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Abstract
Computational chemistry aims to simulate reactions and molecular properties at the
atomic scale, advancing the design of novel compounds and materials with economic,
environmental, and societal implications. However, the field relies on approximate
quantum chemical methods that balance cost and accuracy. This trade-off hinders
effective configuration sampling when combining ab initio methods with molecular
dynamics (MD), limiting thermodynamic examination to systems with a few hundred
atoms and temporal sampling of hundreds of picoseconds.

This thesis focuses on leveraging unconventional approaches based on stochastic
sampling and artificial intelligence (AI) to address the three-fold challenge of attaining
high accuracy, accommodating large system sizes, and enhancing the efficiency of
configurational sampling for specific problems.

It starts with the implementation of second-order Møller-Plesset perturbation theory
(MP2) in a plane wave (PW) basis set, that allows to systematically converge reference
energies to the complete basis set (CBS) limit, devoid of basis set superposition errors,
and enables the application of MP2 to periodic systems. A comparison of PW MP2
interaction energies with computationally more expedient correlation-consistent basis
sets reveals the limitations of the latter in capturing full correlation energies at the CBS
limit and for larger systems. Secondly, a PW Monte Carlo MP2 method is introduced,
which stochastically samples virtual space contributions to the correlation energy,
and reduces execution times up to a thousand-fold while maintaining low statistical
errors. The PW MP2 implementation is not only valuable independently but also in
the context of density functional theory (DFT), where it enables the development of
the most accurate double-hybrid DFT functionals to date. Despite this, the accuracy of
DFT results still depends on the specific system being studied. Thus, as a third step, the
accuracy of popular Minnesota DFT functionals in describing the properties of liquid
water is assessed, thanks to the acceleration and transferability of a machine learning
(ML) multiple time step MD scheme. Comparisons with other DFT approximations and
experimental data highlight the importance of a judicious amount of exact exchange
for capturing hydrogen bonding. The M06-2X(-D3) functionals are identified as the
top-performing candidates, demonstrating good performance for both structural
and dynamical properties. This spotlights their potential for further validation when
combined with an explicit treatment of nuclear quantum effects. The fourth topic
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Abstract

of the thesis addresses configurational sampling using genetic algorithms (GAs) to
sample low-energy configurations of peptides as observed in ultracold spectroscopy
experiments. By utilizing a surrogate energy model and subsequent refinement with
DFT, the GA approach enables efficient exploration of the potential energy surface
(PES) in a matter of hours, significantly faster than traditional search methods that
require weeks of trials. Remarkably, the newly developed GA approach successfully
retrieves lowest-energy structures that align with experimentally-resolved infrared
spectra. Finally, an alternative GA combined with unsupervised learning is introduced,
improving PES coverage in low-energy regions. In summary, this thesis contributes to
enhancing the PES accuracy and sampling by combining quantum chemical methods
with stochastic and AI approaches.

Keywords: correlation energy, non-covalent interactions, second-order Møller Plesset
perturbation theory, plane waves, correlation-consistent basis sets, Monte Carlo inte-
gration, liquid water, density functional theory, exchange-correlation functionals, ab
initio molecular dynamics, machine learning, peptide structures, genetic algorithms
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Résumé
La chimie computationnelle vise à simuler les réactions chimiques et les propriétés
moléculaires à l’échelle atomique dans le but de concevoir de nouveaux composés et
matériaux chimiques ayant de vastes implications économiques, environnementales
et sociétales. Néanmoins, la chimie computationnelle possède tout un ensemble
d’approximations quantiques fournissant divers compromis entre coût de calcul et
précision. De tels compromis compliquent l’échantillonnage rapide de configurations
lorsque les méthodes ab initio sont combinées avec la dynamique moléculaire (MD),
limitant ainsi l’analyse thermodynamique de systèmes comptant plus de quelques
centaines d’atomes pour un échantillonage temporel s’étalant sur quelques centaines
de picosecondes.

Cette thèse porte sur l’exploitation d’approches non conventionnelles stochastiques
ou basées sur l’intelligence artificielle pour résoudre les trois problèmes que sont
l’atteinte d’une grande précision, la considération de systèmes de grande taille, et la
minimisation du temps d’échantillonnage pour des problèmes spécifiques.

Elle commence par l’implémentation de la théorie des perturbations de Møller-Plesset
au second ordre (MP2) dans les ondes planes (PW), qui permet la convergence systéma-
tique d’énergies de référence à la limite de la base complète, exemptes d’erreur due à la
superposition de la base, et ouvrant la possibilité de traiter des systèmes périodiques.
Une comparaison d’énergies d’interaction MP2 dans les ondes planes à celles de bases
cohérentes avec la corrélation, plus rapides, révèle les limites de ces dernières à captu-
rer totalement l’énergie de corrélation dans la limite de la base complète, ainsi que
pour des systèmes plus grands. Deuxièmement, une méthode PW Monte Carlo MP2
est présentée. Cette approche échantillonne stochastiquement les contributions de
l’espace virtuel à l’énergie de corrélation, réduisant les temps d’exécution d’un facteur
pouvant atteindre trois ordres de grandeur tout en maintenant les erreurs stochas-
tiques à des niveaux négligeables. L’implémentation de la PW MP2 n’est pas seulement
avantageuse en soi, mais aussi dans le contexte de la théorie de la fonctionnelle de
la densité (DFT) où elle permet le dévelopment des fonctionnelles doubles hybrides
les plus précises à ce jour. Malgré cela, la précision des résultats obtenus avec la DFT
dépend du système étudié. Ainsi, comme troisième axe de recherche, la précision
des fonctionnelles DFT du Minnesota pour décrire les propriétés de l’eau liquide est
analysée, grâce à l’accélération et à la transférabilité d’une méthode d’apprentissage
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Résumé

automatique couplée à un schéma MD à pas de temps multiples. La comparaison
entre les fonctionnelles du Minnesota, d’autres approximations DFT, et les données
expérimentales soulignent l’importance d’un choix judicieux de la quantité d’échange
exact dans la description des liaisons hydrogène. Les fonctionnelles M06-2X(-D3) ap-
paraissent comme des candidats précis pour les propriétés structurelles et dynamiques
de l’eau, et donc prometteurs pour une future validation avec la considération explicite
des effets quantiques nucléaires. Le quatrième axe s’intéresse à l’échantillonage de
l’espace des configurations grâce aux algorithmes génétiques (GAs), afin d’explorer les
configurations de basse énergie de peptides telles qu’observées dans la spectroscopie
ultrafroide. En utilisant un modèle d’énergie de substitution avant réoptimisation par
la DFT, l’approche des GAs permet d’explorer efficacement la surface d’énergie poten-
tielle (PES) en quelques heures, alors que les méthodes de recherche traditionnelles
nécessitent des semaines d’essais. De façon remarquable, les GAs sont capables de
retrouver des structures correspondant aux spectres infrarouges expérimentaux. Enfin,
un GA alternatif combiné à de l’apprentissage non supervisé est présenté, et permet
une couverture encore meilleure de la PES dans les régions de basses énergies. Ainsi,
cette thèse contribue à l’amélioration de la précision et de l’échantillonnage de la PES
grâce à la combinaison des méthodes quantiques traditionnelles avec des approches
stochastiques et issues de l’intelligence artificielle.

Mots-clés : énergie de corrélation, intéractions non covalentes, théorie de la perturba-
tion de Møller-Plesset au second ordre, ondes planes, fonctions de base cohérentes
avec la corrélation, intégration Monte Carlo, eau liquide, théorie de la fonctionnelle
de la densité, fonctionelles d’échange-corrélation, dynamique moléculaire ab initio,
apprentissage automatique, structures de peptides, algorithmes génétiques
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Zusammenfassung
Die computergestützte Chemie zielt mit der atomistischen Simulation von chemischen
Reaktionen und molekularen Eigenschaften darauf ab, die Entwicklung neuer Stoffe
und Materialen voranzutreiben und damit positive Effekte auf ökonomischer, ökologi-
scher und gesellschaftlicher Ebene zu erzielen. Die Disziplin der computergestützten
Chemie basiert auf genäherten quantenmechanischen Methoden, die ein geeignetes,
wenngleich kompromissbehaftetes, Gleichgewicht zwischen Ressourcenbedarf und
Genauigkeit erzielen. Sollen solche ab initio Methoden mit Molekulardynamik (MD)
verbunden werden, so verhindert ebendieser Kompromiss das effiziente Abtasten aller
möglichen Konfigurationen, womit thermodynamische Untersuchungen dieser Art
auf Systeme von wenigen hunderten Atomen und Zeiträume von einigen hundert
Pikosekunden beschränkt bleiben.

Diese Arbeit befasst sich mit der Nutzung unkonventioneller Lösungsansätze; nament-
lich stochastischem Sampling und künstlicher Intelligenz (KI). Im Falle dreier Beispiele
wird gezeigt, wie es diese Ansätze ermöglichen, die dreifache Herausforderung zu
meistern, die sich aus dem Bedürfnis nach hoher Genauigkeit, genügend grossen
Modellsystemen und effizientem Abtasten des Konfigurationsraums ergibt.

Zunächst wird die Implementierung von Møller-Plesset-Störungstheorie zweiter Ord-
nung (MP2) bei Verwendung von ebenen Wellen (engl. plane waves, PW) als Basis-
funktionen vorgestellt. Dieser Ansatz erlaubt ein systematisches Konvergieren von
Referenzenergien zum Grenzfall eines kompletten Basissatzes (engl. complete basis
set (CBS) limit) ohne Basissatzüberlappfehler und ermöglicht zudem die Behandlung
periodischer Systeme. Ein Vergleich von PW MP2-Interaktionsenergien mit korrela-
tionskonsistenten Basissätzen, die einen geringeren Rechenbedarf nach sich ziehen,
zeigt die Einschränkungen Letzterer auf, falls die komplette Interaktionsenergie im CBS
bzw. für grössere Systeme berechnet werden soll. Im Anschluss wird ein PW-Monte-
Carlo-MP2-Ansatz eingeführt, in dem der Raum, der durch diejenigen virtuellen Orbi-
tale, die zur Korrelationsenergie beitragen, aufgespannt wird, stochastisch gesampelt
wird. Dadurch kann die Laufzeit solcher Rechnungen um bis zu drei Grössenord-
nungen reduziert werden, wobei der statistische Fehlerbereich klein bleibt. Diese
Implementierung kann ausser für MP2 zudem im Bereich der Dichtefunktionaltheorie
(DFT) verwendet werden, wo sie die Entwicklung genauerer Doppelhybridfunktionale
ermöglicht, die Stand heute zu den genauesten Dichtefunktionalen gehören. Trotz
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Zusammenfassung

der hohen Genauigkeit dieser Funktionalfamilie hängt die Gesamtgenauigkeit von
DFT-Rechnungen nach wie vor vom System ab, das betrachtet wird. Wir betrachten
folglich die Genauigkeit der bekannten und beliebten Minnesota-Funktionale für
die Beschreibung von Wasser in der flüssigen Phase unter Nutzung eines flexiblen
und transferierbaren Molekulardynamikansatzes, der sich auf maschinelles Lernen
(ML) in Verbindung mit Multiplen-Zeitschritt-Integratoren stützt. Der Vergleich mit
anderen DFT-Näherungen und experimentellen Daten betont die Wichtigkeit eines
ausgeglichenen Beitrags der Austauschintegrale (exact exchange) zur Gesamtenergie,
sofern Wasserstoffbrücken beschrieben werden sollen. Die M06-2X(-D3)-Funktionale
zeigen hier die besten Resultate, sowohl im Hinblick auf strukturelle als auch auf
dynamische Eigenschaften. Dies macht diese Funktionale zu vielversprechenden Kan-
didaten für weitere Validierungen, die zusätzlich das quantenmechanische Verhalten
der Nuklei berücksichtigen. Zum Schluss wird das Sampling des Konfigurationsraums
mittels genetischen Algorithmen (GA) diskutiert; dieser Ansatz wird zum Abtasten
von energetisch tiefliegenden Konfigurationen von Peptiden, wie sie bei ultrakalten
spektroskopischen Experimenten auftreten, angewandt. Durch Verwendung eines Er-
satzenergiemodells und einer nachgeschalteten Verfeinerung mittels DFT ermöglicht
es der GA-Ansatz, die Potentialhyperfläche (PES) effizient in wenigen Stunden zu sam-
peln. Dies stellt im Vergleich zu traditionellen Suchalgorithmen, die mehrere Wochen
in Anspruch nehmen, eine signifikante Beschleunigung dar. Bemerkenswerterweise
findet dieser neu entwickelte GA-Algorithmus erfolgreich Tiefstenergiestrukturen, die
mit experimentell zugänglichen Infrarotspektren übereinstimmen. Zuletzt führen wir
einen alternativen GA mit unüberwachtem Lernen ein, der die Abdeckung des PES in
Tiefenergiedomänen verbessert. Im Ganzen trägt diese Dissertation durch die Kom-
bination quantenmechanischer Methoden und stochastischer bzw. KI-Ansätze zur
Verbesserung der Genauigkeit des PES sowie zu dessen effizienterem Sampling bei.

Schlüsselwörter: Korrelationsenergie, Nichtkovalente Bindungen, Møller-Plesset-Stö-
rungstheorie zweiter Ordnung, ebene Wellen, korrelationskonsistente Basissätze, Monte-
Carlo-Integration, flüssiges Wasser, Dichtefunktionaltheorie, Austausch-Korrelations-
Funktionale, ab-initio-Molekulardynamik, Maschinelles Lernen, Peptidstrukturen,
Genetische Algorithmen
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1 Introduction

Sitting in the middle of the class, I watched as the teacher showed us
how the algebra we had learned that morning could be used to describe
the movement of a marble on a path of hills and valleys.
Eight years later, I found myself in an auditorium where the ball was
replaced by an electron that was no longer observable to the naked eye,
and the field of bumps was substituted with an electromagnetic field of
nanometric wavelength. I realized that my faithful notepad and pens were
no longer sufficient to solve such an "easy" problem...
so how could we even understand the properties and behavior of molecules,
materials and chemical reactions from the fundamental laws of physics?

The emergence of computers since the mid-20th century has revolutionized scientific
research. From the very first calculations of ballistic trajectories1 to recent digital
reconstructions and simulations of the brain,2 computational studies have become
the third pillar of the scientific toolkit, complementing traditional experimental and
theoretical approaches. Their ability to synthesize data, theory, and numerical results
has enabled researchers to gain a more complete understanding of the natural world.

By utilizing theoretical models and computational simulations, researchers can inter-
pret and analyze experimental data, make predictions, and test hypotheses. In turn,
these models and simulations rely on experimental data to validate the predictions,
improving their accuracy and reliability. The feedback loop between experiments,
theory, and computations allows scientists to refine their understanding of complex
systems and develop new theories and models that can explain and predict phenom-
ena at different scales and levels of complexity. From simulating the very elementary
particles of matter to predicting the behavior of the universe, computers have opened
up new possibilities for scientific discovery and enabled us to explore the natural world
in unprecedented ways.

1



Chapter 1. Introduction

1.1 Computational chemistry

Computational chemistry is a field that combines theoretical methods, numerical
implementations, and computer performance to study the properties and behavior of
molecules and materials at the atomic and molecular level.3–5 Given the vast combina-
torial size of the chemical space, the potential applications of computational chemistry
span across numerous areas of science and technology, including drug discovery, ma-
terials science, catalysis, and atmospheric science, among others. Atomistic computer
simulations offer a fundamental advantage over experimental techniques in providing
in-depth understanding of various molecular processes. Some phenomena may prove
elusive to experimental observation due to the lack of sufficiently accurate analytical
techniques. Moreover, computational simulations make properties accessible that
are otherwise impossible to measure, either because they involve perturbation of the
system under study, require complex experimental setups, or arise in dangerous or
practically unreachable environments.

Most calculations in computational chemistry focus on determining the structure and
total (free) energy of a target system, or the interaction energy between complexes. Be-
yond structural properties, computations provide valuable information on dynamical
and electronic properties, such as characteristic reaction rates, spectroscopic quanti-
ties, effective cross sections for collisions, band gaps, and electrostatic features like
charges, dipoles, and multipole moments. Overall, the breadth of computational re-
sults enables a detailed description of either static properties or reaction mechanisms,
with identification of key intermediates and transition states involved in chemical
processes. Owing to its ability to scrutinize matter at the atomic scale, computational
chemistry not only enhances experimental efforts with predictive and exploratory
capabilities but also aids in clarifying and rationalizing experimental observations.

1.1.1 The ultimate goal

The ultimate goal of computational chemistry is to achieve a complete and accurate
representation of atomic arrangements and natural phenomena purely through in
silico methods, under various thermodynamic conditions. Such comprehensive char-
acterization would enable boundless explorations of chemical space, leading to the
discovery of novel molecules and materials with desirable properties. These find-
ings could then be directly exploited by experimentalists and industrial professionals,
benefiting crucial sectors such as health, energy, mobility, and housing.

Currently, the inverse design that attempts to synthesize molecules and materials with
given properties faces two primary challenges related to the size and complexity of
the systems; these are the trade-off between the cost and accuracy of computational
approaches, and the ability to even explore all relevant configurations of a specific
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system6 before addressing the vastness of chemical space.7,8 As of now, computational
chemistry plays instead a significant role in direct design, where properties are calcu-
lated for a given system, providing guidance on the modifications needed to achieve a
desired outcome. With ongoing advancements in computational power and method-
ological developments, the field is poised to make even more substantial contributions
to scientific discovery and technological innovation in the future.

1.1.2 The cost-accuracy trade-off

Figure 1.1 illustrates the hierarchy of some of the models available for the calculation
of molecular properties and their respective cost estimates in terms of elapsed time
to solution. In the ongoing pursuit of simulating increasingly larger systems (≥100-
100 000 atoms) within manageable time frames, modern force fields can reasonably
predict the properties of solvated biological macromolecules (e.g., proteins, DNA,
RNA) under equilibrium conditions.3,4,9,10 However, they often lack explicit inclusion
of polarization and tend to serve as qualitative tools for systems for which they have
not been particularly parameterized. Furthermore, because they rely on classical
mechanics, force fields are intrinsically incapable of describing bond breaking, thus
chemical reactions, and quantum phenomena resulting from the significant spatial
rearrangements of the electron distribution.

This thesis focuses on the description of atoms at the first-principles (ab initio) level of
theory, where electrons are indeed treated as what they are, quantum particles, and
their motion treated separately from the much heavier nuclei within Born-Oppenheimer
approximation.11 In this picture, quantum-mechanical methods are generally more
accurate than force fields because they describe the rearrangement of the electrons
as found ubiquitously in chemical reactions and molecular processes. However, they
imply solving of the non-relativistic time-independent Schrödinger equation that un-
fortunately has exact analytical solutions only for the simplest one-electron systems,
such as the hydrogen atom or hydrogen-like ions.

Very accurate numerical methods exist in principle, like full configuration interaction
(FCI),12 but do not allow the simulation of more than a dozen atoms due to the rapid
growth of computational cost with the number of electrons. Solving the many-body
problem to determine the electronic structure therefore requires approximations to
the exact quantum theory.13–16 A starting point is usually to consider the Coulombic
electron-electron repulsion in an average or mean-field approximation, which yields
the so called Hartree-Fock (HF) theory (Figure 1.1).17–19 Semiempirical methods can
be seen as a simplification of HF, where the two-electron part of the Hamiltonian is not
explicitly evaluated.4,20 These are much faster than HF but their performance strongly
relies on empirical parameters, so that their accuracy drops down for systems not
resembling the set used for parametrization. Though being relatively fast, HF neglects
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Accuracy
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Hψ = Eψ
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HF

MP2

QMC
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DFT
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O(N 4)

≥ O(N 3)

O(N 5)

≥ O(N 6)

Figure 1.1: Illustration of the trade-off between cost and accuracy of computational chemistry
approaches. The units of cost provide an estimate of the time required to evaluate the energy
of a middle-sized system (∼100 atoms). Formal scalings of conventional implementations as a
function of the numberN of electrons in the system are also shown. For DFT, only pure density
functionals behave likeO(N3). For coupled cluster, the scaling of CCSD isO(N6), while it is
O(N7) for CCSD(T). Inset: Representation of the basis set cost-accuracy trade-off for a given
quantum chemical method.

a crucial quantum contribution to the electronic problem: the correlation between
electronic degrees of freedom. To remedy this, other methods build upon HF and
account for a major fraction (≥80%) of the electron correlation like the Møller-Plesset
perturbation theory at order n (MPn).21

Accounting for electron correlation (in the general definition) plays a crucial role in
the understanding of complex phenomena like dispersion interactions, long-range
order, collective behaviors, exotic phases of matter, high-temperature superconductors,
Mott insulators and many more.14,15,22,23 To that end, correlated wavefunction-based
approaches like coupled cluster with single, double, and perturbative triple excitations
from the HF determinant (CCSD(T))24,25 or quantum Monte Carlo (QMC),26 which
deals with an explicit correlated wavefunction and stochastically applies the variational
principle, are considered as state-of-the-art gold standards for reaching chemical
accuracy (≤1 kcal/mol).27 In practice, however, the computational cost of these latter
remains substantial, hindering their routine application to many or large systems.

Striking a balance between cost and accuracy, density functional theory (DFT) emerges
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as a more efficient approach that incorporates both quantum exchange and correlation
effects.28–30 Instead of relying on the electronic wavefunction, the exact formalism of
DFT expresses the total energy as a functional of the electron density. However, in its
widely-used Kohn-Sham (KS-DFT) variant, the interacting many-electron system is
substituted by a fictitious system of non-interacting electrons (represented by Kohn-
Sham orbitals) that share the same ground-state electron density as the original system.
As a result, KS-DFT does not entirely eliminate the mathematical representation of
electron wavefunctions.

In order to convert the continuous problem of determining the exact many-electron
wavefunction into a discrete problem that can be addressed using linear algebra and
numerical techniques, quantum chemical methods employ basis sets, which are se-
lected prior to computation.14,15 Basis sets offer a finite collection of mathematical
functions that are linearly combined to represent molecular orbitals, which in turn can
be used to express the many-electron wavefunction and electron density. As shown in
the inset of Figure 1.1, the selection of basis functions and their linear combinations
also govern the accuracy and computational cost of quantum chemical calculations.
By systematically improving the basis set, such as increasing the number of basis func-
tions, adding polarization functions, or incorporating diffuse functions, the accuracy of
the molecular orbital representation can be enhanced. This results in a more accurate
description of the electronic structure and, consequently, better predictions of various
molecular properties. Consequently, the highest level of accuracy achievable by any
quantum method is represented by its performance at the complete basis set (CBS)
limit. Although intractable in most cases, the exact solution of the many-electron
Schrödinger equation in this context would be attained by the FCI approach in the
CBS limit.

As shown, the spectrum of quantum chemistry methods and basis sets offers a variety
of accuracy-to-computational cost ratios, often necessitating a trade-off between
accuracy and speed to obtain desired properties within a reasonable time frame. In
this regard, this thesis focuses on simulating ground-state, closed-shell systems of
the order of∼100 first-row atoms using MP2 and DFT approaches, where the errors
arising from non-relativistic and Born–Oppenheimer approximations are of minor
significance.11,31 The consideration of relativistic effects, multireference character, or
excited states is consequently beyond the scope of the current work.

1.1.3 The multiple minima problem and effective sampling

In the Born-Oppenheimer approximation, the total many-body wavefunction can be
expressed as the product of an electron wavefunction and a nuclear wavefunction.
This decoupling allows for the solution of the electronic Schrödinger equation before
addressing variations in the nuclear degrees of freedom. In the electronic Schrödinger
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equation, nuclear positions are fixed and appear as constant parameters that influence
the electronic wavefunction and energy eigenvalues. The nth electronic eigenvalue, in
turn, defines the potential in the nth electronic state that acts on the decoupled nuclear
wavefunction. Therefore, the eigenvalue of the electronic Schrödinger equation as a
function of nuclear positions determines what is known as the potential energy surface
(PES), on which the nuclei ultimately evolve.6,32

From a static or absolute zero-temperature perspective, the equilibrium structure of
an atomic system is characterized by the global minimum of the PES. As a result, com-
putational chemistry extensively relies on optimization algorithms capable of finding
optimal or locally optimal geometries.4,6 While such information is crucial for deter-
mining structural properties, atoms in real systems actually vibrate thermally around
their equilibrium positions. Moreover, the highly-multidimensional PES is often so
complex and irregular that sometimes a distinct single equilibrium structure cannot
be distinguished in the low-energy range. This results from the numerous and flexible
nuclear degrees of freedom that define the PES. At finite temperatures, thermodynamic
(entropic) effects come into play, and the systems can visit different local minima in a
probabilistic manner. The accurate description of real systems therefore relies on sta-
tistical mechanics, which calculates thermodynamic properties as statistical averages
in accordance with experimental conditions. Computationally, the sampling of prob-
abilistic structures that contribute to equilibrium properties is commonly achieved
through molecular dynamics (MD) or Monte Carlo (MC) simulations.9,33,34

In both MD and MC sampling, the composition of the system under investigation is
known, with the objective of studying its reaction mechanisms or equilibrium proper-
ties. The critical challenge is to ensure that the computational lens is placed onto the
correct regions of the PES. In theory, MD and MC simulations should broadly sample
the PES so that preferential regions are discovered and reliable statistics collected.
However, this process can demand substantial or infeasible computational time in
the presence of high energy barriers or structures trapped in metastable states with
lifetimes exceeding the simulation duration. If resources permit, conducting longer
simulations or multiple replicas with different starting structures can help address this
multiple minima problem. However, as the number of atoms in the system increases,
so does the number of degrees of freedom of the PES resulting in an exponentially
growing number of local minima. For example, obtaining a properly folded “ab ini-
tio" protein structure from its amino acid sequence has been a tremendous ongoing
challenge over the past decades.35,36 These time scale limitations necessitate the use
of so-called enhanced sampling techniques;37–43 for instance, simulated annealing
improves the interconversion between minima by heating the system to high tempera-
tures and gradually cooling it down to the target temperature, after which statistics are
collected.41,44 Metadynamics introduces a biasing potential to progressively fill in and
visit most minima, ultimately reconstructing the (free) energy surface based on the
history of the filling.39,40
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In MD, atoms are propagated on the PES using classical Newtonian equations of
motion, which offer dynamic insights into a specific phenomenon or property. The ac-
curacy of a value obtained as a time-average over an MD trajectory is directly correlated
with the time scale of the fluctuations for that value. This necessitates sufficiently long
simulation dynamics to ensure adequate and predictive sampling. As discussed in the
previous section, quantum chemical methods enable accurate atomic-scale represen-
tations, and when combined with MD, they result in ab initio MD (AIMD) simulations
where the PES is derived directly from the electronic Schrödinger equation.32,45 Con-
sequently, the cost-accuracy trade-off of quantum chemical methods exacerbates
the challenges of effectively sampling the PES, thereby limiting the system size and
time scales attainable with current (super)computers. In practice, the trade-off often
favors reduced execution time over pursuing the highest possible accuracy in the
underlying electronic structure method. The advent of multiscale mixed quantum
mechanical/molecular mechanical (QM/MM) simulations, combined with a variety of
potent enhanced sampling techniques, has expanded the spatial and temporal scales
of AIMD.45,46 With the growth in computational power, it is now feasible to carry out
AIMD for systems containing several hundred to thousands of atoms over time frames
of 10-100 picoseconds. Nevertheless, the three-fold challenge of system size, sampling
time, and high accuracy remains substantial. Ideally, researchers would like to conduct
MD simulations with the system size and sampling times typical of force field-based
MD while achieving the accuracy of high-level ab initio methods.

1.2 Ways of improvement

Computational chemistry continues to evolve thanks to the ever-increasing com-
putational power provided by advancements in processors, memory, and storage.
Presently, handling systems with hundreds or thousands of electrons using post-HF
or advanced DFT methods, even for non-dynamical calculations, demands signif-
icant computing power far beyond that of a conventional machine but was nearly
impossible just a decade ago. Highly parallelized implementations of ab initio codes
that run on high-performance supercomputers have played a major role in the suc-
cess of quantum-mechanical calculations.47–49 More recently, the emergence of GPUs
has further transformed the field by notably enhancing computational power and
efficiency.50–53 This enables researchers to tackle larger and more complex systems
and longer time scales while reducing calculation times, making hardware develop-
ments crucial for progress in the field. In this context, waiting can be part of the
solution, as processor performance is expected to roughly double every 18 months as
long as Moore’s law remains valid.54

On the other hand, the mission of computational chemists is to advance simultane-
ously on theoretical development, implementation of methods, and design of innova-
tive algorithms. Such efforts involve either providing or improving accuracy at a given
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computational cost or accelerating calculations while keeping errors under control.
These two aspects are at the heart of the work presented in this thesis.

1.3 Aim and outline of this thesis

The objective of this thesis is to tackle the three-fold challenge of achieving high
accuracy, accommodating large system sizes, and reducing sampling time in compu-
tational chemistry, utilizing non-conventional approaches from stochastic sampling
and artificial intelligence.

1.3.1 Improving the accuracy of the potential energy surface

Part I begins by discussing the key theoretical concepts involved in resolving the
electronic structure of matter using wavefunction-based and DFT-based quantum
mechanical methods in Chapter 2. It then explains how these theories are applied in
numerical computations in Chapter 3.

Part II focuses on the calculation of the key ingredient for the implementation of
double-hybrid (DH) functionals in KS-DFT, namely the second-order Møller-Plesset
(MP2) correlation energy.21 DHs are a recent development in DFT that offers improved
performance over local, semilocal functionals, and hybrids by providing a more ac-
curate description of the correlation contribution.55–57 This is achieved by including
a certain percentage of the MP2-like correlation energy evaluated using Kohn-Sham
orbitals.21,58,59 For many years, MP2 was considered the standard method for estimat-
ing non-covalent interactions,60,61 commonly replaced by coupled-cluster (CCSD(T))
when affordable. Additionally, the first extrapolations of CCSD(T) energies to the CBS
limit were made possible by composite delta-level extrapolations built on top of MP2
interaction energies.61,62 The development of DHs can be thus seen as combining
the best of both wavefunction-based and DFT approaches. Anecdotally, to highlight
the significance of this combination, it is worth noting that among the 20 most cited
papers in journals of the American Physical Society, 17 publications are related to DFT,
along with the only wavefunction-based paper by Møller and Plesseta.

As a prerequisite, the routine usage of DHs relies on addressing the computational
challenges associated with MP2. In this sense, Chapter 4 discusses the implementation
and validation of the MP2 energy within a plane wave (PW) basis set in the CPMD
molecular dynamics package,47 that has the advantage of eventually running MD
simulations or local geometry relaxations with this level of accuracy, or coupling it
to more expedient sampling techniques. The advantage of PWs is their orthonormal
nature, that avoids the so called basis set superposition error. In addition, PWs exhibit

aThis list was compiled by Prof. Nicola Marzari in his lectures on DFT presented in 2020.63
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monotonic convergence and reach completeness with the systematic increase of a
single parameter, the kinetic energy cutoff, regardless of the level of theory employed.
Their periodic character also makes them a basis of choice when simulating condensed
phase systems at the complete basis set limit. However, only a limited number of PW
codes have currently focused on providing access to the MP2 energy due to certain
inherent complexities.64,65 The first resides in the enormous amount of basis functions
that is required to converge properties accurately (typically of the order of 105 PWs).
Also, when calculating the MP2 energy, the delocalized nature of PWs makes most
high-lying virtual orbitals correspond to free states (continuum-like) that are close in
energy and, due to their negligible overlap with the occupied space, contribute little to
the MP2 energy. Consequently, the MP2 correlation energy is obtained by summing
an astronomically large number of small contributions which substantially hampers
convergence. The prohibitive quintic scaling of the method with respect to system
size also makes the approach very expensive for all but the smallest systems, even
when substantial computational resources are available. Nonetheless, thanks to a
systematic convergence to the basis-set limit,66 a careful analysis of the parameters
affecting accuracy, and our highly parallelized implementation, the calculation of non-
covalent interactions of 100-electron systems has become feasible on large memory
supercomputers. In Chapter 4, MP2 energies with PWs are thus compared to results
from atom-centered bases, allowing for an assessment of the accuracy of correlated
wavefunction-based methods depending on the type of basis set employed.

The investigation of stochastic approaches for quantum computations has gained
momentum in the present century.26,67–79 These approaches exhibit promising po-
tential in expediting computational processes while effectively mitigating statistical
errors. Chapter 5 proposes an accelerated version of the conventional MP2 method by
introducing a random sampling of the contributions of high-lying (continuum) virtual
states to the MP2 energy. By circumventing the explicit calculation and summation
of an extensive number of terms, the utilization of Monte Carlo integration enables
significant acceleration of up to three orders of magnitude with only minimal compro-
mises on accuracy. As a result, this advancement enables MP2 computations for larger
systems comprising several hundreds of electrons with PWs, which were previously
unattainable.

1.3.2 Navigating the potential energy surface with artificial intelligence
approaches

Part III presents an overview of the techniques employed in this work to incorporate
nuclear movement and navigate the PES. It contains the theoretical Chapter 6 that
outlines the principles of AIMD, which enables statistical sampling of the PES.

The impact of artificial intelligence (AI) on our daily lives is profound, transforming
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various aspects ranging from speech and facial recognition to autonomous vehicles,
smart robots, adapted search engines, and predictive systems for consumer behaviors
and medical diagnoses. A parallel revolution is underway in the field of computational
sciences, where the integration of machine learning (ML) is gradually reshaping the
landscape. This transition also presents new opportunities for computational chem-
istry, encompassing quantum calculations80–83 and molecular simulations.8,84–87 The
increasing availability of vast data sets, coupled with advancements in computing
power and algorithms, necessitates and empowers the application of ML techniques in
the field.88–90 However, AI extends beyond ML and incorporates other but connected
approaches such as Bayesian inference91–93 and optimization methods based on evo-
lutionary algorithms (EAs).94–97 As such, Part IV explores the transformative potential
of AI in computational chemistry and examines various approaches, ranging from
kernel-based ML, EA-based optimization techniques, and unsupervised learning to
enhance the sampling of the PES.

Chapter 7 showcases the advantages of employing ML to significantly accelerate the
simulation of structural and dynamical properties obtained from AIMD. More precisely,
when coupled to a multiple-time-step (MTS) propagation of the nuclei, ML effectively
provides fast force components with sufficient accuracy, allowing for their decoupling
from slower DFT-based components evaluated at larger time steps only.45,98,99 By
construction, the MTS scheme ensures that the dynamics are captured at the DFT
level of accuracy employed during larger time steps. In a study focused on liquid
water, this ML-MTS approach achieves speedups of 6 to 15 compared to standard Born-
Oppenheimer AIMD, enabling the use of higher-level DFT functionals within feasible
time frames. Thanks to this, Chapter 7 benchmarks the accuracy of the Minnesota
hybrid functionals61,100,101 on liquid water. The findings are placed in the context of
current knowledge on DFT for characterizing bulk water under ambient conditions
and are compared to experimental data. Subsequently, such comparisons indicate the
possible strengths and limitations of DFT for the simulation of biological systems in
aqueous media.

The final chapters concern the implementation of genetic algorithms (GAs) to effi-
ciently screen the PES. GAs, which belong to the broader class of EAs, mimic evo-
lutionary principles to find optimal solutions for complex multi-variable problems,
including PES optimization.94,102–104 In Chapter 8, GAs are introduced as a reliable
alternative for generating low-lying peptide structures observed in ultracold infrared
spectroscopy.105–111 By employing a fast yet reasonably accurate PES model, low-
energy geometries can be identified within a few hours, compared to existing tech-
niques relying on ab initio PES that take weeks or months. In all three test case systems,
refinement of GA-generated structures using DFT reproduces geometries that align
with experimental spectra, validating the time-saving advantages of this approach.

Lastly, Chapter 9 deals with possible improvements of GAs in the exploration of
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low-energy regions within the PES. By integrating GAs with an unsupervised ML
technique,104,112 notable improvements in performance are achieved. Utilizing a
lightweight feature space derived from the algorithm’s complete history, ML clus-
tering not only enhances the exploration of low-lying regions but also significantly
increases the probability of identifying the most probable global minimum of the PES.
Importantly, these enhancements are accomplished without compromising execution
times, rendering this integrated approach a powerful tool for efficient and effective
PES exploration from the algorithmic point of view.

To conclude, a summary of the findings and potential future directions are finally
drawn in Part V.

I wish a good reading of (parts of...) my thesis to any interested reader in the hope
that it may contribute to their knowledge and inspire new advances to address the
fundamental and ongoing challenge of computational chemistry; that is achieving
high accuracy, accommodating large systems, and reducing sampling time.
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Part IDescribing nuclei and electrons in
matter
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2 Electronic structure theory

Going quantum - When the description of the marble no longer reflects
reality.

This chapter draws heavily on refs [4, 14–16, 20], which I recommend to the reader for
further knowledge and details.

2.1 The interacting many-body problem

Thanks to the seminal work of quantum mechanics pioneers about a century ago, we
now know that matter can be described as a collection of interacting atomic nuclei and
electrons. Remarkably, the same mathematical apparatus allows to describe systems in
the gas phase113 as well as the condensed phase.114 Indeed, be it for molecules, clusters,
wires, bulk solids, liquids, surfaces, and all other possible kinds of atomic assemblies,
the underlying physics at the atomic scale consists of Coulombic interactions between
electrons and nuclei. As an exciting consequence, all equilibrium properties of non-
relativistic systems can be, in theory, deduced by solving the non-relativistic time-
independent Schrödinger equation115

ĤΨ({R}, {r}) = EΨ({R}, {r}) (2.1)

where {R} is a set of P nuclear coordinates {RI , I = 1, ..., P} and {r} is the set of N
electronic coordinates {ri, i = 1, ..., N}. E is the total energy of the system described
by Ψ, the overall many-body wavefunction which incorporates intrinsic quantum
information, thus properties, of electrons and nuclei. |Ψ({R̄}, {r̄})|2 represents the
probability density of finding P nuclei at respective positions {R̄} and the N electrons
located in {r̄}, respectively. Solutions (Ψ, E) of eq 2.1 only exist for specific values of
energy imposed by the quantization of bound states in quantum mechanics. While
electrons are fermions of half-integer spin, nuclear species can be either of fermionic
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or bosonic nature depending on the nuclear spin. Thus, the total wavefunction Ψ is
antisymmetric with respect to the exchange of coordinates of two electrons and either
antisymmetric or symmetric in the exchange of nuclear positions.

In the absence of external fields, and neglecting magnetic interactions in the system,
the non-relativistic time-independent many-body Hamiltonian takes the forma

Ĥ = −1
2

P∑
I=1

1
MI
∇2

I︸ ︷︷ ︸
T̂N

−1
2

N∑
i=1
∇2
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T̂e

−
P,N∑

I,i=1

ZI

|RI − ri|︸ ︷︷ ︸
V̂eN

+
N∑

i<j

1
|ri − rj |︸ ︷︷ ︸
V̂ee

+
P∑

I<J

ZIZJ

|RI −RJ |︸ ︷︷ ︸
V̂NN

(2.2)

that is composed of the nuclear T̂N , and electronic T̂e, kinetic contributions as well as
Coulomb pairwise attractive interactions V̂eN between the electrons and the nuclei.
The Coulomb repulsion between electrons is given by V̂ee, with V̂NN its analogue
between nuclei. MI and ZI are, respectively, the nuclear masses and charges.

2.1.1 Born-Oppenheimer approximation

Getting an accurate form of the many-body wavefunction Ψ is in practice extremely
difficult for realistic systems, since pairwise operators in the Hamiltonian (2.2) imply
that particle degrees of freedom are interdependent, or correlated in a quantum-
statistical language. A simplification of the problem is achieved within the Born-
Oppenheimer approximation. This latter relies on the fact that the movement of
the (heavy) nuclei is seen as very slow in the time frame of the lighter electrons, so
that electrons and nuclei decouple into separate wavefunctions. By neglecting the
coupling between electronic and nuclear degrees of freedom, it is supposed that
electrons instantaneously arrange themselves in their ground state for any change in
the nuclear geometry. In most cases, this approximation remains valid because the
energy difference between electronic states is big enough so that the coupling between
electronic states remains negligible upon small displacements of the nuclei. When
electrons and nuclei are seen as evolving on decoupled time scales, the many-particle
wavefunction is mathematically separable into nuclei and electronic wavefunctions

Ψ({R}, {r}) = Θn({R})Φe({r}; {R}) (2.3)

where Θn({R}) is the nuclear wavefunction, and the electronic wavefunction Φe({r}; {R})
therefore accounts for the electron distribution at fixed nuclei in {R}, whose inclusion,
importantly, acts as a parametric dependency.

In the Born-Oppenheimer approximation, putting aside the treatment of the nuclei
for a moment, the interacting many-body problem reduces first into the following

aHartree atomic units are used throughout this thesis, unless otherwise specified.
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2.1 The interacting many-body problem

many-electron problem:

ĤeΦe({r}; {R}) = E({R})Φe({r}; {R}) (2.4)

with the electronic Hamiltonian being

Ĥe =
N∑

i=1

[
−1

2∇
2
i −

P∑
I=1

ZI

|RI − ri|

]
+

N∑
i<j

1
|ri − rj |

(2.5)

Solving eq 2.4 and thus getting the ground state E({R}) for any set of fixed nuclear po-
sitions {R} defines what is called the potential energy surface (PES). This hypersurface
defines the potential that enters the ultimate quantum equation to solve for the nuclei.
Indeed, according to the Born-Oppenheimer approximation, once the many-electron
problem is solved, the total Hamiltonian becomes

⟨Φe({r}; {R})|Ĥ|Φe({r}; {R})⟩ ≃ ĥn + E({R}) (2.6)

with the remaining nuclear Hamiltonian being

ĥn = −1
2

P∑
I=1

1
MI
∇2

I +
P∑

I<J

ZIZJ

|RI −RJ |
(2.7)

This allows finally to solve the many-body Schrödinger equation (eq 2.1) via the solu-
tion of the nuclear Schrödinger-like equation[

ĥn + E({R})
]

Θn({R}) = EBOΘn({R}) (2.8)

where EBO is the total (approximated) energy of the many-body system.

Decoupling the nuclear and electronic motions is a common and justified approxima-
tion in quantum chemistry, as the significant difference in mass between protons/neu-
trons and electrons (a factor of about 1800) allows for the simplification of calculations.
This separation is essential for the concept of PES and the parametric description of
equilibrium and transition structures in terms of nuclear coordinates. However, there
are cases where the Born-Oppenheimer approximation fails, and the quantum me-
chanical nature of the nuclei cannot be neglected. This thesis focuses on developing
methods to address the cost-accuracy trade-off in evaluating the PES, specifically by
solving the electronic Schrödinger equation (eq 2.4). The electronic wavefunction is
described quantum mechanically, accounting for the Coulombic interactions between
electrons. Due to the many-body nature of the problem, finding exact solutions to the
electronic Schrödinger equation is computationally demanding, as it requires solving
a partial differential equation with 3N degrees of freedom. Exact analytical solutions
are only tractable for two-body systems. The electronic structure of many-electron
atoms, molecules, solids or electron gases is only obtainable through approximate nu-
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Chapter 2. Electronic structure theory

merical methods. To illustrate the complexity, consider an iron atom with 26 electrons
described on a cubic grid of 10 points per dimension. Storing the entire wavefunc-
tion for this simple case would require the saving of 103·26 real numbers. Considering
that each floating-point number requires 8 bytes, the total memory requirements for
handling such a wavefunction would finally necessitate 1.25 · 1066 terabytes, which is
unimaginable from the hardware point of view, rendering exact calculations practically
impossible. Therefore, approximations are necessary to address the scaling issues
associated with the number of electrons, leading to the development of numerous
methods to tackle the electronic structure problem. The following sections will provide
insights into some of the ab initio methods that aim to solve the electronic problem.

2.1.2 Variational principle

The variational principle is a fundamental concept in quantum chemistry that serves
as a cornerstone for many computational methods. It provides a powerful framework
for finding approximate solutions to the Schrödinger equation by minimizing the ex-
pectation value of the energy with respect to a trial wavefunction Φtrial. Mathematically,
the variational principle can be expressed as

Evar ≥ E0 (2.9)

where Evar is the variational energy obtained from the trial wavefunction and E0 is the
exact ground state energy of the problem. For the resolution of the electronic structure
in the Born-Oppenheimer approximation (eq 2.4), the variational energy is expressed
as

Evar = ⟨Φtrial|Ĥe|Φtrial⟩
⟨Φtrial|Φtrial⟩

(2.10)

with Ĥe representing the electronic Hamiltonian operator, which describes the total
energy of the electron system in the parametric field of the nuclei. The variational
principle states that the variational energy will always be greater than or equal to the
exact ground state energy, ensuring that the variational approach provides an upper
bound to the true energy.

By selecting an appropriate trial wavefunction and optimizing its parameters, one
can systematically improve the accuracy of the energy approximation. Various com-
putational methods, such as Hartree-Fock (HF) theory (Section 2.2.1), configuration
interaction (CI) (Section 2.2.4), and density functional theory (DFT) (Section 2.3),
are built upon the variational principle and employ different strategies for construct-
ing and optimizing the trial wavefunction (respectively, the electron density). The
variational principle provides a versatile tool for developing efficient and accurate
quantum chemical methods that enable the study of complex molecular systems and
their properties.
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2.2 Wavefunction-based methods

2.2 Wavefunction-based methods

Wavefunction methods, traditionally embraced by quantum chemists,13,14 have been
distinguished from approaches that focus on the electronic density as the primary
variable, such as DFT, which has gained popularity among physicists28,116 due to its
ability to significantly reduce the number of degrees of freedom. However, in recent
years, wavefunction-based approaches have emerged as viable options in condensed
matter physics as well.117–122 These methods have found utility not only as standalone
techniques but also in conjunction with density-based approaches,58,59,123–125 allowing
for the exploration of complex systems and capturing a broader range of electronic
properties.

Dictated by the fundamental postulates of quantum mechanics, the electronic wave-
function must adhere to certain criteria. One crucial aspect is the consideration of
spin, a quantum number that plays a central role in numerous electronic phenomena.
Working with an electronic wavefunction that is an eigenstate of the spin operator is
therefore highly advantageous in this regard:

Ŝ2 |Φe⟩ = S(S + 1) |Φe⟩ (2.11)

Ŝz |Φe⟩ = Sz |Φe⟩ (2.12)

Furthermore, electrons are fermions, meaning they are indistinguishable spin-1/2
particles. As a result, the many-electron wavefunction must exhibit antisymmetry
upon the exchange of particles. This requirement arises from Pauli’s exclusion prin-
ciple, which states that two electrons cannot occupy the same quantum state. The
influential Hartree-Fock theory tackles this property by incorporating the necessary
antisymmetrization of the wavefunction, as described below.

2.2.1 Hartree-Fock method

In order to encode Pauli’s principle, the Hartree-Fock (HF) method17–19 introduces an
antisymmetrized many-electron (trial/ansatz) wavefunction in the form of a single
Slater determinant

ΦHF(x1,x2, ...,xN ) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ2(x1) · · · ϕN (x1)
ϕ1(x2) ϕ2(x2) · · · ϕN (x2)

...
...

. . .
...

ϕ1(xN ) ϕ2(xN ) · · · ϕN (xN )

∣∣∣∣∣∣∣∣∣∣
(2.13)

where ϕi(xj) is the i-th one-electron spin orbital of respective spatial and spin com-
ponents xj = (rj , σj). Note how the problem of keeping track of the entire electronic
wavefunction is reduced by the Hartree-Fock ansatz. Indeed, it requires storing only
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Chapter 2. Electronic structure theory

orbitals whose spatial variables are extended over a space mesh. For our previous
example on the iron atom (Section 2.1.1), this leads to the storage of 26 · 103 floating-
point numbers, against 103·26 floating-point numbers that were needed to account for
a fully numerical wavefunction.

The ground state energy of the system is obtained from the variational principle on the
total energy with the ansatz wavefunction:

EHF = ⟨ΦHF| Ĥe |ΦHF⟩
⟨ΦHF|ΦHF⟩

(2.14)

In practice, ΦHF has to be projected onto a finite basis, that allows to workout linear
algebra for the computational minimization of EHF. Details about the choice of basis
will be provided later (Section 3.1). For the time being, it is sufficient to remember that
the spin orbitals ϕi(xj) can be further expanded as linear combinations in an auxiliary
basis. The coefficients of such linear combinations therefore consists in the ultimate
parameters to optimize to find the ground state wavefunction ΦHF that minimizes EHF.
To facilitate the formalism, let us rewrite the electronic Hamiltonian (eq 2.5) in terms
of one and two-body operators

Ĥe =
N∑

i=1
ĥ1(i) + 1

2

N∑
i=1

N∑
j ̸=i

v̂2(i, j) (2.15)

with

ĥ1(i) = −1
2∇

2
i −

P∑
I=1

ZI

|RI − ri|︸ ︷︷ ︸
vext(ri)

(2.16)

which is the one-electron operator acting on the electron i immersed in the external
potential vext due to the fixed nuclei. The two-body operator comes from the Coulomb
electron-electron interaction in the absence of spin-orbit coupling:

v̂2(i, j) = 1
|ri − rj |

(2.17)

Injecting eqs 2.13 and 2.15 in eq 2.14, and working out the algebra a bit,4 gives the
following expression for the HF variational energy:

EHF =
N∑

i=1
⟨i| ĥ1 |i⟩+ 1

2

N∑
i=1

N∑
j=1

(⟨ij| v̂2 |ij⟩ − ⟨ij| v̂2 |ji⟩)︸ ︷︷ ︸
⟨Vee⟩HF

(2.18)

where ⟨x|i⟩ denotes the spin orbital ϕi(x), in association with the one-electron integrals
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defined by

⟨i| ĥ1 |j⟩ =
∫
dx1 ϕ

∗
i (x1)ĥ1(r1)ϕj(x1) (2.19)

and the two-electron integrals given by

⟨ij| v̂2 |kl⟩ =
∫∫

dx1dx2 ϕ
∗
i (x1)ϕ∗j (x2) 1

|r1 − r2|
ϕk(x1)ϕl(x2) (2.20)

Looking closer at the two-body terms in eq 2.18, it is noticed that the sums over the first
integrals ⟨ij| v̂2 |ij⟩ correspond to the classical Coulomb electrostatic energy between
two charge distributions |ϕi(x)|2 and |ϕj(x′)|2. However, the second term ⟨ij| v̂2 |ji⟩
does not match any classical equivalence and represents a quantum stabilizing ef-
fect coming from the antisymmetrized nature of the wavefunction (Pauli’s principle).
Similar to the Coulomb term apart from the exchange between two spin orbitals, the
quantity

EHF
x = −1

2

N∑
i=1

N∑
j=1
⟨ij| v̂2 |ji⟩ (2.21)

is therefore universally defined as the exchange energy among both the wavefunctions
and DFT computational communities.

The HF ground state can now be obtained from the minimization of the variational
energyEHF with respect to the spin orbitals ϕi, with the constraint that such orbitals are
orthogonal due to the principles of quantum mechanics. The constraint optimization
can be realized with the Lagrange’s method and the introduction of the unknown
multipliers λij that take the dimension of energy. Such an operation gives the HF
equations that have to be satisfied by the HF ground state orbitals

F̂ ϕi(x) =
N∑

j=1
λijϕj(x) (2.22)

where F̂ is the Fock operator defined as

F̂ = ĥ1 +
N∑

j=1

(
Ĵj − K̂j

)
(2.23)

that includes a combination of Coulomb Ĵj and exchange K̂j operators, respectively,
that act on the orbitals like

Ĵjϕi(x) =
(∫

dx′
ϕ∗j (x′)ϕj(x′)
|r′ − r|

)
ϕi(x) (2.24)

K̂jϕi(x) =
(∫

dx′
ϕ∗j (x′)ϕi(x′)
|r′ − r|

)
ϕj(x) (2.25)
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Chapter 2. Electronic structure theory

When acting on the same spin orbital i, it is observed that the Coulomb Ĵi and exchange
K̂i contributions to the Fock operator cancel each other, which emphasizes that HF
is free from self-interaction error. In HF theory, therefore, one electron does not
“feel” its own presence, but interacts with all other electrons. However, particles are
independent in the HF approximation because each electron moves in an effective
potential, represented by the attraction of the nuclei (in ĥ1), and the average repulsive
effect of surrounding electrons screened by the exchange operator. This becomes
evident from the Coulomb part of the Fock operator applied on the spin orbital ϕi(x)

N∑
j ̸=i

Ĵjϕi(x) =
N∑

j ̸=i

(∫
dx′ |ϕj(x′)|2

|r′ − r|

)
ϕi(x) (2.26)

that is the Coulomb interaction of the i-th electron with the average charge distribution
of the other electrons.

Solving the HF equations does not give a unique set of solutions for the one-electron
spin orbitals. Indeed, it can be checked that any unitary transformation U applied on
the spin orbitals does not alter the Slater determinant, nor the Fock operator.13 It is
then always possible to find new orbitals ϕ′i(x) such that

ϕ′i(x) =
∑

j

Uijϕj(x) with
∑

k

U∗ikUkj = δij (2.27)

Thus, the most convenient and common choice of orbitals is the canonical representa-
tion, in which the matrix of Lagrange multipliers becomes diagonal (λij := εiδij) such
that the HF problem (eq 2.22) translates into

F̂ ϕ′i(x) = εiϕ
′
i(x) (2.28)

This representation has the particularity of accessing the HF orbitals from an eigen-
value (Schrödinger-like) equation. The eigenvalues εi can consequently be interpreted
as excitation energies of the canonical orbitals ϕ′i(x). Moreover, the Koopmans’s theo-
rem states that the ionization energy coming from the removal of an electron of orbital
ϕ′i(x) is equal to the negative of its eigenvalue126

I = E Ci
HF(N − 1)− EHF(N) = −εi (2.29)

This observation highlights the significance of occupied energies in the HF approxi-
mation. Ionization energies obtained within HF are typically accurate, although they
neglect the relaxation of the remaining orbitals when an electron is removed. In con-
trast, virtual (empty) orbitals lack physical interpretation and are generally unbound.
They arise as a consequence of the additional dimensions in the eigenvalue problem.
However, these additional wavefunctions can still be employed as a (complete) basis
for perturbation theory, as will be demonstrated in the subsequent discussion.
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2.2 Wavefunction-based methods

Let us go back to the expression of the HF energy depending on the eigenvalues of the
Fock operator. Playing around with the previous definitions, one obtains

εi = ⟨i| F̂ |i⟩ = ⟨i| ĥ1 |i⟩+
N∑

j=1
(⟨ij| v̂2 |ij⟩ − ⟨ij| v̂2 |ji⟩) (2.30)

which, when compared to eq 2.18, leads to

EHF =
N∑

i=1
εi −

1
2

N∑
i=1

N∑
j=1

(⟨ij| v̂2 |ij⟩ − ⟨ij| v̂2 |ji⟩)︸ ︷︷ ︸
⟨Vee⟩HF

(2.31)

that highlights the important fact that the HF energy is not equal to the sum of the
orbital energies. An additional term should indeed correct for the double-counting of
the mean-field interaction ⟨Vee⟩HF in the one-electron eigenvalues.

Formally, the HF method scales as O(N4) with the number of electrons due to the
evaluation of the two-electron integrals. The main approaches for solving the HF
equations in eq 2.28 are either purely numerical (exact HF) or rely on a set of basis
functions that define the algebraic framework in which operations on matrices will
operate (Hartree-Fock-Roothaan equations).13 In both cases, direct diagonalization of
the Fock operator cannot be performed, as it depends itself on the orbitals. Instead, an
iterative process is employed. Initially, a guess for the orbitals is made, and these are
then used to construct the Fock operator. Equations 2.28 are solved for this guess, pro-
viding new solution orbitals to be compared with the guess. This process is iteratively
repeated until solution orbitals are consistent with those defining the Fock operator,
which gives the HF method its name as a self-consistent-field (SCF) approach.

2.2.2 Electron correlation

In the previous section, we saw how the HF ansatz for the wavefunction, coupled to
the variational principle, leads to an upper bound of the exact ground state energy
E0. In practice, it appears that the HF theory gives insufficient flexibility in the wave-
function to recover exact energies accurately. From the fact that HF is a mean-field
approximation, it fails to explicitly account for electron correlation effects, which arise
from the complex and dynamic interactions between electrons. As a consequence, the
electron correlation energy Ec is thus formally defined as being the energy missing
between the exact energy and the HF energy

Ec = E0 − EHF (2.32)

The consideration of electron correlation is crucial to accurately describe the electronic
structure of molecules and solids. Although the HF approximation accounts for the
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exact exchange, it completely ignores the correlation energy due to the form of its
many-body ansatz for the wavefunction: a single Slater determinant. To go beyond the
HF approximation and incorporate electron correlation effects, various post-Hartree-
Fock methods have been developed (Section 2.2.4) and employ more sophisticated
trial wavefunctions. Examples include configuration interaction (CI) methods, coupled
cluster (CC) methods, and multi-reference methods, among others.13 In these, the
electronic wavefunction is expanded as a linear combination of Slater determinants,
or as an exponential series, that enables more flexibility for the description of electron
correlation. The CI method, for example, includes multiple determinants to capture
the contributions of different electron configurations. The CC method incorporates a
hierarchy of excitations from the HF reference determinant. These methods aim to
systematically improve the accuracy of the wavefunction by including higher-order
correlation contributions, that may address different types of correlation effects. In-
deed, correlation can be conceptually divided into static and dynamic origins. Static
correlation arises when multiple electronic configurations (Slater determinants) con-
tribute significantly to the ground state wavefunction. This typically occurs in cases
involving near-degeneracies or strong electron-electron correlation effects that require
so called multi-reference methods. Static correlation relates to the improvement in the
energy accuracy when expanding the wavefunction in the configuration (determinant)
space. Dynamic correlation, on the other hand, refers to the dynamical motion of
electrons and their response to changes in the electronic environment. It involves
the correlation effects arising from electron-electron reorganization during molecular
excitations and reactions and is therefore essential for accurately describing molecular
properties such as bond dissociation, reaction barriers, and spectroscopic properties.

There are three main lines of research to achieve the holy grail of correlation energy
calculation in wavefunction-based methods. The first resides in finding the optimal
combination of Slater determinants (CI-like). The second introduces explicit terms in
correlated wavefunction ansatz to recover most of the correlation energy (e.g., varia-
tional quantum Monte Carlo).26 And the last treats the HF theory as a starting point
for perturbation theory. This thesis focuses precisely on the latter. Finally, it should
be remembered that the numerical solution of the electronic problem relies on basis
functions (Section 3.1) which themselves have an impact on the accuracy of the energy
if they do not cover the Hilbert space automatically and completely. Therefore, to
obtain the exact absolute ground state energy E0 of a system, the energy EHF and the
correlation energy Ec in eq 2.32 would have to be calculated in the complete basis set
limit.

2.2.3 Rayleigh–Schrödinger perturbation theory

Generally, the HF approximation already covers a major part of the total electron
energy that makes it a good starting point for a perturbative approach.127 Let us define
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Ĥ0 which is the reference Hamiltonian of a problem for which the exact solution is
known and for which the wavefunction is non-degenerate:

Ĥ0Φ(0)
i = E

(0)
i Φ(0)

i i = 0, 1, ...,∞ (2.33)

Let us assume now that we want to solve a more complex problem whose Hamiltonian
Ĥ differs slightly from Ĥ0 so that

Ĥ = Ĥ0 + λ∆Ĥ (2.34)

where the parameter λ has been introduced in order to control the time-independent
perturbation ∆Ĥ . For λ = 0, the problem is the unperturbed reference while the full
perturbed Hamiltonian stands for λ = 1.

The solution of the perturbed Hamiltonian is then given by

ĤΦi = EiΦi i = 0, 1, ...,∞ (2.35)

With this, the new energy and wavefunction should change continuously as the per-
turbation is increased, that is when λ varies from 0 to 1. This consequently allows the
following Maclaurin expansions:

Ei = λ0E
(0)
i + λ1E

(1)
i + λ2E

(2)
i + λ3E

(3)
i + ... (2.36)

Φi = λ0Φ(0)
i + λ1Φ(1)

i + λ2Φ(2)
i + λ3Φ(3)

i + ... (2.37)

Since these expansions hold for any value of λ, one can insert them in eq 2.35 and
equating the various powers of λ. Since the overall phase of the wavefunction is
undetermined in quantum mechanics, it is convenient to choose the perturbed wave-
function so that ⟨Φi|Φ(0)

i ⟩ = 1. This has the consequence that all correction terms are
orthogonal to the reference wavefunction ⟨Φ(n̸=0)

i |Φ(0)
i ⟩ = 0. The zero-order logically

gives the unperturbed wavefunction and energy:

E
(0)
i = ⟨Φ(0)

i | Ĥ0 |Φ(0)
i ⟩ (2.38)

At first-order, the correction to the energies is the expectation value of the perturbation
in the unperturbed eigenstates:

E
(1)
i = ⟨Φ(0)

i |∆Ĥ |Φ
(0)
i ⟩ (2.39)

while the correction to the second-order starts to involve the first-order correction to
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the eigenstates:

E
(2)
i = ⟨Φ(0)

i |∆Ĥ |Φ
(1)
i ⟩ =

∞∑
j ̸=i

| ⟨Φ(0)
i |∆Ĥ |Φ

(0)
j ⟩ |2

E
(0)
i − E(0)

j

(2.40)

In order to get an expression for |Φ(1)
i ⟩, this latter was expanded in the complete set of

orthogonal functions given by the reference solution {Φ(0)
i }∞i=0 to finally get

|Φ(1)
i ⟩ =

∞∑
j ̸=i

⟨Φ(0)
j |∆Ĥ |Φ

(0)
i ⟩

E
(0)
i − E(0)

j

|Φ(0)
j ⟩ (2.41)

from the first-order equations in λ. This is known as the Rayleigh-Schrödinger pertur-
bation theory. The same recursive logic can be continued in order to get higher-order
corrections to the eigenstates and energies but analytical expressions become horribly
complex. It must be emphasized that the solution to the perturbed system will depend
a lot on the perturbation, the quality of the reference problem, and the convergence
properties of the expansion.

2.2.4 Post-Hartree-Fock methods

Second-order Møller-Plesset perturbation theory

When aiming to faithfully recover the electron-electron correlation, a reasonable guess
would be to consider the HF problem as a non-interacting reference system for a
perturbation theory. While possible in principle, there is no guarantee that the method
converges fast or even monotonically to the exact energy. However, the advantage of
the HF approximation is that it can generally account for between 80% to 99% of the
exact energy which therefore makes it a good starting point that shows small deviations
with respect to the perturbed Hamiltonian.

Based on the Rayleigh-Schrödinger perturbation theory, the Møller-Plesset pertur-
bation theory21 takes as reference Hamiltonian Ĥ0 the sum over single-particle Fock
operators (eq 2.23) that writes

Ĥ0 =
N∑

i=1
F̂ (i) =

N∑
i=1

ĥ1(i) +
N∑

i=1

N∑
j=1

(
Ĵj(i)− K̂j(i)

)
(2.42)

so that the perturbation is given by the difference between the full electronic Hamilto-
nian (eq 2.15) and such HF terms:

∆Ĥ = Ĥe − Ĥ0 =
N∑

i<j

v̂2(i, j)−
N∑

i=1

N∑
j=1

(
Ĵj(i)− K̂j(i)

)
(2.43)
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Resorting to eq 2.38, the zeroth-order wavefunction is nothing else than the HF determi-
nant, that we choose in the canonical basis (eq 2.28) in order to write the zeroth-order
energy as a sum over eigenvalues of the orbitals

E
(0)
MP =

N∑
i=1
⟨ΦHF| F̂ (i) |ΦHF⟩ =

N∑
i=1
⟨ϕi| F̂ (i) |ϕi⟩ =

N∑
i=1

εi (2.44)

The first-order energy correction is given by eq 2.39 which, with some small additional
effort,4 translates in the Møller-Plesset approach into

E
(1)
MP = ⟨ΦHF|∆Ĥ |ΦHF⟩ = ⟨Vee⟩HF − 2 ⟨Vee⟩HF = −⟨Vee⟩HF (2.45)

where we had defined

⟨Vee⟩HF =
N∑

i<j

⟨ΦHF| v̂2(i, j) |ΦHF⟩ = 1
2

N∑
i=1

N∑
j=1

(⟨ij| v̂2 |ij⟩ − ⟨ij| v̂2 |ji⟩) (2.46)

as the expectation value of the electron-electron interaction in the HF ground state.
Having that said, it is obtained by comparaison with eq 2.31 that the total energy at
first-order is nothing else than the HF energy

EMP1 = E
(0)
MP + E

(1)
MP =

N∑
i=1

εi − ⟨Vee⟩HF = EHF (2.47)

This implies that the correlation energy is only retrieved when getting to higher orders.
The first non-trivial correction to the HF problem is provided by the second-order
term (MP2) which, according to eq 2.40, involves excited Slater determinants of the
HF ansatz like those appearing in a CI expansion. Fortunately, thanks to Brillouin’s
theorem and the fact that the many-body perturbation ∆Ĥ possesses only two-body
operators, its matrix elements are only non-zero for excited determinants that differ by
no more than two excitations from the HF reference ground state. Those determinants,
that we write |Φab

ij ⟩, are generated by exciting two electrons from the occupied orbital
i,j to the virtual orbitals a, b. With these, the second-order Møller-Plesset perturbation
energy yields

E
(2)
MP =

Nocc∑
i<j

Nvir∑
a<b

| ⟨ΦHF|∆Ĥ |Φab
ij ⟩ |2

EHF − Eab
ij

=
Nocc∑
i<j

Nvir∑
a<b

| ⟨ij| v̂2 |ab⟩ − ⟨ij| v̂2 |ba⟩ |2
εi + εj − εa − εb

(2.48)

where Nocc and Nvir are respectively the number of occupied and virtual orbitals
included in the solution of the HF problem. For closed-shell systems, one can adopt
the restricted case where spin orbitals are occupied by two electrons of opposite spins,
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which transforms the MP2 expression into sums over spatial orbitals

E
(2)
MP, rest =

Nocc∑
i=1

Nocc∑
j=1

Nvir∑
a=1

Nvir∑
b=1

⟨ij| v̂2 |ab⟩ (2 ⟨ab| v̂2 |ij⟩ − ⟨ab| v̂2 |ji⟩)
εi + εj − εa − εb

(2.49)

As a result, the second-order Møller-Plesset perturbation theory approximates the total
energy as the sum of the HF energy and the contribution of the MP2 correlation energy,
that finally writes

EMP2 = EHF + E
(2)
MP (2.50)

MP2 is a common method choice in computational chemistry as it already provides
80-90% of the correlation energy while being the cheapest correlated wavefunction-
based method.16 Geometries obtained with MP2 are also usually close to higher-level
methods or experiments. Also non-negligibly, MP2 correctly reproduces the−C6/R

6

behavior of dissociation curves of van der Waals systems at large distance R, meaning
that it reliably accounts for long-range dispersion effects. This is partly responsible
for the good accuracy of double-hybrid DFT functionals that incorporate a fraction
of the Kohn-Sham MP2 correlation (Section 2.3.2). Such a description of dispersion
is typically absent in HF and in most lower-level purely local DFT approaches (LDA,
GGA),128 as illustrated in Figure 2.1. For supposedly more accuracy, one could of course
go to higher orders in the perturbation expansion (MP3, MP4, ..., MPn). However, the
MPn approach is not variational and has no monotonic convergence to the exact
energy when going to higher orders. Another possible limitation of the Møller-Plesset
perturbation theory is the foundation on the HF problem. In case the HF solution is too
far from the exact solution of the perturbed Hamiltonian, the perturbation expansion
will require more terms to be accurate, or may not converge at all. Furthermore, if the
systems investigated require more than a single Slater determinant in the wavefuntion
(e.g., in transition metals, superconductors or transition metal oxides), the HF reference
will fail at providing a reliable starting point. In this situation, multi-reference MP
techniques should be used (e.g., CASPT2).

Resolution of the identity and density fitting

The most time consuming part of the MP2 method is the evaluation of two-electron
four-index integrals of the type ⟨ij| v̂2 |ab⟩ entering the MP2 correlation energy expres-
sion. A solution to speed up this step consists of reducing these integrals to three
indices with the help of an auxiliary orthonormal basis set {χ′α}M

′
α=1 and the resolution

of identity (RI)

1 ≃
M ′∑

α=1
|χ′α⟩⟨χ′α| (2.51)

that remains an approximation for a finite basis set of size M ′. Introduced in front of
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2.2 Wavefunction-based methods

Figure 2.1: Interaction energy as a function of the distance between two trans-polyacetylene
chains as predicted by the Hartree-Fock, PBE DFT functional (GGA), and MP2 method. Repro-
duced from ref [129] under the terms of the CC-BY 4.0 License.

the two-electron operator, this yields the new expression

⟨ij| v̂2 |ab⟩ =
M ′∑

α=1
⟨ij|χ′α⟩⟨χ′α| v̂2 |ab⟩ (2.52)

that reduces the scaling with respect to the number of basis functions by an order
since it involves the product of three-index integrals only. This can also be viewed as
the projection of the (pair) density distribution onto the auxiliary basis set that can be
carefully chosen for this purpose, the reason why computational chemists refer to this
approach as RI or density fitting (DF).130–132 The approximation made with the finite
basis of the RI is usually compensated when calculating relative energies and permits
appreciable speedups.

Laplace transformation and stochastic orbitals

The difference of eigenvalues in the denominator of the MP2 correlation energy is
an issue when it comes to using other than canonical orbitals (because those would
require a non-canonical formulation of MP2). Almlöf had the idea to circumvent this
with a Laplace transform (LT) technique.133 In this way, the denominator of eq 2.48
can be rewritten as

1
εi + εj − εa − εb

= −
∫ ∞

0
dτ e(εi+εj−εa−εb)τ (2.53)

which, by redefining “time-dependent” orbitals ϕi(τ) = ϕi exp(1
2εiτ) and ϕa(τ) =
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ϕa exp(−1
2εaτ), yields a new expression for the MP2 correction

E
(2)
MP =

∫ ∞
0

dτ
Nocc∑
i<j

Nvir∑
a<b

| ⟨i(τ)j(τ)| v̂2 |a(τ)b(τ)⟩ − ⟨i(τ)j(τ)| v̂2 |b(τ)a(τ)⟩ |2 (2.54)

This allows the computation of the MP2 energy with orbitals obtained from appropriate
rotations since the new integrand in eq 2.54 is now invariant under unitary transfor-
mations. In practice, the integral over τ is achieved through numerical quadrature,
that requires a small number of grid points of the order of 10 τ-evaluations. Thanks to
this, the scaling can be reduced fromO(N5) toO(N4) at the price of a prefactor with
reasonable computational overhead.121,131

A further extension of the concept used in the LT-MP2 method is the idea of introducing
stochastic orbitals. These are defined as linear combinations of the canonical orbitals
with random expansion coefficients that are iteratively optimized with Monte Carlo-
like methods. Chemical accuracy with respect to the exact MP2 can be reached after
a sufficient number of stochastic samples. Neuhauser et al. developed a stochastic
method that is faster than the conventional approach for large systems with close
to linear scaling.134 More recently, developers of the VASP code combined stochastic
orbitals with LT-MP2 to get close to cubic scaling for a fixed absolute statistical error,
while linear scaling was reached for a fixed relative error per valence orbital.76 However,
if high MP2 accuracy is required, the sample variance prevents the improvement in
performance. Indeed, the sampling error decreases as 1/

√
Ns with the number of

samples Ns, so that a very large amount of samples might be required to achieve
accurate statistical estimates.

Configuration interaction

Configuration interaction (CI) is conceptually the simplest post-HF method. It relies
on configurations, that are different occupational distributions of the electrons among
molecular orbitals. In CI, the molecular orbitals are taken from a HF calculation and
held fixed (except for multi-configurational methods like CASSCF and MRCI). The
different configurations are represented by Slater determinants, that when expanded
as a linear combination define the CI wavefunction. Thus, let |ΦHF⟩ be the HF reference
determinant, the CI wavefunction then writes

|ΦCI⟩ = c0 |ΦHF⟩+
∑
i,a

ca
i |Φa

i ⟩+
∑

i<j,a<b

cab
ij |Φab

ij ⟩+
∑

i<j<k,a<b<c

cabc
ijk |Φabc

ijk⟩+ . . . (2.55)

where the c coefficients are called the CI coefficients that correspond to the various de-
terminants. |Φa

i ⟩ represents the configuration obtained from |ΦHF⟩with the excitation
of an electron from orbital i to orbital a, |Φab

ij ⟩ represents double excitations from i to a
and j to b, and so on. The dots indicate higher excitations. In practice, the maximum
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size of the CI expansion is determined by the number of molecular orbitals resulting
from the HF calculation (that in turn depends on the size of the basis used to solve the
HF problem). In case the HF problem with N electrons results in M spatial molecular
orbitals, a maximum number of

(2M
N

)
configurations can be generated from |ΦHF⟩. The

CI method is called full-CI (FCI) if all excited determinants are considered in the CI
wavefunction. Truncated CI refers to the truncation of the expansion in practical use,
at for example singly (CIS), doubly (CISD), or triply (CISDT) excited configurations.

The goal of CI is to find the coefficients c that minimize the variational energy

ECI = ⟨ΦCI| Ĥe |ΦCI⟩
⟨ΦCI|ΦCI⟩

(2.56)

Minimizing ECI in a manner analogous to the HF energy (eq 2.22) leads to the CI
Schrödinger equations, that can be reformulated as the matrix problem∑

J

HIJcJ = ECIcJ (2.57)

where HIJ = ⟨ΦI |Ĥe|ΦJ⟩ are the respective Hamiltonian matrix elements, cJ are the
CI coefficients, and ECI is the CI ground state energy. The Hamiltonian matrix takes a
specific form, with many elements being zero due to the Brillouin’s theorem and the
Slater-Condon rules.13 However, the Hamiltonian matrix in the CI basis becomes very
large due to the factorial increase in the number of possible Slater determinants. This
applies to all but the smallest systems, truncation orders or basis set sizes, that makes
CI calculations very time-consuming in practice.

Coupled-cluster method

As an alternative post-HF approach, the coupled-cluster (CC) method provides a
systematic and rigorous way to include electron correlation effects of many-body
systems. In the CC method, the electronic wavefunction is expressed as an exponential
ansatz that again builts upon the HF wavefunction:

|ΦCC⟩ = eT̂ |ΦHF⟩ (2.58)

where |ΦHF⟩ represents the reference determinant, and T̂ is the excitation operator.
The exponent of the operator T̂ is defined by the Taylor series

eT̂ =
∞∑

n=0

1
n!
(
T̂
)n

(2.59)
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and the total excitation operator can be further divided into

T̂ =
∞∑

n=1
T̂n (2.60)

where each T̂n represents the n-th order of electron excitations. In practical calcula-
tions, truncation is made at a certain excitation level to approximate the full exponen-
tial ansatz. For example, at first order, the operator

T̂1 =
∑
i,a

tai T̂
a
i (2.61)

represents all single excitations with T̂ a
i acting as the electron-wise excitation operator,

T̂ a
i |ΦHF⟩ = |Φa

i ⟩. Similarly, for double excitations, one has

T̂2 =
∑

i<j,a<b

tab
ij T̂

ab
ij (2.62)

with T̂ ab
ij |ΦHF⟩ = |Φab

ij ⟩. In CC, the truncation only refers to the total excitation operator
T̂ (eq 2.60) but not to the exponential expansion in eq 2.59. The amplitudes tai , tab

ij ,...
appear as the CC coefficients to optimize with respect to the energy. The Schrödinger
equation can be rewritten using the CC ansatz:

Ĥee
T̂ |ΦHF⟩ = ECCe

T̂ |ΦHF⟩ (2.63)

where Ĥe is the electronic Hamiltonian operator andECC is the energy eigenvalue. The
ground state energy can be obtained by projecting the Schrödinger equation onto the
left with the bra ⟨ΦHF|:

⟨ΦHF|Ĥee
T̂ |Φ⟩ = ECC⟨ΦHF|eT̂ |ΦHF⟩ (2.64)

Since eT̂ |ΦHF⟩ = (1 + T̂ + 1
2 T̂

2 + . . . )|ΦHF⟩ =|ΦHF⟩+ T̂ |ΦHF⟩+ 1
2 T̂

2|ΦHF⟩+ . . . , all terms
except for the first one cancel out due to their orthogonality with the ΦHF reference.
Consequently, the ECC variational energy reads

ECC = ⟨ΦHF|Ĥee
T̂ |Φ⟩ (2.65)

The CC method therefore provides a systematic description of electron correlation
effects by expanding the electronic wavefunction as an exponential ansatz and solving
the resulting Schrödinger equation. In principle, once the ansatz is decided, the ground
state energy can be evaluated by optimizing the amplitudes t in a non-variational way
by resorting to iterative or projection methods. The CCSD(T) method that includes all
single and double excitations and triples in a perturbative manner is generally consid-
ered as one of the gold standard methods for reaching chemical accuracy in electronic
structure theory. However, its cost makes it impractical for systems containing more
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than a few tens, maximum a hundred, electrons.

2.3 Density functional theory

Over the last 60 years, density functional theory (DFT) has become a very powerful
and widely used approach in first-principles calculations, be it for properties of ma-
terials or molecules,15,16,23,28,30 due to the ability to provide a good trade-off between
computational efficiency and accuracy. Thanks to DFT, the theoretical simulations
of systems with hundreds or even thousands of atoms have been made possible. At
the same time, DFT is in general fairly accurate (not as good as CI or CC) for e.g. bond
lengths (1-2%) and energies (several kcal/mol). It performs also well with pronounced
electron correlation effects such as in transition metals. Historically, DFT has been
developed in parallel to the ongoing efforts on wavefunction-based methods, with
the idea that the fundamental quantity to treat the many-body problem is instead the
electron density

ρ(r) = N
∫

Φ∗e(r, r2, r3, ..., rN )Φe(r, r2, r3, ..., rN ) dr2...drN (2.66)

where N is a normalization constant that ensures the correct number of electrons
N =

∫
ρ(r)dr in the system. Major computational advantages of DFT reside in the

fact that it deals with the 3-dimensional real density rather than the 3N-dimensional
many-electron wavefunction.

In 1964, Hohenberg and Kohn established two fundamental theorems concerning the
ground state of an interacting electron gas in an external potential vext(r).135 The first
theorem states that the total electron density ρ(r), up to a constant, uniquely defines
the external potential

ρ(r)→ vext(r) (2.67)

Consequently, as the external potential in turn completely determines the Hamilto-
nian, this implies that also the many-electron ground state wavefunction is a unique
functional of the electron density. Therefore, there exists a unique functional F [ρ] such
that the energy E of the electron system, subject to the potential vext(r), is given by

E[ρ] = ⟨Φe[ρ]|T̂e + V̂ee|Φe[ρ]⟩+
∫
ρ(r)vext(r)dr = F [ρ] +

∫
ρ(r)vext(r)dr (2.68)

where Φe[ρ] denotes the ground state wavefunction of the N-electron interacting
system with the external potential determined by ρ(r).

The second theorem establishes the variational principle for the energy functional. It
states that any trial density ρtrial that is not the true ground state density ρ0 will lead to
an energy expectation value E[ρtrial] that is greater than the true ground state energy
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E[ρ0]. That is, the density minimizing the total energy corresponds to the ground state
density

E0 = min
ρ→N

(E[ρ]) = E[ρ0] ≤ E[ρtrial] (2.69)

The Hohenberg-Kohn theorems therefore state the existence of a functional

F [ρ] = ⟨Φe[ρ]|T̂e + V̂ee|Φe[ρ]⟩ = Te[ρ] + Vee[ρ] (2.70)

that can be separated into kinetic Te[ρ] and potential Vee[ρ] contributions. Since F [ρ] is
independent of the external potential, it is universal over all electron systems. Having
at hand the expression for the variational energy in eq 2.68, the DFT problem can
be solved “à la HF” following the Euler-Lagrange equations to minimize the energy,
leading to

δF [ρ]
δρ(r) + vext(r) = µ (2.71)

where µ appears from the Lagrange multipliers constraining the number of electrons,
and is identified as the chemical potential of the interacting system.28 As a conse-
quence, eq 2.71 demonstrates that the external potential vext(r) and the number of
electronsN are the unique ingredients needed to completely define the quantum prob-
lem in exact DFT. Unfortunately, the curse of exact DFT lies in the fact that the universal
functional F [ρ] is unknown and no reliable scheme has so far provided conclusive and
transferable accuracy.

Earliest efforts in the 1920s, even before the formulation of the Hohenberg-Kohn
theorems, aimed to develop an expression for the energy as a functional of the electron
density, which included contributions from kinetic, external, and electron-electron
interactions. Among these terms, the most challenging aspect is the determination of
the kinetic energy contribution, that can be seen as obtaining the second derivative of
the wavefunction from the charge density. Consider a plane wave solution, such as that
of a free electron, where the density is uniform in space (ρ = 1/V , with V representing
the volume). In this case, the kinetic energy is 1

2k2. This example highlights the
difficulty in establishing a direct relationship between the density and kinetic energy,
as the constant density ρ appears to have lost any information regarding the kinetic
energy. Despite the fact that electronic wavefunctions can possess both long and
short wavelengths, such variations do not manifest in the density alone. Thomas and
Fermi proposed an approximation to address this challenge by assigning the kinetic
energy density at each point in space to be equivalent to the kinetic energy density of a
non-interacting uniform electron gas (UEG).136,137 This approximation was based on
the assumption that the electron density varies slowly in space, and marked the first
inception of a local density approximation. Generalizing to inhomogeneous systems,
and treating the electron-electron interactions classically, the Thomas-Fermi model
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results in

ETF[ρ] =
∫
τUEG(ρ(r))dr + 1

2

∫∫
ρ(r)ρ(r′)
|r− r′| drdr′ +

∫
ρ(r)vext(r)dr (2.72)

where
τUEG(ρ(r)) = 3

10(3π2)2/3ρ(r)5/3 (2.73)

is the kinetic energy density of the UEG. Few years later, Dirac proposed to add some
consideration of electron exchange effects into eq 2.72, derived again for the UEG, that
led to the Thomas-Fermi-Dirac (TFD) model138

ETFD[ρ] = ETF[ρ]− 3
4(3/π)1/3

∫
ρ(r)4/3dr (2.74)

While providing first functional expressions for the energy, the Thomas-Fermi model
and its extensions are not accurate enough to describe the electronic structure of inho-
mogeneous systems. Particularly, the Thomas-Fermi model is incapable of describing
chemical bonding. As a bridge towards the construction of more accurate functionals
to approximate the exact F [ρ], the Kohn-Sham formalism of DFT has emerged as the
mainstream approach. This formalism employs orbitals to represent the electron den-
sity. It is worth mentioning that research efforts are still ongoing in the development
of density functionals that remain orbital-free within the framework of orbital-free
DFT.139 However, the discussion of orbital-free DFT approaches is beyond the scope
of this thesis.

2.3.1 Kohn-Sham density functional theory

While the Hohenberg-Kohn theorems established the existence of a density functional,
they did not provide its universal expression, nor a practical way to handle it. In 1965,
Kohn and Sham (KS) addressed this issue by introducing a fictitious system of N non-
interacting electrons (described by KS orbitals) that reproduces the exact ground state
density ρ(r) of the physical interacting system.140 Thanks to this fictitious system, the
KS energy ansatz takes the following form

EKS[ρ] = TS [ρ] + 1
2

∫∫
ρ(r)ρ(r′)
|r− r′| drdr′ +

∫
ρ(r)vext(r)dr + Exc[ρ] (2.75)

with TS [ρ] being the kinetic energy of the KS system. For such a non-interacting system,
the KS many-electron wavefunction can be expressed as a Slater determinant ΦS

composed of molecular orbitals ϕi(r) such that

TS [ρ] = ⟨ΦS |
N∑

i=1
−1

2∇
2
i |ΦS⟩ =

N∑
i=1

∫
ϕ∗i (r)

(
−1

2∇
2
i

)
ϕi(r)dr (2.76)
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where the functional dependence in ρ is realized by the link between the KS orbitals
and the density

ρ(r) =
N∑

i=1
|ϕi(r)|2 (2.77)

The last term in eq 2.75 is the exchange-correlation functional and accounts for the
energy difference between the exact functional F [ρ] and the new constituents ofEKS[ρ]:

Exc[ρ] := F [ρ]−TS [ρ]−1
2

∫∫
ρ(r)ρ(r′)
|r− r′| drdr′ = Te[ρ]−TS [ρ]+Vee[ρ]−1

2

∫∫
ρ(r)ρ(r′)
|r− r′| drdr′

(2.78)
Therefore, Exc[ρ] includes both the kinetic energy difference between the interacting
and fictitious systems, and the difference between the exact electron-electron interac-
tion and their classical Coulomb counterpart. By analogy with the HF problem, the
exchange-correlation energy is perceived as covering two quantum components of the
interacting system

Exc[ρ] = Ex[ρ] + Ec[ρ] (2.79)

that are respectively the exchange (x) and correlation (c) effects. In wavefunction-
based theories, the correlation energy is defined as the difference between the exact
and the HF energy (Section 2.2.2). In KS-DFT, in contrast, the correlation energy Ec

is given by the difference between the total energy EKS and the sum of kinetic, direct
and exchange Coulomb terms. Since the exchange operator is usually local in KS-DFT,
and the exchange-correlation functional also accounts for the fictitious system, the
concept of correlation energy in KS-DFT differs from the one in wavefunction-based
methods.

Having set the new KS functional expression (eq 2.75), the variational principle can be
applied in order to determine the orbitals, thus the density, that minimize the energy.
The Euler-Lagrange minimization of EKS with respect to the KS orbitals ϕi(r) provides
the KS equations to be ultimately solved:{

−1
2∇

2
i + vext(r) +

∫
ρ(r′)
|r− r′|dr′ + δExc[ρ]

δρ(r)

}
ϕi(r) = εiϕi(r) (2.80)

The KS formalism of DFT thus maps the electronic Schrödinger equation for the
ground state energy to a set of N single-electron Schrödinger equations that is exact in
principle. Having said that, however, the main challenge in KS-DFT calculations finally
resides in the consideration of the exchange-correlation energy Exc[ρ] that appears in
eq 2.80, for which exact formulations remain unknown. The next section discusses the
approximations available to treat Exc[ρ] in practice.
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2.3.2 Density functional approximations

The development of density functional approximations (DFAs) has been at the fore-
front of research over the last decades, highlighted by the proposal of more than
several hundreds of DFAs since the 1990s.141 Such a large number of DFAs not only
demonstrates the challenges in establishing the correct universal exchange-correlation
functional but also the system and property-dependent character of suitable approxi-
mations. As a categorization of the plethora of DFAs, Perdew proposed the concept of
Jacob’s ladder illustrated in Figure 2.2, which defines a hierarchy among functionals
in terms of the complexity of their ingredients.142 As a very general formulation, the
exchange-correlation functional can be written

Exc[ρ = ρα + ρβ] =
∫
ρ(r)ϵxc[ρα, ρβ](r)dr (2.81)

where ϵxc(r) denotes the exchange-correlation energy density at position r, that is a
functional of the spin-separated densities ρσ=α,β , and therefore encodes all kinds of
mathematical forms appearing in DFAs.

“On the ground level”, i.e. still below the first rung of the ladder, the exchange-correlation
energy is entirely absent in the Kohn-Sham equations (eq 2.80) which is equivalent
to the Hartree problem, i.e. HF (eq 2.28) without exchange. Then, when climbing up
Jacob’s ladder, the functional form of ϵxc(r) gradually becomes more complex. Up to
the third rung (meta-GGA), DFAs are often referred to as semilocal because their ϵxc(r)
are functions (not functionals) of local quantities such as the density ρ, the density gra-
dient∇ρ, or the KS kinetic energy density τ . Semilocal functionals are computionally
very efficient and therefore very popular in electronic structure calculations of large

Figure 2.2: Illustration of Perdew’s Jacob’s ladder that categorizes density functional approxi-
mations.
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molecules, clusters, liquids, and solids. However, their accuracy remains elusive when
complex electron interactions drive the quantum phenomena in the systems under
investiation.

A class of functionals that could potentially lead to higher accuracy includes a fraction
of exact non-local exchange in Exc. Such approximations are called hybrid function-
als and have become standard approach in quantum-chemistry applications. With
these, the realm of the original KS framework (that assumes the existence of a local
exchange-correlation potential) is left, and hybrid functionals are rather formulated
within a generalized KS approach. In the context of molecular systems, these function-
als demonstrate enhanced accuracy in capturing not just atomization energies, but
also ionization potentials and electron affinities. However, certain limitations persist,
such as the occasional failure to achieve the desired level of chemical accuracy and
the absence of a general solution for accounting for all van der Waals interactions.
Nonetheless, the incorporation of exact exchange unequivocally represents an im-
provement, holding significant potential for addressing these challenges and proving
beneficial in various scenarios. When employed in semiconductors and insulators,
hybrid functionals offer notable advantages over semilocal functionals. They yield
improved descriptions of structural parameters, resulting in values that align closer
to experimental observations. Additionally, hybrid functionals consistently provide
electronic band gaps that are systematically larger than those obtained using semilocal
functionals, leading to enhanced agreement with experimental data.143 However, incor-
porating exact exchange into calculations incurs a significantly higher computational
cost that exceeds that of semilocal functionals by up to an order of magnitude with
atom-centered basis sets,144 and up to two orders of magnitude with plane waves.45,145

Nevertheless, there is growing interest in such calculations as computational resources
continue to increase.

At the last rung of Jacob’s ladder are so called rung-5 functionals which explicitly
take into account the virtual orbitals, contrary to hybrids which use only the occu-
pied orbitals. Rung-5 functionals combine elements of hybrid functionals, which
include a fraction of exact exchange, and correlation functionals coming either from
post-HF considerations or the random phase approximation (RPA), with the aim to
improve the accuracy of electronic structure calculations. These have been shown
to provide improved accuracy for a wide range of molecular properties, including
thermochemistry, reaction energies, and noncovalent interactions. However, due to
their increased complexity, they are computationally even more demanding than the
hybrid functionals.

In 2011, Goerigk and Grimme conducted a thorough energy benchmark study of
various density functionals.146 They used an extensive test set that contains data
for assessing performance on general main group thermochemistry, kinetics and
noncovalent interactions. As a quantitative confirmation of the concept of Perdew,
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their results, reproduced in Figure 2.3, demonstrated that the average accuracy of
functionals is indeed increasing when climbing up Jacob’s ladder, with double-hybrid
functionals being among the best performing functionals to date.

Next, I will delve into more details about the various rungs of Jacob’s ladder. However, it
is important to reiterate the ongoing challenges associated with the usage and develop-

Figure 2.3: Quantitative illustration of the improvement in accuracy when climbing up Jacob’s
ladder. a) Weighted total mean absolute deviation (WTMAD) achieved against test data, shown
per functional. b) Average WTMAD achieved per rung of the Jacob’s ladder. All functionals were
combined with the DFT-D3 correction.147 Used with permission of Royal Society of Chemistry,
from ref [146]; permission conveyed through Copyright Clearance Center, Inc.
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ment of DFAs. First, one of the challenges in KS-DFT is the vast number of functionals
available, each with its own set of approximations and (sometimes empirical) param-
eters. This makes it difficult to choose the most appropriate functional for a given
system. Additionally, there is a trade-off between performance and generality, as func-
tionals that perform particularly well for one type of system may not generalize well to
others. Ideally, each level of approximation on Jacob’s ladder should provide a general
accuracy that consistently outperforms lower rungs. However, there is currently no sys-
tematic way to derive such approximations or universal rules to assess their reliability.
In fact, from simple considerations up to highly sophisticated mathematical formu-
lations, formal properties of the exact Exc are known such as e.g., coordinate scaling
relations, exact conditions for one-electron systems to remove the self-interaction er-
ror, piecewise linearity, spin scaling relation, and lower bounds.20,30,148 In this context,
a promising strategy to improve the reliability and accuracy of DFAs therefore relies on
satisfying exact constraints and norms when developing new exchange-correlation
functionals.149

Local density approximation

In a generalization of the Thomas-Fermi model, the local density approximation (LDA)
relies on the assumption that contributions to the total energy can be divided into local
volume elements.140 Supposing that the electron density is slowly varying in space,
this latter can be seen as uniform over infinitesimal volume elements. The energy is
thus obtained by integrating over local contributions for which the energy density is
provided by that of the UEG. In LDA, therefore, the approximate exchange-correlation
energy takes the form

ELDA
xc [ρ] =

∫
ρ(r)ϵUEG

x (ρ(r))dr +
∫
ρ(r)ϵUEG

c (ρ(r))dr (2.82)

where the exchange energy density ϵUEG
x (ρ(r)) = −3

4(3/π)1/3ρ(r)1/3 is known analyt-
ically (eq 2.74)138 and the correlation energy density is typically approximated by
parametrized fits to highly accurate quantum Monte Carlo (QMC) results for the UEG
at different densities.150 Several fittings of QMC data were proposed, leading to differ-
ent LDA approximations. Among these, the analytical form of Vosko, Wilk and Nusair
(VWN),151 and the one of Perdew and Wang (PW92)152 are the most widely used. The
LDA only depends on the value of the density at each point, making it the simplest
and least computationally expensive approximation. Being in general a crude approxi-
mation for real systems, it appears to be surprisingly successful for solids, which can
partly be attributed to the fact that ELDA

xc [ρ] satisfies several formal properties of the
exact exchange-correlation functional. In the case of dimers consisting of closed-shell
atoms and molecules, such as rare gases, the LDA yields an attractive interaction that
resembles the dispersion interaction but this apparent attraction is actually an arti-
fact arising from the approximation made for the exchange term.153 In general, the

40
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LDA often fails to accurately describe systems where the electron density is highly
inhomogeneous.

Generalized gradient approximations

The generalized gradient approximations (GGAs) appear on the second rung of Jacob’s
ladder and take the formal form

EGGA
xc [ρ] =

∫
ρ(r)ϵGGA

xc (ρα(r), ρβ(r),∇ρα(r),∇ρβ(r))dr (2.83)

that makes EGGA
xc [ρ] depend locally on the density and its gradient.154,155 As a working

quantity, the magnitude of the gradient can be included in form of the dimensionless
reduced gradient defined as

xσ(r) = |∇ρσ(r)|
ρσ(r)4/3 (2.84)

or, further rescaled for convenience as

sσ(r) = xσ(r)
2(3π2)1/3 (2.85)

such that sσ(r) is the only gradient-based quantity remaining in the functional:

EGGA
xc [ρ] =

∫
fx(ρα(r), ρβ(r), sα(r), sβ(r))dr +

∫
fc(ρα(r), ρβ(r), sα(r), sβ(r))dr (2.86)

where fx and fc describe the exchange and correlation contributions. Due to the exact
condition that the exchange part must obey under scaling of the density (the UEG
limit), this latter can be re-expressed as

EGGA
x [ρ] =

∫
ρ(r)ϵUEG

x (ρα(r), ρβ(r))Fx(sα(r), sβ(r))dr (2.87)

where Fx is the so-called exchange enhancement factor. From this general form,
multiple GGA approximations have been designed, differing in the enhancement
factor Fx and the correlation approximation fc(ρ, s).

For example, the BLYP GGA functional was built by merging the B88 exchange func-
tional that has the form155

FB88
x (sα(r), sβ(r)) = 1− β

ϵUEG
x (ρ(r))ρ(r)

∑
σ=α,β

(ρσ)4/3 (2(3π2)1/3)2s2
σ

1 + 6β(2(3π2)1/3)sσ sinh−1((2(3π2)1/3)sσ)
(2.88)

with the LYP analytical correlation functional based on a correlated wavefunction
expression for the helium atom, developed earlier by Colle and Salvetti in 1975.156

GGAs rely on empirical parameters, like for instance the parameter β = 0.0042 a.u. in
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eq 2.88 that was determined by fitting the exchange energy of six rare gas atoms.

The advancement of reliable GGA functionals marked a significant milestone in the
progress of KS-DFT. With GGA, reasonable results could be achieved for various molec-
ular systems, and structural predictions based on GGA are typically highly accurate.
However, the performance of GGA functionals for energy-related quanities, such as
thermochemical properties, can be unreliable or even subpar, although they do show
significant improvements compared to LDA. Predictions of reaction enthalpies are
often unreliable, and barrier heights are consistently underestimated, sometimes to a
significant degree. Nevertheless, there are cases where GGA predictions demonstrate
unexpected accuracy, possibly benefiting from error compensation.

Meta-GGA

A rather straightforward extension of the GGA formalism consists of including knowl-
edge about the second density derivatives into the functional, leading to the develop-
ment of meta-GGAs. Those functionals at the third rung of Jacob’s ladder include the
second derivative information via the kinetic energy density

τ(r) = 1
2

N∑
i=1

ϕ∗i (r)∇2ϕi(r) (2.89)

and thus take the general form (with implicit consideration of spins)

EmGGA
xc [ρ] =

∫
ρ(r)ϵmGGA

xc (ρ(r),∇ρ(r), τ(r))dr (2.90)

Thanks to the presence of the higher-order derivatives, meta-GGA possibly lead to
better consideration of the chemical environment. In fact, the kinetic energy density
carries more chemical information that makes meta-GGA approximations able to sat-
isfy more DFT exact constraints than GGAs.157 Over the past two decades, numerous
meta-GGAs have been proposed using both non-empirical and empirical approaches.
Some of the most popular are those of the Minnesota family,101 that despite being
largely empirical provide impressive “accross-the-board” accuracy (see Section 7.3.1
for a description of Minnesota density functionals). In the opposite trend, the SCAN
functional was developed in the spirit of constraining most formal properties of the
exact exchange-correlation functional.149 SCAN satisfies the 17 constraints that are
applicable to meta-GGAs and its remaining parameters were fitted against exact ref-
erence data of some prototypical systems. SCAN was found to outperform most of
the GGA functionals, especially the widely-used PBE, which is quite an outstanding
performance for a functional built entirely on non-empirical criteria.
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Hybrid functionals

The DFAs discussed so far produce a fully local, orbital-independent exchange-correlation
potential, aligning with the original proposal by Kohn and Sham. However, Becke pro-
posed a significant paradigm shift in 1993,158 introducing an empirical approach based
on the adiabatic connection theorem.159,160 The adiabatic connection theorem es-
tablishes a connection between the exact exchange-correlation functional and the
electron-electron interaction. It introduces a parameter λ that represents the coupling
strength between an exactly solvable reference system and the actual interacting sys-
tem. By varying λ, one can explore different levels of exchange and correlation effects,
ranging from pure Hartree-Fock exchange (λ = 0) to the fully interacting system (λ = 1).
The adiabatic connection theorem provides a theoretical foundation for developing
DFAs that gradually incorporate the correct exchange-correlation effects as λ varies. As
a tuning of the adiabatic connection towards most accurate models, Becke suggested
incorporating a fraction of orbital-dependent, non-local exchange from Hartree-Fock
theory (eq 2.21) into KS-DFT. This resulted in the development of generalized KS-DFT
with hybrid functionals of the form

Ehybrid
xc [ρ] = λEHF

x [ρ] + (1− λ)E(m)GGA
x [ρ] + E(m)GGA

c [ρ] (2.91)

with the exact exchange given by

EHF
x [ρ] = −1

2

N∑
i=1

N∑
j=1

∫∫
dx1dx2

ϕ∗i (x1)ϕ∗j (x2)ϕj(x1)ϕi(x2)
|r1 − r2|

(2.92)

where x = (r, σ) accounts now for KS spin orbitals.

An illustration of a popular hybrid DFA is the PBE0 functional that takes the form161

EPBE0
xc [ρ] = 1

4E
HF
x + 3

4E
PBE
x + EPBE

c (2.93)

and mixes a portion of exact exchange with the PBE GGA functional. Finally, the B3LYP
functional, widely-used for molecular systems, is based on a somewhat more complex
mixing scheme, namely162

EB3LYP
xc [ρ] = a0E

HF
x + axE

B88
x + (1− a0 − ax)ELDA

x + acE
LYP
c + (1− ac)ELDA

c (2.94)

where the numerical coefficients were optimized to be a0 = 0.20, ax = 0.72 and
ac = 0.81.

Range separation

For molecular systems, the erroneous long-range decay of the LDA and GGA approx-
imations has been identified as a common cause for failures in many cases. The
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Coulomb operator indeed imposes an asymptotic 1/r behavior at large distance that is
not retrieved in semilocal functionals. Notably, the exact long-range decay is beneficial
for describing valence, Rydberg, and charge-transfer excitations in a balanced and
accurate way. As a remedy to the wrong asymptotic behavior, it was proposed to split
the Coulomb interaction between long (lr) and short range (sr), with the long-range
part being treated in an HF manner, akin hybrids. The most common approach to
separate between ranges consists of splitting the Coulomb operator with the error
function163

v̂12 = 1
r12

:= v̂lr,µ
12 + v̂sr,µ

12 = erf(µr12)
r12

+ erfc(µr12)
r12

(2.95)

where r12 = |r1 − r2| and µ is introduced as the range-separation parameter. This
separation enables the adjustment of the percentage of HF exchange as a function of
interelectronic separation. This flexibility allows for the inclusion of 100% exchange
at large interelectronic distances r12, resulting in accurate descriptions of long-range
charge-transfer excitations. At the same time, smaller values of exact exchange can
be incorporated at small and intermediate interelectronic separations, leading to
improved performance for valence and Rydberg excitations. The long-range corrected
(LC) form of a hybrid functional can be therefore written as

ELC
xc [ρ] = EHF,lr

x − ESL,lr
x + ESL

xc = EHF,lr
x + ESL,sr

x + ESL
c (2.96)

where SL denotes a semilocal functional such as a GGA or meta-GGA functional form,
evaluated with the corresponding long-range (short-range) Coulomb interaction. Re-
sorting to range-separated hybrids usually improves the results for ground-state anions
and excited states in the time-dependent DFT formulation.164

Fifth-rung functionals

Even at the hybrid level, chemical accuracy (1 kcal/mol error) is usually not reached. As
a further improvement, the highest rung of Jacob’s ladder contains more sophisticated
functionals that depend not only on the occupied but also on the unoccupied (virtual)
KS orbitals. Two main fifth-rung, or post-HF-based approaches exist, that rely either on
perturbation theory21,56,165–170 or on the adiabatic-connection-fluctuation-dissipation
theorem (ACDFT).130,171–174

Double-hybrid functionals

The double-hybrid functionals extend the hybrids by further mixing the semilocal
correlation functional with the post-HF treatment of the KS reference system. These
latter thus consider the unoccupied KS orbitals to accurately describe the wavefunction
correlation, in addition to occupied orbitals used for exact exchange.57 In the approach
of Görling-Levy (GL), correlation is obtained from second-order Rayleigh-Schrödinger
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perturbation theory applied to the zeroth-order KS non-interacting system58,59 that is

EGL2
c =

Nocc∑
i<j

Nvir∑
a<b

| ⟨ij| v̂2 |ab⟩KS − ⟨ij| v̂2 |ba⟩KS |2
εi + εj − εa − εb

+
Nocc∑
i=1

Nvir∑
a=1

| ⟨i| v̂HF
x − vKS

x |a⟩KS |2
εi − εa

(2.97)

where the first term corresponds to the evaluation of the MP2 energy (eq 2.48) with
the KS orbitals ϕi and eigenvalues εi.21 The second term reflects the second-order
contribution to the correlation energy due to the difference between the non-local HF
exchange potential v̂HF

x and the local, thus multiplicative, vKS
x Kohn-Sham exchange

potential. As such, this second term is much smaller and is most of the time neglected.
In a similar way to the introduction of the exact exchange in hybrid functionals, the
MP2 correlation energy can be included in the correlation functional, leading to the
following functional form for double hybrids

EDH
xc = cxE

HF
x + (1− cx)ESL

x + ccE
MP2
c + (1− cc)ESL

c (2.98)

where SL denotes a semilocal functional such as a GGA or meta-GGA. The coefficients
cx and cc are obtained from fitting to training datasets. For instance, the B2PLYP
functional by Grimme has cx = 0.53, cc = 0.27 with the B88 exchange functional and
LYP correlation functional.56 Since the appearance of B2PLYP, over 75 double-hybrid
functionals have been developed with the aim to further improve accuracy.57 In the
spirit of getting the best out of both worlds wavefunction-based methods and DFT,

Figure 2.4: Quantitative illustration of the improvement in accuracy of double-hybrid func-
tionals (PWPB95-D3175 and DSD-BLYP-D3176) over HF and MP2-based approaches. Shown is
the weighted total mean absolute deviation (WTMAD) achieved by the methods when tested
on Grimme’s database.146 Used with permission of Royal Society of Chemistry, from ref [146];
permission conveyed through Copyright Clearance Center, Inc.
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the double-hybrid functionals usually outperform straightforward wavefunction-only
based MP2 as shown in Figure 2.4.

The success of double-hybrid functionals can be attributed to their strong theoretical
foundation in the form of the GL2 framework, as well as their ability to capture new
physical effects. Just as the exact HF exchange incorporates nonlocal exchange contri-
butions, the correlation energy should also possess inherently nonlocal components.
This is evident in the significant role played by the long-range component for London
dispersion interactions, that standard functionals up to hybrids fail to fully capture. By
incorporating orbital-dependent correlation terms, double-hybrid functionals address
this issue and improve the treatment of long-range correlation effects in molecules.170

Random phase approximation

The random phase approximation (RPA) is another approximation that belongs to
the fifth rung. It derives the correlation energy through the adiabatic-connection-
fluctuation-dissipation theorem (ACDFT)130,171–174 in the field of DFT. Specifically, the
RPA correlation energy is obtained from the dynamical response function of the non-
interacting Kohn-Sham system. The RPA correlation energy ERPA

c is usually combined
with the total exact exchange as provided by a baseline DFT calculation, such that the
total RPA energy is130,174

EEXX+RPA = EHF@SL
x + ERPA@SL

c (2.99)

where the quantities are computed employing the orbitals obtained through a given
semilocal (SL) functional. The EXX and RPA combination is thus often referred as
EXX@SL and RPA@SL with the most common choice for the DFT functional being
PBE (i.e. RPA@PBE). I refer to Section 5.5.3 or ref [120] for the mathematical form of
the ERPA

c correlation functional. Like for double hybrids, the exact exchange plus RPA
(EXX+RPA) approach has emerged as a promising method capable of more accurately
capturing dispersion interactions for achieving better accuracy when predicting van
der Waals binding energies, adsorption energies on surfaces, water properties, or
lattice constants in molecular solids.66,131,177–180

Dispersion corrections

Dispersion interactions, also known as van der Waals or London forces, arise from
the attraction between atoms or molecules due to correlated quantum fluctuations
in their electron densities. In the context of DFT, these interactions are often referred
to as van der Waals (vdW) forces. At long distances, where the overlap between the
electron densities is negligible, the dispersion energy decreases at leading order with
the inverse 6th power of the intermolecular distance R. Standard DFT functionals,
such as local, semilocal, and hybrid functionals, primarily account for electrostatic
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and polarization interactions and cannot accurately capture the 1/R6 behavior of
dispersion. To address this limitation, various approaches have been developed to
incorporate dispersion effects into DFT like resorting to rung-5 functionals as seen
earlier. However, rung-5 functionals are generally so expensive that their application
remains limited. To overcome the difficulty of conventional semilocal and hybrid
functionals without increasing too much computational cost, lots of efforts have
focused in developing vdW corrections on top of semilocal or hybrid DFAs. These are
e.g., the addition of dispersion-corrected atom-centered potentials (DCACPs),181–183

empirical dispersion corrections (-D) (e.g., Grimme’s D2184 and D3147), or non-local
correlation (NLC) terms (e.g., (r)VV10,185–187 vdW-DF,188 TS-vdW189,190) in conjunction
with semilocal functional forms. Among these, the most widely used is probably the so
called DFT-D method,147,184 that is generally given by:

EDFT-D = EDFT −
P∑

I=1

P∑
J>i

C6,IJ

R6
IJ

fdamp(RIJ ; I, J) (2.100)

where the second term represents the dispersion energy, P is the total number of
atoms, C6,IJ is the pairwise dispersion coefficient between atoms I and J , RIJ is the
intermolecular distance between atoms I and J , and fdamp(RIJ ; I, J) is a damping
function that ensures that the correction vanishes between any pair of atoms I and
J when their densities overlap. In more recent developments (-D3 correction147), the
coefficients C6,IJ depend on the chemical environments of the I-J pair, and are there-
fore updated on-the-fly against molecular reference parameters. In addition, terms at
8th order are included (C8,IJfdamp(RIJ ; I, J)/R8

IJ ), along with three-body correction
terms that take the form of Axilrod–Teller–Muto potentials. It follows that two em-
pirical parameters remain to be fitted depending on the initial DFA chosen (three for
double hybrids).146 Overall, dispersion corrected DFAs have allowed many successful
applications with reasonable or even negligible calculation overhead. However, one
should keep in mind that the performance of such corrections ultimately rely on the
original DFA and an ad-hoc addition of dispersion corrections may not always improve,
but may even deteriorate properties.183,191

Through the last sections, I have exposed the variety of ingredients entering in the
definition of DFAs in KS-DFT. As a final summary, I find that Figure 2.5 illustrates
well the different components to remember when choosing, using, or assessing the
performance of a DFA in practice.
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Figure 2.5: Graphical representation of ingredients entering in the definition of most current
density functional approximations. The circle contains the names of density functionals
available in most computational chemistry software. GH stands for global hybrid and RSH for
range-separated hybrids. MB corresponds to different many-body corrections. Reproduced
from ref [141] under the terms of the CC-BY-NC-ND 4.0 License.
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Going numerical - Replacing paper and pen.

In the previous chapter, we presented how the central many-body problem of resolving
the electronic distribution around fixed nuclei can be simplified in a system of N
coupled partial differential equations involving simpler one-electron orbitals, rather
than treating the complete many-body wavefunction. Be it for Hartree-Fock (HF, eq
2.28) in the canonical representation or Kohn-Sham density functional theory (KS-DFT,
eq 2.80), the mathematical problem at hand consequently reduces to the following
eigenvalue equation: {

−1
2∇

2
i + veff(r)

}
ϕi(r) = εiϕi(r) (3.1)

with either

veff(r) = vext(r) +
N∑

j=1

(
Ĵj − K̂j

)
(HF) (3.2)

veff(r) = vext(r) +
∫

ρ(r′)
|r− r′|dr′ + δExc[ρ]

δρ(r) (KS-DFT) (3.3)

The HF and DFT equations are therefore very similar, apart from the explicit inclusion
of the non-local exchange operator K̂ and the absence of correlation in HF. Both
theories include the classical Coulomb potential vJ(r) although expressed differently.
Indeed, from eq 2.24, one has

vJ(r) :=
N∑

j=1
Ĵj =

∫
ρ(r′)
|r− r′|dr′. (3.4)

Furthermore, the external potential vext(r), in the context of this thesis, is nothing
else than the interaction between the electrons and the fixed nuclei in the Born-
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Oppenheimer approximation. This consequently yields

vext(r) = −
P∑

I=1

ZI

|RI − r| . (3.5)

with the respective atomic number ZI and position RI of nuclei I.

As described below, the translation of such equations into a numerical problem is
achieved by resorting to basis sets, ensembles of convenient mathematical functions
that define the basis of the Hilbert space in which single-particle orbitals are projected.

3.1 Basis sets

Basis sets are the numerical pillars for the computational solution of the Schrödinger
equation in the Born-Oppenheimer approximation. Up to now, nothing has been
said about the representation of the one-electron molecular orbitals although they
completely define the problem to be solved, be it HF, KS-DFT or post-HF methods. By
analogy with the linear combination of atomic orbitals (LCAO), or a vectorial space
representation, the spin-dependent ϕi(xj) orbitals can be expanded in a mathematical
basis chosen prior to any calculation:

ϕi(r, σ) :=
M∑

α=1
ciαχα(r)⊗ ⟨σ|S⟩ (3.6)

where the spatial functions χα (r) define the absolute reference frame to work out
the linear algebra machinery that will solve the electronic structure problem. Com-
monly, the spin component is considered explicitly in mathematical expressions con-
taining the orbitals. The spin components are especially tracked when dealing with
spin-polarized systems (e.g. open-shell, unrestricted, magnetic). In the closed shell
approximation, electron pairs occupy the same spatial orbital ϕi(r).

As a choice of a basis set, there exist as many options with their respective advantages
and drawbacks. Among the most widely-used today, those are either based on plane
waves,15,32 atom-centered,13,14 augmented16 or numerical functions.192

For a specific basis set {χα}Mα=1 composed of M basis functions, the insertion of eq 3.6
into eq 3.1 gives rise to the generalized linear eigenvalue problem in the basis that is

M∑
β=1

(Hαβ − εiSαβ) ciβ = 0 ⇐⇒ Hc = ESc (3.7)

where E contains the eigenvalues on its diagonal and the columns of c are the corre-
sponding eigenvectors (coefficients). H is the effective Hamiltonian matrix expressed
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in the basis and S is the overlap matrix that includes integral overlaps between basis
functions:

Hαβ = ⟨χα| −
1
2∇

2 + v̂eff |χβ⟩ =
∫
χ∗α(r)

{
−1

2∇
2 + veff(r)

}
χβ(r)dr (3.8)

Sαβ = ⟨χα|χβ⟩ =
∫
χ∗α(r)χβ(r)dr (3.9)

Note that S is the identity matrix in case the basis is orthonormal. In HF, eq 3.7 takes
the name of Roothaan-Hall193,194 equations, who were the first to formulate them for
closed-shell systems. Thanks to this matrix formulation of the eigenvalue problem,
the solution of the electronic Schrödinger equation can be solved numerically, finally
giving access to the orbitals (ciα coefficients) and eigenvalues εi that determine the
(post-)HF/KS-DFT ground state energies.

Various algorithms exist to solve eq 3.7. First let us note that the Hamiltonian matrix H
depends explicitly on the molecular orbitals, thus on coefficients c, via the effective
potential veff. This consequently prevents the use of a single diagonalization of the
matrix problem and calls for more elaborate techniques capable of converging the
solution c towards self-consistency. Self-consistency is reached when input orbitals c
used to compute H equal the output ones c′ within a given threshold. I refer the reader
to refs [16] and [195] for a detailed overview of the methods targeting self-consistency
of eq 3.7.

Whatever the method, it relies on the numerical components of the Hamiltonian and
overlap matrices, which are projected onto specifically chosen basis functions. To this
end, I present below more details on atom-centered and plane-wave bases that are
most relevant to this thesis.

3.1.1 Atom-centered basis

Atom-centered basis sets are based on functions that are local in real space, and located
on the nuclei. These can be expressed in a spherical coordinate system as

χ̄α(r)→ χ̄nlm(r−RI) (3.10)

with
χ̄nlm(r) := χ̄nlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ) (3.11)

where RI is the position of atom I, and n, l, m are respectively the radial and angular
indices of the atomic-like functions. Ylm(θ, ϕ) are the spherical harmonics.11 The radial
function Rnl(r) depends on the atom-type and can take several forms that determine
the class of the atom-centered basis set. In particular, if the radial function takes the
form exp(−ζr), the basis functions are defined as Slater-type orbitals (STOs). If it rather

51



Chapter 3. Computational approaches

takes the form exp(−ζr2), these are called Gaussian-type orbitals (GTOs). In practice,
the basis functions χα are constructed as contractions of atomic functions, such that

χα(r) =
K∑

β=1
dβχ̄β(r) (3.12)

where dβ are fixed (optimized) contraction coefficients and χ̄β are primitive (Gaussian
or Slater) atomic functions.

STOs possess the benefit of satisfying the cusp condition at r = 0, and also demonstrate
the same exponential decay as the exact atomic orbitals as r →∞. Those features are
missing in GTOs. However, the main advantage of GTOs over STOs is that the product
of two Gaussians centered at different points is still a Gaussian, which simplifies the
calculation of two-electron integrals significantly in implementations based on GTOs.
This allows for considerable speedups when considering post-HF methods, or hybrid
and rung-5 DFT functionals, since these latter involve the calculation of numerous
multi-electron integrals (Chapter 2).

In order to achieve the same level of accuracy as STOs for the wavefunction charac-
teristics, several Gaussians are needed because these drop off more rapidly than the
exponential function in STOs. Examples of Gaussian-type basis sets include Pople’s
6-31G(*,**) and the (aug-)cc-pVXZ family of Dunning that is investigated in Chapter 4.
Each of these has different numbers and shapes of Gaussians (i.e., different ζ values
and contraction coefficients dβ) to best represent atomic orbitals for different pur-
poses, offering a balance between computational cost and accuracy.3,192 Despite this,
Gaussian basis sets are inherently non-orthogonal and imply overlap integrals between
the basis functions (eq 3.9). As a consequence, such bases suffer from the so called
basis set superposition error when computing binding energies of complexes. Finally,
although usually constructed in a systematic and strategic manner, the gradual en-
largement of atom-centered bases does not necessarily guarantee a similar systematic
convergence for all properties. Chapter 4 discusses these aspects in more detail for the
(aug-)cc-pVXZ bases where extrapolation schemes are necessary to converge accurate
energies to the complete basis set limit. For the interested reader, I recommend refs
[13] and [14] which intensively discuss the use of Gaussian basis sets in computational
chemistry.

3.1.2 Plane wave basis

Plane waves (PWs) are extended basis functions, intrinsically delocalized and indepen-
dent of atomic positions. They are more intuitively defined in the context of condensed
phases with periodic boundary conditions, characterized by an infinite replication of
unit (primitive or conventional) cells of atomic positions in all directions represented
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by unit vectors ai (i = 1, 2, 3, ..., depending on the dimension) of the corresponding
Bravais lattice.196

For such systems in the presence of a periodic external potential vext(r) = vext(r + ai),
the Bloch’s theorem tells that the electronic wavefunction follows114

ψk(r) = eik·ruk(r) (3.13)

and is thus composed of a phase factor defined by a quantization vector k and a
function uk(r) = uk(r + ai) that has the same periodicity as the external potential.
Consequently, the k wavefunctions are periodic from cell to cell according to a phase
change:

ψk(r + ai) = eik·aiψk(r) (3.14)

which ensures that the probability density retains the lattice periodicity |ψk(r)|2 =
|ψk(r + ai)|2. Bloch’s theorem thus indicates that all the mathematics necessary to
describe periodic systems can be reduced to the consideration of the sole real space
unit cell, since wavefunctions are identical over the entire space up to a phase eik·ai .
Furthermore, according to eq 3.14, vectors k can be chosen following eik·ai = 1 to
impose the periodicity at the level of the wavefunction.

This defines a set of vectors k whose values should respect k · ai = n · 2π (n ∈ N), and
unit vectors bi that satisfy bj · ai = 2πδij and span the k-reciprocal space of the Bravais
lattice. From this condition, it is straightforward to express the reciprocal unit vectors
in terms of their real space counterparts. In the three-dimensional case,

b1 = 2πa2 × a3
Ω ; b2 = 2πa3 × a1

Ω ; b3 = 2πa1 × a2
Ω (3.15)

with Ω = a1 · (a2×a3) being the volume of the real space unit cell. The reciprocal space
(Wigner-Seitz) primitive cell of volume ΩBZ = b1 · (b2 × b3) = (2π)3/Ω is called the
first Brillouin zone (BZ).

In addition, the periodicity of uk(r) enables expansions in terms of Fourier series such
that

ψk(r) =
∞∑

G=0
ψ̃k(k + G)ei(k+G)·r (3.16)

ψ̃k(k + G) = 1
Ω

∫
Ω
ψk(r)e−i(k+G)·rdr (3.17)

along with the condition that eiG·ai = 1. This latter imposes the vectors G to be also
located in the reciprocal space, i.e. G = n1b1 + n2b2 + n3b3 (ni ∈ N), by analogy to the
previous reasoning for vectors k.

Under periodic boundary conditions, infinite solids are viewed as N = N1 ×N2 ×N3
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three-dimensional replicas of the Bravais lattice unit cells, referred to as supercell.
Therefore, ψk(r + Niai) = ψk(r), which reduces the spacing between points of the
reciprocal space according to

k = m1
N1

b1 + m2
N2

b2 + m3
N3

b3 mi = 0, 1, ..., Ni − 1 for i = 1, 2, 3 (3.18)

The number of k-points contained in the BZ therefore increases, and is equal to the
numberN of unit cells in the Bravais lattice. Vectors k′ out of the first BZ can always be
translated back with the help of a reciprocal vector G0, such that k = k′ + G0 belongs
to the BZ. It follows that a wavefunction in k′ out of the BZ is exactly equivalent to a
function lying in the BZ:

ψk′(r) =
∞∑

G=0
ψ̃k′(k′ + G)ei(k′+G)·r =

∞∑
G=0

ψ̃k−G0(k−G0 + G)ei(k−G0+G)·r

=
∞∑

G′=G−G0

ψ̃k(k + G′)ei(k+G′)·r = ψk(r)
(3.19)

The calculation of the all-electron wavefunction in an infinite periodic system has
therefore been mapped onto the calculation of a finite number of electron wavefunc-
tion ψk(r) in the supercell. In the thermodynamic limit (Ω, N → ∞), the spacing
between k-points vanishes (eq 3.15 and 3.18) and an infinite number of k-points
(Bloch states) lie in the first BZ: the reciprocal space becomes continuous. In numeri-
cal practice, the continuous spacing between k reciprocal vectors has to be replaced
by a discrete set of points that must be carefully sampled accross the BZ. A discussion
of methods used for BZ sampling of periodic systems is out of the scope of this thesis
but these are intensively discussed in the common literature on ab initio simulations
of materials, for which the eigenvalue problem of eqs 3.1 and 3.7 has to be solved for
each k-point in the BZ (ϕi, εi → ϕi,k, εi,k).15,23

As a consequence of the translational invariance, the basis functions in periodic sys-
tems must satisfy the Bloch’s theorem, which slightly modifies the one-electron expan-
sion encountered so far (eq 3.6) that becomes k-dependent,

ϕi,k(r) = eik·r
M∑

α=1
ciα,kχα(r) =

M∑
α=1

ciα,kχα,k (r) (3.20)

PWs are the solutions of the Schrödinger equation of an electron in a constant external
potential and respect the invariance over translation. This makes them ideal for
representing basis functions under three-dimensional periodicity. PWs are defined by

χG(r) = 1√
Ω
eiG·r (3.21)
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where G lie in the reciprocal space defined by the unit vectors bi and the cell volume Ω
(eq 3.15). Each plane-wave state (eq 3.21) has an energy value of 1

2G2. By construction,
all G vectors are located outside of the BZ except for G = 0, as opposed to k-points
that all belong to the BZ. It follows that eq 3.20 can be expressed as the inverse Fourier
transform

ϕi,k(r) = eik·r
Gcut∑
G=0

ϕ̃i,k(G)χG(r) = 1√
Ω

Gcut∑
G=0

ϕ̃i,k(G)ei(k+G)·r = FT−1[eik·rϕ̃i,k(G)](r)

(3.22)
where linear coefficients are given by the direct Fourier transform (FT)

ϕ̃i,k(G) = 1√
Ω

∫
Ω
ϕi,k(r)e−i(k+G)·rdr = FT[e−ik·rϕi,k(r)](G)

≃ 1
NR

NR∑
n=1

ϕi,k(rn)e−i(k+G)·rn

(3.23)

that is numerically evaluated by summing over NR real-space grid points located at rn.

In principle, the Fourier series should run over an infinite number of reciprocal G
vectors, but has to be cut in practice with respect to a user-defined energy cutoff Ecut

that fixes the maximal boundary Gcut of G vectors according to

Ecut = 1
2 |k + Gcut|2 (3.24)

This truncation is justified by the fact that ϕ̃i,k(G) coefficients decrease when frequen-
cies |k + G| increase. However, the decrease rate depends on the system/wavefunction.
Ecut should thus be chosen carefully in order to converge the electron orbitals with
sufficient accuracy. The truncation must indeed maintain the completeness of the PW
basis set to maintain the accuracy of the calculated physical quantities. The PW basis
is orthonormal according to

⟨χG|χG′⟩ = 1
Ω

∫
Ω
ei(G′−G)·rdr = 1

Ω (ΩδGG′) = δGG′ (3.25)

such that the overlap matrix S (eq 3.7) reduces to the identity matrix. This remains
true when including explicitly the phase factor into the basis functions, i.e. χk

G(r) =
eik·rχG(r).

Having said that, one can finally arrive to the expression of the Hamiltonian matrix
in the PW basis set. From eq 3.8, it appears its terms are easily evaluated in this basis.
Indeed, the kinetic energy operator takes the diagonal form

⟨χk
G| −

1
2∇

2 |χk
G′⟩ = 1

2 |k + G|2 δGG′ (3.26)
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and the potential term is nothing else than the Fourier transform of the effective
potential

⟨χk
G| v̂eff |χk

G′⟩ = 1
Ω

∫
Ω
veff(r) e−i(G−G′)·rdr = FT[veff(r)](G−G′) = ṽeff(G−G′) (3.27)

such that the HF or KS-DFT eigenvalue problem takes a simple form in reciprocal
space:

Gcut∑
G′=0

(1
2 |k + G|2 δGG′ + ṽeff(G−G′)

)
ϕ̃i,k(G′) = εi,kϕ̃i,k(G) (3.28)

Solving the set of eqs 3.28 in the PW basis set is at the heart of the CPMD software.47

In practice, the number of PWs (G vectors) contained in the basis set is of the order
of 10’000-100’000 per k-point. To handle such dimensions, CPMD includes a suite of
highly-parallelized routines capable of running on supercomputing infrastructures. It
also computes the terms that define ṽeff very efficiently, by strategically switching from
reciprocal space to real space and vice versa.16,195

Γ-point sampling

Numerically, the reciprocal k and G spaces have to be discretized and truncated,
which requires a convergence analysis of the properties of interest with respect to the
k-point sampling and the cutoff energy Ecut, respectively. For extended systems, with
fixed volume of the (super)cell, results like total energy, energy eigenvalues and forces
reach convergence when increasing the number of k-points sampled. Alternatively,
convergence is also achieved at fixed k-point sampling of finite density if the supercell
gains volume. It is evident that considerable speedups are realized if computations are
run at lower k-point density, smaller supercell size, or smaller energy cutoff. For that
reason, the (approximate) sampling of the sole Γ-point (k=0) contributions of the BZ is
often chosen in association with large simulation cells. This approach is also relevant to
minimize (decouple) the Coulomb interactions between the inherent periodic cells, in
particular when calculating properties of interfaces, defects or surfaces, where vacuum
regions must be properly extended. The Γ-point approximation is also key in making
ab initio molecular dynamics simulations tractable (Chapter 6). The advantage of this
simplification resides in the neglect of Bloch states, that makes the orbitals (eq 3.22)
have the following expression

ϕi(r) = 1√
Ω

Gcut∑
G=0

ϕ̃i(G)eiG·r = FT−1[ϕ̃i(G)](r) (3.29)

The orbitals in real space can then be taken as real so that ϕ̃i(−G) = ϕ̃∗i (G). With this,
only half of the plane-wave components have to be formally manipulated and stored
in memory, and special tricks can be employed to accelerate the numerical fast FTs
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(FFTs).195 At the Γ-point, the calculation of the density reduces to

ρ(r) = 1
Ω

Nocc∑
i,j=1

Gcut∑
G,G′

ϕ̃∗i (G′)ϕ̃j(G)ei(G−G′)·r =
2Gcut∑
G=0

ρ̃(G)eiG·r (3.30)

where the expansion of the density in reciprocal space is made consistent with the
resolution on orbitals, that is the truncation of the density is generally achieved at a
cutoff energy Eρ

cut = 4Eϕ
cut. At the Γ-point, the wavefunction cutoff energy defines a

sphere in reciprocal space, allowing to estimate the number of basis functions as

NG(k = 0) ≃ 4π
3

(
N̄a
2

)3

= 1
2π2 Ω[Bohr3] Ecut[a.u.]3/2 (3.31)

versus the average number of grid points N̄a along each real-space direction. This
relation is important since it indicates that the number of PWs increases linearly
with the volume of the simulation cell and slightly more with the cutoff energy. This
intrinsically relates to the calculation cost, since it ultimately fixes the discretization of
the Hilbert space in which the effective Hamiltonian has to be diagonalized.

A particular benefit of PW implementations relies in the fact that the Coulomb potential
vJ(r) (eq 3.4) is diagonal in reciprocal space, which facilitates the calculations of such
terms. This latter is obtained from the Poisson equation

∇2vJ(r) = −4πρ(r) (3.32)

that relates the potential to the electron density (eq 3.30). With an expansion of the
Coulomb potential in reciprocal space

vJ(r) =
Gcut∑
G=0

vJ(G)eiG·r (3.33)

the solution of the Poisson equation is given by

vJ(G) = 4π
G2 ρ(G) (3.34)

which therefore only depends on the G component in reciprocal space of the periodic
setup.

When treating isolated systems (molecules), the periodicity defining the Bloch states
no longer stands, and the BZ folds naturally into the Γ-point, thus avoiding k-point
sampling. Although this reduces the computational expense, additional overheads are
generated due to the required decoupling scheme that cancels the Coulombic inter-
actions between the periodic images of isolated (or semi-periodic) systems. Indeed,
long-range electrostatics makes properties converge very slowly with respect to the
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supercell size, often preventing the use of a simple increase of volume to decouple the
periodic images. Even for polar neutral systems, theR−3 decay of dipole-dipole interac-
tions, and the R−5 dependency between quadrupole moments sometimes necessitate
a very large cell, which consequently enlarges the basis set size according to eq 3.31.
Thus, as the size of the supercell increases, the number of G vectors increases as well,
as well as their density in reciprocal space (eq 3.15). Therefore, the smallest G-vectors
become closer and closer to Γ = 0. In this limit, a small deviation in ρ(G) can lead to a
large error in the potential given by eq 3.34 because G is very small. This explains why
the convergence of properties with respect to large systems/supercells becomes deli-
cate and necessitate a careful treatment of the G ≃ 0 instability (discussed in Section
4.3.2). Moreover, the electrostatic energy associated with charges that are periodically
repeated diverges, so that rather ad-hoc and approximate approaches are employed
to neutralize the system charge with a uniform background of opposite charge.15,16

When treating semi-periodic and isolated systems, a formal solution to address those
issues is the utilization of Poisson solvers, which offer appropriate corrected/screened
formulations of the Coulomb potential by modifying the Poisson equation.197–201

Pseudopotentials

The main drawback of PWs is the relatively large number of basis functions needed to
achieve convergence of the wavefunction. This is particularly obvious when one has
to take into account fast oscillations in the wavefunction (corresponding to high G
vectors), as they appear e.g., in the behavior of one-electron orbitals near the nuclei.
Nevertheless, from a chemical point of view, core electrons are generally not involved
in the bonding of molecules or atoms, which allows to neglect active contributions
associated with core orbitals. The core electrons can therefore be considered as be-
longing to an ionic entity that they form with the nuclei. In this picture, the presence
of the nuclei can be modelled by pseudopotentials which are effective potentials due to
the ionic nuclei of charge ZV = Z − Zcore, where Z represents the total nuclear charge
and Zcore is the charge associated with the core electrons.

The use of pseudopotentials is essential for making PW calculations tractable, because
it allows a reduction in the number of explicit electrons considered as well as a decrease
in the number of basis functions necessary to converge the pseudo-wavefunction.
Technically, the introduction of pseudopotentials introduces several modifications
in the mathematical expression of the PW eigenvalue problem (eq 3.28). I will not
elaborate further on the discussion of pseudopotentials, which would quickly become
very technical. However, I let the interested reader consult the references [16] and
[195] for a complete presentation of how the eigenvalue problem is modified when
"pseudization" is used in the context of a plane wave basis set.
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4 Plane waves versus correlation-
consistent basis sets: A compari-
son of MP2 non-covalent interac-
tion energies in the complete basis
set limit

Still, it is always wise to be prudent with any extrapolation to the infinite limit since the
assumptions [...] may not always be satisfied.

— Trygve Helgaker14

Chapter 4 is a preprint version of an article entitled:

Villard, J.; Bircher, M. P.; Rothlisberger, U. Plane waves versus correlation-consistent basis
sets: A comparison of MP2 non-covalent interaction energies in the complete basis set
limit. ChemRxiv 2023, 10.26434/chemrxiv-2023-203z9.

Reproduced under the terms of the CC-BY 4.0 License.
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Chapter 4. Plane waves versus correlation-consistent basis sets: A comparison of
MP2 non-covalent interaction energies in the complete basis set limit

4.1 Abstract

Second-order Møller Plesset perturbation theory (MP2) is the most expedient wavefunction-
based method for considering electron correlation in quantum chemical calculations
and as such provides a cost-effective framework to assess the effects of basis sets on
correlation energies, for which the complete basis set (CBS) limit can commonly only
be obtained via extrapolation techniques. Software packages providing MP2 energies
are commonly based on atom-centered bases with innate issues related to possible
basis set superposition errors (BSSE), especially in the case of weakly-bonded systems.
Here, we present non-covalent interaction energies in the CBS limit, free of BSSE, for
20 dimer systems of the S22 dataset obtained via a highly-parallelized MP2 implemen-
tation in the plane-wave pseudopotential molecular dynamics package CPMD. The
specificities related to plane waves for accurate and efficient calculations of gas-phase
energies are discussed, and results compared to the localized (aug-)cc-pV[D,T,Q,5]Z
correlation-consistent bases as well as their extrapolated CBS estimates. We find that
the BSSE-corrected aug-cc-pV5Z basis can provide MP2 energies highly consistent
with the CBS plane wave values with a minimum mean absolute deviation of ∼0.05
kcal/mol without the application of any extrapolation scheme. In addition, we tested
the performance of 13 different extrapolation schemes and found that the X−3 expres-
sion applied to the (aug-)cc-pVXZ bases provides the smallest deviations against CBS
plane wave values if the extrapolation sequence is composed of points D and T, while
(X + 1

2)−4 performs slightly better for TQ and Q5 extrapolations. Also, we propose
A(X− 1

2)−3 +B(X+ 1
2)−4 as a reliable alternative to extrapolate total energies from the

DTQ, TQ5 or DTQ5 data points. In spite of the general good agreement between the
values obtained from the two types of basis set, it is noticed that differences between
plane waves and (aug-)cc-pVXZ basis sets, extrapolated or not, tend to increase with
the number of electrons, thus raising the question whether these discrepancies could
indeed limit the attainable accuracy for localized bases in the limit of large systems.

4.2 Introduction

Basis functions used in any ab initio calculation, whether they concern solids or
molecules, are the algebraic pillars of the electronic wavefunction whenever the
Schrödinger equation has to be solved numerically. Gaussian-type orbitals (GTOs) are
by far the most popular basis functions in quantum chemistry due to their atomically
localized analytical forms that allow for an efficient evaluation of the multi-electron
integrals appearing in wavefunction-based methods14,192 and, to a lesser extent, in
Kohn-Sham density functional theory (DFT).135,140

Despite their numerical advantages, GTO basis sets are inherently non-orthogonal and
prone to linear dependencies that become more pronounced as the size of the basis in-
creases. In addition, the calculation of relative energies with atom-centered functions
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suffers from the basis set superposition error (BSSE)14 because of the completeness
mismatch between systems of different sizes, which tends to overstabilize bound clus-
ters relative to single fragments, thus overestimating binding energies. Schemes for
estimating the BSSE and correcting for the basis set imbalance are therefore com-
monly employed, with the most standard approximation being the counterpoise (CP)
correction.202,203 Nevertheless, it has been argued that such an ad hoc rectification can
lead to spurious effects on the final accuracy,203–211 for instance due to an unequal
amount of correction between the entire system and its constituents.211 As a result, the
CP correction applied to the calculation of interaction energies is sometimes viewed
more as an estimate. Such an estimate can be considered neither an upper nor a lower
bound for the actual BSSE.205,208,212

An additional complication with GTO bases is that their intrinsic construction is not
necessarily systematic as their size increases, which possibly leads to difficulties in
converging properties in a smooth and monotonic way, which is a known problem
for Hartree-Fock (HF) or correlated methods such as e.g., second-order Møller Plesset
perturbation (MP2)21 or coupled cluster (CC)24 energies. For this reason, Dunning’s
cc-pVXZ correlation-consistent polarized bases213 (where X=D,T,Q,5,6 is the cardi-
nal number), as well as their augmented aug-cc-pVXZ analogues containing diffuse
functions,214,215 are among the most popular for post-HF approaches because of their
meticulous design which makes it possible to gradually recover a maximum of electron
correlation by increasing the basis’ cardinality.

Development of such basis sets subsequently led to the proposal of numerous and
mostly empirical extrapolation schemes to estimate values in the complete basis set
(CBS) limit,31,216,217 some of which are detailed later in Section 4.3.3. Although the
BSSE vanishes in the CBS limit, these extrapolation procedures are not intended to
directly correct for it, but rather attempt to eliminate the error due to the finite ba-
sis that we call here the basis set incompleteness error (BSIE).203,211,218 While most
extrapolation schemes are of a fully empirical nature, some are based on theoretical
motivations about the leading behavior of approximate atomic wavefunctions, so that
their applicability to molecular systems requires that the correlation energy be domi-
nated by the electron-electron (Coulomb) cusp and that assumptions are transferable
to polyatomic systems.14,31,219 In addition, it is generally assumed that extrapolations
are applicable from one correlated method to another. For example, the usual X−3

scheme introduced by Helgaker14,220 relies on the finding that the principal expan-
sion of the helium configuration-interaction (CI) energy holds for energies obtained
with correlation-consistent bases, because both converge according to the principal
quantum number n for this two-electron atom. Transferred to molecules, this one
would then assume that lower order terms as well as chemical bonding effects are
negligible, and that the expression applies equally to all system sizes and quantum
chemical methods.14
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As an alternative to cope with the BSIE, explicitly correlated methods14,31,221,222 (e.g.,
MP2-R12/F12) are particularly suited for fast convergence of correlation energies due
to their correlating n-electron basis functions that depend explicitly on the interelec-
tronic coordinates r12. R12 or F12 refers to whether the explicit two-electron functions
(geminals) are given by linear or Gaussian-type expressions, respectively. Apart from
the wavefunction Ansatz, R12/F12 methods are similar to their standard counterparts
and thus converge in theory to values very close to the CBS limit. However, such
calculations are neither free of BSSE for smaller bases, nor of linear dependencies for
larger molecules, and they can suffer from numerical instabilities.212,222 In addition,
while recovering most of the correlation energy for a much smaller number of basis
functions, they may still have difficulty incorporating the very last bits required to
reach very high accuracy (≤ 0.1 kcal/mol) due to the choice of the geminal and integral
approximations, such as the resolution of identity or neglect of terms, that are neces-
sary to maintain reasonable calculation costs.14,31,220,222,223 For instance, a deviation of
about 0.5 kcal/mol was observed between H2O total energies coming from different
MP2-R12 approximations and a 1 kcal/mol difference was identified between different
R12 basis sets.220 Deviations of the order of 0.1 kcal/mol were also noticed when it
comes to interaction energies.222 Nevertheless, MP2(CCSD(T))-R12/F12 calculations
have so far been the only CBS references available to assess the reliability of GTO
extrapolations from the (aug-)cc-pVXZ bases.216,222,224

In this chapter, we follow a different route to obtain converged values in the CBS limit
by evaluating the MP2 correlation energy in a converged plane wave basis set. Plane
waves (PWs) have the advantage of forming an orthogonal basis, the completeness
of which is established regularly and monotonically with the increase of a single
parameter, the kinetic energy cutoff, regardless of the level of theory employed. Since
the basis functions are fixed in space rather than being located at atomic centers, there
is no BSSE from the outset, and the BSIE is systematically and progressively reduced
to reach the ultimate intrinsic level of precision achievable by the quantum chemical
method itself. In contrast, PWs generally describe explicitly only valence electrons in
order to reduce the number of basis functions and keep computational cost in store,
with pseudopotentials replacing the effects of the core electrons in accommodating
the variations of the wavefunction near the nuclei that would require the inclusion
of rapidly varying basis functions, i.e. high energy cutoffs leading to computationally
unfeasible basis set sizes. Even if pseudopotentials are employed, a PW calculation
can necessitate a number of basis functions of up to a few hundred times that of GTOs
(typically of the order of 105 PWs) for a similar level of convergence with respect to the
basis set limit, thus requiring a highly-optimized parallel implementation.225,226

In principle, whether obtained with GTOs or PWs, CBS-converged energies must be
identical. However, fundamental differences exist between those two types of basis
functions and have never been thoroughly compared. We hence attempt to fill this gap
with the present work. More specifically, due to the CP correction and extrapolation
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schemes required for GTOs or due to some peculiarities of PWs in the treatment of iso-
lated systems (where the interaction between periodic replica intrinsic to plane waves
have to be explicitly removed), it is fundamental to clarify how the results obtained
with these two different approaches may differ in practice. To answer this question,
non-covalent interaction energies of dimer systems provide a sensitive test case, be-
cause the description of weak dispersion interactions often requires an accuracy of the
order of 0.05-0.5 kcal/mol.14,62,227 Such systems thus challenge the ability of a basis
set to best capture the short-range components of the correlation energy around the
Coulomb cusp while at the same time incorporate the long-range features of the inter-
molecular interactions. A priori, the delocalized and balanced nature of PWs seems
more appropriate for such a treatment of e.g., hydrogen-bonded and van der Waals
complexes, but at the cost of a much larger number of basis functions. On the other
hand, polarization and delocalization of the electronic wavefunction necessitate larger
and/or augmented GTO bases for a better coverage of real space.31 If these effects
are accounted for, the presence of diffuse functions causes the basis set to be more
prone to the BSSE, which also makes non-covalent interactions a problem of choice
for examining the effect of the CP correction.

In the following, we first give some general information on how to obtain MP2 inter-
action energies in the CBS limit with PWs (Section 4.3.2) as well as with correlation-
consistent GTOs (Section 4.3.3); thereafter, specific computational details are reported
(Section 4.4). We then demonstrate how to efficiently and accurately converge MP2 rel-
ative energies in PW basis sets as implemented in the CPMD software47 (Section 4.5.1)
and present the results of applying this approach to the calculation of non-covalent
interaction energies of 20 systems from the S22 benchmark set,62,227 which we then
compare to their (aug-)cc-pVXZ analogues of different sizes X=D,T,Q,5 (Section 4.5.2).
In the following, we will call our test subset S22* for brevity’s sake. We then search
among 13 GTO extrapolation schemes reported in the literature in order to identify
those that agree the best with PWs in the CBS limit (Section 4.5.3) and investigate the
capability of new, different extrapolation laws (Section 4.5.4). We find that the CBS
limits reached with the best GTO extrapolations and PWs show no significant differ-
ence, i.e. they do not deviate by more that 0.2 kcal/mol for all systems studied herein.
However, it is observed that some residual deviations increase with the system size
(Section 4.5.5). Finally, we conclude with some general recommendations concerning
the choice of correlation-consistent basis sets for the calculation of correlated energies
in the CBS limit (Section 4.6).
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4.3 Methods

4.3.1 Second-order Møller-Plesset perturbation theory

In Møller-Plesset perturbation theory, the dynamic correlation energy is estimated
as a series of perturbative terms originating from Rayleigh-Schrödinger perturbation
theory around a zero-order Hamiltonian given by the sum of Fock operators.21 By
taking the ground state Slater determinant that solves the Hartree-Fock problem as the
unperturbed wavefunction, the total electronic energy E is approximated at second
order by the sum of the Hartree-Fock (HF) energy and the second-order Møller-Plesset
(MP2c) correlation contribution,

E ≈ EMP2 = EHF + EMP2
c (4.1)

As a consequence of Brillouin’s theorem, single excitations of the HF reference do
not couple to the HF ground state determinant and only doubly excited determinants
contribute to the MP2 correlation (MP2c) energy, leading to an expression that includes
double sums over occupied and virtual molecular orbitals. For the spin-restricted case
where two opposite-spin electrons occupy the same spatial orbital, the expression
reads13,192

EMP2
c =

Nocc∑
i

Nocc∑
j

Nvir∑
a

Nvir∑
b

⟨ij|ab⟩ (2 ⟨ab|ij⟩ − ⟨ab|ji⟩)
εi + εj − εa − εb

(4.2)

where i, j denote (valence-only) spatial occupied orbitals ϕi,j and a, b their virtual
counterparts that are all eigenstates of the Fock operator with respective eigenvalues
εi,j,a,b. The numerator in eq 4.2 accounts for Coulomb-type interactions between
occupied-virtual pairs of orbitals in the evaluation of two-electron integrals

⟨ij|ab⟩ =
∫
dr
∫
dr′

ϕ∗i (r)ϕ∗j (r′)ϕa(r)ϕb(r′)
|r− r′| (4.3)

The evaluation of this term in atom-centered basis-sets is straightforward and docu-
mented elsewhere.14,192

4.3.2 Plane wave basis set

In this chapter, we address the calculation of the MP2 energy for isolated systems in
the PW basis set, considering the Γ-point sampling of the Brillouin zone only; orbitals
are therefore expanded in reciprocal space as

|i⟩ =
Gϕ

max∑
G=0

ϕ̃i(G) |G⟩ (4.4)
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with the reciprocal space (G) coefficients ϕ̃i(G) that are the Fourier components of the
molecular orbitals and a PW ⟨r|G⟩ = Ω−1/2eiG·r in the simulation supercell of volume
Ω. Computationally, the infinite basis is truncated by restricting the maximum norm
Gϕ

max of G vectors to respect

1
2G

2 ≤ 1
2
(
Gϕ

max

)2
:= Eϕ

cut (4.5)

The wavefunction cutoff energy Eϕ
cut, as well as the volume Ω (both user-defined and

system-dependent), act as parameters to ensure the convergence of the energy with
respect to the basis size. The numberNG of basis functions is dictated by the following
estimate:195

NG ≈
1

2π2 Ω(Eϕ
cut)3/2 (4.6)

In reciprocal space, the two-electron integrals (eq 4.3) can be evaluated with linear
scaling with respect to NG since the Coulomb operator takes the diagonal form

⟨ij|ab⟩ = 1
Ω

G
ρia
max∑

G=0
Φ(G)ρia(G)ρjb(−G) (4.7)

where Φ(G) is the generalized Coulomb potential that depends on the dimensionality
and boundary conditions of the system studied, which we describe in more detail in
Section 4.3.2. The overlap pair densities appearing in eq 4.7 are obtained from the
Fourier transforms

ρia(G) = F [ϕ∗iϕa](G) =
∫
dr ϕ∗i (r)ϕa(r)e−iG·r (4.8)

which are replaced by Fast Fourier Transforms (FFTs) in the case of discrete represen-
tation of the ϕi. In principle, because the charge density ρ depends on the square of
the orbitals, the maximum radius for the density expansion in the reciprocal space
should be as high as 2Gϕ

max, meaning that a density cutoff energy Eρ
cut = 4Eϕ

cut (c.f. eq
4.5) is needed to maintain a consistent resolution between orbitals and densities in
reciprocal space.195 For example, a factor 4 is used here by default in the calculation of
the exchange and Coulomb integrals involved in the zero-order HF calculation. For the
MP2 correlation energy (eq 4.2), whatever the ratio between Eρia

cut and Eϕ
cut, the canon-

ical scaling in the PW basis set remains quintic and behaves like O (N2
occN

2
virN

ρia
G
)

if
the pair densities ρia(G) are precalculated and stored in memory. Consequently, the
number Nρia

G of G vectors entering the expansion of ρia has a drastic effect on the
overall performance of the MP2 energy evaluation as it also affects the prefactor and
memory requirements. For this reason, it is imperative to study below to what extent a
reduction in Eρia

cut alters the accuracy of the MP2 energy (Section 4.5.1).
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Extrapolation of PWs to the basis set limit

The convergence of post-HF energies with respect to the number of GTO basis func-
tions is markedly slower than it is for HF or DFT. This is attributed to the need of large
atom-centered bases to fully accommodate the asymptotic behavior of the wavefunc-
tion around the electron-electron cusp.14 For PWs associated with effective pseudopo-
tentials, we observe that the value of Eϕ

cut that converges relative HF energies is in
general close that required for recovering most of the MP2c contribution, and both
require a fairly large NG. In contrast to atom-centered bases, the sluggish convergence
of the MP2 energy in PWs is rather reflected in the progression of the sum

EMP2
c,n =

Nocc∑
i,j

n∑
a,b

⟨ij|ab⟩ (2 ⟨ab|ij⟩ − ⟨ab|ji⟩)
εi + εj − εa − εb

(4.9)

with respect to the contribution of an additional virtual orbital n (≤ Nvir). In theory, the
effective Hilbert space defined by the numerical basis has the size NG = Nocc +Nvir

and the virtual space is the algebraic consequence of the basis set being larger than
the number of electrons in the system. As an illustration, the MP2 calculation with
the largest basis set considered in this work has NG = 408 126 and Nocc = 37, which
makes the entire Fock matrix diagonalization and the direct evaluation of eq 4.2 simply
intractable (Nvir = 408 089,∼ 1013 summands,∼ 6 ·1012 ρia(G) points to be stored with
double precision in 45 TB of RAM). For comparison, the same calculation with the GTO
aug-cc-pV5Z basis set requires only 2945 basis functions. Therefore, the enormous
size of the basis set coupled with the steep scaling of the methods constitute the main
challenges when carrying out correlated calculations with PWs.

Fortunately, as it was established by numerical76,117,118,121,228 and analytical66 consid-
erations, the PW correlation energy can be extrapolated to the CBS limit with respect
to the virtual orbitals. Relying on the model of the homogeneous electron gas (HEG) in
a finite cell, Shepherd et al. showed that the MP2 correlation energy in the large basis
set limit (Eϕ

cut →∞) behaves like

EMP2
c,∞ − EMP2

c,Eϕ
cut

∝
(
Eϕ

cut

)−3/2
∝ N−1

G (4.10)

By noticing that the eigenstates of the HEG Fock matrix are nothing else than pure PWs
|G⟩, any HF orbital of a many-electron system can be interpreted as the results of a
unitary transformation of the HEG HF problem, so that the same extrapolation law
generalizes to single-reference quantum chemical methods of solids and molecules
(in the limit of a complete and sufficiently large basis).66 In another interpretation, one
can assume that the virtual states of very high (continuum) energy lose their molecular
character and become closer to PWs, so that their contributions to the correlation
energy resemble those of the HEG. Based on that, the same authors proposed a single-
point extrapolation of eq 4.9, from intermediate points of a single calculation, that
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converges smoothly and reliably to the basis set limit according to

EMP2
c,Nvir

− EMP2
c,n ∝ ε−3/2

n ∝ n−1 (4.11)

At Eϕ
cut (NG) sufficiently large, Nvir is large enough to recover the CBS energy and εn

acts as the cutoff energy of an auxiliary basis which is gradually expanding towards
the CBS limit. The fact that the orbitals and eigenvalues of eq 4.9 originate from the
complete basis has no effect on the extrapolation in practice. This technique has
the advantage of considerably truncating the virtual space required to calculate the
MP2 correlation energy since a maximum n of the order of nmax = 10 000-20 000 is
satisfactory for extrapolating relative energies. In addition, the Fock operator must be
diagonalized only for the nmax orbitals of lowest eigenvalues.229–231

Despite this, MP2 computations still involve the storage of NoccnmaxN
ρia
G values of

the pair densities (eq 4.8) for calculating the integrals over Nρia
G ∼ 104-105 integrands

(eq 4.7) as well as the contribution of ∼109-1011 ijab sums (eq 4.9), so that only a
parallel approach can handle such intense RAM and CPU requirements in a reasonable
time. The PW/pseudopotential MP2 method used herein has been developed and
implemented in the CPMD program47,232 for which we give the pseudocode of the
parallel implementation in Appendix A (Algorithm 1).

Treatment of the Coulomb potential for isolated systems

The PW basis set offers the possibility to evaluate the nonlocal and cumbersome
Coulomb potential ⟨r| v̂12 |r′⟩ = 1/|r−r′| in reciprocal space, with its Fourier transform
(sampling the Γ-point only) being195

Φ̃(G) = ⟨G| v̂12 |G′⟩ = F [⟨r| v̂12 |r′⟩] = 4π
G2 δG,G′ (4.12)

but the long-range nature of the Coulomb interactions in direct space poses problems
for the evaluation of multi-center integrals such as those appearing in HF143,233–237 or
MP2 correlation energy.117 Indeed, discrete sums of the type of eq 4.7 with Φ(G) =
Φ̃(G) are facing a singularity in G = 0 which is only properly integrable in the ther-
modynamic limit (Ω → ∞,

∑
G → Ω/(2π)3 ∫ dG) and is a consequence of the finite

simulation cell imposed by the numerical computation. Simply ignoring the problem-
atic component makes the convergence of the integrals very slow and requires either
many replicas of the unit cell (large supercell), or a much finer and careful sampling
of the eventual k-points mesh. Therefore, schemes have been suggested in order to
screen the G = 0 divergence and obtain a faster convergence.233,234,237

In the context of hybrid functionals, be it for isolated or periodic systems, Broqvist
et al. (BAP)143 proposed to use an auxiliary function f(G) which acts as a singularity
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correction by transforming the summand of eq 4.7 into a regular function with

ΦBAP(G) =


4π
G2 for G ̸= 0

χ = Ω
(2π)3

∫
dG f(G)−

∑
G ̸=0

f(G) for G = 0
(4.13)

and the function chosen as
f(G) = 4π

G2 e
−γG2

(4.14)

such that most of the singularity is retrieved for f(G)→ Φ̃(G), meaning that

χ = lim
γ→0

 Ω√
πγ
−
∑
G ̸=0

4π
G2 e

−γG2

 (4.15)

allows faster convergence of the integrals with respect to the supercell volume. For
isolated systems, the symmetry of the "fictitious" supercell and its volume Ω are
therefore the adjustable parameters to converge the exchange-like integrals, with
the aim of removing the electrostatic interactions between periodic images when
the box size increases. In that case, it has been shown that the correction χ of the
singularity in the Coulomb potential greatly improves the convergence of the total
energy as well as the HOMO-LUMO gap with respect to the supercell size, as opposed
to simply neglecting the G = 0 component. Hence, we will focus on the behavior of
this correction when applied to the MP2 correlation energy.

An alternative treatment, specific to isolated molecules, is the effective decoupling of
the Coulomb interactions between the system and its unphysical periodic replicas. For
this purpose, special Poisson solvers197,198,200,238 provide an expression of the potential
induced by the cluster charge density when modeled in an infinitely replicated periodic
setup. The method of Martyna and Tuckerman (MT)197 assumes that the density
vanishes far enough from the boundaries of the box so that the potential can be seen
as having the same periodicity as the simulation domain D. In this first/nearest image
picture, the potential in the MT method converges towards the isolated system limit
when the supercell is sufficiently expanded. Separating its action at short and long
distance with the help of the parameter α (1/r = [erfc(αr) + erf(αr)]/r), the latter can
be recast as

ΦMT(G) =



4π
G2 +

∫
D(Ω)

dr erf(αr)
r

e−iG·r

︸ ︷︷ ︸
Φlong

for G ̸= 0

π

α2 −
∑
G̸=0

4π
G2 e

− G2
4α2︸ ︷︷ ︸

Φ̃long

for G = 0
(4.16)
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where the new terms that add up to Φ̃(G) = 4π/G2 come from the difference between

the Fourier transform Φlong(G) and the Fourier series components Φ̃long(G) of the long
distance part, that acts as a screen of the interactions between the isolated system and
its infinite periodic images. Note that the singularity of Φ̃(0) would be exactly canceled
by that of Φ̃long(0) and both were ignored in eq 4.16, but the non-singular difference
limG→0

[
Φ̃(G)− Φ̃long(G)

]
= π

α2 must be included. It has been shown in practice that

for αL ∼ 7, where L is the smallest size of the parallelepiped box, Φlong(G) can be
efficiently evaluated via a FFT that converges rapidly with respect to the Cartesian
grid. In the framework of PW/pseudopotential DFT, the evaluation of Coulomb-like
integrals with the MT Poisson solver provides accurate energies, provided that the
integration domain spans about twice the size of the electron density. Thus, as noted by
MT, increasing the size of the supercell becomes analogous to converging the energy
according to the largest width diffuse function included in a Gaussian basis set.

BAP (eq 4.13) and MT (eq 4.16) schemes look very similar for G = 0, where the sum
over G ̸= 0 vectors actually corresponds to the electrostatic energy of a Gaussian
charge distribution interacting with a compensating uniform background in a periodic
setup.143 The first term in eq 4.15 accounts for the electrostatic self-energy of an
isolated Gaussian charge in the supercell so that, intuitively, χ corrects the singularity
using the difference between the electrostatic energy of an isolated probe charge and its
periodically repeated analogues in a compensating background.143,239 For MT instead,

the Gaussian charge distribution is used to construct the screening function Φlong(G)−
Φ̃long(G) of the long-range electrostatic interactions after an Ewald-type splitting of
the Coulomb potential.34,240 Very few analyses of the BAP or the MT treatment have
been performed on HF calculations with full exact exchange and, to the best of our
knowledge, none has been done on the MP2 correlation energy. It is therefore crucial
to understand how these act on such energy contributions to ensure the convergence
and accuracy of PW results in what follows.

4.3.3 Correlation-consistent GTO basis sets

In the realm of GTOs, the cc-pVXZ213,215 and aug-cc-pVXZ214,215 basis families of Dun-
ning, Peterson and coworkers have been designed to recover most of the correlation
energy due to the valence electrons. More precisely, these are called correlation-
consistent since the basis functions that are added at each level of cardinality X=D,T,Q,...
contribute with similar amounts of energy, independently of their type (s,p,d,...) and in
a consistent manner even in the presence of polarization or diffuse functions. All these
are optimized so as to maximize their contributions to the atomic correlation energy.
For example, to balance the set, s and p functions are added when the polarization
space is extended, so that the correlation energy error due to the s and p functions
does not exceed the error from the polarization space. The exponents of such s and
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p functions are optimized with respect to atomic HF energies, while the correlating
polarization functions come from valence energy minimization at the atomic CISD
level of theory. The aug-cc-pVXZ bases are derived from the original cc-pVXZ, with
the addition of one diffuse function per angular momentum present in the set, and
whose (smaller) exponents are determined by minimizing the atomic CISD energy of
anions. Although first intended for a better description of electron affinities, the aug-cc-
pVXZ basis family has been shown to progressively enhance the convergence of other
molecular properties such as proton affinities,241 dipoles and polarizabilities,242–244 or
energies of weakly bound systems.208,243,245–247

The main advantage of the (aug-)cc-pVXZ basis sets is their ability to converge results
toward the basis set limit in a (semi)systematic manner, at the cost of increasing the
number of contracted basis functionsNb. For first-row atoms, this latter increases with
the cardinal number X as220

N
cc-pVXZ
b = 1

3(X + 1)
(
X + 3

2

)
(X + 2) (4.17)

N
aug-cc-pVXZ
b = N

cc-pVXZ
b + (X + 1)2 (4.18)

such that, for a computer time associated with MP2 that scales as N5N4
b where N is

the number of atoms, improving the correlation energy with a larger basis grows as
N5X12. Q, 5 or 6 zeta calculations may therefore be prohibitively expensive for larger
systems of interest.248–250

This is in contrast to PWs, for which the basis size does not depend explicitly on the
number of atoms N but only on the volume of the supercell and the cutoff energy,
so that the MP2 energy scales as N2

occn
2
maxΩ(Eρia

cut)3/2 (Section 4.3.2). Assuming that
a sufficiently high energy cutoff may be chosen to faithfully describe pair densities
over a wide range of systems, and that nmax increases less than linearly with N (as we
have observed232) , the PW basis set then becomes more favorable in the limit of large
systems,192 provided that Ω does not increase significantly for the correct convergence
of Coulomb interactions in a periodic setup (Section 4.3.2).

Extrapolations of GTOs to the basis set limit

Although the correlation-consistent basis sets provide a gradual and monotonic progress,
their associated computational cost grows faster than the rate of convergence. As a
rule of thumb,31 it is globally said that an improvement of the energy accuracy by a
factor of 10 necessitates a computational effort increased by a factor of 104, and the
convergence of the correlation energy, be it MP2, CCSD, CCSD(T), ..., remains so slow
that basis set limit estimates can only be reached by extrapolation.31,216,217,251 As a
consequence, expressions based on the comparison with very large basis calculations
or, most commonly, with explicitly correlated methods (e.g., MP2-R12/F12, CCSD(T)-
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R12/F12) have been suggested, but the computational overhead for obtaining such
accurate references have often restricted the size of the validation systems to a few
dozen electrons.

Even though non-exhaustive, we report in List 4.1 some formulas found in the literature
to estimate correlated energies in the basis set limit, when extrapolated according to
X = 2(D), 3(T), 4(Q), 5, ... . First proposals by Feller et al. (eq Feller (4.19)),208,216,252–254

Peterson et al. (Peterson (4.20))244,255–257 and Truhlar (Truhlar (4.21),(4.22))249 are all
based on empirical interpolations of the total energy, with the difference that Truhlar
suggested different powers for the convergence of the HF and MP2c energies. All
expressions contain three parameters and therefore require at least three points for
extrapolation. However, in the case of the expressions from Truhlar, α = 3.4 and
β = 2.2 were found to provide a minimal RMSD with respect to MP2-R12 energies of
small systems, so that these can also be used for two-point extrapolations (e.g., DT, TQ,
Q5). In some cases, it has been argued that the CBS values calculated directly from
relative rather than total energies are more accurate,216,244 but no clear explanation or
justification was provided to support that claim.224

EMP 2
X = EMP 2

∞ +Ae−αX Feller (4.19)

EMP 2
X = EMP 2

∞ +Ae−(X−1) +Be−(X−1)2
Peterson (4.20)

EHF
X = EHF

∞ +AX−α Truhlar (4.21)

EMP 2
c,X = EMP 2

c,∞ +BX−β (4.22)

EMP 2
X = EMP 2

∞ +A
(
X + 1

2
)−4

Martin4 (4.23)

EMP 2
X = EMP 2

∞ +A
(
X + 1

2
)−4 +B

(
X + 1

2
)−6

Martin46 (4.24)

EMP 2
X = EMP 2

∞ +A
(
X + 1

2
)−α

Martinα (4.25)

EMP 2
c,X = EMP 2

c,∞ +AX−3 + CX−5 Wilson35 (4.26)

EMP 2
c,X = EMP 2

c,∞ +A (X + 1)−4 +B (X + 1)−5 Wilson45 (4.27)

EHF
X = EHF

∞ +Ae−αX Helgaker (4.28)

EMP 2
c,X = EMP 2

c,∞ +BX−3 (4.29)

EMP 2
c,X = EMP 2

c,∞ +AX−3 +BX−4 Varandas34 (4.30)

EMP 2
c,X = EMP 2

c,∞ (1− 2.4X−3) Varandas3-fit (4.31)

EMP 2
c,X = EMP 2

c,∞ (1 +AX−3 +A[aebA + c]X−4) Var.34-fit (4.32)

where a = 6.1793, b = 1.0940, c = −0.9766 are
optimized parameters.

LIST 4.1: Extrapolation expressions tested in this work for the (aug-)cc-pVXZ basis sets.
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On the other hand, one possible theoretical motivation holds its origin in the partial-
wave expansion of a two-electron atom:14,31,217 By treating the Hamiltonian of the
bare nucleus of the helium atom as zero-order, and the electron interaction as a
perturbation, Schwartz studied the convergence of the correlated atomic wavefunction
in a one-electron basis.31,258 He established that the partial wave increments δE(2)

l to

the second-order energy E(2) = ∑∞
l=0 δE

(2)
l follow an asymptotic formula in the limit

of large l, that behaves like

δE
(2)
l = A

(
l + 1

2

)−4
+B

(
l + 1

2

)−6
+O

(
l−8
)

(4.33)

with l being the degree of Legendre polynomials entering the partial wave expansion
of the first-order wavefunction. Interestingly, the l-th component in the partial wave
expansion corresponds to a one-electron atomic function with angular momentum
l.259 Translated to many-electron atoms, this implies that δE(2)

l is equivalent to the
energy increase due to the addition of a saturated shell of basis functions of angular
momentum l to the basis set that expands the first-order wavefunction. For standard
electronic structure methods (e.g., MPn259 or CI260,261) and n-electron atoms, similar
forms were derived with odd terms that may also arise, where one makes the general
assumption that the increment of the correlation energy can be expanded as

δE
(2)
l =

∑
m=4

Am

(
l + 1

2

)−m
(4.34)

with numerical coefficients Am. In the limit of large L, with the omission of all basis
functions with l > L, the error on the correlation energy resulting from the basis set
truncation can therefore be estimated as31,250

Ec,∞ − Ec,L ≈
∑
m=4

Am

∫ ∞
L+1/2

(
l + 1

2

)−m
dl (4.35)

=
∑
m=4

Am

m− 1 (L+ 1)−m+1 (4.36)

which consequently describes the asymptotic limit of the energy for consecutive en-
largements of the basis set. This stands under the assumption that each increment
of the basis set contains all functions covering the atomic angular momentum up to
L. However, choosing the atomic angular momentum as the parameter for assess-
ing energy convergence is questionable when generalizing to molecules. Moreover,
this quantum number is not consistent with the construction of the (aug-)cc-pVXZ
bases that rather involves successive increments of functions with different angular
momenta (Section 4.3.3).

In spite of this, expressions inspired by eq 4.36 have demonstrated their potential for
the extrapolation of (aug-)cc-pVXZ energies to the basis set limit, also in the case of
polyatomic systems. For example, Martin et al. proposed to average between hydrogen,
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helium (L ∼ X − 1) and first-row (L ∼ X) atoms to replace L by X − 1
2 , yielding eqs

Martin4 (4.23) and Martin46 (4.24)219,262 that correspond to the leading orders found
by Kutzelnigg et al. for the MP2 energies.259 He later suggested that the quality of the
results can improve if the HF and MP2c energies are processed separately with Martinα
(4.25).263

Furthermore, by comparing with MP2-R12 references of Ne, HF, H2O and N2, Wilson
and Dunning found that the ansatz

EMP 2
c,X = EMP 2

c,∞ + A

(X +D)α
+ B

(X +D)α+1 + C

(X +D)α+2 (4.37)

was giving the best match for (α = 3, B = 0, D = 0) and (α = 4, C = 0, D = 1),
consequently proposing eqs Wilson35 (4.26) and Wilson45 (4.27) for extrapolating
correlated energies.224

Alternatively, Helgaker et al. put forward the use of eq Helgaker (4.29)212,220,223,264

which corresponds to the leading order of eq 4.36 and the identification of L ∼ X − 1
based on a better agreement with R12 results.220 This allows the extrapolation of the
correlation energy from a two-point linear fit and was later motivated by analyzing
the energy increments of the principal expansion of the ground-state helium atom,
yielding in this case a convergence with respect to the principal quantum number n
which is a priori more in line with the progressive construction of the (aug-)cc-pVXZ
bases.14,31 Since the number of basis functions increases cubically with X (eq 4.17),
Helgaker (4.29) is equivalent to a convergence of the correlation energy as a function of
1/Nb. Interestingly, this is analogous to PWs for which the correlation energy converges
as 1/NG (eq 4.10). A different rate of convergence was observed for the HF energy so
that Helgaker argued for its separate treatment according to Helgaker (4.28).220,264

Finally, Varandas investigated the universality of the B parameter in Helgaker (4.29),
and found that eq Varandas3-fit (4.31) minimizes the difference with a set of CCSD(T)/MP2
energies of small molecules and different basis sets.250 However, the match was better
if considering a fourth order term with the general form of Varandas34 (4.30), or by
exploiting an empirical interdependence between the parameters that leads to eq
Var.34-fit (4.32) which has the advantage of requiring only two points for extrapolation.

Subsequently, we will examine which of these extrapolations provide better or worse
agreement between GTO and PW MP2 interaction energies in the CBS limit.

4.4 Computational details

The geometries of the test systems were taken from the paper defining the S22 dataset.62

Like for the original work on the S22 dataset and its revised version,227 deformation en-
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ergies are neglected, monomer structures are kept identical in the dimer configuration
and no monomer relaxation is carried out. To save on computational resources, we
opted to exclude the two adenine-thymine dimers from our test set, resulting in a set
of 20 structures that we refer to as S22*.

4.4.1 Plane wave basis set

A development version of CPMD 4.3 has been used for all MP2 calculations with
PWs,47 in combination with hard normconserving Goedecker-Teter-Hutter (GTH)265

pseudopotentials specifically parametrized for HF.119 The HF wavefunction has been
optimized with either DIIS266 or preconditioned conjugate gradient optimization up
to a maximum residual component of the gradient on occupied orbitals lower than
10−7 a.u., respectively 10−5 a.u. for the nmax virtual orbitals obtained via subsequent
Davidson diagonalization.231

The MP2c contribution to the interaction energy of the AB complex is extrapolated
according to eq 4.11, i.e. the extrapolation is performed on ∆EMP2

c,n = EMP2
AB,c,n−EMP2

A,c,n−
EMP2

B,c,n which greatly accelerates the energy convergence compared to individual ex-
trapolations. This allows to set smaller nmax virtual orbitals to be diagonalized and
processed in the MP2c double summation, and thus drastically reduces the computa-
tional requirements. No significant difference (> 0.001 kcal/mol) was observed if the
extrapolation is done as a function of n−1 or ε−3/2

n , the latter eigenvalues corresponding
to the dimer being therefore used. Extrapolation points are spaced by an increment of
100 virtual orbitals and a better accuracy is obtained with a linear fit according to

∆EMP2
c,n · ε3/2

n = αε3/2
n + β (4.38)

where α = ∆EMP2
c recovers the PW CBS MP2c energy by ensuring that nmax is chosen

large enough in order for eq 4.38, respectively eq 4.11, to be valid. For the systems stud-
ied, nmax is between 10000 and 20000. To account for the sensitivity of the extrapolated
value with respect to the fitting range, the results from all possible intervals ending
at nmax are calculated, and the final ∆EMP2

c value averaged among the intervals that
respect eq 4.38.

The cutoff energy Eϕ
cut of the wavefunction has been set to 150 Ry, and the density

cutoff to the usual Eρ
cut = 4Eϕ

cut for all systems and supercell sizes. No change larger
than ∼0.01 kcal/mol was observed on the extrapolated MP2 interaction energies at
larger cutoffs (cf. Table A1 in Appendix A). The effects of the cutoff energy for the MP2c
pair densities, the supercell dimensions as well as the decoupling between periodic
images are discussed below in Section 4.5.1.
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4.4.2 Correlation-consistent GTO basis sets

The (aug-)cc-pVXZ calculations were performed with Orca 5.0.3,267,268 or for the larger
systems and augmented bases with Turbomole V7.1269 after checking that both pro-
grams give identical results. The HF wavefunction and energies are obtained for
all-electron calculations, while the frozen-core approximation is used for the MP2 cor-
relation energy, i.e. occupied orbitals corresponding to core electrons are omitted in
the MP2c evaluation. The convergence threshold for the SCF wavefunction was set to
VeryTightSCF for Orca, respectively to 10−7 a.u. for the energy gradient in Turbomole.

The CP correction scheme is used to correct for the BSSE.202,203 Therefore, uncorrected
and BSSE-corrected interaction energies (HF or MP2c) are calculated as follows

∆Euncorr. = E
{AB}
AB − E{A}A − E{B}B (4.39)

∆ECP-corr. = E
{AB}
AB − E{AB}

A − E{AB}
B (4.40)

∆Ehalf-CP = 1
2 (∆Euncorr. + ∆ECP-corr.) (4.41)

whereE{A}A designates the energy of monomerA calculated in its basis {A}, andE{AB}
A

its corrected energy calculated in the full {AB} basis that includes ghost functions
located on system B. Since it was noticed that ∆Euncorr. and ∆ECP-corr. may converge
to the basis set limit from opposite sides, it is sometimes assumed that the average
∆Ehalf-CP energy provides faster convergence,27,212,270,271 a strategy that we also exam-
ine.

4.5 Results and discussion

4.5.1 Converging accurate MP2 energies with plane waves

In this section, we discuss a number of technical details that are essential for making
calculations of MP2 interaction energies with PWs tractable. As already mentioned,
the leading computational effort for this task scales as O

(
N2

occn
2
maxΩ(Eρia

cut)3/2
)

for
which nmax is reduced by the joint extrapolation of relative energies in the virtual space.
Moreover, Ω and Eρia

cut define the number NoccnmaxN
ρia
G of ρia(G) pair density values

(eq 4.6) to be stored for the two-electron integrals (eq 4.7), and therefore have a strong
influence on the memory requirements.

The effect ofEρia
cut on the correlation energy is reported in Table 4.1 which shows that no

difference greater than 0.01 kcal/mol results from reducing Eρia
cut to the wavefunction

cutoff energy Eϕ
cut (150 Ry) for various systems and supercell volumes. This amounts

to projecting the pair densities, which require less high-frequency components, onto
an auxiliary basis set for efficient computation of integrals, similar to what is done
for example in the resolution of identity with GTO approaches (e.g., RI-MP2).272 We
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Table 4.1: MP2c contribution to the MP2 interaction energy for selected systems from the S22
set and pair density cutoff energies Eρia

cut . Energies are in [kcal/mol], obtained with the MT
Poisson solver. rx,y,z are the respective x, y, z ratios of the orthorhombic supercell dimensions
with respect to the HF electron density measured at an isosurface of 0.002 a.u., while Ω is
the volume of the supercell. σMP2

c corresponds to the standard deviation of ∆EMP2
c values

extrapolated on different fitting ranges in the virtual space.

S22 system rx ry rz Ω [Å3] Eρia

cut [Ry] ∆EMP2
c σMP2

c

(NH3)2 2.0 2.0 2.0 987.84 150 -1.763 0.004
300 -1.762 0.004
600 -1.762 0.004

(H2O)2 1.7 1.9 2.2 648.86 150 -1.354 0.004
300 -1.347 0.004
600 -1.347 0.004

Formic acid 1.5 1.6 2.3 953.50 150 -3.093 0.013
300 -3.095 0.013

Formamide 1.4 1.4 1.4 539.82 150 -3.658 0.004
300 -3.655 0.005
600 -3.655 0.006

PD benzene 1.8 1.8 1.8 2913.80 150 -10.470 0.021
300 -10.461 0.024

strongly emphasize the great benefit of such a reduction; in the case of e.g., the parallel-
displaced (PD) benzene dimer, computing the MP2 energies with Eρia

cut = 600 Ry is
simply impossible on 25 nodes with 128 GB of memory each, while all test systems
reported below could be evaluated with such a setup by fixing Eρia

cut to 150 Ry from now
on.

The last parameter affecting the computational cost is the supercell volume that should
be as small as possible while accurately decoupling the interactions between periodic
images of the system. As we saw, the choice of Ω is mainly dictated by the treatment of
low frequency components of the Coulomb operator acting in exchange-like integrals
(Section 4.3.2). Figure 4.1 shows that significant differences exist between the BAP
(eq 4.13) and MT (eq 4.16) potentials for converging interaction energies. As already
observed,143 BAP greatly accelerates the convergence of the total HF energy compared
to the simple neglect of the G = 0 component (Figure A1). However, both schemes
perform identically when it comes to HF interaction energies (Figure 4.1a). This is
explained by computing the BAP correction

EHF
ΦBAP(G) − EHF

Φ(G=0)=0 = − 1
2Ω

Nocc∑
i,j

χρij(0)ρji(0)

= − 1
2Ω

Nocc∑
i,j

χδij = − χ

4ΩNe

(4.42)
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Figure 4.1: (a) HF and (b) MP2c contributions to the MP2 interaction energy of the NH3
dimer for different exchange (Coulomb) potentials. Ω is the volume of expanding cubic or
orthorombic (ortho) supercells around the dimer electron density.

that is proportional to the number of electron Ne in the system and consequently
cancels out between the energies of the dimer and monomers. Therefore, although
beneficial for total energies, the BAP scheme does not improve the convergence of HF
interaction energies for both cubic and orthorhombic boxes, and necessitates large
volumes to recover the last fraction of the mean field energy. Moreover, although a
cubic box expansion with BAP accelerates the MP2c convergence against Φ(0) = 0 (Fig-
ure 4.1b), the BAP correction with an orthorhombic box makes it converge more slowly
and non-monotonically. This is a consequence of the BAP singularity correction (eq
4.15) that may switch sign depending on if the repulsion between the repeated Gaus-
sian charge images or their attraction with the compensating background dominates
according to the elongation of the cell.143 This demonstrates that the convergence
behavior of the MP2 correlation energy for various supercell sizes and symmetries is
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non-trivial when resorting to effective Coulomb potentials.

In comparison, the MT potential performs better and is consistent between HF and
MP2c contributions, most presumably thanks to the explicit cancellation of the G = 0
singularity and the directional effects of the screening function Φlong(G)−Φ̃long(G). Ex-
panding an orthorhombic box around the electron density coupled to the MT Poisson
solver allows to converge the MP2 interaction energy for a much smaller volume/-
computational cost, e.g., with a reduction factor of approximately 3 to 4 against other
schemes for the NH3 dimer test system. In addition, it has been found that the MP2c
energies of all systems considered herein can be extrapolated at large Ω according to

∆EMP2
c,Ω = ∆EMP2

c,Ω→∞ + A

Ω3 +BΩ2 + CΩ (4.43)

as illustrated in the inset of Figure 4.1b. While it is well established that the MT potential
requires the supercell to span at least twice the size of the density to converge DFT
energies,47,197 our results show for the first time that the same criterion also applies to
the MP2 energy. For practical information, all MP2 interaction energies considered in
this work are converged to within 0.07 kcal/mol when setting the orthorhombic cell
dimensions to rx,y,z = 1.8 times the extent of the density, measured at an 0.002 a.u.
isosurface. For very high accuracy (∼0.01 kcal/mol), a ratio of 2.2 is recommended
instead. Hence, eq 4.43 is of significant help to ensure the recovering of the last
fraction of the correlation energy, and becomes indispensable for the treatment of
larger systems that would impose a too large box size and intractable computational
cost.

Within these settings, we have shown how various factors can push the limits of MP2
calculations with PWs. The first factor consists of truncating the virtual space thanks
to an analytical extrapolation (eq 4.11), the second relates to the reduced number of
PWs necessary to expand the pair densities and, finally, the last refers to the choice
of an efficient Coulomb operator for treating isolated systems and correlation ener-
gies. Thanks to these findings, it has been made possible to access the MP2 inter-
action energies of systems with up to ∼100 electrons that are listed in Table A2 of
Appendix A. Convergence was achieved by progressively expanding an orthorhombic
cell (rx,y,z = 1.2, 1.4, 1.6, 1.8 and 2.0, 2.2 when possible) with the MT Poisson solver.
The HF components were retained when no variations larger than 0.01 kcal/mol were
measured, while MP2c contributions were extrapolated first via eq 4.38 and then eq
4.43. Standard deviations due to this extrapolation procedure are also reported in Table
A2 and do not exceed 0.05 kcal/mol for energies spanning a range from -0.50 to -20.19
kcal/mol.
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4.5.2 HF/MP2 energies in PWs versus GTO bases

Figure 4.2 displays the statistics of the differences between GTO and PW contributions
to the MP2 interaction energy. For HF, the CP uncorrected or half-corrected energies
converge from below and confirm that the BSSE tends to overbind dimer systems at the
HF level. Once the BSSE is removed by the CP correction, HF energies converge faster
and from above, which is the expected behavior from a gradual decrease of the (sole)
BSIE as the size of the basis set increases.212 The augmented basis converges slightly
faster than its standard counterpart, certainly due to its larger size and spatial extent for
the same cardinal number. When CP-corrected, the HF energies are already converged
within less than 0.2 kcal/mol for the triple (T) zeta bases. Overall, at each cardinal
number, the CP-corrected results obtained with the augmented basis sets provide the
best agreement with PWs as also reported in Table 4.2. The remarkably small deviations
at the HF level between the Q/5 zeta all-electron GTOs and PWs support the fact that
the use of pseudopotentials does not cause any spurious differences between the PW
(pseudopotential) and the GTO (all-electron) results.

The MP2c correlation, and hence the MP2 energies, are more sensitive to the basis
set size and slower to converge than HF, with e.g., MP2 deviations of about 0.7-0.8
kcal/mol for the T zeta bases. This is because the MP2c energy is more prone to the
BSIE which is noticeably exacerbated for the smaller cc-pVDZ and cc-pVTZ bases once
CP-corrections are applied. Overall, D zeta basis sets do not provide a satisfactory level
of convergence, with deviations that might surpass the order of 2 kcal/mol whatever

Table 4.2: Best agreement between GTO and PW interaction energies of the S22* test set at each
cardinal number. Mean absolute errors (MAE) and maximum deviations are in [kcal/mol].

Level Size Set BSSE corr. MAE Max dev.
HF D non-aug CP 0.16 0.69

aug CP 0.07 0.48
T non-aug CP 0.06 0.15

aug CP 0.04 0.12
Q non-aug CP 0.02 -0.08

aug CP 0.02 0.05
5 non-aug CP 0.02 0.04

aug CP 0.02 0.05
MP2 D non-aug half-CP 0.97 2.71

aug half-CP 0.68 -1.88
T non-aug half-CP 0.24 0.70

aug CP 0.30 0.82
Q non-aug half-CP 0.11 0.31

aug CP 0.11 0.23
5 non-aug half-CP 0.07 -0.20

aug CP 0.06 0.16
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Figure 4.2: Box plots of the differences ∆EGTO − ∆EPW between GTO and PW interaction
energies of the S22* test systems. Separate HF and MP2c contributions to the total MP2 energies
are given. Signed differences are given in (a) while (b) reports absolute values. Medians are
shown as horizontal black lines and yellow lines stand for the mean signed deviation (MSD)
in (a) and the mean absolute error (MAE) in (b), respectively. Dots represent outliers that
are located further than 1.5 times the interquartile range from respectively the first and third
quartiles (i.e. the limits of the rectangular boxes).

the augmentation or the BSSE correction. At small D and T cardinalities, the best match
with PWs is observed when considering only half of the CP correction with the (aug-
)cc-pVDZ or cc-pVTZ bases, respectively (Table 4.2), which confirms that the accuracy
at such levels is mainly due to a fortuitous cancellation of the BSSE, which lowers the
energies, and the BSIE which increases them. Although not formally recommended,
this can be exploited for a crude first estimate in case of limited computational budget,
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as provided for example by the cc-pVTZ/half-CP combination (with potential ∼1
kcal/mol error). For the same reason, the match between non-augmented Q/5 bases
and PWs is better with only half-CP correction. For the augmented bases, however,
the same conclusions as for HF hold: the MP2c and MP2 energies are generally too
low without a full BSSE correction, and approach the CBS PW values from above
when corrected. Thanks to this, the overall best agreement between GTOs and PWs is
measured for the aug-cc-pV5Z basis with CP correction, that shows a MAE of only 0.06
kcal/mol.

As a result, the gradual convergence of GTOs toward PW values validates both the MP2
implementation in CPMD as well as the previously proposed extrapolation procedure
to compute PW interaction energies in the CBS limit (Section 4.5.1). Furthermore,
our results highlight the importance of diffuse basis functions needed to incorporate
the long-range components of the electron correlation in weakly bound systemsa,
and in this respect provide further confirmation of the use of (aug-)cc-pVXZ bases for
converging binding/interaction energies with correlated methods, although they were
originally designed for the treatment of anions and electron affinities.214,215,244

4.5.3 HF/MP2 energies in PWs versus extrapolated GTO bases

We are now interested in exploring whether the different extrapolations of List 4.1
for consecutive X=D,T,Q,5 cardinal numbers improve or deteriorate the GTO CBS
estimates as compared to PW energies. When uncorrected for the BSSE, HF and MP2
interaction energies converge non-systematically and sometimes non-monotonically
because of the varying balance between BSSE and BSIE (as illustrated in Figure A2 or
ref [212]). For this reason, GTO extrapolations performed on relative energies yield
results that are either very similar or worse than those for absolute total energies. Thus,
in what follows, the energy of each subsystem will rather be extrapolated individually.

Truhlar (4.21) and Helgaker (4.28) treat the HF contribution separatelyb and Figure
4.3 shows how they perform in this regard. Both contain three parameters and require
at least three data points for extrapolation. The power expression of Truhlar with D,
T, and Q (DTQ) data points generally worsens the deviations from PWs compared to
simple Q energies. When including the 5 point (TQ5, DTQ5), results are also worse
than or comparable to the plain 5 values in terms of MAE and maximum deviation
for both non-augmented and augmented bases. For Helgaker, DTQ points improve
the convergence of uncorrected and half-CP Q zeta energies (Figure 4.2b, ∆EHF) but
slightly deteriorate those that are CP corrected. The TQ5 results are essentially similar
to the plain 5 zeta energies, and all extrapolated values are either slightly better or

aFor stronger (e.g., covalent) interactions, however, diffuse augmentation was sometimes found to
hamper the basis set convergence of correlation energies.251

bNote that Martinα (4.25) was also proposed for HF energies, and yields identical conclusions to
Truhlar (4.21) (not reported).
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Figure 4.3: Box plots of the differences |∆EHF
GTO −∆EHF

PW| between extrapolated GTO and PW HF
interaction energies of the S22* test systems. Medians are shown as horizontal black lines and
yellow lines stand for the mean absolute error (MAE). The dashed(solid) red lines correspond
to the smallest MAE(maximum deviation) obtained with plain Q and 5 zeta basis sets reported
in Table 4.2. The legend is given in Figure 4.2. Signed deviations are also provided in Figure A3.

similar when considering all DTQ5 points. Thus, Helgaker (4.28) applied with the CP
correction always gives the best match with PW HF energies as summarized in Table
4.3. From this observation, such an exponential expression is the most appropriate
for extrapolating HF interaction energies, which are degraded if extrapolated with
the scheme of Truhlar. Although its usefulness is rather marginal on relative energies
that are essentially converged from the Q zeta level (c.f. Table 4.2), the agreement or
small improvement over the non-extrapolated results, and the quality of interpolation
(Table A3), support the fact that the total (absolute) HF energies can be accurately
extrapolated with Helgaker (4.28).

With respect to MP2 interaction energies, results show that a majority of GTO ex-
trapolations generally induce larger deviations from PW values than results directly
obtained with the highest X point in the fitting sequence. This is particularly the case
for CP-corrected energies for which extrapolations are expected to perform well on the
reminiscent BSIE effects, and happens for the expressions of Truhlar (4.22), Martinα
(4.25), Wilson35 (4.26), Wilson45 (4.27), Varandas34 (4.30), Varandas3-fit (4.31) and
Var.34-fit (4.32). These schemes can be therefore invalidated outright to accurately
estimate GTO energies in the CBS limit and are left in Appendix A for the interested
reader’s discretion (Figures A5, A6, and A7).

The remaining extrapolations are plotted in Figure 4.4. Martin4 (4.23) and Helgaker
(4.29) have the advantage of extrapolating GTO energies from two points only, although
for the latter the exponential form of the HF energy requires three parameters, but
HF calculations are orders of magnitude cheaper and converge faster than MP2 (as
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Figure 4.4: Box plots of the differences |∆EMP2
GTO −∆EMP2

PW | between extrapolated GTO and PW
MP2 interaction energies of the S22* test systems. Medians are shown as horizontal black
lines and yellow lines stand for the mean absolute error (MAE). The dashed(solid) red lines
correspond to the smallest MAE(maximum deviation) obtained with plain T, Q or 5 zeta basis
sets respectively, as reported in Table 4.2. The legend is given in Figure 4.2. Signed deviations
are also provided in Figure A4.

seen previously). Based on DT points, Helgaker provides a better agreement with
PWs in terms of MAE and maximum deviation, especially for the aug-cc-pVTZ/CP
combination with a MAE (max dev.) of 0.3 (0.8) kcal/mol (Table 4.2) that reduces to
0.07 (0.19) kcal/mol when extrapolating with DT data points (Table 4.3). If the available
points are TQ instead, the energies obtained by Martin4 are globally closer to the PW
values than those of Helgaker, which is also the case for Q5 points albeit in these cases,
no extrapolation outperforms the aug-cc-pV5Z/CP calculations and their MAE (max
dev.) of 0.06 (0.16) kcal/mol (Table 4.2).

If DTQ points are calculated, Helgaker performs better than Martin4 for both aug-
mented and non-augmented bases coupled with the CP correction, and provides
energies that are more converged than if kept at the Q level only. However, when resort-
ing to non-augmented/CP basis sets, the three-parameter schemes Martin46 (4.24),
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Table 4.3: Best agreement between extrapolated GTO and PW interaction energies of the S22*
test set for different fitting points. Mean absolute errors (MAE) and maximum deviations are in
[kcal/mol]. Worth indicates that the extrapolated energies are statistically closer to the CBS PW
values than the corresponding direct results obtained at the highest extrapolation point (c.f.
Table 4.2).

Points Set Scheme BSSE MAE Max dev. Worth?
HF

DTQ non-aug Helgaker CP 0.03 -0.10 ≃
aug Helgaker CP 0.03 -0.07 ≃

TQ5 non-aug Helgaker CP 0.02 -0.07 ≃
aug Helgaker CP 0.02 0.05 ≃

DTQ5 non-aug Helgaker CP 0.02 -0.05 ≃
aug Helgaker CP 0.02 0.04 ≃

MP2
DT non-aug Helgaker half-CP 0.16 -0.38 ✓

aug Helgaker CP 0.07 0.19 ✓
TQ non-aug Martin4 CP 0.07 0.19 ✓

aug Martin4 CP 0.06 -0.15 ✓
Q5 non-aug Martin4 half-CP 0.06 -0.20 ≃

aug Martin4 CP 0.06 -0.18 ≃
DTQ non-aug Peterson CP 0.07 0.19 ✓

aug Helg. (Pet.) CP 0.05 -0.15 ✓
TQ5 non-aug Mart.4 (Pet.) CP 0.06 -0.16 ✓

aug Mart.4 (Pet./Fel.) CP 0.06 -0.16 ≃
DTQ5 non-aug Helg. (Pet.) CP 0.07 0.18 ≃

aug Helgaker CP 0.05 -0.16 ≃

Feller (4.19) and Peterson (4.20) provide even smaller deviations than Helgaker, with
Peterson surpassing the others. Because Martin4 and Helgaker are based on leading
orders at large X (cf. Section 4.3.3), those are likely to deteriorate when considering
the smallest cc-pVDZ basis set in the extrapolation sequence.220 Indeed, Martin4 and
Helgaker in general produce slightly lower energies with respect to the PW references,
but these deviate more widely from above when D points are considered (Figure A4).
Thus, the fact that Peterson is the most appropriate for the non-augmented basis with
DTQ points appears quite coincidental, and may also result from the lack of diffuse
functions that causes additional BSIE not related to the description of the Coulomb
cusp, but rather due to long-range effects which cannot be fully corrected for by GTO
extrapolations.212

Finally, extrapolating from the TQ5 points with Martin4 and Peterson gives similar
smallest deviations when the energies are CP-corrected, and the same applies to Hel-
gaker and Peterson when using all DTQ5 points, but Helgaker is performing somewhat
better for the augmented sets. Note that the extrapolations that include the (aug-)cc-
pV5Z data point do not further improve the interaction energies (Table 4.3), with an
average MAE (max dev.) against PWs of 0.06 (0.17) kcal/mol that is comparable to
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the 0.07 (0.18) kcal/mol for the non-extrapolated results (Table 4.2). This remaining
difference is discussed below in Section 4.5.5.

To summarize, our results demonstrate that the extrapolated GTO energies are always
closer to PW reference values when the CP correction is used to tackle the BSSE with
sets that are augmented by diffuse functions (Table 4.3). For non-augmented bases,
the interplay between the BSIE and some residual BSSE can make the Helgaker and
Martin4 two-point extrapolations perform fortuitously better in conjunction with the
half-CP correction. The empirical Peterson scheme surprisingly provides interaction
energies that are very close to the PW results, comparable to Helgaker or Martin4,
but the latter two appear to be more robust candidates because of their theoretical
foundations and the fact that they depend on two parameters only. To confirm this,
the same analysis has been carried out with omission of four outlier systems (the
two uracil, benzene-water and T-shaped indole benzene dimers for which the aug-
cc-pV5Z/CP interaction energies are already lower than the CBS PW values). For
this smaller test set, Feller occasionally beats Peterson, but Helgaker and Martin4
perform consistently better, too. Therefore, if the extrapolation sequence includes the
D zeta level, it is suggested to use the Helgaker (4.28)(4.29) scheme on aug-cc-pVXZ
CP-corrected energies in order to obtain the most accurate estimates in the CBS limit.
If not, the Martin4 (4.23) expression is recommended.

4.5.4 Other GTO extrapolations

Motivated by the best agreements found so far, as well as the general expression of eq
4.36, we have tested all possible extrapolations in the form of

EMP 2
X = EMP 2

∞ +A (X + a)−α (4.44)

and
EMP 2

X = EMP 2
∞ +A (X + a)−α +B (X + b)−β (4.45)

with α, β = 3, 4, 5, 6 and a, b = −1,−1
2 , 0,

1
2 , 1, to investigate whether different schemes

could universally improve the remaining deviations reported in Table 4.3. For the
first eq 4.44, no combination gives overall better results, whether for the augmented
or non-augmented bases, reinforcing the recommendation of Helgaker (4.29) for DT
points only and Martin4 (4.23) for TQ or Q5 pairs. If three points are available, however,
two new expressions stand out as providing very similar or lower deviations than those
of Helgaker and Martin4. We call them from now on Rovibi34 and Rovibi45 defined by

EMP 2
X = EMP 2

∞ +A
(
X − 1

2

)−3
+B

(
X + 1

2

)−4
Rovibi34 (4.46)

EMP 2
X = EMP 2

∞ +AX−4 +B (X + 1)−5 Rovibi45 (4.47)

whose results are also reported in Figure 4.4 and Table 4.4 for comparison.
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Table 4.4: Best agreement between Rovibi extrapolations and PW interaction energies for the
S22* test set. Mean absolute errors (MAE) and maximum deviations are in [kcal/mol]. Worth
indicates that the extrapolated energies are statistically closer to the CBS PW values than the
corresponding direct results obtained at the highest extrapolation point (c.f. Table 4.2).

Points Set Scheme BSSE corr. MAE Max dev. Worth?
MP2

DTQ non-aug Rovibi34 CP 0.07 0.18 ✓
aug Rovibi34 CP 0.06 -0.15 ✓

TQ5 non-aug Rovibi34 CP 0.06 0.16 ✓
aug Rovibi34 CP 0.06 -0.15 ≃

DTQ5 non-aug Rovibi34 CP 0.06 -0.15 ✓
aug Rovibi34 CP 0.06 -0.15 ≃

DTQ non-aug Rovibi45 CP 0.07 0.22 ✓
aug Rovibi45 CP 0.05 -0.15 ✓

TQ5 non-aug Rovibi45 CP 0.05 -0.16 ✓
aug Rovibi45 CP 0.05 -0.15 ≃

DTQ5 non-aug Rovibi45 CP 0.06 0.15 ✓
aug Rovibi45 CP 0.05 -0.15 ≃

Such laws indicate that the−3 and−4 orders are indeed good leading candidates, but
that terms of higher orders may also be significant. If some rational explanation were to
be found, Rovibi34 (4.46) is compatible with contributions resulting from the principal
expansion proposed by Helgaker14,31 (power −3) and those of the highest angular
momentum L present in the basis set from the partial wave expansions put forward by
Caroll,260 Hill261 and Kutzelnigg.259 On the other hand, Rovibi45 (4.47) suggests that
an additional order to Martin4 improves the extrapolation and that the (minus) third
order does not dominate. For both, the X-shifts reflect not only the balance between
the orders, but also between the basis functions that have L = X − 1 for H and L = X

for C, N and O atoms in the systems studied here. Based on these considerations, and
because the leading order of Martin4 (−4) was motivated empirically by comparison
with experimental atomization energies of small molecules,219,262,263 the Rovibi34
scheme seems more formally justified.

Up to this point, only the relative energies extrapolated to the CBS limit have been
compared to PW results, but the quality of the GTO extrapolations can also be assessed
by how faithfully they reproduce the single data points. Averaged on all systems, fitting
curves of Rovibi34 and Rovibi45 show a MAE relative to the data points (total energies)
of no more than 0.5 kcal/mol (Table A3), while the latter lies between 3.8-7.6 kcal/mol
for Helgaker and Martin4. As a reminder, these errors refer to the total (absolute)
energies of the dimers and monomers that have been extrapolated individually. Hence,
Rovibi34 and Rovibi45 not only provide interaction energies close to the PWs in the
CBS limit, but are also capable of interpolating total energies well. In this respect,
Rovibi34 performs best with a MAE of 0.15-0.3 kcal/mol against 0.3-0.5 kcal/mol for
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Rovibi45. We also stress that the double exponential scheme of Peterson, although
purely empirical, shows even smaller fitting MAEs of ∼0.1 kcal/mol (Table A3) and
provides deviations against PWs that are similar to those of Rovibi34 (Figure 4.4).
Consequently, our results do not disprove it as a good extrapolation law. However,
based not only on agreement with PWs and the ability to interpolate GTO energies,
but also on theoretical indications, it appears that Rovibi34 (4.46) constitutes likely
the best global choice when resorting to three/four-point extrapolations (DTQ, TQ5,
DTQ5) to the CBS limit.

4.5.5 System size dependency

Finally, whatever the effort in order to match GTOs with PW results, via CP correction,
basis set augmentation or extrapolation, one notices that the best MP2 errors do not
reach MAEs lower than 0.05 kcal/mol with maximum differences of at least 0.15 kcal/-
mol (Tables 4.2, 4.3 and 4.4). While this might at first be taken as an indication that
interaction energies are essentially converged at the aug-cc-pV5Z/CP level within an
0.05 kcal/mol numerical accuracy, further analysis instead reveals that residual dis-
crepancies occur because GTO results tend to further deviate from PWs as the system
size increases. Figure 4.5a shows indeed that GTO interaction energies that are not cor-
rected for the BSSE are lower than those from PWs, and that the BSSE tends to become
larger with an increasing number of electrons in the system. Interestingly, assuming
that the CP correction removes the majority of the BSSE, only the BSIE remains and in
turn increases with the system size. Hence, although the size of a GTO basis grows with
the number of atoms, the incomplete coverage (lack of completeness) of this expansion
leads to a smaller and smaller correction of the BSIE with increasing system size. In
other words, for a given GTO basis set, its capacity to capture the (correlation) energy
decreases as the size of the system increases. Such a size inconsistency is even more
pronounced for the smaller cc-pVXZ bases (Figure A9a). In the limit of large bases and
systems, however, the occurrence of linear dependencies can further interfere with
this behavior.

Once extrapolated, the GTO CBS estimates follow a similar trend with larger (absolute)
differences attributed to larger numbers of electrons (Ne) (Figure 4.5b and Figure A9b),
thus questioning the agreement between GTOs and PWs in the limit of (very) large
systems. Note that such a difference applies to all promising extrapolations found
in this work (Figure A10 and A11). The reasons can be multiple, and arise from a
combination of the BSSE, the accuracy of the extrapolation scheme, and the intrinsic
nature of the basis functions. Nevertheless, as observed earlier (Section 4.5.2), the
CP correction seems adequate to eliminate the BSSE so that the last two factors will
dominate, which are directly linked to the BSIE. Let us recall that the initial motivation
behind the extrapolation schemes is to cope with the electron-electron cusp that
hampers the basis set convergence.14,212 Therefore, although not firmly established
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Figure 4.5: Deviations between the aug-cc-pVXZ and PW MP2 interaction energies as a function
of the number of electronsNe in the dimer system. (a) for plain basis set results, (b) for energies
extrapolated to the CBS limit with best schemes of Tables 4.3 and 4.4.

by our results, the fact that extrapolated energies deviate from PWs could indicate a
residual completeness mismatch between GTOs and PWs in the limit of large systems,
originating rather from an in(over)complete description of the wavefunction to capture
the long-range (polarization, dispersion) contributions to the correlation energy. This
encourages further comparison of atom-centered bases against other basis sets, either
explicitly correlated, plane waves or purely numerical, in the calculation of correlation
energies of large systems.

4.6 Conclusions and outlook

The main motivation for this work was to analyze the effects of basis sets on correlated
energies. To this end, MP2 interaction energies of 20 complexes belonging to the S22
test set were computed, in the most common Gaussian-type correlation-consistent
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bases as well as in plane waves, for which we implemented the MP2 method in the
CPMD plane-wave pseudopotential package. Although more computationally de-
manding at such system scales, plane wave calculations have been made accessible on
conventional computing architectures through an extrapolation protocol involving
both the virtual space orbitals and the supercell volume, ultimately requiring no more
than a few days per molecule on several high memory compute nodes.

By comparing atom-centered interaction energies with plane wave results, we estab-
lished that both basis set types provide consistent values, especially when the CP
correction eliminates the BSSE from the former. Indeed, (aug-)cc-pVXZ relative en-
ergies generally converge towards plane wave values, free of BSSE, for progressive
enlargements of X=D,T,Q,5, and differ by less than 1 kcal/mol for X≥ T. However, the
slower convergence of the cc-pVXZ bases makes their agreement with plane waves
occasionally better with only half of the CP correction due to a fortuitous error cancel-
lation between the BSSE and their BSIE. Overall, the aug-cc-pV5Z basis set with the CP
correction provides the closest interaction energies within 0.16 kcal/mol to the fully
converged plane wave results. This demonstrates the benefits of diffuse functions in the
description of long-range interactions as occurring in weakly bound systems, although
their faster energy convergence may slow down for stronger (covalent) interactions.251

Hence, based on the agreement with plane wave results at the CBS limit, theoretical
foundations and interpolation capabilities, we can confidently make the following
recommendations for the extrapolation of (aug-)cc-pV[D,T,Q,5]Z correlated energy
sequences to the CBS limit:

• Use the CP correction for interaction/binding energies.

• Resort to the aug-cc-pVXZ bases if long-range effects are sizable.

• Extrapolate total energies separately according to

– (D)TQ5 points and A(X − 1
2)−3 +B(X + 1

2)−4

– DTQ points and A(X − 1
2)−3 +B(X + 1

2)−4

– Q5 points and B(X + 1
2)−4

– TQ points and B(X + 1
2)−4

– DT points and A X−3

where the choice of the extrapolation points (and basis augmentation) is left to the
practitioner since these will depend on the computational budget and the problem/-
software at hand. However, note that in principle the higher the point in the sequence,
the more accurate the extrapolated value, and the DT scheme should rather be taken
as a first rough estimate. In practice, the universal application of such a procedure
across correlated wavefunction methods (MP2, CCSD, CCSD(T),...) has been widely
accepted.31,212,217,219,220,223,250,256,263
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Finally, getting the electron correlation in the CBS limit relies on the saturation of the
one-electron basis, whose basis functions should adequately span short distances and
be flexible enough to incorporate long-range components of the wavefunction. The
latter are directly linked to the delocalized nature of the virtual states that contribute
to the correlation energy, and therefore necessitate a balanced and complete space
coverage. In that sense, plane waves are capable of capturing high-lying (continuum-
like) states as well as localized occupied states, at the cost of a sufficiently large
cutoff energy.232 When compared to plane waves, we noticed that the ability of the
correlation-consistent bases to cope with the BSIE decreases as the number of elec-
trons increases, therefore questioning the capability of localized basis sets to recover
most of the correlation energy as the system size increases. Plane wave, explicitly
correlated, or numerical bases calculations on larger systems would confirm (or re-
fute) this statement, but their computational overhead seems to compromise their
application for the time being. It is therefore not excluded that, with the improvement
of wavefunction-based methods, the precision of correlated energies becomes com-
parable to the basis set errors; such that the nature of the basis or its extrapolation to
the CBS limit ultimately becomes dominant and leads to noticeable deviations that
exceed chemical accuracy (1 kcal/mol) for larger molecules.27

Code and data availability

The development of this work is intended to be available in a future release of CPMD.47

Data, extrapolation and analysis scripts will be provided on Zenodo at https://doi.org/
10.5281/zenodo.7838778.

Appendix

Appendix A provides further implementation details of the PW MP2 correlation energy
in CPMD. It also reports information about the energy convergence against the PW
wavefunction energy cutoff; energy convergence versus the box volume for different
treatments of the electrostatic couplings in the PW periodic setup; PW and (aug-)cc-
pV5Z S22* interaction energies; additional deviations between GTO and PW interaction
energies against cardinal numbers and the number of electrons in the complexes; and
figures of merit for the interpolation quality of various GTO extrapolations.
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5.1 Abstract

The calculation of electron correlation is vital for the description of atomistic phe-
nomena in physics, chemistry and biology. However, accurate wavefunction-based
methods exhibit steep scaling and often sluggish convergence with respect to simu-
lation methods and the basis set at hand. Because of their delocalization and ease of
extrapolation to the basis-set limit, plane waves would be ideally suited for the calcu-
lation of basis-set limit correlation energies. However, the routine use of correlated
wavefunction approaches in a plane-wave basis set is hampered by prohibitive scaling
due to a large number of virtual continuum states and has not been feasible for all but
the smallest systems, even if substantial computational resources are available and
methods with comparably beneficial scaling, such as the Møller-Plesset perturbation
theory to second order (MP2), are used. Here, we introduce a stochastic sampling of
the MP2 integrand based on Monte Carlo summation over continuum orbitals, which
allows for speedups of up to a factor of 1000. Given a fixed number of sampling points,
the resulting algorithm is dominated by a flat scaling of∼O(N2). Absolute correlation
energies are accurate to <0.1 kcal/mol with respect to conventional calculations for
several hundreds of electrons. This allows for the calculation of unbiased basis-set limit
correlation energies for systems containing hundreds of electrons with unprecedented
efficiency gains based on a straightforward treatment of continuum contributions.

5.2 Introduction

Electron correlation lies at the heart of a wide range of fundamental physical and
chemical phenomena, which range from the structural diversity and dynamics of
water273 over the dissociation of liquid hydrogen at high pressure274 and the stability
and mobility of point defects in semiconductors275 to the barrier height of chemical re-
actions. Wavefunction-based methods allow for a conceptually simple and convenient
treatment of electron correlation13,14,276 and have found widespread and long-lasting
use in theoretical chemistry. Correlated wavefunction methods have been widely
applied as a benchmarking tool277,278 in the development of computationally more ex-
pedient methods such as Kohn-Sham density functional theory (KS-DFT).135,140 More
recently, their scope has been enlarged by rigorous hybridisation schemes that com-
bine KS-DFT with correlated wavefunction approaches,56,279–282 giving rise to some of
the most accurate density functional approximations available to date.56,175,280,283–285

In particular, while it has been pointed out that many recently developed density func-
tional approximations fail to yield correct densities and energies at the same time,286

double hybrid (DH) functionals have been shown to be able to overcome this funda-
mental problem.287 Recently, modern machine learning techniques have considerably
increased time-scales and system-sizes that can be sampled on conventional infras-
tructures, but the generation of reliable input data for the training of such methods still
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relies on the computational feasibility of reference calculations of sufficient accuracy.
In this perspective, the importance and scope of wavefunction-based first-principles
techniques applied to condensed matter systems can therefore only be expected to
grow further, both as a standalone method and in combination with DFT.

To this day, wavefunction-based correlation methods are hampered by a scaling that
is polynomial at best and that is associated with a considerable prefactor. This im-
plies that for larger systems, trade-offs have to be made between the accuracy of the
basis set employed and the number of electrons that can be treated with reasonable
computational resources. Moreover, correlated wavefunction approaches have only
scarcely been applied in the condensed phase, which is due to additional difficul-
ties encountered in periodic systems.65,117,118,122,272,288–301 These difficulties can be
further exacerbated by the large basis sets needed to obtain basis-set limit reference
energies.302 This precludes the routine use of wavefunction-based methods for large
condensed phase systems; at the same time, benchmarking possibilities, for example,
against newly developed density functionals, remain restricted to comparably few
atoms and small supercells117,118,292,296,300 or have to be based on basis sets which
are far from completeness. In benchmarking, this can be particularly problematic in
combination with the erroneous convergence behaviour of certain density functionals,
which obfuscates any comparison that is not explicitly made at the complete basis-set
limit.303,304 The availability of basis-set limit results is therefore necessary not only
for formal reasons, but is also of great importance for the assessment of the physical
accuracy of existing models and approximations, representing an important guideline
in the development of new techniques and approximations that are able to reach far
beyond current system sizes and limitations.

In principle, plane wave (PW) basis sets would constitute an ideal choice for the
calculation of basis-set limit correlation energies, since they do not introduce any
localisation bias and allow for a controlled, simple and well-defined extrapolation
to the complete basis-set limit66 without the linear dependency issues commonly
encountered in large atom-centered bases.118,119,293,305 In particular, since a single
PW is the solution of the Schrödinger equation of a free electron, their use enables
the description of continuum states, which have been shown to play a crucial role
in a complete description of electron correlation.306 In the following, we will refer to
continuum states in finite systems as those virtual states that resemble a free electron;
it is also this resemblance that lies at the heart of simple extrapolation to basis-set
limit values.66 By virtue of their very nature, conventional atom-centered bases such as
Gaussian functions or combined Gaussian/PW (GPW)307 bases are unable to describe
such continuum states, which also accounts for the absence of physical models that
would allow for a simple extrapolation to the basis-set limit. Instead, they usually
rely on specifically constructed basis sets that allow for certain extrapolation models
to be applied; this, however, does not commonly hold for density functionals.192,303

PWs have not been reported to suffer from this drawback.304 In addition, PWs are
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equally suitable for the treatment of both, periodic and non-periodic systems with
either wavefunction-based methods, density functional techniques or hybridisations
thereof. These advantages, however, come at a price: The presence of a large number
of continuum states in PW setups exacerbates the steep scaling of correlated wave-
function methods, making them computationally intractable for all but the smallest
systems, which on their own will already require substantial resources on conventional
high-performance compute clusters. In the following, we will show that PW-based
correlated wavefunction calculations can be sped up by a factor of up to 1000 by
stochastically sampling continuum state contributions via Monte-Carlo summation.
The error introduced by this stochastic approach remains below 0.01 kcal/mol per
electron. This enables correlated wavefunction calculations in PWs for unprecedented
system sizes on conventional computational infrastructure, making unbiased basis-set
limit values routinely accessible for systems with up to hundreds of electrons. The
same reflections hold for hybrid wavefunction/DFT methods, such as DH279 density
functionals.

5.2.1 Møller-Plesset perturbation theory

Among the correlated wavefunction methods, second-order Møller-Plesset perturba-
tion theory (MP2)21 exhibits a comparably flat scaling ofO(N5) with number of elec-
trons or basis functionsN , making it one of the flattest scaling correlated, wavefunction-
based approach available, second only to the random phase approximation (RPA) and
the direct RPA (dRPA), respectively.308,309 In general, MP2 has been found to provide a
good first estimate of the dynamic correlation energy.276,310 Conceptually simple, the
MP2 correlation energy EMP2

c is obtained by a perturbative treatment that includes up
to doubly excited determinants and summation over pairs of all Nocc occupied and
Nvir virtual orbitals. For the spin-restricted case,13

EMP2
c =

Nocc∑
i

Nocc∑
j

Nvir∑
a

Nvir∑
b

Ē(i, j, a, b)
εi + εj − εa − εb

(5.1)

where i, j and a, b denote spatial occupied and virtual orbitals ϕ, respectively, that are
eigenstates of the Hartree-Fock operator with eigenvalues ε. The MP2 matrix element
Ē(i, j, a, b) is expressed in terms of four-electron Coulomb energies, which can be cast
into a positive-definite form

Ē(i, j, a, b) = |⟨ij|ab⟩|2 − ⟨ij|ab⟩ ⟨ba|ij⟩+ |⟨ij|ba⟩|2 (5.2)

where ⟨ij|ab⟩ are two-electron matrix elements. In DH density functionals, the second-
order integrals in eq 5.1 are evaluated using a ground-state Kohn-Sham determinant,
rather than the Hartree-Fock solution,279 and will only contribute to a fraction of
the total correlation energy, the remainder being treated by pure density-functional
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methods. If the advantages of DHs are to be made routinely available in condensed
matter applications, they too require an efficient treatment of the terms in eq 5.1,
and any improvements in the calculation of the MP2 term will directly benefit DH
calculations.

Historically, EMP2
c has been evaluated using atom-centered basis sets or mixed GPW131

implementations. In particular in periodic setups, use of localised basis functions has
been reported to be susceptible to basis-set convergence issues,118,119,293,305 whereas
problematic basis-set superposition effects and possible linear dependencies are ab-
sent in a PW representation. Applications in solid state physics have also been scarce,
which is in part due to the divergence of the MP2 integrand in zero-band gap systems,
but a Thomas-Fermi screening of the MP2 amplitudes can resolve this issue.311

The presence of continuum (or continuum-like) states allows for simple extrapola-
tion to the complete basis set limit: Alavi and co-workers have demonstrated that
in a PW basis at large Nvir, EMP2

c decays as ∝ ε
−3/2
a .66 PW-based methods therefore

offer the unique advantage of a simple evaluation of basis-set limit values in both
periodic and isolated systems, making them a potentially invaluable tool for basis-
set bias-free calculations. PW MP2 calculations are few and have only recently been
reported.76,117,118,121 This is in part due to their extensive memory requirements. The
presence of a number of virtual states close to the number of PWs themselves (up
to 109) can further complicate the calculations. However, given sufficient memory,
the integrals of eq 5.2 are easily evaluated in reciprocal space: Exchange-like matrix
elements are easily obtained by solving the Poisson equation for a set of pair densities
ρia(r) = ϕ∗i (r)ϕa(r) in reciprocal space, where the Coulomb operator is diagonal. The
real-space pair densities can simply be subjected to a Fast Fourier Transform (FFT),
ρia(G) = FFT[ρia(r)]. Then, at the Γ-point, the reciprocal-space equivalent of a matrix
element reads235

⟨ij|ab⟩ = 1
Ω

Gmax∑
G

Φ(G)ρia(G)ρ†jb(G) (5.3)

where † stands for complex conjugate and index permutation. Ω is the volume of the
system, G are reciprocal-space vectors and Φ(G) is a suitably generalised form of the
reciprocal-space Coulomb potential.312,313 Attempts to reduce the overall cost of the
method have included mapping the virtual states onto a localised subspace,299,314–318

the use of stochastic orbitals,75,134,319,320 and (real-space69,321 or graph-based67,76) sam-
pling approaches, respectively, as well as exploiting Laplace transforms121,133,310,322–324

to enhance parallel efficiency. In an alternative strategy, one seeks to accelerate conver-
gence of the correlation energy by improving the description of the electron-electron
cusp. To this end, explicitly correlated basis sets can be used. In an ansatz commonly
referred to as F12 theory,221,325 the description of the electron-electron cusp is im-
proved by combining a conventional, atom-centered Gaussian basis with a set of
strongly orthogonal geminals. This approach has recently been extended to PWs.298
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However, localisation procedures fail for continuum states; previously reported stochas-
tic techniques either introduce system-dependent errors of up to 2 kcal/mol per occu-
pied orbital75 or carry a prefactor too large for practical applications,69 and approaches
based on the Laplace-transform121 require repeated calculations at different quadra-
ture points, increasing the overall operation count for the sake of parallel efficiency,
with modest reported speedups of around 4 to 5. A combined stochastic/Laplace-
transform approach that results in appreciable computational speedups leads to errors
of at least 20%.76 Similarly, due to the presence of non-factorizable many-electron
integrals, the cost of evaluating the MP2 integrand in PW-F12 is higher than for a pure
PW basis set,298 and the efficiency of graph-based approach67 was hindered by the
absence of an optimized weighting scheme for graph generation. In a more general
scope, a recent diagrammatic decomposition of the coupled cluster pair correlation
function has allowed for the introduction of a basis-set correction in PWs that results in
speedups of 2 orders of magnitude.326 Alternatively, in the context of Full Configuration
Interaction Quantum Monte Carlo calculations,68 use of an effective, transcorrelated
Hamiltonian77 has been shown to substantially improve convergence of the correlation
energy of the uniform electron gas. In the GW theory,327 stochastic sampling schemes
have successfully been applied with competitive accuracy and favourable timings with
respect to deterministic calculations.328

In the following, we shall demonstrate how the presence of continuum states can be
exploited to drastically reduce the computational cost of MP2 calculations without
impacting their accuracy. The approach is based on a simple stochastic sampling of
the integrands of eq 5.1 and can be implemented with little effort, representing a sleek
and clean approach to tackle the issues arising in the continuum. This opens the path
to routine applications of PW MP2-based approaches in both isolated and periodic
systems with up to hundreds of occupied orbitals, making it possible to obtain basis-set
limit DH or MP2 correlation energies on conventional computational infrastructure
within a reasonable time.

5.3 Distribution of continuum states and stochastic sampling

The possibility of introducing stochastic sampling is rooted in the behaviour of the
integrand at large εa, where continuum states arise. In this regime, EMP2

c grows as
ε
−3/2
a ,66 and the overlap elements ⟨ij|ab⟩must therefore be of low magnitude. It is obvi-

ous from eq 5.3 that overlaps will only be non-negligible whenever the symmetries of
the continuum states match, but explicit symmetry determination for all states would
be prohibitively expensive. Instead, given two high-lying virtual states, the statistical
distribution of non-negligible overlaps is expected to be similar between truncations of
eq 5.1 at a and some subsequent a+ δ with arbitrary δ. For a spatially infinite supercell
at infinite PW cutoff, one can define a cutoff energy εc with orbital index c, from where
on all orbitals a ≥ c are part of the continuum. Then, the correlation energy can be
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separated

EMP2
c =

Nocc∑
i,j

c−1∑
a,b

Ē(i, j, a, b)
εi + εj − εa − εb

+
Nvir∑
a≥c

ηc(a) (5.4)

with the continuum contribution ηc(a) accounting for the incremental change in
correlation energy when adding an additional continuum orbital to the system:

ηc(a) :=
Nocc∑
i,j

 Ē(i, j, a, a)
εi + εj − 2εa

+ 2
a−1∑
b≥c

Ē(i, j, a, b)
εi + εj − εa − εb

+ 2
c−1∑
b′=1

Ē(i, j, a, b′)
εi + εj − εa − εb′

 (5.5)

where
∑

b′ is due to pairs of continuum (a) and noncontinuum (b′) virtual orbitals and
we have used that, at the Γ-point, ϕa = ϕ∗a. Note that the last term in eq 5.4 contains
only one explicit sum over virtual orbitals Nvir, with the orbital pairs themselves being
formed by the triple sum in eq 5.5.

The simplest possible stochastic treatment of eq 5.5 is given by a uniform sampling of
the summand, but this calls for a regular distribution of the overlap values obtained
over all tuples ijab, which are the arguments of ηc(a); that is, the high-lying virtual
orbitals of a finite system at finite PW cutoff need to reasonably approximate free,
continuum electrons. Figure 5.1 shows the distribution of these arguments for a finite
periodic box with εc−εHOMO = 50 eV and a total ofNvir = 3000 virtual orbitals. With the
positive-definite definition of Ē adopted in eq 5.2, the resulting distribution is indeed
regular and smooth, indicating that ηc(a) could be predestinated to be treated by
uniform Monte-Carlo sampling. This is the approach we will privilege in the following.
Note that in the limit of an infinite system, this is equal to Monte Carlo integration
over the continuum; such integration techniques have been used as early as 1957 to
calculate the high-density correlation energy of the uniform electron gas.329
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Figure 5.1: Figure showing the absolute occurrence P of orders of magnitude of the summand
Ē(i, j, a, b) of ηc(a) of eq 5.5 from a = c to a = 3000 for εc − εHOMO = 50 eV. The order of
magnitude of the matrix elements is small, and its distribution is smooth.
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Let ps ∈ [0, 1) be a predefined sampling probability (i.e., ps is larger than or equal to
zero but always smaller than 1). We define the function p as

p(x, ps) =

1 if x ≤ ps

0 if x > ps

(5.6)

Symmetry at the Γ-point, which gives rise to a factor of 2 in continuum/continuum and
mixed continuum/noncontinuum terms of eq 5.5, can be accounted for by introducing
a Kronecker delta. Then, the sums in ηc(a) can be simplified, and the stochastic
expression for ηc(a) is

⟨ηc(a)⟩ := 1
ps

Nocc∑
i,j

 a∑
b=1

(2− δab) p(xijab, ps) Ē(i, j, a, b)
εi + εj − εa − εb

+O
( 1√

NMC

)
(5.7)

where xijab ∼ U([0, 1)) is a sequence of random numbers drawn from a uniform
distribution U and b covers both b and b′ of eq 5.5. In the limit of a continuum, the error
of the sampling is expected to decrease as 1/

√
NMC, with NMC being the number of

tuples ijab that are explicitly sampled. The combination of eqs 5.4 and 5.7 amounts to a
stochastic summation over all orbital pairs that contribute to an increase inEMP2

c , once
a continuum orbital a is added to a system already containing a− 1 virtual orbitals.

For any sampling probability ps < 1, only elements of ηc(a) with p(xijab, ps) = 1 have
to be evaluated. In a finite cell with a finite PW cutoff and a sufficiently large number
of virtual orbitals Nvir, estimates for ηc(a) are then obtained for every given continuum
orbital a ∈ [c,Nvir] as follows: rather than randomly generating a tuple of indeces
for a predetermined amount of Monte Carlo moves, a random number p(xijab, ps) is
drawn for every element of the summand in eq 5.7, determining whether a particular
tuple ijab will enter into the estimator of ηc(a). ps therefore defines a target value
NMC ∝ ps of tuples that are expected to be sampled for every continuum orbital a.
The advantages of such an algorithm are two-fold: On one hand, it avoids under- or
oversampling of the subspace associated with orbital a; on the other hand, it enables
efficient extrapolation to the basis-set limit in one single calculation, directly providing
EMP2

c as a function of the highest virtual orbital included in eq 5.4.

In the following, we will adopt an orbital-dependent sampling probability ps(a) =
NMC/Ncard(a), whereNcard(a) = (2a−1)Nocc(Nocc +1)/2 is the product of the cardinal-
ities of the sums in eq 5.7. Ncard(a) therefore explicitly depends on the virtual orbital a
that is added to eq 5.4. With this choice of a continuum-orbital-dependent ps(a), the
density of the sampling decreases as a increases. This allows for NMC to remain a fixed,
system-independent input quantity. We shall later show that conservative estimates
for NMC and εc can be regarded as system-independent.

For orbitals that are part of the continuum, the resulting algorithm scales formally as
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O(NPWNvirNMC), where NPW is the number of PWs in the basis set. This follows from
eqs 5.4 and 5.7, since the cost of evaluation of the triple sum over N2

occNvir in eq 5.7 is
reduced to elements with p(xijab, ps(a)) = 1, which in turn is proportionate toNMC. For
virtual orbitals with εa < εc, the conventionalO(NPWN

2
occN

2
vir) scaling applies (cf. eqs

5.1 and 5.3). Further on in the text, we will show that in practice, the number of terms
due to eigenvalues εa < εc does not dominate scaling. Once NMC can be made both
independent of the orbital index a and the system at hand, the scaling of the resulting
method reduces to O(NPWNvir) integral evaluations for all orbitals with eigenvalue
ε > εc.

5.4 Computational methods

5.4.1 General setup

Hard pseudopotentials of the Goedecker, Teter and Hutter (GTH) form330 parametrised
for Hartree-Fock calculations296 have been used for all calculations. PW MP2 and
MPs2 energies were calculated using a modified version of the CPMD code.47 The
convergence threshold on the residual gradient on occupied orbitals was set to 10−7

a.u., whereas a threshold of 10−5 a.u. was used for the virtual space. For isolated
systems, periodic images were decoupled using the Poisson solver by Martyna and
Tuckerman.197 The wavefunction cutoff energies Eϕ

cut were set to 150 Ry for all systems
but the ethylene crystal, where a value of 140 Ry was used. A density cutoffEρ

cut = 4Eϕ
cut

was adopted for all systems, while cutoff energies for MP2 pair densities were set
to Eϕ

cut without impacting accuracy. The calculation of the MP2 term is based on
straightforward evaluation of eq 5.3 as in ref [235]. Since no derivatives with respect to
EMP2

c have to be evaluated, reciprocal-space orbital pairs ρia(G) are stored in memory,
allowing for substantial speedups with respect to an on-the-fly evaluation of every pair
density. The size of the periodic super- or unit cells, the number of electronic states as
well as molecular geometries and PW energy cutoffs are given in Appendix B.

5.4.2 Extrapolation of correlation energies

Correlation energies are obtained from single-point extrapolation using the ε−3/2
Nvir

dependency (equivalent to 1/Nvir) as described in ref [66]. Such a leading-order ap-
proximation requires a sufficient number of high-energy orbitals in order to gather
sufficient statistics and reliable extrapolated values. In this work, we adopt a fitting
scheme with various windows (ranges of points to fit) moving along the curve. Those
vary in size with respect to the number of orbitals included, with a shift of∼200 orbitals
between them. The maximum window size is taken as the one that retains a fitting
error comparable to smaller windows when finishing fitted ranges at Nmax

vir , the highest
orbital available from a Davidson diagonalization. The smallest window is given by
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the smallest possible window size that provides a stable fit. MP(s)2 curves are fitted
according to

EMP(s)2
c (Nvir) · ε3/2

Nvir
= α · ε3/2

Nvir
+ β (5.8)

The series of α(Nvir), obtained from all windows along the curve that terminate at
Nvir up to Nmax

vir , converge to an estimate of the MP(s)2 energies at the basis-set limit,
EMP(s)2

c (εNvir →∞) Averaging over different windows allows to account for sensitivity
and variance of extrapolated values, which are given in Appendix B along with figures
that illustrate the extrapolation procedure and error determination.

5.5 Results and discussion

5.5.1 Accuracy of stochastic summation

Our stochastic sampling scheme was tested both on isolated systems as well as in
periodic, condensed-phase setups. Test systems in the condensed phase include
solid-state ethylene and benzene molecular crystals as well as a liquid consisting
of a hydronium ion solvated in 32 water molecules. Isolated (gas-phase) systems
are represented by a benzene monomer and dimer in sandwich configuration. All
calculations were carried out with a modified version of the CPMD code331 using GTH
pseudopotentials generated for Hartree-Fock calculations.296,330

We first investigate the dependency of the accuracy of our stochastic sampling of eqs
5.4 and 5.7, called MPs2, on the number of orbitals in the occupied subspace and the
choice of the continuum cutoff value εgap

c . This quantity is given with respect to the
highest occupied molecular orbital (HOMO) in order to be independent of the system
setup or reference frame: εgap

c = εc − εHOMO. Figure 5.2 shows the absolute difference
between MP2 and MPs2 calculations for a benzene crystal and a benzene monomer for
ε

gap
c ranging from 20 to 180 eV. Differences rapidly decrease by increasing εgap

c . Errors
averaged over independent stochastic runs remain<0.01% for continuum cutoffs≥120
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Figure 5.2: Absolute differences between stochastic and nonstochastic MP2 correlation ener-
gies, ∆EMP2

MPs2, as a function of the continuum cutoff energy εgap
c for a benzene crystal (Nocc = 60,

four molecules per unit cell) and a benzene monomer (Nocc = 15) at NMC = 12000. Error bars
were obtained by averaging over six independent runs.
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eV. Reducing this value by half to 60 eV results in doubling of the relative error, which
can still be acceptable. Further lowering of εgap

c , however, leads to rapidly increasing
errors. The standard deviation of the sampling error depends much more strongly on
ε

gap
c than on Nocc. From ε

gap
c = 120 eV on, standard deviations become negligible and

virtually identical for both systems. Notably, relative sampling errors are lower for the
crystal at Nocc = 60 than for the monomer (graphs are provided in Appendix B). This
strongly supports that accuracy is mainly influenced by εgap

c , whereas at constant NMC,
the error is independent of the partitioning of occupied and virtual states in eq 5.7.

In the following, and in line with the values of Figure 5.2, we will adopt NMC = 12000
and ε

gap
c = 120 eV to investigate the accuracy of stochastic sampling for different

systems. Figure 5.3 shows the correlation energy as a function of the eigenvalue of
the highest virtual orbital included (εNvir ) for two exemplary systems: one periodic
(ethylene crystal) and one isolated (benzene monomer) setup, calculated both with
a full summation according to eq 5.1, as well as with our stochastic sampling. The
corresponding extrapolated basis-set limit values are shown in Table 5.1. The largest
errors of the extrapolated, absolute MP2 correlation energies lie between 0.02 and 0.1
kcal/mol. Errors in the binding energy of the benzene sandwich are of comparable
magnitude, which is far below chemical accuracy. Differences per electron, ∆E/e−,
do not exceed 0.1 meV. These values compare well to an expected stochastic error of
≤0.01%. Table 5.1 also shows the number of matrix element evaluations for all setups.
With our system-independent choice ofNMC, stochastic sampling reduces this number
by 1-2 orders of magnitude compared to conventional calculations.

For both, absolute energies and energy differences, the observed deviations are several
orders of magnitude lower than the reported error of other stochastic or Laplace-
transform based schemes.67,69,75,76,134,319–321 For comparison, values of correlation
energies obtained with atom-centered all-electron332 and GPW codes333 are listed in
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Figure 5.3: EMP2
c as a function of the highest eigenvalue εNvir in the sum of eq 5.1 for both

conventional and stochastic MP2 (MPs2) for an ethylene crystal (Nmax
vir = 11158) and an isolated

benzene monomer (Nmax
vir = 14985). Domains without stochastic sampling are coloured in

gray. Differences between the curves, ∆EMP2
MPs2, are plotted on a secondary y-axis. Extrapolated

basis-set limit values for all systems described here are found in Table 5.1.
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Table 5.1: MP2 correlation energies EMP2
c obtained from a conventional MP2 calculation and

the stochastic approach MPs2. ∆EMP2
MPs2 and ∆E/e− denote absolute and per-electron energy

differences between stochastic sampling and conventional calculations, respectively. Nijab

denotes the number of matrix elements (ijab-tuples) sampled in a conventional calculation,
and psNijab is the number of effectively sampled matrix elements in a stochastic MPs2 cal-
culation, with both numbers rounded to three digits. The threshold for stochastic sampling
expressed with respect to the HOMO was identical for all systems, εgap

c = εc − εHOMO = 120 eV.
The same holds for NMC = 12000, the number of terms sampled per virtual contribution ηc(a),
as described in eq 5.7. For details on the systems used, cf. Appendix B.

System EMP2
c [a.u.] EMPs2

c [a.u.] ∆EMP2
MPs2 [a.u.] ∆E/e− [a.u.] Nijab psNijab

Ethylene crystal −0.78054 −0.78056 2 · 10−5 8 · 10−7 5.06 · 109 3.26 · 108

Benzene crystal −4.69164 −4.69149 −1.5 · 10−4 −1 · 10−6 1.30 · 1011 3.50 · 109

monomer −1.05681 −1.05695 1.4 · 10−4 5 · 10−6 8.62 · 109 6.26 · 108

dimer −2.12780 −2.12777 −3 · 10−5 −5 · 10−7 3.33 · 1010 8.78 · 109

binding −0.01417 −0.01387 −3 · 10−4 −5 · 10−6

Appendix B; all values are consistently higher than those reported for our PW calcula-
tions. In particular, we note that differences between different basis sets tend to be
substantially larger than the stochastic sampling error, further confirming the viability
of uniform, stochastic sampling of the continuum space.

5.5.2 Performance and speedups

With the error of the stochastic sampling scheme being considerably lower than the
errors documented for other PW implementations, effective speedups remain to be
determined. Figure 5.4 shows the resulting cumulative execution times and speedups
of the stochastic sampling compared to the direct implementation of eqs 5.1 and 5.3
for the ethylene crystal. Timings are reported as a function of the highest orbital index
included in the expansion, Nvir. For the ethylene crystal, at Nvir = 10000, speedups of
up to 957 can be reached with stochastic summation, making the calculation about
3 orders of magnitude faster compared to a conventional implementation. All the
while, the error introduced by uniform stochastic summation with respect to a full
calculation is only about 10−2 kcal/mol for this system (cf. Table 5.1). This has to be
compared to maximum speedups of about 5 documented for Laplace transform-based
schemes that allow for similar accuracy to be retained121 and 20% errors in correlation
energies for algorithms that allow for larger speedups76 versus errors around 0.01%
reported here. Figure 5.4 also includes a fit of the CPU time of our stochastic scheme
to a function O(Nvir) = a0 + a1Nvir, demonstrating that the scaling is described well
byO(NPWNvir), assuming that NMC = cnst. O(N2) constitutes a formal improvement
over the scaling achieved with a stochastic graph-based approach in atom-centered
basis sets,67 which was reported to be ofO(N2.6).

Together with the high accuracy of the method, this considerable gain in efficiency
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Figure 5.4: Cumulative execution times (left) and speedups (right) compared between conven-
tional algorithm and stochastic sampling for an ethylene crystal as a function of the highest
virtual orbital index Nvir included in eq 5.4. O(Nvir) = a0 + a1Nvir denotes a least-squares fit
on Nvir ∈ [5000, 10000] with a0 = −4.76586 s, a1 = 0.010515 s. For sufficiently large Nvir > 2000,
formal and practical scaling show excellent agreement. At Nvir = 10000, the stochastic ap-
proach with NMC = 12000 is 3 orders of magnitude faster. Timings were obtained by dividing
the computational load over 5 OMP (Open Multi-Processing) threads and 24 MPI (Message
Passing Interface) tasks.

allows for the treatment of systems that would be intractable when treated with conven-
tional algorithms. One typical usage example of accurate wavefunction-based theories
or computationally demanding high-quality DFT methods such as DH functionals
lies in postprocessing of simulation data, for example, in a posteriori calculations
of potential energy surfaces or reaction paths generated using lower-level methods
in the context of molecular dynamics or Monte Carlo simulations. Recent develop-
ments have even made it possible to directly sample334 high-quality potential energy
surfaces by virtue of multiple time step (MTS) propagators,335 which allow for an im-
portant decrease in computational cost and substantial improvements in tractability
by permitting less-frequent evaluation of the full, high-quality Hamiltonian during a
first-principles molecular dynamics run.

A liquid constituted of 1 hydronium ion solvated in 32 water molecules (264 electrons)
will serve as an example of the performance of stochastic sampling in a typical setup
encountered in first-principles (MTS-)molecular dynamics. Using the stochastic sum-
mation scheme reported here, calculating the basis-set limit correlation energy of this
system, shown in Figure 5.5, is feasible in about 15 h on 25 16-core compute nodes
with 128 GB of RAM, using the same, conservative estimates for εgap

c reported in Table
5.1, which yielded accurate results for all test systems considered so far. Additionally,
calculations using εgap

c = 60 eV and εgap
c = 90 eV have been carried out for the sake

of comparison. Already at εgap
c = 90 eV, the execution time is almost halved to about

8 h, and can be further reduced by using εgap
c = 60 eV, at which the basis-set limit

correlation energy can be calculated in a mere 5 h. In particular, this drastic reduction
in execution time is not accompanied by a considerable loss of accuracy. Extrapolated
correlation energies are given in Table 5.2. It should be noted that postprocessing
protocols can be applied when training machine learning algorithms with high-quality
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Figure 5.5: Hydronium ion solvated in 32 water molecules (264 electrons explicitly accounted
for). Calculation of EMPs2

c takes between 5 and 15 h on 25 16-core compute nodes. Molecules
within the periodically repeated supercell are highlighted. Using εgap

c = 120 eV and NMC =
12000 yields an extrapolated EMPs2

c = −10.22952 a.u.

Table 5.2: Stochastic MP2 correlation energies EMPs2
c for a hydronium ion solvated in 32 water

molecules using different thresholds for continuum energies εgap
c . Timings t, rounded to 5 min,

are given for the execution time of the MP2 routine on 25 16-core nodes in a hybrid setup (50
MPI tasks, 8 OMP threads).

EMPs2
c [a.u.] NMC ε

gap
c [eV] t

-10.22771 12000 60 4 h 55
-10.23190 12000 90 8 h 10
-10.22952 12000 120 15 h 25

data, based on a coarse sampling of configuration space with a lower-level method
(cf., e.g. ref [273]). Speedups in the calculation of correlation energies with MP2 or
DH functionals will therefore be directly reflected in less time-consuming training
procedures, thus considerably increasing throughput.

5.5.3 Generalization to the random phase approximation

The promising performance of the stochastic summation scheme described here also
opens the possibility of its application to similar approaches in which continuum
states can play a role. In DFT, the exact exchange plus RPA (EXX+RPA) approach has
emerged as a promising method capable of more accurately predicting van der Waals
binding energies, adsorption energies on surfaces, or lattice constants in molecular
solids.66,131,177–179 Based on the similarity of the MP2 energy expression and the RPA,
one can expect transferability of the stochastic sampling approach to the evaluation of
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the RPA. The reciprocal-space form of the RPA correlation energy ERPA
c is308,309

ERPA
c =

∫ ∞
0

dω
2π

1
Nq

∑
q∈BZ

Tr{ln [1− χ̃G,G′(q, iω)
]

+ χ̃G,G′(q, iω)} (5.9)

where χ̃G,G′(q, iω) are elements of the full density response function, including the
Coulomb interaction. At the Γ-point with q = 0, the diagonal elements in a stochasti-
cally sampled RPA scheme become

χ̃G,G(0, iω) = 1
Ω

Nocc∑
j

 c−1∑
a

χG,G(iω, j, a) + 1
ps

Nvir∑
b≥c

p(xjb, ps)χG,G(iω, j, b)

 (5.10)

with

χG,G(iω, j, a) =
Φ(G)ρja(G)ρ∗ja(G)

iω + εj − εa
−

Φ(G)ρaj(G)ρ∗aj(G)
iω + εa − εj

(5.11)

where the variables c, xjb and ps are used analogously to eq 5.7. In this limit, we
investigate the RPA integrand of eq 5.9 for an ethylene crystal at different values of ω.
Figure 5.6 shows the values ofERPA

c at varying iω forNvir = 11040, as well as an estimate
of the overall RPA correlation energy based on trapezoidal integration. Stochastic
sampling with ps = 1/3 introduces a maximum error of about 1% in the integrand.
Overall, the stochastic sampling introduces a final error of less than 0.03 kcal/mol,
which is comparable to the error obtained in MP2 calculations for the same system.
These results demonstrate that the stochastic sampling of continuum states can also
be applied for methods other than MP2 that include a substantial continuum-state
contribution.
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Figure 5.6: Value of the integrand of eq 5.9, abbreviated as Tr {· · · }, for an ethylene crystal at
q = 0 and Nvir = 11040 as a function of iω for both conventional and stochastic calculations.
The difference between the curves, ∆Tr {· · · }, rapidly decreases as iω is increased; differences
are plotted on the secondary y-axis and do not exceed 1.5%. Simple trapezoidal integration
leads to ERPA

c = −0.03365 a.u. for a full calculation and ERPAs
c = −0.03360 a.u. for stochastic

sampling.
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5.6 Conclusions and outlook

Continuum states have been shown to be an important contributor to the overall
electron correlation energy.306 Among the basis sets commonly used in solid-state
physics, quantum chemical calculations, and first-principles molecular dynamics, PWs
stand out as the only choice that can effectively account for continuum contributions,
which are also the base of a simple basis-set limit extrapolation technique.66 Here, we
have introduced a uniform stochastic sampling approach to treat continuum states
arising in correlation energy calculations, where contributions due to states with or-
bital eigenvalues beyond some threshold εc are added by stochastic summation. This
algorithm has been applied to the calculation of second-order perturbation energies
which occur in both MP2 and DH density functionals. We have shown that stochastic
summation over the continuum orbitals allows for the calculation of MP2 correlation
energies with speedups of up to 3 orders of magnitude at remarkably low errors. This
significant increase in efficiency enables calculations with several hundreds of elec-
trons at a relatively low computational cost, making it possible to standardly apply
MP2 and DH methods in a PW basis, which has so far been intractably expensive even
on high-performance compute clusters. Importantly, the results presented here also
enable straightforward DH calculations in the condensed phase, thus extending the
availability of one of the most accurate density functional methods available to date
to condensed matter systems. We have also shown that stochastic sampling of the
continuum orbitals can easily be extended to other approaches, demonstrating the
generality of the ansatz employed here. Calculations carried out within a stochastic
RPA suggest errors comparable to the stochastic MP2 scheme. The stochastic sampling
scheme itself is straightforward, easy to implement, and based on simple physical
concepts.

Stochastic sampling of continuum states permits to easily obtain basis-set limit val-
ues, be it for periodic or isolated systems, with maximum errors of only 0.1 meV per
electron. This accuracy makes basis-set limit values for correlation energies available
using reasonable computational resources and execution times. This will allow for
thorough benchmarking of new computational methods without basis-set bias, for
routine postprocessing of potential energy landscapes generated using lower-level
methods, as well as on-the-fly generation of high-accuracy first-principles molecular
dynamics trajectories using multiple time stepping schemes. This data, in turn, can
be used to feed high-throughput methods based on artifical intelligence. Overall,
the techniques presented in this text pave the road to routinely apply accurate MP2
and DH calculations at the basis-set limit in condensed matter systems, ultimately
extending the use of a method well-established for isolated systems to the condensed
phase.
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Appendix

Appendix B contains details on system setups; fitting errors for all basis-set limit values
reported in this chapter; graphs of EMP(s)2

c (Nvir) for all systems; EMP2
c obtained in

Gaussian and Gaussian/PW basis sets for comparison; as well as relative sampling
errors and their standard deviation as a function of εgap

c for the benzene monomer and
crystal.
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6 Ab initio molecular dynamics

Because nature is dynamic and states statistical.

This chapter provides further theoretical background relevant to the subsequent chap-
ters of the thesis and draws heavily on refs [9, 20, 33, 195], which I recommend to the
reader for detailed information. It provides an introduction to ab initio molecular
dynamics, presenting the fundamental concepts and methodologies before returning
to the results of the thesis in the next part.

6.1 Time versus ensemble averages and ergodicity

Statistical mechanics (in its classical flavour), links the observation of macroscopic
properties (observables) to microscopic states. A microscopic state can be described as
a point γ = ({p}, {q}) defined by the generalized momenta {p} and coordinates {q}.
This point lies in the phase space Γ({γ}) of all generalized momenta and coordinates
attainable by the system.9,33 Furthermore, a collection of states that satisfy the same
macroscopic observables (e.g., fixed number of particles N , volume V , and internal
energy E) is called an ensemble. Thus, a complete ensemble is characterized by all
microscopic states that are consistent with specific macroscopic characteristics.

Let us nameA one of the properties corresponding to a defined ensemble. One can
now assume that A is a function of the points γ that traverse the phase space and
belong to the corresponding ensemble. At instantaneous time t, the property is given
byA(γ(t)). The observed propertyAobs at macroscopic scale is rather obtained over
the observation time tobs. Thus, the observable propertyAobs can be calculated as the
time average

Aobs(tobs) = ⟨A(γ(t))⟩tobs
= 1
tobs

∫ tobs

0
A(γ(t))dt (6.1)

In experiments, the concept of time averaging arises naturally as a series of mea-

113



Chapter 6. Ab initio molecular dynamics

surements is conducted over specific time intervals, from which the average value is
determined.

In the conventional theory of statistical mechanics, the time average is replaced with
an ensemble average. For a given ensemble, the microscopic states can be assigned a
specific probability distribution. The partition function, denoted as Z, plays a signif-
icant role in characterizing the probability distribution of an equilibrium ensemble
since it serves as a normalization factor. Assuming that each state γ has a probability
proportional to f(γ)dγ to occur, the partition function is defined as

Z =
∫

Γ
f(γ)dγ (6.2)

such that the ensemble average of the propertyA reads

⟨A⟩ens = 1
Z

∫
Γ
A(γ)f(γ)dγ (6.3)

However, accounting for all microscopic states in the calculation of the partition
function is in general prohibitive due to the incommensurate size of the ensemble (and
phase space), and calls for what is called (enhanced) sampling methods. The question
arises if it would be possible to similarly track states in the ensemble by observing them
over a sufficiently large amount of time. The answer is positive under the assumptions
of the ergodic hypothesis.

The ergodic hypothesis states that when considering long time intervals, a system will
spend time in different regions of the phase space of microstates with the same energy
in proportion to the volume of each region. In other words, over a significant period of
time, all accessible microstates are equally likely to occur. The ergodic hypothesis thus
provides a compelling alternative to the calculation or direct sampling of the partition
function by relating it to time averages:

⟨A⟩ens = lim
tobs→∞

Aobs(tobs) (6.4)

If a system is observed for a sufficiently long time tobs, the average value of an observ-
able over time will approach its average value over an ensemble. This assumes that the
system and the simulation algorithm are ergodic, meaning that no specific region in
phase space is excluded, and that the density distribution of the points γ covered by
the trajectory reaches a stationary distribution.

While ergodicity is not universally proven and has been disproven in certain cases,
there is substantial evidence supporting its validity in many scenarios. This assumption
is one of the main motivations for conducting molecular dynamics (MD) simulations.
The average behavior of a system can therefore be studied by computing its time evolu-
tion: thermodynamical quantities can be calculated as time averages of the observables
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of interest over a sufficiently long MD trajectory. In this sense, the next sections will
discuss how MD can be run in combination with quantum chemical approaches like
those introduced previously in the theoretical sections about wavefunction-based
(Section 2.2) and DFT (Section 2.3) methods.

6.2 Equations of motion

When looking at the dynamics of quantum many-body systems, the consideration
of the fundamental Schrödinger equation must turn to its time-dependent general
form. The time-dependent Schrödinger equation describes the time evolution of the
many-body wavefunction, which represents the quantum state of the system over time.
The time-dependent Schrödinger equation is

iℏ
∂

∂t
Ψ({R}, {r}, t) = ĤΨ({R}, {r}, t) (6.5)

where Ψ represents the many-body wavefunction, ℏ is the reduced Planck’s constant,
and Ĥ is the Hamiltonian operator defined previously in eq 2.2, which describes the
total energy of the system. TheP nuclear coordinates {RI , I = 1, ..., P} are represented
by {R} as well as the N electronic positions {ri, i = 1, ..., N} that are contained in the
set {r}. The time-dependent Schrödinger equation provides a powerful framework
for studying the behavior of electrons in atoms, molecules, and solids, enabling the
calculation of various electronic properties and spectroscopic observables. Solving this
equation is a challenging task due to the complex nature of the many-body problem
and the high dimensionality of the wavefunction. Various approximation methods and
numerical techniques are employed to tackle this equation and obtain insights into
the dynamic behavior of quantum systems.

We will once again rely on the Born-Oppenheimer approximation to approximate
quantum dynamics (c.f. Section 2.1.1). This approximation is based on the observation
that the time scale associated with the motions of the nuclei is generally slower than
that of the electrons. Alternatively, it can be demonstrated that, at leading orders, the
effects of the movement of the nuclei do not affect the electronic states.16 Therefore,
under appropriate assumptions, the electrons do not transition between stationary
states upon reasonable movement of the nuclei. This is called the adiabatic approxima-
tion, which assumes that the electrons instantaneously follow the motion of the nuclei,
while remaining in the same stationary (ground) state of the electronic Hamiltonian.
This stationary state evolves in time because of the electrostatic coupling between the
nuclei and the electrons, but the many-electron wavefunction instantaneously adjusts
to the nuclear wavefunction. This approximation thus ignores the possibility of having
non-radiative or any other transitions between electronic eigenstates. The adiabatic
approximation starts by separating the total Hamiltonian into a nuclear component
dictating the time-evolution, and an electronic Hamiltonian describing the stationary

115



Chapter 6. Ab initio molecular dynamics

states:
Ĥ = ĥn({R}) + Ĥe({R}, {r}) (6.6)

whose terms have been defined in eqs 2.5 and 2.7. Previous chapters of this thesis
described the methods to solve the time-independent many-electron problem in the
Born-Oppenheimer approximation (eq 2.4) that I recall here

ĤeΦe({r}; {R}) = E({R})Φe({r}; {R}) (6.7)

In fact, it can be seen that the eigenstates Φe,n of this problem form a complete basis∫ +∞

−∞
Φe,n({r}; {R})Φe,m({r}; {R})dr1 . . . drN = δnm (6.8)

such that the many-body wavefunction can be expanded as

Ψ({R}, {r}, t) =
∞∑

n=1
Θn({R}, t)Φe,n({r}; {R}) (6.9)

where Θn({R}, t) are the time-dependent expansion coefficients that correspond to
the wavefunction components of the nuclei in each one of the adiabatic electronic
eigenstates Φe,n. Substituting the wavefunction ansatz of eq 6.9 into the many-body
time-dependent Schrödinger eq 6.5, followed by multiplying Φ∗e,n({r}; {R}) from the
left and subsequent integration over all electronic coordinates, gives a set of coupled
differential equations

iℏ
∂

∂t
Θn({R}, t) =

[
ĥn({R}) + En({R})

]
Θn({R}, t) +

∞∑
m=1

χnm({R})Θm({R}, t)

(6.10)
that involve the nuclear Hamiltonian ĥn({R}) for the nuclei evolving on the PES
En({R}), provided by the stationary state n of the electron system. The coefficients
χnm({R}) couple the electronic and nuclear degrees of freedom and are termed the
non-adiabatic couplings

χnm({R}) =
∫ +∞

−∞
Φ∗e,n({r}; {R})

{
−1

2

P∑
I=1

1
MI
∇2

I

}
Φe,m({r}; {R})dr1 . . . drN

−
P∑

I=1

1
MI

∫ +∞

−∞
Φ∗e,n({r}; {R})∇IΦe,m({r}; {R})dr1 . . . drN∇I

(6.11)

The non-adiabatic couplings have diagonal contributions χnn that depend only on
the adiabatic state Φe,n, and represent part of the correction to the energy En({R})
due to the electron-nuclei coupling. We note that no approximation has been made
up to here, since the solution of the electronic problem Φe,n was only introduced as
an ad-hoc basis to project the total wavefunction Ψ. As a consequence, the adiabatic
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approximation to the entire non-adiabatic problem consists of retaining only the
diagonal coupling terms (χnm = 0 if n ̸= m) in eq 6.10 that transforms into

iℏ
∂

∂t
Θn({R}, t) =

[
ĥn({R}) + En({R}) + χnn({R})

]
Θn({R}, t) (6.12)

which is completely decoupled as opposed to eq 6.10. For the diagonal elements χnn,
note that the second term in eq 6.11 vanishes.

The latter equation therefore demonstrates that the time-dependent Schrödinger
equation can be approximated by the sole equations of motion of the nuclei, given the
Born-Oppenheimer PES and states Φe,n provided by the electronic time-independent
problem. This implies that the nuclear motion occurs without changing the electronic
state during time evolution. This is equivalent to a decoupling of the coupled nuclear-
electronic many-body wavefunction into a direct product of nuclear and electronic
wavefunctions

Ψ({R}, {r}, t) ≃ Θn({R}, t)Φe,n({r}; {R}) (6.13)

such that, by comparison with eq 6.9, the adiabatic approximation corresponds to
retaining only one component of the many-body wavefunction projected onto the
electronic basis.

In practice, the diagonal coupling terms χnn are of small magnitude.16 As a result, in
the ultimate Born-Oppenheimer approximation of the nuclear dynamics, the diagonal
couplings are also neglected and the equations of motion for the nuclei finally simplify
to

iℏ
∂

∂t
Θn({R}, t) =

[
ĥn({R}) + En({R})

]
Θn({R}, t) (6.14)

This equation is nothing but the time-dependent Schrödinger equation for the nuclear
wavefunction under the Born-Oppenheimer approximation. It is valid for systems
where the kinetic energy of the nuclei is much smaller than the relative energies
between neighboring electronic levels. In this case, it is accurate to describe the nuclear
dynamics with the PES of the electronic ground state. However, the non-adiabatic
coupling terms must be considered for systems that have two or more electronic states
contributing to the physical properties, or have crossovers between PES of different
electronic states.

From now on, for the sake of notation, we will invariably move the potential operator
of the nuclei-nuclei interactions V̂NN ({R}) (eq 2.7) from ĥn({R}) to En({R}), in the
sense of

En({R})← En({R}) +
P∑

I<J

ZIZJ

|RI −RJ |
(6.15)
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6.3 Born-Oppenheimer molecular dynamics

In order to enable the dynamical simulation of real systems with reasonably large
size, the propagation of the nuclei is most of the time operated under the classical
nuclei approximation. By seeing the nuclear wavefunction as a product of Dirac’s delta
functions δ(r−RI), and taking the classical limit ℏ→ 0, the equations of motion 6.14
can be mapped onto the classical propagation of the nuclei,9,16 that is

MIR̈I(t) = −∇IEn({R(t)}) (6.16)

where RI are the coordinates of the nuclei I, and En({R(t)}) is the nth adiabatic PES
provided by the time-independent electronic problem (that includes here the nuclei-
nuclei interactions) at time t. The integration of these equations of motion is typically
achieved by computing nuclear forces using the Hellmann-Feynman theorem,336,337

that relates forces to the expectation value of the electronic Hamiltonian operator

FI := −∇IEn({R}) = −⟨Φe,n({R})| ∂Ĥe({R})
∂RI

|Φe,n({R})⟩ (6.17)

where FI is the force acting on nuclei I, and, of course, n = 0 in case of ground state
dynamics.

The numerical integration of the above Newtonian equations is called ab initio (AIMD)
or first-principles (FPMD) molecular dynamics.195 The development of AIMD tech-
niques allows for simulations of complex systems without the need for adjustable
(empirical) parameters. The key principle behind AIMD is the on-the-fly calculation
of energies and forces through accurate electronic structure calculations as seen in
Chapter 2. While the concept of AIMD can be applied with any electronic structure
method, DFT is currently the most widely utilized theory in combination with MD
simulations due to its most optimal cost-accuracy trade-off (cf. Section 2.3).

In Born-Oppenheimer MD (BOMD), the ground state potential energy E0({R}) is
calculated on-the-fly at every propagation time step of the nuclei. This is accomplished
via the various computational approaches described in Chapters 2 and 3 that provide
the approximate energy E({R}) of the many-electron system. In a classical picture,
the HamiltonianH of the N-nuclei system is thus given by

H =
N∑

i=1

p2
i

2Mi
+ E({q}) (6.18)

where the generalized pi and qi := Ri represent respectively the nuclear momenta
and coordinates. Those define the 6N-dimensional phase space Γ({γ}) in which any
microstate γ = ({p}, {q}) lies. The Hamiltonian formulation of classical mechanics
therefore describes the time-evolution of the particle system in phase space according
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to

q̇i = ∂H
∂pi

; ṗi = −∂H
∂qi

(6.19)

Standard methods for propagating the nuclei with respect to eq 6.19 rely on finite
differences: starting from initial positions and velocities at time t, the positions and
velocities at a subsequent time t+ δt are calculated with a satisfactory level of accuracy.
The selection of the time step δt is mainly influenced by the propagation scheme
employed, and is typically determined by the fastest physical motion (e.g., vibrational
modes) expected in the system. Numerous finite-difference algorithms exist, among
which the probably most widely used is the velocity Verlet algorithm.9,34 Finally, the
consideration of different thermodynamic ensembles in AIMD can be obtained with
the help of thermostats, respectively barostats, which are added to the equations of
motion 6.19.33,338,339

6.4 Multiple time step algorithms

As mentioned earlier, the ergodic hypothesis necessitates sampling the PES over suffi-
ciently long time scales. In AIMD simulations, the length of trajectories is primarily
determined by the computational cost of evaluating the forces using the underlying
electronic structure method, such as DFT or wavefunction-based approaches. The
more computationally demanding the force computations, the shorter the achiev-
able time scale for the simulation. Therefore, the length of AIMD trajectories is once
again constrained by the balance between accuracy and computational efficiency. The
number of force evaluations is directly influenced by the time step used to integrate
the equations of motion. By using larger time steps, the accessible time scale can be
linearly increased. However, it is important to select a time step that is sufficiently
small to ensure accurate numerical integration, particularly for the fastest force com-
ponents. Nuclear forces exhibit a wide range of characteristic time scales in AIMD
simulations such that, traditionally, even slowly varying force components need to be
integrated at small intervals determined by the fastest components. As a solution to
this, multiple time step (MTS) algorithms allow to separate the dynamical propagation
of force components depending on their respective time scales, and possibly reduce
the number of calculations for the most expensive force components.

The MTS integrator employed in this thesis, which is utilized in AIMD, is derived from
the reversible reference system propagator algorithm (r-RESPA) which was initially
introduced in the context of classical MD.98 r-RESPA is a meticulously designed in-
tegration scheme that makes the time evolution reversible, ensuring accuracy and
energy conservation throughout the simulation. It is derived from the Liouville opera-
tor appearing in the Hamiltonian formulation of classical mechanics.33 The Liouville
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operator L is defined by

iL =
3N∑
j=1

[
∂H
∂pj

∂

∂qj
− ∂H
∂qj

∂

∂pj

]
=

3N∑
j=1

[
q̇j

∂

∂qj
+ Fj

∂

∂pj

]
(6.20)

according to the corresponding coordinates qj and momenta pj . In Hamiltonian
mechanics, the Liouville operator acts as the propagation operator for any point γ in
phase space via

γ(t0 + t) = eiLtγ(t0) (6.21)

where γ(t0 + t) is the phase space element at time t0 + t obtained from its counterpart
at time t0. From that formalism, if forces were to be decomposed into fast Ffast and
slow Fslow components eq 6.20 would translate into

iL =
3N∑
j=1

q̇j
∂

∂qj
+

3N∑
j=1

F fast
j

∂

∂pj
+

3N∑
j=1

F slow
j

∂

∂pj

:= iLp + iLfast
q + iLslow

q

(6.22)

The split components of the Liouville operator do not commute, but applying a second-
order Trotter decomposition to the corresponding propagators allows to transform the
propagation eq 6.21 into33,98

γ(t0 + ∆t) = eiLslow
q (∆t/2)

[
eiLfast

q (∆t/2n)eiLp(∆t/n)eiLfast
q (∆t/2n)

]n
eiLslow

q (∆t/2)γ(t0) (6.23)

where ∆t is a pre-defined outer time step. Note that third-order and higher terms
have been discarded. In this form, the inner brackets of eq 6.23 correspond to the
velocity Verlet propagation of the fast components,98 over smaller inner time steps
δt = ∆t/n. After a first half-∆t step with slow components, the propagation is executed
n times with fast components at the inner time step δt. Finally, the slow components
are updated to complete the full time propagation of the system over the entire time
step ∆t.

As mentioned previously, the r-RESPA algorithm was first developed to separate force
components attributed to specific force field terms in classical MD. In this frame-
work, bonded forces are generally faster in nature, while forces resulting from non-
bonded interactions exhibit slower variations. In AIMD, the slow and fast forces are
rather less well-defined and several attempts have been investigating how to decou-
ple them.340–344 A recent introduction by Liberatore et al.345 presents a versatile MTS
implementation for AIMD and mixed AIMD-QM/MM simulations employing various
electronic structure methods. This AIMD-MTS approach is based on the fundamental
concept that accuracy enhancements in quantum chemical methods arise from bet-
ter treatment of exchange-correlation effects in DFT or correlation contributions in
wavefunction-based methods. Since these terms constitute a relatively small fraction of
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the total energy, the corresponding force contributions are expected to exhibit smooth
variations over time. This provides an opportunity to employ a computationally effi-
cient but approximate description of (exchange-)correlation effects as a lower-level
method to compute the fast force components Ffast = FL, while a higher-level method
is utilized to compute a correction term Fslow = ∆F = FH − FL, which captures the
slow force.

By employing the r-RESPA algorithm, AIMD-MTS trajectories can be generated with
the same level of accuracy as the high-level method but at a significantly reduced
computational cost of approximately n = ∆t/δt times. This approach allows for the
combination of different methods, such as semiempirical methods/DFT, DFT/MP2,
. . . , or even DFT/CCSD(T). Similarly, DFT calculations utilizing higher-rung func-
tionals can be expedited by using lower-rung functionals to compute the fast force
components, for example, combining GGA with hybrid DFT functionals. In practical
applications, it was indeed observed that the force difference ∆F = FH − FL evolves
on a much slower time scale compared to either FL or FH individually.345 This charac-
teristics allows for the dynamical decoupling between Fslow = ∆F = FH −FL from the
fast force component Ffast = FL.

Since the MTS propagator reproduces the high level of accuracy by construction, it
also enables the calculation of high-level structural and dynamical properties at much
reduced cost (c.f. Chapter 7). If τH and τL represent the times required to compute FH

and FL respectively, the ideal speedup s of the algorithm can be estimated as

s = nτH

nτL + τH
= n

nτL/τH + 1 (6.24)

which demonstrates that the ideal speedup indeed reaches the time step ratio n in
the limiting case of a very expensive (inexpensive) higher (lower) level (τH ≫ τL).
Nevertheless, in practice, the achieved speedups are smaller. This can be attributed
to the fact that, as the time step ratio increases, the initial guess for solving the high-
level wavefunction deteriorates. This deterioration increases the time required for the
wavefunction (re)optimization when using larger ratios between time steps. Typical
ratios for production trajectories can vary between 4 and 15, with the largest (speedups)
being attainable in the presence of thermostats (as observed in Chapter 7 in the NVT
ensemble).

By design, all energy-conserving ∆F-MTS schemes ensure that the generated trajec-
tories maintain the full accuracy of the chosen high-level method, regardless of the
specific lower-level method employed. The choice of the lower-level method primarily
affects the efficiency gain. Speedups are maximized when the computational cost
associated with computing the slow force component Fslow = ∆F = FH − FL is the
dominant factor. This occurs when there is a significant difference in computational
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cost between the high- and low-level methods. In turn, efficiency is improved further
when the ratio n = ∆t/δt is maximized, in accordance with the possible dynamical
decoupling between fast and slow force components.

As a final remark, the value of n in most MTS schemes is constrained by the occurrence
of resonances, as discussed in previous studies.346 These resonances arise when there
is a persistent coupling between the fast and slow force components, limiting the
efficiency gain of the MTS algorithm. However, the use of specific thermostats can
help mitigate these resonances and improve the overall performance of the MTS
approach.347–350

6.5 Machine learning-aided multiple time step algorithms

The field of machine learning (ML) being particularly extensive and dynamic would
require more than this thesis to be presented exhaustively. As references of choice,
I invite the reader interested in the details of ML methods to consult refs [91] and
[351]. I also would like to recommend to the reader the recent books [20] and [352] that
focus on the use of ML in combination with methods from the field of computational
chemistry.

Section 6.5 is a postprint version of the section entitled Machine learning-aided multiple-time-step
MD as published in the article:

Mouvet, F.; Villard, J.; Bolnykh, V.; Rothlisberger, U. Recent advances in first-principles based
molecular dynamics. Accounts of Chemical Research 2022, 55, 221–230.

Reproduced under the terms of the CC-BY-NC-ND 4.0 License.

With the advance of artificial intelligence algorithms and their rapid spread over com-
putational chemistry, ML has also become a promising tool to cope with AIMD bot-
tlenecks incurred by the cost of having to solve the electronic structure problem at
every time step. Recent applications of ML with MD engines have mostly focused
on the replacement of quantum calculations with ML-designed potentials for force
field-like dynamics.353,354 Commonly, kernel methods355,356 or neural networks357,358

are employed to learn from training data (originating from presumably accurate DFT or
coupled cluster calculations) and predict potential energies and/or forces at a fraction
of the quantum reference’s cost. In parallel, several attempts have shown how ML can
accelerate the solving of DFT equations359 or improve the cost-accuracy trade-off of
DFT with ML-designed functionals.360,361

As discussed in the previous section, the ∆F-MTS scheme opens a wealth of possible
combinations of high- and low-level methods. The idea of using ML models as the
lower-level surrogate or as computationally expedient replacement of the higher-level
method emerges therefore quite naturally.
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We have recently introduced such a combined ∆F-MTS-ML scheme99 in which ener-
gies and forces are inferred based on the Operator Quantum Machine Learning (OQML)
kernel method proposed by Christensen et al.362,363 In OQML, response properties,
such as nuclear gradients, are included in the training process for better data efficiency
and high-quality force predictions. OQML owns some similarities with kernel ridge
regression (KRR)364 but rather expands the kernel in a basis of kernel functions that
depend on all the atomic environments included in the training set. Illustrating this
on energies only, those are obtained for a query system S as local atomic contributions
of all atoms a in the system,

ES =
∑
a∈S

εlocal(qa) =
∑
a∈S

∑
S̄∈{T}

∑
b̄∈S̄

k(qb̄,qa) αb̄ := kT
S α (6.25)

where b̄ corresponds to all atoms of all systems S̄ included in the training set {T}, qa

and qb̄ are the respective atomic environment representations365 and k(q,q′) is the
user-defined kernel function. α is the vector containing the regression coefficients
for each atomic environment in the training set. Considering supplementary query
systems, eq 6.25 can be cast into the matrix form

E = Kα (6.26)

where the row of K corresponding to the system S is given by kT
S . It follows that, in

contrast to KRR or Gaussian process regression (GPR),366 the kernel matrix is neither
square nor symmetric. Also, the number of regression coefficients equals the number
of atoms in the training set, which for a set of N systems with an average number of
atoms A gives a matrix of size N × NA. The OQML method extrapolates this to the
simultaneous learning of energies and forces and writes the learning problem as

[
E
F

]
=

 K
− ∂

∂Ri
K

α := KOQMLα (6.27)

where −∂/∂Ri denotes the force operator acting on atom i of a query system, such
that the three rows of F corresponding to atom i are given by

Fi = − ∂

∂Ri
ES = −

∑
a∈S

∑
S̄∈{T}

∑
b̄∈S̄

αb̄

∂k(qb̄,qa)
∂qa

∂qa

∂Ri
(6.28)

In the training phase, E and F are known from the training data and KOQML is con-
structed from the atomic representations (i.e. from the atomic coordinates of the
training systems). The OQML formalism thus avoids the inclusion of double deriva-
tives in the kernel matrix as well as reduces the number of regression coefficients
compared to conventional GPR. Ref [363] discusses the method’s scalings in more
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details, which become relevant for investigating larger heterogeneous systems. The
extended kernel matrix is rectangular of size (N + 3AN)×NA and the typical matrix
inversion encountered in KRR is replaced in practice by a singular-value decomposi-
tion (SVD) of KOQML to obtain the regression coefficients α from eq 6.27. The choice
of SVD is motivated by a better numerical stability than the more common solution of
the corresponding normal equations. Once the model is trained and α determined,
energies and forces are inferred with the reconstruction of KOQML for new atomic
configurations and the evaluation of eq 6.27. In addition to enforcing consistency
between energies and forces during training, the OQML method has the advantage of
reducing the number of regression coefficients to the number of atoms in the training
set, consequently not expanding the kernel basis for treating derivatives.

With this machinery at hand, it becomes possible to couple a ∆-ML correction of forces
with the MTS algorithm. Training on the difference between a low-level and the target
high-level method, such a correction on atom i of a query system S is written as

∆FML
i = − ∂

∂Ri

(
EH

S − EL
S

)
= −

∑
a∈S

∑
S̄∈{T}

∑
b̄∈S̄

αb̄

∂k(qb̄,qa)
∂qa

∂qa

∂Ri
(6.29)

which requires only one kernel matrix and one set of α coefficients since ∆F is now the
target quantity. Two possible schemes have been explored for an MTS-decomposition
of the forces. The first uses the ML correction to recover the higher-level method at a
fraction of the cost and therefore defines (see eqs 6.22-6.23)

Ffast = FL , Fslow = ∆FML (scheme I)

while the second intends to improve the lower-level method to better agree with the
higher reference at the outer time step:

Ffast = FL + ∆FML , Fslow = FH − Ffast (scheme II)

A proof-of-concept was demonstrated on a 32-molecule sample of liquid water with
LDA as the MTS low level and the hybrid PBE0 functional as the high-level method
(or ML target).99 The two ∆-learning schemes (schemes I and II) were implemented
in an extension of a development version of the CPMD code47 with the Gaussian
kernel k(q,q′) = exp

(−|q − q′|2/2σ2) and aSLATM representations.367 Training data
was generated by running MTS-LDA/PBE0 trajectories on liquid water and small water
clusters of various sizes, followed by a farthest-point sampling (FPS) in the kernel
space to enhance data efficiency. In the end, the OQML model owns a total of 10725
regression coefficients and showed an out-of-sample mean absolute error on |∆FML|
around 0.3 kcal/(mol Å) as well as a mean absolute error on force directions of about 0.7
degrees on a test set of 50 random frames extracted from an MTS-LDA/PBE0 trajectory.
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Figure 6.1a depicts the energy conservation during NVE liquid water MTS trajectories
for standard and ML-aided MTS schemes. ML-MTS scheme I, for which the high-level
forces are predicted directly from the ML model, shows higher energy fluctuations
than the standard MTS algorithm, which can be explained by the statistical errors
introduced by the ML inference. On the other hand, using ML for low-level predictions
while using explicit PBE0 calculations as the high-level method scheme II allows to
significantly increase the outer time step at which PBE0 has to be evaluated. The
ML-MTS scheme II still provides trajectories with an acceptable energy conservation
of log10(ε) = −4.7 at ∆t = 20δt while the time step ratio reduces to around 8 for the
ML-MTS scheme I. Resonance effects affect the energy conservation when the time
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Figure 6.1: (a) Logarithm of the total energy fluctuations for standard MTS, ML-MTS schemes I
and II and different outer time steps ∆t = n ·δtwith δt = 0.36 fs. ε =

∑N
i=1 |(Ei− Ē)/Ē|/N with

N the number of outer time steps and Ei the instantaneous, respectively average Ē energies.
(b) Standard MTS (4-8δt) and ML-MTS scheme II (10-30δt) speedups against conventional
Velocity-Verlet Born-Oppenheimer MD.
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step ratios increase further.

For a fixed trajectory duration, the effective speedup of the MTS splitting can be
measured by eq 6.24 and is reported in Figure 6.1b. While the conventional MTS
scheme yields typical speedups over straightforward Velocity-Verlet PBE0 MD of about
2.5 (4δt) to 4 (8δt) respectively, the ML-MTS scheme II brings additional speedups that
reach a factor of 4.6 (10δt) to 6.5 (15δt) for equivalent energy fluctuations. Since the
ML-MTS scheme I completely bypasses the PBE0 calculations, drastic speedups up to
80 can be reached at the price that the generated dynamics fully relies on the accuracy
of the ML model in reproducing PBE0 quality results while in scheme II this accuracy
is fully guaranteed albeit at higher computational cost. Nevertheless, both ML-MTS
schemes are able to give radial distribution functions of liquid water in very close
agreement with the MTS-LDA/PBE0 reference as illustrated in Figure 6.2, showing that
the ML-aided MTS approach is able to reproduce, e.g., structural properties at a high
level of accuracy with strongly reduced computational cost.
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Figure 6.2: Oxygen-oxygen and oxygen-hydrogen radial distribution functions of a 32-
molecule water box as calculated from LDA/PBE0-MTS, LDA/ML(PBE0)-MTS scheme I, and
LDA/ML(PBE0)-MTS scheme II, compared with NVE Velocity-Verlet LDA MD. Data from ref
[345].
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Overall, ML-MTS scheme I can achieve speedups of 1 to 2 orders of magnitude (i.e.,
factors 10-100), while scheme II can yield accelerations up to an order of magnitude.
Since the speedup of scheme II is basically determined by the possible time step ratio
(limited most probably due to intrinsic resonances), the performance could be further
enhanced when applying stochastic thermostats as discussed and demonstrated in
the previous section. On the other hand, for scheme I, the accuracy of the ∆-ML
corrections is key for keeping faithful dynamics. Scheme II finally provides a more
reliable reproduction of the high-level dynamics and the quality and computational
cost of the ML model are essential to operate at larger ∆t. For this scheme, additional
efficiency limitations at large n are caused by the increased number of iterations for
re-optimizing the PBE0 wavefunction at the outer time steps, which can be improved
to some extent by using better extrapolation schemes.345 ML-aided AIMD certainly
holds a lot of promise especially in view of methods for ML error monitoring,368,369

on-the-fly learning,370,371 and recent QM/MM372 and excited-state dynamics373 imple-
mentations.

6.6 Car-Parrinello molecular dynamics

In 1985, Car and Parrinello proposed an AIMD scheme that aimed to reduce com-
putational costs by treating the electronic degrees of freedom as fictitious classical
variables, alongside the nuclear motions.374 This approach, known as Car-Parrinello
MD (CPMD), is based on the concept of adiabatic time scale separation between the
fast electronic and slow nuclear motions in quantum mechanics. By mapping the
original two-component quantum/classical problem onto a two-component classical
problem with distinct energy scales, the Car-Parrinello method offers computational
efficiency at the expense of losing the explicit time evolution information of the quan-
tum subsystem dynamics.16,195 A notable distinction between CPMD and BOMD lies
in the treatment of orbitals, which no longer undergo optimization at every time step
in CPMD, but instead emulate classical entities. This is achieved by attributing a ficti-
tious mass µ and temperature to the orbitals. Notably, it has been demonstrated that
this approach upholds the adiabatic separation inherent in the Born-Oppenheimer
approximation.195 Consequently, within the realm of CPMD, the computationally
demanding electronic wavefunction optimization step, which poses a bottleneck in
BOMD, can be circumvented. Remarkably, this shift in methodology often yields signif-
icant speedups, with possible gains of up to an order of magnitude over similar BOMD
simulations.

The CPMD time propagation is given by the following extended Lagrangian

LCP = 1
2

P∑
I=1

MIṘ2
I + 1

2

N∑
i=1

µ ⟨ϕ̇i|ϕ̇i⟩ − E[{ϕ}, {R}] +
N∑
i,j

Λij (⟨ϕi|ϕj⟩ − δij) (6.30)
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where N is the number of electronic states, µ is the fictitious electronic mass, ϕi is
the ith electronic state, and E is the total energy of the many-electron system as
provided by DFT (mostly) or wavefunction-based methods. The Λij matrix of Lagrange
multipliers has been introduced to constrain the orthonormality of electronic orbitals
along the dynamics. From the Euler-Lagrange equations, the equations of motion for
the nuclear and electronic degrees of freedom become

MIR̈I = −∇IE[{ϕ}, {R}]

µϕ̈i(r, t) = − δE

δϕ∗i (r, t) +
N∑
j

Λijϕj(r, t)
(6.31)

with the constant of motion being provided by the Hamiltonian quantity

Econserved = 1
2

P∑
I=1

MIṘ2
I + 1

2

N∑
i=1

µ ⟨ϕ̇i|ϕ̇i⟩+ E[{ϕ}, {R}] (6.32)

The equations of motion 6.31 can be integrated using standard techniques such as the
(velocity) Verlet algorithm. Similar to the nuclear degrees of freedom, the fictitious
electronic mass µ determines the time evolution of the electronic degrees of freedom
within a certain energy range, which slightly exceeds the electronic ground state (the
Born-Oppenheimer surface). Specifically, the ratio of MI to µ signifies the relative
velocity at which the electronic degrees of freedom propagate compared to the nuclear
positions. When µ is much smaller than MI , the resulting dynamics is adiabatic, as the
electronic orbitals promptly adjust to changes in the nuclear positions. However, to
maintain the desired adiabatic energy-scale separation between the electronic and
nuclear degrees of freedom, the highest frequency of nuclear motion, denoted as ωmax

I ,
must be significantly smaller than the lowest frequency associated with the fictitious
motion of the electronic degrees of freedom, denoted as ωmin

i . The latter has been
demonstrated to exhibit behavior similar to

ωmin
i ∝

√
Eg

µ
(6.33)

with Eg the energy (HOMO-LUMO) gap of the system. In case of finite gap, µ can
be tuned in order to comply with ωmax

I ≪ ωmin
i so that no energy transfer occurs

between the electronic and nuclear degrees of freedom. For metallic systems, however,
subsequent adaptations of the original CPMD method are required.48,195

In what follows, I will present the results obtained from the application of the AIMD
methods discussed in this chapter, particularly when combined with Minnesota den-
sity functionals for the study of liquid water.
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7 Structure and dynamics of liquid
water from ab initio simulations:
Adding Minnesota density func-
tionals to Jacob’s ladder

Experiment is the only means of knowledge at our disposal.
Everything else is poetry, imagination.

— Max Planck

Chapter 7 is a preprint version of an article in preparation:

Villard, J.; Rothlisberger, U. Structure and dynamics of liquid water from ab initio simula-
tions: Adding Minnesota density functionals to Jacob’s ladder. In preparation 2023.
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Chapter 7. Structure and dynamics of liquid water from ab initio simulations:
Adding Minnesota density functionals to Jacob’s ladder

7.1 Abstract

The accurate representation of the structural and dynamical properties of water is
essential for simulating the unique behavior of this ubiquitous solvent. In this study,
we assess the current status of describing liquid water using ab initio molecular dy-
namics, with a special focus on the performance of all the later generation Minnesota
functionals. Findings are contextualized within the current knowledge on DFT for
describing bulk water under ambient conditions and compared to experimental data.
We find that, contrary to the prevalent idea that local and semilocal functionals over-
structure water and underestimate dynamical properties, M06-L, revM06-L, and M11-L
understructure water, while MN12-L and MN15-L overdistance water molecules due
to weak cohesive effects. This can be attributed to a weakening of the hydrogen bond
network, which leads to dynamical fingerprints that are over fast. While most of the
hybrid Minnesota functionals (M06, M08-HX, M08-SO, M11, MN12-SX, and MN15)
also yield understructured water, their dynamical properties generally improve over
their semilocal counterparts. It emerges that exact exchange is a crucial component
for accurately describing hydrogen bonds, which ultimately leads to corrections in
both the dynamical and structural properties. However, an excessive amount of exact
exchange strengthens hydrogen bonds and causes overstructuring and slow dynamics
(M06-HF). As a compromise, M06-2X is the best performing Minnesota functional for
water, and its D3 corrected variant shows very good structural agreement. From previ-
ous studies considering nuclear quantum effects (NQEs), the hybrid revPBE0-D3, and
the rung-5 RPA (RPA@PBE) have been identified as the only two approximations that
closely agree with experiments. Our results suggest that the M06-2X(-D3) functionals
have the potential to further improve the reproduction of experimental properties
when incorporating NQEs through path integral approaches. This work provides fur-
ther proof that accurate modeling of water interactions requires the inclusion of both
exact exchange and balanced (non-local) correlation, highlighting the need for higher
rungs on Jacob’s ladder to achieve predictive simulations of complex biological systems
in aqueous environments.

7.2 Introduction

Liquid water is a ubiquitous and essential component of life, playing a critical role in a
wide variety of chemical and biological processes.375–378 A comprehensive understand-
ing of water at the atomic scale is vital for advancing research in diverse domains such
as aqueous chemistry,379–382 biochemistry,383,384 atmospheric science,385,386 and envi-
ronmental engineering.387,388 Furthermore, unraveling the intricate behavior of wa-
ter molecules enables deeper insights into solvation dynamics,389,390 water-materials
interactions,391,392 protein folding,393–396 enzymatic reactions,397,398 and the properties
of biological membranes,399,400 ultimately contributing to the development of innova-
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tive technologies and therapeutics. Deceivingly simply at first sight, it is well known
that liquid water shows anomalous properties that have been extensively observed and
documented like the density anomaly,376,401,402 high heat capacity,384,399,403 high boil-
ing and melting points,377,404 high surface tension,405,406 high dielectric constant,407,408

and high viscosity.409,410 Despite substantial advances in the understanding of the
behavior of water, the origins of these anomalies are not yet entirely elucidated neither
by experiments nor theory, although it has been widely recognized that the structural
characteristics of the hydrogen bond network under thermal fluctuations play a pivotal
role for these unique features.378,411–415

Significant challenges exist in conclusively capturing atomic-scale phenomena in
water through experiments like NMR,416–426 IR,427 X-ray428,429 or neutron429–432 spec-
troscopy for which measurement interpretations often rely on theoretical models.
Although a variety of computationally efficient and relatively accurate empirical force
fields have been developed,33,433–436 those remain intrinsically incapable of describing
bond breaking in chemical reactions. Therefore, the quantitative understanding of con-
densed phase water, in particular its reactivity, and role as a universal solvent can only
fully emerge from the development of accurate ab initio molecular dynamics (AIMD)
simulations.437–439 These simulations need to faithfully represent both electronic reor-
ganization and nuclear quantum effects (NQEs) associated with hydrogen bonding but,
at present, such a comprehensive predictive quantum picture at ambient conditions
remains quite elusive. In addition, the cost of most accurate wavefunction-based
approaches such as post-Hartree-Fock17,18 (e.g., MP221 or RPA251,440–442), coupled
cluster (CCSD(T)),24,443 or configuration interaction (CI)3,444 hinders their potential
application across the entire water phase diagram.

Balancing accuracy and computational feasibility, Kohn-Sham (KS)140 density func-
tional theory (DFT)135 has become the go-to quantum-chemical method for time
propagation of molecular systems and computation of statistical averages when com-
bined with molecular dynamics (MD) or Monte-Carlo (MC) engines.33,195 Although the
ground-state energy and electron density are formally exact within DFT, their universal
mapping remains unknown, necessitating the use of approximations in the KS formal-
ism. In this approach, many-body interactions are accounted for and incorporated
into the approximate exchange-correlation (XC) functional.

Over the past several decades, hundreds of XC functionals have been developed with
the aim to capture all relevant physics and achieve chemical accuracy over a broad
range of molecules, materials, and organometallic systems. To classify the growing
number of functionals, John P. Perdew proposed a hierarchy called Jacob’s ladder,142

which organizes functionals based on their complexity. The ladder consists of five
rungs: (1) Local Density Approximations (LDA) depend only on the electron density at
a given point in space and offer computational efficiency but often lack accuracy.150,445

(2) Generalized Gradient Approximations (GGA) functionals incorporate the (local)
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electron density and its gradient.446–448 (3) Meta-GGA functionals account for the
electron density, its gradient, and the kinetic energy density.149,449–452 (4) Hybrid
functionals mix a portion of Hartree-Fock (HF) exact exchange with XC terms from
DFT,158,161,162,453,454 and (5) Double-hybrid and RPA-based functionals (rung-5), the
highest rung on the ladder, combine a hybrid functional with post-HF correlation
corrections, e.g., within second-order perturbation theory (MP2)21,56,165–170 or non-
local correlation based on the random phase approximation (RPA).130,171–174 As one
moves up the ladder, the functionals globally tend to provide better descriptions of
electronic interactions and improve the overall predictive accuracy.101,141,142,146,455,456

However, this comes at the price of an increasingly higher computational cost: for
instance, the cost of hybrids is roughly two orders of magnitude the one of GGA
functionals.45,101,145,457

While DFT has demonstrated impressive success in the examination of structures,
properties, and reactivities for a wide range of molecules and materials, the prominent
challenge persists in identifying the appropriate XC functional for a specific problem,
as the performance of a functional can vary significantly depending on the system
under study.458 For liquid water, no local (LDA) or semilocal (GGA, meta-GGA) DFT
simulation has yet achieved a conclusive replication of experimental observations,
covering both structural and dynamical properties simultaneously. For example, it
was established that most of the GGA functionals, like PBE448 and BLYP,446,447 provide
overstructured oxygen-oxygen pair correlation functions, and dynamical figures that
are too slow, therefore not completely remedying the glassy behavior observed with
the LDA.183,459–462 Furthermore, GGA and (even) hybrid levels can underestimate the
equilibrium density of liquid water, leading to the incorrect prediction that ice sinks in
water.415,463

DFT approximations encounter difficulties when describing condensed water due to
the intricate nature of concurrent competing interactions that are involved in covalent
bonds, hydrogen bonds, and van der Waals (vdW) forces. Hydrogen bonds, though
one order of magnitude weaker than intramolecular O-H covalent bonds, remain
locally strong and directionally attractive. Another order of magnitude weaker, vdW
dispersion forces play a non-negligible role at larger distances, with an attractive and
isotropic character. The interplay between varying interaction strengths, length scales,
and directionalities makes water a highly sensitive test system for the design and
assessment of XC functionals. Indeed, even slight imprecision in the XC description is
likely to disrupt the complex balance of interactions, ultimately impacting the H-bond
network that is responsible for many of water’s properties.273,462

While local and semilocal functionals fail to capture intermediate to long-range vdW
forces,462 AIMD simulations have demonstrated that GGAs enhanced with vdW repre-
sentations typically lead to a softer structure of bulk water, accompanied by increased
mobility that aligns more closely with experimental measurements.183 This improve-
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ment is achieved by incorporating dispersion-corrected atom-centered potentials
(DCACPs),181–183 empirical dispersion corrections (e.g., Grimme’s D2184 and D3,147 or
non-local correlation terms (e.g., (r)VV10,185–187 vdW-DF,188 TS-vdW189,190). However,
the performance of such corrections relies on the original GGA to which the combina-
tion may not always improve, or may even deteriorate properties.183,191 Other studies
pointed out the necessity of including a fraction of exact exchange, thus resorting
to rung-4 hybrids, to effectively describe hydrogen bonding but without reaching a
perfect agreement with the experiment.344,462,464–467

Altogether, attaining a reliable description of the structural and dynamical properties
of liquid water through lower rung (1-3) DFT models remains an issue. The goal of
this work is consequently to contribute further understanding to this endeavor by
incorporating the popular Minnesota density functionals61,100,451,468–475 into the array
of approximations tested on water at ambient conditions. While having demonstrated
success for molecular systems, previous investigations of the performance of Min-
nesota functionals on condensed water are, to our knowledge, limited to the work of
Del Ben et al. who ran MC simulations on water with the M06-L-D3, M06-D3, and
M06-2X-D3 functionals,144 and the work of Pestana et al. that focuses on MD with
M06-L-D3.467 Our work thus fills a gap in the evaluation of the performance of DFT
functionals for liquid water. Gaining insights from the performance of various func-
tionals not only helps demystify their promise and limitations for water, but also on a
wider range of systems exhibiting a similar delicate balance of interactions such as e.g.,
in large biomolecules,476,477 heterogeneous catalysts,478,479 aqueous solutions381,480,481

and molecules on surfaces.482 For this reason, we have made an effort, albeit not ex-
haustive, to compile in this document previously calculated quantities from DFT-based
MC and AIMD. Our aim is to establish a common ground for comparing various studies
found in the literature and confront them with experimental measurements.

Information on higher-rung approximations, such as double-hybrids, is limited in this
assessment due to their exorbitant computational overhead and infrequent imple-
mentation in MD software packages.144 The substantial cost of hybrid functionals also
poses a significant challenge for obtaining extensive results in MD simulations,465,483

in particular in the context of plane wave based approaches. To tackle this issue, the
emergence of machine learning (ML)-based interaction models has shown the poten-
tial to attain a similar level of accuracy at a fraction of the cost.180,484,485 Nevertheless,
the effectiveness of such ML potentials primarily depends on their reliability across
the entire phase (configurational) space sampled during MD (MC) simulations

Hereafter, we present structural properties (in terms of radial distribution functions,
coordination numbers, density, number of H-bonds and angular distributions) and
dynamical characteristics (quantified via diffusion coefficients and rotational correla-
tion times) obtained with AIMD and all the later generation Minnesota functionals.
Those include some of the most employed meta-GGAs and hybrid meta-GGAs in
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computational chemistry.101,304,486 Meta-GGAs are investigated with Car-Parrinello
MD (CPMD), while the much more computationally expensive hybrid meta-GGAs
have been run with Born-Oppenheimer MD (BOMD), thanks to the crucial acceler-
ation of a recent ML-aided multiple time step scheme that preserves the target DFT
level description by construction.45,99,487 Both CPMD and BOMD employ classical
propagation of nuclei; however, capturing a comprehensive picture of water includ-
ing nuclear quantum effects (NQEs) requires more sophisticated and considerably
costlier (approximately two orders of magnitude457) ab initio path integral MD (PIMD)
approaches.33,488 Alternatively, NQEs can be qualitatively evaluated based on very
recent studies that employ DFT/ML-based PIMD methods.414,484,485 This allows an
identification of the most promising XC functionals worth further investigation in
conjunction with quantum nuclei.

In this regard, this chapter provides benchmarks for the widely-used Minnesota density
functionals in simulating liquid water, and places them in the context of existing
knowledge of other DFT approximations as well as experimental measurements. This
will hopefully assist the scientific community in utilizing, refining, or developing more
accurate and transferable XC functionals.

7.3 Theory and methods

7.3.1 Minnesota density functionals

Since 2005, the Minnesota theoretical chemistry group led by Donald Truhlar has fo-
cused on the development of post-GGA functionals capable of capturing the chemistry
of main group elements as well as transition metals including activation barriers as
well as non-covalent interactions. The excellent "across-the-board" performance of
these functionals has made them one of the most widely used XC approximations in
computational chemistry.101,304,381,486 The Minnesota functionals are semi-empirical
in nature, with functional forms that have been fitted against extensive datasets of
reference absolute and relative energies, as well as eventual structures and lattice
constants. For brevity’s sake, Table 7.1 provides a summary of the XC approximations
studied in this work, along with a global overview of their functional components.
Interested readers are referred to the corresponding references for more technical and
mathematical details.

The generation of the 2006 functionals was ingeniously crafted by merging the char-
acteristics of the earlier M05492 and VSXC493 functionals (in turn designed from mod-
ifications of the PBE and LSDA functionals for the exchange). These include M06,
a versatile hybrid meta-functional that boasts consistent accuracy for main group
thermochemistry, barrier heights, medium-range correlation energies, and transition
metals. M06-2X, another hybrid meta-GGA, excels in main group chemistry and bar-
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Table 7.1: Overview of some characteristic features of Minnesota density functionals, in terms
of Exc = (X/100)EHF

x + (1 − X/100)EDFT
x + EDFT

c . X is the percentage of exact exchange in
the functional. EDFT

x and EDFT
c depicts the origins of the functional form for the exchange

(e.g., exchange energy density, correction factors) and the correlation (e.g., correlation energy
density, gradient correction)b. Also listed are the number of fitted parameters # as well as the
satisfaction (✓) or not (×) of the uniform electron gas (UEG) limit.

Functional Classa X [%] EDFT
x EDFT

c # UEG Ref.
Meta-GGA

M06-L L meta-GGA 0 M05+VSXC M05+VSXC 34 ✓ [451]
revM06-L L meta-GGA 0 M05+VSXC M05+VSXC 31 x only [468]
M11-L RSL meta-GGA 0 SR/LR: LSDA(PBE+RPBE) LSDA+PBE 44 ✓ [469]
MN12-L L meta-NGA 0 N12 N12+(LSDA+PBE) 58 × [470]
MN15-L L meta-NGA 0 N12 N12+(LSDA+PBE) 58 × [471]

Hybrid meta-GGA
M06 GH meta-GGA 27 M05+VSXC M05+VSXC 33 ✓ [61]
M06-HF GH meta-GGA 100 M05+VSXC M05+VSXC 32 ✓ [100]
M06-2X GH meta-GGA 54 M05 M05+VSXC 29 ✓ [61]
M08-HX GH meta-GGA 52.23 LSDA(PBE+RPBE) LSDA+PBE 47 ✓ [472]
M08-SO GH meta-GGA 56.79 LSDA(PBE+RPBE) LSDA+PBE 44 ✓ [472]
M11 RSH meta-GGA 42.8-100 SR: LSDA(PBE+RPBE) LSDA+PBE 40 ✓ [473]
MN12-SX RSH meta-NGA 25-0 N12 N12+(LSDA+PBE) 58 × [474]
MN15 GH meta-NGA 44 N12 N12+(LSDA+PBE) 59 × [475]

aL stands for local, RSL for range-separated local, GH for global hybrid, RSH for range-separated hybrid and NGA for
non-separable gradient approximation.
bSR stands for short-range, LR for long-range. LSDA is the local spin density approximation,138,489 PBE the Perdew,
Burke, Ernzerhof functional,448 RPBE the secondly revised PBE functional,490 and N12 Truhlar’s non-separable density
gradient functional.491

rier heights, accurately predicts valence and Rydberg electronic excitation energies,
and π-π stacking interactions, while its performance falters in the realm of transition
metals. M06-L, a local functional devoid of Hartree-Fock exchange, was skillfully tai-
lored as a cost-effective choice for numerous demanding applications associated with
extensive systems. It excels for transition metals, yet its accuracy for barrier heights
does not match that of M06 and M06-2X. Finally, M06-HF was designed primarily
for spectroscopy, demonstrating good performance for valence, Rydberg, and charge
transfer excited states with little compromise on ground-state accuracy. An important
point to note is that M06-2X and M06-HF that differ in the amount of exact exchange
(54 vs 100 %) share the same training set, which was expanded with transition metals
with respect to the one used for the parameterization of the M06 functional. revM06-L,
on the other hand, was developed later using an even larger database and additional
smoothness restraints to ensure better numerical stability, smoother potential energy
curves, and overall improved accuracy compared to M06-L.

The next generation functionals M08-HX and M08-SO resulted from exploring a more
flexible functional form, with different formal constraints; while M08-SO respects the
exact gradient expansion for slowly varying density up to the second order (SO) and the
uniform electron gas (UEG) limit, M08-HX only respects the latter. Both functionals
of the M08 generation were found to modestly improve on M06-2X for main-group
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thermochemistry, kinetics, and non-covalent interactions. The even more recent M11,
on the other hand, is a range-separated version494 of the M08 functionals, with the
same correlation component. The percentage of HF exchange of 100% at large inter-
electronic distance reduces to 42.8% at short range. The second-order density gradient
expansion is also correct by construction in M11, and good across-the-board accuracy
was shown thanks to the use of a further extended training set. A bit later, the M11-L
functional was designed as the local analogue of M11, mainly for cost-efficiency and
improved accuracy for multi-reference systems. M11-L replaces the exact exchange
by a long-range meta-GGA exchange functional, that has different spatial extent and
parameters than the exchange at short range.

In 2012, a new functional form called N12 was developed that pushes the limits of local
functionals, providing simultaneous accuracy on energetic and structural properties
of both solids and molecules.491 Unlike traditional GGAs, the N12 functional is a non-
separable approximation (NGA) between the density and its (reduced) gradient that
embodies both exchange and correlation effects, and can be seen as a generalization
of the dual-range M11-L. By adding a dependence on the kinetic energy density, and
the M08/M11 correlation term, Peverati and Truhlar designed the MN12-L meta-
non-separable gradient approximation to obtain even broader accuracy with a local
functional. With the inclusion of 25% of short-range exact exchange (that is screened
at large distances), the MN12-SX functional yields better results than MN12-L for most
chemical properties, and is notably more successful in calculating semiconductor
band gaps.474 Finally, re-optimization of MN12-L using a larger training database
and additional smoothness restraints on the functional form resulted in the most
recent MN15-L local meta-NGA functional. This latter shows better performance for
transition metals and is generally recommended over MN12-L.471 Its hybrid version,
called MN15, was trained using a combination of single-reference chemical data
(barrier heights), as well as diverse multi-reference transition-metal bond energies and
atomic excitation energies that are challenging to describe with KS-DFT. As a result, it
provides broad accuracy for both multi-reference and single-reference systems, and at
the same time has demonstrated outstanding performance in describing noncovalent
interactions.475

7.3.2 Simulations

AIMD simulations were carried out using the CPMD code47 with PBE Trouiller-Martins
norm-conserving pseudopotentials.495 The wavefunction cutoff energy was set to 80
Ry for all systems. We used a finer integration mesh with a density cutoff energy set
to 640 Ry (dual of 8) to ensure proper convergence of the Minnesota functionals with
planes waves,304 therefore affecting the usual computational cost by a factor of 2. The
convergence threshold for the DIIS266 wavefunction optimization was set to 10−6 a.u.
on the residual gradient on occupied orbitals, except for the M06 functional that is
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harder to converge to such a low criterion and for which 5 · 10−6 a.u. was used instead.

Meta-GGA functionals

For the simulations with meta-GGAs, systems use a cubic 12.4453 Å3 periodic box of 64
water molecules corresponding to a density of∼1 g/cm3, simulated via Car-Parrinello
MD. All hydrogens were assigned the mass of deuterium to increase the integration
time step. The wavefunction fictitious mass is chosen to be 800 a.u., and δt = 3.5 a.u.
is the default time step that we reduced in case of energy exchange between the ionic
and fictitious degrees of freedom to keep the Hamiltonian energy conserved.

A first equilibration phase was performed for each functional. Starting with a pre-
equilibrated structure at the classical level, systems were first heated up to 400 K with
velocity rescaling for about 1 ps until reaching a stable average temperature. Then, sys-
tems were cooled down to 330 K during another picosecond, and the temperature was
again decreased more slowly to 300 K during a time interval of about half a picosecond.

After the first initial equilibration, systems were further thermalized with a Nosé-
Hoover thermostat on the ions at 300 K for several picoseconds with a coupling fre-
quency of 1500 cm−1 before finally switching to the NVE ensemble for the production
runs for at least 10 ps. Configurations were saved every 50 steps for analysis. More
information about the lengths of the trajectories, time steps and energy conservation
are reported in Table C1.

Hybrid meta-GGA functionals

Due to their high computational cost, the AIMD simulations with hybrid functionals
were performed with a smaller cubic box of dimensions 9.9393 Å3 containing 32 water
molecules. A multiple time step (MTS) scheme343,345,487 was used to further accelerate
the simulations, with an inner time step of δt = 15 a.u. and an outer time step of ∆t =
n · δt, where the time step ratio n is chosen to maintain sufficient energy conservation.
At inner time steps, fast force components are given by a delta-ML model that predicts
PBE0 forces based on the LDA (Finner = FLDA + ∆FPBE0-LDA

ML ), while total forces are
corrected at the outer time step with their slow components (Fouter = FMinnesota −
Finner) to fully recover the higher-level Minnesota forces.45,99 In this approach, ML
serves only as a low-level surrogate operating on shorter timescales without impacting
the target DFT level. Note that the inner PBE0 level does not need to match the outer
Minnesota level entirely, but should be close enough so that their difference slowly
varies in time and dynamically decouples from fast force components. Ultimately, the
Minnesota level is recovered at larger physical time steps by construction, ensuring that
the structural and dynamical properties are not affected,45,496 unlike in ML-potential
MD.
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The OQML497,498 kernel method is used to infer force differences ∆FPBE0-LDA
ML from

the aSLATM499 representations of chemical environments. The training set for the
OQML model was generated by running PBE0 trajectories on condensed water and
small water clusters. Both energies and forces were used in the training. The model
demonstrated an out-of-sample mean absolute error of around 0.3 kcal/(mol Å) on
|∆FPBE0-LDA

ML |, as well as a mean absolute error of 0.7 degrees on force directions, based
on a test set of 4800 atomic forces.

Starting from a PBE0 pre-equilibrated configuration, all systems were first thermalized
in the NVT ensemble with the ML-MTS acceleration method and a Nosé-Hoover
thermostat with a coupling frequency of 1500 cm−1 at 300 K for at least 5 ps. After this
initial equilibration process, NVE runs were conducted during the production phase,
sampling configurations for at least 6 ps. The lengths of the trajectories, time step
ratios, and energy conservation are reported in Table C1.

7.3.3 Analysis

Here, we provide information on how the properties were calculated from AIMD
trajectories. As the production runs were conducted in the NVE ensemble, the average
temperature of each simulation slightly differs. To ensure comparability, care was
taken to renormalize the properties either by considering temperature or box volume
differences.

We note that the average structural properties are similar in the NVT and NVE ensembles.496

Additionally, the replacement of hydrogen atoms with deuterium has little effect on
structural properties when the ionic motion is treated classically.459,464 However, the
use of deuterated water can affect dynamical properties, such as the diffusion coef-
ficient. Therefore, it is important to rely on heavy water data when validating D2O
simulations against experimental results.

Radial distribution functions and coordination number

Radial distribution functions (RDFs) were computed using the VMD software,500 ac-
counting for periodic boundary conditions and a bin width of 0.01 Å. The RDFs are
then smoothed by interpolation for integration and visualization purposes with negli-
gible differences when compared to the original statistical averages. The coordination
numbers nOO of water molecules is obtained as the oxygen-oxygen (O-O) coordination
number resulting from the integral of the O-O RDF gOO:428

nOO = 4πρ̄
∫ r∗

min

0
r2gOO(r)dr (7.1)

140



7.3 Theory and methods

where ρ̄ is the molecular number density. For consistency with experimental reference
data, the value of r∗min is set as the position of the first minimum in the actual integrand
r2gOO(r), rather than the first minimum of gOO(r). For comparison, we also report the
coordination number n̄OO calculated up to the first minimum of gOO(r) in Table C3.

Density of liquid water

The equilibrium density predicted by the Minnesota functionals is estimated by scan-
ning over volume changes around trajectory snapshots.460 For each snapshot, total
energies are calculated at scaled values of the lattice constant. The intramolecular coor-
dinates are held fixed while the positions of the centers of mass of the water molecules
are rescaled to scan over volume reductions and expansions. The equilibrium volume
and density are determined by calculating the minimum of the interpolated energy
values, at a given snapshot. 30 snapshots were used, each separated by 0.2 ps, to ob-
tain a representative set of configurations. The density is calculated from the average
equilibrium volume over all snapshots. Given that the basis set size varies with the
volume of the box in plane wave basis sets, a larger wavefunction cutoff energy of 200
Ry was used to ensure reliable energy differences from these calculations.

H-bond number and angular distributions

The number of hydrogen bonds is evaluated from geometrical criteria following refs
[501] and [183]. A polynomial function is defined by

f(d) = 1− [(d− d0)/∆]n
1− [(d− d0)/∆]m (7.2)

where d0 = 2.8, ∆ = 0.45, n = 10 and m = 16. f(d) increases to 1 from d = 2.3 up to 2.8
Å, and decreases rapidly near 3.4 Å. These values correspond to the first experimental
maximum and minimum of the O-O RDF such that f(OiOj) encodes the OiOj distance
between two molecules i and j. A second function is used to model the decrease in
the probability of hydrogen bonding as the total distance OiH + HOj (between the
donor oxygen Oi and its covalently-bound hydrogen H, and its distance H . . .Oj to the
corresponding acceptor oxygen Oj) increases. This latter metric increases either when
the donor-hydrogen direction is tilted or when the donor and acceptor are far away.
Thus, the second function used is f(OiH+HOj−OiOj) with d0 = 0, ∆ = 0.4, n = 4 and
m = 8, that equals 1 at 0 Å, and rapidly decays to 0 when the argument exceeds 0.5 Å.
An H-bond is therefore counted if the product of the two functions exceeds 0.5, and not
otherwise. The presence or absence of an H-bond is facilitated because the product of
these analytical functions is predominantly either close to 0 or to 1. In practice, it is
defined whether H is covalently bound to either molecule i or j in order to ensure the
correct counting with periodic boundary conditions. We have observed, like others,501
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that this counting is qualitatively comparable to conventional criteria that involve both
the OiOj distance and the angle between the OiOj and OiH directions.464

To compute the H-bond angular distributions, we took into account all the molecules
present in the first coordination shell of the reference molecule, i.e. we restricted our
analysis to angles for which the donor-acceptor distance is less than 3.4 Å, and the
hydrogen-acceptor distance is less than 2.5 Å, based on the experimental RDFs.428,429

Diffusion coefficient

The self-diffusion coefficient DL is calculated from the Einstein relation

DL = 1
6 lim

t→∞

d

dt

1
N

N∑
i=1
⟨|ri(t)− ri(0)|2⟩ (7.3)

where N is the number of water molecules, ri(t) the position of each oxygen atom
i at time t, and the brackets indicate an average over the NVE ensemble. Improved
statistics were gathered across multiple lag times and time origins according to the
default parameters of the Diffusion Coefficient Tool plugin502 for VMD500 to finally
obtain DL from the average slope of the mean-squared displacement (MSD).

Since DL is calculated from the simulation of a L3 cubic water box, finite size effects
are corrected via503

D∞ = DL + ξ
kBT

6πηL (7.4)

where D∞ is the infinite-size limit, ξ = 2.837297, kB the Boltzmann constant, and η
the shear viscosity of the fluid at average temperature T . The viscosity η predicted
by each functional approximation is generally not known, and relying on the experi-
mental value504 was observed not to significantly affect the rescaling of DL to D∞.503

In this regard, theoretical viscosities were computationally derived for SCAN and
optB88-vdw.414 We observed negligible deviations in D∞ when calculated using either
experimental or theoretical viscosities (Table C4). However, if the functionals are too
overstructured, they may predict a larger viscosity, leading to an overestimation of
D∞ with respect to the experimental (lower) viscosity. Another reliable approach to
compare with experiment is to rescale the experimental coefficients Dexp

∞ back to Dexp
L ,

which is the hypothetical experimental value for a box of size L.505
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Orientational correlation times

In addition to the translational motion, the rotational time scale of the water molecules
is determined by analyzing the orientational auto-correlation function:

Cn(t) = 1
N

N∑
i=1
⟨Pn[ûi(0) · ûi(t)]⟩ (7.5)

where Pn is the Legendre polynomial of order n = 1, 2 and ûi is the molecular unit
vector along either the OH covalent bonds, the HH intramolecular direction, or the
direction of the dipole moment µ. The rotational correlation times τ1,2 were deter-
mined by fitting the curves Cn=1,2(t) with the function Ae−t/τ1,2 in the exponential
regime following the initial subpicosecond decay, which is due to the librational mo-
tion of the water molecules.506,507 These relaxation times have been found to be less
affected by finite-size effects compared to the self-diffusion coefficient,508,509 and are
of interest because they can be measured experimentally using techniques such as
NMR376,416,417,419,420,424,426,510,511 or IR512,513 spectroscopy.

7.4 Results and discussion

7.4.1 Structural properties

Radial distribution functions

The radial pair distribution functions (RDFs in terms of gOO, gOH, gHH) provide struc-
tural information as modelled by the different Minnesota functionals. In Figure 7.1, we
compare respectively the O-O, O-H and H-H RDFs to experimental references. The left
panel reports the results of meta-GGAs. Clearly, the O-O RDFs indicate that M06-L and
M11-L are understructured, with first gOO minima that are too high and too far. These
two functionals also behave alike when it comes to the O-H and H-H distributions that
are slightly understructured compared to experiment. Although yielding similar RDFs,
it is interesting to recall that M06-L and M11-L do not share the same exchange and
correlation functional forms as well as training data, and that M11-L is range-separated
(Table 7.1). However, both fulfill the UEG limit. For the remaining functionals where
this constraint is lifted (revM06-L, MN12-L, MN15-L), the O-H and H-H RDFs move
even further away from the experiment and no longer capture the hydrogen-bond
network as shown by the smearing out of the second peak in the gOH distributions.
The revM06-L functional has the same XC form as M06-L, but differs in the imposed
constraints and training data. In contrast to the others, the MN12-L and MN15-L
non-separable functionals result in an overstructured gOO but again lack exactness in
the intermolecular distances514 with typical shifts in the location of the first minimum
up to 1 Å. MN15-L was designed from a re-optimization of MN12-L using a larger
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Figure 7.1: Oxygen-oxygen (gOO), oxygen-hydrogen (gOH) and hydrogen-hydrogen (gHH) radial
distribution functions of liquid water predicted by Minnesota density functionals. The experi-
mental reference for gOO comes from X-ray diffraction428,429 interpolated at 298 K509 and joint
X-ray/neutron diffraction experiments were used for gOH and gHH.432 Black areas represent
experimental uncertainties.

database and additional smoothness restraints on the functional form. Therefore, the
RDF similarities between M06-L and M11-L (different forms, different training data)
and differences between M06-L/revM06-L and MN12-L/MN15-L (same form, different
constraints, different training data) would advocate for a larger sensitivity of semi-
empirical meta-GGAs to exact constraints rather than training data. Consistent with
this, the additional smoothness restraints in revM06-L (versus M06-L), and MN15-L
(versus MN12-L) seem to reduce the packing of water molecules and shift the first peak
of the O-O RDF to larger distance. Overall, no local meta-GGA Minnesota functional
is providing an accurate reproduction of the structure of liquid water, mainly due to
failures in the description at intermediate and long-range intermolecular distances.

The hybrid functionals of the M06 family are shown in the center panel of Figure
7.1. Interestingly, M06 predicts RDFs that are very similar to its M06-L sister. M06-L
therefore appears as a good local functional fit for the 27%-hybrid M06, but both
fail at reproducing the intermolecular structure of water at long range476 In contrast,
the increase of exact exchange to 100% in M06-HF noticeably over-accentuates the
structure and shifts the first and second gOO peaks to too short intermolecular distances.
This increased cohesive effect that was missing for the local functionals is also observed
in the gOH and gHH RDFs.

As a compromise between M06 and M06-HF, M06-2X, with 54% of exact exchange, re-
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markably improves the agreement of the RDFs with experiments. Despite the first min-
imum of gOO being a bit right-shifted by∼0.3 Å, M06-2X shows better peak positions
and an improved second coordination shell according to the second peak in gOO. As ob-
served, the agreement with experimental data is not a trivial matter, as the structure of
water is the result of the complex interplay between covalent bonds, hydrogen bonds,
and vdW interactions. Many-body effects among hydrogen-bonded water molecules
can be observed in the first peak of gOO and the second peak of gOH. The region be-
tween the first and second peaks of gOO mainly consists of non-hydrogen-bonded
water molecules that occupy the intershell space between the hydrogen-bonded neigh-
bors. The increased number of water molecules in these intershell regions can partly be
attributed to the attractive, non-directional vdW interactions.415,467 Therefore, achiev-
ing a balance between exact exchange and vdW dispersion at an intermediate length
scale is essential for accurately reproducing the densely packed and disordered struc-
ture in the intershell regions. As demonstrated by the RDFs, M06-2X captures these
correlations with the highest accuracy and is thus capable of describing both hydrogen
bonding and dispersion effects. M06-2X was specifically designed with the absence
of transition metals in its training set, the M06-2X focuses on the description of the
electron correlation of the main group elements which could be one of the reasons
why it performs so well on water compared to M06 for which transition metals were
included. M06-HF lacks an adequate amount of correlation to counterbalance the
full HF exchange: The second coordination shell has a higher population of water
molecules that are not sufficiently drawn out to the intershell region by vdW forces.

The newer generation Minnesota hybrid functionals do not improve the structural
description any further (Figure 7.1, right panel). While possessing nearly the same
amount of exact exchange as M06-2X, the new functional form introduced in M08-
HX (52%) and M08-SO (57%) does not outperform M06-2X. MN12-SX is both range-
separated and non-separable, with 25% of exact exchange at short range that decreases
to 0% at long range. This functional has the lowest proportion of exact exchange.
Notably, it is also the one where the first gOO peak and the second gOH peak are shifted
to the right, i.e. to longer intermolecular distances, presumably due to an elongation
(weakening) of the intermolecular hydrogen bonds, or a lack of vdW cohesive forces514

(the analysis of the dynamical properties in Section 7.4.2 confirms the second hypothe-
sis). In general, it is observed that the inclusion of a fraction of exact exchange leads to
clearly visible improvements in the gOH and gHH RDFs over local functionals, and addi-
tion of the right amount of exact exchange can also better the agreement for gOO. This
is particularly the case for M11, MN12-SX and MN15 that improve the second peak of
gOH significantly over M11-L, MN12-L and MN15-L, respectively. Moreover, although
not perfect, these functionals clearly ameliorate the position and shape of the first gOO

peak compared to their local counterparts. Consequently, this emphasizes the crucial
importance of exact exchange in accurately describing the hydrogen bond network
in general, supporting the notion that hybrid functionals and higher rungs of Jacob’s
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ladder are indeed the most accurate approaches for depicting complex interactions
with KS-DFT.

To evaluate the performance of Minnesota functionals in the broader context of DFT
approximations, we compiled a comprehensive dataset from the literature (Table
C2). As various functionals were employed at different temperatures, the position
and height of the first gOO peak, as well as the first gOO minimum, were rescaled
to a common reference point at 298 K based on empirical interpolations fitted to
experimental data (Figure C1). The differences between simulated and experimental
values are depicted in Figure 7.2. As can be seen, KS-DFT coupled to a classical
propagation of the nuclei have the tendency to generally overestimate the height of
the first peak and underestimate the first minimum, resulting in an overstructured
prediction of liquid water. This is a well-known result for approximations lacking
vdW interactions, such as purely local GGAs.144,183,467 Although dispersion corrections
generally represent a step in the right direction, i.e. a less overstructured RDF, their
effect depends on the specific functional and correction employed. For instance, BLYP
is improved when supplemented with either D3 and DCACP corrections, while PBE
is only improved with the D3 correction and deteriorates with DCACP (which was
attributed to the presence of artificial dispersion effects in PBE183). Notably, the rVV10
non-local functional is also overstructured. In summary, BLYP-DCACP and revPBE-D3
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Figure 7.2: Left: Difference between the rescaled position r∗
max and height gmax∗

OO of the first
gOO maximum and the experimental values at 298 K. Right: Difference between the rescaled
position r∗

min and height gmin∗
OO of the first gOO minimum and the experimental values at 298

K. Values for non-Minnesota functionals were extracted from refs [144, 180, 183, 191, 414,
457, 465, 467, 483, 485] and are reported in Table C2. Rescaled values were obtained through
empirical interpolation of experimental data.429 The grey areas represent a visual estimate
of the potential deviations resulting from the neglect of nuclear quantum effects as well as
statistical and experimental uncertainties (c.f. Section 7.4.1).
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are the best GGA functionals reported so far for the structure of liquid water.

The importance of a sensitive tweaking of non-local dispersion effects is likely the
primary reason why meta-GGA functionals do not exhibit improvement over the best
dispersion-corrected GGAs. Compared to all functionals, the local Minnesota ones are
the worst, as they cause substantial right-shifting and broadening of the first gOO peak.
In contrast, the SCAN functional appears to capture the intermediate-ranged vdW
interactions which seem to help locating the gOO maximum and minimum at good
distance,415 but SCAN remains overstructured. The difference in results between SCAN
and its augmentation with the rVV10 non-local correlation functional (SCAN+rVV10)
is negligible.191 However, this add-on does help the B97M-rV functional to become the
best meta-GGA reported.

Based on the available data, hybrids provide a good approximation of the first maxi-
mum of gOO, which is consistent with our previous observation that the inclusion of
exact exchange in Minnesota functionals improves the accuracy of both the position
and height of the first peak. This can be attributed to the fraction of exact exchange
that mitigates the self-interaction error in local and semilocal XC functionals, which
has been correlated with an artificial strengthening of the H2O tetrahedral structure
and the delocalization of protons.485 Although PBE0 still yields overly structured water,
its D3 and TS-vdW variants provide better agreement with experimental data. The
most accurate hybrid functional appears to be revPBE0-D3, which is also the best
approximation over all functionals for which data on water has been reported (vide
infra).

Moving on to hybrid meta-GGAs, indications of the performance of SCAN0, the hy-
bridized version of SCAN, has been obtained from simulations based on a deep neural
network potential (ML) which indicate that SCAN0 is still overstructured. With the
exception of M06-HF with 100% exact exchange, the hybrid Minnesota functionals
are generally accurate in predicting the height of the first minimum, but they fail to
accurately predict its position (Figure 7.2, right). However, Del Ben et al. discovered
that M06-2X, which appears to be the best performing Minnesota functional for water
overall, further improves when coupled with the D3 correction.144 In general, it appears
that the first minimum r∗min is shifted to a smaller intermolecular distance when there
is either an excessive amount of exchange (M06-HF) or when the correlation effects
overestimate vdW interactions. This highlights the remarkable sensitivity between
(exact) exchange and correlation, both of which tend to compress or augment the
first coordination peak instead of having compensatory effects. Achieving an accurate
description of liquid water with DFT therefore requires finding the correct balance be-
tween these two quantum effects. This quest has motivated the refinement of exchange
and correlation functionals, where the occupied and virtual KS orbitals contribute to
non-local correlation just as the occupied orbitals contribute to the non-local exact
exchange. From Figure 7.2, the RPA, which consists of exact exchange plus the RPA

147



Chapter 7. Structure and dynamics of liquid water from ab initio simulations:
Adding Minnesota density functionals to Jacob’s ladder

correlation, appears as the most promising post-HF DFT approach in this direction,
e.g., yielding very good structural properties outperforming MP2.144,180

According to this comprehensive comparison, the most accurate functionals for de-
scribing the structure of water with classical nuclei are: revPBE-D3, BLYP-DCACP
(GGAs), B97M-rV (meta-GGA), revPBE0-D3 (hybrid), M06-2X-D3 (hybrid meta-GGA)
and the RPA (rung 5).

Nuclear quantum effects

The low mass of the hydrogen atom makes nuclear quantum effects (NQEs) significant
when simulating water properties.144,496,515 For example, tunneling effects can affect
the formation and breaking of hydrogen bonds and influence the dynamics.464 The
results presented in this work (Figure 7.2) should therefore be interpreted in light of
the fact that NQEs are absent in CPMD or BOMD dynamics with a classical propaga-
tion of nuclei. As an illustration, taking into account NQEs with revPBE-D3 revealed
that its good agreement with water properties using classical nuclei is due to a for-
tuitous cancellation of errors, where the neglect of exact exchange compensates for
the neglect of quantum nuclei.457,467,516 Advanced path integral molecular dynamics
(PIMD) methods are necessary for quantum-mechanical treatment of nuclei, particu-
larly when comparing high-level electronic structure calculations with experimental
results.33,515,517 However, this comes at the cost of approximately two orders of mag-
nitude more computational expense than simulations where the nuclei are treated
classically. As a result, it has been common practice to mimic NQEs by performing
classical (nuclei) MD at elevated temperatures increased by around 30 K.415,483 While
this ad hoc technique was found to provide reasonable accuracy for RDFs, it often fails
to correctly reproduce the dynamical properties that become too fast compared to
proper NQEs.415,457,484,496 Alternatively, recent advances have enabled the acceleration
of PIMD dynamics, especially with the help of ML potentials that infer DFT energies
and forces at a much reduced cost.180,414,484,485

As expected, the general trend observed in PIMD simulations is that NQEs tend
to soften the structure of liquid water: for BLYP,515 SCAN/ML,414,484 PBE0-D3,144

SCAN0/ML,485 RPA/ML180 and MP2/ML518 less structured RDFs were found when in-
cluding NQEs. For other functionals like SCAN,496 B97M-rV457 and revPBE0-D3,457,516

O-O RDFs remain almost unchanged, while the O-H and H-H RDFs become less struc-
tured. O-H and H-H RDFs are also less structured for BLYP-D3496 and revPBE-D3,516

that however have a slight decrease in the O-O first minimum (by∼0.1) when adding
NQEs, with no impact on the first maximum. However, overall NQEs seem to have a
marginal influence on the positions of the maxima and minima of the distribution
functions. Hence, classical RDFs tend to be either too structured or very similar to
their quantum analogues. This is in agreement with experimental isotope studies be-
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tween heavy and light water that also showed that NQEs soften the structure of liquid
water.414,483,519 Hence, NQEs can only partially explain why most DFT functionals tend
to overstructure water compared to the experimental results in Figure 7.2. The gray
areas plotted on this figure represent possible deviations due to the neglect of NQEs.
These are based on PIMD references cited previously, potential discrepancies between
experimental measurements,428,429,432 and the variance of the rescaling procedure to
298 K. These areas therefore enclose the most promising XC functionals to be predictive
with NQEs.

According to previous studies, the best functionals tested so far for describing the
atomic structure of water with the consideration of NQEs are: revPBE-D3516 (GGA),
B97M-rV457 (meta-GGA), revPBE0-D3457,516 (hybrid), SCAN0/ML485 (hybrid meta-
GGA) and RPA/ML180 (rung-5). Note however that good agreement with experiment
was only obtained for revPBE0-D3 and the RPA (from insights with ML potentials).
The other levels of theory still overstructure water when considering NQEs, except
for B97M-rV that remains understructured. From Figure 7.2, other XC approxima-
tions that would be worth investigating with PIMD simulations would be: optB88-vdW,
BLYP-DCACP (GGA), PBE0-D3(TS-vdW) (hybrid) and M06-2X(-D3) (hybrid meta-GGA).
Running PIMD calculations with rung-5 XC descriptions like the RPA, without the aid
of ML, would be of interest but their cost currently prevents this.

Finally, we note that NQEs also influence the balance between covalent and hydrogen
bonds. In fact, PIMD simulations showed that NQEs broaden the covalent peak of
the O-H RDF, meaning that more fluctuations occur for the hydrogen atom positions,
accompanied by a weakening of the covalent bonds. In turn, such a delocalization of
the protons seems to strengthen the hydrogen bond network by forming statistically
more interactions, which slows down dynamical properties.144,457,484,496,516 Counterin-
tuitively, the disordering due to NQEs smoothes out the structure of water by destabi-
lizing molecules in the intershell region of the O-O RDF, while simultaneously reducing
diffusion and rotational times due to stronger hydrogen bonds. It will be therefore
important to analyze dynamical properties in light of these findings in Section 7.4.2.

Coordination number

The coordination number nOO predicted by each functional is plotted in Figure 7.3a.
Experimentally, Skinner et al. showed that the O-O coordination number of the liq-
uid state has a value of 4.3 and is independent of temperature,428,429 while previous
works reported values between 4 and 5.183,413,428,429,431 In addition, negligible changes
were observed from AIMD and force field simulations at different temperatures,183

supporting that deviations of nOO directly relate to the quality of the intermolecular
interactions as described by the functionals. As seen, a majority of them is in agree-
ment with the tetrahedral configuration of nearest-neighbor water molecules.415,428
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However, the fact that the O-O RDF does not reach zero after the first peak makes it
challenging to determine the first coordination shell unambiguously. This difficulty
makes nOO strongly dependent on the distance cutoff selected for the integration of
the RDF: In most cases, nOO is slightly underestimated because the O-O RDF tends to
be overstructured in the absence of NQEs. On the other hand, the smoothening due to
the addition of dispersion corrections makes the theoretical predictions agree more
closely with experiments (e.g., BLYP-DCACP, revPBE-DCACP, M06-2X-D3). The lack of
accuracy of the Minnesota meta-GGAs is further exemplified by their extended first
coordination shell that includes an unphysical number of water molecules. Although
still understructured, this is partly corrected for some hybrid functionals such as M06,
M06-2X(-D3), M08-SO, M11, and MN15.

Density of liquid water

As illustrated in Figure 7.3b, GGA functionals tend to underestimate the equilibrium
density, which is rectified by adding dispersion corrections. The incorrect prediction
that ice sinks in water with local DFT is mainly due to the absence of dispersion in
plain GGA functionals.415,462 However, meta-GGA functionals such as SCAN have been
shown to correct this issue.415 The PBE0 hybrid functional faces challenges in achieving
the right balance between covalent, hydrogen bonds and vdW forces. It significantly
underestimates the density, but this can be improved with the D3 correction. For
all other meta-GGAs, hybrids, hybrid meta-GGAs and post-HF/double-hybrids, the
density is higher than the experimental value. Overall, vdW interactions increase
the density because of their attractive and isotropic nature at intermediate and long
range. This increases the population of molecules in the intershell regions of the O-
O distribution function, i.e. between the coordination shells, and acts as additional
cohesive force in the condensed phase. Consistent with their structural differences
(Figure 7.1), the increase in the amount of exact exchange in the M06, M06-2X and
M06-HF also correlates with a rise of the density. On the other hand, in a counteracting
manner, the delocalization and disordering effects due to NQEs can be expected to
reduce the density, explaining why DFT densities with classical nuclei are usually
overestimated.
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[Å
2 /

ps
]

GGA
Meta-GGA
Hybrid

Hybrid meta-GGA
Post-HF

Figure 7.3: Structural and dynamical properties of liquid water from DFT-based ab initio simulations,
compared to experimental values.425,428,429,504,520,521 (a) Coordination number, (b) equilibrium density,
(c) average number of H-bonds per water molecule (*upper bound from the integration of gOH instead
of geometric criteria), (d) finite-size diffusion coefficient. Results for non-Minnesota functionals were
extracted from refs [144, 180, 183, 191, 414, 415, 457, 465, 467, 483–485, 496, 509] and reported in Tables
C3 and C4.
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H-bond number and angular distributions

From their atomic composition, water molecules in ice ideally arrange in a tetra-
hedral coordination made of four hydrogen bonds per molecule. In liquid water,
entropic effects bend, stretch, break and reform hydrogen bonds such that the aver-
age number of H-bonds per molecule is slightly less than 4 (∼3.8) at near ambient
conditions.415,467 This average number h is plotted in Figure 7.3c, where the gray boxes
indicate the estimated discrepancy among various experimental methods at the sim-
ulated temperature.520,521 Our observations, and those of others,464 suggest that the
computation of h is relatively insensitive to changes in temperature, with a small
deviation of approximately 0.1 for every 10 K increase.

Linked to the fact that Minnesota meta-GGAs are not providing accurate descriptions
of the structure of water (Figure 7.1), being either understructured (M06-L, revM06-L,
M11-L) or biasing the orientation between neighboring molecules (MN12-L, MN15-L),
they are also unable to properly account for hydrogen bonds. Their angular distribu-
tion in Figure 7.4a further shows that semilocal Minnesota functionals are incapable of
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Figure 7.4: DistributionP(β) of the H-bonding angle β, compared to experimental values.522 (a)
Meta-GGA Minnesota functionals, (b) hybrid meta-GGA Minnesota functionals. Distributions
of the complementary angle α are provided in Figure C2.

152



7.4 Results and discussion

capturing the full details of the hydrogen bond network of water, that is too fluid. The
hydrogen bond network of water is composed of a combination of short, straight, and
robust bonds as well as longer, weak, and bent interactions. The strength of a hydrogen
bond is consequently highly correlated with its length and angular orientation. At finite
temperature, the elongation of the H-bonds competes with the cohesive effects of vdW
interactions, which explains why the h number is in general higher and in better agree-
ment with experimental data with dispersion corrections without altering significantly
the angular distribution.183 In contrast, both h and the angular distribution vary when
considering different fractions of exact exchange; Figure 7.3c shows that h increases
for M06-HF (100%), M06-2X (54%), M08-HX (52%), M08-SO (57%), while it is too low
for M06 (27%), M11 (43-100%), MN12-SX (25-0%) and MN15 (44%). At the same time,
H-bonds become shorter (Figure 7.1) and straighter (Figure 7.4b) when augmenting
the fraction of exact exchange from M06 (27%) to M06-2X (54%) to M06-HF (100%).
Hydrogen bonds are therefore particularly more sensitive to exchange effects than to
correlation ones. Incorporating more exact exchange strengthens the hydrogen bonds
and results in a more rigid structure of water.

Of all the structural properties analyzed, and taking also potential variations due
to NQEs into account, we conclude that the functionals that provide results closest
to experiments are: revPBE-D3, optB88-vdW, BLYP-DCACP (GGA), B97M-rV (meta-
GGA), revPBE0-D3, PBE0-D3 (hybrid), M06-2X-D3, SCAN0 (hybrid meta-GGA) and
the RPA (rung-5). Satisfactory agreement with experimental results, while directly
accounting for NQEs, has only been demonstrated for revPBE0-D3457,516 and the
RPA.180 The revPBE-D3,516 PBE0-D3144 and SCAN0485 functionals overstructure water
with NQEs, while B97M-rV457 understructures. From a structural perspective, the
remaining optB88-vdW and BLYP-DCACP GGAs emerge as intriguing candidates to
investigate also in the presence of NQEs. The rung-4 M06-2X-D3 functional is even
more promising, as it is slightly overstructured without NQEs and offers accurate
density and hydrogen bond characteristics.

7.4.2 Dynamical properties

Diffusion coefficient and orientational correlation times

In Figure 7.3d, we plot the difference between the diffusion coefficientDL and its exper-
imental counterpart rescaled to a fictitious simulation box. The equivalent comparison
with simulated coefficients D∞, rescaled to infinite size, is presented in Figure 7.5a.
While the diffusion coefficient provides information about the translational movement,
rotational features are characterized by the orientational relaxation times plotted in
Figure 7.5b. These correlation times are highly sensitive to statistical sampling and re-
quire trajectories that are sufficiently long (approximately three times their value) to be
accurately converged. Additionally, the fitting, respectively integration, methods used
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for their calculation vary between studies, and experimental measurements exhibit
non-negligible deviations. Nevertheless, these values are presented as a qualitative
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Figure 7.5: (a) Diffusion coefficient rescaled to infinite size for heavy (left) and light (right)
water. Experimental data points were compiled from refs [421–423, 425, 523, 524] and fitted
according to ref [425]. (b) Qualitative comparison of the orientational relaxation times τµ

2
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2 with experimental results.416,420,424,426,510–513,525 CCSD(T)/ML values are from PIMD
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results were extracted from refs [144, 180, 183, 414, 415, 457, 465, 467, 483–485, 496, 516] and
reported in Tables C4 and C5.
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comparison.

The dynamics predicted by DFT functionals depends on their ability to account for
hydrogen bond strength as well as directionality. Diffusion and rotational movements
are determined by the dynamic breaking and formation of H-bonds under thermal
fluctuations. Therefore, if the description of H-bonds is too strong, it significantly
slows down the dynamical properties. Local and semilocal functionals suffer from
the self-interaction error that promotes a delocalization of the protons.467,485 This
declocalization facilitates the formation of H-bonds when the proton moves toward
the acceptor and thus contributes to the H-bond strengthening, in an analogous
manner to the NQEs (Section 7.4.1). As an illustration, the diffusion coefficient is
too low for most GGA and meta-GGA functionals, in agreement with their tendency
to overstructure. For example, optB88-vdW yields slightly overstructured water, and
diffuses too slowly. BLYP-DCACP and revPBE have higher coefficients, more in line with
experiment, but this originates from their underestimation of the number of hydrogen
bonds (Figure 7.3c). For GGAs, both BLYP-DCACP and revPBE-D3 functionals have a
diffusion coefficient and relaxation times very close to the experiment, which is also
true for the diffusion modelled by the B97M-rV meta-GGA. In contrast to the statement
that the self-interaction error slows down the dynamics of liquid water, we have found
that the M06-L, revM06-L and M11-L semilocal functionals exhibit a complete opposite
trend, generally leading to faster dynamics. This is obviously due to their distortion
of the hydrogen bonding network (Figure 7.4) and incorrect structuring (Figure 7.1).
The diffusion coefficients predicted by MN12-L and MN15-L functionals appear to
be in good agreement with experimental values, but this is fortuitously caused by
an error compensation between the lack of hydrogen bonds (Figure 7.3c) and their
overly strong (incorrect) structure (Figure 7.1). Their rotational dynamics is indeed
significantly faster than observed experimentally.

As explained earlier, NQEs tend to strengthen H-bonds and slow down the dynamical
properties. This was seen in all PIMD calculations with BLYP-D3,496 revPBE-D3,516

SCAN,414,484,496 B97M-rV,457 revPBE0-D3,457,516 and RPA/ML.180 The diffusion coeffi-
cients, in the absence of NQEs, should therefore be seen as overestimated, and relax-
ation times as underestimated. The diffusion with GGAs would therefore become even
slower with NQEs. From the available data, hybrid and hybrid meta-GGA functionals
generally give faster diffusion than GGAs, which indicates that the exact exchange is
also a key ingredient towards achieving accuracy for the dynamics, in the same way
as for the structural properties. The revPBE0-D3 functional can be considered as the
most effective hybrid in this regard. Other functionals like PBE0 or SCAN0 are likely to
remain too slow even upon inclusion of NQEs.

Except for M06-HF, hybrid Minnesota functionals lead either to too fast diffusion or are
in good agreement with the reference values. Thus, incorporating NQEs could poten-
tially bring them closer to experimental results. Consistent with the understructuring
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tendency of M06 (with 27% of exact exchange) and the overstructuring of M06-HF
(with 100%), the M06 family shows once again that the amount of exact exchange
tightly regulates the precision of the functional: Dynamical properties are too slow
for M06-HF due to the shortening of stronger H-bonds, while M06 is too fast. The
balanced M06-2X (54%) is giving results that are inbetween and therefore closer to
experimental values. From a first estimation based on ML potentials, the dynamics
of the rung-5 RPA decription resembles closely the one revPBE-D3 and is thus highly
consistent with the experimental data.

Overall, considering the possible influence of NQEs on the analyzed structural and
dynamical properties, the functionals that most closely align with experiments are:
revPBE-D3 and BLYP-DCACP (GGAs), B97M-rV (meta-GGA), revPBE0-D3 (hybrid),
M06-2X(-D3), SCAN0 (hybrid meta-GGAs) and the RPA (rung-5). Satisfactory agree-
ment for both structural and dynamical properties while accounting for NQEs has
only been demonstrated with revPBE0-D3457,516 and RPA/ML.180 revPBE-D3516 and
SCAN0/ML485 descriptions tend to overstructure water yielding too slow dynamics,
even when accounting for NQEs, while B97M-rV457 understructures and slightly ac-
celerates diffusion. Based on our extensive analysis, BLYP-DCACP (GGA) and M06-
2X(-D3) (hybrid meta-GGA) functionals therefore emerge as promising competitors to
revPBE0-D3 and the RPA, and warrant further investigation with PIMD approaches.

7.5 Conclusions

Water is the most abundant substance on Earth, and its liquid properties are distinct
from those of other fluids, posing a challenge for in silico simulations not only of
condensed water but also of aqueous chemistry. In this work, we explore the perfor-
mance of Minnesota meta-GGAs and hybrid meta-GGAs in describing the structure
and dynamics of liquid water via ab initio molecular dynamics simulations. Contrary
to the prevailing belief that local and semilocal functionals overstructure water, lead-
ing to underestimation of dynamical properties, the Minnesota meta-GGAs exhibit
the opposite trend. M06-L, revM06-L, and M11-L lead to understructuring of water,
while MN12-L and MN15-L lack cohesive effects, resulting in increased intermolecular
distances. This behavior can be attributed to the weakening of the hydrogen bond
network causing dynamical fingerprints that are far too fast. On the other hand, while
most of the hybrid Minnesota functionals remain understructured (M06, M08-HX,
M08-SO, M11, MN12-SX, MN15), their dynamical properties generally improve over
those obtained with local and semilocal functionals. The inclusion of exact exchange
was identified as a key ingredient for the correct description of hydrogen bonds lead-
ing to improved structural and dynamical properties. In contrast, we found that an
excessive amount of exact exchange (M06-HF) shortens and strengthens the hydrogen
bonds between molecules, thus giving water properties that are too glassy.
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M06-2X turns out to be the best Minnesota functional for liquid water. Slightly un-
derstrucured, its D3 dispersion corrected version shows very good agreement for
structural properties. Describing the complete picture of water from small to larger
clusters, to the condensed phase, is highly non-trivial with DFT, because functionals
showing good performance in the gas phase do not necessarily perform well in the
liquid phase and vice versa.183,462 Very encouragingly, M06-2X has also been identified
as one of the most accurate functionals for relative energies of water hexamers526

and binding energies of 16-mers and 17-mers.527 Furthermore, from the thorough
benchmark by Goerigk and Grimme, M06-2X-D3 was found to be the best among 23
hybrid functionals for general main group thermochemistry, kinetics, and noncovalent
interactions.146

Previous studies considering explicit nuclear quantum effects (NQEs) in water, have
identified the hybrid revPBE0-D3, and the rung-5 RPA (EXX+RPA, RPA@PBE) with
the help of machine learning potentials, as the only two approximations that agree
closely with experiments so far. This therefore encourages the investigation of the
performance of M06-2X(-D3) functionals with NQEs via path integral approaches.
Although it is unfortunate that this involves drastic computational overheads, our
work provides further evidence that both exact exchange and appropriate (non-local)
correlation are essential for accurately describing water interactions. This, in turn,
suggests that well-balanced XC functionals from higher rungs of the Jacob’s ladder are
required for simulating complex biological systems in water with predictive accuracy.
In this regard, determining whether M06-2X(-D3) are indeed one of the best functionals
would avoid the resort to the significantly more expensive fifth rung of the Jacob’s
ladder.

Data availability

Data and analysis scripts will be provided on Zenodo at https://doi.org/10.5281/
zenodo.7933087.

Appendix

In Appendix C, readers will find additional simulation details, and interpolations uti-
lized for rescaling the gOO peaks to 298 K. Supplementary angular distributions of
hydrogen bonds are also provided. Moreover, the appendix lists all the structural
and dynamical properties presented in the study, along with corresponding refer-
ences to relevant literature. Hopefully this will serve as a shared foundation for future
assessments of DFT on water, encouraging further advancements.

157

https://doi.org/10.5281/zenodo.7933087
https://doi.org/10.5281/zenodo.7933087




8 Surrogate based genetic algorithm
method for efficient identification
of low-energy peptide structures

Surrogate

✓GA

Parents

Crossover

Mutation

Children

Fitness

Selection

Reference

?

Chapter 8 is a postprint version of an article published as:

Villard, J.; Kılıç, M.; Rothlisberger, U. Surrogate based genetic algorithm method for
efficient identification of low-energy peptide structures. Journal of Chemical Theory and
Computation 2023, 19, 1080-1097.

Reproduced under the terms of the CC-BY-NC-ND 4.0 License.

159



Chapter 8. Surrogate based genetic algorithm method for efficient identification of
low-energy peptide structures

8.1 Abstract

Identification of the most stable structure(s) of a system is a prerequisite for the cal-
culation of any of its properties from first-principles. However, even for relatively
small molecules, exhaustive explorations of the potential energy surface (PES) are
severely hampered by the dimensionality bottleneck. In this chapter, we address
the challenging task of efficiently sampling realistic low-lying peptide coordinates
by resorting to a surrogate based genetic algorithm (GA)/density functional theory
(DFT) approach (sGADFT) in which promising candidates provided by the GA are
ultimately optimized with DFT. We provide a benchmark of several computational
methods (GAFF, AMOEBApro13, PM6, PM7, DFTB3-D3(BJ)) as possible prescanning
surrogates and apply sGADFT to two test case systems that are (i) two isomer families
of the protonated Gly-Pro-Gly-Gly tetrapeptide (Masson, A.; et al. J. Am. Soc. Mass
Spectrom. 2015, 26, 1444-1454),107 and (ii) the doubly-protonated cyclic decapeptide
gramicidin S (Nagornova, N. S.; et al. J. Am. Chem. Soc. 2010, 132, 4040-4041).528

We show that our GA procedure can correctly identify low-energy minima in as little
as a few hours. Subsequent refinement of surrogate low-energy structures within
a given energy threshold (≤10 kcal/mol (i), ≤5 kcal/mol (ii)) via DFT relaxation in-
variably led to the identification of the most stable structures as determined from
high-resolution infrared (IR) spectroscopy at low temperature. The sGADFT method
therefore constitutes a highly efficient route for the screening of realistic low-lying
peptide structures in the gas phase as needed for instance for the interpretation and
assignment of experimental IR spectra.

8.2 Introduction

Understanding the correlation between composition, structure, properties and func-
tional roles of biomolecules is at the very heart of biochemistry and biophysics. The
first step in this hierarchy, i.e., the connection between composition and structure,
has thus attracted enormous interest both in the case of, e.g., entire proteins529–532

and for smaller peptides.533–536 The latter are especially interesting in view of reducing
the complexity of natural systems and studying smaller-size models under controlled
conditions. Furthermore, peptides made of few amino acids have attracted much
attention in recent years thanks to their promising and wide scope of applications, be
it in the fabrication of biomaterials,537 in the engineering of biomimetic compounds
for catalysis,538 or in drug design.539 Indeed, in addition to contributing to physiologi-
cal health,540 peptides have brought about conclusive benefits as anti-infective drugs
due to their antimicrobial activity,541–543 leading to intense efforts in therapeutics
development with peptidomimetic systems.544,545

The study of gas-phase peptides alone or with a defined number of solvent molecules
constitutes a first step toward the understanding of the in vivo properties and al-
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lows for a differential picture of well-controlled intramolecular interactions separated
from their combination with condensed-phase and intermolecular effects. Moreover,
in some cases, the experimentally produced gas-phase systems are able to retain
solution-phase features so that scrutinizing native forms in the gas phase and at
near zero temperature can provide valuable insight into remanent condensed-phase
interactions.107,546,547

Experimentally, advances over the past decade have coupled laser desorption and
supersonic molecular beam cooling to capture IR spectra of neutral biomolecules in
the gas phase.110,111 Alternatively, combinations of electrospraying, ion-mobility selec-
tion, mass spectrometry, and cryogenic ion traps were reported to separate between
conformational families of charged molecules prior to, e.g., IR measurements.107,110,548

In particular, such experiments performed at cryogenic temperatures have been able
to produce vibrationally resolved and conformer-selective measurements, but due
to the high intrinsic complexity, the identification of the underlying structures and
the full assignment of the observed IR spectra can only be achieved with the support
of computational methods. In turn, the experimental low-temperature data provide
highly sensitive benchmarks for the assessment of the performance of computational
methods for biorelevant systems where the availability of accurate quantitative data is
often sparse and hard to obtain. Therefore, the present work also illustrates a sensitive
test case of the complementarity between simulations and experiments.

At low temperature, conformers are expected to occupy the thermodynamically most
stable configuration on the PES or at least some kinetically trapped low-lying metastable
states. Therefore, from a computational perspective relevant local minima (LM) are
usually searched on the rugged, high-dimensional PES and theoretical IR spectra, com-
monly computed with DFT including exact exchange at the hybrid level for sufficient
accuracy, are compared to the experimentally observed spectra.105–107,549–552

The exploration of the PES is typically performed with molecular dynamics (MD),
relying on classical force fields and semiempirical or first-principles potentials in
combination with replica-exchange and/or simulated annealing (SA) to enhance
sampling.105,108–111,548,553–555 Though highly successful in many cases,106,107,552 this
approach based on traditional quantum chemical tools suffers from severe drawbacks
and limitations: On one hand, the quantitative identification of the lowest energy
structures at low temperature poses stringent accuracy demands to provide a correct
energetic ordering in the 0-2.5 kcal/mol observation range for biomolecules that are
characterized by complex interatomic and noncovalent interactions.553 This imposes
the use of higher level computational methods for the determination of realistic rel-
ative energetics,548,554,556 while force fields or semiempirical approaches often fail at
providing the necessary accuracy.548,553,557,558 On the other hand, even small peptides
contain of the order of tens to hundreds of atoms, making higher level first-principles
calculations time-consuming for all but the smallest molecules. In particular, using
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first-principles MD requires long simulation times with ten thousands of energy and
force evaluations for typical simulated annealing runs and, in spite of multiple runs
with different starting geometries and varying simulated annealing protocols (in terms
of highest temperature, simulation length at Tmax and subsequent cooling rate), can
potentially fail to recover the most stable structures due to the presence of high-energy
barriers on the PES.111,555 Even when successful, DFT-MD based identifications of the
lowest-energy structures observed in experiments can take several months and might
only be practicable for larger systems when introducing experimental information to
guide the search.548,552

Here, we tackle the task of rapidly finding the global minimum (GM) as well as low-
lying LM, with the help of surrogate based genetic algorithms (GA). By leveraging
evolutionary mechanisms, GAs have shown efficiency in solving highly nonlinear
and complex global optimization problems94,103,104 where deterministic or analytical
methods fail at finding correct solutions or efficiently search enormous solution spaces.
In particular, the capabilities of GAs were for instance found to surpass SA in the search
for ground state fullerene clusters559 or perform better at protein structure predictions
compared to Monte Carlo approaches on simplified energy models.560–562 GAs are
also among the most CPU-/search-efficient methods to computationally identify low-
energy conformations when applied to small organic molecules563–565 or peptides in
the gas phase.557,566,567 For example, they outperformed systematic and random search
methods for the mycophenolic acid drug-like ligand and were more efficient than
replica-exchange MD for dipeptides in terms of low-energy conformational coverage
(respectively within 5 and 10 kcal/mol from the GM).568

Despite this algorithmic gain, the predictive power of such evolutionary methods
evidently depends on whether the energy function is able to faithfully describe the
relevant physical interactions. For example, up to now, the lack of fast and sufficiently
accurate (free) energy models569–573 explains why ab initio protein folding predictions
have met little success in recovering secondary and tertiary structures in close agree-
ment with native-like conformations.562,572,574,575 In that case, the enormous space
defined by the number of structural degrees of freedom severely challenges search
engines, so that protein folding approaches often privilege sequence homology531,576

or machine learning532,577 algorithms. However, in the mid-size range of peptidic sys-
tems, GA applications have a lot of potential if tractable energy models with sufficient
accuracy exist.

Due to the large number of energy evaluations required, GAs for peptide folding
are commonly used in conjunction with classical force fields557,563–566 or expedient
semiempirical methods,567 at the price of loosing accuracy so that identified stable
structures might correspond to false LM introduced by the energy function and relative
energies between different conformers are far off experimental observations.557,563,565

As a potential remedy, GA optimizations were recently combined with DFT local
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relaxations.568 However, this approach was rather limited to short GA instances of
dipeptides and molecules up to ∼40 atoms so that applications of this fully DFT-
based approach to larger systems are currently compromised even when resorting to
massively parallel computational resources.

We rather explore here the possibility of using less accurate surrogate models for a
faster (pre)evaluation of the PES and demonstrate that a judicious choice of surrogate
level can provide satisfactory knowledge for establishing a pool of low-energy candi-
dates, to be ultimately refined at a first-principles level. This seems also reasonable in
view of the fact that relative energies and vibrational frequencies can differ markedly
upon changing the level of theory, DFT functional, or basis set107,556,558,578 and that
there exists a priori no exact, tractable and universal baseline for the PES to drive the
optimization with.

To anticipate our results, it turns out that while the surrogate LM geometries are in
general very close to their first-principles analogues for all lower-level methods con-
sidered here, the energy hierarchy varies significantly between PES approximations
and can considerably deteriorate the search. Nevertheless, our results show that, in
combination with a state-of-the-art polarizable force field, the approach is highly suc-
cessful in generating surrogate low-lying minima that match experimental structures
for the two test case systems including two isomers of the protonated Gly-Pro-Gly-Gly
tetrapeptide (referred to as GPGG herein) and the doubly protonated gramicidin S
cyclodecapeptide. This encourages the use of sGADFT as a straightforward, fast, and
automatized way to identify the lowest energy structures of peptides in the gas phase.

In what follows, we first describe the reference test systems in Section 8.3, along with
our GA implementation. After presenting the computational details and the investi-
gated surrogate models in Section 8.4, we provide a quantitative assessment of their
cost-accuracy performance on a test set of GPGG structures in Section 8.5.1. Respec-
tive GA results are then presented in Sections 8.5.2 and 8.5.3, and their computational
footprint finally is reported in Section 8.5.4, before drawing conclusions in Section 8.6.

8.3 Methods

8.3.1 Reference data

To test the performance of the sGADFT approach, we have chosen two reference sys-
tems of different size for which the lowest energy structures have previously been
determined via a combination of high-resolution conformer-selective IR spectroscopy
paired with electrospray ionization and cryo-cooled ion traps, supported by a tradi-
tional computational approach (as described above) to determine the most stable
structures. The first test case system comes from the work of Masson et al., who lever-
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aged ion-mobility techniques to identify and separate two conformational families
of the protonated GPGG peptide (Figure 8.1) with different collisional cross-sections,
and acquired respective spectroscopic data.107 Major conformers of each family were
determined as involving either the cis or trans isomers of the proline residue.
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Figure 8.1: Schematic structure of the 39-atom protonated GPGG peptide in its cis (ω = 0)
isomer, shown with the respective backbone dihedrals employed for GA optimization.

The 3D structure determination was previously established by running SA ab initio
MD starting from random cis/trans structures extracted from the Protein Data Bank
(PDB).579 The search was conducted at the DFT level with the B3LYP functional580

and a 6-31G basis set, with extensive trials of heating temperatures and annealing
rates for total simulation times of several tens to hundreds of picoseconds. After
this first exploration, isomers were structurally and energetically selected, and locally
relaxed at the B3LYP/6-31G(d,p) level of theory to provide a final set of 13 cis and
29 trans energetically low-lying candidate structures, which serve as the reference
pool in this work. Comparison of theoretical harmonic vibrational frequencies (at
B3LYP/6-311++G(d,p) level) including isotopic substitutions with the measured spectra
clearly confirmed that the lowest-energy configuration of each family of these two sets
corresponded indeed to the most abundant of the observed conformers.

Similarly, in 2010, Nagornova et al. published highly resolved IR spectra of the doubly
protonated gramicidin S peptide (Figure 8.2) featuring a D rather than an L enantiomer
of a phenylalanine.528 Since the experimental data indicated some symmetry (C2) for
the major conformer, an SA exploration of the high-dimensional PES could be per-
formed by imposing structural constraints over multiple FF99SB581 and FF02polEP582

force field trajectories.552 The 3D structure was finally determined by calculating
B3LYP/6-31G(d,p) spectra of few candidates.

8.3.2 Genetic algorithms

Genetic algorithms (GAs) are global optimizers that belong to the larger class of evolu-
tionary algorithms rooted in the mechanisms of biological evolution. As metaheuristic
search engines, GAs operate over populations of individuals that each represent a
candidate solution of the optimization problem and are progressively modified toward
(near-) optimal solutions. GAs are powerful tools when it comes to hard optimization
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Figure 8.2: Schematic structure of the 176-atom doubly protonated gramicidin S cyclic de-
capeptide, shown with respective backbone and side-chain dihedrals employed for optimiza-
tion.

problems for which the solution space is supposedly noisy, unsteady, and involves
constraints or many LM as well as many degrees of freedom that do not allow simpler
local optimizers or enumeration searches to perform efficiently.

Figure 8.3 depicts a schematic representation of the GA employed in this work built
from conventional genetic operations. Generally, first individuals are randomly gener-
ated, if no other information or constraints are known, to ensure diversity and prevent
any other bias in the solution space originating from the initialization. At each genera-
tion (iteration), GA evolves solution individuals with biologically inspired operators.
Each individual is assigned a fitness that serves as a metric to drive the genetic evolu-
tion of the algorithm. Most of the time, this fitness function is nothing else than the
objective function of the optimization problem.

Following the Darwinian principles of mate selection and survival of the fittest, individ-
uals are stochastically selected based on relative fitnesses in the population and give
birth to children individuals through crossover of genes. Genes are encoding fragments
of a tentative solution that depend on the problem at hand and that must be carefully
designed by the practitioner. Examples of such encodings or representations are bit
strings, symbols, or vectors that contain relevant information to be transferred from
one generation to the next. Children solutions are then randomly mutated to maintain
diversity and possibly extend the search over yet uncovered regions of the solution
space. Finally, elitism consists of replacing some of the current less-fit individuals with
the best individuals of the previous generation, in order to maintain the best traits
discovered so far over the generations. Such a selection-crossover-mutation-elitism
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Figure 8.3: Schematic representation of the GA cycle as implemented in EVOLVE for this study.

cycle hence simulates an artificial evolution and propagates relevant and optimal
features of the representations across GA iterations. The algorithm terminates after a
fixed number of generations or when improvement of the fitness function stagnates
over several iterations.

Due to the very nature of the initialization, selection, and mutation, GAs are intrin-
sically stochastic and provide statistical results that hopefully contain the GM of the
optimization problem. In the following, our GA implementation toward the optimiza-
tion and generation of low-lying peptide geometries is described.

8.3.3 Optimization of peptide conformations with EVOLVE

All of the work presented in this chapter was performed with the in-house implemen-
tation of a single-objective and multiobjective GA engine called EVOLVE.99,583 As a
versatile and modular Python code for peptide and protein sequence optimization,
EVOLVE was successful in the optimization of a biomimetic peptidic scaffold for the
fixation of CO2

584 and in the engineering of a highly thermostable metalloprotein.585 It
also served in the elaboration of training sets for enhanced machine learning models
of molecular properties.586

For the compositional optimizations mentioned above, side chain rotamer libraries
were used in order to restrict the search space to discrete sets of residue conformations.
In contrast here, EVOLVE is extended into a complete in silico optimizer of a peptide
structure (including both the backbone conformation and side chain dihedrals) with a
fixed amino acid sequence whose degrees of freedom therefore cover a huge space. In
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the gas phase at near zero temperature, the objective function is nothing more than
the potential energy as a function of atomic coordinates, meaning that the lower the
energy (fitness), the better the structure. Such an “ab initio” peptide folder is capable
of exploring the low-lying LM or reaching the GM of the PES, which is particularly
relevant for assigning 3D structures to measured IR spectra.105–107,110,552 In addition, it
also provides an exhaustive search that enables a quality test of the method used to
describe the PES.

In practice, genetic operators have parameters that are fixed before execution, which
strongly influence the efficiency and reliability of the algorithm. The optimal choice of
these parameters is a multivariate problem in itself and depends on the forms of the
operator, the problem to be solved, and the characteristics of the fitness function.587 We
studied the effect of several parameters such as population size, crossover probability,
or mutation rate and selected a set for which independent runs progress steadily toward
the lowest energies in a small number of iterations. In what follows, we describe the
specificities of the algorithm (Figure 8.3) and list the corresponding parameters in
Section 8.4.1.

Representation

Each individual or tentative solution of the optimization problem is a peptide confor-
mation. Translated in a GA framework, each geometry is represented by the backbone
ϕ and ψ torsional angles as well as possible side chain torsional angles χ. The genes of
one individual composed of N amino acids with respective k numbers of side chain
dihedrals are therefore

Θ = (ϕ1, ψ1, χ
1
1, ..., χ

k1
1 , ..., ϕN , ψN , χ

1
N , ..., χ

kN
N ) (8.1)

encoded into a single numerical vector Θ that defines the internal coordinates of
the optimizer. The specific torsional angles used for the optimization of the two test
systems studied herein are indicated in Figures 8.1 and 8.2. This choice of represen-
tation, inspired by the underlying characteristics of the Ramachandran plot,588 was
already exploited in previous evolutionary methods557,568 and has the advantage of
easily defining genetic operators that preserve the peptide atomic connectivity.

Initialization

The information about the amino acid sequence, the atom types, and atomic con-
nectivity are provided to EVOLVE in the form of a PDB file which serves as an initial
template. From this, a Θi representation of sizeK is randomly generated in which each
individual i of the first population has a uniform distribution of its torsional angles
such that Θi

k ∈ [−180◦, 180◦) for k = 1, ...,K. Technically, such modifications of the
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peptide structures are performed with the help of the Open Babel toolbox.589

Fitness function

At each generation, the ability of an individual to be among the lowest energy configu-
rations is assessed by calculating its potential energy. In order to avoid the exploration
of highly improbable nonphysical structures, e.g., with too close distances or steric
overlaps, initial local relaxations are performed before assigning the energy. Indeed,
the individuals modified by the genetic operators can be very distorted and far from
LM of the fitness function, which prevents the algorithm from progressing rapidly to
low energies by stagnation or by bouncing off the PES,566 in a manner quite similar
to a gradient descent with a high learning rate. To improve this, the search space is
consequently focused on the physically more meaningful regions that involve LM.

The algorithm thus operates at two levels: a coarser (and wider) exploration of the
configurational space driven by genetic operators acting on Θ, refined by local opti-
mizations of the Cartesian coordinates R, as illustrated in the central graph of Figure
8.3. The relaxed structures R̃ and energies are stored to construct the pool of putative
LM and corresponding fitnesses and are further translated back to their torsional
representations Θ̃ that are updated before selection:

Θ 7→ R,R “−∇RE”7−−−−−−→ R̃, R̃ 7→ Θ̃ (8.2)

The computational cost is determined by the number of fitness function calls (equal
to the number of generations times the population size) times the cost for a single
fitness evaluation. The latter depends crucially on the level of the surrogate method,
while the choice of the PES model (and thus the fitness function) is critical in order
to reliably reflect experimental results. Thus, compromises have to be made between
cost and accuracy. EVOLVE is currently interfaced with several external software
programs (Gaussian,332 Amber,590 OpenMM52) that can be used for local gradient
based optimizations at different levels of theory. Note that the modular structure of
EVOLVE and the use of the Atomic Simulation Environment (ASE) library591 to interface
with external codes greatly facilitate the integration of new fitness evaluators. Finding
an appropriate surrogate model for the PES in terms of speed and accuracy for the
relative energetics is investigated in Section 8.5.1. For the GA applications envisioned
here, it is not absolutely necessary to reproduce the PES in every detail but for a given
surrogate model to be satisfactory, it has to be able to drive the GA optimizations
toward regions with a promising set of candidates also likely to belong to low-energy
regions at the higher-level reference method.
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Sanity checks and constraints

The resulting geometries and energies are checked after each fitness evaluation to
ensure that the local optimization was successful, as it may happen that the initial
structures R generated by the GA operators have clashes or are so deformed that it
becomes difficult for the local optimizer to converge to a stable (local) minimum,
especially within the first few generations. In this uncommon case, individuals from
nonconverged optimizations are simply ignored and replaced in the next generation
by assigning them a very high (unfavorable) fitness value.

A similar procedure is applied to constrain the GA search. In particular, when running
separate optimizations for the cis- and trans-GPGG manifolds, the geometries are
checked on-the-fly to ensure that they belong to the chosen isomer class since the
local optimizer can, although very rarely, alter the isomerization state of the proline
(Figure D6).

For gramicidin, the cyclic structure is enforced by requiring the bond between the
PRO1 nitrogen and PHE10 carbon atom not to exceed 2 Å, which again rarely occurs
due to the definition of a cyclic topology in the force fields which imposes a bonding
potential between these two atoms. If we were to use a surrogate at the electronic
structure level, the ring structure would be constrained similarly by an additional
penalty potential.

Selection

Individuals are selected with tournament selection: a subset of a given size s is randomly
created from the population and a competition operates between individuals in this
set. The solution with minimal (i.e., most optimal) fitness in the set is added to a pool
of mates for crossing over. The process is repeated until the number of mates in the
mating pool reaches the population size.

Crossover

The recombination of genetic material to be inherited by the offspring is achieved with
the simulated binary crossover (SBX)592 operator, which is a real-valued analogue of
the single-point crossover of binary strings that was used in early GAs with discrete
degrees of freedom. This simple operator cuts and swaps at one random site in the
bit representations. More specifically, SBX is designed to enhance the probability
for two parents to give birth to an arbitrary child solution and better explore the
fitness landscape. More details about the SBX implementation are provided in Section
8.7.1. This operator demonstrated better performance in finding global optima of
multivariable objective functions with numerous LM. To illustrate its enhanced search
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power, we report the number of LM visited along a GA run with SBX in Figure D1
compared to simple swaps of Θ components (genewise crossover) that cover less space
on average.

Mutation

Mutations are random disturbances to ensure that all regions of the solution space
are accessible during the search. A point in the solution space should in principle
be reachable from any other point thanks to mutations (and their combination with
crossover). However, in conventional GAs, mutations should not be too strong in order
not to scatter promising features out of their optimal regions as long as the search
improves. Mutations are therefore usually considered as rather local changes aimed at
exploiting the vicinities of current solutions, whereas larger moves (explorations) are
driven by crossovers.104,565

Dealing with a real-valued search space, an instinctive choice for mutations is the
addition of Gaussian noise593 that mutates an individual Θi like

Θ̃i = Θi + P(pm,K) ◦ σ(N1(0, 1), ...,NK(0, 1)) (8.3)

where ◦ denotes the element-wise multiplication between vectors. P(pm,K) is a
vector of size K filled with 0 or 1 that selects genes to be mutated with probability
pm. For pm = 1, all genes are mutated, while pm = 0 turns off the mutation. Selected
genes are consequently modified with independent samples from the standard normal
distributionN (0, 1) scaled with the parameter σ that controls the mutation strength,
along with pm.

Elitism

The crossover and mutation operators mix and alter the tentative solutions that were
among the best individuals in the previous generation. While the solutions are ex-
pected to improve along a GA run on average, there is no guarantee that the best
fitness at a certain generation is lower than its previous counterpart and genes can
drastically change in the case of genetic drift, escaping from a region where the GM
actually sits. A way to counteract this is the application of an elitism operator which
consists of replacing a fraction f of the worst solutions by the best individuals of the
previous generation. This makes sure that the best fragments of information found
so far are automatically transferred to the offspring generation, which thus always
contains the overall best solution. Such a selective pressure can improve the conver-
gence speed,587,594 though the efficiency of any GA is dictated by its ability to balance
between exploration and exploitation and elitism introduces the risk of losing diversity
and converging prematurely to less-fit LM.595
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8.4 Computational details

8.4.1 GA parameters

We report in Table 8.1 the parameters optimized through a series of test runs and finally
used in this study. The algorithm terminates after a fixed number of generations, for
which we verified that no significant improvement in fitness was observed anymore.

Table 8.1: Input parameters for EVOLVE

System GPGG Gramicidin
Population size 40 48
Number of generations 60 80
Tournament selection, set size s 2
Mating probability 1.0
Genewise crossover probability pc 0.5
SBX crossover order n 5
Mutation probability 0.75
Genewise mutation probability pm 1/3 1/10
Mutation strength σ 60◦

Elitism fraction f (if applicable) 4/40 5/48

The mating and mutation probabilities fix the fractions of the population that are
respectively crossed or mutated. For a solution Θ, pc =50% of its components are
crossed with the SBX operator while the others remain unchanged. 75% of the popu-
lation is mutated and the probability pm of mutating each gene is chosen so that one
ϕ and one ψ backbone dihedral are modified on average. For gramicidin, the same
probability applies to all 16 side chain dihedrals resulting in an average rate of 1.6 side
chain mutants per individual. We choose a reasonable replacement of about 10% of
the population by elites, unless otherwise specified, and also study the effect of no or
stronger elitism in what follows.

8.4.2 Surrogate fitness function

Among the plethora of available methods, we focus our assessment of surrogate PES
on some widely used force fields and semiempirical approaches that are expected to
give fairly accurate results over a broad chemical and conformational space, as well as
for charged or nonstandard residues.

The first chosen surrogate candidate is the General Amber Force Field (GAFF)596 as
provided in the Amber 2018 suite.590 Fixed partial charges, atom types, and force
field parameters have been assigned with the Antechamber and Leap tools. Atomic
charges are derived from the default restrained electrostatic potential (RESP) fit597 at
the HF/6-31(d) level of theory. For the purpose of comparison and to test the sensitivity
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with respect to the choice of fixed point charges, we also used charges derived with
the faster Austin Model 1 with bond charge correction (AM1-BCC) scheme.598,599 For
both cis- and trans-GPGG, charges are calculated from structures constructed with the
amino acid sequence editor of Molden,600 while the X-ray-resolved crystal structure is
used for gramicidin.601 van der Waals and electrostatic interactions are not truncated
in the absence of periodic boundary conditions. Local geometry optimizations are
performed using Sander single-core jobs consisting first of 4000 steepest descent steps
followed by conjugate gradient optimization until convergence to the default 10−4

kcal/(mol Å) root-mean-square deviation of the Cartesian elements of the gradient.

Second, we examine the AMOEBA polarizable force field for proteins602 in its OpenMM
implementation52 with the L-BFGS minimizer tolerance set to 10−4 kcal/mol. In our ex-
perience, the GPU-accelerated version significantly speeds up geometry optimizations
by up to a factor of 80 compared to the CPU version.

Calculations with the self-consistent-charge (SCC) density functional tight binding
method603 with full third order terms604 (DFTB3) are performed with the DFTB+605

code with the SCC tolerance set to 10−7 a.u. using the parameter set 3OB.606 Hydrogen
interactions are corrected with a damping exponent of 4.2 in the SCC short-range
contribution.604 DFTB3 is extended with the London dispersion correction D3147 as
parametrized for DFTB3607 with the Becke-Johnson damping variant.608 The geometry
optimizations are carried out with the L-BFGS algorithm and default convergence
criteria.

We also evaluate the ability to rely on hybrid DFT with a small basis set (6-31G) as a
possible surrogate. For this, we use the GPU-supported TeraChem software50,51 with
L-BFGS optimizations609 at the B3LYP level of theory performed on 2 parallel GPU
cards with default settings.

Finally, Gaussian16332 is used for the semiempirical PM6610 and PM7611 methods
with the Berny optimizer612 and default convergence criteria. The same is true for
the B3LYP/6-31G(d,p) reference calculations with the difference being that very tight
(tight) convergence criteria with ultrafine grid were chosen for GPGG (gramicidin). The
performances of all these alternative surrogates compared to the B3LYP/6-31G(d,p)
reference are discussed in the next section.

8.5 Results and discussion

8.5.1 Performance of different surrogate fitness functions

The success of the search for good candidate structures relies on the matching of
the surrogate PES with the one of a reference method capable of reproducing the
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experimental results. Ideally, running the GA with the surrogate should lead to a
similar coverage of the configurational space as well as a good match of the relative
energetics between structures within an affordable computational cost. We therefore
seek to establish here which approximation provides the best compromise between
accuracy and computational expense.

However, a quantitative evaluation of the performance of a given fitness function is
nontrivial due to the stochastic nature of GAs, in addition to the intractable cost of
running multiple benchmark instances with, for example, hybrid DFT. Furthermore,
assessing accuracy differences between various methods has been one of the major
challenges in computational chemistry for decades. For this reason, we rather test the
quality of the different PES approximations on a finite test set of GPGG geometries.

In order to maximize the coverage of different regions of the PES, the set was gener-
ated from 10 high mutation rate GA instances with the GAFF force field and with the
structures that resulted from GA crossovers and mutations before local relaxations
(and fitness evaluations). Therefore, these latter are not LM of the GAFF force field
which is only used to drive the sampling. From all visited configurations (20000 in
total), 200 diverse geometries were initially selected using a farthest-point sampling
(FPS) algorithm613 in the space defined by the radius of gyrationRG and the number of
hydrogen bonds NH (see Section 8.7.2) that turned out to be useful for differentiating
polypeptide configurations.614 Among these, 146 geometries were successfully relaxed
to distinct LM at the B3LYP/6-31G(d,p) reference level, which we augmented with 42
structures derived from ab initio SA (cf. Section 8.3.1) that we know correspond to low
energy minima. Hence, the test set finally contains 69 cis and 119 trans nonrelaxed
individuals that are representative of points potentially visited during GA runs.

As it would happen for a GA process, the different surrogates are employed to locally
optimize the set and produce pools of respective LM. Therefore, the evaluation of
a surrogate’s performance must be based on its ability to not only approximate the
energy but also the coordinates of the reference LM; a satisfactory model should
provide target structures with relative energies following the B3LYP/6-31G(d,p) ranking
at best. Illustratively, the wells of the surrogate in Figure 8.4 must be as “close” as
possible to the reference wells, in terms of both energy and structure. However, as
also depicted in Figure 8.4, we note that a direct (one-to-one) comparison between
surrogate and reference LM is not possible because similar initial points may relax into
very different geometries depending on the method and optimizer used. Consequently,
in the absence of side chains for GPGG, the backbone RMSD (bb-RMSD) was chosen
as a metric to identify “closest” LM structures and rely on a more faithful measure of
proximity than a direct comparison from the shared initial point.

We opted for a statistical analysis to mimic the various fitness evaluations during a
GA run, which also informs about the performance of the surrogates for different
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Figure 8.4: Illustration of the local relaxation of test structures on the surrogate and reference
PES projected along two arbitrary reaction coordinates. The LM resulting from the same initial
points are not necessarily close in energy and/or geometry.

population sizes: For a random subset of S initial structures taken from the test set,
each reference B3LYP/6-31G(d,p) LM is associated with its closest (in terms of bb-
RMSD) surrogate LM. Then, the relative energies within the subset are used to calculate
the mean absolute error (MAE) of the surrogate energy:

MAE(∆E) = 1
S

S∑
i=1

∣∣∣∆Eref
i −∆Esurr

i

∣∣∣
= 1
S

S∑
i=1

∣∣∣Eref
i − Eref

0,sub − Esurr
i + Esurr

0,sub

∣∣∣
(8.4)

with E0,sub being the minimum energy in the respective subset. This represents the
ranking on which the GA selection would operate and avoids giving too much impor-
tance to whether the surrogate was able to correctly find the GM of the entire set or
not.

Figure 8.5a shows the MAE(∆E) for different subset sizes and surrogates, and Figure
8.5b gives the average bb-RMSD between the closest reference and surrogate LM struc-
tures from which the ∆E were calculated. As could be expected, the B3LYP/6-31G(d,p)
LM are best reproduced using the same method (B3LYP) but with the smaller (nonpo-
larized) 6-31G basis set, with structures showing on average 0.2-0.4 Å bb-RMSD and
∼4 kcal/mol energy differences. While all other surrogates show similar differences in
geometries that saturate at best around 0.3 Å bb-RMSD for DFTB3, the relative energies
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Figure 8.5: (a) MAE of relative energies between surrogate LM and their bb-RMSD closest
B3LYP/6-31G(d,p) counterparts for the GPGG test set. (b) Average bb-RMSD between the
surrogate LM and their closest B3LYP/6-31G(d,p) counterparts. Average values over max(S, 70)
random subsets for each size S are plotted; standard deviations are of the order of 1 kcal/mol,
respectively, 0.03 Å, and are provided in Appendix D (Figure D5a,b). The energies of the
reference LM span 30 kcal/mol with two outliers around 40 and 60 kcal/mol.

between methods are more variable. The PM6 semiempirical method appears to per-
form best with average energy deviations of 5 kcal/mol, followed by the GAFF(RESP)
and AMOEBA force fields, as well as DFTB3, which all have energy differences of about
6 kcal/mol while these exceed 7 kcal/mol for the remaining surrogates. The worst
approach is the GAFF force field with AM1-BCC charges, which were only used here to
explicitly test the influence of the effective charge set but are indeed not recommended
for common practice.590

Regarding the quality of the structural prediction, Figure D2 gives an illustration of
some bb-RMSD between reference and surrogate LM. In general, structures with a bb-
RMSD of less than 0.5 Å are very similar and thus more likely to relax to their B3LYP/6-
31G(d,p) counterpart upon re-optimization. As for the energetic performance, the
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closest reproduction of the reference geometries is found for the smaller basis set
B3LYP variant but also all remaining surrogate methods perform relatively well in
terms of geometric predictions, yielding LM geometries with a bb-RMSD around 0.5
Å from a subset size of 40, which is the population size of the GA chosen for GPGG.
Therefore, we conclude that over a set of representative geometries encountered in
a GA optimization, all non-DFT surrogates show a similar performance in terms of
reproducing B3LYP/6-31G(d,p) structures. However, correct relative energies are more
difficult to approximate and differ between methods, with PM6 slightly outperforming
GAFF(RESP), AMOEBA and DFTB3 in terms of overall MAE.

Apart from the fact that the surrogate method should be able to generate a diverse set of
structures, we are particularly interested in the performance for the low-energy regime,
whose members will drive GAs to the most optimal regions of the PES. The pool of
low-energy LM at the surrogate level also represents the candidates that will be selected
for a reoptimization with a higher level reference. For all cis, respectively trans isomers,
Table 8.2 presents the MAE of the relative energies of LM at less than 10 kcal/mol of the
respective GM in the set. Again, the energies are compared between corresponding
pairs of surrogate-reference geometries that exhibit the smallest bb-RMSD.

Table 8.2: Assessment of surrogate methods in the low-energy regime ∆Ẽ ≤ 10
kcal/mol. NLM is the number of local minima within the range. MAE(∆Ẽ) =

1
NLM

∑NLM
i=1

∣∣Eref
i − Ẽref

0 − Esurr
i + Ẽsurr

0
∣∣ in kcal/mol where Ẽref

0 and Ẽsurr
0 are the respective cis

or trans putative GM found over the entire test set. The energies of the surrogate and the
reference are compared according to the smallest bb-RMSD match, whose average value and
standard deviation are reported in Å.

cis trans
Surrogate MAE(∆Ẽ) Av bb-RMSD NLM MAE(∆Ẽ) Av bb-RMSD NLM

GAFF AM1-BCC 7.1 ± 3.1 0.48 ± 0.25 10 5.9 ± 4.3 0.41 ± 0.12 15
GAFF HF/6-31G(d) RESP 6.1 ± 7.6 0.29 ± 0.25 10 6.1 ± 4.9 0.35 ± 0.17 29
AMOEBApro13 3.6 ± 4.1 0.36 ± 0.11 23 4.8 ± 4.7 0.27 ± 0.16 49
PM6 3.7 ± 4.6 0.37 ± 0.14 25 4.4 ± 3.4 0.23 ± 0.16 32
PM7 5.5 ± 6.7 0.43 ± 0.18 31 2.6 ± 1.9 0.21 ± 0.06 13
DFTB3-D3(BJ) 6.9 ± 4.7 0.36 ± 0.21 34 6.0 ± 6.7 0.36 ± 0.22 45
B3LYP/6-31G 1.6 ± 2.8 0.16 ± 0.17 30 1.1 ± 0.9 0.13 ± 0.13 35
B3LYP/6-31G(d,p), ref. 27 21

All methods provide on average satisfactory geometries with a difference in bb-RMSD
of less than 0.5 Å with the reference LM. In addition to providing the closest structural
match, the B3LYP/6-31G PES is the best surrogate with respect to relative energies in
the low-energy realm. However, the performance of some of the other tested surrogates
can markedly deviate from the overall energetic performance shown in Figure 8.5. Both
GAFF(RESP) and DFTB3 are comparatively less accurate with MAEs between 6 and 7
kcal/mol for both cis and trans configurations. Although PM7 performs well for trans
low-lying minima, it shows more weaknesses in ranking higher energy configurations
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(Figure 8.5a) as well as cis isomers in the low-energy range, which highlights the fact
that the performance of surrogates can be system-dependent. Finally, AMOEBA and
PM6 exhibit the smallest MAEs of all non-DFT methods with balanced accuracies for
the two configurational classes.

While the previous analyses assessed the quality of the structural as well as energetic
predictions of the different surrogate methods, their overall computational cost also
plays a major role in the choice of the most appropriate fitness function. To give an
overview of the different time scales involved we give estimates of the average time
needed for a local geometry optimization for each surrogate method in Table 8.3. For
the sake of comparison, running a GA search with the B3LYP/6-31G(d,p) reference
would take more than 2.5 months on a desktop workstation for the 39-atom GPGG
molecule, highlighting the need for more expedient approaches. Although it is found
that resorting to a smaller basis set provides the best accuracy, a GPU-accelerated
implementation only reduces the elapsed time to the order of a month, while other
surrogates bring it down to less than a day for semiempirical methods (PM6, PM7,
DFTB3) and only few minutes for force fields (GAFF, AMOEBA).

Table 8.3: Average elapsed time t̄ for local GPGG geometry optimization on Ncores cores (or
GPU) for different surrogate methods based on the GPGG test set. t̄GA is an estimate of the
average time spent on fitness evaluations for a 60-generation 40-individual GA run if executed
on a 24-core 2-GPU workstationa. The calculation details of each method are reported in
Section 8.4.2.

Surrogate t̄ [min] Ncores t̄GA
a

GAFF AM1-BCC 0.024 1a 3 min
GAFF HF RESP 0.028 1a 3 min
AMOEBApro13 0.005 1 GPUb 5 min
PM6 1.072 8a 15 h
PM7 1.578 8a 22 h
DFTB3-D3(BJ) 1.331 1a 2.7 h
B3LYP/6-31G 19.508 2 GPUsb 1 mth
B3LYP/6-31G(d,p) 150.235 8a 2.7 mths

a24-core Intel Xeon E5-2650 v4 @ 2.20GHz CPU,
2 Nvidia GeForce GTX 1060 GPUs.

b16-core Intel Xeon E5-2630 v3 @ 2.40GHz CPU,
2 Nvidia GeForce GTX 970 GPUs.

The small improvement in accuracy of PM6 does not seem to justify its use over
AMOEBA, which is about 180 times faster. From these tests on the GPGG tetrapeptide,
AMOEBA is thus emerging as a promising surrogate for GA optimization of peptides in
terms of cost and accuracy and it will therefore be our choice in the following sections
along with the fast but presumably less accurate GAFF (HF/6-31G(d) RESP) force field
for comparison.
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8.5.2 GA optimization of GPGG

Global minimum search

The results presented here are all based on a common pool of surrogate geometries
generated after 10 GA runs, for which the minimum energy progressions are plot-
ted in Appendix D (Figures D7 and D8). Without prior knowledge about structures
and energies, the GM is assumed to be the lowest-energy individual found over all
instances.

In terms of GA performance, it is worth mentioning that elitism markedly increases the
chance of finding the GM as reported in Figure 8.6 that shows the cumulative success of
reaching the GM at a given iteration. A 10% replacement of the current population with
the best parent individuals substantially improves the GM search for all schemes but
the cis-GPGG on the AMOEBA PES due to its rapid convergence (the energy decrease
between the first and last generations is only 0.1/0.6 kcal/mol as shown in Figure D7).
For the other cases, the GA might not always succeed in finding the GM but elitism
allows enhancement of the convergence rate by 30%. Since the minimum energy will
fix the overall ranking of surrogate LM, and consequently the selection of candidates to
be reoptimized, it is essential for the GA to reach the surrogate GM or at least low-lying
structures within a few kcal/mol from it.
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Figure 8.6: GPGG: cumulative success of finding the surrogate GM at each generation, averaged
over 10 GA optimizations per surrogate/isomer combination.

Comparing the sampled structures of the cis isomer with the DFT-resolved GM, it is
found that the putative GM of AMOEBA has a heavy-atom RMSD of only 0.5 Å (Figure
8.7a). However, this is not the most similar structure found, as the GA was able to
provide an even closer structure with an RMSD of 0.4 Å about 0.6 kcal/mol higher in
energy that better reproduces the configuration of the proline cycle (Figure 8.7b). At
the GAFF level, although the lowest energy structure is more compact (Figure 8.7c)
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(a) AMOEBA, putative GM
RMSD: 0.3/0.5 Å

(b) AMOEBA, closest LM
RMSD: 0.3/0.4 Å

E − Ẽ0 = 0.59 kcal/mol

(c) GAFF, putative GM
RMSD: 1.2/1.8 Å

(d) GAFF, closest LM
RMSD: 0.1/0.2 Å

E − Ẽ0 = 1.09 kcal/mol

Figure 8.7: cis-GPGG: putative GM and closest LM found on surrogate PES after 10 GA runs
for (a, b) AMOEBA and (c, d) GAFF. E − Ẽ0 is the relative energy of the LM with respect to the
putative GM. The B3LYP/6-31G(d,p) GM is depicted in green with respective backbone/heavy-
atom RMSD. Similar structures are obtained with or without elitism.

and therefore shows a larger RMSD from the reference, a geometry almost equal to the
DFT GM is also discovered about 1 kcal/mol higher in energy (Figure 8.7d).

For the trans isomer, the AMOEBA GM is more distant from the DFT reference (Figure
8.8a) than it is with GAFF (Figure 8.8c) with respective RMSDs of 1.1 Å against 0.6 Å,
but both force fields yield almost identical structures to the DFT GM within 2 kcal/mol
above their putative GM (Figures 8.8b and 8.8d).

Hence, for both cis- and trans-GPGG, GAFF and AMOEBA are able to identify the
DFT GM as a low-lying surrogate structure within a maximum of 2 kcal/mol above
their (putative) GM demonstrating that a surrogate approach can indeed be beneficial
before resorting to higher-level refinement as it is done in the next section.
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(a) AMOEBA, putative GM
RMSD: 0.7/1.1 Å

(b) AMOEBA, closest LM
RMSD: 0.1/0.2 Å

E − Ẽ0 = 1.99 kcal/mol

(c) GAFF, putative GM
RMSD: 0.4/0.6 Å

(d) GAFF, closest LM
RMSD: 0.3/0.3 Å

E − Ẽ0 = 1.83 kcal/mol

Figure 8.8: trans-GPGG: putative GM and closest LM found on surrogate PES after 10 GA runs
for (a, b) and AMOEBA (c, d) GAFF. E − Ẽ0 is the relative energy of the LM with respect to the
putative GM. The B3LYP/6-31G(d,p) GM is depicted in green with respective backbone/heavy-
atom RMSD. Similar structures are obtained with or without elitism.

Low-lying minima search and refinement

GA optimization offers the additional advantage that one can profit from all of the LM
visited during evolution. Maximizing the number of low-energy structures is therefore
important in order to capture all surrogate candidates likely to relax to the desired
reference minimum. As an example, the progression of the number of new minima
explored is shown in Figure 8.9 for a single GA as well as after several executions. The
average number of minima found over the GA iterations is very similar with or without
elitism and reaches a plateau after a certain number of GA generations (Figure 8.9a).
Figure 8.9b shows that it is more efficient to perform independent runs in parallel to
improve the search and sample more LM, rather than extending a single execution
with more generations. In this case, however, the use of elitism can alter diversity and
reduce the exploration of low-lying LM, which is observed for all schemes (Figure D9).
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Figure 8.9: trans-GPGG: number of low-lying minima found on the AMOEBA PES within 15,
10, and 5 kcal/mol with respect to the putative GM. (a) Per GA generation, averaged over 10 GA
runs. (b) By running independent GAs. Distinct LM are taken to be at least separated by 10−4

kcal/mol and 0.2 heavy-atom RMSD.

The collection of thousands of structures provided by the GA is followed by their ulti-
mate reoptimization at the reference level. For this purpose, only surrogate structures
within 10 kcal/mol of their putative GM are selected and locally relaxed with DFT
(B3LYP/6-31G(d,p)). To establish the actual accuracy of the surrogate, Figure 8.10 com-
pares the energies and coordinates between the AMOEBA LM and their reoptimized
counterparts and Table 8.4 reports respective MAE on energy and bb-RMSD for all
schemes.

Table 8.4: GPGG: MAE(∆Ẽ)a in kcal/mol and average backbone RMSD in Å between the
surrogate LM and their reoptimized counterparts at B3LYP/6-31G(d,p). NLM is the number of
LM reoptimized within 10 kcal/mol from the putative GM.

Surrogate/isomer MAE(∆Ẽ) Av bb-RMSD NLM

AMOEBA/cis 1.9± 1.5 0.28± 0.10 31
GAFF/cis 2.9± 1.9 0.29± 0.14 94
AMOEBA/trans 4.4± 2.9 0.31± 0.21 64
GAFF/trans 4.0± 2.5 0.38± 0.23 87
aas defined in Table 8.2.

As expected, relative energies are not perfectly reproduced and the largest errors
(outliers) cannot be systematically attributed to larger RMSDs. However, AMOEBA
provides a rather good MAE of only 1.9 kcal/mol for the cis isomers, while it increases
to 4.4 kcal/mol for the trans structures. Surprisingly, the relative energies obtained
for the GAFF (fixed point charge) force field are only slightly worse than the ones of
AMOEBA for cis and even slightly better for trans isomers. In spite of the few kcal/mol
error in the predictive power of the surrogates, LM are generally very close to their DFT
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Figure 8.10: GPGG: predictive performance of AMOEBA in reproducing geometries and relative
energies of LM at the B3LYP/6-31G(d,p) level for (a) cis isomers and (b) trans isomers. Backbone
(bb) and heavy-atom (no-H) RMSDs are reported. Also indicated are the median and 75%
quantile of absolute errors on energies. The 75% quantile outliers are marked in green with
their respective RMSD. Corresponding plots for the GAFF force field are given in Appendix D
(Figure D10).

counterparts with a small backbone (heavy-atom) RMSD around 0.3 (0.5) Å on average.
Some of them relax into identical minima on the DFT PES, but the GA candidates still
provide an extensive set of realistic low-lying minima: We note that all LM that were
identified as closest to the DFT GM for AMOEBA (Figures 8.7b and 8.8b) and GAFF
(Figures 8.7d and 8.8d) did indeed relax to the DFT GM. Therefore, the surrogate GA
approach was overall successful in retrieving the target DFT GM structures that were
assigned to experimental IR spectra.

Compared to a previous SA search,107 the sGADFT found more (theoretical) LM on
the B3LYP PES within the convergence criteria and basis set employed, as it is shown
in Figure 8.11. In the cis subspace, the AMOEBA GA gave four similar lowest-energy
geometries to SA within 2 kcal/mol and misses four of them within 5 kcal/mol. Never-
theless, it provides additional structures that were not found in the SA search. Ditto
for the GAFF force field, except for some very low energies that are not recovered. For
the trans-GPGG, the very low region is more sparse and a structure at 0.05 kcal/mol
is missed with AMOEBA, as is another one close to 5 kcal/mol that was spotted with
GAFF. Overall, this demonstrates that GA-sampled structures are indeed relevant for
the low-energy resolution of the ab initio PES. Should the results not be satisfactory,
there is always the possibility of running additional GAs and/or performing a higher
number of reoptimizations.

The obtained ab initio LM can describe very similar structures that are chemically
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Figure 8.11: GPGG: zero point energy-corrected energies of B3LYP/6-31G(d,p) reoptimized
structures obtained with ab initio simulated annealing (SA) at B3LYP/6-31G107 and GA with
AMOEBA or GAFF force fields. The green and shorter red levels are respectively matches and
misses compared to SA. The respective number of LM is indicated in parentheses.

indistinguishable. To group essentially identical structures, a minimum RMSD can be
imposed and the number of distinct LM becomes of the same order for both AMOEBA
and GAFF (Figures D11 and D12). This shows that it is important to sample not only
as many low-lying minima as possible at the surrogate level but also those that are
farthest away and likely to relax into distinct DFT minima. An effective approach in
this sense would be to select distant structures using clustering,615 FPS,613 or RMSD
analysis prior to reoptimization and avoid irrelevant relaxations due to small numerical
differences.

8.5.3 GA optimization of Gramicidin

Global minimum search

An even harder performance test is represented by the larger gramicidin system with
explicit side chain optimization. As reported in Figure D13 using the AMOEBA surro-
gate PES the energy progression is clearly hampered or stagnates after a few tens of
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iterations in the absence of elitism. On the other hand, a (too) high fraction of elitism
of 20% increases the variance and does not reach the lowest energies, whereas the
putative GM is finally found in 3 over 10 GA runs using a medium 10% rate of elites.
Astonishingly, the surrogate GM is also the closest geometry to the DFT-resolved struc-
ture, which are both reproduced in Figure 8.12. The agreement between the AMOEBA
and the B3LYP geometries is remarkable with a backbone (heavy-atom) RMSD of only
0.2 (0.4) Å.

(a)

(b)

Figure 8.12: Gramicidin: two views (a) and (b) of the AMOEBA putative GM that is also the
closest LM found over 10 GA runs (with 10% elitism). The DFT B3LYP/6-31G(d,p) reference
GM is depicted in green. Backbone/heavy-atom RMSDs are 0.2/0.4 Å.
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In contrast, the GAFF putative GM is found with a 20% elitism rate (Figure D13),
which highlights the fact that elitism is an essential factor in the search for GM on
complicated PES, but its magnitude may be system- and method-dependent and
remains a parameter to be assessed or adjusted in order to find an ideal exploration-
exploitation trade-off. As opposed to AMOEBA, the GAFF putative GM is very far from
the DFT GM with a large (2.1 Å) backbone RMSD (Figure D14a). Over 30 GA runs, the
closest LM found is only located within 26 kcal/mol (!!) from the putative GM, has a
0.5 (1.5) Å backbone (heavy-atom) RMSD and does not relax to the DFT GM (Figure
D14b). In order to assess if this poor performance originates from the limitation of the
GA search or the quality of the surrogate PES, we relaxed the DFT GM with the GAFF
force field and obtained a very similar structure (0.1 (0.3) RMSD) located 18 kcal/mol
above the GAFF putative GM. Therefore, the DFT GM is indeed a LM on the GAFF PES
but does not lie in the low-energy regime which definitely renders the GAFF force field
unsuitable for the GM search, in particular because several hundreds of structures
were found within 18 kcal/mol (Figure D15) and, in the absence of prior knowledge,
reoptimizing all would be far from tractable.

Low-lying minima search and refinement

As seen previously, the number of explored minima depends on the ability of the GA
to reach different low-energy regions and varies with the fraction of elitism and the
choice of fitness function. Running multiple GA instances starting from different initial
structures is again more efficient than extending a single run whose variance decreases
with the number of iterations (Figure D16). Elitism reduces in principle the overall
diversity of the LM (cf. Section 8.5.2) but becomes essential to explore the very low
energy regions of more complex systems. Indeed, for gramicidin, the greater number
of low-energy minima was obtained by the elitism fraction capable of identifying the
putative GM (Figures D15 and D16). Therefore, mitigating elitism with other mutation-
like operators could potentially improve the search power in the low-energy regime by
providing a certain diversity of structures visited while maintaining low energies.

B3LYP/6-31G(d,p) reoptimizations of gramicidin candidates are much more CPU in-
tense than those of the smaller GPGG peptides, so that only structures sampled with
10% elitism and located within 5 kcal/mol could be retained for subsequent optimiza-
tions. It is therefore crucial that the surrogate, although not optimal, provides relevant
candidates located in a range of only a few kcal/mol, as the number of structures and
their refinement cost increase considerably with the size of the system. Again, we plot
relative energies and RMSDs against DFT reoptimized geometries in Figure 8.13, and
report averages in Table 8.5.
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Table 8.5: Gramicidin: MAE(∆Ẽ)a in kcal/mol and average backbone RMSD in Å between the
surrogate LM and their reoptimized counterparts at B3LYP/6-31G(d,p). NLM is the number of
LM reoptimized within 5 kcal/mol from the putative GM, separated at least by 10−4 kcal/mol
and 0.75 heavy-atom RMSD.

Surrogate MAE(∆Ẽ) Av bb-RMSD NLM

AMOEBA 4.3± 3.3 0.29± 0.11 48
GAFF 17.9± 2.0 0.25± 0.05 28
aas defined in Table 8.2.
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Figure 8.13: Gramicidin: predictive performance of AMOEBA and GAFF in reproducing geome-
tries and relative energies of LM at the B3LYP/6-31G(d,p) level. Backbone (bb) and heavy-atom
(no-H) RMSDs are reported. Also indicated are the median and 75% quantile of absolute errors
on energies. The 75% quantile outliers are marked in green with their respective RMSD.

For gramicidin, AMOEBA performs as well as for GPGG with a MAE around 4 kcal/mol
and small 0.3 Å average backbone RMSD. Successfully, the three lowest candidate struc-
tures relax to the DFT GM (Figure 8.13a). For GAFF, the geometries of the candidate
structures are also very similar to their closest DFT minima, but relative energies are
significantly off due to GAFF’s inability to correctly reproduce the lower regions of the
DFT PES of this system. By visualizing the LM in the RG-NH space in Figure 8.14, we
notice that GAFF biases the search toward higher-energy DFT regions. In these, GAFF
does rather well on relative energies despite a large energy offset (∼18 kcal/mol, Figure
8.13b). Hence, we conclude that GAFF cannot reliably approximate the energetics
for screening low-energy gramicidin structures and sampling realistic regions of the
PES, which the polarizable AMOEBA force field, on the other hand, seems to achieve
surprisingly well.
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Figure 8.14: Gramicidin: surrogate AMOEBA and GAFF LM candidates within 5 kcal/mol in the
RG (radius of gyration) and NH (number of hydrogen bonds) space, connected by lines to their
reoptimized structures at the B3LYP/6-31G(d,p) level of theory. Ẽ0 are the respective energies
of the putative GM for each PES, indicated by GM for the surrogates and GM for B3LYP.
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Figure 8.15 finally demonstrates that the straightforward GA approach with AMOEBA
produces an extensive set of low-lying B3LYP/6-31G(d,p) structures with little effort, as
opposed to the more technically involved restrained SA simulations that were used
in the initial search for the experimentally observed structure552 (cf. Section 8.3.1).
Although the overall sGADFT method did not find similar LM, its explored energy space
is denser in the low-energy range and the experimental GM is retrieved, advocating
the use of surrogate GAs for low-energy sampling with little setup management and
cost, as discussed in the next section.
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Figure 8.15: Gramicidin: zero point energy-corrected energies of B3LYP/6-31G(d,p) reopti-
mized structures obtained with SA based on classical force fields (SA/FF),552 and GAs with
AMOEBA and GAFF force fields. The green and shorter red levels are respectively matches
and misses compared to SA/FF. The respective number of LM is indicated in parentheses. A
similar plot restricted to clearly distinct structures (only LM differing by at least two side chain
dihedrals) is provided in Figure D18.

8.5.4 Computational performance

Thanks to the use of surrogates that allows one to bypass a direct exploration of the
PES at the first-principles level, searching for GPGG conformers takes less than 15 min
on a conventional workstation as indicated in Table 8.6, albeit requiring more than
2400 local relaxations per GA execution.
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Table 8.6: Wall time t̄ per GA execution for the AMOEBApro13(OpenMM52) and GAFF(Amber590)
surrogates. Computational settings correspond to Section 8.4. Averages and standard devia-
tions are given for 20 GA runs on a workstation with 24-core Intel Xeon E5-2650 v4 @ 2.20GHz
CPU and 2 Nvidia GeForce GTX 1060 GPUs. Time differences with or without elitism are
insignificant.

System t̄ AMOEBA [min] t̄ GAFF [min]
cis GPGG 13.9± 0.6 14.3± 1.6
trans GPGG 12.5± 0.1 7.5± 0.8
Gramicidin 43.7± 3.4 122.8± 11.2

For GAFF, benefits come from a parallel split of fitness evaluations over multiple
cores. The timing difference between cis- and trans-GPGG originates from the longer
initialization of a complete cis population that has the tendency to relax to trans
structures. Apart from that, for the smaller GPGG system, GAFF is generally faster
than the more sophisticated (polarizable) AMOEBA force field but the recent GPU-
accelerated implementation52 of AMOEBA makes the optimizations significantly faster
for the larger gramicidin peptide; thanks to a load split of EVOLVE over two parallel
GPUs, the evaluation of more than 3800 fitness evaluations can be achieved in less
than 45 min for this 176 atom molecule.

All in all, in the case of AMOEBA, the pools of low-energy candidate structures for GPGG
and gramicidin were sampled in respectively 2.5 and 7 h on a single workstation for 10
serial GA runs, without monitoring or restart procedures, in contrast to the previously
employed B3LYP/6-31G SA search for GPGG that took several days with multiple runs,
with different heating temperatures and annealing rates and a postprocessing analysis
of trajectories to extract promising candidates.107 Such an ab initio exploration is
simply out of reach for gramicidin and only SA based on classical force fields employing
additional experimentally observed constraints could provide the GM.552

Regardless of the search approach employed, a final ab initio refinement with a large
basis set is necessary for calculating properties, e.g., reliably assigning IR frequencies to
experimental spectra. DFT reoptimizations and (harmonic) vibrational analyses are far
more demanding than the GA searches themselves; in fact, they required 6 days on two
workstations for all AMOEBA/GAFF GPGG LM (276 structures) while 4 days on 8 16-
core compute nodes were needed for the AMOEBA gramicidin (48 structures). However,
similar to the previous SA searches, experimental information like ion-mobility cross-
sections107 or symmetry constraints derived from typical vibrational fingerprints552

can be used as additional prefilter for GA applications, to further narrow down the
pool of candidate geometries instead of retaining all structures within a given energy
range. This would drastically reduce the computational demand when treating larger
systems.
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8.6 Conclusions and outlook

In this chapter, we have presented a GA based search method to efficiently sample low-
energy structures of peptides and its implementation in our in-house code EVOLVE.583

Rather than aiming for a full first-principles exploration, we argue that resorting to
more expedient surrogates allows significant reduction of the computational expense
in the screening of candidate structures to be later reoptimized at the ab initio level.
This is motivated by the fact that coordinates of local minimum candidates are in
general well-approximated by surrogates, while getting reliable energies is the main
difficulty.

Among several approximate methods investigated, the AMOEBApro13 polarizable
force field showed the best compromise between cost and accuracy. Tested on three
systems that are the cis-, trans-proline protonated GPGG and the doubly protonated
gramicidin S decapeptide, the approach was successful in identifying B3LYP DFT GM
within a maximum 2 kcal/mol from the putative surrogate GM. The GAFF force field
also succeeded for GPGG isomers but failed for gramicidin due to a large offset in
the energy predictions. As opposed to the more cumbersome and expensive ab initio
simulated annealing employed in earlier studies, GPGG local minima were generated
over 10 serial GA runs in less than 3 h on a single workstation, and only 7 h were
necessary for the larger gramicidin system. Obviously, these timings can be further
improved by parallelizing between multiple GA instances.

Overall, this demonstrates that the AMOEBA based surrogate GA alternative can
provide substantial advantages in the three-dimensional determination of trapped
metastable or global minimum peptide structures, as observed in ultracold spec-
troscopy, because all resulting GM coordinates were indeed correctly identified.

Thinking ahead, such a comprehensive generation of low-energy minima can also
be advantageous for a wider range of research studies: for example as starting points
for MD simulations, free-energy sampling, transition state searches, and nudged
elastic band methods, or as templates for protein-ligand complexes in the ratio-
nal design of analogues, or finally as training data for a variety of machine learning
approaches.8,87,616
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8.7 Additional details

8.7.1 Simulated binary crossover

Let Θi
k be the kth real-coded gene (component) of the parent individual i with repre-

sentation of size K (eq 8.1). For a two-to-two crossover between individuals i and j,
the spread factor β is defined as the ratio of the distance between children points Θ̃i

k to
that of the parent points:

β = |Θ̃
i
k − Θ̃j

k|
|Θi

k −Θj
k|

(8.5)

such that for β < 1 (β > 1), the spread of the children points is smaller (larger) than
that of the parents and has a contracting (expanding) effect on the children extent.
Deb and Agrawal592 showed that the probability distribution P of having a contracting
or expanding single-point binary crossover with spread β can be approximated by
polynomial functions, such that

P(β) =


1
2(n+ 1)βn β ≤ 1
1
2(n+ 1)β−(n+2) β > 1

(8.6)

is used to design a real-value crossover, where n between 2 and 5 appeared to match
closely with single-point crossover results. It is easy to show that contracting or ex-
panding the distance between children genes is equiprobable (with 0.5 probability) by
integrating P in the respective ranges. Figure 8.16 shows the probability distribution
of eq 8.6 for different n. Generally, the probability of creating children close to their
parents (β = 1) is higher than creating very different children. Larger values of n
accentuates this effect. In practice, a fixed n is chosen although one could broaden the
initial search with small n and progressively narrow the exploration over generations
with larger n.
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Figure 8.16: Probability distributionsP(β) (eq 8.6) of contracting and expanding SBX crossover
to mimic binary single-point crossover distributions.
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A sample from this probability distribution is generated by choosing the point β̄ for
which the cumulative probability

∫ β̄
0 P(β)dβ = u, where u is a uniformly generated

random number in [0, 1) and the change in contracting or expanding P(β) occurs at
u = 1/2. For such a β̄, the children’s genes are crossed according to

Θ̃i
k = 1

2
[
(1− β̄)Θi

k + (1 + β̄)Θj
k

]
Θ̃j

k = 1
2
[
(1 + β̄)Θi

k + (1− β̄)Θj
k

] (8.7)

Up to now, the SBX operator has been presented for unbounded variables, whereas pep-
tide dihedrals are periodic. To restrict the search space to specified lower (lb = −180◦)
and upper (ub = 180◦) bounds used throughout the GA, the probability distributions
are modified so that the probability of creating dihedrals outside of the bounds is equal
to zero; without loss of generality in what follows, one can assign the largest value to
Θi

k (Θ̃i
k) and the lowest to Θj

k (Θ̃j
k). It is straightforward to notice from eq 8.5 that a

maximum spread allowed for Θ̃i
k − Θ̃j

k can be chosen as

βmax = 1 + 2 min(Θj
k − lb, ub −Θi

k)
Θi

k −Θj
k

(8.8)

which provides a scaling factor α for the probability distribution in order to make the
overall cumulative probability in the bounds equal to one:

α :=
∫ βmax≥1

βmin=0
P(β)dβ = 1− 1

2(βmax)−(n+1) (8.9)

Therefore, the bounded crossover operates with eq 8.7 and β̄ is generated from the
normalized cumulative probability

∫ β̄
0

1
αP(β)dβ = u, where u is a uniformly sam-

pled random number in [0, 1). The normalized probability distribution consequently
changes at u = 1/2α such that

β̄ =


(2αu)

1
(n+1) u ≤ 1

2α(
1

2−2αu

) 1
(n+1) u > 1

2α

(8.10)

The extension of the single-variable (Θi
k) SBX operator to the multivariate problem is

straightforward: setting a probability pc of crossing over, pcK respective components
of the solutions Θi and Θj are selected and crossed with the single-variable operator
described above.
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8.7.2 Radius of gyration and number of hydrogen bonds

The radius of gyration used in this work is the geometric radius rather than its mass-
weighted analogue, defined as

RG =

√√√√√ 1
Nbb

Nbb∑
i=1

ri −
1
Nbb

Nbb∑
i=1

ri

2

(8.11)

where Nbb is the number of backbone heavy atoms located at positions ri, so that RG

represents the RMSD of the backbone coordinates with respect to the average center
of the backbone chain. It therefore differentiates between linear or more globular
structures. For gramicidin, all heavy atoms are rather considered in eq 8.11 to establish
a finer resolution of the side chains packing around the cyclic backbone.

The number of hydrogen bonds is evaluated as

NH =
∑
i∈O

∑
j∈H

1− [ ri−rj

d0
]6

1− [ ri−rj

d0
]12

(8.12)

with d0 = 1.8 Å and i,j running over all oxygen and hydrogen atoms of the peptide,
excluding their covalent bonds. This second quantity informs about the secondary
structure and distinguishes between molten globular geometries or properly folded
peptides. The RG and NH geometric descriptors are for example used as collective
variables in the context of metadynamics.614

Code and data availability

A snapshot version of the EVOLVE code583 as used in this work is provided on Zenodo
at https://doi.org/10.5281/zenodo.7251981, along with the data and analysis scripts
needed to reproduce the results.

Appendix

Appendix D contains supplementary information on the effect of the SBX versus ge-
newise crossover; examples of surrogate versus reference structures; relative energies
and RMSD plots for the different surrogate fitness functions; minimum energy pro-
gression against GA iterations; number of local minima found along and for different
GA instances; and energy levels recovered by the sGADFT method when imposing a
minimum RMSD between the resulting structures.
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9 Enhanced screening of low-energy
peptide structures with genetic
algorithms and clustering-based
novelty search

9.1 Introduction

In the previous chapter, we illustrated how the combination of genetic algorithms
(GAs) and molecular mechanics can expedite the navigation of the configurational
space of peptides, thus enabling the swift identification of low-energy candidates that
are likely to also inhabit the lower regions of more accurate potential energy surfaces
(PES). In this chapter, we expand upon this study from an algorithmic perspective,
demonstrating how integrating an unsupervised machine learning (ML) technique
with GA optimization can promote novelty search, leading to the identification of a
significantly larger number of low-energy minima. Our preliminary results, focusing on
the trans isomer of the Gly-Pro-Gly-Gly tetrapeptide,107 are derived from extensive sets
of GA executions. The findings suggest that GAs enhanced with clustering techniques
not only cover the solution space more comprehensively and discover additional local
minima (LM), but also increase the chances of reaching the global minimum (GM)
of the PES under investigation. This development could significantly enhance the
computational efficiency when searching for larger peptide structures or when GAs are
applied with more computationally intensive, yet potentially more accurate surrogate
PES.568 Further advancements could be realized by adaptively tuning GA parameters
on-the-fly.
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9.2 Clustering-enhanced genetic algorithms

Although GAs are generally highly efficient heuristics for optimizing complex (multi-
)objective functions, the tuning of their parameters, and thus their performance, is
heavily dependent on the specific problem being addressed and their algorithmic
design.103,587 In this regard, novelty search is a unique approach that focuses on pro-
moting diversity and exploration rather than solely aiming for optimization.104,617

Instead of only seeking optimal solutions for a given problem, novelty search rewards
individuals that exhibit distinct characteristics or behaviors not previously encoun-
tered. This helps to counteract the issue of premature convergence, where a GA
becomes trapped in LM, unable to find the GM because it overly exploits current areas
of the PES that are deemed most promising.587,618 By encouraging exploration and
divergence in the search space, novelty search allows the algorithm to probe vari-
ous regions that might otherwise be overlooked in traditional optimization-focused
approaches.564–566,570 This can lead to the discovery of innovative and potentially
more effective solutions, improving the overall performance of the algorithm. As a
result, novelty search can be particularly beneficial in complex, high-dimensional, and
rugged problem landscapes, where maintaining diversity and exploration capabilities
is crucial for success.

Various strategies exist to introduce novelty search in GAs. The first is the dynamic
adjustment of crossover, mutation, and elitism rates during the evolutionary process
that can help maintain diversity and promote exploration. For instance, increasing
the mutation strength (σ, cf. Table 8.1) when the population converges or when the
algorithm is stuck in a LM can spur novelty.104,619 Second, niching is a technique that
detects attractive basins in the solution space and separates the search within these
niches. By maintaining multiple coexisting subpopulations, the algorithm is more
likely to explore diverse regions and discover novel solutions. Third, a metric is de-
fined to quantify the difference between individuals. This metric can be either based
on individuals’ characteristics or on the distribution of fitness functions among the
population. With this, individuals in the search space that are similar can be identified,
leading to penalization of more populated regions and continued exploration in un-
derrepresented areas. The comparison of individuals can be performed not just within
the current population but also against a periodically updated archive that preserves
the most unique individuals encountered throughout the evolutionary process. In this
context, ML descriptors can be useful in defining a metric for similarity and pinpoint-
ing new structural patterns within the search space during GA optimization.104,617 This
on-the-fly application differs appreciably from the more conventional use of ML as a
post-processing tool to differentiate the resulting structures.557,615,620

Expanding upon the latter strategy, Jørgensen et al. introduced a clustering-enhanced
evolutionary algorithm.621 Their approach intelligently selects parent structures by
scrutinizing the multitude of intermediate LM structures generated as the search
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progresses. These structures, in turn, become essential hints for the exploration of
the PES: with the aid of clustering, outlier structures are identified and reintroduced
into the population to enhance diversity. When tested on the 2D optimization of a
17-atom organic molecule, the integration of clustering proved to significantly reduce
the number of iterations needed to locate the GM on a density functional tight binding
PES.

Given our interest in not only the GM but also the extensive set of low-lying minima,
we developed the modified GA illustrated in Figure 9.1, drawing inspiration from but
also differing from Jørgensen’s approach. First, our algorithm is designed for three-
dimensional optimization of peptide structures, typically involving more variables
than the 2D system examined by Jørgensen et al., and employs a dihedral-based inter-
nal encoding. Inclusion of mutations, which were omitted in Jørgensen’s work, allows
for exploration of small local deformations around low-lying minima. The clustering
feature space we use is also different, being more suited to peptides and being smaller,
lighter, and quicker to compute. We also suggest a distinct mechanism for reintro-
ducing outliers into the population and eventually consider elitism. Ultimately, we
will show that these modifications allow our clustering-enhanced GAs to outperform
Jørgensen’s version for the specific task of optimizing peptide structures.

More specifically, our ML-enhanced GAs build upon the GA developed in Chapter 8,
incorporating the unsupervised learning algorithm before the selection and crossover
processes. At each iteration (generation), every low-lying minimum relaxed on the
surrogate PES is projected onto a two-dimensional feature space defined by the radius

Random initial
population

Fitness evaluation
Surrogate model

Clustering

Mate selection

Crossover
Mutation

Population

Outliers from

Stop criterion

GA history

In population
Outlier

Elitism

Figure 9.1: A schematic depiction of the clustering-enhanced GA as implemented in EVOLVE.
Couples for mating are created by pairing one individual selected from the current population,
with one outlier selected from the pool of the clustering algorithm. Other pairing schemes are
not considered herein. The deviation in workflow with respect to the previously-developed GA
(Chapter 8) is indicated by the dashed arrow. When applicable, elitism is executed after the
mutation operator.
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of gyration RG (eq 8.11) and the number of hydrogen bonds NH (eq 8.12).614 This
space is stored in memory and updated at each generation before being segmented
using the agglomerative hierarchical clustering (AHC) technique (Section 9.2.1). For
example, Figure 9.2 displays the clusters obtained at various iterations. By doing
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Figure 9.2: Accumulated feature space defined by the radius of gyration RG and number of
hydrogen bondsNH , as clustered with the agglomerative hierarchical clustering (AHC) method
at the 10th (left) and 50th (right) iterations. (a) During a reference GA with mutations and elitism.
(b) During our clustering-enhanced GA with mutations (no elitism). Centroids of different
clusters are indicated by circles accompanied by cluster average energies. Outliers are shown
as triangles. The putative GM during the progression of the GA is indicated by a purple cross.
Clustering schemes visibly improve space coverage.
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this, the pairing of individuals can leverage the entire knowledge of the GA up to
the current iteration. The average of points in each cluster defines the centroid, and
the cluster width is calculated as the average distance of all points to the centroid.
Based on this information, individuals are classified as outliers if their distance to
the centroid exceeds the cluster width. This provides several possible options for
reintroducing outliers into the algorithm. In this work, we propose two effective
schemes that consistently pair one selected individual from the current population,
using tournament selection (Section 8.3.3), with one outlier:

1. The outlier is selected via tournament selection within the entire pool of outliers
- Scheme all outliers

2. The outlier is selected via tournament selection within the pool of outliers that
are also members of the current population - Scheme pop outliers

Consequently, both schemes still incorporate a certain level of selective pressure.
The first scheme, which encompasses the entire history of the GA, adopts a more
relaxed and exploratory approach. In contrast, the second scheme relies on the current
population but placed in the broader context of the accumulated knowledge.

In what follows, we investigate the performance of these clustering-enhanced schemes
on the search for Gly-Pro-Gly-Gly (GPGG) tetrapeptides in the trans isomer form of the
proline residue. The GAFF force field as implemented in Amber acts as the surrogate
PES, with fixed-point charges obtained by RESP fitting at the HF/6-31(d) level of
theory.590 The choice of the PES is of minor importance in this chapter since the main
focus is on the performance of the search algorithm rather than the comparison with
experimental results. Furthermore, it is anticipated that the GA is transferable to other
energy models without significant modifications, provided that they own a similar
ruggedness as the GAFF PES.587 The computational details are those described for
GPGG in our previous study, which can be found in Section 8.4. The subsequent section
provides a brief overview of the AHC algorithm before proceeding to the presentation
of results in Section 9.3.

9.2.1 Agglomerative hierarchical clustering

Agglomerative hierarchical clustering (AHC) is a bottom-up clustering technique be-
longing to the class of unsupervised ML algorithms.91,112,622 It is used to group data
points based on their similarity or distance in a defined feature space. The algorithm
starts by considering each data point as a separate cluster and iteratively merges the
closest pairs of clusters until all data points belong to a single cluster or a specified stop-
ping criterion is reached. This process of clustering generates a dendrogram like the
one reported in Figure 9.3, which is a tree-like structure that represents the hierarchy
of clusters and the order in which they are merged.
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Figure 9.3: Dendogram of the AHC method applied to 40 individuals in the RG-NH feature
space with Ward’s linkage. At the specified distance threshold of 3.5, three clusters are formed.

To build the dendogram, the key aspect of AHC is the choice of 1) a metric, such as
the (squared) Euclidean norm, to measure the distance between individual points
and 2) a linkage criterion to specify how sets are dissimilar based on the pairwise
distances between points within the sets. Several linkage methods exist, such as single-
linkage, complete-linkage, average-linkage, and Ward’s linkage.623 In single linkage,
the distance between two clusters is defined as the minimum distance between any
pair of data points, with one point belonging to each cluster. This means that the
proximity between clusters is determined by the closest pair of points, regardless of the
overall structure or distribution of the data. In contrast, complete linkage evaluates the
distance between two clusters according to the maximum distance between any pair
of data points. This means that the proximity between clusters is determined by the
pair of points that are farthest apart. As a compromise, in average linkage, the distance
between two clusters is calculated as the average distance between all possible pairs
of data points, thus determining the proximity between clusters through the average
dissimilarity of their members.

Both, the selection of the metric and linkage criterion influence the outcome of cluster-
ing. While the metric determines the measure of similarity between objects, the linkage
shapes the formation and structure of the resulting clusters. In this work, we use Ward’s
linkage, also known as the minimum variance method, that aims to minimize the total
within-cluster variance, or equivalently maximize the between-cluster variance.624

Hence, Ward’s linkage is particularly effective in generating compact and balanced
clusters with similar variances with uniform spread over the feature space. Generally, it
is important to preprocess the data by normalizing or standardizing the features since
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Ward’s linkage is sensitive to the distribution of the data points in the feature space.
The Ward’s linkage criterion can be defined as follows:

d(A,B) = |A| · |B|
|A|+ |B| ||x̄A − x̄B||2 (9.1)

where d(A,B) is the distance between clusters A and B, |A| and |B| are their cardinali-
ties, x̄A and x̄B are the centroids of clusters A and B, respectively, and || · || denotes
the Euclidean norm. The Ward’s linkage criterion measures the increase in the total
within-cluster variance that results from merging clusters A and B. In details, the AHC
algorithm using Ward’s linkage method can be described as follows:

1. Compute the distance matrix DIJ = d(I, J) using the Ward’s linkage criterion for
all pairs of data points I and J in feature space.

2. Represent each data point as a separate cluster.

3. Find the pairs of clusters with the smallest distance d(I, J) and merge them.

4. Update the distance matrix by recalculating the distances between the newly
formed clusters using the Ward’s linkage criterion.

5. Repeat steps 2-4 until all data points belong to a single cluster or a specified
stopping criterion is reached.

An advantage of AHC compared to other methods like e.g., K-means, is that the number
of clusters does not need to be predefined by the user.91 This allows for dynamic
adaptation of the cluster count during the iterations of the GA. The iterative merging of
clusters can be halted once a distance threshold is reached, effectively determining the
final number of clusters. In our study, we observed that a consistent distance threshold
value of 3.5 yields a reasonable coverage of the feature space by clusters. Importantly,
as the number of data points increases over GA iterations, this approach results in a
denser clustering and thus a finer resolution of outliers as demonstrated in Figure 9.2.

It should be noted that clustering methods, such as AHC, are susceptible to the curse
of dimensionality. As the number of features increases, these methods become less
effective in separating data into meaningful information. In their related study, Jør-
gensen et al. utilized the high-dimensional feature space created by the molecular Bag
of Bonds ML descriptor.621,625 In our investigation, we explored a similar approach
using the FCHL representation,362,626 but did not find any superior features beyond
the radius of gyration and the number of hydrogen bonds. Dimensionality reduction
techniques like Principal Component Analysis (PCA),627 applied to the FCHL descrip-
tors before clustering, did not yield further improvements. The explained variance
ratios of the first two (three) components accounted for less than 40% (50%) of the
variability among the data, indicating limited effectiveness. Hence, we believe that RG

and NH are suitable features for effectively distinguishing acyclic peptide structures
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due to their lightweight nature, quick evaluation, and physical relevance. However,
ML descriptors or alternative geometrical quantities may prove more helpful for the
classification of more globular conformers.

9.3 Results and discussion

In our pursuit of developing means to efficiently screen the low-energy regions of the
PES, the performance evaluation of a GA is based on two criteria. Firstly, we assess
the number of low-lying LM retrieved by the algorithm. This assessment is conducted
either within a single execution or by considering multiple runs of the GA, as these
runs are stochastic and may explore different regions in each execution. Ideally, we aim
for the GA to generate a maximum number of LM in a minimal number of iterations or
across a few GA runs. Secondly, the GA’s effectiveness is determined by its ability to
consistently reach the GM. The GM serves as the reference energy baseline for ranking
other structures. However, in practice, the GM remains unknown and is assumed
based on the lowest-energy structure found by the GA. These two evaluation criteria
allow us to gauge the efficiency and reliability of the GA in exploring the low-energy
regions of the PES.

To ensure a fair assessment, we sought to determine the best variant of conventional
GA as a reference for comparison. A comprehensive grid search was conducted, ex-
ploring various combinations of GA parameters (Table 8.1) such as the crossover SBX
operator with weak, normal, and strong effects (n ∈ [1, 5, 7]), Gaussian mutations
with different standard deviations (σ ∈ [10◦, 60◦, 180◦]), and elitism with varying frac-
tions (f ∈ [0.00, 0.05, 0.10, 0.40]). After evaluating the performance in terms of GM
retrieval and coverage of the low-energy regions, the algorithm employed in Chapter
8 (n = 5, σ = 60◦, f = 0.10) emerged as the fastest to converge towards the GM and
among the top performers overall. Only the addition of stronger mutations resulted in
a marginally higher (maximum three) number of LM found within 5 kcal/mol from
the GM. Hence, for subsequent benchmarking, the reference algorithm to be sur-
passed is the one employed in Chapter 8, referred to hereafter as the mutations, elitism
algorithm.

9.3.1 Number of local minima

The coverage of LM by a single execution of the GA search is illustrated in Figure 9.4,
where the results are averaged over 100 independent runs. A comparison reveals that
random search exhibits greater efficiency in covering a large number of high-lying
LM (within 15 kcal/mol from the GM) as opposed to targeting low-energy structures
(within 10 and 5 kcal/mol). Hence, as a validation of our research, GAs emerge as more
effective tools for sampling the low-energy regions of the PES than random search.
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Figure 9.4: Number of LM found as a function of GA generation compared to random search
and Jørgensen’s clustering scheme.621 Results are shown for LM located within respectively
15, 10, and 5 kcal/mol from the putative GM, and were averaged over 100 independent runs.
Distinct LM are separated by at least 0.0001 kcal/mol.

In all 15, 10, and 5 kcal/mol energy ranges, our clustering-enhanced GAs outperform
the reference mutations, elitism scheme by yielding higher numbers of LM in the
low-energy regions (10, 5 kcal/mol) without sacrifying efficient exploration for higher
energies (15 kcal/mol). It is worth noting that the combination of all outliers, mutations
is not reported, as it only outperforms the mutations, elitism GA (and Jørgensen’s
method) but not the other clustering-based schemes. This observation highlights the
delicate balance between exploration, which probes unknown regions of the landscape,
and exploitation, which focuses on regions known to contain low-energy structures. In
the all outliers, mutations, elitism scheme, exploration is encouraged by considering all
outliers in the clustered pool, which is efficiently counterbalanced by the exploitation
process of elitism. However, the absence of elitism in the all outliers, mutations scheme
causes the algorithm to spend more time exploring higher-energy landscapes for less
sampling efficiency in low-lying regions. In the pop outliers schemes, the selection
of outliers from the current population promotes exploitation. Consequently, when
combined with elitism, the pop outliers, mutations, elitism algorithm performs slightly
worse than the pop outliers, mutations GA. Thus, the pop outliers, mutations algorithm
stands out as the most effective approach for generating a significant number of low-
energy structures within a single execution.

In contrast, Jørgensen’s sampling approach encounters limitations after several itera-
tions due to multiple factors. Firstly, in Jørgensen’s method, the population exclusively
comprises the best individuals found thus far, which inadvertently reduces popula-
tion diversity and intensifies exploitation. Secondly, mutations are not incorporated,
leading to the fact that exploration has to rely solely on the effectiveness of the applied
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clustering scheme, i.e. in Jorgensen’s approach: “if an outlier is present in the popu-
lation, it will always be chosen as the first parent. If more than one outlier is present
in the population, one of them is chosen randomly to be the first parent. The second
parent is chosen randomly from all other structures in the population.” Hence, the
clustering-based exploration is further compromised by exclusively utilizing outliers
from the current population. In our investigation of sampling trans-GPGG peptides,
we observed that Jørgensen’s scheme exhibits premature convergence due to the lack
of sufficient exploration. Without the inclusion of mutations, the number of outliers
within the population quickly diminishes, resulting in the algorithm primarily perform-
ing crossovers of randomly selected individuals that become closely-related. These
crossovers are not targeted or efficient enough to generate diverse offspring from the
parents. Such factors contribute to the stagnation observed in Jørgensen’s sampling
approach.

It is also interesting to observe how LM are sampled when multiple GA search in-
stances are executed. Figure 9.5 illustrates the cumulative number of LM found by our
clustering-enhanced GAs, random sampling, and Jørgensen’s algorithm. In the case of
a large number of runs, random sampling proves to be efficient in retrieving peptide
structures, particularly within the wider energy range of 15 kcal/mol from the putative
GM. However, as the focus shifts to lower energies and fewer searches are performed,
random sampling becomes less efficient compared to our clustering-enhanced GAs.
Furthermore, the GAs combined with clustering demonstrate superior performance
compared to the reference mutations, elitism algorithm in this context. Although the
pop outliers, mutations, elitism scheme yields a few more minima within 5 kcal/mol
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Figure 9.5: Cumulative number of LM found after several GA independent runs, compared to
random search and Jørgensen’s clustering scheme.621 Results are shown for LM located within
respectively 15, 10, and 5 kcal/mol from the putative GM. Distinct LM are separated by at least
0.0001 kcal/mol.
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when elitism is included (after a considerable number of runs), it is the pop outliers,
mutations scheme that exhibits greater consistency across energy ranges, as previously
observed in the single run analysis.

When considering approximately ten algorithms running in parallel, it may appear
that clustering-based GAs and random search offer similar performance in terms of
sampling low-energy minima. However, important distinctions emerge when the
objective shifts towards targeting the GM, as demonstrated in the next section.

9.3.2 Global minimum detection

The ability to identify the GM or structures that are energetically very close is crucial
to ensure that the sampled LM belong to the low-energy regime. An ideal GA should
reach the GM in most of its runs within a minimal number of generations. This
convergence speed can be assessed by the cumulative success in finding the GM across
a given number of GA generations, as depicted in Figure 9.6. In this regard, Jørgensen’s
scheme performs poorly due to the aforementioned reasons. Moreover, random search,
while exploring the PES with qualitative efficiency when multiple (too many) trials are
conducted, lacks exploitation mechanisms so that the GM and the low-lying space are
generally overlooked.

The mutations, elitism GA presented in Chapter 8 demonstrates a higher probability of
approximately 45% in finding the GM at the end of a run. Despite this, the introduction
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Figure 9.6: Cumulative success, i.e. probability of finding the GM at each generation of the GAs,
compared to random search and Jørgensen’s clustering scheme.621 Results were averaged over
100 independent runs.
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of clustering-enhanced GAs yields significant improvements in the search for the
GM, particularly with the pop outliers schemes which exhibit superior performance.
These schemes employ more selection pressure, emphasizing exploitation for faster
convergence, in comparison to the all outliers option. Elitism generally accelerates
convergence but limits further exploration as the GA progresses. As a compromise,
mixing the exploratory nature of mutations with the exploitation-driven nature of
the pop outliers scheme results in a highly efficient algorithm for global optimization.
Thus, the pop outliers, mutations GA successfully and efficiently explores numerous
low-energy minima while effectively retrieving the GM and enhancing the screening
process of low-energy peptide structures.

9.4 Conclusions and outlook

This chapter has demonstrated the substantial performance enhancements achieved
by integrating unsupervised ML techniques into GAs. By leveraging a lightweight
feature space defined by the radius of gyration and number of hydrogen bonds, the
ML method facilitates the clustering of the complete history of the GA and promotes
novelty search in highly dissimilar regions. As a result, not only is the exploration of
low-lying regions improved, but there is also a significant increase in the likelihood of
identifying the most probable GM of the PES. Importantly, these enhancements are
accomplished without compromising execution times, with only a marginal overall
increase of a few minutes, making this integrated approach a powerful and efficient
tool for PES exploration.

Results were obtained for the optimization of the trans isomer of the GPGG 39-atom
peptide, therefore encouraging the use of clustering-enhanced GAs for the sampling
of either larger linear systems or more computationally expensive energy models.
Also, further improvements could be achieved from the incorporation of adaptive
parameters (e.g., mutation strength, elitism fraction, fraction of outliers) that vary
during GA execution according to simple considerations such as in the Rechenberg’s
scheme.617,619 For instance, as the GA progresses and discovers better structures, the
number of outliers could be reduced to focus the search on the most promising low-
lying structures, akin to the concept of simulated annealing. Similarly, mutations could
be adjusted to be weaker when good individuals are found, enabling a more focused
exploitation of interesting regions of the PES without escaping to higher energies
too rapidly. Looking ahead, such hybridizations of GAs with clustering techniques
hold promise for addressing other complex optimization problems, including those
involving multi-objective functions.
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Summary and perspectives

Computational chemistry endeavors to accurately simulate chemical reactions and
molecular properties at the atomic scale using computational tools. Its overarching
goal is to contribute to the design of new chemical compounds and materials. However,
current numerical methods encounter challenges related to the trade-off between
computational cost and accuracy, as well as the impractical execution times required
for efficient sampling of the potential energy surface of larger systems. This thesis
has thus centered around exploring unconventional approaches such as stochastic
sampling and artificial intelligence to overcome these challenges in specific problems.

The main outcomes of this thesis and related perspectives are as follows:

–1– The implementation and validation of the MP2 energy in the CPMD plane wave
code, as well as technical details to ensure accurate convergence within the plane
wave basis set. — Chapter 4

MP2 is the most expedient wavefunction-based method for considering electron cor-
relation in quantum chemical calculations and, when integrated within DFT, gives
rise to the most accurate double-hybrid density functionals. The plane wave basis
set, in turn, allows to systematically converge reference energies to the complete basis
set limit, devoid of basis set superposition errors, and enables the MP2 (eventually
double-hybrid) calculation of periodic systems at the basis set limit. However, only
a limited number of plane wave codes have focused on providing access to the MP2
energy due to certain inherent complexities.64,65 The first resides in the enormous
number of basis functions that is required to converge properties accurately (typi-
cally of the order of 105). Also, the MP2 correlation energy is obtained by summing
an astronomically large number of small contributions which substantially hampers
convergence. The prohibitive quintic scaling of the method with respect to system
size also makes the approach very expensive for all but the smallest systems. Our
implementation paves the way for access to double-hybrid accuracy in CPMD, which
may one day be used to propagate molecular dynamics (MD) simulations, possibly
aided by multiple time step integrators and/or machine learning models. Currently,
plain MP2 calculations with CPMD require large memory and remain expensive for
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systems with more than∼100 electrons and are thus still prohibitive for performing
straightforward longer time dynamics for larger systems. Also, forces have not been
implemented yet. However, we have shown that single-point calculations with plane
waves are feasible, taking up to few days, and yield MP2 energies free of basis set
superposition errors at difference to atom-centered basis sets. A further advantage of
plane waves is completeness and a systematic way to reach the basis set limit, which
allows to provide accurate reference energies that help identifying possible biases of
other basis set types. The convergence analysis of double-hybrid functionals when
used with plane waves against atom-centered bases125 would be an interesting project
for the future.

–2– The caveat that Gaussian-type correlation-consistent (aug-)cc-pVXZ basis sets,
due to their intrinsic incompleteness, may bias correlation energies, especially
in the limit of increasing system size. — Chapter 4

The comparison of non-covalent interaction energies between plane-wave and correlation-
consistent atom-centered basis sets has highlighted the accuracy and importance of
the counterpoise correction for the latter. In addition, the recovering of the full MP2
correlation energy by the (aug-)cc-pVXZ bases was found to depend on the number
of electrons, therefore questioning their ability to accurately converge correlation
energies in the limit of (very) large systems. For the system sizes routinely investi-
gated nowadays with MP2, such deviations are marginal compared to the errors of the
method itself. However, thinking further, once very accurate methods will become
feasible for large systems,27 basis set deviations will dominate and potentially bias
results by more than chemical accuracy. Time and the investigation of larger and larger
systems with different types of bases will confirm or refute this statement.

–3– The establishment of suggestions to accurately extrapolate correlated energies to
the basis set limit when resorting to the (aug-)cc-pVXZ basis sets. — Chapter 4

Converging energies to the basis set limit is essential to assess the intrinsic perfor-
mance of a quantum chemical method. Despite the minor discrepancies mentioned
above between plane waves and (aug-)cc-pVXZ atom-centered bases, minimizing
their deviations in the complete basis set limit allowed to find the best extrapolation
scenarios when resorting to the latter. Those are reported in Section 4.6 and include
the newly proposed Rovibi34 scheme established by our investigations. Hopefully this
will serve the community in general applications and be further validated by compar-
ing (aug-)cc-pVXZ bases to other accurate references, obtained either via correlated
wavefunction-based methods or experimental values.

–4– A Monte Carlo MP2 method capable of speedups of up to three orders of magni-
tude and reduced scaling with plane waves, while keeping stochastic errors at
marginal levels. — Chapter 5
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Plane-wave MP2 calculations are fundamentally hampered by the gigantic basis set
required to converge energies. This, in turn, affects the number of virtual orbitals
that contribute to the MP2 correlation energy. To cope with this number, a stochastic
treatment of the integral contributions from the virtual space was introduced. Above a
certain eigenvalue threshold, virtual orbitals are considered as part of a continuum-
like space, so that the distribution of their contributions is smooth and well-behaved.
This allows a stochastic sampling of the MP2 integrand based on Monte Carlo sum-
mation over continuum orbitals. Within the most expensive continuum regime, the
algorithmic scaling reduces from quintic to quadratic, and bypasses the calculation
and summation of millions to billions of terms. Therefore, the method gives access
to the calculation of unbiased correlation energies in the basis set limit for systems
containing hundreds of electrons with unprecedented efficiency gains. The stochastic
errors and execution times are mitigated by two parameters that are the continuum
eigenvalue cutoff and the number of samples per virtual orbital. Although a set of
parameters was found to be transferable between the systems studied here, with con-
servative performance (errors below 0.1 kcal/mol), further work should elaborate on
getting reliable estimates of the stochastic deviations. Indeed, noise reduction tech-
niques or methods to estimate the statistical error bars26,76,78 would ensure that an
accuracy close to the exact MP2 value is preserved. With this, new bottlenecks are likely
to appear; these are large memory requirements and the diagonalization of the large
virtual space prior to the MP2 Monte Carlo treatment.231 This Monte Carlo approach is
simple and can easily be extended to other ab initio methods that involve numerous
virtual states, e.g., the RPA as shown in Chapter 5. It should be noted, however, that
the speed gains would be less for the RPA since it originally has a quartic scaling. A
somewhat similar stochastic sampling has been used recently to speed up the evalua-
tion of the correlation part of the self-energy in GW calculations of two-dimensional
materials.79 Therefore, Monte Carlo integration offers a promising acceleration in the
calculation of correlation energies, as long as statistical errors are well controlled.

–5– The benchmark of the Minnesota density functionals for the structural and
dynamical description of liquid water under ambient conditions thanks to a
machine learning enhanced multiple-time-step scheme. — Chapter 7

Car-Parrinello MD simulations with the Minnesota meta-GGA functionals revealed
that, contrary to the prevalent idea that local and semilocal functionals overstructure
and slow down dynamical properties of liquid water, M06-L, revM06-L, and M11-L
understructure, while MN12-L and MN15-L lead to too large intermolecular distances
between water molecules due to too weak cohesive effects. This has been attributed
to a weakening due to disruption of the hydrogen bond network, which leads to ex-
cessively fast dynamical fingerprints. Hybrid functionals are about two orders of
magnitude more expensive than meta-GGAs due to the inclusion of exact exchange.
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This has so far challenged their use in the context of ab initio MD. The extensive bench-
mark of hybrid Minnesota functionals performed in this thesis was made possible
thanks to the multiple time step (MTS) scheme implemented recently in the CPMD
software.45 With the help of a fast machine learning (ML)-based low level, that in-
fers forces and drives the dynamics at shorter time steps, the ML-MTS propagation
allowed for speedups of about 6 to 15 as compared to standard Born-Oppenheimer
MD without affecting the accuracy. While most of the hybrid Minnesota functionals
remain understructured (M06, M08-HX, M08-SO, M11, MN12-SX, and MN15), their
dynamical properties generally improve over their semilocal counterparts. Water is
the most abundant substance on Earth, yet its liquid properties are distinct from those
of other fluids, posing a challenge for in silico simulations not only of condensed
water but also of aqueous chemistry. Chapter 7 not only provides benchmarks for the
widely-used Minnesota density functionals but also places them in the context of other
DFT approximations as well as experimental measurements. This will hopefully serve
as a shared foundation for future assessments of DFT on water, and assist the scien-
tific community in utilizing, refining, or developing more accurate and transferable
exchange-correlation functionals.

–6– The finding that an over-inclusion of exact exchange in DFT functionals shortens
and strengthens hydrogen bonds, leading to water properties that are too glassy.

— Chapter 7

Correlation effects, and specifically the consideration of dispersion, are known to
stabilize water molecules between coordination shells and consequently improve
the description of liquid water. We found that the inclusion of exact exchange is
another key ingredient for the correct description of hydrogen bonds, that ultimately
corrects both dynamical and structural properties of water. However, an excessive
amount of exact exchange like in M06-HF shortens and strengthens the hydrogen
bonds between water molecules, thus yielding properties that are too glassy. This
highlights the primordial balance between exchange and correlation effects, not only
for water but also for more sophisticated phenomena that involve interacting with
water molecules or in which hydrogen bonds are important, as for example in the
reactions of biological systems in physiological environments. This delicate and subtle
balance can only be achieved by using the higher rungs of Jacob’s ladder, i.e. hybrids
and double-hybrids/RPA.

–7– M06-2X(-D3) are not only the most accurate Minnesota functionals for liquid
water but also emerge as top contenders for reproducing experimental results
when compared to other functionals that have previously been tested.

— Chapter 7

M06-2X emerges as the best Minnesota functional for liquid water. Slightly under-
strucured and fast, its D3 dispersion corrected version shows even better agreement
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for structural properties. Based on previous studies taking nuclear quantum effects
(NQEs) into account, the revPBE0-D3 hybrid, and the RPA (RPA@PBE) have been the
only two approximations that agree with experiments. The examination of the impact
of NQEs on the results shows that M06-2X(-D3) would perform equally well or better
if NQEs were explicitly included, thus competing with revPBE0-D3 and RPA@PBE. In
this regard, determining whether M06-2X(-D3) are indeed one of the best functionals
in conjunction with NQEs would obviate the need for the significantly more expensive
fifth rung of Jacob’s ladder (RPA@PBE).

–8– The multiple-time-step propagation has the advantage of training a low-level
machine learning model only once, which is data-efficient due to transferability
between simulations of different high levels. — Chapter 7

The conventional role of ML in MD typically involves training models on ab initio data
to bypass the computationally demanding nature of quantum methods. However, this
approach necessitates meticulous training and lacks control over model errors in the
extrapolative regime. In contrast, the MTS scheme relaxes the accuracy constraints on
the ML model to some extent. The low-level model is only tasked with reproducing the
high-level model with sufficient fidelity, allowing for high ratios (speedups) between
inner and outer time steps. The advantage of MTS lies in the choice of the low-level
model, which is not required to precisely reflect the accuracy of the high-level model as
long as their differences vary slowly over time. By construction, the accuracy of the re-
sulting MTS dynamics is automatically the one of the high-level model, independently
of the choice of the low level which has only an impact on the computational efficiency.
The study on Minnesota functionals showcased that training a single ML model on
PBE0 data can expedite simulations involving different levels of theory. This ML-MTS
approach enables the rapid assessment of computationally intense high-level methods
for a given system without the need to retrain the ML model for each level. As a result,
the method is highly data-efficient and transferable. Future applications will therefore
accelerate the testing of different quantum chemical methods when combined with
MD.

–9– The implementation of a genetic algorithm for the optimization of peptide struc-
tures in the EVOLVE code, targeting the exploration of low-energy regions of the
potential energy surface. — Chapter 8

Even for relatively small molecules, the exhaustive exploration of the potential energy
surface (PES) is severely hampered by the dimensionality bottleneck. The challenging
task of efficiently sampling realistic peptide geometries was addressed by resorting to a
surrogate based genetic algorithm (GA)/DFT approach in which promising candidates
provided by the GA were ultimately optimized with hybrid DFT. Tests and tuning of
the algorithm led to good performance in retrieving not only the global minimum
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but also many low-lying minima of the surrogate PES. Subsequent developments
could extend the structural optimization to mutli-objective problems involving the
structure and additional criteria such as thermostability, composition or amino-acid
specific constraints. Looking forward, the systematic generation of low-energy minima
could prove beneficial in practical applications such as providing starting points for
MD simulations, free-energy sampling, transition state searches, and nudged elastic
band methods, or serving as templates for protein-ligand complexes in drug discovery.
Additionally, the manifold of minima provided by the GA can serve as valuable training
data for various ML approaches.

–10– The efficient generation of low-lying peptide structures as observed in ultracold
infrared spectroscopy thanks to genetic algorithms and the AMOEBA polarizable
force field as surrogate method, ultimately saving weeks of search with conven-
tional approaches.

— Chapter 8

Computational identification of the most stable structures generated in ultracold gas
phase experiments poses stringent accuracy demands to provide a correct energetic or-
dering in the 0-2.5 kcal/mol observation range. This accuracy is usually only attainable
by resorting to high-level quantum chemical methods. However, the computational
expense of these approaches makes them unsuitable for direct combinations with
GAs that involve typically the evaluations of a few tens of thousands of structures. A
comparison of several more cost-effective approaches (GAFF, AMOEBApro13, PM6,
PM7, DFTB3-D3(BJ)) indicated that the AMOEBApro13 polarizable force field offers the
best compromise between cost and accuracy. Moreover, in three test systems, the GA
combined with AMOEBA managed to find DFT global minima within a maximum of 2
kcal/mol above the assumed AMOEBA global minimum. As a result, subsequent DFT
relaxation of AMOEBA low-energy structures within 2 kcal/mol consistently led to the
identification of the most stable structures on the DFT PES. This demonstrates that the
AMOEBA GA approach can offer significant benefits in the three-dimensional determi-
nation of trapped metastable or global minimum peptide structures, as observed in
ultracold spectroscopy. Indeed, the spectra computed for all the resulting DFT global
minima accurately correspond with results from high-resolution infrared spectroscopy.
Furthermore, the GA was able to generate local minima in just a few hours, compared
to the more laborious ab initio simulated annealing used in earlier studies, which
could take up to several weeks of computational trials. To further validate this success,
it would be interesting to test our GA approach on new ultracold systems with infrared
spectra for which the structures have not yet been resolved.

–11– The development of an alternative genetic algorithm coupled with unsupervised
learning for an even better coverage of low-lying regions on the PES, without
affecting execution times. — Chapter 9
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Having demonstrated the benefits of GAs for the sampling of low-energy peptide
structures with a surrogate method, it was also found that integrating GAs with a ML
clustering algorithm further enhances both the speed and probability of convergence
towards the global minimum, while also augmenting the generation of local minima.
By projecting at each iteration the GA history onto a feature space, and subsequently
segmenting this space into clusters, instantaneous outlier structures can be selected
and re-injected into the population. This encourages diversity and exploration in
the low-energy regions of the PES with a near doubling of the number of minima
generated compared to a traditional algorithm. Furthermore, the clustering algorithm
operates with negligible computational overhead. Ongoing work is examining the
application of this enhancement to larger systems and in conjunction with adaptive
GA parameters.619 From an algorithmic standpoint, it remains to be tested if such
a hybrid GA/ML framework brings improvements for other optimization problems,
including those that are multi-objective. A last obvious extension would be to also use
ML to predict expensive fitness functions much more rapidly, like energies, vibrational
frequencies or any other property of interest.617

Advancements in hardware and high-performance computing infrastructures con-
tinually drive computational chemistry towards delivering more predictive insights.
Simultaneously, computational chemists are making strides in theoretical develop-
ment, method implementation, and innovative algorithm design. In this context, the
increasing use of artificial intelligence in natural sciences and fundamental research
presents new opportunities to circumvent the computationally expensive solution of
the Schrödinger equation. However, it is important to remember that data serves as
the foundation of approaches like ML, and the quality of this data ultimately sets the
upper limit on attainable accuracy.

This thesis began by pushing current boundaries in reference accuracy and system
size with the development of an MP2 method in plane waves, which served to attain
reference MP2 energies at the full basis set limit that in turn were used to assess
the errors arising in atom-centered basis sets. At the same time, this development
lays the foundations for future MP2 and double-hybrid simulations of condensed
phase systems. Subsequently, the performance of Minnesota functionals on water was
evaluated through an ML-accelerated MD approach that could identify M06-2X(-D3)
as the best performing functionals. Lastly, we achieved comprehensive sampling of
the PES with GAs operating on surrogate PESs, further enhanced by ML, and refined
with DFT.

My work has traversed the various stages required for the development of increasingly
efficient electronic structure and ML models. Moreover, it has demonstrated how
artificial intelligence can be strategically combined with quantum chemistry methods
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to maintain an ab initio degree of accuracy in results, rather than being solely reliant
on ML predictions. With this, I hope to have shown how both stochastic and artificial
intelligence approaches can advance computational chemistry towards simultaneously
achieving higher accuracy, accommodating larger system sizes, and reducing sampling
time.

Finishing the last lines, saving my files, closing my terminal,
and turning off my laptop, I think back to that teenager who wanted
to understand how mathematics can describe matter in a predictive way.
Thirteen years later, the more learned, the more humble, but I enjoyed
trying to figure out such a formidable question.
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A Appendix of chapter 4: Plane-wave
vs correlation-consistent MP2

MP2 implementation in CPMD

Algorithm 1 presents the details of the calculation of EMP2
c,n (eq 4.9) that uses the exist-

ing mixed distributed/shared (MPI/OpenMP) parallelization strategy225,226 of CPMD
(CP_GROUPS are currently not supported). The work load is divided into blocks.
Within a block, a list of summand indices is created. Then, the partial two-electron
integrals are saved in an array, and summed across tasks only once the loop has been
completed. This allows for the OpenMP parallelization of the outermost loop, leading
to a much smaller shared-memory overhead from thread creation. Additionally, inter-
and intra-task-communication becomes much cheaper, as one big array is distributed
once per block, instead of a single number being distributed for every ijab tuple. This
saves a lot of overhead. Then, the summed partial integrals are used to calculate the
final MP2c energy. Note that at the Γ-point, the orbital coefficients can be chosen to be
real, introducing the symmetry ϕ̃i,a(G) = ϕ̃∗i,a(−G) which can be exploited to speed-up
the code. In order to extrapolate the MP2 correlation energy at the basis set limit (eq
4.11), EMP2

c,n values are printed out whenever n is incremented by bincr virtual orbitals
until nmax. This increment is user-defined; the larger the value, the more efficient
the calculation, which however becomes more memory intensive and provides less
extrapolation points. In this work, bincr = 100 was found as a good compromise. In
addition, nmax is defined sufficiently large as to reach a reliable extrapolation regime
according to eq 4.11 that is valid at high virtual index. Values between nmax = 10000-
20000 were used herein for relative energies. A RESTART mechanism is available in
order to diagonalize supplementary virtual orbitals and continue the computation of
EMP2

c,n for larger nmax. This implementation corresponds to the one used in our recent
study on the acceleration of the MP2c energy calculation by stochastic sampling of the
virtual space integrands based on Monte Carlo summation232 (Chapter 5). In that case,
the stochastic sampling is carried out by selecting which ijab tuples will be effectively
included in the list for later evaluation and proper renormalization.
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Appendix A. Appendix of chapter 4: Plane-wave vs correlation-consistent MP2

Input :nmax, E
ρia
cut , virtual block increment bincr

Output :EMP2
c,n for n mod bincr = 0

1 Wavefunction optimization with HF→EHF, ϕ̃i(G), εi;
2 Diagonalization of the nmax lowest virtuals→ ϕ̃a(G), εa;

/* The G vectors are distributed among the MPI tasks for all i, a orbitals */
3 ϕi,a(r)← FFT−1

E
ϕ
cut

[ϕ̃i,a(G)];

4 for i← 1 to Nocc do
5 for a← 1 to nmax do
6 ρia(r)← ϕ∗

i (r)ϕa+Nocc (r);
7 ρia(G)← FFT

E
ρia
cut

[ρia(r)];
8 end
9 end

10 EMP2
c,n ← 0, nblocks ← ceil(nmax/bincr);

11 for nlow ← 1 to nblocks by bincr do
/* Block contribution from adding bincr new virtuals, create list of contributing ijab

tuples and make use of the symmetries of the integrals and MP2c summands */
12 nhigh ← min(nlow + bincr − 1, nmax);
13 for i← 1 to Nocc do
14 for j ← i to Nocc do
15 for a← nlow to nhigh do
16 for b← a to nhigh do
17 ijab← (i, j, a, b);
18 list.append(ijab);
19 end
20 end
21 for a← 1 to nlow do
22 for b← nlow to nhigh do
23 ijab← (i, j, a, b);
24 list.append(ijab);
25 end
26 end
27 end
28 end
29 ⟨ij|ab⟩ ← Array(size: list.size, elements: 0);
30 ⟨ij|ba⟩ ← Array(size: list.size, elements: 0);
31 /OMP parallelized loop/;
32 forall ijab ∈ list do
33 forall G defined by E

ρia
cut do

/* Within a MPI task */
34 ⟨ij|ab⟩ [ijab]← ⟨ij|ab⟩ [ijab] + Φ(G)ρia(G)ρjb(G);
35 ⟨ij|ba⟩ [ijab]← ⟨ij|ba⟩ [ijab] + Φ(G)ρib(G)ρja(G);
36 end
37 end
38 MPI_SUM ⟨ij|ab⟩ [1, . . . , list.size] across all MPI tasks;
39 MPI_SUM ⟨ij|ba⟩ [1, . . . , list.size] across all MPI tasks;
40 /OMP parallelized loop, + reduction/;
41 forall ijab ∈ list do

/* Factors for symmetries */
42 if i = j and a = b then
43 f ← 1 ;
44 else
45 if i = j or a = b then
46 f ← 2 ;
47 else
48 f ← 4 ;
49 end
50 end

51 EMP2
c,n ← EMP2

c,n + f
Ω2

(⟨ij|ab⟩[ijab])2−⟨ij|ab⟩[ijab]⟨ij|ba⟩[ijab]+(⟨ij|ba⟩[ijab])2

εi+εj −εa−εb

52 end
53 print EMP2

c,n (n = nhigh) for extrapolation at consecutive bincr

54 end

Algorithm 1: Pseudocode for the calculation of the MP2c energy in CPMD.47
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Table A1: HF and MP2c contributions to the MP2 interaction energy for some S22 systems
and wavefunction cutoff energy Eϕ

cut. Energies are in [kcal/mol]. rx,y,z are the respective
x, y, z ratios of the orthorhombic supercell dimensions with respect to the HF electron density
measured at an isosurface of 0.002 a.u., while Ω is the volume of the supercell. σMP2

c corresponds
to the standard deviation of ∆EMP2

c values extrapolated on different fitting ranges according to
eq 4.38. The density cutoff energy is Eρ

cut = 4Eϕ
cut and its analogue for the MP2c pair densities

is Eρia

cut = Eϕ
cut.

S22 system rx ry rz Ω [Å3] Eϕ
cut [Ry] ∆EHF ∆EMP2

c ∆EMP2 σMP2
c

(NH3)2 2.0 2.0 2.0 987.84 150 -1.428 -1.763 -3.191 0.004
180 -1.429 -1.762 -3.191 0.002

2.0 2.9 2.9 1822.02 150 -1.430 -1.752 -3.182 0.006
180 -1.430 -1.751 -3.181 0.006

2.0 3.6 3.5 2744.00 150 -1.430 -1.758 -3.188 0.011
(cubic) 180 -1.431 -1.751 -3.182 0.011

(H2O)2 1.7 1.9 2.2 648.86 150 -3.618 -1.354 -4.972 0.004
160 -3.622 -1.347 -4.969 0.004
180 -3.638 -1.345 -4.983 0.004

2.0 2.0 2.0 686.16 150 -3.599 -1.358 -4.957 0.003
180 -3.618 -1.344 -4.962 0.001

Formamide 1.4 1.4 1.4 539.82 150 -11.768 -3.658 -15.426 0.004
180 -11.821 -3.626 -15.447 0.006

2.0 2.0 2.0 1573.83 150 -12.166 -3.549 -15.715 0.008
180 -12.221 -3.499 -15.720 0.005

PD benzene 1.6 1.8 1.7 1550.20 150 6.207 -10.751 -4.543 0.012
180 6.206 -10.750 -4.544 0.012

Benzene ·H2O 2.0 2.0 2.0 2954.17 150 -0.924 -2.444 -3.367 0.010
180 -0.929 -2.428 -3.357 0.013

(a) Monomer

−11.0

−10.5

E
H

F
[a

.u
.] Φ(G = 0) = 0, cubic

Φ(G = 0) = 0, ortho

0 2000 4000

Ω [Å3]
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Figure A1: HF energy of the (a) NH3 monomer and (b) (NH3)2 dimer for different exchange
(Coulomb) potentials. Ω is the volume of expanding cubic or orthorombic supercells around
the dimer electron density.

219



Appendix A. Appendix of chapter 4: Plane-wave vs correlation-consistent MP2

Table A2: MP2 interaction energies in [kcal/mol] of the S22* test systems, uncorrected and with
CP correction for the 5 zeta GTO basis sets. The PW values are given with the standard deviation
σ resulting from the two consecutive extrapolations: with respect to the virtual orbitals (eq
4.38) and the supercell volume (eq 4.43). Mean signed deviations (MSD) and mean absolute
errors (MAE) against PWs are indicated, respectively for each dominant interaction type and
over all systems.

S22* test set cc-pV5Z aug-cc-pV5Z PWs
No. complex uncorr. CP-corr. uncorr. CP-corr. CBS ±1σ

Hydrogen-bonded
1 (NH3)2 -3.21 -3.08 -3.17 -3.12 -3.19 ± 0.01
2 (H2O)2 -5.14 -4.85 -5.04 -4.90 -4.95 ± 0.01
3 Formic acid dimer -18.74 -18.22 -18.78 -18.33 -18.37 ± 0.02
4 Formamide dimer -15.94 -15.51 -15.96 -15.64 -15.72 ± 0.01
5 Uracil dimer -20.57 -20.10 -20.64 -20.21 -20.19 ± 0.03
6 2-pyridoxine · 2-aminopyridine -17.54 -17.08 -17.61 -17.20 -17.25 ± 0.02

-0.24 0.14 -0.25 0.04 MSD
0.24 0.14 0.26 0.05 MAE

Predominant dispersion
8 (CH4)2 -0.48 -0.46 -0.51 -0.49 -0.50 ± 0.01
9 (C2H4)2 -1.58 -1.50 -1.63 -1.56 -1.59 ± 0.01
10 Benzene · CH4 -1.84 -1.75 -1.90 -1.79 -1.84 ± 0.01
11 Parallel-displaced benzene dimer -5.06 -4.78 -5.16 -4.90 -5.06 ± 0.02
12 Pyrazine dimer -6.96 -6.67 -7.09 -6.83 -6.92 ± 0.02
13 Uracil dimer -11.32 -10.78 -11.46 -11.00 -10.91 ± 0.04
14 Stacked indole · benzene -8.27 -7.85 -8.38 -8.01 -8.10 ± 0.05

-0.08 0.16 -0.17 0.05 MSD
0.09 0.16 0.17 0.08 MAE

Mixed complexes
16 Ethene · ethine -1.66 -1.61 -1.71 -1.64 -1.67 ± 0.01
17 Benzene · H2O -3.72 -3.42 -3.64 -3.50 -3.37 ± 0.02
18 Benzene · NH3 -2.73 -2.57 -2.74 -2.63 -2.66 ± 0.01
19 Benzene · HCN -5.19 -5.05 -5.29 -5.11 -5.13 ± 0.04
20 T-shaped benzene dimer -3.71 -3.53 -3.80 -3.59 -3.66 ± 0.04
21 T-shaped indole · benzene -7.13 -6.83 -7.22 -6.92 -6.88 ± 0.02
22 Phenol dimer -7.91 -7.56 -7.98 -7.66 -7.69 ± 0.02

-0.14 0.07 -0.19 0.00 MSD
0.15 0.09 0.19 0.05 MAE

-0.15 0.12 -0.20 0.03 MSD
0.16 0.13 0.20 0.06 MAE
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Figure A2: Formamide dimer - Convergence of the HF and MP2c energy contributions to the
total MP2 interaction energy for the (aug-)cc-pVXZ basis sets and different treatments of the
BSSE. The CBS PW value is also indicated.
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Figure A3: Box plots of the differences ∆EHF
GTO −∆EHF

PW between extrapolated GTO and PW HF
interaction energies of the S22* test systems. Medians are shown as horizontal black lines and
yellow lines stand for the mean signed deviation (MSD). The solid red lines correspond to the
smallest maximum deviation obtained with plain Q and 5 zeta basis sets reported in Table 4.2.
The legend is given in Figure 4.2.
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Figure A4: Box plots of the differences ∆EMP2
GTO −∆EMP2

PW between extrapolated GTO and PW
MP2 interaction energies of the S22* test systems. Medians are shown as horizontal black lines
and yellow lines stand for the mean signed deviation (MSD). The solid red lines correspond to
the smallest maximum deviation obtained with plain T, Q or 5 zeta basis sets respectively, as
reported in Table 4.2. The legend is given in Figure 4.2.
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Figure A5: Box plots of the differences ∆EMP2
GTO −∆EMP2

PW between extrapolated GTO and PW
MP2 interaction energies of the S22* test systems. If applicable, HF and MP2c contributions to
the total MP2 energies have been extrapolated separately. Absolute differences are given in (a)
while (b) reports signed values. Medians are shown as horizontal black lines and yellow lines
stand respectively for the mean absolute error (MAE) in (a) and the mean signed deviation
(MSD) in (b). The dashed(solid) red lines correspond to the smallest MAE(maximum deviation)
obtained with plain Q or 5 zeta basis sets respectively, as reported in Table 4.2. The legend is
given in Figure 4.2.
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Figure A6: Box plots of the differences ∆EMP2
c,GTO −∆EMP2

c,PW between extrapolated GTO and PW
MP2c interaction energies of the S22* test systems. Absolute differences are given in (a) while
(b) reports signed values. Medians are shown as horizontal black lines and yellow lines stand
respectively for the mean absolute error (MAE) in (a) and the mean signed deviation (MSD) in
(b). The dashed(solid) red lines correspond to the smallest MAE(maximum deviation) obtained
with plain T, Q or 5 zeta basis sets respectively, as reported in Table 4.2. The legend is given in
Figure 4.2. Note that the small deviations due to the HF contribution would not counterbalance
the results of MP2c.
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Figure A7: Box plots of the differences ∆EMP2
c,GTO −∆EMP2

c,PW between extrapolated GTO and PW
MP2c interaction energies of the S22* test systems. Absolute differences are given in (a) while
(b) reports signed values. Medians are shown as horizontal black lines and yellow lines stand
respectively for the mean absolute error (MAE) in (a) and the mean signed deviation (MSD) in
(b). The dashed(solid) red lines correspond to the smallest MAE(maximum deviation) obtained
with plain D, T, Q or 5 zeta basis sets respectively, as reported in Table 4.2. The legend is given in
Figure 4.2. Note that the small deviations due to the HF contribution would not counterbalance
the results of MP2c.
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Appendix A. Appendix of chapter 4: Plane-wave vs correlation-consistent MP2
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Figure A8: Examples of fitting curves on aug-cc-pVXZ/CP-corrected data points for the ethene-
ethine complex. Including the D zeta point in the sequence for (a) Helgaker and (b) Martin4
deteriorates the interpolation while these are better for (c) Rovibi34 and (d) Rovibi45.
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Table A3: Quality of interpolation per GTO extrapolation. The mean absolute error (MAE) and root-mean-square deviation (RMSD), as well as
the coefficient of determination R2 are calculated between fitting curves and (aug-)cc-pVXZ data points, always evaluated up to the 5 zeta
values (like shown in Figure A8) to reflect the predictive power at larger Xs. Averages on all test systems are reported and include errors on both
dimer and monomer energies that are fitted separately. MAE and RMSD are in [kcal/mol]. For simplicity and due to the small Helgaker/HF
errors, Helgaker/MP2 results are based on the MP2c energies only.

Points Set Scheme BSSE corr. MAE RMSD R2 Scheme BSSE corr. MAE RMSD R2

HF - Helgaker vs Truhlar
DTQ non-aug Helgaker CP 0.058403 0.116806 0.999953 Truhlar half-CP 0.353033 0.706064 0.999265

aug Helgaker CP 0.099620 0.199236 0.999909 Truhlar half-CP 0.374430 0.748858 0.998828
TQ5 non-aug Helgaker CP 0.000004 0.000005 0.999999 Truhlar CP 0.000001 0.000001 0.999999

aug Helgaker CP 0.000006 0.000007 0.999999 Truhlar CP 0.000020 0.000022 0.999999
DTQ5 non-aug Helgaker CP 0.051213 0.062020 0.999986 Truhlar CP 0.292207 0.352576 0.999814

aug Helgaker CP 0.086686 0.104778 0.999974 Truhlar CP 0.307017 0.370197 0.999712
MP2 - Helgaker vs Martin4

Best agreement with PWs according to Table 4.3 Best complementary Helgaker or Martin4
DT non-aug Helgaker half-CP 8.3797 12.0569 0.972987 Martin4 half-CP 10.5614 15.1795 0.976575

aug Helgaker CP 6.6717 9.5909 0.977574 Martin4 CP 8.6849 12.4628 0.978886
TQ non-aug Martin4 CP 0.7062 1.2232 0.998475 Helgaker CP 0.4706 0.8150 0.998973

aug Martin4 CP 0.4649 0.8052 0.999060 Helgaker CP 0.3253 0.5635 0.999291
Q5 non-aug Martin4 half-CP 4 · 10−9 4 · 10−9 1.000000 Helgaker none 6 · 10−14 7 · 10−14 1.000000

aug Martin4 CP 5 · 10−9 6 · 10−9 1.000000 Helgaker CP 5 · 10−14 6 · 10−14 1.000000
DTQ non-aug Helgaker CP 5.9349 6.8382 0.991316 Martin4 half-CP 7.5922 8.7549 0.992187

aug Helgaker CP 4.7317 5.4354 0.992792 Martin4 CP 6.2159 7.1282 0.993074
TQ5 non-aug Martin4 CP 0.6558 0.7258 0.999463 Helgaker CP 0.4303 0.4733 0.999654

aug Martin4 CP 0.4317 0.4778 0.999669 Helgaker CP 0.2975 0.3272 0.999761
DTQ5 non-aug Helgaker CP 4.8106 5.8782 0.993582 Martin4 half-CP 6.1927 7.5687 0.994169

aug Helgaker CP 3.8443 4.6838 0.994650 Martin4 CP 5.0918 6.1902 0.994785
MP2 - Rovibi34 vs Rovibi45

DTQ non-aug Rovibi34 CP 0.2955 0.5910 0.999958 Rovibi45 CP 0.5313 1.0627 0.999872
aug Rovibi34 CP 0.1537 0.3075 0.999982 Rovibi45 CP 0.3601 0.7202 0.999919

TQ5 non-aug Rovibi34 CP 5 · 10−10 6 · 10−10 1.000000 Rovibi45 CP 1 · 10−10 2 · 10−10 1.000000
aug Rovibi34 CP 6 · 10−10 7 · 10−10 1.000000 Rovibi45 CP 3 · 10−10 4 · 10−10 1.000000

DTQ5 non-aug Rovibi34 CP 0.2699 0.3393 0.999986 Rovibi45 CP 0.4874 0.6121 0.999958
aug Rovibi34 CP 0.1404 0.1765 0.999994 Rovibi45 CP 0.3303 0.4149 0.999973

MP2 - Peterson vs Feller
DTQ non-aug Peterson CP 0.0691 0.1381 0.999996 Feller CP 0.4250 0.8501 0.999887

aug Peterson CP 0.1317 0.2634 0.999989 Feller CP 0.3234 0.6468 0.999914
TQ5 non-aug Peterson CP 1 · 10−7 2 · 10−7 1.000000 Feller CP 9 · 10−7 1 · 10−6 1.000000

aug Peterson CP 9 · 10−9 1 · 10−8 1.000000 Feller CP 4 · 10−6 4 · 10−6 1.000000
DTQ5 non-aug Peterson CP 0.0618 0.0767 0.999999 Feller CP 0.3460 0.4083 0.999973

aug Peterson CP 0.1178 0.1463 0.999997 Feller CP 0.2648 0.3130 0.999979
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Appendix A. Appendix of chapter 4: Plane-wave vs correlation-consistent MP2
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(b) Extrapolated, closest to PWs in the CBS limit
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Figure A9: Deviations between the cc-pVXZ and PW MP2 interaction energies as a function
of the number of electrons Ne in the dimer system. (a) for plain basis sets, (b) for energies
extrapolated to the CBS limit with best schemes of Tables 4.3 and 4.4.
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(a) cc-pVXZ, Martin4
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(b) cc-pVXZ, Helgaker
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(c) cc-pVXZ, Peterson
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0 50 100

Ne

−0.75

−0.50

−0.25

0.00

0.25

D
ev

ia
ti

on
s

[k
ca

l/
m

ol
]

DTQ

CP-corr.
Half-CP
Uncorr.

0 50 100

Ne

−0.50

−0.25

0.00

TQ5

0 50 100

Ne

−0.4

−0.2

0.0

0.2

DTQ5

(e) cc-pVXZ, Rovibi45
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Figure A10: Deviations between the extrapolated cc-pVXZ and PW MP2 interaction energies as
a function of the number of electrons Ne in the dimer system. Extrapolated to the CBS limit
with (a) Martin4, (b) Helgaker, (c) Peterson, (d) Rovibi34, (e) Rovibi45. For all schemes, the
deviations (in absolute value) tend to increase with Ne.
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Appendix A. Appendix of chapter 4: Plane-wave vs correlation-consistent MP2

(a) aug-cc-pVXZ, Martin4
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(c) aug-cc-pVXZ, Peterson
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Figure A11: Deviations between the extrapolated aug-cc-pVXZ and PW MP2 interaction ener-
gies as a function of the number of electrons Ne in the dimer system. Extrapolated to the CBS
limit with (a) Martin4, (b) Helgaker, (c) Peterson, (d) Rovibi34, (e) Rovibi45. For all schemes,
the deviations (in absolute value) tend to increase with Ne.
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B Appendix of chapter 5: Plane-wave
Monte Carlo MP2

Summary of results and fitting errors

For fitting curves, cf. the respective system subsections below.

Table B1: MP(s)2 energies and differences in a.u. obtained from extrapolation. εgap
c denotes

the threshold for stochastic sampling and NMC is the number of terms sampled per virtual
contribution, as explained in Chapter 5. e− is the number of electrons in the system. If not
explicitly stated, all values are given in atomic units.

System Ethylene Benzene
Crystal Crystal Monomer Dimer Binding

EMP2
c -0.78054±0.00010 -4.69164±0.00073 -1.05681±0.00094 -2.12780±0.00215 -0.01417

EMPs2
c -0.78056±0.00011 -4.69149±0.00093 -1.05695±0.00088 -2.12777±0.00216 -0.01387

∆EMP2
MPs2 2 · 10−5 −1.5 · 10−4 1.4 · 10−4 −3 · 10−5 −3.0 · 10−4

∆EMP2
MPs2/e− 8 · 10−7 −1 · 10−6 5 · 10−6 −5 · 10−7 −5 · 10−6

ε
gap
c [eV] 120 120 120 120 120

NMC 12000 12000 12000 12000 12000

Table B2: MPs2 energies in a.u. obtained from extrapolation. εgap
c denotes the threshold for

stochastic sampling and NMC is the number of terms sampled per virtual contribution, as
explained in Chapter 5.

System Hydronium ion solvated in 32 water molecules
Crystal Crystal Crystal

EMPs2
c -10.22771±0.01009 -10.23190±0.01047 -10.22952±0.01087

ε
gap
c [eV] 60 90 120
NMC 12000 12000 12000
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Appendix B. Appendix of chapter 5: Plane-wave Monte Carlo MP2

Ethylene crystal

Monoclinic cell:

a = 6.620 Å, b = 4.626 Å, c = 4.067 Å, α = 94.39 ◦, β = 90.00 ◦, γ = 90.00 ◦.

Total number of electronic states: 11400.

Plane-wave cutoff energy for orbitals: Eϕ
cut = 140 Ry.

Plane-wave cutoff energy for densities: Eρ
cut = 560 Ry.

Element X Y Z Element X Y Z

C 0.10029 0.61226 0.21569 H -0.89666 -1.21379 0.17293
C -0.10029 -0.61226 -0.21569 H 0.52701 -1.04440 -0.96901
C 4.82653 -1.37057 -0.52784 H 5.39184 -1.48263 0.37489
C 3.76335 -0.60043 -0.57359 H 5.15893 -1.90883 -1.39251
H 0.89666 1.21379 -0.17293 H 3.19804 -0.48837 -1.47633
H -0.52701 1.04440 0.96901 H 3.43095 -0.06218 0.29107

Table B3: Atomic coordinates of the ethylene crystal in Å.
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Figure B1: Left: MP(s)2 correlation energy of the ethylene crystal as a function of the highest
eigenvalue truncating the sum. The difference between MP2 and MPs2 is given along the
secondary axis relatively to the MP2 reference value (red). Right: Fitting curves over a large
range of MP(s)2 energies and difference between fit and calculated values on the secondary
axis. Nmax

vir = 11158.
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Figure B2: Left: Extrapolated MP2 energy of the ethylene crystal for a window range ending at
Nvir, as a function of the corresponding eigenvalue εNvir . Right: Same for MPs2 energy. Legends
show numbers of orbitals in fitting windows and extrapolated values in a.u. at Nmax

vir with
asymptotic standard deviation. The number of virtual orbitals corresponding to the choice of
εNvir is shown on the secondary axis. Windows containing at least 1800 orbitals are taken for
calculating the MP(s)2 values reported in Table B1.
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Benzene crystal

Orthorhombic cell:

a = 9.550 Å, b = 6.640 Å, c = 6.920 Å, α = 90.00 ◦, β = 90.00 ◦, γ = 90.00 ◦.

Total number of electronic states: 12000.

Plane-wave cutoff energy for orbitals: Eϕ
cut = 150 Ry.

Plane-wave cutoff energy for densities: Eρ
cut = 600 Ry.

Element X Y Z Element X Y Z

C 1.30336 -0.36606 0.32000 H 2.30301 -0.66474 0.50752
C 0.35092 -0.23805 1.32843 H 0.60089 -0.45635 2.36092
C 0.95009 -0.11336 -0.99976 H 1.67633 -0.20865 -1.78117
C -0.95009 0.11336 0.99976 H -1.67633 0.20865 1.78117
C -0.35092 0.23805 -1.32843 H -0.60089 0.45635 -2.36092
C -1.30336 0.36606 -0.32000 H -2.30301 0.66474 -0.50752
C 6.28437 3.17055 -2.19721 H 7.31273 3.34626 -2.38504
C 5.38596 4.19140 -1.89523 H 5.71169 5.22500 -1.85332
C 5.83638 1.85787 -2.27835 H 6.52051 1.06682 -2.50925
C 4.04539 3.88904 -1.70661 H 3.36125 4.68009 -1.47571
C 4.49581 1.55551 -2.08973 H 4.17007 0.52191 -2.13165
C 3.59739 2.57636 -1.78775 H 2.56903 2.40065 -1.59992
C 3.26493 1.76649 3.16518 H 2.24442 1.48500 3.21991
C 4.07921 1.87949 4.28975 H 3.69258 1.66660 5.28039
C 3.79213 2.01171 1.90330 H 3.17292 1.92785 1.03345
C 5.41781 2.20845 4.13460 H 6.03702 2.29231 5.00445
C 5.13073 2.34068 1.74815 H 5.51736 2.55357 0.75750
C 5.94501 2.45367 2.87271 H 6.96552 2.73517 2.81798
C -1.28315 5.38412 0.02158 H -2.27496 5.57700 -0.29904
C -0.41484 6.38995 0.43970 H -0.72571 7.42896 0.43977
C -0.85068 4.06395 -0.00168 H -1.51199 3.28434 -0.32102
C 0.88419 6.06515 0.80183 H 1.54551 6.84475 1.12118
C 0.44836 3.73915 0.36046 H 0.75923 2.70014 0.36038
C 1.31667 4.74498 0.77857 H 2.30847 4.55210 1.09919

Table B4: Atomic coordinates of the benzene crystal in Å.
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Figure B3: Left: MP(s)2 correlation energy of the benzene crystal as a function of the highest
eigenvalue truncating the sum. The difference between MP2 and MPs2 is given along the
secondary axis relatively to the MP2 reference value (red). Right: Fitting curves on large range
of MP(s)2 results and difference between fit and calculated values on the secondary axis.
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Figure B4: Left: Extrapolated MP2 energy of the benzene crystal for a window range ending
at Nvir, as a function of the corresponding eigenvalue εNvir . Right: Same for MPs2 energy.
Legends show numbers of orbitals in fitting windows and extrapolated values in a.u. at Nmax

vir
with asymptotic standard deviation. Respective number of virtual orbitals is shown on the
secondary axis. Windows containing at least 1800 orbitals are taken for calculating MP(s)2
values reported in Table B1.
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Dependency of MPs2 on the continuum cutoff εgap
c

We performed 5 additional independent runs of MPs2 calculations of the benzene
crystal in order to assess the stochastic variance at different cutoffs εgap

c . Results are
depicted in Figure B5.
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Figure B5: Deviation of the MPs2 energy from the MP2 reference energy of the benzene crystal.
6 independent values are plotted for different εgap

c between 20 eV and 180 eV. Each point and
errorbar correspond to the mean extrapolated value and its standard deviation like obtained in
Figure B4-right.
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Benzene monomer and parallel sandwich dimer

Cubic box:

a = 15.00 Å, b = 11.25 Å, c = 11.25 Å, α = 90.00 ◦, β = 90.00 ◦, γ = 90.00 ◦.

Total number of electronic states: 15000.

Plane-wave cutoff energy for orbitals: Eϕ
cut = 150 Ry.

Plane-wave cutoff energy for densities: Eρ
cut = 600 Ry.

Elem. X Y Z Elem. X Y Z

C 0.000000 0.000000 1.394259 C 3.700000 0.000000 1.394259
C 0.000000 1.207465 0.697130 C 3.700000 1.207465 0.697130
C 0.000000 1.207464 -0.697130 C 3.700000 1.207464 -0.697130
C 0.000000 0.000000 -1.394260 C 3.700000 0.000000 -1.394260
C 0.000000 -1.207465 -0.697130 C 3.700000 -1.207465 -0.697130
C 0.000000 -1.207465 0.697130 C 3.700000 -1.207465 0.697130
H 0.000000 0.000000 2.476431 H 3.700000 0.000000 2.476431
H 0.000000 2.144653 1.238216 H 3.700000 2.144653 1.238216
H 0.000000 2.144653 -1.238216 H 3.700000 2.144653 -1.238216
H 0.000000 0.000000 -2.476432 H 3.700000 0.000000 -2.476432
H 0.000000 -2.144653 -1.238216 H 3.700000 -2.144653 -1.238216
H 0.000000 -2.144653 1.238216 H 3.700000 -2.144653 1.238216

Table B5: Atomic coordinates of the benzene sandwich in Å. Coordinates for the benzene
monomer correspond to only one of the two columns.
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Figure B6: Left: MP(s)2 correlation energy of the benzene monomer as a function of the
highest eigenvalue truncating the sum. The difference between MP2 and MPs2 is given along
the secondary axis relatively to the MP2 reference value (red). Right: Fitting curves on large
range of MP(s)2 results and difference between fit and calculated value on the secondary axis.
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Figure B7: Left: Extrapolated MP2 energy of the benzene monomer for a window range ending
at Nvir, as a function of the corresponding eigenvalue εNvir . Right: Same for MPs2 energy.
Legends show numbers of orbitals in fitting windows and extrapolated values in a.u. at Nmax

vir
with asymptotic standard deviation. Respective number of virtual orbitals is shown on the
secondary axis. Windows containing at least 1980 orbitals are taken for calculating MP(s)2
values reported in Table B1.
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Figure B8: Left: MP(s)2 correlation energy of the benzene sandwich as a function of the highest
eigenvalue truncating the sum. The difference between MP2 and MPs2 is given along the
secondary axis relatively to the MP2 reference value (red). Right: Fitting curves on large range
of MP(s)2 results and difference between fit and calculated values on the secondary axis.
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Figure B9: Left: Extrapolated MP2 energy of the benzene sandwich for a window range ending
at Nvir, as a function of the corresponding eigenvalue εNvir . Right: Same for MPs2 energy.
Legends show numbers of orbitals in fitting windows and extrapolated values in a.u. at Nmax

vir
with asymptotic standard deviation. Respective number of virtual orbitals is shown on the
secondary axis. Windows containing at least 1980 orbitals are taken for calculating MP(s)2
values reported in Table B1.
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Comparison between PW, GPW and Gaussian basis sets

For the sake of comparison to other basis sets, MP2 energies with atom-centered all-
electron and Gaussian/plane-wave (GPW) bases are given for the benzene monomer
and a dimer in sandwich configuration.

Table B6: Comparison of our pseudopotential/PW MP2 correlation energies with atom-
centered all-electron332 and GPW calculations296 for the benzene monomer and sandwich
dimer. Values are given in atomic units. GPW calculations have been performed with the same
GTH-HF pseudopotentials used for PW calculations and a density cutoff of Eρ

cut = 600 Ry.

Basis function Basis set Monomer Dimer Binding
Gaussian, MP2 aug-cc-pVDZ -0.81038 -1.63681 -0.01606
Gaussian, MP2 aug-cc-pVTZ -0.96343 -1.94210 -0.01523
Gaussian, MP2 aug-cc-pVQZ -1.01553 -2.04544 -0.01438

GPW, MP2 GPW, cc-DZ -0.75888 -1.53066 -0.01290
GPW, MP2 GPW, cc-TZ -0.93486 -1.88456 -0.01484
GPW, MP2 GPW, cc-QZ -1.00305 -2.02027 -0.01416
PW, MP2 Eϕ

cut = 150 Ry -1.05681 -2.12780 -0.01417
PW, MPs2 Eϕ

cut = 150 Ry -1.05695 -2.12777 -0.01387

Dependency of MPs2 on the continuum cutoff εgap
c (monomer)

We performed 5 additional independent runs of MPs2 calculations of the benzene
monomer in order to assess the stochastic variance at different cutoffs εgap

c . Results are
depicted in Figure B10.
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Figure B10: Deviation of the MPs2 energy from the MP2 reference energy of the benzene
monomer. 6 independent values are plotted for different εgap

c between 20 eV and 180 eV at two
sampling parameters NMC = 6000 and NMC = 12000. Each point and errorbar correspond to
the mean extrapolated value and its standard deviation like obtained in Figure B7-right.
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Hydronium ion solvated in 32 water molecules

Cubic cell:

a = 9.95991 Å, b = 9.95991 Å, c = 9.95991 Å, α = 90.00 ◦, β = 90.00 ◦, γ = 90.00 ◦.

Total number of electronic states: 12122.

Plane-wave cutoff energy for orbitals: Eϕ
cut = 150 Ry.

Plane-wave cutoff energy for densities: Eρ
cut = 600 Ry.

Figure B11: Hydronium ion solvated in 32 water molecules (264 electrons explicitly accounted
for). Calculation of EMPs2

c takes between 5 to 15 h on 25 16-core compute nodes. Molecules
within the simulation supercell are highlighted. Using εgap

c = 120 eV and NMC = 12000 yields
an extrapolated EMPs2

c = −10.22952 a.u.
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Element X Y Z Element X Y Z

O 0.7327 -4.2440 2.1886 H -2.7608 -4.2804 3.0891
O -0.8347 -4.7227 4.3691 H -3.5930 -0.0389 -3.2716
O 2.6518 -1.5714 -0.1309 H -3.0803 1.1482 -2.2743
O 3.2623 -4.4641 2.6462 H 3.3247 1.5747 2.2926
O -4.7361 4.8510 -2.0459 H 3.0265 2.7969 3.3338
O -2.3920 0.3963 3.9231 H 4.7065 1.8430 -2.7522
O -0.5493 -4.5740 -2.0499 H 3.1319 2.0416 -3.1370
O 2.2782 -3.3931 -4.3667 H -1.9556 -1.5794 -0.0367
O -3.5142 -4.3400 2.4342 H -1.7355 0.0251 0.1726
O -3.8442 0.5428 -2.4979 H 3.1616 -4.3000 0.7191
O 2.6625 2.2735 2.5634 H 2.7360 -5.0244 -0.6811
O 4.0301 2.4810 -3.1204 H 1.5443 -1.0463 -1.4591
O -1.3385 -0.8110 -0.2060 H -0.0408 -0.7072 -1.2621
O 3.3646 -4.3723 -0.2574 H 5.5462 3.4712 4.3092
O 0.7415 -0.6233 -1.8793 H 4.1734 3.2213 5.1573
O 4.5585 3.6260 4.3279 H 1.3289 3.2796 -0.5124
O 1.4453 3.8230 -1.3437 H 1.3588 3.2301 -2.1443
O 0.7650 1.2950 4.2396 H 1.2158 1.6650 3.4272
O -2.5713 3.1043 -4.8839 H -0.2192 1.4615 4.1796
O -4.1207 3.2564 1.0086 H -2.3393 2.1786 -5.1828
O 0.4496 3.1128 1.4121 H -2.3958 3.1917 -3.9033
O 4.0998 0.0228 4.2341 H -4.0469 3.9980 1.6755
O -0.5407 -2.4217 -3.9645 H -4.8820 3.4416 0.3872
O -4.5374 -1.1430 -0.2440 H 1.3081 2.8588 1.8577
O -1.6032 1.7664 0.5732 H 0.2815 4.0896 1.5449
O -3.1993 -1.5826 -4.4357 H 4.4722 0.2911 3.3456
O 0.5592 -1.4779 1.7951 H 4.8505 -0.1433 4.8736
O -1.8413 2.8694 -2.0738 H -0.5906 -3.0520 -3.1897
O 0.9314 1.6635 -3.0237 H -0.0056 -1.6175 -3.7060
O 4.8851 0.6455 1.8791 H -4.2505 -0.6992 -1.0929
O -4.7775 -3.9950 -4.5931 H -3.9724 -1.9523 -0.0834
O -2.9360 -3.2201 -0.0728 H -2.3879 2.3426 0.8019
O 1.8651 -1.3161 4.1881 H -0.7686 2.1804 0.9365
H 0.1804 -4.3091 3.0196 H -3.8725 -2.3207 -4.3898
H 0.4583 -3.4352 1.6684 H -2.2782 -1.9717 -4.4453
H -0.8907 -3.8505 4.8551 H 1.3775 -1.3132 1.2443
H -1.4470 -5.3849 4.8012 H -0.2523 -1.2143 1.2736
H 2.6813 -2.5699 -0.0836 H -1.1466 2.2371 -2.4168
H 3.5705 -1.2189 -0.3089 H -2.0815 2.6232 -1.1348
H 2.2641 -4.5114 2.6070 H 1.0048 0.8099 -2.5081
H 3.6143 -5.2567 3.1440 H 0.8075 1.4570 -3.9943
H -5.2043 3.9908 -2.2480 H 5.3467 1.4906 1.6095
H -5.2257 5.3344 -1.3202 H 4.9527 -0.0223 1.1379
H -2.8338 0.3816 3.0261 H -4.4389 -4.2859 -3.6983
H -2.6987 -0.3905 4.4587 H -5.0180 -4.7996 -5.1361
H 0.2035 -5.0868 -1.6374 H -2.9873 -3.6787 0.8143
H -1.2460 -5.2114 -2.3791 H -2.9264 -3.9045 -0.8018
H 3.1464 -3.8096 -4.0969 H 1.8677 -2.1810 4.7284
H 1.5234 -3.8864 -3.9344 H 2.7693 -0.8629 4.0578
H -4.2719 -3.7659 2.7445 H 1.2248 -1.2816 3.3950

Table B7: Atomic coordinates of the hydronium ion solvated in 32 water molecules in Å.
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Figure B12: Left: Stochastic MPs2 correlation energy of the solvated hydronium ion as a
function of the highest eigenvalue truncating the sum for εgap

c = 120 eV. Right: Extrapolated
MPs2 energy at εgap

c = 120 eV of the solvated hydronium ion for a window range ending at Nvir,
as a function of the corresponding eigenvalue εNvir . Legend shows numbers of orbitals in fitting
windows and extrapolated values in a.u. at Nmax

vir = 11990 with asymptotic standard deviation.
Respective number of virtual orbitals is shown on the secondary axis. Windows containing at
least 1782 orbitals are taken for calculating MPs2 values reported in Table B2.
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Figure B13: Left: Extrapolated MPs2 energy at εgap
c = 90 eV of the solvated hydronium ion for a

window range ending at Nvir, as a function of the corresponding eigenvalue εNvir . Right: Same
for εgap

c = 60 eV. Legends show numbers of orbitals in fitting windows and extrapolated values
in a.u. at Nmax

vir = 11990 with asymptotic standard deviation. Respective number of virtual
orbitals is shown on the secondary axis. Windows containing at least 1782 orbitals are taken
for calculating MPs2 values reported in Table B2.
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C Appendix of chapter 7: Minnesota
functionals on liquid water

Simulation details

Table C1: Simulation details for the different density functionals studied. The BLYP GGA
functional is shown for comparison.

Nmol is the number of heavy water molecules (D2O), respectively light water (H2O), simulated
with meta-GGAs and hybrid meta-GGAs. CP stands for Car-Parrinello dynamics while ML-MTS
means Born-Oppenheimer (BO) dynamics accelerated with a machine-learning enhanced
multiple time step scheme.

ttraj [ps] is the simulation length of the production phase. n is the ratio between inner and
outer time steps when the MTS scheme is used. ∆t = δt corresponds to the time step for CP
dynamics, while for the ML-MTS scheme ∆t = n · δt corresponds to the outer (physical) time
step.

t̄outer/inner [min] are the averaged elapsed times taken per outer/inner time step. We also report
the ML-MTS speedup against standard BO dynamics from t̄outer and t̄inner. t̄sim [days/ps] is the
running time in order to get 1 ps of trajectory. Timings are reported for a full distribution of MPI
tasks over 16 (13) Intel Xeon E5-2690 v3 @ 2.60GHz nodes with 12 cores each for respectively
the meta-GGAs (hybrid meta-GGAs).

Finally, (dE/dt)max [a.u./ps |%] represents the maximum energy variation per time observed
along each trajectory, in absolute and relative value compared to the average energy of the
system.

Functional Nmol Dynam. ttraj n ∆t [a.u. | fs] t̄outer t̄inner Speed. t̄sim (dE/dt)max

Meta-GGA
M06-L 64 CP 10.0 1 2.0 | 0.048 - 0.030 - 0.43 0.000015 | 1 · 10−6

revM06-L 64 CP 10.0 1 3.5 | 0.085 - 0.035 - 0.28 0.000004 | 4 · 10−7

M11-L 64 CP 10.2 1 3.5 | 0.085 - 0.037 - 0.30 0.000919 | 8 · 10−5

MN12-L 64 CP 10.2 1 3.5 | 0.085 - 0.031 - 0.26 0.000003 | 3 · 10−7

MN15-L 64 CP 10.2 1 3.0 | 0.073 - 0.027 - 0.26 0.000009 | 8 · 10−7

Hybrid meta-GGA
M06 32 ML-MTS 6.0 6 90.0 | 2.177 94.74 0.08 5.97 30 0.004805 | 9 · 10−4

M06-HF 32 ML-MTS 6.0 6 90.0 | 2.177 42.91 0.11 5.91 14 0.003075 | 6 · 10−4

M06-2X 32 ML-MTS 7.3 10 150.0 | 3.628 21.60 0.10 9.57 4 0.002696 | 5 · 10−4

M08-HX 32 ML-MTS 8.7 6 90.0 | 2.177 16.94 0.09 5.81 6 0.000621 | 1 · 10−4

M08-SO 32 ML-MTS 6.8 10 150.0 | 3.628 21.43 0.10 9.56 4 0.005239 | 9 · 10−4

M11 32 ML-MTS 6.0 10 150.0 | 3.628 83.02 0.14 9.83 16 0.003982 | 7 · 10−4

MN12-SX 32 ML-MTS 6.0 6 90.0 | 2.177 18.59 0.13 5.77 6 0.000833 | 2 · 10−4

MN15 32 ML-MTS 6.0 10 150.0 | 3.628 36.94 0.10 9.73 7 0.007592 | 1 · 10−3

GGA
BLYP 32 BO 20.0 1 15.0 | 0.363 - 0.029 - 0.06 0.003504 | 6 · 10−4
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Structural properties
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[Å
]

2.082738e-07 * T3 + -0.000156649 * T2 + 0.0397201 * T

240 260 280 300 320 340 360 380

T [K]

0.6

0.8

1.0

gm
in

O
O

1 + -4.73129e+07/T3 + 2.53271e+05/T2 + -361.926/T

Figure C1: Position rmax and height gmax
OO of the first peak of the gOO distribution at different

temperatures extracted from X-ray measurements,429 as well as their first minimum analogues
(rmin, gmin

OO ). Shown are the fitting curves used to rescale the simulated data to a common
298 K temperature, assuming a temperature dependency of DFT functionals similar to the
experiment.
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Table C2: Structure of liquid water. Position [Å] and height of the first maximum (rmax, gmax
OO ) and

first minimum (rmin, gmin
OO ) of the oxygen-oxygen radial distribution function as obtained from

MD or MC simulations with various DFT functionals at temperature Tavg [K]. Their normalized
analogues (r∗

max, gmax∗
OO ) and (r∗

min, gmin∗
OO ) rescaled to 298 K were calculated from the experimental

fits of Figure C1. Corresponding references are provided alongside the functional names.

T = Tavg T = 298 K
Functional Tavg rmax gmax

OO rmin gmin
OO r∗

max gmax∗
OO r∗

min gmin∗
OO

GGA
BLYP183 319 2.77 2.86 3.31 0.66 2.76 2.98 3.26 0.61
BLYP-DCACP183 308 2.79 2.72 3.36 0.85 2.79 2.78 3.34 0.82
BLYP-D3144 295 2.78 2.78 3.51 0.92 2.78 2.76 3.52 0.93
PBE183 314 2.72 3.19 3.27 0.43 2.72 3.28 3.23 0.39
PBE-DCACP183 323 2.71 3.27 3.28 0.40 2.70 3.42 3.21 0.35
PBE-D3144 295 2.73 3.07 3.25 0.69 2.73 3.05 3.26 0.70
revPBE183 323 2.80 2.38 3.34 0.90 2.79 2.53 3.27 0.85
revPBE-DCACP183 331 2.74 2.94 3.35 0.76 2.73 3.13 3.25 0.70
revPBE-D3467 298 2.81 2.59 3.52 0.89 2.81 2.59 3.52 0.89
rVV10144 295 2.73 3.22 3.32 0.79 2.73 3.20 3.33 0.80
optB88-vdW144 295 2.74 2.94 3.34 0.80 2.74 2.92 3.35 0.81

Meta-GGA
M06-L 291 2.85 2.36 4.50 0.92 2.85 2.32 4.51 0.94
revM06-L 311 3.09 2.37 4.58 0.72 3.09 2.45 4.55 0.69
M11-L 286 2.89 2.11 4.59 0.86 2.89 2.04 4.61 0.90
MN12-L 296 3.13 3.20 4.31 0.45 3.13 3.19 4.31 0.46
MN15-L 283 3.37 2.70 4.61 0.43 3.37 2.61 4.63 0.48
SCAN414 300 2.76 3.24 3.31 0.72 2.76 3.25 3.31 0.71
SCAN+rVV10191 300 2.74 3.20 3.32 0.65 2.74 3.21 3.32 0.64
TPSS465 350 2.71 3.40 3.29 0.33 2.69 3.70 3.08 0.25
B97M-rV457 300 2.83 2.69 3.61 0.91 2.83 2.70 3.61 0.90

Hybrid
B3LYP465 350 2.79 2.48 3.40 0.81 2.77 2.78 3.19 0.73
PBE0483 300 2.71 2.96 3.30 0.53 2.71 2.97 3.30 0.52
PBE0-TS-vdW(SC)483 300 2.72 2.76 3.31 0.70 2.72 2.77 3.31 0.69
PBE0-D3144 295 2.74 2.88 3.29 0.79 2.74 2.86 3.30 0.80
revPBE0-D3457 300 2.80 2.57 3.47 0.89 2.80 2.58 3.47 0.88

Hybrid meta-GGA
M06 312 2.85 2.24 4.70 0.91 2.85 2.32 4.67 0.88
M06-HF 329 2.65 2.72 3.22 0.63 2.64 2.90 3.13 0.57
M06-2X 299 2.81 2.89 3.74 0.85 2.81 2.90 3.74 0.85
M08-HX 298 2.82 2.96 4.02 0.81 2.82 2.96 4.02 0.81
M08-SO 316 2.85 3.01 4.10 0.91 2.84 3.12 4.06 0.87
M11 326 2.85 2.73 3.91 0.96 2.84 2.89 3.83 0.90
MN12-SX 292 2.93 2.91 3.86 0.86 2.93 2.87 3.87 0.88
MN15 316 2.85 2.30 4.47 0.87 2.84 2.41 4.43 0.83
M06-2X-D3144 295 2.78 3.00 3.45 0.78 2.78 2.98 3.46 0.79
SCAN0/ML485 300 2.76 3.04 3.30 0.70 2.76 3.05 3.30 0.69

Post-HF, double-hybrid
RPA144 295 2.78 2.93 3.41 0.78 2.78 2.91 3.42 0.79
RPA/ML180 300 2.79 2.89 3.41 0.83 2.79 2.90 3.41 0.82
MP2144 295 2.76 3.05 3.32 0.72 2.76 3.03 3.33 0.73
PWPB95-D3144 295 2.80 2.80 3.60 0.86 2.80 2.78 3.61 0.87

Experimental
X-ray 2014429,509 298 2.80 2.55 3.41 0.85 2.80 2.55 3.41 0.85
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Table C3: Structure of liquid water. Coordination number n̄OO calculated by integrating gOO(r)
up to its first minimum. nOO is the coordination number calculated by the same integration
up to the first minimum of the radial distribution 4πr2gOO(r) (eq 7.1). Average number h of
hydrogen bonds per water molecule and estimated equilibrium density ρeq [g/cm3] relative
to the experimental one ρexp

504 at same temperature. Results were obtained from MD or MC
simulations with various DFT functionals at temperature Tavg [K]. Corresponding references
are provided alongside the functional names.

Functional Tavg n̄OO nOO h ρeq ρeq/ρexp System
GGA

BLYP183 319 4.2 4.0 3.44 1.010 0.92 D2O
BLYP-DCACP183 308 4.5 4.2 3.43 1.135 1.03 D2O
BLYP-D3144 295 5.6 5.1 ∗3.66 1.066 1.07 H2O
PBE183 314 4.0 4.0 3.58 1.056 0.96 D2O
PBE-DCACP183 323 4.1 4.0 3.63 1.063 0.97 D2O
PBE-D3144 295 4.3 4.0 ∗3.64 1.053 1.06 H2O
revPBE183 323 4.2 3.8 3.20 0.931 0.85 D2O
revPBE-DCACP183 331 4.7 4.3 3.59 1.114 1.02 D2O
revPBE-D3467 298 5.6 4.6 ∗3.63 0.97 0.97 H2O
rVV10144 295 4.6 4.2 ∗3.80 1.078 1.08 H2O
optB88-vdW144 295 4.7 4.4 ∗3.84 1.081 1.08 H2O

Meta-GGA
M06-L 291 12.2 4.9 3.48 1.136 1.03 D2O
revM06-L 311 12.8 9.9 2.90 1.171 1.06 D2O
M11-L 286 12.9 6.9 3.22 1.171 1.06 D2O
MN12-L 296 11.6 11.2 3.24 1.174 1.06 D2O
MN15-L 283 13.4 13.0 1.93 1.280 1.16 D2O
SCAN415 330 - - 3.61 1.050 0.96 D2O
SCAN414 300 4.7 4.4 - - - H2O
SCAN+rVV10191 300 4.6 4.4 ∗3.80 1.16 1.16 H2O
TPSS465 350 - - 3.82 - - D2O
B97M-rV457,467 298 4575.8 4574.8 457∗3.70 4671.12 1.12 457,467H2O

Hybrid
B3LYP465 350 4.4 4.0 3.67 - - D2O
PBE0144,483 300 4834.1 4833.9 4833.71 1440.832 0.83 483D/144H2O
PBE0-TS-vdW(SC)483 300 4.2 4.1 3.62 - - D2O
PBE0-D3144 295 4.4 4.1 ∗3.68 1.053 1.06 H2O
revPBE0-D3457 300 5.3 4.5 ∗3.80 - - H2O

Hybrid meta-GGA
M06 312 13.7 4.7 3.21 1.031 1.04 H2O
M06-HF 329 3.9 3.9 3.55 1.051 1.07 H2O
M06-2X 299 6.6 5.5 3.70 1.043 1.05 H2O
M08-HX 298 8.7 7.6 3.59 1.035 1.04 H2O
M08-SO 316 9.0 5.0 3.70 1.033 1.04 H2O
M11 326 7.6 4.4 3.46 1.074 1.09 H2O
MN12-SX 292 7.8 6.8 3.36 1.025 1.03 H2O
MN15 316 11.9 4.8 3.26 1.073 1.08 H2O
M06-2X-D3144 295 5.1 4.7 ∗3.81 1.004 1.01 H2O
SCAN0/ML485 300 4.5 4.2 3.71 1.032 1.04 H2O

Post-HF, double-hybrid
RPA144 295 4.7 4.2 ∗3.77 0.994 0.996 H2O
MP2144 295 4.7 4.3 ∗3.81 1.020 1.022 H2O
PWPB95-D3144 295 5.8 4.7 ∗3.62 1.002 1.004 H2O

Experimental
X-ray 2014429 285 4.8 4.5 0.99952 1.00 H2O
X-ray 2014429,509/Neutron 2013432 298 429,5094.6 429,5094.3 432∗3.80 0.99709 1.00 H2O
X-ray 2014429 307 4.6 4.3 0.99442 1.00 H2O
X-ray 2014429 324 5.2 4.5 0.98765 1.00 H2O

∗estimated from the integration of the second peak of the oxygen-hydrogen radial distribution function gOH, in the
same way as nOO.
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Figure C2: Distribution P(α) of the H-bond donor angle α for donors in the first coordination
shell. (a) Meta-GGA Minnesota functionals, (b) hybrid meta-GGA Minnesota functionals.
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Dynamical properties

Table C4: Dynamics of liquid water. L [Å] is the side of the cubic simulation cell, DL the finite-
size diffusion coefficient from simulation and D∞ its analogue rescaled to infinite size (eq
7.4). Results were obtained from MD simulations with various DFT functionals at temperature
Tavg [K]. Corresponding references are provided alongside the functional names. Dexp

∞ is the
experimental diffusion coefficient at Tavg, as provided by a fractional-power law425 fitted to
experimental results.421–423,425,523,524 D

exp
L is the experimental coefficient rescaled back to finite

size (eq 7.4). All diffusion coefficients are in [Å2/ps]. η [mPa·s] is the experimental shear
viscosity504 of light/heavy water used for rescaling.

Functional Tavg L DL D
exp
L D∞ D

exp
∞ η(Tavg) System

GGA
BLYP183 319 12.420 0.10 0.23 0.18 0.30 0.70167 D2O
BLYP-DCACP183 308 12.420 0.17 0.18 0.23 0.24 0.87277 D2O
BLYP-D3496 298 15.640 0.08 0.18 0.12 0.23 0.88982 H2O
BLYP-D3496 328 15.640 0.20 0.35 0.29 0.43 0.50354 H2O
PBE183 314 12.420 0.03 0.21 0.10 0.27 0.77176 D2O
PBE415 330 13.108 0.02 0.29 0.11 0.38 0.58027 D2O
PBE-DCACP183 323 12.420 0.05 0.25 0.13 0.33 0.65294 D2O
revPBE183 323 12.420 0.21 0.25 0.29 0.33 0.65294 D2O
revPBE-DCACP183 331 12.420 0.16 0.29 0.26 0.39 0.57100 D2O
revPBE-D3467 298 12.420 0.19 0.17 0.25 0.23 0.88982 H2O
optB88-vdW414 300 9.850 0.07 0.17 0.14 0.24 0.85072 H2O

Meta-GGA
M06-L 291 12.445 0.30 0.12 0.34 0.15 1.32310 D2O
revM06-L 311 12.445 0.65 0.19 0.71 0.26 0.81967 D2O
M11-L 286 12.445 0.52 0.10 0.55 0.13 1.53360 D2O
MN12-L 296 12.445 0.11 0.13 0.15 0.18 1.15640 D2O
MN15-L 283 12.445 0.06 0.09 0.09 0.12 1.68780 D2O
SCAN415 330 12.217 0.19 0.28 0.29 0.38 0.58027 D2O
SCAN496 328 12.660 0.14 0.32 0.25 0.43 0.50354 H2O
SCAN414 300 9.850 0.06 0.17 ∗0.09 0.24 0.85072 H2O
SCAN496 298 12.660 0.03 0.17 0.08 0.23 0.88982 H2O
SCAN/ML484 300 11.817 0.05 0.18 0.11 0.24 0.85072 H2O
TPSS465 350 9.939 0.03 0.36 0.20 0.53 0.43331 D2O
B97M-rV457 300 12.420 0.21 0.18 0.27 0.24 0.85072 H2O

Hybrid
B3LYP465 350 9.939 0.30 0.36 0.47 0.53 0.43331 D2O
PBE0483 300 12.400 0.07 0.15 0.12 0.20 1.04660 D2O
PBE0-TS-vdW(SC)483 300 12.400 0.10 0.15 0.15 0.20 1.04660 D2O
revPBE0-D3457 300 12.420 0.21 0.18 0.27 0.24 0.85072 H2O

Hybrid meta-GGA
M06 312 9.939 0.69 0.22 0.79 0.31 0.66506 H2O
M06-HF 329 9.939 0.16 0.30 0.30 0.44 0.49563 H2O
M06-2X 299 9.939 0.31 0.16 0.38 0.23 0.86991 H2O
M08-HX 298 9.939 0.18 0.16 0.25 0.23 0.88982 H2O
M08-SO 316 9.939 0.24 0.23 0.35 0.34 0.61743 H2O
M11 326 9.939 0.31 0.29 0.44 0.42 0.52001 H2O
MN12-SX 292 9.939 0.14 0.14 0.20 0.20 1.02640 H2O
MN15 316 9.939 0.30 0.23 0.41 0.34 0.61743 H2O
SCAN0/ML485 300 24.575 0.11 0.17 0.13 0.20 1.04660 D2O
SCAN0/ML485 300 24.575 0.12 0.21 0.15 0.24 0.85072 H2O

Post-HF
RPA/ML180 300 11.817 0.17 0.18 0.23 0.24 0.85072 H2O
MP2144 295 12.335 0.07 0.16 0.12 0.21 0.95417 H2O
CCSD(T)/ML PIMD509 298 15.660 0.20 0.18 0.24 0.23 0.88982 H2O

∗rescaled to infinite size with the actual viscosity obtained with the SCAN functional.414
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Table C5: Dynamics of liquid water. First-order τ1 and second-order τ2 orientational relax-
ation times [ps] calculated from the orientational auto-correlation function (eq 7.5), between
respectively the geometric dipoles µ, OH, and HH vectors. Results were obtained from MD
simulations with various DFT functionals at temperature Tavg [K]. Corresponding references
are provided alongside the functional names. Note that τ1,2 are highly sensitive to statistical
sampling and require trajectories that are sufficiently long (approximately three times higher
than their value) to be accurately converged, in addition to a sufficient equilibration phase
at the beginning of the NVE sampling. Additionally, the fitting or integration methods used
for their calculation vary between studies, and experimental results exhibit non-negligible
deviations. Nevertheless, we provide these values as a qualitative comparison.

Functional Tavg τµ
1 τµ

2 τ OH
1 τ OH

2 τ HH
1 τ HH

2 System
GGA

BLYP183 319 a7.5 a3.0 - - - - D2O
BLYP-DCACP183 308 a3.6 a1.7 - - - - D2O
PBE183 314 a36.9 a15.6 - - - - D2O
PBE415 330 - - - b7.1 - - D2O
PBE-DCACP183 323 a32.7 a10.0 - - - - D2O
revPBE183 323 a2.7 a1.3 - - - - D2O
revPBE-DCACP183 331 a5.4 a2.1 - - - - D2O
revPBE-D3516 300 b4.6 b1.7 b5.4 b2.2 b5.9 b2.6 H2O

Meta-GGA
M06-L 291 1.8 0.8 2.3 1.0 2.7 1.3 D2O
revM06-L 311 0.4 0.2 0.5 0.3 0.6 0.3 D2O
M11-L 286 1.0 0.5 1.3 0.6 1.4 0.7 D2O
MN12-L 296 0.4 0.2 0.5 0.2 0.5 0.3 D2O
MN15-L 283 0.4 0.1 0.4 0.2 0.4 0.2 D2O
SCAN415 330 - - - b2.9 - - D2O
SCAN/ML484 300 - b12.9 - b15.7 - b21.5 H2O

Hybrid
revPBE0-D3516 300 b3.4 b1.4 b4.3 b1.7 b4.8 b2.0 H2O

Hybrid meta-GGA
M06 312 1.2 0.5 1.2 0.6 1.2 0.6 H2O
M06-HF 329 4.7 2.5 6.2 3.3 7.3 3.6 H2O
M06-2X 299 2.7 1.1 3.0 1.3 3.2 1.4 H2O
M08-HX 298 2.8 1.5 3.0 1.6 3.2 1.8 H2O
M08-SO 316 2.8 1.3 3.0 1.4 3.2 1.6 H2O
M11 326 3.0 1.5 3.6 1.6 3.9 1.9 H2O
MN12-SX 292 3.7 1.6 4.4 2.0 4.9 2.9 H2O
MN15 316 2.0 1.0 2.0 1.1 2.0 1.3 H2O
SCAN0/ML485 300 - - - b4.6 - - D2O
SCAN0/ML485 300 - - - b4.1 - - H2O

Post-HF
RPA/ML180 300 - b1.7 - b2.2 - b2.6 H2O
CCSD(T)/ML PIMD509 298 - b1.3 - b1.7 - b2.1 H2O
CCSD(T)/ML PIMD509 298 - 2.8 - 3.0 - 3.3 H2O

Experimental
NMR 1970376,511 300 4.8 - - - - - H2O
NMR 1971511,525 300 - 1.9 - - - - H2O
NMR 1967 (for various T)416 300 - 2.4 - - - - H2O
Infrared 2008512/2010513 298 - - - 2.5 - 2.5 H2O
Infrared 2008512/2010513 298 - - - 3.0 - - D2O
NMR 2001 (for various T)426 300 - - - 2.4 - - D2O
NMR 1985419/1987420 298 - - - 1.9-2.0 - - H2O
NMR 1982424 298 - - - 1.7 - - H2O
NMR 1966510 298 - - - 2.6 - - H2O
NMR 1976417 303 - - - - - 2.1 H2O
NMR 1976417 303 - - - - - 2.5 D2O

aτ1,2 were calculated from fitting the auto-correlation functions C1,2(t) with the exponential form A exp[−(t/τ1,2)α].
bThe tail of the auto-correlation function was fitted with exp(−t/τ1,2) and integrated from zero to∞ to give τ1,2.
Others were obtained with the fit A exp(−t/τ1,2) in the exponential regime after the initial subpicosecond librational
decay.
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≤ 10 kcal/mol
≤ 5 kcal/mol

Figure D1: Number of LM visited during a GA run with genewise and SBX crossovers for trans
GPGG on the GAFF PES averaged over 30 instances. Energy ranges relative to the putative GM
are indicated. No mutations nor elitism were applied, other parameters correspond to Table
8.1 of the main text.

Surrogate fitness function

(a) 0.3/0.8 Å (b) 0.4/0.7 Å (c) 0.5/0.6 Å (d) 0.6/1.0 Å (e) 0.8/1.3 Å

Figure D2: Examples of GPGG LM structures at a surrogate and the B3LYP/6-31G(d,p) (in green)
level with respective backbone/heavy-atom RMSD.
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Figure D3: Relative energies with respect to the putative GM in the GPGG test set (188 repre-
sentative geometries) for surrogate methods, compared to the B3LYP/6-31G(d,p) reference.
Energies and corresponding backbone RMSDs stand for structures relaxed from the same
initial geometry in the set (one-to-one match).
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Figure D4: Relative energies with respect to the putative GM in the GPGG test set for surrogate
methods, compared to the B3LYP/6-31G(d,p) reference. Energies and corresponding backbone
RMSDs stand for relaxed structures that have the smallest backbone RMSD over the entire test
set (match according to “closest” geometries). The better agreement of B3LYP/6-31G justifies
the bb-RMSD match rather than the less faithful one-to-one match in Figure D3.
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Figure D5: (a) Standard deviation of the MAE of relative energies between surrogate local min-
ima and their bb-RMSD closest B3LYP/6-31G(d,p) counterparts. (b) Standard deviation of the
average bb-RMSD between the surrogate LM and their closest B3LYP/6-31G(d,p) counterparts.
Statistics were produced over max(S, 70) random subsets for each size S, extracted from the
GPGG test set.
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Figure D6: Average percentage of the cis/trans proline isomerizations that were preserved after
local relaxation on surrogate models. Statistics were produced over max(S, 70) random subsets
for each size S, extracted from the GPGG test set. Hence, it can happen that local relaxations
alter the isomerization and wrongly drive the GA. This is prevented with constraints (cf. Section
8.3.3 of Chapter 8).
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Figure D7: cis-GPGG: minimum energy found along GA runs on surrogate PES for AMOEBA
(upper row) and GAFF (lower row) with and without 10% elitism. The respective final energies
are reported in the legends.
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Figure D8: trans-GPGG: minimum energy found along GA runs on surrogate PES for AMOEBA
(upper row) and GAFF (lower row) with and without 10% elitism. The respective final energies
are reported in the legends.
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Figure D9: GPGG: number of low-lying minima found on the AMOEBA/GAFF surrogate PES
within 15, 10, and 5 kcal/mol with respect to the putative GM, per GA generation averaged over
10 GA runs (upper row) and by running independent GAs (lower row). Distinct LM are taken to
be at least separated by 10−4 kcal/mol and 0.2 heavy-atom RMSD.
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Ẽ 0
B3

LY
P/

6-
31

G
(d

,p
)

[k
ca

l/
m

ol
]

Median = 3.5
75% quantile = 5.7

Figure D10: GPGG: predictive performance of GAFF in giving B3LYP/6-31G(d,p) LM coordi-
nates and relative energies. The median and 75% quantile of absolute errors are indicated. The
75% quantile outliers are marked in green with their respective RMSD.
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Figure D11: GPGG: number of distinct reoptimized LM at B3LYP/6-31G(d,p) in function of the
minimum heavy-atom (no-H) RMSD imposed between all structures.
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Figure D12: GPGG: zero point energy-corrected energies of distinct B3LYP/6-31G(d,p) LM
from Figure 8.11 of Chapter 8, separated at least by 0.9 Å heavy-atom RMSD, which corresponds
to at least one backbone dihedral noticeably different from visual inspection. The number of
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Figure D13: Gramicidin: minimum energy found along GA runs on surrogate PES for AMOEBA
(upper and center row) and GAFF (lower row) without elitism, with 10% elitism and with a
stronger 20% elitism. The respective final energies are reported in the legends. The AMOEBA
with loose side chains corresponds to GA optimizations of backbone dihedrals only. Similarly
to the prolines cycles, the side chain dihedrals are only updated after energy evaluations (with
locally relaxed values). This scheme does not surpass the complete GA optimizer with elitism.
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(a) GAFF, putative GM (from 20% elitism)
RMSD: 2.1/4.3 Å

(b) GAFF, closest LM (from no elitism)
RMSD: 0.5/1.5 Å

E − Ẽ0 = 26.09 kcal/mol

Figure D14: Gramicidin: putative GM and closest LM found on the GAFF surrogate PES over 30
GA runs (10 without elitism, 10 with 10% elitism and 10 with 20% elitism). E− Ẽ0 is the relative
energy of the LM with respect to the putative GM. The DFT B3LYP/6-31G(d,p) GM is depicted
in green with respective backbone/heavy-atom RMSD. For runs with 10% elitism, the closest
LM has ∆Ẽ = 47.01 kcal/mol with 0.7/2.0 Å RMSD. For runs with 20% elitism, the closest LM
has ∆Ẽ = 30.39 kcal/mol with 0.7/1.9 Å RMSD. We note that these closest LM do not finally
relax to the B3LYP/6-31G(d,p) GM when reoptimized.
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Figure D15: Gramicidin: energy distribution of low-lying LM found on surrogate PES after 10
GA runs for AMOEBA (upper row), AMOEBA with loose side chains (see Figure D13 for the
description) and GAFF (lower row). Ẽ0 is the energy of the surrogate putative GM found within
10 runs without elitism, with 10% elitism and with a stronger 20% elitism, respectively. Distinct
LM are taken to be at least separated by 10−4 kcal/mol and 0.75 heavy-atom RMSD.
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Figure D16: Gramicidin: number of low-lying minima found on the AMOEBA/GAFF surrogate
PES within 15, 10, and 5 kcal/mol with respect to the putative GM, per GA generation averaged
over 10 GA runs (upper row) and by running independent GAs (lower row). Distinct LM are
taken to be at least separated by 10−4 kcal/mol and 0.75 heavy-atom RMSD.
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Figure D17: Gramicidin: number of distinct reoptimized LM at B3LYP/6-31G(d,p) in function
of the minimum heavy-atom RMSD imposed between all structures.

264



SA
FF

GA
AMOEBA

GA
GAFF

0

10

20

30

40

50

∆
E

+
∆

Z
PE

[k
ca

l/
m

ol
]

(7) (11) (10)

Gramicidin

Figure D18: Gramicidin: zero point energy-corrected energies of distinct B3LYP/6-31G(d,p) LM
from Figure 8.15 of Chapter 8, separated at least by 1.2 Å heavy-atom RMSD, which corresponds
to at least two side chain dihedrals noticeably different from visual inspection. The number of
those is indicated in parentheses.
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(25) Paldus, J.; Čížek, J.; Shavitt, I. Physical Review A 1972, 5, 50–67.

(26) Becca, F.; Sorella, S., Quantum Monte Carlo approaches for correlated systems,
1st ed.; Cambridge University Press: Cambridge, 2017.

(27) Al-Hamdani, Y. S.; Nagy, P. R.; Zen, A.; Barton, D.; Kállay, M.; Brandenburg, J. G.;
Tkatchenko, A. Nature Communications 2021, 12, 3927.

(28) Parr, R. G.; Yang, W., Density-functional theory of atoms and molecules, 1st ed.;
Oxford University Press: Oxford, 1989.

(29) Koch, W.; Holthausen, M. C., A Chemist ’s Guide to Density Functional theory,
2nd ed.; Wiley-VCH Verlag GmbH: Weinheim, 2001.

(30) Engel, E.; Dreizler, R. M., Density Functional Theory: An Advanced Course; The-
oretical and Mathematical Physics; Springer-Verlag: Berlin Heidelberg, 2011.

(31) Klopper, W.; Bak, K. L.; Jørgensen, P.; Olsen, J.; Helgaker, T. Journal of Physics B:
Atomic, Molecular and Optical Physics 1999, 32, R103–R130.

(32) Marx, D.; Hutter, J., Ab Initio Molecular Dynamics: Basic Theory and Advanced
Methods, Reprint; Cambridge University Press: Cambridge, 2012.

(33) Tuckerman, M. E., Statistical Mechanics: Theory and Molecular Simulation,
1st ed.; Oxford University Press: Oxford, 2010.

(34) Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids, 2nd ed.; Oxford
University Press: Oxford, 2017.

268



Bibliography

(35) Scheraga, H. A.; Khalili, M.; Liwo, A. Annual Review of Physical Chemistry 2007,
58, 57–83.

(36) Gomes, C. M.; Faísca, P. F. N., Protein Folding: An Introduction, 1st ed.; Springer:
Cham, 2019.

(37) Torrie, G. M.; Valleau, J. P. Journal of Computational Physics 1977, 23, 187–199.

(38) Dellago, C.; Bolhuis, P. G.; Chandler, D. Journal of Chemical Physics 1999, 110,
6617–6625.

(39) Laio, A.; Parrinello, M. Proceedings of the National Academy of Sciences 2002,
99, 12562–12566.

(40) Barducci, A.; Bonomi, M.; Parrinello, M. WIREs Computational Molecular Sci-
ence 2011, 1, 826–843.

(41) Hao, G.-F.; Xu, W.-F.; Yang, S.-G.; Yang, G.-F. Scientific Reports 2015, 5, 15568.

(42) Bernardi, R. C.; Melo, M. C. R.; Schulten, K. Biochimica et Biophysica Acta (BBA)
- General Subjects 2015, 1850, 872–877.

(43) Borrero, E. E.; Dellago, C. The European Physical Journal Special Topics 2016,
225, 1609–1620.

(44) Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Science 1983, 220, 671–680.

(45) Mouvet, F.; Villard, J.; Bolnykh, V.; Rothlisberger, U. Accounts of Chemical Re-
search 2022, 55, 221–300.

(46) Brunk, E.; Rothlisberger, U. Chemical Reviews 2015, 115, 6217–6263.

(47) IBM-MPI-CPMD Car-Parrinello Molecular Dynamics code, http://www.cpmd.org,
2019.

(48) Kühne, T. D. et al. Journal of Chemical Physics 2020, 152, 194103.

(49) Trobec, R.; Slivnik, B.; Bulić, P.; Robič, B., Introduction to Parallel Computing,
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