tributed Computing Systems (ICDCS), 2022, pp. 658–668. doi: 10.1109/
ICDCS54860.2022.00069.

[6] J. Benet, Ipfs - content addressed, versioned, p2p file system, 2014. arXiv:
1407.3561 [cs.NI].

[7] S. Xu, “Dissecting IPFS and Swarm to demystify distributed decentral-
ized storage networks”, Master Semester Project Report, EPFL, 2023.

[8] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer infor-
mation system based on the xor metric”, in Peer-to-Peer Systems, P.
Druschel, F. Kaashoek, and A. Rowstron, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 53–65, isbn: 978-3-540-45748-0.

34

https://doi.org/10.5210/fm.v16i10.3266
https://doi.org/10.2139/ssrn.2951312
https://ssrn.com/abstract=2951312
https://ssrn.com/abstract=2769645
https://github.com/ipfs/distributed-wikipedia-mirror/
https://github.com/ipfs/distributed-wikipedia-mirror/
https://doi.org/10.1109/ICDCS54860.2022.00069
https://doi.org/10.1109/ICDCS54860.2022.00069
https://arxiv.org/abs/1407.3561

Bibliography

[9] D. Trautwein, A. Raman, G. Tyson, I. Castro, W. Scott, M. Schubotz,
B. Gipp, and Y. Psaras, “Design and evaluation of ipfs: A storage layer
for the decentralized web”, in Proceedings of the ACM SIGCOMM 2022
Conference, ser. SIGCOMM ’22, Amsterdam, Netherlands: Association
for Computing Machinery, 2022, pp. 739–752, isbn: 9781450394208. doi:
10.1145/3544216.3544232. [Online]. Available: https://doi.org/10.
1145/3544216.3544232.

[10] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The bittorrent p2p file-
sharing system: Measurements and analysis”, in Peer-to-Peer Systems
IV, M. Castro and R. van Renesse, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 205–216, isbn: 978-3-540-31906-1.

[11] P. Labs, Filecoin: A decentralized storage network, Accessed: 2023-06-07,
2017. [Online]. Available: https://filecoin.io/filecoin.pdf.

35

https://doi.org/10.1145/3544216.3544232
https://doi.org/10.1145/3544216.3544232
https://doi.org/10.1145/3544216.3544232
https://filecoin.io/filecoin.pdf

	Contents
	Introduction
	Internet Regulations and Online Censorship
	Roadmap

	Background and Related Work
	IPFS
	CIDs
	Peers and Providers
	IPNS
	Gateways
	DHT
	BitSwap
	Comparison between DHT and BitSwap

	Wikipedia on IPFS
	Related Work

	Analysis of a Public Gateway Dataset
	Overview
	Third-Party Websites using the IPFS Gateway

	Grouping Related Requests
	Conclusion

	Measuring Wikipedia on IPFS
	Overview
	Experiment Setup

	Results
	Conclusion

	Monitoring Data Requests with BitSwap
	Overview
	Anatomy of a JSON BitSwap Message
	Explanation of Tools
	Results
	Conclusion

	Conclusion
	Future Work

	Bibliography

