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Abstract

According to the proposed Artificial Intelligence Act by the European Comission (expected

to pass at the end of 2023), the class of High-Risk AI Systems (Title III) comprises several

important applications of Deep Learning like autonomous driving vehicles or robot-assisted

surgery, which rely on supervised learning with image data. According to Article 15 in the afore-

mentioned legal framework, such systems must be resilient to errors, faults or inconsistencies

that may occur within the the environment, and to attempts by unauthorised third parties to

alter their performance by exploiting the system vulnerabilities. Non-compliance can result in

fines and a forced withdrawal from the market for infringing products and companies.

In this work, we develop theory and algorithms to train and certify robust Deep Neural

Networks. Our theoretical results and proposed algorithms provide resiliency in different

scenarios like the presence of adversarial perturbations or injection of random noise in the

input features. In this way, our framework allows compliance with the requirements of the AI

Act, and is a step towards a safe rollout of High-Risk AI systems based on Deep Learning.

To summarize, the main contributions of this Ph.D. thesis are: (I) first algorithm for certifying

the robustness of Deep Neural Networks with the use of Polynomial Optimization, by upper

bounding their Lipschitz constant (Latorre et al., 2020a), (II) first algorithm with guarantees for

performing 1-path-norm regularization for Shallow Networks (Latorre et al., 2020c), and proof

of its relation with the robustness to adversarial perturbations, (III) extension of 1-path-norm

regularization methods to Deep Neural Networks, (IV) first generalization bounds and robust-

ness analysis of Deep Polynomial Networks, and a novel regularization scheme to improve

their robustness (Zhu et al., 2022), (V) first theoretically correct descent method for Adversarial

Training, the most common algorithm for training robust networks (Latorre et al., 2023), (VI)

first theoretically correct formulation of Adversarial Training as a bilevel optimization problem,

which provides a solution of the robust overfitting phenomenon, (VII) ADMM algorithm with

guarantees of fast convergence, for the problem of Denoising Adversarial Examples using Gen-

erative Adversarial Networks as a prior (Latorre et al., 2019) and (VIII) an explicit regularization

scheme for Quadratic Neural Networks with guaranteed improvement in the robustness to

random noise, compared to SVMs (Latorre et al., 2021).
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Résumé

En accord avec le projet législatif Artificial Intelligence Act proposé par la Commission Eu-

ropéenne (qui devrait passer à la fin de l’année 2023), plusieurs applications importantes

d’apprentissage profond par réseau neuronal comme les véhicules autonomes ou la chirur-

gie assistée par des robots, qui utilisent des techniques d’apprentissage supervisé à partir

d’images, seront inlcluses dans la classe de Systèmes d’IA à Haut-Risque (Titre III). Selon

l’article 15 du cadre juridique mentionné, de tels systèmes doivent être résistants aux erreurs,

fautes ou inconsistences qui peuvent survenir dans leur environnement, ainsi qu’aux ten-

tatives d’altération de leur fonctionnement par des acteurs non-autorisés, qui pourraient

exploiter les vulnerabilités du système. Leur non-conformité peut entraîner des amendes et

un retrait de force du marché pour tout produit ou compagnie impliqué.

Dans cette thèse, nous développons la théorie concernant l’entraînement et l’évaluation de

Réseaux Neuronaux Robustes. Nos résultats théoriques et algorithmes proposés fournissent

une résistance à divers scenarios tels que la présence de perturbations adverses ou l’injection

de bruit aléatoire dans les données d’entrée. De cette façon, notre cadre permet de satisfaire les

exigences de l’AI Act, et constitue un pas vers un déploiement sûr des systèmes à haut-risque

basés sur l’apprentisage profond.

Pour résumer, les principales contributions de cette thèse doctorale sont : (I) premier algo-

rithme pour vérifier la robustesse de Réseaux Neuronaux Profonds basé sur l’optimisation

polynomiale et une borne superiéure de leur constante de Lipschitz (Latorre et al., 2020a),

(II) premier algorithme avec des garanties théoriques pour effectuer la régularisation de type

1-path-norm sur des réseaux neuronaux à une couche (Latorre et al., 2020c) et une preuve de

sa relation avec la robustesse aux perturbations adverses, (III) extension du cadre de régulari-

sation de type 1-path-norm pour des Réseaux Neuronaux profonds, (IV) premières bornes

sur l’erreur de généralisation, une analyse de robustesse des Réseaux Polynomiaux profonds

et un nouveau cadre de régularisation pour augmenter leur robustesse (Zhu et al., 2022),

(V) première méthode correcte de descente pour l’apprentissage contradictoire (Adversarial

Training), l’algorithme le plus commun pour l’entraînement de réseaux neuronaux robustes

(Latorre et al., 2023), (VI) première formulation correcte de l’apprentissage contradictoire

comme un problème d’optimisation à deux niveaux, fournissant une solution au problème

du sur-ajustment robuste (robust overfitting), (VII) algorithme de type ADMM avec garanties

des convergence rapide, pour le problème du débruitage des perturbations adverses avec des

v
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Résumé

Réseaux Antagonistes Génératifs (Generative Adversarial Networks) comme a priori (Latorre

et al., 2019) et (VIII) un cadre de régularisation explicite pour des Réseaux Neuronaux avec

activation quadratique, avec garantie d’amélioration de robustesse aux bruits aléatoires, en

comparaison avec les SVMs (Latorre et al., 2021).

List of Keywords. Adversarial Training, Robustness, Adversarial Perturbations, Non-convex

optimization, Explicit Regularization, Deep Neural Networks, Deep Polynomial Networks,

Generative Adversarial Networks, Generative Models, Generalization error, Polynomial Opti-

mization, Lipschitz constant, bilevel optimization, ADMM, AI
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1 Introduction

We are currently undergoing a fourth industrial revolution, characterized by a push towards

automation of labor, device interconnectivity and human-machine interaction. This paradigm

shift has been enabled thanks to the massive adoption of internet services and smart devices

worldwide, which has exponentially increased the amount of available data compared to

previous decades. Other instrumental developments are the increased accessibility to cloud

computing and the evolution of highly parallel processor architectures like the Graphics

Processing Unit (GPU).

The key technology transforming such abundant data and computational resources intro

practical applications is Machine Learning (ML), which lies at the intersection between statis-

tics and computer science. The data-driven approach of ML can solve problems like image

classification (Deng et al., 2009), spam email filtering (Dada et al., 2019) or image segmentation

(Kirillov et al., 2023), that are hard to model as a rules-based system based on human expertise.

Among ML techniques, the subfield of Deep Learning (DL) has made striking advances in

performance, even matching that of humans in various tasks across Computer Vision (CV)

(Krizhevsky et al., 2012; Szegedy et al., 2015; Simonyan and Zisserman, 2015) and Natural

Language Processing (NLP) (Brown et al., 2020; Touvron et al., 2023), to name a few. Nowadays

most, if not all, contemporary mainstream applications of ML are based on Deep Neural

Networks. Indeed, the field of Artificial Intelligence (AI) has become synonymous with DL,

despite the rich pre-DL era of symbolic (rule-based) AI (Nilsson, 1982).

The promise of near-human performance of AI systems based on Deep Learning, has prompted

a gold-rush where many companies as well as governments have invested large amounts of

capital, with the goal of quickly developing ML/DL-based applications. The rising cost of

human labor in most of the world due to increased productivity and aging demographics, has

further added to the pressure. For example, hypothetical autonomous driving systems with

super-human capabilities could leave taxi drivers worldwide without a job, making it a highly

profitable endeavour, if succesful. How far are we from this hypothetical scenario?
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Chapter 1. Introduction

Good performance of ML/DL methods in curated benchmark test sets suggests we are close,

and might lead to higher confidence in the quality of trained models deployed in real-world

applications. This is evidenced by recent rollouts of autonomous driving vehicles by compa-

nies like Motional, Cruise, Waymo, and many others. Whereas Waymo takes a more careful

approach by providing services only in well-tested and monitored routes within pre-mapped

zones, the Full Self-Driving (FSD) mode in Tesla vehicles allows autonomous driving on any

public road and is available to any owner in the US that passes a safety scoring system.

Unfortunately, the bold approach of letting AI systems take decisions outside of strictly con-

trolled environments, has led to the discovery of multiple failure cases in ML/DL applications.

Oftentimes, this has exposed users to health and economic hazards. Perhaps the most well-

known and controversial example is the aforementioned FSD system, which has been linked to

erratic behaviour and fatal accidents. As of writing, the website https://www.tesladeaths.com

records 31 deaths related to Tesla’s Autopilot technologies. Other examples of unexpected fail-

ure cases are discriminatory practices against racial minorities in ML-based hiring (Köchling

and Wehner, 2020) or credit approval (Bartlett et al., 2019; Fuster et al., 2017). This paints a

grim picture of the current state and future of ML/DL applications.

We have come to the realization of a sad truth: only in the most simple or toy applications

can we expect the distribution of our training and testing data to match, or to represent

reality in an accurate way. The training data usually has flaws, and often the performance of

ML/DL models degrades in production. Even worse, it is not uncommon that such drops in

performance are severe (Zech et al., 2018; Schulam and Saria, 2017), leading to unexpected

and catastrophic events. Indeed, accuracy or mean error on a curated benchmark test set is

one of the poorest indicators of future reliability, safety and fairness of the decisions taken by

autonomous AI systems. To understand what can go wrong, we describe a non-exhaustive list

of failure cases that have to be addressed before safely deploying any ML based application to

production:

▷ Robustness to natural distribution shifts. The distribution of real-world data is always

morphing due to changes in human behaviour, device specifications, quality of sen-

sors, natural phenomena like weather conditions, and fat-tail events that occur with

extremely low probability (Quionero-Candela et al., 2009; Recht et al., 2019). However, at

any point in time, AI systems are limited to learn from data collected in the past. More-

over, the data collection process can suffer from biases (Torralba and Efros, 2011; Ntoutsi

et al., 2020) like observing only data from sensors in pristine operational conditions (Zhu

and Wu, 2004). In reality, sensors like cameras can unexpectedly introduce noise due to

faulty components or wear. Hence, AI systems should be tested on natural perturbations

of the training data like the addition of random noise, or more structured variations like

lightning conditions (Taori et al., 2020), changes in weather or geographical location

(Robey et al., 2021b).

▷ Robustness to adversarial perturbations. The real-world is a multi-agent system where

2
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economic incentives change the behaviour of its participants. For example, a person

performing a phishing attack which has been filtered by an AI system will probably

make modifications to the email text until it is no longer classified as malicious (Liang

et al., 2016). In cases like this, the test set performance observed during development

quickly decays, as agents try to optimize their outcome. In fact, AI systems based on

Deep Neural Networks are highly vulnerable to adversarial examples (Biggio et al., 2013a;

Szegedy et al., 2014a), which can be defined as imperceptible modifications of data that

are tailored to manipulate the decision of the network. In the context of supervised

learning, this means making the network output an incorrect class. For example, it is of

particular concern that traffic signs can be manipulated by third parties with the purpose

of inducing errors in autonomous driving systems (Sitawarin et al., 2018; Eykholt et al.,

2018a; Li et al., 2021), as this can potentially lead to fatal accidents.

The failures and risks caused by the rush to deploy AI systems in user-facing applications has

not gone unnoticed by governments and regulators. Elected officials have started to draft

legislation protecting their citizens from such threats. The European Union has taken the

lead by introducing the Artificial Intelligence Act1. According to the draft proposed by the

European Comission (expected to pass at the end of 2023), applications like autonomous

driving vehicles based on Deep Learning would be classified as a High-Risk AI System (Title

III). Article 15 in the aforementioned legal framework states that such systems must at least

comply with the following:

▷ High-risk AI systems shall be designed and developed in such a way that they achieve,

in the light of their intended purpose, an appropriate level of accuracy, robustness and

cybersecurity, and perform consistently in those respects throughout their lifecycle.

▷ High-risk AI systems shall be resilient as regards errors, faults or inconsistencies that

may occur within the system or the environment in which the system operates, in

particular due to their interaction with natural persons or other systems.

▷ High-risk AI systems shall be resilient as regards attempts by unauthorised third parties

to alter their use or performance by exploiting the system vulnerabilities. The tech-

nical solutions to address AI specific vulnerabilities shall include, where appropriate,

measures to prevent and control for attacks trying to manipulate the training dataset

(data poisoning), inputs designed to cause the model to make a mistake (adversarial

examples), or model flaws.

This regulation has extraterritorial scope (i.e., it will also apply to users outside the EU if the

product is used in the EU) and will impose high fines of up toe30 million or up to 6% of the

company’s total worldwide annual sales for the preceding financial year (Article 71). Hence,

products based on Deep Learning components that fail to achieve and certify high robustness

1https://artificialintelligenceact.eu
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will not be able to reach the market. In case of failures, the responsible companies will be

exposed to unexpected financial penalties and prosecution.

Is such legislation enough to prevent future accidents? Not quite. The main issue with

regulations in a nascent industry like contemporary AI based on Deep Learning, is its lack of

clear technical guidelines i.e., it does not describe how to prove the desired requirement of,

for example, being resilient to errors. In contrast, centuries-old industries like aviation have

standardized tests and protocols that can be followed in a clear manner to verify the security

of a plane. Hence, we are left with general guidelines and objectives regarding the safety of

AI systems, but without a clear algorithmic and theoretical basis of it means to be robust.

Developing such a framework is a task delegated to industry representatives and academics

alike. This leads to the main research questions of this thesis:

How can we train Deep Neural Networks that are robust to natural/adversarial perturbations at

test time? How can we verify and quantify their robustness?

In this work, we attempt to answer these questions from a Mathematical Optimization and/or

Statistical Learning perspective. We model the properties under consideration as solutions of

(continuous) maximization/minimization problems, and we quantify their relation with the

size of the training dataset. In this way, we are able to leverage a rich algorithmic framework to

achieve the desired properties in a computationally and statistically efficient and manner.

1.1 Outline of the thesis

Throughout, we focus on the supervised classification task with score-based classifiers. The

score function is a map f :Rd →RK , where K is the number of classes, that defines a classifier:

f̂ :Rd → {1, . . . ,K }, f̂ (x) = argmax
j=1,...,K

f (x) j (1.1)

For the most part, we choose to parametrize the score function as a Deep Neural Network:

f (x) :=WDσ(WD−1σ(· · ·W2σ(W1x) · · · )) (1.2)

where [Wℓ]D
i=1 are matrices of appropriate size, σ :R→R is the so-called activation function

(applied element-wise), and we refer to D as the depth of the network.

1.1.1 Robustness through Lipschitz Regularization

Perhaps the simplest way to define the robustness of a classifier at a point x, is to determine

the largest neighborhood around x where the predicted label remains constant (Szegedy et al.,
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2014a). An upper bound on the Lipschitz constant of the score function:

L( f ) = sup
x0,x1

∥ f (x0)− f (x1)∥
∥x0 −x1∥

(1.3)

leads to such a certificate of robustness. For example, assuming all the norms are chosen as

the euclidean ℓ2-norm, we can assert the following:

Lemma 1.1. (Tsuzuku et al., 2018a, Proposition 1)

f (x)y −max
j ̸=y

f (x) j ≥
p

2ϵL( f ) ⇒ argmax
j=1,...,K

f (x +δ) j = y, ∀δ : ∥δ∥ ≤ ϵ (1.4)

That is, the prediction does not change inside a ball with radius proportional to the margin at x,

and inversely proportional to the Lipschitz constant (or an upper bound thereof). Analogous

bounds like (1.4) exist for different choices of ℓp -norms.

In chapter 2 (Latorre et al., 2020a) we present an approach to compute tight upper bounds

on the Lipschitz constant of a Deep Neural Network via polynomial optimization (POP)

(Lasserre, 2015). Exactly computing the Lipschitz constant (1.3), even for shallow networks,

is unfortunately NP-hard (Virmaux and Scaman, 2018), which leaves only upper bounds as

a tractable proxy. Moreover, up to the publication of Latorre et al. (2020a), only poor upper

bounds were available for Deep Neural Networks in the ℓ∞-norm case (Cisse et al., 2017a).

Our framework was further refined in other works (Chen et al., 2020b) and extended to the

case of Deep Equilibrium Models (Chen et al., 2021a).

Despite providing tight bounds, the main issue with the polynomial optimization approach is

its computational cost, as it involves solving a large Linear (LP) or Semidefinite (SDP) program

whose number of variables grows exponentially with the depth of the network. If the goal is to

certify the robustness of the network (Zhang et al., 2018; Raghunathan et al., 2018a; Lecuyer

et al., 2019), such cost is bearable as the LP/SDP problem is solved only once. On the other

hand, encouraging a small Lipschitz constant during training i.e., Lipschitz Regularization

(Terjék, 2020; Liu et al., 2022; Kuhn et al., 2019), is a costlier endeavor that promotes robustness

in the sense of lemma 1.1 as well as robustness to distribution shifts in the Wasserstein metric

c.f., Kuhn et al. (2019, Theorem 5).

Indeed, given a labelled dataset {(xi , yi )}n
i=1, such goal can be achieved through a regularized

empirical risk minimization problem with loss ℓ and using and upper-bound on the Lipschitz

constant L̂( f ) as regularizer:

min
f

1

n

n∑
i=1

ℓ( f , xi , yi )+λL̂( f ) (1.5)

Unfortunately, solving this problem with first-order methods requires computing L̂( f ) at each

iteration, which renders this approach impractical. Hence, one would rather trade tightness of

the bound for a more efficient and fast way to compute it.
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In chapter 3 (Latorre et al., 2020c) we resolve the tightness vs. complexity trade-off that

appears when computing upper bounds on the Lipschitz constant of a Neural Network. We

demonstrate that the 1-path-norm of a Shallow Neural Network (Neyshabur et al., 2015c)

achieves a sweetspot i.e., it provides an upper bound on the Lipschitz constant of the network

that is tighter than the trivial product-of-weight-norms bound (Bartlett et al., 2017a; Cisse et al.,

2017a), whilst its computational cost remains proportional to a forward pass over the network.

Additionaly, we show that it allows a closed form proximal operator (Parikh et al., 2014) which

can be efficiently computed despite its non-smoothness and non-convexity, allowing the use

of stochastic proximal-gradient-type methods to obtain solutions of the regularized empirical

risk minimization problem:

min
f

1

n

n∑
i=1

ℓ( f , xi , yi )+λP1( f ) (1.6)

where P1( f ) denotes the 1-path-norm of the Neural Network f . Up until this date, it is the

only algorithm designed to handle this type of regularization. Due to the properties of the

1-path-norm, (1.6) is a type of Lipschitz regularization, inducing robustness in the network.

The arguments leading to the efficient proximal operator in the shallow case do not extend

naturally to the setting with multiple layers, where one needs to solve a system of non-linear

equations without apparent efficient solution. Unfortunately, contemporary network architec-

tures used in industrial state-of-the-art applications are always composed of multiple layers,

which limits the impact of the method developed in chapter 3 (Latorre et al., 2020c).

In chapter 4 we extend the 1-path-norm regularization framework to multilayer networks and

study the feasibility of using automatic differentiation modules to either directly optimize

the objective eq. (1.6), or approximately solve the proximal operator with first-order methods.

Surprisingly, we find that despite the lack of optimization guarantees of such methods, they

are able to increase the accuracy of Deep Neural Networks. Moreover, we show that the 1-

path-norm has a positive effect on the robustness of the network to the presence of random

uniform noise in the data at inference time. This adds to the existing empirical evidence in

favor of the 1-path-norm as a regularizer (Jiang et al., 2020; Dziugaite et al., 2020).

In chapter 5 (Zhu et al., 2022) we derive the first bounds on the Rademacher Complexity of a

various Polynomial Network architectures(Chrysos et al., 2020), under different boundedness

assumptions on the input. Such bounds lead to the first known generalization error bounds

for this class of models. To complement our understanding, we also derive upper bounds

on their Lipschitz constant allowing Lipschitz regularization of such models with robustness

guarantees.

The concept of Polynomial Neural Networks (Chrysos et al., 2020) takes the idea of multiplica-

tive interactions (Jayakumar et al., 2020) to the extreme, and replaces all activation functions by

multiplications between variables. This type of architecture has been succesful tasks like image

classification Wang et al. (2018), image generation Chrysos and Panagakis (2020), sequence

6



1.1 Outline of the thesis

models Su et al. (2020) and face verification Kemelmacher-Shlizerman et al. (2016). Hence,

their use in applications warrants an study of their theoretical properties of generalization

and robustness.

Indeed, recent research on Deep Learning architectures has moved beyond simple com-

positions of linear layers, instead exploring layers with multiplicative interactions between

variables. Beyond Polynomial Networks, an important example of this trend is the introduction

of the self-attention mechanism (Vaswani et al., 2017a), whose key component, the attention

matrix is nothing but a second-degree polynomial of the input variables. Results in previous

chapters are not directly applicable in this case, which highlights the need for theory and

algorithms that are tailored to other network architectures that depart from the traditional

feed-forward structure in eq. (1.2).

1.1.2 Upending the Adversarial Training Paradigm

Using upper bounds on the Lipschitz constant provides strong guarantees of robustness, as

it measures a worst-case rate of change of the network’s output as a function of the input-

perturbation size. Unfortunately, this worst-case approach can lead to loose upper bounds

and suboptimal performance. In contrast, Adversarial Training (Madry et al., 2018b) has as

objective the average loss on the perturbed data:

min
f

n∑
i=1

max
∥δi ∥≤ϵ

ℓ( f , xi +δi , yi ) (1.7)

whose solution can provide better performance when evaluating the average error rate on a

perturbed dataset. Indeed, AT is usually part of the best performing models in the robustness

benchmark RobustBench (Croce et al., 2020a).

In chapter 6 (Latorre et al., 2023) we scrutinize the structure of the AT algorithm, and we

find that its theoretical optimization foundation i.e., Madry et al. (2018b, Corollary C.2.), is

false, and we present two counterexamples. More precisely, we show that finding a single

optimal adversarial perturbation i.e., a solution of the inner-maximization problem in the

zero-sum formulation of AT, does not necessarily yield a descent direction for the robust loss.

Rather the gradient (with respect to the model parameters) at such point could constitute

an ascent direction, leading to an increase in the robust loss during training. Based on

correct optimization results, we derive new variations of the AT algorithm that can certify their

updates as descent directions and thus are able to mitigate some of the problems of the vanilla

AT approach.

In chapter 7 we uncover a more concerning issue in the the zero-sum structure of the original

AT optimization formulation (Madry et al., 2018b) (1.7): a solution of this problem does not

provide any guarantee of robustness to adversarial perturbations, when the loss function ℓ

is chosen as the cross-entropy or other common surrogate losses used in practice. Thus, the

occurrence of issues like robust overfitting (Rice et al., 2020), whereby more iterations of AT
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lead to lower robustness, is not surprising at all. Rather, they are an artifact of the flawed AT

formulation using losses like cross-entropy. We present a correct formulation of AT as a bilevel

optimization formulation (Bard, 2013) and show how it provides guarantees of robustness and

solves the robust overfitting issue.

1.1.3 Robustness by Denoising the input data

In chapter 8 (Latorre et al., 2019), we show how to achieve robustness to adversarial pertur-

bations by modifying the data that is fed to the model. This is a different approach when

compared to previous sections where we induced robustness by means of choosing better

parameters for the model. Thanks to the success of generative models like Generative Adver-

sarial Networks (GANs) (Goodfellow et al., 2014) or Difussion models (Ho et al., 2020), it is

possible to learn the distribution of clean, unperturbed samples and denoise the input data

to the model by means of a non-convex projection onto the range of the generative model.

In this way, any possible adversarial perturbation present in the input is partially removed,

boosting the robustness of the model.

This strategy has proven succesful (Ilyas et al., 2017; Samangouei et al., 2018). It requires solving

a non-convex and possibly non-smooth projection problem of the form minz ∥x−G(z)∥ where

G is the generator. However, common norms used in adversarial perturbations like the ℓ∞-

norm (Madry et al., 2018b), are non-smooth and have a highly sparse (sub)gradient that

leads to poor optimization of the objective. In chapter 8 (Latorre et al., 2019), we solve this

problem using a splitting approach, where we adapt the ADMM algorithm to the non-convex

projection problem previously mentioned. This allows the use of fast proximal operators

of non-smooth norms like the ℓ∞-norm, improving the convergence. Indeed, we observe

improved robustness against ℓ∞-bounded adversarial perturbations, when denoising using

the same norm.

1.1.4 Random Noise Robustness through Regularization

In chapter 9 (Latorre et al., 2021) we focus on a different type of robustness, where we assume

a zero-mean random variable x is contaminated with Gaussian noise ϵ ∼ N (0,σI ). If we

let Σ = E[xx⊤] be the covariance matrix of the data x, and xσ = x + ϵ be the noisy variable,

we have that Σσ = E[xσx⊤
σ ] = Σ+σI . In this case we have that the intrinsic dimension (c.f.

definition 9.2) of the noisy variable xϵ has the following property:

lim
σ→∞

∥Σσ∥tr

∥Σσ∥2
→ d (1.8)

where d is the dimension of the space. Simply put, this means that when the magnitude of the

random noise increases, the resulting variable does not concentrate on any linear subspace.

This property is usually known as isotropy. To understand and improve the performance of a

Neural Networks classifiers when Gaussian noise is present in the input, we study the class of

8
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neural networks with quadratic activations (Du and Lee, 2018; Mannelli et al., 2020), which

can be rewritten as:

f (x) = vTσ(W x) =
m∑

i=1
viσ(w⊤

i x)

=
m∑

i=1
vi x⊤wi w⊤

i x

= x⊤
(

m∑
i=1

vi wi w⊤
i

)
x

= x⊤Qx

(1.9)

Hence, we can study properties of neural networks with quadratic activations by analyzing

quadratic functions of the form x⊤Qx. Indeed, eq. (1.9) states that we have the factorization

Q = diag vW W ⊤. Now, recall the variational formulation of the nuclear norm of a matrix:

∥Q∥tr = min
Q=UV ⊤

∥U∥F∥V ∥F (1.10)

given that Q = diag(v)W W ⊤ we have:

∥Q∥tr ≤ ∥diag(v)W ∥F∥W ∥F ≤ ∥v∥2∥W ∥2
F (1.11)

The quantities on the right-hand-side of eq. (1.11) are in fact used as the most common

regularization in neural networks, the so-called weight decay, which penalizes the ℓ2-norm

of the vector v and the Frobenius norm of the matrix W . Hence, in order to understand

neural networks with quadratic activations and weight decay, it suffices to study the class of

quadratics of the form x⊤Qx with a nuclear norm constraint on the matrix Q.

Precisely, In chapter 9 (Latorre et al., 2021) we find that such class generalizes better in the

presence of isotropic data, compared to kernel methods like Support Vector Machines (SVMs).

This explains recent empirical observations that neural networks require fewer samples than

SVMs in high-noise environments Ghorbani et al. (2020).

9





2 Lipschitz constant estimation of Neu-
ral Networks via sparse polynomial
optimization

Fabian Latorre, Paul Rolland and Volkan Cevher. International Conference on Learning Repre-

sentations (ICLR) 2020.

Abstract. We introduce LiPopt, a polynomial optimization framework for computing increas-

ingly tighter upper bounds on the Lipschitz constant of neural networks. The underlying

optimization problems boil down to either linear (LP) or semidefinite (SDP) programming. We

show how to use the sparse connectivity of a network, to significantly reduce the complexity

of computation. This is specially useful for convolutional as well as pruned neural networks.

We conduct experiments on networks with random weights as well as networks trained on

MNIST, showing that in the particular case of the ℓ∞-Lipschitz constant, our approach yields

superior estimates, compared to baselines available in the literature.

2.1 Introduction

We consider a neural network fd defined by the recursion:

f1(x) :=W1x fi (x) :=Wi σ( fi−1(x)), i = 2, . . . ,d (2.1)

for an integer d larger than 1, matrices {Wi }d
i=1 of appropriate dimensions and an activation

function σ, understood to be applied element-wise. We refer to d as the depth, and we focus

on the case where fd has a single real value as output.

In this work, we address the problem of estimating the Lipschitz constant of the network fd . A

function f is Lipschitz continuous with respect to a norm ∥·∥ if there exists a constant L such

that for all x, y we have | f (x)− f (y)| ≤ L∥x − y∥. The minimum over all such values satisfying

this condition is called the Lipschitz constant of f and is denoted by L( f ).

The Lipschitz constant of a neural network is of major importance in many successful applica-

tions of deep learning. In the context of supervised learning, Bartlett et al. (2017b) show how it

directly correlates with the generalization ability of neural network classifiers, suggesting it

11



Chapter 2. Lipschitz constant estimation of Neural Networks

as model complexity measure. It also provides a measure of robustness against adversarial

perturbations (Szegedy et al., 2014a) and can be used to improve such metric (Cisse et al.,

2017a). Moreover, an upper bound on L( fd ) provides a certificate of robust classification

around data points (Weng et al., 2018).

Another example is the discriminator network of the Wasserstein GAN (Arjovsky et al., 2017),

whose Lipschitz constant is constrained to be at most 1. To handle this constraint, researchers

have proposed different methods like heuristic penalties (Gulrajani et al., 2017), upper bounds

(Miyato et al., 2018a), choice of activation function (Anil et al., 2019), among many others.

This line of work has shown that accurate estimation of such constant is key to generating

high quality images.

Lower bounds or heuristic estimates of L( fd ) can be used to provide a general sense of how

robust a network is, but fail to provide true certificates of robustness to input perturbations.

Such certificates require true upper bounds, and are paramount when deploying safety-critical

deep reinforcement learning applications (Berkenkamp et al., 2017; Jin and Lavaei, 2018). The

trivial upper bound given by the product of layer-wise Lipschitz constants is easy to compute

but rather loose and overly pessimistic, providing poor insight into the true robustness of a

network (Huster et al., 2018).

Indeed, there is a growing need for methods that provide tighter upper bounds on L( fd ), even

at the expense of increased complexity. For example Raghunathan et al. (2018a); Jin and Lavaei

(2018); Fazlyab et al. (2019a) derive upper bounds based on semidefinite programming (SDP).

While expensive to compute, these type of certificates are in practice surprisingly tight. Our

work belongs in this vein of research, and aims to overcome some limitations in the current

state-of-the-art.

Our Contributions.

▷ We present LiPopt, a general approach for upper bounding the Lipschitz constant of

a neural network based on a relaxation to a polynomial optimization problem (POP)

(Lasserre, 2015). This approach requires only that the unit ball be described with poly-

nomial inequalities, which covers the common ℓ2- and ℓ∞-norms.

▷ Based on a theorem due to Weisser et al. (2018), we exploit the sparse connectivity of

neural network architectures to derive a sequence of linear programs (LPs) of consider-

ably smaller size than their vanilla counterparts. We provide an asymptotic analysis of

the size of such programs, in terms of the number of neurons, depth and sparsity of the

network.

▷ Focusing on the ℓ∞-norm, we experiment on networks with random weights and net-

works trained on MNIST (Lecun et al., 1998). We evaluate different configurations of

depth, width and sparsity and we show that the proposed sequence of LPs can provide

tighter upper bounds on L( fd ) compared to other baselines available in the literature.

12



2.2 Polynomial optimization formulation

Notation. We denote by ni the number of columns of the matrix Wi in the definition (2.1) of

the network. This corresponds to the size of the i -th layer, where we identify the input as the

first layer. We let n = n1 + . . .+nd be the total number of neurons in the network. For a vector

x, Diag(x) denotes the square matrix with x in its diagonal and zeros everywhere else. For

an array X , vec(X ) is the flattened array. The support of a sequence supp(α) is defined as the

set of indices j such that α j is nonzero. For x = [x1, . . . , xn] and a sequence of nonnegative

integers γ= [γ1, . . . ,γn] we denote by xγ the monomial xγ1

1 xγ2

2 . . . xγn
n . The set of nonnegative

integers is denoted byN.

Remark. The definition of network (2.1) covers typical architectures composed of dense and

convolutional layers. In general, our proposed approach can be readily extended with minor

modifications to any directed acyclic computation graph e.g., residual network architectures

(He et al., 2016).

2.2 Polynomial optimization formulation

In this section we derive an upper bound on L( fd ) given by the value of a POP, i.e. the minimum

value of a polynomial subject to polynomial inequalities. Our starting point is the following

theorem, which casts L( f ) as an optimization problem:

Theorem 2.1. Let f be a differentiable and Lipschitz continuous function on an open, convex

subset X of an euclidean space. Let ∥·∥∗ be the dual norm. The Lipschitz constant of f is given

by

L( f ) = sup
x∈X

∥∥∇ f (x)
∥∥∗ (2.2)

For completeness, we provide a proof in appendix 2.8. In our setting, we assume that the acti-

vation function σ is Lipschitz continuous and differentiable. In this case, the assumptions of

Theorem 2.1 are fulfilled because fd is a composition of activations and linear transformations.

The differentiability assumption rules out the common ReLU activation σ(x) = max{0, x}, but

allows many others such as the exponential linear unit (ELU) (Clevert et al., 2015) or the

softplus.

Using the chain rule, the compositional structure of fd yields the following formula for its

gradient:

∇ fd (x) =W T
1

d−1∏
i=1

Diag(σ′( fi (x)))W T
i+1 (2.3)

For every i = 1, . . . ,d −1 we introduce a variable si =σ′( fi (x)) corresponding to the derivative

of σ at the i -th hidden layer of the network. For activation functions like ELU or softplus, their

derivative is bounded between 0 and 1, which implies that 0 ≤ si ≤ 1. This bound together

with the definition of the dual norm ∥x∥∗ := sup
∥t∥≤1

t T x implies the following upper bound of

13
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L( fd ):

L( fd ) ≤ max

{
t T W T

1

d−1∏
i=1

Diag(si )W T
i+1 : 0 ≤ si ≤ 1,∥t∥ ≤ 1

}
(2.4)

We will refer to the polynomial objective of this problem as the norm-gradient polynomial of

the network fd , a central object of study in this work.

For some frequently used ℓp -norms, the constraint ∥t∥p ≤ 1 can be written with polynomial

inequalities. In the rest of this work, we use exclusively the ℓ∞-norm for which ∥t∥∞ ≤ 1

is equivalent to the polynomial inequalities −1 ≤ ti ≤ 1, for i = 1, . . . ,n1. However, note that

when p ≥ 2 is a positive even integer, ∥t∥p ≤ 1 is equivalent to a single polynomial inequality

∥t∥p
p ≤ 1, and our proposed approach can be adapted with minimal modifications.

In such cases, the optimization problem in the right-hand side of (4.2) is a POP. Optimization

of polynomials is a NP-hard problem and we do not expect to have efficient algorithms for

solving (4.2) in this general form. In the next sections we describe LiPopt: a systematic way of

obtaining an upper bound on L( fd ) via tractable approximation methods of the POP (4.2).

Local Lipschitz constant. In many practical escenarios, we have additional bounds on the

input of the network. For example, in the case of image classification tasks, valid input is

constrained in a hypercube. In the robustness certification task, we are interested in all

possible input in a ϵ-ball around some data point. In those cases, it is interesting to compute a

local Lipschitz constant, that is, the Lipschitz constant of a function restricted to a subset.

We can achieve this by deriving tighter bounds 0 ≤ li ≤ si ≤ ui ≤ 1, as a consequence of the re-

stricted input (see for example, Algorithm 1 in Wong and Kolter (2018a)). By incorporating this

knowledge in the optimization problem (4.2) we obtain bounds on local Lipschitz constants

of fd . We study this setting and provide numerical experiments in subsection 2.7.3.

Choice of norm. We highlight the importance of computing good upper bounds on L( fd ) with

respect to the ℓ∞-norm. It is one of the most commonly used norms to assess robustness in

the adversarial examples literature. Moreover, it has been shown that, in practice, ℓ∞-norm

robust networks are also robust in other more plausible measures of perceptibility, like the

Wasserstein distance (Wong et al., 2019). This motivates our focus on this choice.

2.3 Hierarchical solution based on a Polynomial Positivity certifi-

cate

For ease of exposition, we rewrite (4.2) as a POP constrained in [0,1]n using the substitution

s0 := (t +1)/2. Denote by p the norm-gradient polynomial, and let x = [s0, . . . , sd−1] be the

concatenation of all variables. Polynomial optimization methods (Lasserre, 2015) start from

the observation that a value λ is an upper bound for p over a set K if and only if the polynomial

λ−p is positive over K .

14



2.3 Hierarchical solution based on a Polynomial Positivity certificate

In LiPopt, we will employ a well-known classical result in algebraic geometry, the so-called

Krivine’s positivity certificate1, but in theory we can use any positivity certificate like sum-

of-squares (SOS). The following is a straightforward adaptation of Krivine’s certificate to our

setting:

Theorem 2.2. (Adapted from Krivine (1964); Stengle (1974); Handelman (1988)) If the polyno-

mial λ−p is strictly positive on [0,1]n , then there exist finitely many positive weights cαβ such

that

λ−p = ∑
(α,β)∈N2n

cαβhαβ, hαβ(x) :=
n∏

j=1
x
α j

j (1−x j )β j (2.5)

By truncating the degree of Krivine’s positivity certificate (Theorem 2.2) and minimizing over

all possible upper bounds λ we obtain a hierarchy of LP problems (Lasserre, 2015, Section 9):

θk := min
c≥0,λ

λ :λ−p = ∑
(α,β)∈N2n

k

cαβhαβ

 (2.6)

where N2n
k is the set of nonnegative integer sequences of length 2n adding up to at most k.

This is indeed a sequence of LPs as the polynomial equality constraint can be implemented

by equating coefficients in the canonical monomial basis. For this polynomial equality to be

feasible, the degree of the certificate has to be at least that of the norm-gradient polynomial p,

which is equal to the depth d . This implies that the first nontrivial bound (θk <∞) corresponds

to k = d .

The sequence {θk }∞k=1 is non-incresing and converges to the maximum of the upper bound

(4.2). Note that for any level of the hierarchy, the solution of the LP (2.6) provides a valid upper

bound on L( fd ).

An advantage of using Krivine’s positivity certificate over SOS is that one obtains an LP hier-

archy (rather than SDP), for which commercial solvers can reliably handle a large instances.

Other positivity certificates offering a similar advantage are the DSOS and SDSOS hierarchies

(Ahmadi and Majumdar, 2019), which boil down to LP or second order cone programming

(SOCP), respectively.

Drawback. The size of the LPs given by Krivine’s positivity certificate can become quite large.

The dimension of the variable c is |N2n
k | = O (nk ). For reference, if we consider the MNIST

dataset and a one-hidden-layer network with 100 neurons we have
∣∣N2n

2

∣∣ ≈ 1.5×106 while∣∣N2n
3

∣∣ ≈ 9.3×108. To make this approach more scalable, in the next section we exploit the

sparsity of the polynomial p to find LPs of drastically smaller size than (2.6), but with similar

approximation properties.

Remark. In order to compute upper bounds for local Lipschitz constants, first obtain tighter

bounds 0 ≤ li ≤ si ≤ ui and then perform the change of variables s̃i = (si − li )/(ui − li ) to

1also known as Krivine’s Positivstellensatz
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rewrite the problem (4.2) as a POP constrained on [0,1]n .

2.4 Reducing the number of variables

Many neural network architectures, like those composed of convolutional layers, have a highly

sparse connectivity between neurons. Moreover, it has been empirically observed that up to

90% of network weights can be pruned (set to zero) without harming accuracy (Frankle and

Carbin, 2019). In such cases their norm-gradient polynomial has a special structure that allows

polynomial positivity certificates of smaller size than the one given by Krivine’s positivity

certificate (Theorem 2.2).

In this section, we describe an implementation of LiPopt (Algorithm 2.1) that exploits the spar-

sity of the network to decrease the complexity of the LPs (2.6) given by the Krivine’s positivity

certificate. In this way, we obtain upper bounds on L( fd ) that require less computation and

memory. Let us start with the definition of a valid sparsity pattern:

Definition 2.1. Let I = {1, . . . ,n} and p be a polynomial with variable x ∈Rn . A valid sparsity

pattern of p is a sequence {Ii }m
i=1 of subsets of I , called cliques, such that

⋃m
i=1 Ii = I and:

▷ p =∑m
i=1 pi where pi is a polynomial that depends only on the variables {x j : j ∈ Ii }

▷ for all i = 1, . . . ,m −1 there is an l ≤ i such that (Ii+1 ∩⋃i
r=1 Ir ) ⊆ Il

When the polynomial objective p in a POP has a valid sparsity pattern, there is an extension of

Theorem 2.2 due to Weisser et al. (2018), providing a smaller positivity certificate for λ−p over

[0,1]n . We refer to it as the sparse Krivine’s certificate and we include it here for completeness:

Theorem 2.3 (Adapted from Weisser et al. (2018)). Let a polynomial p have a valid sparsity

pattern {Ii }m
i=1. Define Ni as the set of sequences (α,β) ∈N2n where the support of both α and β

is contained in Ii . If λ−p is strictly positive over K = [0,1]n , there exist finitely many positive

weights cαβ such that

λ−p =
m∑

i=1
hi , hi =

∑
(α,β)∈Ni

cαβhαβ (2.7)

where the polynomials hαβ are defined as in (2.5).

The sparse Krivine’s certificate can be used like the general version (Theorem 2.2) to derive

a sequence of LPs approximating the upper bound on L( fd ) stated in (4.2). However, the

number of different polynomials hαβ of degree at most k appearing in the sparse certificate

can be drastically smaller, the amount of which determines how good the sparsity pattern is.

We introduce a graph that depends on the network fd , from which we will extract a sparsity

pattern for the norm-gradient polynomial of a network.
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2.4 Reducing the number of variables

Figure 2.1: Sparsity pattern of Proposition
2.1 for a network of depth three.

Figure 2.2: Structure of one set in the spar-
sity pattern from Proposition 2.1 for a net-
work with 2D convolutional layers with 3×3
filters.

Definition 2.2. Let fd be a network with weights {Wi }d
i=1. Define a directed graph Gd = (V ,E)

as:
V = {

si , j : 0 ≤ i ≤ d −1, 1 ≤ j ≤ ni
}

E = {
(si , j , si+1,k ) : 0 ≤ i ≤ d −2,[Wi ]k, j ̸= 0

} (2.8)

which we call the computational graph of the network fd .

In the graph Gd the vertex s(i , j ) represents the j -th neuron in the i -th layer. There is a directed

edge between two neurons in consecutive layers if they are joined by a nonzero weight in the

network. The following result shows that for fully connected networks we can extract a valid

sparsity pattern from this graph. We relegate the proof to appendix 2.9.

Proposition 2.1. Let fd be a dense network (all weights are nonzero). The following sets, indexed

by i = 1, . . . ,nd , form a valid sparsity pattern for the norm-gradient polynomial of the network

fd :

Ii := {
s(d−1,i )}∪ {s( j ,k) : there exists a directed path from s( j ,k) to s(d−1,i ) in Gd

}
(2.9)

We refer to this as the sparsity pattern induced by Gd . An example is depicted in in Figure 2.1.

Remark. When the network is not dense, the the second condition (Definition 2.1) for the

sparsity pattern (2.9) to be valid might not hold. In that case we lose the guarantee that the

values of the corresponding LPs converge to the maximum of the POP (4.2). Nevertheless,

it still provides a valid positivity certificate that we use to upper bound L( fd ). In Section 2.7

we show that in practice it provides upper bounds of good enough quality. If needed, a valid

sparsity pattern can be obtained via a chordal completion of the correlative sparsity graph of

the POP (Waki et al., 2006).

We now quantify how good this sparsity pattern is. Let s be the size of the largest clique in

a sparsity pattern, and let Ni ,k be the subset of Ni (defined in Theorem 2.3) composed of

sequences summing up to k. The number of different polynomials for the k-th LP in the
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hierarchy given by the sparse Krivine’s certificate can be bounded as follows:∣∣∣∣∣ m⋃
i=1

Ni ,k

∣∣∣∣∣≤ m∑
i=1

(
2|Ii |+k

k

)
=O

(
msk

)
(2.10)

We immediately see that the dependence on the number of cliques m is really mild (linear)

but the size of the cliques as well as the degree of the hierarchy can really impact the size of

the optimization problem. Nevertheless, this upper bound can be quite loose; polynomials

hαβ that depend only on variables in the intersection of two or more cliques are counted more

than once.

The number of cliques given in the sparsity pattern induced by Gd is equal to the size of the

last layer m = nd and the size of each clique depends on the particular implementation of the

network. We now study different architectures that could arise in practice, and determine the

amount of polynomials in their sparse Krivine’s certificate.

Fully connected networks. Even in the case of a network with all nonzero connections, the

sparsity pattern induced by Gd decreases the size of the LPs when compared to Krivine’s cer-

tificate. In this case the cliques have size n1+ . . .+nd−1+1 but they all have the same common

intersection equal to all neurons up to the second-to-last hidden layer. A straightforward

counting argument shows that the total number of polynomials is O (n(n1 + . . .+nd−1 +1)k−1),

improving the upper bound (2.10).

Unstructured sparsity. Sparsity in a Neural Network can appear implicitely during training:

it has been observed that many weights at convergence have negligible magnitude. This is

precisely the backbone of pruning methods (Hanson and Pratt, 1989) which work by setting

to exact zero a large percentage of parameters with smallest magnitude, suffering only a very

small drop in performance. An alternative way of inducing unstructure sparsity is by choosing

the network architecture randomly from a distribution over graphs (Xie et al., 2019). In this

case, the sparsity pattern can be arbitrary, and the size of the resulting LPs varies at runtime.

Under the layer-wise assumption that any neuron is connected to at most r neurons in the

previous layer, the size of the cliques in (2.9) is bounded as s = O (r d ). This estimate has an

exponential dependency on the depth but ignores that many neurons might share connections

to the same inputs in the previous layer, thus being potentially loose. The bound (2.10) implies

that the number of different polynomials is O (nd r dk ).

2D Convolutional networks. The sparsity in the weight matrices of convolutional layers

has a certain local structure; neurons are connected to contiguous inputs in the previous

layer. Adjacent neurons also have many input pixels in common (see Figure 2.2). Assuming

a constant number of channels per layer, the size of the cliques in (2.9) is O (d 3). Intuitively,

such number is proportional to the volume of the pyramid depicted in Figure 2.2 where

each dimension depends linearly on d . Using (2.10) we get that there are O (nd d 3k ) different

polynomials in the sparse Krivine’s certificate. This is a drastic decrease in complexity when

compared to the unstructured sparsity case.
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2.5 QCQP reformulation and Shor’s SDP relaxation

The use of sparsity in polynomial optimization preceeds Theorem 2.3 (Weisser et al., 2018).

First studied in the context of sum-of-squares by Kojima et al. (2005) and further refined

in Waki et al. (2006); Lasserre (2006) (and references therein), it has found applications in

safety verification (Yang et al., 2016; Zhang et al., 2018), sensor localization Wang et al. (2006),

optimal power flow (Ghaddar et al., 2015) and many others. Our work fits precisely into this

set of important applications.

Algorithm 2.1 LiPopt for ELU activations and sparsity pattern

Input: matrices {Wi }d
i=1, sparsity pattern {Ii }m

i=1, hierarchy degree k.

1: p ← (2s0 −1)T W T
1

∏d−1
i=1 Diag(si )W T

i+1 ▷ compute norm-gradient polynomial
2: x ← [s0, . . . , sd−1]
3: b ← [bγ : γ ∈Nn

k ] where p(x) =∑
γ∈Nn

k
bγxγ ▷ compute coefficients of p in basis

4: for i = 1, . . . ,m do
5: Ni ,k ← {(α,β) ∈N2n

k : supp(α)∩ supp(β) ⊆ Ii }
6: end for
7: Ñk ←∪m

i=1Ni ,k

8: h ←∑
(α,β)∈Ñ cαβhαβ ▷ compute positivity certificate

9: c ← [cαβ : (α,β) ∈ Ñk ]; y ← [λ,c] ▷ linear program variables
10: Z ← [zγ]γ∈Nn

k
where λ−h(x) =∑

γ∈Nn
k

(zT
γ y)xγ ▷ compute coefficients of λ−h in basis

return min{λ : b = Z y, y = [λ,c], c ≥ 0} ▷ solve LP

2.5 QCQP reformulation and Shor’s SDP relaxation

Another way of upper bounding L( fd ) comes from a further relaxation of (4.2) to an SDP. We

consider the following equivalent formulation where the variables si are normalized to lie in

the interval [−1,1], and we rename t = s0:

L( fd ) ≤ max

{
1

2d−1
sT

0 W T
1

d−1∏
i=1

Diag(si +1)W T
i+1 : −1 ≤ si ≤ 1

}
(2.11)

Any polynomial optimization problem like (2.11) can be cast as a (possibly non-convex)

quadratically constrained quadratic program (QCQP) by introducing new variables and quadratic

constraints. This is a well-known procedure described in Park and Boyd (2017, Section 2.1).

When d = 2 problem (2.11) is already a QCQP (for the ℓ∞ and ℓ2-norm cases) and no modifi-

cation is necessary.

QCQP reformulation. We illustrate the case d = 3 where we have the variables s1, s2 corre-

sponding to the first and second hidden layer and a variable s0 corresponding to the input.

The norm-gradient polynomial in this case is cubic, and it can be rewritten as a quadratic

polynomial by introducing new variables corresponding to the product of the first and second

hidden layer variables.

More precisely the introduction of a variable s1,2 with quadratic constraint s1,2 = vec(s1sT
2 )
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allows us to write the objective (2.11) as a quadratic polynomial. The problem then becomes a

QCQP with variable y = [1, s0, s1, s2, s1,2] of dimension 1+n +n1n2.

SDP relaxation. Any quadratic objective and constraints can then be relaxed to linear con-

straints on the positive semidefinite variable y yT = X ≽ 0 yielding the so-called Shor’s relax-

ation of (2.11) (Park and Boyd, 2017, Section 3.3). When d = 2 the resulting SDP corresponds

precisely to the one studied in Raghunathan et al. (2018a). This resolves a common miscon-

ception (Raghunathan et al., 2018c) that this approach is only limited to networks with one

hidden layer.

Note that in our setting we are only interested in the optimal value rather than the optimizers,

so there is no need to extract a solution for (2.11) from that of the SDP relaxation.

Drawback. This approach includes a further relaxation step from (2.11), thus being fundamen-

tally limited in how tightly it can upper bound the value of L( fd ). Moreover when compared to

LP solvers, off-the-shelf semidefinite programming solvers are, in general, much more limited

in the number of variables they can efficiently handle.

In the case d = 2 this relaxation provides a constant factor approximation to the original

QCQP (Ye, 1999). Further approximation quality results for such hierarchical optimization

approaches to NP-hard problems are out of the scope of this work.

Relation to sum-of-squares. The QCQP approach might appear fundamentaly different

to the hierarchical optimization approaches to POPs, like the one described in Section 2.3.

However, it is known that Shor’s SDP relaxation corresponds exactly to the first degree of the

SOS hierarchical SDP solution to the QCQP relaxation (Lasserre, 2000). Thus, the approach in

section 2.3 and the one in this section are, in essence, the same; they only differ in the choice

of polynomial positivity certificate.

2.6 Related work

Estimation of L( fd ) with ℓ2-norm is studied by Virmaux and Scaman (2018); Combettes and

Pesquet (2019); Fazlyab et al. (2019a); Jin and Lavaei (2018). The method SeqLip proposed

in Virmaux and Scaman (2018) has the drawback of not providing true upper bounds. It is in

fact a heuristic method for solving (4.2) but which provides no guarantees and thus can not

be used for robustness certification. In contrast the LipSDP method of Fazlyab et al. (2019a)

provides true upper bounds on L( fd ) and in practice shows superior performance over both

SeqLip and CPLip (Combettes and Pesquet, 2019).

Despite the accurate estimation of LipSDP, its formulation is limited to the ℓ2-norm. The

only estimate available for other ℓp -norms comes from the equivalence of norms in euclidean

spaces. For instance, we can obtain an upper bound for the ℓ∞-norm after multiplying the

ℓ2 Lipschitz constant upper bound by the square root of the input dimension. The resulting

bound can be rather loose and our experiments in section 2.7 confirm the issue. In contrast,
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2.7 Experiments

our proposed approach LiPopt can acommodate any norm whose unit ball can be described

via polynomial inequalities.

Let us point to one key advantage of LiPopt, compared to LipSDP (Jin and Lavaei, 2018;

Fazlyab et al., 2019a). In the context of robustness certification we are given a sample x♮ and a

ball of radius ϵ around it. Computing an upper bound on the local Lipschitz constant in this

subset, rather than a global one, can provide a larger region of certified robustness. Taking into

account the restricted domain we can refine the bounds in our POP (see remark in section 8.1).

This potentially yields a tighter estimate of the local Lipschitz constant. On the other hand, it

is not clear how to include such additional information in LipSDP, which only computes one

global bound on the Lipschitz constant for the unconstrained network.

Raghunathan et al. (2018a) find an upper bound for L( fd ) with ℓ∞ metric starting from

problem (4.2) but only in the context of one-hidden-layer networks (d = 2). To compute such

bound they use its corresponding Shor’s relaxation and obtain as a byproduct a differentiable

regularizer for training networks. They claim such approach is limited to the setting d = 2 but,

as we remark in section 2.5, it is just a particular instance of the SDP relaxation method for

QCQPs arising from a polynomial optimization problem. We find that this method fits into the

LiPopt framework, using SOS certificates instead of Krivine’s. We expect that the SDP-based

bounds described in 2.5 can also be used as regularizers promoting robustness.

Weng et al. (2018) provide an upper bound on the local Lipschitz constant for networks

based on a sequence of ad-hoc bounding arguments, which are particular to the choice of

ReLU activation function. In contrast, our approach applies in general to activations whose

derivative is bounded.

2.7 Experiments

We consider the following estimators of L( fd ) with respect to the ℓ∞ norm:

Name Description

SDP Upper bound arising from the solution of the SDP relaxation described

in Section 2.5

LipOpt-k Upper bound arising from the k-th degree of the LP hierarchy (2.6)

based on the sparse Krivine Positivstellenstatz.

Lip-SDP Upper bound from Fazlyab et al. (2019a) multiplied
p

d where d is the

input dimension of the network.

UBP Upper bound determined by the product of the layer-wise Lipschitz

constants with ℓ∞ metric

LBS Lower bound obtained by sampling 50000 random points around zero,

and evaluating the dual norm of the gradient

21



Chapter 2. Lipschitz constant estimation of Neural Networks

2.7.1 Experiments on random networks

We compare the bounds obtained by the algorithms described above on networks with random

weights and either one or two hidden layers. We define the sparsity level of a network as the

maximum number of neurons any neuron in one layer is connected to in the next layer. For

example, the network represented on Figure 2.1 has sparsity 2. The non-zero weights of

network’s i -th layer are sampled uniformly in [− 1p
ni

, 1p
ni

] where ni is the number of neurons

in layer i .

For different configurations of width and sparsity, we generate 10 random networks and

average the obtained Lipschitz bounds. For better comparison, we plot the relative error. Since

we do not know the true Lipschitz constant, we cannot compute the true relative error. Instead,

we take as reference the lower bound given by LBS. Figures 2.3 and 2.5 show the relative error,

i.e., (L̂−LLBS)/LLBS where LLBS is the lower bound computed by LBS and L̂ is the estimated

upper bound. Figures 2.9 and 2.10 in Appendix 2.10 we show the values of the computed

Lipschitz bounds for 1 and 2 hidden layers respectively.

When the chosen degree for LiPopt-k is the smallest as possible, i.e., equal to the depth of the

network, we observe that the method is already competitive with the SDP method, especially in

the case of 2 hidden layers. When we increment the degree by 1, LiPopt-k becomes uniformly

better than SDP over all tested configurations. We remark that the upper bounds given by

UBP are too large to be shown in the plots. Similarly, for the 1-hidden layer networks, the

bounds from LipSDP are too large to be plotted.

Finally, we measured the computation time of the different methods on each tested network

(Figures 2.4 and 2.6). We observe that the computation time for LiPopt-k heavily depends on

the network sparsity, which reflects the fact that such structure is exploited in the algorithm.

In contrast, the time required for SDP does not depend on the sparsity, but only on the size of

the network. Therefore as the network size grows (with fixed sparsity level), LipOpt-k obtains

a better upper bound and runs faster. Also, with our method, we see that it is possible to

increase the computation power in order to compute tighter bounds when required, making it

more flexible than SDP in terms of computation/accuracy tradeoff. LiPopt uses the Gurobi

LP solver, while SDP uses Mosek. All methods run on a single machine with Core i7 2.8Ghz

quad-core processor and 16Gb of RAM.

Remark 2.1. We observe that a high level of sparsity in the network has two different positive

effects. First, it allows efficient computation of a bound on its Lipschitz constant, by reducing

the number of variables in our proposed optimization problems. More interestingly, a higher

sparsity also induces a smaller value of the Lipschitz constant, making the network more robust

to adversarial perturbations in the ℓ∞ norm. This relation between the sparsity of the network

and a smaller Lipschitz constant was made more explicit by Muthukumar and Sulam (2022),

after the publication of this chapter.
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Figure 2.3: Lipschitz approximated relative error for 1-hidden layer networks
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Figure 2.4: Computation times for 1-hidden layer networks (seconds)
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Figure 2.5: Lipschitz approximated relative error for 2-hidden layer networks
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Figure 2.6: Computation times for 2-hidden layer networks (seconds)

2.7.2 Experiments on trained networks

Similarly, we compare these methods on networks trained on MNIST. The architecture we use

is a fully connected network with two hidden layers with 300 and 100 neurons respectively,

and with one-hot output of size 10. Since the output is multi-dimensional, we restrict the

network to a single output, and estimate the Lipschitz constant with respect to label 8.

Moreover, in order to improve the scalability of our method, we train the network using the

pruning strategy described in Han et al. (2015)2. After training the full network using a standard

2For training we used the code from this reference. It is publicly available in https://github.com/
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technique, the weights of smallest magnitude are set to zero. Then, the network is trained

for additional iterations, only updating the nonzero parameters. Doing so, we were able to

remove 95% of the weights, while preserving the same test accuracy. We recorded the Lipschitz

bounds for various methods in Table 2.7.2. We observe clear improvement of the Lipschitz

bound obtained from LiPopt-k compared to SDP method, even when using k = 3. Also note

that the input dimension is too large for the method Lip-SDP to provide competitive bound,

so we do not provide the obtained bound for this method.

Algorithm LBS LiPopt-4 LiPopt-3 SDP UBP

Lipschitz bound 84.2 88.3 94.6 98.8 691.5

2.7.3 Estimating local Lipschitz constants with LiPopt

We study the improvement on the upper bound obtained by LiPopt, when we incorporate

tighter upper and lower bounds on the variables si of the polynomial optimization problem

(4.2). Such bounds arise from the limited range that the pre-activation values of the network

can take, when the input is limited to an ℓ∞-norm ball of radius ϵ centered at an arbitrary

point x0.

The algorithm that computes upper and lower bounds on the pre-activation values is fast (it

has the same complexity as a forward pass) and is described, for example, in Wong and Kolter

(2018a). The variables si correspond to the value of the derivative of the activation function.

For activations like ELU or ReLU, their derivative is monotonically increasing, so we need only

evaluate it at the upper and lower bounds of the pre-activation values to obtain corresponding

bounds for the variables si .

We plot the local upper bounds obtained by LiPopt-3 for increasing values of the radius

ϵ, the bound for the global constant (given by LiPopt-3) and the lower bound on the local

Lipschitz constant obtained by sampling in the ϵ-neighborhood (LBS). We sample 15 random

networks and plot the average values obtained. We observe clear gap between both estimates,

which shows that larger certified balls could be obtained with such method in the robustness

certification applications.
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Figure 2.7: Global vs local Lipschitz constant bounds for 1-hidden layer networks
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2.8 Appendix: Proof of Theorem 2.1
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Figure 2.8: Global vs local Lipschitz constant bounds for 2-hidden layer networks

2.8 Appendix: Proof of Theorem 2.1

Theorem. Let f be a differentiable and Lipschitz continuous function on an open, convex

subset X of a euclidean space. Let ∥ ·∥ be the dual norm. The Lipschitz constant of f is given by

L( f ) = sup
x∈X

∥∥∇ f (x)
∥∥∗ (2.12)

Proof. First we show that L( f ) ≤ sup
x∈X

∥∥∇ f (x)
∥∥∗.

∣∣ f (y)− f (x)
∣∣= ∣∣∣∣∫ 1

0
∇ f ((1− t )x + t y)T (y −x)d t

∣∣∣∣
≤

∫ 1

0

∣∣∇ f ((1− t )x + t y)T (y −x)
∣∣d t

≤
∫ 1

0
∥∇ f ((1− t )x + t y)∥∗ d t ∥y −x∥

≤ sup
x∈X

∥∇ f (x)∥∗∥y −x∥

were we have used the convexity of X .

Now we show the reverse inequality L( f ) ≥ sup
x∈X

∥∇ f (x)∥∗. To this end, we show that for any

positive ϵ, we have that L( f ) ≥ sup
x∈X

∥∇ f (x)∥∗−ϵ.

Let z ∈ X be such that ∥∇ f (z)∥∗ ≥ sup
x∈X

∥∇ f (x)∥∗− ϵ. Because X is open, there exists a se-

quence {hk }∞k=1 with the following properties:

1. 〈hk ,∇ f (z)〉 = ∥hk∥∥∇ f (z)∥∗

2. z +hk ∈X

3. limk→∞ hk = 0.

By definition of the gradient, there exists a function δ such that limh→0δ(h) = 0 and the
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following holds:

f (z +h) = f (z)+〈h,∇ f (z)〉+δ(h)∥h∥

For our previously defined iterates hk we then have

⇒ ∣∣ f (z +hk )− f (z)
∣∣= ∣∣∥hk∥∥∇ f (z)∥∗+δ(hk )∥hk∥

∣∣
Dividing both sides by ∥hk∥ and using the definition of L( f ) we finally get

⇒ L( f ) ≥
∣∣∣∣ f (z +hk )− f (z)

∥hk∥
∣∣∣∣= ∣∣∥∇ f (z)∥∗+δ(hk )

∣∣
⇒ L( f ) ≥ lim

k→∞
∣∣∥ f (z)∥∗+δ(hk )

∣∣= ∥∇ f (z)∥∗
⇒ L( f ) ≥ sup

x∈X
∥∇ f (x)∥∗−ϵ

□

2.9 Appendix: Proof of Proposition Proposition 2.1

Proposition. Let fd be a dense network (all weights are nonzero). The following sets, indexed by

i = 1, . . . ,nd , form a valid sparsity pattern for the norm-gradient polynomial of the network fd :

Ii := {
s(d−1,i )}∪ {s( j ,k) : there exists a directed path from s( j ,k) to s(d−1,i ) in Gd

}
(2.13)

Proof. First we show that ∪m
i=1Ii = I . This comes from the fact that any neuron in the network

is connected to at least one neuron in the last layer. Otherwise such neuron could be removed

from the network altogether.

Now we show the second property of a valid sparsity pattern. Note that the norm-gradient

polynomial is composed of monomials corresponding to the product of variables in a path

from input to a final neuron. This imples that if we let pi be the sum of all the terms that

involve the neuron s(d−1,i ) we have that p =∑
i pi , and pi only depends on the variables in Ii .

We now show the last property of the valid sparsity pattern. This is the only part where we use

that the network is dense. For any network architecture the first two conditions hold. We will

use the fact that the maximal cliques of a chordal graph form a valid sparsity pattern (see for

example Lasserre (2006)).

Because the network is dense, we see that the clique Ii is composed of the neuron in the

last layer s(d−1,i ) and all neurons in the previous layers. Now consider the extension of the
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2.10 Appendix: Experiments on random networks

computational graph Ĝd = (V , Ê) where

Ê = E ∪ {(s j ,k , sl ,m) : j , l ≤ d −2)}

which consists of adding all the edges between the neurons that are not in the last layer.

We show that this graph is chordal. Let (a1, . . . , ar , a1) be a cycle of length at least 4 (r ≥ 4).

notice that because neurons in the last layer are not connected between them in Ĝ , no two

consecutive neurons in this cycle belong to the last layer. This implies that in the subsequence

(a1, a2, a3, a4, a5) at most three belong to the last layer. A simple analysis of all cases implies

that it contains at least two nonconsecutive neurons not in the last layer. Neurons not in the

last layer are always connected in Ĝ . This constitutes a chord. This shows that Ĝd is a chordal

graph. Its maximal cliques correspond exactly to the sets in proposition.

□

2.10 Appendix: Experiments on random networks
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Figure 2.9: Lipschitz bound comparison for 1-hidden layer networks
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Figure 2.10: Lipschitz bound comparison for 2-hidden layer networks

2.11 Bibliographic Note

The candidate came up with the idea of expressing the Lipschitz constant computation as a

POP, and all the theoretical results i.e., theorem 2.1, proposition 2.1 and eq. (4.2), which leads

to the algorithm. I designed the experiments and obtained the numerical results with the help

of P. Rolland who also contributed by scaling the algorithm in the case of sparse networks.
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3 Efficient Proximal Mapping of the
1-path-norm of Shallow Networks

Fabian Latorre, Paul Rolland, Nadav Hallak and Volkan Cevher. International Conference on

Machine Learning (ICML) 2020.

Abstract. We demonstrate two new important properties of the 1-path-norm of shallow

neural networks. First, despite its non-smoothness and non-convexity it allows a closed

form proximal operator which can be efficiently computed, allowing the use of stochastic

proximal-gradient-type methods for regularized empirical risk minimization. Second, when

the activation functions is differentiable, it provides an upper bound on the Lipschitz constant

of the network. Such bound is tighter than the trivial layer-wise product of Lipschitz constants,

motivating its use for training networks robust to adversarial perturbations. In practical

experiments we illustrate the advantages of using the proximal mapping and we compare

the robustness-accuracy trade-off induced by the 1-path-norm, L1-norm and layer-wise

constraints on the Lipschitz constant (Parseval networks).

3.1 Introduction

Neural networks are the backbone of contemporary applications in machine learning and

related fields, having huge influence and significance both in theory and practice. Among

the most important and desirable attributes of a trained network are robustness and sparsity.

Robustness, is often defined as stability to adversarial perturbations, such as in supervised

classification methods. The apparent brittleness of neural networks to adversarial attacks in

this context has been considered in the literature for some time, see e.g., (Biggio et al., 2013a;

Szegedy et al., 2013; Madry et al., 2018b) and references therein.

A fundamental question in this regard is how to measure robustness, or more importantly, how

to encourage it. One prominent approach supported by theory and practice (Raghunathan

et al., 2018b; Cisse et al., 2017b), is to use the Lipschitz constant of the network function to

quantize robustness, and regularization to encourage it.

This approach is also supported theoretically with generalization bounds in terms of the layer-
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Chapter 3. Efficient Proximal Mapping of the 1-path-norm of Shallow Networks

wise product of spectral norms (Bartlett et al., 2017b; Miyato et al., 2018a), which particularly

upper-bounds the Lipschitz constant. However, a recent empirical study (Jiang et al., 2020) has

found in practice a negative correlation of this measure with generalization. This casts doubts

on its usefulness and signals the fact that it is a rather loose upper bound for the Lipschitz

constant (Latorre et al., 2020b).

Current methods that compute upper bounds on the Lipschitz constant of neural networks

can be roughly classified into two classes: (i) the class of product bounds, comprising all upper

bounds obtained by the multiplication of layer-wise matrix norms; and, (ii) the class of convex-

optimization-based bounds, which addresses the network as a whole entity (Raghunathan

et al., 2018b; Fazlyab et al., 2019a; Latorre et al., 2020b).

A trade-off between computational complexity and quality of the upper bound seems apparent.

An ideal bound would achieve a balance between both properties: it should provide a good

estimate of the constant while being fast and easy to minimize with iterative first-order

algorithms.

Recently, the path-norm of the network (Neyshabur et al., 2015c) has emerged as a complexity

measure that is highly-correlated with generalization (Jiang et al., 2020). Thus, its use as a

regularizer holds an increasing interest for researchers in the field.

Despite existing generalization bounds (Neyshabur et al., 2015c), our understanding of the

optimization aspects of the path-norm-regularized objective is lacking. Jiang et al. (2020)

refrained from using automatic-differentiation methods in this case because, as they argue,

the optimization could fail, thus providing no conclusion about its qualities.

It is then natural to ask: how do we properly optimize the path-norm-regularized objective with

theoretical guarantees? What conclusions can we draw about the robustness and sparsity of

path-norm-regularized networks? We focus on the 1-path-norm and provide partial answers

to those questions, further advancing our understanding of this measure. Let us summarize

our main contributions:

Optimization. We show a striking property of the 1-path-norm, that makes it a strong can-

didate for explicit regularization: despite its non-convexity, it admits an efficient proximal

mapping (Algorithm 3.3). This allows the use of proximal-gradient type methods which are, as

of now, the only first-order optimization algorithms to provide guarantees of convergence for

composite non-smooth and non-convex problems (Bolte et al., 2013).

Indeed, automatic differentiation modules of popular deep learning frameworks like PyTorch

(Paszke et al., 2019) or TensorFlow (Abadi et al., 2015) may not compute the correct gradient

for compositions of non-smooth functions, at points where these are differentiable (Kakade

and Lee, 2018; Bolte and Pauwels, 2019). Our proposed optimization algorithm avoids such

issue altogether by using differentiable activation functions like ELU (Clevert et al., 2015) and

our novel proximal mapping of the 1-path-norm.
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3.2 Problem Setup

Upper bounds. We show that the 1-path-norm (Neyshabur et al., 2015c) achieves a sweet spot

in the computation-quality trade-off observed among upper bounds of the Lipschitz constant:

it has a simple closed formula in terms of the weights of the network, and it provides an upper

bound on the (ℓ∞,ℓ1)-Lipschitz constant (cf., theorem 3.1), which is always better than the

product bound.

Sparsity. Neural network regularization schemes promoting sparsity in a principled way are

of great interest in the growing field of compression in Deep Learning (Han et al., 2016; Cheng

et al., 2017).

Our analysis provides a formula (cf. Lemma lemma 3.4) for choosing the strength of the

regularization, which enforces a desired bound on the sparsity level of the iterates generated by

the proximal gradient method. This is a suprising, yet intuitive, result, as the sparsity-inducing

properties of non-smooth regularizers have been observed before in convex optimization and

signal processing literature, see e.g., (Bach et al., 2012; Eldar and Kutyniok, 2012).

Experiments. In section 3.7, we present numerical evidence that our approach (i) converges

faster and to lower values of the objective function, compared to plain SGD; (ii) generates

sparse iterates; and, (iii) the magnitude of the regularization parameter of the 1-path-norm al-

lows a better accuracy-robustness trade-off than the common ℓ1 regularization or constraints

on layer-wise matrix norms.

3.2 Problem Setup

We consider the so-called shallow neural networks with n hidden neurons and p outputs

h :Rm →Rp given by

hV ,W (x) =V Tσ(W x), (3.1)

where V ∈ Rn×p ,W ∈ Rn×m and σ : R→ R is some differentiable activation function with

derivative globally bounded between zero and one. This condition is satisfied, for example,

by the ELU or softplus activation functions. To control the robustness of the network to

perturbations of its input x, we want to regularize training using its Lipschitz constant as a

function of the weights V and W .

To properly define this constant, we utilize the ℓ∞-norm for the input space, and the ℓ1-norm

for the output space. Exact computation of such constant is a hard task. A simple and easily

computable upper bound can be derived by the product of the layer-wise Lipschitz constants,

however, it can be quite loose.

We derive an improved upper bound which is still easy to compute. In the following, we denote

with ∥W ∥∞ the operator norm of a matrix W with respect to the ℓ∞ norm for both input and

output space; it is equal to the maximum ℓ1-norm of its rows. We denote with ∥V ∥∞,1 the

operator norm of the matrix V with respect to the ℓ∞ norm in input space and ℓ1-norm in

output space; it is equal to the sum of the ℓ1 norm of its columns.
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Theorem 3.1. Let hV ,W (x) =V Tσ(W x) be a network such that the derivative of the activation

σ is globally bounded between zero and one. Choose the ℓ∞- and ℓ1-norm for input and

output space, respectively. The Lipschitz constant of the network, denoted by LV ,W is bounded

as follows:

LV ,W ≤
n∑

i=1

m∑
j=1

p∑
k=1

|Wi j Vi k | ≤ ∥V T ∥∞,1∥W ∥∞ (3.2)

The proof is provided in appendix 3.8. The term in the middle of inequality (4.2) belongs to

the family of path-norms, introduced in Neyshabur et al. (2015c, Eq. (7)). Throughout, we

refer to it as the 1-path-norm.

Notice that although the path-norm and layer wise product bounds can be equal, this only

happens in the following worst case: For the weight matrix in the first layer, the 1-norms of

every row are equal. Thus, in practice the bounds can differ drastically.

Remark 3.1. In practice, one might want to regularize each ouput of the network in a different

way according to some weighting scheme (Raghunathan et al., 2018b). Precisely, the 1-path-

norm of the network is equal to the sum (with equal weight) of the 1-path-norm of each output.

A weighted version of the 1-path-norm can be defined to account for such a weighting scheme.

All our results can be adapted to this scenerio, with minor changes.

We now turn to the task of minimizing an empirical risk functional regularized by the improved

upper bound on the Lipschitz constant given in (4.2):

min
V ,W

E(x,y)[ℓ(hV ,W (x), y)]+λ
n∑

i=1

m∑
j=1

p∑
k=1

|Wi j Vi k | (3.3)

The objective function in problem (3.3) is composed of an expectation of a nonconvex smooth

loss, and a nonconvex nonsmooth regularizer, meaning that it is essentially a composite

problem (cf. (Beck, 2017, Ch. 10)). That is, the objective function (3.3) can be cast as use these

notation hereafter)

min
V ,W

F (V ,W ) ≡ f (V ,W )+λg (V ,W ), g (V ,W ) =
n∑

i=1

m∑
j=1

p∑
k=1

|Wi j Vi k | (3.4)

where f is a nonconvex continuously differentiable function, and g is a continuous, non-

convex, nonsmooth, function. We assume that the objective function is bounded below, i.e.,

infF :=F∗ > 0.

A natural choice for a scheme to obtain critical points for (3.4) is the proximal-gradient

framework. However, for a nonconvex g , solving the proximal gradient problem is a hard

problem in general. In Section 3.4 we develop a method that computes the proximal gradient

with respect to g efficiently.

To streamline our approach and techniques in a compact and user-friendly manner, we will
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illustrate the majority of our results and proofs via the particular single-output scenario in

which h and g are reduced to

hv,W (x) = vTσ(W x), g (v,W ) ≡λ∥vec(Diag(v)W )∥1.

The multi-output case follows from the same techniques and insights, however, requires more

tedious computations and arguments, on which we elaborate in Section 3.5, and detail in the

appendix.

3.3 The Prox-Grad Method

Assume that f has a Lipschitz continuous gradient with Lipschitz constant L > 0, that is

∥∇ f (z)−∇ f (u)∥ ≤ L∥z −u∥, ∀z,u ∈Rn .

The prox-grad method is described by Algorithm 3.1; since g is nonconvex, the prox in (3.5)

can be a set of solutions.

Algorithm 3.1 Prox-Grad Method

Input: z0 ≡ vec(V 0,W 0) ∈Rp·n+n·m , {ηk }k≥0.

1: for k = 0,1, . . . do

2: Compute Gk =∇ f (zk )

3: zk+1 ← proxηk g (zk −ηkGk )

4: end for

Theoretical guarantees for the prox-grad method with respect to a nonconvex regularizer were

established by Bolte et al. (2013) (for a more general prox-grad type scheme).

Theorem 3.2 (Convergence guarantees). Let {zk }k≥0 be a sequence generated by Algorithm 3.1

with {ηk }k≥0 ⊆ (0,1/L). Then

1. Any accumulation point of {zk }k≥0 is a critical point of (3.4).

2. If f satisfies the Kurdyka-Lojasiewicz (KL) property, then {zk }k≥0 converges to a critical

point.

3. Suppose that ηk is chosen such that there exists c > 0 such that
∑K

k=0
1
ηk

≥ cK for any

K ≥ 0. Then

min
k=0,...,K

∥zk+1 − zk∥2 ≤
√

2(F (z0)−F∗)

(c −L)K
.

Proof. See Section 3.9 in the appendix. □
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Remark 3.2 (On KL related convergence rate). A convergence rate result under the KL property

can be derived with respect to the desingularizing function; see Bolte et al. (2013) for additional

details.

Remark 3.3 (On the stochastic prox-grad method). The literature does not provide any theoret-

ical guarantees for a prox-grad type method that uses stochastic gradients (i.e., replacing Gk

with an approximation of ∇ f (zk )) under our setting. Recently, Metel and Takeda (2019) studied

stochastic prox-grad methods, however, their results rely on the assumption that the regularizer

is Lipschitz continuous, which is not satisfied by our robust-sparsity regularizer.

3.4 Computing the Proximal Mapping

Throughout this section we assume the single-output setting. The path-norm regularizer

we propose is a nonconvex nonsmooth function, suggesting that the prox-grad scheme in

Algorithm 3.1 is intractable.

In this section we will not only prove that in fact it is tractable in the single output case, but

that it can also be implemented efficiently with complexity of O(m log(m)); we prove the stated

in detail in Section 3.10, and provide here a concise version.

Denote the given pair (x,Y ) by z. The proximal mapping with respect to λg at z is defined as

proxλg (z) = argmin
u

λg (u)+ 1

2
∥vec(u − z)∥2

2. (3.5)

By the choice of g , the objective function in (3.5) is coercive and lower bounded, implying that

there exists an optimal solution (cf. (Beck, 2014, Thm. 2.32)).

Remark 3.4. The derivations in this section can be easily adapted and used with adaptive

gradient methods like Adagrad (Duchi et al., 2011), by a careful handling of the per-coordinate

scaling coefficients.

Lemma 3.1 (Well-posedness of (3.5)). For any λ ≥ 0 and any (u, z), the problem (3.5) has a

global optimal solution.

Additionally, we have that (3.5) is separable with respect to the i -th entry of the vector v

and the i -th row of the matrix W , meaning that problem (3.5) can be solved in a distributed

manner by applying the same solution procedure coordinate-wise for v and row-wise for W .

In light of this, let us consider the i -th row related problem

min
v,w∈R×Rm

1

2
(v −x)2 + 1

2

m∑
j=1

(w j − y j )2 +λ|v |
m∑

j=1
|w j |. (3.6)

The signs of the elements of the decision variables in (3.6) are determined by the signs of (x, y),
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and consequently, the problem in (3.6) is equivalent to

min
v,w∈R+×Rm+

1

2
(v −|x|)2 + 1

2

m∑
j=1

(w j −|y j |)2 +λv
m∑

j=1
w j . (3.7)

Lemma 3.2. Let (v∗, w∗) ∈R+×Rn+ be an optimal solution of (3.7). Then (sign(x) · v∗,sign(y)◦
w∗) is an optimal solution of problem (3.6).

Denote

hλ(v, w ; x, y) = 1

2
(v −|x|)2 + 1

2

m∑
j=1

(w j −|y j |)2 +λv
m∑

j=1
w j .

Although hλ is nonconvex, we will show that a global optimum to (3.7) can be obtained

efficiently by utilizing several tools, the first being the first-order optimality conditions of (3.7)

(cf. (Beck, 2014, Ch. 9)) given below.

Lemma 3.3 (Stationarity conditions). Let (v∗, w∗) ∈R+×Rm+ be an optimal solution of (3.7)

for a given (x, y) ∈R×Rm . Then

w∗
j = max

{
0, |y j |−λv∗}

for any j = 1,2, . . . ,m,

v∗ = max

{
0, |x|−λ

m∑
j=1

w∗
j

}
.

A key insight following Lemma 3.3 is that: the elements of any solution to (3.7), satisfy a

monotonic relation in magnitude, correlated with the magnitude of the elements of y ; this is

formulated by the next corollary.

Corollary 3.1. Let (v∗, w∗) ∈R+×Rm+ be an optimal solution of (3.7) for a given (x, y) ∈R×Rm .

Then

1. The vector w∗ satisfies that for any j , l ∈ {1,2, . . . ,m} it holds that w∗
j ≥ w∗

l only if |y j | ≥
|yl |.

2. Let ȳ be the sorted vector of y in descending magnitude order. Suppose that v∗ > 0 and let

s = |{ j : sw∗
j > 0}|. Then,

v∗ = 1

1− sλ2

(
|x|−λ

s∑
j=1

|ȳ j |
)

, (3.8)

where we use the convention that
∑0

j=1 |ȳ j | = 0.

Proof. The first part follows trivially from the stationarity conditions on w∗ given in Lemma

3.3.

From the first part and the conditions in Lemma 3.3 we have that
∑m

j=1 w∗
j =∑s

j=1 |ȳ j |−λsv∗.

Plugging the latter to the stationarity condition on v∗ (given in Lemma 3.3) then implies the

required. □
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Remark 3.5. Corollary 3.1 implies that the solution vector w∗ is ordered in the same way as |y |.
Thus, the s non-zero entries of w∗ are precisely the ones corresponding with the s largest entries

of |y |.

Without loss of generality, we assume hereafter that the input y is already sorted in decreasing

order, such that the s non-zero entries of w∗ are always the first s entries.

To supplement the results above, we now show that we can actually upper-bound the sparsity

level of the prox-grad output by adjusting the value of λ.

Lemma 3.4 (Sparsity bound). Let (v∗, w∗) ∈ R+×Rm+ be an optimal solution of (3.7) for a

given (x, y) ∈R×Rm . Suppose that v∗ > 0 (i.e., non-trivial),1 and denote S = { j : w∗
j > 0}. Then

|S| ≤λ−2.

Proof. Since (v∗, w∗) is an optimal solution of (3.7) and the objective function in (3.7) is

twice continuously differentiable, (v∗, w∗) satisfies the second order necessary optimality

conditions (Bertsekas, 1999, Ex. 2.1.10). That is, for any d ∈R×Rm satisfying that (v∗, w∗)+d ∈
R+×Rm+ and d T ∇hλ(v∗, w∗; x, y) = 0 it holds that

d T ∇2hλ(v∗, w∗; x, y)d = d T


1 λ · · · λ

λ 1 0 0
... 0

. . . 0

λ 0 0 1

d ≥ 0,

where the first row/column corresponds to v and the others correspond to w . Noting that for

any j ∈ S it holds that ∂hλ

∂w j
(v∗, w∗; x, y) = 0, we have that the submatrix of ∇2hλ(v∗, w∗; x, y)

containing the rows and columns corresponding to the positive coordinates in (v∗, w∗) must

be positive semidefinite.

Since the the minimal eigenvalue of this submatrix equals 1−λp|S|, we have that λ−2 ≥ |S|. □

Moreover, the function hλ is monotonically decreasing in the sparsity level, which implies that

instead of exhaustively checking the value of hλ for any sparsity level, we can employ a binary

search. Denote for any s ∈ {0, . . . ,m} the m +1 possible solutions:

v (s) = 1

1− sλ2

(
|x|−λ

s∑
j=1

|y j |
)

w (s)
j = |y j |−λv (s) for j ∈ [s], and w (s)

j = 0 otherwise.

Lemma 3.5. Let s̄ = ⌊λ−2⌋. For all integer s ∈ {2,3, . . . , s̄}, we have that

hλ(v (s), w (s); x, y) < hλ(v (s−1), w (s−1); x, y). (3.9)

1We will call an optimal solution trivial if v∗ = 0.
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Lemma 3.5 follows from algebraic considerations, and thus its proof is deferred to Section

3.10. Its substantial implication is the following.

Corollary 3.2. Suppose that there exists a non-trivial optimal solution of (3.7). Denote s̄ =
min(⌊λ−2⌋,m) and let

s∗ = max
{

s ∈ {0, . . . , s̄} : v (s), w (s)
s > 0

}
.

Then (v (s∗), w (s∗)) is an optimal solution of (3.7).

Note that since, by definition, the s first entries of the vector w (s) are ordered in decreasing

order, the constrained w (s)
s > 0 ensures that the full vector w (s) has exactly s nonzero entries,

which are all strictly positive.

The final ingredient required for designing an efficient algorithm is the following monotone

property of the feasibility criterion in problem (3.2):

Lemma 3.6. For any k ∈ [s̄], we have

v (k) > 0, w (k) > 0 ⇒ v (i ) > 0, w (i ) > 0, ∀i < k.

This property, whose proof is also deferred to Section 3.10, implies that the optimal sparsity

parameter s∗ can be efficiently found using a binary search approach.

We conclude this section by combining all the ingredients above to develop Algorithm 3.2, and

to prove that it yields a solution to (3.5).

Algorithm 3.2 Single-output robust-sparse proximal mapping

Input: x ∈R, y ∈Rm sorted in decreasing magnitude order, λ> 0.

1: v∗ = 0, w∗ = |y |
2: slb ← 0, sub ← min(⌊λ−2⌋,m), s ←⌈(slb + sub)/2⌉
3: while slb ̸= sub do

4: v (s) = 1

1− sλ2

(
|x|−λ∑s

j=1 |y j |
)

5: w (s)
j = |y j |−λv (s), j ∈ [s] and w (s)

j = 0 otherwise
6: if v > 0, ws > 0 then
7: slb ← s, s ←⌈(slb + sub)/2⌉
8: (v∗, w∗) ← (v, w)
9: else if v < 0 then sub ← s, s ←⌈(slb + sub)/2⌉

10: else slb ← s, s ←⌈(slb + sub)/2⌉
11: end if
12: end while
13: return (sign(x) · v∗, sign(y)◦w∗)

Theorem 3.3 (Prox computation). Let (v∗
i ,W ∗

i ,:) be the output of Algorithm 3.2 with input

xi ,Yi ,:,λ, assuming that each Yi ,: is sorted in decreasing magnitude order. Then (v∗,W ∗) is a

solution to (3.5).
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Proof. For any i = 1,2, . . . ,n, let (v∗
i ,W ∗

i ,:) be the output of Algorithm 3.2 with input xi ,Yi ,:,λ.

We will show that (v∗,W ∗) is an optimal solution to (3.5) by arguing that Algorithm 3.2 chooses

the point with the smallest hλ value out of a feasible set of solutions containing an optimal

solution of (3.5).

For simplicity, and without loss of generality, let us consider the one-coordinate-one-row

case, that is, (v∗
i ,W ∗

i ,:) ≡ (v∗, w∗), (xi ,Yi ,:) ≡ (x, y); the proof for the general case is a trivial

replication.

By Lemma 3.2 it is sufficient to prove that (|v∗|, |w∗|) is an optimal solution of (3.7), as this

will imply the optimality of (v∗, w∗); Recall that Lemma 3.1 establishes that there exists an

optimal solution to (3.7).

If the trivial solution is the only optimal solution to (3.7), then obviously it will be the output of

Algorithm 3.2. Otherwise, the point described in Corollary 3.2 is an optimal solution. Assume

that Algorithm 3.2 returned the point (v (sout), w (sout)) for some sout ∈ [s̄], meaning in particular

that (v (sout), w (sout)) > 0. By definition, s∗ ≥ sout. If sout < s∗, then at some s < s∗ we had that

v (s) < 0. Since the value of v (i ) is monotonic decreasing in the sparsity level, this implies that

v (s∗) < 0, which is a contradiction.

Hence, if Algorithm 3.2 did not return the trivial solution, then (v∗, w∗) = (v (s∗), w (s∗)), mean-

ing that (sign(x) · v∗, sign(y)◦w∗) is a solution to (3.5). □

Time complexity of Algorithm 3.2. In the worst case where m ≤λ−2, the number of searches

for finding s∗ is at most log2(m). Each search requires to compute v (s), and in particular∑s
j=1 |y j |, as well as w (s)

j , j = 1, . . . , s, each taking O (s) steps. Thus, the overall loop complexity

is O (m).

Moreover, this algorithm assumes that the input vector y is already sorted in decreasing

magnitude order. This can easily be achieved by a sorting procedure in time O (m logm).

3.5 Multi-Output

The efficient computation of the robust-sparse proximal mapping we derived for the single-

output scenario will now be generalized to the multi-output case. Although we use similar

arguments and insights, the analysis is much more complicated and requires more delicate

and advanced treatment. Due to the tedious computations that accompany the analysis, the

proofs are deferred to appendix 3.11.

When the network has multiple-output, the proximal operator proxλg (X ,Y ) can be written as

the solution set of

min
V ,W

∥V −X ∥F +∥W −Y ∥F +2λ
n∑

i=1

m∑
j=1

p∑
k=1

|Wi j Vi k |, (3.10)
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where V ∈ Rn×p and W ∈ Rn×m . As in the single-output case, we observe that the proximal

mapping (3.10) is separable with respect to the i -th rows of the matrices V and W , and that

the signs of the decision variables are determined by the signs of (X ,Y ). Therefore, it is enough

to consider the problem related to the i -th row of V , denoted as x, and i -th row of W , denoted

as y , i.e.,
min

v,w∈Rp
+×Rm+

hλ(v, w ; x, y), (3.11)

where we redefine hλ(v, w ; x, y) to include the multi-output case: hλ(v, w ; x, y) = 1
2

∑p
k=1(vk −

|xk |)2 + 1
2

∑m
j=1(w j −|y j |)2 +λ∑p

k=1 vk
∑m

j=1 w j . To improve readability, we will abuse notation

and just write hλ(v, w), assuming that (x, y) are understood from context.

Using the same observations we exploited to enumerated all stationary points of the proximal

mapping in the single-output setup, we can identify the stationary points depending on the

number of non zero elements of v and w .

Lemma 3.7. Let (v∗, w∗) ∈Rp
+×Rm+ be an optimal solution of (3.17) for a given (x, y) ∈R×Rm .

Then

1. The vector w∗ satisfies that for any j , l ∈ [m] it holds that w∗
j ≥ w∗

l only if |y j | ≥ |yl |.

2. The vector v∗ satisfies that for any k, l ∈ [p] it holds that v∗
k ≥ v∗

l only if |xk | ≥ |xl |.

3. Let x̄, ȳ be the sorted vectors in descending magnitude order of x and y respectively.

Let sv = |{k : v∗
k > 0}| and sw = |{ j : w∗

j > 0}|. If v∗, w∗ ̸= 0, then we have that for any

k ∈ {k : v∗
k > 0} and j ∈ { j : w∗

j > 0}, it holds that v∗ = v (sv ,sw ) and w∗ = w (sv ,sw ) where

v (sv ,sw )
k = |xk |+µ

(
λ2sw

sv∑
l=1

|x̄l |−λ
sw∑

j=1
|ȳ j |

)
(3.12)

w (sv ,sw )
j = |y j |+µ

(
λ2sv

sw∑
l=1

|ȳl |−λ
sv∑

k=1
|x̄k |

)
(3.13)

and µ= (1− sv swλ
2)−1.

From the two first points in Lemma 3.7, the argument in Remark 3.5 is also valid in the multi-

output case, and so we assume hereafter that the input vectors x, y are sorted in decreasing

magnitude order.

Using the second order stationary conditions, we can generalize our sparsity bound in the

single-output scenario, given in Lemma 3.4, to an upper bound on the product of the sparsities

of the solutions based on the value of λ; indeed, sv = 1 yields the bound in Lemma 3.4.

Lemma 3.8 (Sparsity bound). Let (v∗, w∗) ∈ Rp
+×Rm+ be an optimal solution of (3.11) for a

given (x, y) ∈Rp ×Rm . Denote sv = |{ j : w∗
j > 0}| and sw = |{ j : w∗

j > 0}|. Then sv sw ≤λ−2.
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A possible algorithm for computing this proximal mapping would thus be to compute the

value of hλ
(
v (sv ,sw ), w (sv ,sw )

)
for each pair of sparsities (sv , sw ) ∈ {0, . . . , p}× {0, . . . ,m} satisfying

sv sw ≤λ−2 and return the pair achieving the smallest value.

However, such an approach would be computationally inefficient. In order to avoid computing

the value of hλ at each pair, we show the following monotonicity property of hλ in the sparsity

levels, which generalizes the same property in the single-output case.

Lemma 3.9. Given (x, y) ∈Rp ×Rm , for all sv , sw ∈ {0, . . . , p}× {0, . . . ,m} satisfying sv sw < λ−2,

we have

hλ(v (sv ,sw ), w (sv ,sw )) < hλ(v (sv ,sw−1), w (sv ,sw−1)),

hλ(v (sv ,sw ), w (sv ,sw )) < hλ(v (sv−1,sw ), w (sv−1,sw )).

Moreover, the feasibility criterion v ≥ 0, w ≥ 0 also has a monotonic property:

Lemma 3.10. Let (k, l ) ∈ [p]× [m] be such that kl ≤λ−2.

If v (k,l ) ≥ 0 and w (k,l ) ≥ 0, then, v (i , j ) ≥ 0 and w (i , j ) ≥ 0 ∀i = 1, . . . ,k and ∀ j = 1, . . . , l .

To properly address the complications arising from handling two intertwining sparsity levels

at the same time, we introduce the notion of maximal feasibility boundary (MFB) which acts a

frontier of possible sparsity levels.

Definition 3.1 (Maximal feasibility boundary). We say that a sparsity pair (sv , sw ) ∈ {0, . . . , p}×
{0, . . . ,m} is on the maximal feasibility boundary (MFB) if incrementing either sv or sw results

with a non-stationary point. That is, if both of the following conditions hold:

• v (sv+1,sw )
sv+1 < 0 or w (sv+1,sw )

sw
< 0 or (sv +1)sw >λ−2,

• v (sv ,sw+1)
sv

< 0 or w (sv ,sw+1)
sw+1 < 0 or sv (sw +1) >λ−2.

The efficient computation of the multi-output robust-sparse proximal mapping is based on

the fact that we only need to compute the value of hλ for sparsity levels that are at the frontier

of the MFB. This allows us to find the optimal sparsity in time O (p +m), improving upon the

O (pm) complexity of the exhaustive search. Algorithm 3.3 implements the above by employing

a binary search type procedure defined in Algorithm 3.5 to calculate the MFB.

Theorem 3.4 (Multi-output prox computation). Let (V ∗
:,i ,W ∗

i ,:) be the output of Algorithm 3.3

with input X :,i ,Yi ,:,λ, where each X :,i , Yi ,: are sorted in decreasing magnitude order. Then

(V ∗,W ∗) is a solution to (3.5).

Time complexity of Algorithm 3.3. It is easy to see that the maximal feasibility boundary

contains at most min(m, p) pairs, and Algorithm 3.5 finds them all in time O (m+p). Then, for
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Algorithm 3.3 Multi-output robust-sparse proximal mapping

Input: x ∈Rp , y ∈Rm ordered in decreasing magnitude order, λ> 0.

1: Employ Algorithm 3.5: Find the set of sparsity pairs S = {(sv , sw )} that are on the MFB
2: hopt ←∞
3: for (sv , sw ) ∈ S do
4: Compute v (sv ,sw ) and w (sv ,sw ) as given in equations (3.12), (3.13)
5: if hλ(v (sv ,sw ), v (sv ,sw ); |x|, |y |) < hopt then
6: hopt = hλ(v (sv ,sw ), v (sv ,sw ); |x|, |y |)
7: v∗ ← v (sv ,sw ), w∗ ← w (sv ,sw )

8: end if
9: end for

10: return (sign(x)◦ v∗, sign(y)◦w∗)

each such pair (sv , sw ), we must compute v (sv ,sw ) and w (sv ,sw ) and hλ(v (sv ,sw ), w (sv ,sw )), which

takes time O (m+p). The total complexity of Algorithm 3.3 is thus O (min(m, p)(m+p)). In most

practical application, the output layer size p can be considered O (1), so that the complexity

of computing this proximal mapping is comparable to the complexity of computing one

stochastic gradient.

3.6 Related Work

The path regularization approach to train neural networks can be traced back to the seminal

paper by Neyshabur et al. (2015c), who introduced the p-path-norm as a heuristic proxy to

control the capacity of the network.

In this paper (cf. Theorem 3.1), we took a step forward by moving from heuristic explanations

to rigorous arguments by establishing a new connection between the 1-path-norm and the

Lipschitz constant of the network. This result also reads as a relation between the 1-path-

norm and the product bound, of which variants have been found to be useful in deriving

generalization bounds (Bartlett et al., 2017b).

Generalization bounds in terms of the p-path-norm were also derived in (Neyshabur et al.,

2015c), but the question of how to methodologically exploit these as regularizers remains

open; our algorithmic contribution is a first step in this direction. Additionally, issues regard-

ing optimization with path-norm regularization were reported by Ravi et al. (2019), which

examined a conditional gradient method in the context of path-norm regularization.

A growing collection of works have focused on the task of network compression, doing so via

sparsity-inducing regularizers (Alvarez and Salzmann, 2016; Yoon and Hwang, 2017; Scarda-

pane et al., 2017; Lemhadri et al., 2019). They have achieved a great level of success by setting

the regularization term in an ad-hoc manner. In contrast, we follow a principled regularization

approach with theoretical properties of generalization and robustness, and as a consequence,

we are able to quantify the sparsity of the resulting networks.
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Figure 3.1: value of regularized cross-entropy loss across iterations.

Figure 3.2: Misclassification test error (left) and robust test error (right) as a function of the
percentage of nonzero weights.

Figure 3.3: Misclassification test error (left) and robust test error (right) on the test set, as a
function of the regularization parameter λ.

Moreover, the aforementioned works only use convex regularizers for which efficient proximal

mappings are available (see Bach et al. (2012) and references therein). We tackle the much

harder non-convex regularization task, and derive a new method to compute the proximal

mapping in this case. The merits of non-convex non-smooth regularization, and difficulties

regarding their optimization, have been extensively studied in the imaging and signal sciences,

see e.g., (Ochs et al., 2015) and the recent survey (Wen et al., 2018).

Layer-wise constraints or regularization with matrix-norms, which are also motivated by the

product bound, have been used for robust training (Cisse et al., 2017b; Tsuzuku et al., 2018a)

and generative models (Miyato et al., 2018a). These focus on robustness with respect to the

ℓ2-norm, which requires a careful handling of operations on the singular values of the weight

matrices, and does not have the extra benefit of inducing sparsity.

In section 3.7 we compare to this class of methods for the ℓ∞-norm case, in which a simple

rescaling of the rows in the weight matrices yields a numerically stable procedure (Duchi et al.,

2008b; Condat, 2016).
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3.7 Experiments

We empirically evaluate shallow neural networks trained by regularized empirical risk min-

imization (3.4) using cross-entropy loss. In terms of the weight matrices V and W of the

network (3.1), the following regularizers are considered:

ℓ1 regularization. We penalize the ℓ1-norm of the parameters of the network, i.e., g (V ,W ) =
∥vec(V )∥1 +∥vec(W )∥1 in the objective function (3.4).

1-path-norm regularization. We set g (V ,W ) as
∑n

i=1

∑m
j=1

∑p
k=1 |Wi j Vki | in the objective

function (3.4).

Layer-wise regularization (Parseval Networks). we minimize the cross-entropy loss with

a hard constrain on the ℓ∞-operator-norm of the weight matrices i.e., ∥W ∥∞ ≤ λ−1 and

∥V ∥∞ ≤ λ−1, as described by Cisse et al. (2017b). The projection on such set is achieved by

projecting each row of the matrices onto an ℓ1-ball using efficient algorithms (Duchi et al.,

2008b; Condat, 2016).

Remark. We will refer (incorrectly) to the training loop defined by PyTorch’s SGD optimizer as

Stochastic gradient descent (SGD) (see the discussion in section 3.1).

Experimental setup. Our benchmarks are the MNIST (LeCun and Cortes, 2010a), Fashion-

MNIST (Xiao et al., 2017a) and Kuzushiji-MNIST (Clanuwat et al., 2018a). For a wide range of

learning rates, number of hidden neurons and regularization parameters λ, we train networks

with SGD and Proximal-SGD (with constant learning rate). We do so for 20 epochs and with

batch size set to 100. For each combination of parameters we train 6 networks with the default

random initialization. Details and further experiments are reported in appendix 3.12.

3.7.1 Convergence of SGD vs Proximal-SGD

Due to the non-differentiability of the ℓ1- and path-norm regularizers, we expect Proximal-

SGD to converge faster, and to lower values of the regularized loss, when compared to SGD.

This is examined in Figure 3.1, where we plot the value of the loss function across iterations.

For both SGD and Proximal-SGD, the loss function decays rapidly in the first few epochs. We

then enter a second regime where SGD suffers from slow convergence, whereas Proximal-

SGD continues to reduce the loss at a fast rate. At the end of the 20-epochs, Proximal-SGD

consistently achieves a lower value of the loss.

An advantage of Proximal-SGD over plain SGD is that the proximal mappings of both the

ℓ1- and path-norm regularizers can set many weights to exactly zero. In Figure 3.2 we plot

the average error and robust test error obtained, as a fuction of the sparsity of the network.

Compared to ℓ1 regularization, the sparsity pattern induced by the 1-path-norm correlates

with the robustness to a higher degree. As a drawback, it appears that in more difficult datasets

like KMNIST, the 1-path-norm struggles to obtain good accuracy and sparsity simultaneously.
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3.7.2 The robustness-accuracy trade-off

The relation between the Lipschitz constant of a network and its robustness to adversarial

perturbations has been extensively studied in the literature. In theorem 3.1 we have shown

that the 1-path-norm of a single-output network is a tighter upper bound of its Lipschitz

constant, compared to the corresponding product bound.

To the best of our knowledge, the ℓ1-norm regularizer only provides an upper boud on the

already loose product bound (Neyshabur et al., 2015c, Eq. (4)), which makes it less attractive

as a regularizer, despite its sparsity-inducing properties. Hence, the 1-path-norm regularizer

is, in theory, a better proxy for robustness than the other regularization schemes.

Subsection 3.12.2 shows the misclassification error on clean and adversarial examples as a

function of λ, and corresponds to the learning rate minimizing the error on clean samples.

The adversarial perturbations were obtained by PGD (Madry et al., 2018b).

Any training procedure which promotes robustness of a classifier may decrease its accuracy,

and this effect is consistently observed in practice (Tsipras et al., 2019). Hence, the merits of a

regularizer should be measured by how efficiently it can trade-off accuracy for robustness. We

observe that for all three regularization schemes, there exists choices of λ that attain the best

possible error on clean samples.

On the other hand, the error obtained by the ℓ1 regularization degrades significantly. The layer-

wise and 1-path-norm regularization achieve a noticeably low error on adversarial examples.

Comparing the latter schemes, the 1-path-norm regularization shows only a slight advantage

over the layer-wise methods, which merits further investigation.

3.8 Appendix: Proof of Theorem 3.1

We will first prove a particular case of Theorem 3.1, the single-output case (p = 1).

Proposition 3.1. Let hV ,W (x) =V Tσ(W x) :Rm →R be a neural network where V ∈Rn×1 and

W ∈ Rn×m . Suppose that that the derivative of the activation is globally bounded between

zero and one. Its Lipschitz constant with respect to the ℓ∞ norm (for the input space) and the

ℓ1-norm (for the output space) is bounded as follows:

LV ,W ≤
n∑

i=1

m∑
j=1

|Wi , j Vi ,1| ≤ ∥V ∥1∥W ∥∞ (3.14)

First, note that because the output space is R, the ℓ1-norm is just the absolute value of the

output. In this case the Lipschitz constant of the single-output function h is equal to the

supremum of the ℓ1-norm of its gradient, over its domain (c.f., Latorre et al. (2020b, Theorem

1)).
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Proof.

LV ,W = sup
x

∥∇hV ,W (x)∥1

= sup
x

sup
∥t∥∞≤1

t T ∇hV ,W (x)

= sup
x

sup
∥t∥∞≤1

t T W Tσ′(W x)V

≤ sup
0≤s≤1

sup
∥t∥∞≤1

t T W T Diag(s)V

= sup
0≤s≤1

sup
∥t∥∞≤1

n∑
i=1

m∑
j=1

ti (W T Diag(V ))i , j s j

≤
n∑

i=1

m∑
j=1

sup
0≤s j≤1

sup
−1≤ti≤1

ti (W T Diag(V ))i , j s j

=
n∑

i=1

m∑
j=1

|W T Diag(V )|i , j =
n∑

i=1

m∑
j=1

|Wi , j Vi ,1|

This shows the first inequality in (3.14). We now show the second inequality. Denote the i -th

row of the matrix W as wi :

n∑
i=1

m∑
j=1

|Wi , j Vi ,1| =
n∑

i=1
|Vi ,1|

m∑
j=1

|Wi , j |

=
n∑

i=1
|Vi ,1|∥wi∥1

≤
n∑

i=1
|Vi ,1| max

j=1,...,m
∥w j∥1

=
n∑

i=1
|Vi ,1|∥W ∥∞

= ∥V ∥1∥W ∥∞

In the fourth line we have used the fact that the ℓ∞ operator norm of a matrix is equal to the

maximum ℓ1-norm of the rows.

□

Proof of Theorem 3.1. We now proceed with the general case where V ∈Rn×p , W ∈Rn×m and

hV ,W (x) =V Tσ(W x).
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Proof. Denote the columns of V , in order, as V1, . . . ,Vp . Using Proposition 3.1 we have

∥V Tσ(W x)−V Tσ(W y)∥1 =
p∑

k=1
|V T

k σ(W x)−V T
k σ(W y)|

≤
p∑

k=1

n∑
i=1

m∑
j=1

|Wi , j Vi ,k |∥x −u∥∞

≤
p∑

k=1
∥Vk∥1∥W ∥∞∥x − y∥∞

= ∥V T ∥∞,1∥W ∥∞∥x − y∥∞

where in the fourth line we have used the fact that the (ℓ∞,ℓ1) operator norm of a matrix

V T is equal to the sum of the ℓ1 norm of its rows i.e., the columns of V . This shows that

LV ,W ≤∑n
i=1

∑m
j=1

∑p
k=1 |Wi , j Vi ,k | ≤ ∥V T ∥∞,1∥W ∥∞

□

3.9 Appendix: Proof of Theorem 3.2

In this section we prove the theoretical guarantees stated in Theorem 3.2 of the prox-grad

method described by Algorithm 3.1. The first and second parts of Theorem 3.2 follow imme-

diately from the results establish by Bolte et al. (2013). Part two in Theorem 3.2 states that

Algorithm 3.1 is globally convergent under the celebrated Kurdyka–Lojasiewicz (KL) property

Attouch et al. (2010). The broad classes of semi-algebraic and subanalytic functions, widely

used in optimization, satisfy the KL property (see e.g. (Bolte et al., 2013, Section 5)), and in

particular, most convex functions encountered in finite dimensional applications satisfy it

(see (Bolte et al., 2013, Section 5.1)). We refer the reader to the works Attouch et al. (2010,

2011); Bolte et al. (2013), in particular to (Bolte et al., 2013, Sections 3.2-3.5) for additional

information and results.

For Part three we require the sufficient decrease property stated next.

Lemma 3.11 (Sufficient decrease property (Bolte et al., 2013, Lemma 2)). Let Ψ :Rn →R be

a continuously differentiable function with gradient assumed LΨ-Lipschitz continuous, and

let σ :Rn → (−∞,∞] be a proper l.s.c function satisfying that infσ>−∞. Fix any t ∈ (0,1/LΨ).

Then, for any u ∈ domσ and any u+ ∈Rn defined by

u+ ∈ proxσt (u− t∇Ψ(u))

we have

Ψ(u)+σ(u)−Ψ(u+)−σ(u) ≥ 1− tLΨ
2t

∥u+−u∥2.

Proof of Theorem 3.2. The first and second parts follow from the results established by Bolte
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et al. (2013). We will now prove the third part. By Lemma 3.11 we have that

F (zk )−F (zk+1) = f (zk )+λg (zk )− f (zk+1)−λg (zk+1)) ≥ 1−Lηk

2ηk
∥zk+1 − zk∥2. (3.15)

Hence { f (zk )+λg (zk )}k≥0 is a non-increasing sequence that strictly decreasing unless a critical

point is obtained in a finite number of steps. By summing (3.15) over k = 0,1, . . . ,K and using

the fact that { f (zk )+λg (zk )}k≥0 is non-increasing and is bounded below by F∗, we obtain

that

F (z0)−F∗ ≥
K∑

k=0

1−Lηk

2ηk
∥zk+1 − zk∥2

≥ 1

2
(c −L)K min

k=0,...,K
∥zk+1 − zk∥2

2.

Consequently,

min
k=0,...,K

∥zk+1 − zk∥2 ≤
√

2(F (z0)−F∗)

(c −L)K
.

□

3.10 Appendix: Single output proximal map computation

This section provides the theoretical background and the required intermediate results to

prove Theorem 3.3.

3.10.1 Moving to an Equivalent Easier Problem

We are interested in minimizing the nonconvex twice continuously differentiable function

min
v,w∈R×Rm

1

2
(v −x)2 + 1

2

m∑
j=1

(w j − y j )2 +λ|v |
m∑

j=1
|w j |. (3.16)

The signs of the elements of the decision variables in (3.16) are determined by the signs of

(x, y), and consequently, the problem in (3.16) is equivalent to problem (3.17); this is (partly)

formulated by Lemma 3.12.

min
v,w∈R+×Rm+

hλ(v, w ; x, y) ≡ 1

2
(v −|x|)2 + 1

2

m∑
j=1

(w j −|y j |)2 +λv
m∑

j=1
w j . (3.17)

Lemma 3.12. Let (v∗, w∗) ∈R+×Rn+ be an optimal solution of problem (3.17). Then (sign(x) ·
v∗,sign(y)◦w∗) is an optimal solution of problem (3.16).
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Proof. We have that

h̃λ(v, w ; x, y) ≡ 1

2
(v −x)2 + 1

2

m∑
j=1

(w j − y j )2 +λ|v |
m∑

j=1
|w j |

= 1

2
(sign(x)v −|x|)2 + 1

2

m∑
j=1

(sign(y j )w j −|y j |)2 +λ|v |
m∑

j=1
|w j |

≥ 1

2
(|v |− |x|)2 + 1

2

m∑
j=1

(|w j |− |y j |)2 +λv
m∑

j=1
w j

≥ hλ(v∗, w∗; |x|, |y |),

where the last inequality follows from the fact that (v∗, w∗) is an optimal solution of (3.17).

Since equality with the lower bound is attained by setting (v, w) = (sign(x) · v∗, sign(y)◦w∗),

we conclude that (sign(x) · v∗, sign(y)◦w∗) is an optimal solution of (3.16). □

To summarize, we have established that, finding an optimal solution to (3.17) and then chang-

ing signs accordingly, yields an optimal solution to (3.16). We will now focus on obtaining an

optimal solution for (3.16).

3.10.2 Solving the Prox Problem

First we note that problem (3.17) is well-posed.

Lemma 3.13 (Well-posedness of (3.17)). For any λ≥ 0 and any (x, y) ∈ R×Rm , the problem

(3.17) has a global optimal solution.

Proof. The claim follows from the fact that the objective function is coercive, cf. (Beck, 2014,

Thm. 2.32). □

In light of Lemma 4.5, and due to the fact that in (3.17) we minimize a continuously differen-

tiable function over a closed convex set, the set of optimal solutions of (3.17) is a nonempty

subset of the set of stationary points of (3.17). These satisfy the following conditions (cf. (Beck,

2014, Ch. 9.1)).

Lemma 3.14 (Stationarity conditions). Let (v∗, w∗) ∈R+×Rm+ be an optimal solution of (3.17)

for a given (x, y) ∈R×Rm . Then

w∗
j = max

{
0, |y j |−λv∗}

for any j = 1,2, . . . ,m,

v∗ = max

{
0, |x|−λ

m∑
j=1

w∗
j

}
.
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Proof. The stationarity (first-order) conditions of (3.17) (cf. (Beck, 2014, Ch. 9.1)) state that

∂hλ
∂v

(v∗, w∗; x, y)

= 0, v∗ > 0,

≥ 0, v∗ = 0,

∂hλ
∂w j

(v∗, w∗; x, y)

= 0, w∗
j > 0,

≥ 0, w∗
j = 0,

which translates to

v∗−|x|+λ
m∑

j=1
w∗

j

= 0, v∗ > 0,

≥ 0, v∗ = 0,
w∗

j −|y j |+λv∗
= 0, w∗

j > 0,

≥ 0, w∗
j = 0,

and the required follows. □

The stationarity conditions given in Lemma 4.7 imply a solution form that we exploit in

Algorithm 3.2; this is described by Corollary 4.1, where we use the convention that
∑0

j=1 a j ≡ 0

for any {a j } ⊆R.

Corollary 3.3. Let (v∗, w∗) ∈R+×Rm+ be an optimal solution of (3.17) for a given (x, y) ∈R×Rm .

1. The vector w∗ satisfies that for any j , l ∈ {1,2, . . . ,m} it holds that w∗
j ≥ w∗

l only if |y j | ≥
|yl |.

2. If v∗ = 0, then w∗ = y.

3. If v∗ > 0, and s = |{ j : w∗
j > 0}|, then we have that

v∗ = 1

1− sλ2

(
|x|−λ

s∑
j=1

|ȳ j |
)

, (3.18)

where ȳ is the sorted vector of y in descending magnitude order.

Proof. The first part follows trivially from the stationarity conditions on w∗ given in Lemma

4.7. The second part also follows trivially from the problem definition.

From the first part and the conditions in Lemma 4.7 we have that
∑m

j=1 w∗
j =∑s

j=1 |ȳ j |−λsv∗.

Plugging the latter to the stationarity condition on v∗ (given in Lemma 4.7) then implies the

required. □

In our analysis, we strictly distinguish between the trivial solution (v∗, w∗) = (0, y), and the

non-trivial solution in which v∗ > 0. A practical point-of-view suggests that if v∗ = 0, then

the corresponding succeeding weights should also be zero, even though the optimality condi-

tions imply otherwise. However, to avoid hindering the training process, this observation is

considered only in the end of the training.
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Recall that our analysis so-far implies that the magnitude order of y determines the order

magnitude of w , effectively implying on set of non-zero entries in w (cf. Remark 3.5). For

clarity of indices, and without loss of generality, we assume throughout this section that the

vector y is already sorted in decreasing order of magnitude, that is y ≡ ȳ . We will use, without

confusion, both notation to describe the same entity in order to maintain coherence with our

procedures and results.

Denote

v (s) = 1

1− sλ2

(
|x|−λ

s∑
j=1

|y j |
)

w (s)
j = |y j |−λv (s) for j = 1,2, . . . , s, and w (s)

j = 0 otherwise.

(3.19)

Lemma 3.5 which states the monotonicity property

hλ(v (s), w (s); x, y) < hλ(v (s−1), w (s−1); x, y).

is proved next.

Proof of Lemma 3.5. Recall that hλ(v, w ; x, y) := 1
2 (v −|x|)2 + 1

2

∑m
j=1(w j −|y j |)2 +λv

∑m
j=1 w j .

By plugging w (s) defined in (3.19) to hλ we obtain that

hλ(v (s), w (s); x, y) =1

2
(v (s) −|x|)2 + 1

2

s∑
i=1

(|ȳi |− (|ȳi |−λv (s)))2

+ 1

2

m∑
i=s+1

|ȳi |2 +λv (s)
s∑

i=1
(|ȳi |−λv (s))

=1

2
(v (s) −|x|)2 + λ2

2
s(v (s))2 + 1

2
∥y∥2

2

− 1

2

s∑
i=1

|ȳi |2 +λv (s)
s∑

i=1
|ȳi |−λ2s(v (s))2.

Consequently, plugging v (s), defined in (3.19), yields

hλ(v (s), w (s); x, y) =1

2

(
λ2s

1−λ2s
|x|− λ

1−λ2s

s∑
i=1

|ȳi |
)2

− λ2s

2(1−λ2s)2

(
|x|−λ

s∑
i=1

|ȳi |
)2

+ λ

1−λ2s

s∑
i=1

|ȳi |
(
|x|−λ

s∑
i=1

|ȳi |
)
− 1

2

s∑
i=1

|ȳi |2 + 1

2
∥y∥2

2

= λ2s

2(1−λ2s)2 x2(λ2s −1)+ λ2

2(1−λ2s)2

(
s∑

i=1
|ȳi |

)2

(1−λ2s −2(1−λ2s))

+|x|
s∑

i=1
|ȳi |

(
− λ3s

(1−λ2s)2 + λ3s

(1−λ2s)2 + λ

1−λ2s

)
− 1

2

s∑
i=1

|ȳi |2 + 1

2
∥y∥2

2
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= 1

2(1−λ2s)

(
−λ2sx2 −

(
|x|−λ

s∑
i=1

|ȳi |
)2

+x2

)
− 1

2

s∑
i=1

|ȳi |2 + 1

2
∥y∥2

2

=− 1

2(1−λ2s)

(
|x|−λ

s∑
i=1

|ȳi |
)2

+ 1

2
∥x∥2

2 −
1

2

s∑
i=1

|ȳi |2 + 1

2
∥y∥2

2

=−
(
1+ λ2

1−λ2s

)
1

2(1−λ2(s −1))

(
|x|−λ

s−1∑
i=1

|ȳi |−λ|ȳs |
)2

+ 1

2
∥x∥2

2 −
1

2

s−1∑
i=1

|ȳi |2 − 1

2
|ȳs |2 + 1

2
∥y∥2

2

=hλ(v (s−1), w (s−1); x, y)− 1

2(1−λ2s +λ2)

(
−2λ|ȳs |

(
|x|−λ

s−1∑
i=1

|ȳi |
)
+λ2|ȳs |2

)

− λ2

2(1−λ2s)(1−λ2s +λ2)

(
|x|−λ

s∑
i=1

|ȳi |
)2

− 1

2
|ȳs |2.

Therefore,

hλ(v (s), w (s); x, y)−hλ(v (s−1), w (s−1); x, y)

=− 1

2(1−λ2s +λ2)

(
−2λ|ȳs |

(
|x|−λ

s∑
i=1

|ȳi |
)
−λ2|ȳs |2 + λ2

1−λ2s

(
|x|−λ

s∑
i=1

|ȳi |
)2

+ (1−λ2s +λ2)|ȳs |2
)

=− 1

2(1−λ2s +λ2)

(
(1−λ2s)|ȳs |2 −2λ|ȳs |

(
|x|−λ

s∑
i=1

|ȳi |
)
+ λ2

1−λ2s

(
|x|−λ

s∑
i=1

|ȳi |
)2)

=− 1−λ2s

2(1−λ2s +λ2)

(|ȳs |2 −2λ|ȳs |v (s) +λ2(v (s))2)
=− 1−λ2s

2(1−λ2s +λ2)

(|ȳs |−λv (s))2 ≤ 0,

meaning that

hλ(v (s), w (s); x, y) ≤ hλ(v (s−1), w (s−1); x, y).

□

We can now prove our key result formulated in Corollary 3.2, that states that (v (s∗), w (s∗)) is an

optimal solution of (3.7) for

s∗ = max
{

s ∈ [s̄] : v (s), w (s) > 0
}

, where s̄ = min(⌊λ−2⌋,m).

Proof of Corollary 3.2. By Lemma 3.3, (v (s∗), w (s∗)) is a stationary point of (3.7). Moreover,

according to Corollary 3.1 and Lemma 3.4, (v (s∗), w (s∗)) belongs to the set of s̄ stationary points
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that are candidates to be optimal solutions of (3.7). Invoking Lemma 3.5, we have that

hλ(v (s∗), w (s∗); x, y) < hλ(v ( j ), w ( j ); x, y), ∀s∗ > j . (3.20)

Hence, (v ( j ), w ( j )) is not an optimal solution for any j < s∗.

Let us now consider the complementary case. By Lemma 3.4, for any i > s̄ the pair (v (i ), w (i ))

does not satisfy the second-order optimality conditions, and therefore is not an optimal

solution. On the other hand, by the definition of s∗, for any s̄ > i > s∗ the pair (v (i ), w (i )) is not a

feasible solution , and subsequently not a stationary point. To conclude, hλ(v (s∗), w (s∗); x, y) <
hλ(v ( j ), w ( j ); x, y) holds for any j ̸= s∗ such that (v ( j ), w ( j )) is a stationary point, meaning that

(v (s∗), w (s∗)) is an optimal solution of (3.7). □

Finally, we will show that the problem of finding s∗ can be easily solved using binary search.

To this end, we show that the feasibility criterion (i.e., v (s) > 0 and w (s) > 0) satisfies that

(v (k), w (k)) is feasible ⇒ (v (i ), w (i )) is feasible ∀i < k

Proof of Lemma 4.6. Suppose that (v (k), w (k)) is feasible for some k ∈ {2, . . . , s̄}. By induction

principle, it is sufficient to show that (v (k−1), w (k−1)) is feasible in order to prove the result.

By (3.19), we have:

(1−kλ2)v (k) = |x|−λ
k∑

j=1
|y j | = (1−kλ2 +λ2)v (k−1) −|yk |.

which implies

v (k−1) = 1

(1−kλ2 +λ2)
((1−kλ2)v (k) +|yk |) ≥ 0.

For w (k), it is easy to see from (3.19) that since the vector y is sorted in decreasing order of

magnitude, the vector w (k) is also sorted in decreasing order, and thus w (k) is feasible if and

only if w (k)
k > 0.

(1−kλ2)w (k)
k =(1−kλ2)|yk |−λ|x|+λ2

k∑
j=1

|y j |

=−λ|x|+ (1− (k −1)λ2)|yk−1|+λ2
k−1∑
j=1

|y j |+λ2|yk |

+ (1−kλ2)|yk |− (1− (k −1)λ2)|yk−1|
=(1− (k −1)λ2)w (k−1)

k−1 + (1−kλ2 +λ2)(|yk |− |yk−1|),
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where the last line uses the identity of the first line for k −1. We thus have:

w (k−1)
k−1 = 1

(1− (k −1)λ2)
(1−kλ2)w (k)

k +|yk−1|− |yk | ≥ 0,

since |yk−1| ≥ |yk | and k ≤λ−2.

Therefore, there exists a value s∗ such that v (k) > 0 and w (k) > 0 ∀k ≥ s∗ and v (k) ≥ 0 or w (k) ≥ 0

∀k > s∗. This value of s∗ can thus efficiently be found using binary search.

□

3.11 Appendix: Multi-output proximal map computation

3.11.1 Solving the prox problem

Returning to the multi-output setting, recall that hV ,W (x) = V Tσ(W x) with V ∈ Rp×n ,W ∈
Rn×m and

g (V ,W ) =
n∑

i=1

m∑
j=1

p∑
k=1

Wi j Vki .

The proximal mapping can then be written as:

proxλg (V̄ ,W̄ ) = argmin
V ,W

1

2
∥V − V̄ ∥F + 1

2
∥W −W̄ ∥F +λ

n∑
i=1

m∑
j=1

p∑
k=1

Wi j Vki

= argmin
V ,W

n∑
i=1

(
1

2

p∑
k=1

(Vki − V̄ki )2 +
p∑

j=1
(Wi j −W̄i j )2 +

m∑
j=1

p∑
k=1

Wi j Vki

)
.

Noting that the proximal mapping is separable with respect to the columns of W and the rows

of V , and using the same sign trick applied in the single-output case, it is enough to solve for

any i = 1, . . . ,n,

min
v,w∈Rp

+×Rm+
hλ(v, w ; x, y) ≡ 1

2

p∑
k=1

(vk −|xk |)2 + 1

2

m∑
j=1

(w j −|y j |)2 +λ
m∑

j=1

p∑
k=1

vk w j , (3.21)

where x denotes the i -th row of V and y the i -th column of W , in order to compute the prox

operator.

The stationarity conditions for (3.21) are stated next; the arguments are the same as in the

single-output case.

Lemma 3.15 (Stationarity conditions). Let (v∗, w∗) ∈Rp
+×Rm+ be an optimal solution of (3.21)
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for a given (x, y) ∈Rp ×Rm . Then

w∗
j = max

{
0, |y j |−λ

p∑
k=1

v∗
k

}
for any j = 1,2, . . . ,m,

v∗
k = max

{
0, |xk |−λ

m∑
j=1

w∗
j

}
for any k = 1,2, . . . , p.

The next lemma restates the result in Lemma 3.7 which expands on the monotonic relation in

magnitude originally established for single-output networks in Corollary 3.1.

Lemma 3.16. Let (v∗, w∗) ∈Rp
+×Rm+ be an optimal solution of (3.17) for a given (x, y) ∈Rp×Rm .

1. The vector w∗ satisfies that for any j , l ∈ {1,2, . . . ,m} it holds that w∗
j ≥ w∗

l only if |y j | ≥
|yl |.

2. The vector v∗ satisfies that for any k, l ∈ {1,2, . . . , p} it holds that v∗
k ≥ v∗

l only if |xk | ≥ |xl |.

3. Let x̄, ȳ be the sorted vector of x and y respectively in descending magnitude order. Let

sv = |{k : v∗
k > 0}| and sw = |{ j : w∗

j > 0}|. If v∗, w∗ ̸= 0, then

v∗
k = |xk |+

1

1− sv swλ2

(
λ2sw

sv∑
l=1

|x̄l |−λ
sw∑

j=1
|ȳ j |

)
, (3.22)

w∗
j = |y j |+ 1

1− sv swλ2

(
λ2sv

sw∑
l=1

|ȳl |−λ
sv∑

k=1
|x̄k |

)
. (3.23)

Proof. The two first points are direct applications of the stationary conditions of Lemma 3.15.

From the conditions in Lemma 3.15 we have that

m∑
j=1

w∗
j =

sw∑
j=1

|ȳ j |−λsw

p∑
k=1

v∗
k

p∑
k=1

v∗
k =

sv∑
k=1

|x̄k |−λsv

m∑
j=1

w∗
j

=
sv∑

k=1
|x̄k |−λsv

sw∑
j=1

|ȳ j |+λ2sv sw

p∑
k=1

v∗
k

= 1

1−λ2sv sw

(
sv∑

k=1
|x̄k |−λsv

sw∑
j=1

|ȳ j |
)

.
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Thus,

m∑
j=1

w∗
j =

sw∑
j=1

|ȳ j |− λsw

1−λ2sv sw

(
sv∑

k=1
|x̄k |−λsv

sw∑
j=1

|ȳ j |
)

= 1

1−λ2sv sw

(
−λsw

sv∑
k=1

|x̄k |+
sw∑

j=1
|ȳ j |

)
.

Plugging the latter to the stationarity condition on v∗ (given in Lemma 3.15) then implies the

result. □

Finally, we show, as in the single-output case, that second order stationarity condition con-

straints the ranges of sparsities of v∗ and w∗; this relation is given by Lemma 3.8, and is proved

next.

Proof of Lemma 3.8. Since (v∗, w∗) is an optimal solution of (3.21) and the objective function

in (3.21) is twice continuously differentiable, (v∗, w∗) satisfies the second order necessary

optimality conditions. That is, for any d ∈Rp ×Rm satisfying that (v∗, w∗)+d ∈Rp
+×Rm+ and

d T ∇hλ(v∗, w∗; x, y) = 0 it holds that

d T ∇2hλ(v∗, w∗; x, y)d = d T

(
Ip×p Λp×m

Λm×p Im×m

)
d ≥ 0,

where the first row/column corresponds to v and the others correspond to w , I denotes the

identity matrix and Λ denotes a matrix completely filled with λ. Similarly as in the single

output case, we require that the submatrix of ∇2hλ(v∗, w∗; x, y) containing the rows and

columns corresponding to the positive coordinates in (v∗, w∗) is positive semidefinite. Since

the minimal eigenvalue of this submatrix equals 1−λp|Sv ||Sw |, we have λ−2 ≥ |Sv ||Sw |. □

A possible way of solving this proximal problem is thus to exhaustively compute the value

of hλ at each stationary point associated with sparsities sv = 1, . . . , p, sw = 1, . . . ,m such that

sv sw ≤λ−2. However, trying all possible pairs of sparsities (sv , sw ) is computationally costly.

Similarly as is the single output case, we can exploit some structure of the objective function

hλ in order to reduce the possible candidate pairs of sparsities.

Without loss of generality, we assume hereafter that the vectors x, y are already sorted in

decreasing order of magnitude.

Lemma 3.16 shows that for each pair (sv , sw ), sv = 0,1, . . . , p, sw = 0,1, . . . ,m, there exists a

stationary point (v (sv ,sw ), w (sv ,sw )) of hλ(·, ·; x, y) such that |{k : v (sv ,sw )
k > 0}| = sv , |{ j : w (sv ,sw )

j >
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0}| = sw , given by

v (sv ,sw )
k = |xk |+

1

1− sv swλ2

(
λ2sw

sv∑
l=1

|xl |−λ
sw∑

j=1
|y j |

)
for k = 1,2, . . . , sv , and v (sv ,sw )

k = 0 else

w (sv ,sw )
j = |y j |+ 1

1− sv swλ2

(
λ2sv

sw∑
l=1

|yl |−λ
sv∑

k=1
|xk |

)
for j = 1,2, . . . , sw , and w (sv ,sw )

j = 0 else.

(3.24)

We now move to prove the monotonicity property stated in Lemma 3.9.

Proof of Lemma 3.9. The proof follows exactly the same lines as in the single output case. We

recall the definition of the objective function:

hλ(v, w ; x, y) ≡ 1

2

p∑
k=1

(vk −|xk |)2 + 1

2

m∑
j=1

(w j −|y j |)2 +λ
(

p∑
k=1

vk

)(
m∑

j=1
w j

)
.

Plugging the definitions from equation (3.24), we have

hλ
(
v (sv ,sw ), w (sv ,sw ); x, y

)= sv

2

(
1

1−λ2sv sw

(
λ2sw

sv∑
k=1

|xk |−λ
sw∑

j=1
|y j |

))2

+ 1

2

p∑
k=sv+1

x2
k

+ sw

2

(
1

1−λ2sv sw

(
λ2sv

sw∑
j=1

|y j |−λ
sv∑

k=1
|xk |

))2

+ 1

2

m∑
j=sw+1

y2
j

+ λ

(1−λ2sv sw )2

(
sv∑

k=1
|xk |−λsv

sw∑
j=1

|y j |
)(

−λsw

sv∑
k=1

|xk |+
sw∑

j=1
|y j |

)

= 1

2(1−λ2sv sw )2

((
sv∑

k=1
|xk |

)2

(λ4sv s2
w +λ2sw −2λ2sw )+

(
sw∑

j=1
|y j |

)2

(λ2sv +λ4s2
v sw −2λ2sv )(

sv∑
k=1

|xk |
)(

sw∑
j=1

|y j |
)

(−2λ3sv sw −2λ3sv sw +2λ+2λ3sv sw )

)
+ 1

2

p∑
k=sv+1

x2
k +

1

2

m∑
j=sw+1

y2
j

(3.25)
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(3.26)

= 1

2(1−λ2sv sw )

(
−λ2sw

(
sv∑

k=1
|xk |

)2

−λ2sv

(
sw∑

j=1
|y j |

)2

+2λ

(
sv∑

k=1
|xk |

)(
sw∑

j=1
|y j |

))
(3.27)

+ 1

2

p∑
k=sv+1

x2
k +

1

2

m∑
j=sw+1

y2
j (3.28)

=
(
1+ λ2sv

1−λ2sv sw

)
1

2(1−λ2sv (sw −1))

(
−λ2(sw −1)

(
sv∑

k=1
|xk |

)2

−λ2

(
sv∑

k=1
|xk |

)2

−λ2sv

((
sw−1∑
j=1

|y j |
)2

+2λ|ysw |
sw−1∑
j=1

|y j |+ y2
sw

)
+2λ

sv∑
k=1

|xk |
(

sw−1∑
j=1

|y j |+ |ysw |
))

(3.29)

+ 1

2

p∑
k=sv+1

x2
k +

1

2

m∑
j=sw−1+1

y2
j −

1

2
y2

sw
. (3.30)

By applying equation (3.25) at sv , sw −1, we can express the right hand side of equation (3.29)

in terms of hλ
(
v (sv ,sw−1), w (sv ,sw−1); x, y

)
as:

hλ
(
v (sv ,sw ), w (sv ,sw ); x, y

)= hλ
(
v (sv ,sw−1), w (sv ,sw−1); x, y

)+ 1

2(1−λ2sv (sw −1))

(
−λ2

(
sv∑

k=1
|xk |

)2

−λ2sv |ysw |
(

2
sw−1∑
j=1

|y j |+ |ysw |
)
+2λ|ysw |

sv∑
k=1

|xk |
)

+ λ2sv

2(1−λ2sv sw )(1−λ2sv (sw −1))

(
−λ2sw

(
sv∑

k=1
|xk |

)2

−λ2sv

(
sw∑

j=1
|y j |

)2

−2λ

(
sv∑

k=1
|xk |

)(
sw∑

j=1
|y j |

))
− 1

2
y2

sw
.
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Therefore:

hλ
(
v (sv ,sw ), w (sv ,sw ); x, y

)−hλ
(
v (sv ,sw−1), w (sv ,sw−1); x, y

)
=− 1

2(1−λ2sv (sw −1))

(
−2λ|ysw |

(
sv∑

k=1
|xk |−λsv

sw∑
j=1

|y j |
)
−λ2sv |ysw |2 +λ2

(
sv∑

k=1
|xk |

)2

+ λ2sv

1−λ2sv sw

(
λ2sw

(
sv∑

k=1
|xk |

)2

+λ2sv

(
sw∑

j=1
|y j |

)2

−2λ

(
sv∑

k=1
|xk |

)(
sw∑

j=1
|y j |

))

+ (1−λ2sv sw +λ2sv )|ysw |
)

=− 1

2(1−λ2sv (sw −1))

(
(1−λ2sv sw )y2

sw
−2λ|ysw |(1−λ2sv sw )

sv∑
k=1

v (sv ,sw )
k

+ λ2

1−λ2sv sw

(
sv∑

k=1
|xk |−λsv

sw∑
j=1

|y j |
)2 )

=− 1−λ2sv sw

2(1−λ2sv (sw −1))

(
|ysw |−λ

sv∑
k=1

v (sv ,sw )
k

)2

.

The second result is obtain directly by symmetry between v and w . □

In order to derive an efficient algorithm , we will again exploit the monotone property of the

feasibility criterion v (sv ,sw ) > 0, w (sv ,sw ) > 0 restated from Lemma 4.9:

Lemma 3.17 (Restatement of Lemma 4.9). Let (k, l ) ∈ [p]× [m] be such that kl ≤λ−2. Suppose

that

v (k,l ) ≥ 0 and w (k,l ) ≥ 0.

Then for any i = 1, . . . ,k and any j = 1, . . . , l , it holds that

v (i , j ) ≥ 0 and w (i , j ) ≥ 0.

Proof of Lemma 4.9. Since the first k entries of v (k,l ) are ordered in decreasing order, we have

that v (k,l ) ≥ 0 if and only if v (k,l )
k ≥ 0. Similarly, w (k,l ) ≥ 0 if and only if w (k,l )

l ≥ 0.

Suppose that v (k,l ) ≥ 0 and w (k,l ) ≥ 0. By induction, in order to prove the result, it is sufficient

to prove that v (k−1,l )
k−1 ≥ 0, v (k,l−1)

k ≥ 0, w (k−1,l )
l ≥ 0 and w (k,l−1)

l−1 ≥ 0. We only prove the result for

v , as the proof for w is identical.
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Using equation (3.24), we have:

(1−klλ2)v (k,l )
k = (1−klλ2)|xk |+λ2l

k∑
i=1

|xi |−λ
l∑

j=1
|y j | (3.31)

= (1−klλ2)|xk |+ (1− (k −1)lλ2)|xk−1|− (1− (k −1)lλ2)|xk−1| (3.32)

+λ2l
k−1∑
i=1

|xi |+λ2l |xk |λ
l∑

j=1
|y j |

= (1− (k −1)lλ2)v (k−1,l )
k−1 + (1− (k −1)lλ2)(|xk |− |xk−1|).

Therefore:

v (k−1,l )
k−1 = 1− (k −1)lλ2

1−klλ2 v (k,l )
k +|xk−1|− |xk | ≥ 0,

since the vector x is ordered in decreasing order of magnitude, and thus |xk−1|− |xk | ≥ 0.

Using again equation (3.31), we have:

(1−klλ2)v (k,l )
k = (1−klλ2)|xk |+ (1−k(l −1)λ2)|xk |− (1−k(l −1)λ2)|xk |

+λ2(l −1)
k∑

i=1
|xi |+λ2

k∑
i=1

|xi |−λ
l−1∑
j=1

|y j |−λ|yl |

= (1−k(l −1)λ2)v (k,l−1)
k −kλ2|xk |+λ2

k∑
i=1

|xi |−λ|yl |,

where the last equality follows (again) from equation (3.31) for v (k,l−1)
k . Thus,

(1−k(l −1)λ2)v (k,l−1)
k = (1−klλ2)v (k,l )

k +kλ2|xk |−λ2
k∑

i=1
|xi |+λ|yl |. (3.33)

From the definition of v (k,l )
k (equation (3.24)), we have that v (k,l )

k ≥ 0 is equivalent to the

condition:

|xk | ≥
λ

∑l
j=1 |y j |− lλ2 ∑k

i=1 |xi |
1−klλ2 .

Plugging this inequality in equation (3.33), we obtain:
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(1−k(l −1)λ2)v (k,l−1)
k ≥ (1−klλ2)v (k,l )

k + kλ2

1−klλ2

(
λ

l∑
j=1

|y j |− lλ2
k∑

i=1
|xi |

)
+λ|yl |−λ2

k∑
i=1

|xi |

= (1−klλ2)v (k,l )
k + λ

1−klλ2

(
(3.34)

kλ2
l∑

j=1
|y j |−klλ3

k∑
i=1

|xi |+ (1−klλ2)|yl |−λ(1−klλ2)
k∑

i=1
|xi |

)

= (1−klλ2)v (k,l )
k + λ

1−klλ2

(
kλ2

l∑
j=1

|y j |+ (1−klλ2)|yl |−λ
k∑

i=1
|xi |

)
.

(3.35)

From the definition of w (k,l )
l (equation (3.24)), we have that w (k,l )

l ≥ 0 is equivalent to the

condition:

(1−klλ2)|yl |+kλ2
l∑

j=1
|y j |−λ

k∑
i=1

|xi | ≥ 0. (3.36)

Since the expression of equation (3.36) is exactly the same as the one inside the parentheses of

equation (3.35), plugging this relation to (3.33) thus shows that (1−k(l −1)λ2)v (k,l−1)
k ≥ 0, i.e.

v (k,l−1)
k ≥ 0. □

We now introduce the efficient procedure to compute the maximal feasibility boundary (MFB),

and prove that it indeed delivers, as promised, all sparsity pairs in the MFB set.

Lemma 3.18. The set S returned by Algorithm 3.5 contains all, and only, the sparsity pairs that

are on the maximal feasibility boundary.

Proof. First recall that the MFB is defined as all pairs (sv , sw ) ∈ {0, . . . , p}× {0, . . . ,m} satisfying

the conditions:

1. v (sv ,sw )
sv

> 0 and w (sv ,sw )
sw

> 0 and sv sw ≤λ−2,

2. v (sv+1,sw )
sv+1 ≤ 0 or w (sv+1,sw )

sw
≤ 0 or (sv +1)sw >λ−2 or sv = p,

3. v (sv ,sw+1)
sv

≤ 0 or w (sv ,sw+1)
sw+1 ≤ 0 or sv (sw +1) >λ−2 or sw = m.

Algorithm 3.5 plays on the properties of feasibility-infeasibility of the sparsity levels to build

the MFB. We say that a pair of the sparsity levels of v and w (sv , sw ) is feasible if v (sv ,sw )
sv

≥ 0,

w (sv ,sw )
sw

≥ 0 and sv sw <λ−2, and denote this by the property P (i , j ), i.e.

(i , j ) is feasible ⇔ P (i , j ).
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Algorithm 3.5 Finding sparsity pairs on the maximal feasibility boundary

Input: x ∈Rp , y ∈Rm ordered in decreasing magnitude order, λ> 0.

1: sv ← 0, sw ← m
2: S ←;
3: maxi mal ← Tr ue
4: while sv ≤ p and sw ≥ 0 do
5: Compute v (sv ,sw )

sv
and w (sv ,sw )

sw
as shown in equation (3.24)

6: if v (sv ,sw )
sv

< 0 or w (sv ,sw )
sw

< 0 or sv sw ≥λ−2 then
7: if maxi mal then
8: S ← S ∪ {(sv −1, sw )}
9: maxi mal ← F al se

10: end if
11: sw ← sw −1
12: else
13: sv ← sv +1
14: maxi mal ← Tr ue
15: end if
16: end while
17: if sv == p +1 then
18: S ← S ∪ {(sv −1, sw )}
19: end if
20: return S

Our claim can be read as: Let (i , j ) ∈ {0, . . . , p}× {0, . . . ,m}, then (i , j ) is added to S by Algo-

rithm 3.5 if and only if (i , j ) belongs to the MFB, i.e.,

(i , j ) ∈ MFB ⇔ (i , j ) ∈ S.

Obviously, only feasible sparsity pairs belong to the MFB, and it is quite easy to see that only

feasible sparsity pairs will belong to an output S of Algorithm 3.5. Indeed, Algorithm 3.5

monotonically decrements sw starting from sw = m and increments sv starting from sv = 0.

For each value of sw , it increases sv while the current pair (sv , sw ) is feasible (lines 12−15).

Once it reaches an infeasible point (i , sw ), and in the case where sv has been increased at least

once for this particular value of sw , it adds to S the pair encountered just before, i.e., (i −1, sw ),

and then decrements sw (lines 6−11).

We first prove the ⇒ statement. Suppose that some pair (i , j ) belongs to the MFB. Let us first

leave aside the corner cases, and assume that i < p and j < m.

Suppose first that sw reaches j before sv reaches i , i.e., sv < i . Since the pair (i , j ) is feasible,

and due to the monotonicity property of the feasibility condition (Lemma 3.9), all pairs (k, sw )

with k ≤ i must be feasible. Therefore, sv will be increased until reaching i +1. By definition

of the MFB, the pair (i +1, j ) must be infeasible. Since sv has necessarily been increased at

least once for this value of sw = j , and so the pair (i +1−1, j ) = (i , j ) will be added to S before
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decrementing sw .

In the special case where i = p, no infeasible point will be found. The loop will thus finish with

sw = j and sv = p +1. The condition at line 17 will thus hold, and the pair (p, j ) will be added

to S.

Suppose now that sv reaches i before sw reaches j , i.e., sw > j . Since (i , j ) is in the MFB, then

the pair (i , j +1) must be infeasible. Thanks to the monotonicity property of the feasibility

condition (Lemma 3.9), all pairs (sv ,k) with k ≥ i must also be infeasible. Therefore, sw will be

decreased until reaching sw = j . Then, similarly as in the previous case, since (i , j ) is feasible,

sv will be increased, and the pair (i , j ) added to S.

We now prove the ⇐ statement. We show that if (i , j ) is added to S, then it must belong to the

MFB, i.e., it satisfies all three properties recalled in the beginning of the proof.

Let us first show that for each pair (sv , sw ) encountered during the algorithm, the pair (sv−1, sw )

is always feasible (or sv = 0). We can show that this property is conserved each time the

algorithm either increases sv or decreases sw . First note that the pair (0,m) is always feasible.

The algorithm will then necessarily first goes to the pair (1,m) and P (1,m) is true. Then

suppose that P (sv , sw ) is true for some pair (sv , sw ) encountered during the algorithm. Then,

if sv is increases, it means that the pair (sv , sw ) is feasible. The next encountered pair is then

(sv +1, sw ) and P (sv +1, sw ) is true. On the other hand, suppose that sw is decreased. The

next encountered pair is thus (sv , sw −1). Since P (sv , sw ) is true, it means that (sv −1, sw ) is

feasible. By Lemma 3.9, it implies that (sv −1, sw −1) is also feasible, and thus P (sv , sw −1)

is true. We thus proved that P (sv , sw ) is true for any pair (sv , sw ) encountered during the

algorithm. Therefore, since any pair added to S is of the form (sv −1, sw ) for some pair (sv , sw )

encountered during the algorithm, then any pair added to S must be feasible.

The second property of the MFB is straightforward to show. Indeed, if (i −1, j ) is added to S, it

means that the pair (i , j ) is infeasible due to condition on line 6.

Finally, the third property follows from the fact that, when reaching sw = j , sv must be in-

creased at least once for adding a pair of the form (i , j ) to S. Let s( j )
v be the value of sv when

the algorithm reaches sw = j . We necessarily have s( j )
v ≤ i . This implies that the pair (s( j )

v , j +1)

is infeasible, otherwise sv would have been increased to a greater value at the previous value

sw = j +1. By Lemma 3.9, and since s( j )
v ≤ i this implies that the pair (i , j +1) is also infeasible,

hence the result.

□

Time complexity of Algorithm 3.5. At each iteration of the loop, either sv is incremented by 1

or sw is decremented by 1. Since sv starts from 0 and sw from m, and that the stopping criterion

is sv > p or sw < 0, it follows that the maximal number of iterations inside the loop is m+p. At

each iteration, we must compute v (sv ,sw )
sv

and w (sv ,sw )
sw

, which requires in particular to compute
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∑sv

k=1 |xk | and
∑sw

j=1 |y j |. However, these cumulative sums can be efficiently computed before

the loop in time O (m +p), so that computing v (sv ,sw )
sv

and w (sv ,sw )
sw

inside the loop can be done

in constant time. The overall complexity of this algorithm is thus O (m +p).

Moreover, we can see that each time we add a pair to S, we must both decrement sw by 1 (just

after adding the element in the algorithm), and increment sv by 1 (in order for the boolean

maxi mal to become true again). Therefore, there can be at most min(m, p) pairs in the final

set s at the end of the algorithm.

Merging all previous results, we can finally prove Theorem 3.4.

Proof of Theorem 3.4. Thanks to the separability argument, it is sufficient to prove that Algo-

rithm 3.3 returns a solution of problem (3.11).

Lemma 3.7 states that given the number of nonzero elements sv = |{k : v∗
k > 0}|, sw = |{ j : w∗

j >
0}|, the optimal solution (v∗, w∗) can be obtained in close form (equations (3.12), (3.13)).

Due the monotonicity property of the objective function hλ (Lemma 3.9), it follows that the

sparsity pair (sv , sw ) of the optimal solution must lie on the MFB. Indeed, if it does not lie on

the MFB, then it means that the candidate solution associated with either the sparsity pair

(sv +1, sw ) or (sv , sw +1) must be feasible. According to Lemma 3.9, this pair would then yield

a lower value of hλ, and would then be a better solution.

Algorithm 3.3 computes the candidate solution associated with all sparsity pair lying on the

MFB, and returns the one achieving the lowest value of hλ. Therefore, the returned solution

must necessarily be the optimal solution. □

3.12 Appendix: Experimental details and other plots

We consider the following values for the parameters that determine the training loop:

▷ batch size: 100

▷ epochs: 20

▷ learning rate: 1e-1, 1e-2, 1e-3, 1e-4, 5e-1, 5e-2, 5e-3, 5e-4

▷ dataset: mnist, fmnist, kmnist

▷ hidden neurons: 200

▷ lambda (λ): 0., 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 2e-5, 2e-4,
2e-3, 2e-2, 2e-1, 2e0, 2e1, 2e2, 3e-5, 3e-4, 3e-3, 3e-2, 3e-1, 3e0, 3e1,
3e2, 4e-5, 4e-4, 4e-3, 4e-2, 4e-1, 4e0, 4e1, 4e2, 5e-5, 5e-4, 5e-3, 5e-2,
5e-1, 5e0, 5e1, 5e2
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Figure 3.4: percentage of nonzero weights in the network, as a function of iteration count
(path regularization - fmnist dataset).

The ℓ∞-bounded adversarial examples used to evaluate the robustness of the networks were

generated using the PGD method described in (Madry et al., 2018b) and implemented in the

advertorch toolbox (https://github.com/BorealisAI/advertorch) using the following parame-

ters:

▷ epsilon: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

▷ iterations: 40

▷ step size: epsilon / 20

▷ random initialization: True

3.12.1 sparsity per iteration

One advantage of the proximal mapping of the 1-path-norm and the ℓ1-norm is that they can

set many weights to exactly zero. This has the effect of providing sparse networks from early

iterations. This is in contrast to SGD with a constant stepsize which does not generate sparse

iterates. In Figures 4, 5, 6 and 7 we plot the percentage of nonzero weights as a function of the

iteration count, for both plain SGD and proximal SGD. We observe that in fact this is the case,

and that the sparsity of the ℓ1 and 1-path-norm regularized network can be controlled with

the regularization parameter λ.

3.12.2 Robustness vs accuracy tradeoff

For all possible values of λ, in Figure 8 we plot the data corresponding to the lerning rate

with least error. We plot the value of the error on clean samples and the error on adversarial
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3.12 Appendix: Experimental details and other plots

Figure 3.5: percentage of nonzero weights in the network, as a function of iteration count
(path regularization - kmnist dataset).
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Figure 3.6: percentage of nonzero weights in the network, as a function of iteration count (ℓ1

regularization - fmnist dataset).
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Figure 3.7: percentage of nonzero weights in the network, as a function of iteration count (ℓ1

regularization - kmnist dataset).
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Figure 3.8: Robustness vs accuracy tradeoff for the different regularizers studied.

examples. This allows us to understand the tradeoff between accuracy and robustness that is

controlled by the regularization paramter λ.

3.13 Bibliographic Note
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4 How to train your 1-path-norm regu-
larized Deep Neural Network

Fabian Latorre, Antoine Bonnet, Nadav Hallak, Paul Rolland and Volkan Cevher. Under

Submission.

Abstract. The so-called path-norm measure is considered one of the best indicators for good

generalization of neural networks. However, its direct implementation in mathematical pro-

gramming for the purpose of training deep networks is still unexplored. This paper presents

different alternatives to optimize the regularized objective, including automatic differentiation

(AD) and a proposed proximal gradient framework applicable to general deep architectures.

We address the resulting nonconvex nonsmooth optimization model by transforming the in-

tractable induced proximal operation to an equivalent differentiable program. This facilitates

the use of first-order algorithms with momentum to obtain a suboptimal – but good enough

– solution. We demonstrate the advantages of this approach over AD in the task of solving

the proximal mapping objective. Additionaly, numerical experiments on FashionMNIST and

CIFAR10 show that for fully-connected architectures, 1-path-norm regularization outperforms

weight-decay in terms of accuracy and robustness to noisy labels or noisy data. The differen-

tiable reformulation of the prox shows an advantage in the presence of large perturbations of

the data, where its unique path-sparsification properties become important.

4.1 Introduction

In the realm of supervised deep learning, assessing the generalization ability of neural net-

works is essential . This is reflected by the interest of the community in finding complexity

measures to predict generalization, e.g., Jiang et al. (2020).

One measure gaining prominence is the path-norm measure Neyshabur et al. (2015c), which

quantifies the complexity and length of the paths taken by the network during inference.

Comprehensive numerical experiments Jiang et al. (2020) found that among norm-based and

margin-based measures, the path-norm of a neural network is the most positively-correlated

with generalization (see Table 2 therein). Supplementing this, Dziugaite et al. (2020) and
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Vakanski and Xian (2021) show that the path-norm is a robust generalization measure. The

positive empirical observations on the path-norm are further supported from a theoretical

perspective by formal excess-risk bounds obtained via a Rademacher complexity analysis of

path-norm-bounded networks; see Neyshabur et al. (2015c); Barron and Klusowski (2019) on

ReLU networks, and E et al. (2020) on Residual Networks.

Among the family of path-norm complexity measures, the so-called 1-path-norm stands

out as the only one providing width-independent generalization bounds for ReLU networks

Neyshabur et al. (2015c). This is a striking property, as any excess-risk bound depending

on the width of the network is otherwise incapable of explaining the good generalization

performance of overparametrized networks with increasing width e.g., Neyshabur et al. (2015b,

2019a); Novak et al. (2018).

The discussion above provides clear motivation for taking into account the path-norm measure

in the training process. A natural and sound manner to do so is to employ a regularization

element in the optimization model. However, the fact that the 1-path-norm is a non-smooth

function poses great difficulty to the automatic-differentiation (AD) paradigm: SGD/Adam

are in theory designed to minimize differentiable objectives. Moreover, AD modules of deep

learning software such as PyTorch Paszke et al. (2019), or TensorFlow Abadi et al. (2015),

may compute incorrect gradient information of compositions of non-differentiable functions

Kakade and Lee (2018); Bolte and Pauwels (2019). Overall, the frameworks that are commonly

used by practitioners are, in theory, problematic to utilize for 1-path-norm regularization.

For example, the authors of Jiang et al. (2020); Dziugaite et al. (2020); Vakanski and Xian (2021)

refrain from using AD methods to perform explicit regularization. As it is argued in Jiang et al.

(2020), the optimization algorithm could fail, thus providing no conclusion about the qualities

of the regularization scheme. In contrast, Proximal gradient methods (Parikh et al., 2014)

have recently been gaining traction in the context of deep learning Yang et al. (2020), and can

provide stronger guarantees for the minimization of nonconvex and nonsmooth losses (Bolte

et al., 2013).

Proximal gradient methods (Parikh et al., 2014) require access to the so-called proximal map-

ping operation. Notwithstanding, the path-norm expression is nonconvex and nonsmooth,

and obtaning an efficient closed-form solution of its proximal operator is a hard problem in

and of itself. Currently, an efficient proximal mapping for the 1-path-norm is only available for

shallow networks Latorre et al. (2020c). This limits the impact of 1-path-norm regularization,

as modern deep neural network architectures are composed of more than one hidden layer. In

contrast, the sharpness of minima Keskar et al. (2017), which is another measure that stands

out as a good indicator of generalization Dziugaite et al. (2020), has specialized algorithms to

implement it Foret et al. (2021) and is compatible with arbitrary deep architectures.

In this work, our goal is to achieve generalization by employing 1-path-norm regularization,

and assess empirically whether the resulting objective can be succesfully minimized using AD

or proximal gradient -based schemes. Since the path-norm is nonsmooth and nonconvex, its
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related proximal map cannot be handled directly. To tackle this, our approach plays on the

properties of the 1-path-norm and the definition of the proximal mapping.

Our contributions. We demonstrate theoretical and practical benefits of 1-path-norm regular-

ization of Deep Neural Networks, and we perform an experimental study about the effective-

ness of certain algorithms for its optimization. To summarize:

• We establish a theoretical connection that relates the 1-path-norm to the Lipschitz constant

of networks with arbitrary depth with either differentiable or ReLU activations (Theorem 4.1).

This generalizes the result of (Latorre et al., 2020c, Theorem 1) for shallow networks with differ-

entiable activations, and corresponds to the multi-layer architectures used in contemporary

deep learning.

• We develop a tractable procedure to compute the non-convex non-smooth proximal map-

ping operator of the 1-path-norm for networks of unit-width and arbitrary depth, with opti-

mality guarantees section 4.8. In synthetic data we illustrate it provides faster optimization

convergence c.f., figure 4.1.

• For networks of arbitrary width and depth, we introduce an approximate proximal gradient

scheme that requires only forward and backward passes through a slight modification of the

network architecture (Algorithm 4.4). The scheme is based on a differentiable reformulation

of the proximal mapping problem, and uses first-order methods to avoid the hardness of

computing the exact proximal mapping. We verify that this reformulation leads to better

solutions of the proximal mapping c.f., figure 4.2.

• We perform an experimental study about the effects of 1-path-norm regularization on the

FashionMNIST (Xiao et al., 2017a) and CIFAR10 (Krizhevsky, 2009) image classification tasks.

On multilayer fully-connected architectures (MLPs) we show how 1-path-norm regularization

improves the classification error and leads to more robust models in the presence of noisy

training labels or perturbations in the data, compared to L2 (weight-decay) or no regular-

ization. Whereas for plain accuracy all 1-path-norm optimization methods (including AD)

achieve similar performance, the proximal methods enjoy an edge in the robustness tasks. For

convolutional architectures (CNNs) we confirm the 1-path-norm is not so effective, given that

by designs CNNs already have a greatly reduced effective number of paths.

Remark. the related algorithm Path-SGD Neyshabur et al. (2015a) is not an algorithm for

1-path-norm regularization. Rather, it is designed to be a rescaling-invariant optimization

algorithm. For this reason, it is not meaningful to compare Path-SGD with our proposed

algorithms.

4.2 Preliminaries and Problem Statement

For an L-layer feedforward neural network fW (x) :=W Lσ(W L−1σ(· · ·σ(W 1x) · · ·)) with a dif-

ferentiable activation function σ :R→R and weight matrices with dimensions determined
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by a sequence of layer sizes1 d0, . . . ,dL−1,dL , its 1-path-norm (Neyshabur et al., 2015c) can be

defined as:

P1(W ) :=1T
∣∣W L

∣∣∣∣W L−1
∣∣ · · · ∣∣W 1

∣∣1 := ∑
i∈I

∣∣∣∣∣ L∏
ℓ=1

W ℓ[iℓ, iℓ−1]

∣∣∣∣∣, (4.1)

where I is the set [d0]× ·· · × [dL] with [dℓ] := {0,1, . . . ,dℓ − 1},
∣∣W ℓ

∣∣ is the matrix obtained

by entry-wise application of the absolute value function, the symbol 1 denotes an all-ones

column vector with dimension inferred by the context, and the i , j -th entry of a matrix W ℓ is

denoted as W ℓ[i , j ].

One of the key properties of the 1-path-norm, is that it controls the smoothness of the network

as it upper bounds its Lipschitz constant. This is known in the case of shallow networks with

differentiable activation functions Latorre et al. (2020c). As we now show, this result is more

general and holds for networks of arbitrary depth and or networks with ReLU activations.

Theorem 4.1. Let fW :Rd0 →R, fW (x) :=W Lσ(W L−1σ(· · ·σ(W 1x) · · · )) be a network such that

the gradient of the activation σ is globally bounded between zero and one, i.e., 0 ≤σ(x) ≤ 1 or

σ(x) = ReLU (x). Choose the ℓ∞-norm for the input space and | · | for the output space. The

Lipschitz constant of the network, denoted by LW is bounded as follows:

LW ≤ P1(W ) ≤
L∏
ℓ=1

∥W ℓ∥∞. (4.2)

The right-hand-side of Equation (4.2) is usually referred to as the trivial bound based on the

product of the norms of each weight matrix (Cisse et al., 2017b). Precisely, Theorem 4.1 states

that the 1-path-norm is a better estimator of the ℓ∞-Lipschitz constant of the network, than

the trivial product bound, in the case of single output. The proof is provided in Section 4.7.

This also motivates the use of the 1-path-norm as a regularizer, given that the the Lipschitz

constant is related to the generalization and robustness of the network (Sokolić et al., 2017;

Anil et al., 2018; Gouk et al., 2021; Pauli et al., 2022).

We can succintly describe the 1-path-norm of a network (4.1) as the ℓ1-norm of a vector

containing the product of weights along each input-output path in the network. The following

is the 1-path-norm regularized empirical risk minimization problem on n labeled training

samples (xi , yi ) ∈Rd0 ×RdL , loss function L and regularization parameter λ ∈R≥0:

min
W

1

n

n∑
i=1

L
(

fW (xi ), yi
)+λP1(W ), W := [Wℓ ∈Rdℓ×dℓ−1 ]L

ℓ=1. (4.3)

When L ≥ 2, common choices of loss function L , such as the cross-entropy loss, lead to a com-

posite optimization objective in (4.3) that is non-convex and non-smooth with a non-convex

non-smooth regularizer due to the presence of absolute values and products. Obviously, such

a model cannot be solved globally. Thus, instead of global optimality, we turn to the task

of devising algorithms with non-asymptotic rates of convergence to first-order stationarity

1Here, the 0-th and L-th layer correspond to the input and output layer, respectively.
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4.2 Preliminaries and Problem Statement

Algorithm 4.1 (Stochastic) Proximal Gradient Descent
Input: Initialization W0, batch size b, step size γ, regularization parameter λ≥ 0, iterations T
Output: Trained model parameters WT .

1: for t = 1, . . . ,T do
2: Sample i1, . . . , ib ∼ Unif[n]
3: Wt+1/2 ←Wt −γ∇W

1
b

∑b
j=1 L

(
fWt (xi j ), yi j

)
4: Wt ← proxγλP1

(Wt+1/2)
5: end for
6: return WT

via the proximal gradient approach. Let us recall the definition of the proximal mapping, a

well-known concept in optimization (Parikh et al., 2014), in the context of the 1-path-norm:

(Bauschke and Combettes, 2011, Definition 12.23):

proxλP1(W ) ∈ argmin
Z

1

2
∥Z −W ∥2

F +λP1(Z ). (4.4)

For the type of problem in consideration, eq. (4.4) constitutes a highly challenging task because

it involves solving a non-convex and non-smooth problem. Indeed, in the case of the 1-path-

norm, an efficient implementation of the proximal mapping is only known for the case of linear

functions and shallow neural networks (Latorre et al., 2020c), which hinders the applicability

of 1-path-norm regularization for contemporary deep network architectures used in practice.

Coupled with a stochastic first-order oracle for the smooth elements of the objective function,

guarantees for the stochastic proximal gradient (Algorithm 4.1) approach with a non-convex

non-smooth regularizer either require structural assumptions (Lipschitz continuity / weak

convexity) on the regularizer (Davis and Drusvyatskiy, 2019; Metel and Takeda, 2019), or

restrictive conditions on the variance (Xu et al., 2019a; Hallak et al., 2021) via a mini-batch

mechanism. Recently some significant advances have been made in this regard Xu et al.

(2019a); Davis and Drusvyatskiy (2019); Xu et al. (2019b); Metel and Takeda (2019); Hallak et al.

(2021); Tran-Dinh et al. (2021), but the stochastic prox-grad approach (Algorithm 4.1) with the

1-path-norm regularizer is still without any controllable guarantees, even if the prox operator

could be computed exactly.

Nevertheless, proximal-gradient type methods are, as of now, the only first-order algorithms

with convergence guarantees for composite non-smooth non-convex problems (Bolte et al.,

2013). Hence, it is worth exploring their use for 1-path-norm regularization of Deep Neural

Networks, and decide if in practice they are a better choice than automatic differentiation. In

the following, we use the proximal gradient method as a template (Algorithm 4.1) to perform

1-path-norm regularization. When the prox cannot be obtained exactly, we propose a practical

heuristic that approximates its mechanism.
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4.3 On the hardness of computing the exact Proximal Mapping

To illustrate the difficulty in deriving an exact proximal mapping, we first consider a single term

in the sum defining the 1-path-norm (Equation (4.1)). This is equivalent to a fully connected

network architecture with one hidden neuron per layer and arbitrary depth. Although limited

in practice, this architecture provides two insights: (i ) In this simple setup, although tractable,

it is already hard to derive an exact solution of the proximal mapping; (i i ) Given access an

exact proximal mapping oracle, it is possible to optimize Equation (4.3), and similar, in a

more efficient manner than employing automatic differentiation (backpropagation). Let

(w1, . . . , wL) ∈RL be the weights of a unit-width neural network. The proximal mapping of the

1-path-norm of this network is the solution of the following:

proxλP1
(w) ∈ argmin

z∈RL

1

2
∥z −w∥2 +λ

L∏
i=1

|zi |. (4.5)

This problem is coercive and bounded from below, meaning that it is has at least one optimal

solution. To obtain a solution for eq. (4.5), we introduce Algorithm 4.5 in section 4.8, which

uses the first-order optimality conditions of eq. (4.5) to reduce the overall problem into a

simple procedure of computing all solutions of a univariate non-linear equation on a compact

interval. Solving this one-dimensional optimization problem can be done to any arbitrary

sub-optimality using a brute-force search method or more complicated protocols; see Aaid

et al. (2017) and references therein.

In section 4.8 we formally show that algorithm 4.5 indeed returns a solution to (4.5), and we

explain in detail the inner workings of the algorithm. To show the benefits of having access

to the proximal mapping, we consider the toy problem of minimizing the 1-path-norm of a

unit-width neural network i.e. |w1 · . . . ·wL |, which is equivalent to eq. (4.3) after choosing the

loss LW = 0 to be identically zero, and setting λ= 1. In this case we know the minimum is

0, and we observe that automatic differentiation struggles to find a minimizer of this simple

problem c.f., Figure 4.1. Unfortunately, the arguments showing that Algorithm 4.5 provides a

solution of the proximal operator objective, do not generalize for networks of arbitrary depth

and width. The interactions between variables that are present in more than one input-output

path in the network lead to an apparently untractable system of equations. For this reason, in

the next section we will look at alternatives that instead try to solve the proximal mapping via

first-order methods.

4.4 Approximate Proximal Gradient Algorithm for the General Case

In this section, we propose three strategies to optimize the objective in eq. (4.3). The first

strategy is to simply use automatic differentiation directly on such objective (Algorithm 4.2),

together with an off-the-shelf first-order optimization algorithm like SGD or Adam (Kingma

and Ba, 2014). It has the advantage of being simple, and can be easily extended to any feed-

forward architecture.
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Figure 4.1: Value of the 1-path-norm of a unit-width network across iterations, for different
values of depth. Two step sizes and four different optimizers are considered, SGD with either
constant or decreasing step-size, Adam (Kingma and Ba, 2014) and the proximal gradient
algorithm based on Algorithm 4.5 (prox) in section 4.8. 1000 repeated runs with random
initialization were performed for each parameter combination.

The second strategy is to follow the Proximal Gradient Template (Algorithm 4.1), and replace

the proximal mapping by a few steps of automatic differentiation applied to the non-smooth

objective defining it (4.4). This leads to Algorithm 4.3 (Prox-AD), where the approximation

of the prox occurs between section 4.4 and section 4.4. This is a refined approach when

compared to the first strategy, but it is still simple to implement. The third strategy we propose

relies on the following result:

Lemma 4.1. Let P be a function satisfying P (W ) = P (|W |). Its proximal mapping satisfies

proxP (W ) = sign(W )⊙prox+P (|W |), prox+P (X ) := argmin
Z∈Rd+

1

2
∥X −Z∥2

F +P (Z ). (4.6)

We present a proof of Lemma 4.1 in Section 4.9. Clearly, the 1-path-norm P1 satisfies the con-

ditions of Lemma 4.1, as it defined on the absolute values of the weight matrices |W L |, . . . , |W 1|.
This result states that instead of solving proxλP1

, we can alternatively solve prox+
λP1

which

is a constrained optimization problem over the nonnegative orthant, with a differentiable

objective. Indeed, over nonnegative weight matrices, the 1-path-norm is identical to the

function 1T WL · · ·W11 which is infinitely differentiable.

Hence, the key advantage of this third approach over the first two strategies is that it removes all

the non-smoothness difficulties and effects originating from the absolute value function. Our

third strategy Prox-DIF (Algorithm 4.4) follows the proximal gradient template, but computes

an approximation of the proximal mapping of the 1-path-norm using Projected Gradient

Descent on the objective that defines prox+
λP1

(c.f., eq. (4.6), Section 4.4 in Algorithm 4.4), and

uses the sign of the weights to recover an approximate solution of proxλP1
(c.f., Section 4.4 in
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Algorithm 4.2 1-path-norm regularization using AD (Path-AD)
Input: Initialization W0, batch size b, step size γ, regularization parameter λ≥ 0, iterations T
Output: Trained model parameters WT

1: for t = 1, . . . ,T do
2: Sample i1, . . . , ib ∼ Unif[n]

3: Wt+1 ←Wt −γ∇W

[
1
b

∑b
j=1 L

(
fWt (xi j ), yi j

)+λP1(Wt )
]

4: end for
5: return WT

Algorithm 4.3 1-path-norm regularization using AD for the Proximal Mapping. (Prox-AD)

Input: Initialization W0, batch size b, step size γ, inner step size γ′ regularization parameter
λ≥ 0, iterations T , inner iterations T ′, skip-prox parameter B .
Output: Trained model parameters WT

1: for t = 0, . . . ,T −1 do
2: Sample i1, . . . , ib ∼ Unif[n]
3: Wt+1/2 ←Wt −γ∇W

1
b

∑b
j=1 L

(
fWt (xi j ), yi j

)
4: if t = 0(mod B) then
5: Z0 =Wt+1/2

6: for t ′ = 0, . . . ,T ′−1 do
7: Zt ′+1 = Zt −γ′∇Z

[1
2∥Wt+1/2 −Zt ′∥2

2 +λγP1(Zt ′)
]

8: end for
9: Wt+1 = ZT ′

10: else
11: Wt+1 =Wt+1/2

12: end if
13: end for
14: return WT

Algorithm 4.4), as Lemma 4.1 indicates.

Efficiently computing the 1-path-norm for arbitrary architectures. All the algorithms for

1-path-norm regularization (Algorithms 4.2 to 4.4) require evaluating the 1-path-norm of the

network to obtain its gradient through automatic differentiation. The defining expression

given by eq. (4.1) is stated for fully connected feed-forward neural networks via the weight

matrices W L , . . . ,W 1. Nevertheless, we can efficiently evaluate this expression for convolu-

tional networks or in general feed-forward architectures. Note that the computation of the

1-path-norm is equivalent to the following process: (1) replace the activations in the network

with the identity σ(x) = x; (2) replace the weights by their absolute values; (3) remove biases;

(4) compute the forward pass of the resulting (linear) network on the vector of all-ones 1; and

(5) sum the outputs. For example, in the case of CNNs, this avoids transforming the kernel

matrices into their equivalent representation as a huge doubly circulant matrix (c.f., Sedghi

et al. (2019)), which would be inefficient memory-wise.

Sparsification properties of Prox-DIF. The main difference between Prox-DIF (algorithm 4.4)
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Algorithm 4.4 Differentiable Proximal training of 1-path-norm regularized NNs (Prox-DIF )

Input: Initialization W0, batch size b, step size γ, inner step size γ′ regularization parameter
λ≥ 0, iterations T , inner iterations T ′, skip-prox parameter B .
Output: Trained model parameters WT

1: for t = 0, . . . ,T −1 do
2: Sample i1, . . . , ib ∼ Unif[n]
3: Wt+1/2 ←Wt −γ∇W

1
b

∑b
j=1 L

(
fWt (xi j ), yi j

)
4: if t = 0(mod B) then
5: Z0 = |Wt+1/2|
6: for t ′ = 0, . . . ,T ′−1 do
7: Zt ′+1/2 = Zt −γ′∇Z

[1
2∥|Wt+1/2|−Zt ′∥2

2 +λγP1(Zt ′)
]

8: Zt ′+1 = max(0, Zt ′+1/2)
9: end for

10:

11: Wt+1 = sign(Wt+1/2)⊙ZT ′

12: else
13: Wt+1 =Wt+1/2

14: end if
15: end for
16: return WT

and prox-AD/path-AD (algorithms 4.2 and 4.3) is the presence of the projection operator

section 4.4. This clamping operator has the benefit of inducing real sparsity, as it sets weights

to exactly zero whenever they become negative during the inner loop corresponding to the

approximate solution of prox+
λP1

.

4.5 Related Work

The 1-path-norm is a positively homogeneous regularizer, a setting that has been studied by

Haeffele and Vidal (2015); Haeffele et al. (2014); Haeffele and Vidal (2020). Haeffele and Vidal

(2020); Haeffele et al. (2014) study a setting with objective function of the form:

min
U ,V

ℓ(Y ,UV T )+λΘ(U ,V ) (4.7)

where Y is some data and U ,V are the model parameters, usually corresponding to a matrix

factorization task X = UV T . The fundamental difference between our work and Haeffele

et al. (2014); Haeffele and Vidal (2020) is that eq. (4.7) results in a multi-block multi-convex

objective that allows convergence of the alternating optimization method from Xu and Yin

(2013). In contrast, due to the presence of non-linear activation functions in the Neural

Network, our optimization objective no longer follows the template eq. (4.7) (in the shallow

network case). Hence, the alternating optimization scheme of Xu and Yin (2013), which would

have eliminated the need for the full proximal mapping of the 1-path-norm, no longer enjoys

convergence guarantees to a critical point. In contrast, the full proximal map in Latorre et al.
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(2020c) and in this work, allows the implementation of the non-convex proximal gradient

scheme of Bolte et al. (2013), which ensures convergence to a critical point. Indeed, the setting

most similar to our work is that of Haeffele and Vidal (2015) where the objective function is of

the form

min
W1,...,Wd

ℓ(Y ,Φ(W1, . . . ,Wd ))+λΘ(W1, . . . ,Wd ) (4.8)

In this formulationΦ is a non-multi-linear map that destroys the multi-block multi-convex

structure of the objective of eq. (4.7). Indeed, in this case Haeffele and Vidal (2015) do not

provide an algorithm with guarantees of convergence to a critical point. A different work

providing guarantees for block-coordinate methods for non-convex functions (Razaviyayn

et al., 2013) requires access to tight upper bounds (Assumption 1 therein) that are hard to

obtain for general non-convex functions, or at least, not readily available in our setting.

4.6 Experiments

Proximal Mapping approximation: Algorithm 4.3 vs. Algorithm 4.4. We compare the

performance of the two proposed algorithms that approximate the proximal mapping of the

1-path-norm. This corresponds to section 4.4 in algorithm 4.3, and section 4.4 in algorithm 4.4.

We sample fully-connected networks and CNNs of different width and depth, and for different

values of the regularization parameterλwe plot how the value of the proximal objective evolves

across iterations. In Figure 4.2, we observe that for larger values of the regularization parameter

λ, Prox-DIF (Algorithm 4.4) has an advantage over the baseline Prox-AD (Algorithm 4.3), which

uses automatic differentiation directly on the non-smooth objective eq. (4.4). Prox-DIF reaches

lower values of the objective much faster. The differentiability of the Prox-DIF objective allows

the use of momentum more effectively.

In the case of shallow networks, where the optimum is known (cf. (Latorre et al., 2020c,

Algorithm 2)), Prox-DIF almost reaches such value, suggesting a possible unknown theoretical

proximity relation with the optimum. For deeper networks where achieving the optimal value

is intractable, Prox-DIF still shows a noticeable advantage. Nevertheless, as observed in the

bottom row of figure 4.2, for really small values of λ, the difference between the two methods

is pretty small. This suggests that for problems where only a small amount of regularization is

needed, there might be no advantage for Prox-DIF .

Impact on the Generalization Error. We train fully-connected networks and CNNs on the

FashionMNIST and CIFAR10 benchmark datasets. In every experiment, we perform grid

search and select the best parameters for each regularization method based on validation

accuracy. All models are trained with early stopping using accuracy on the validation set and

then evaluated on a held-out test set. In the case of Prox-AD (Algorithm 4.3) and Prox-DIF

(Algorithm 4.4), we tune the inner loop parameters on randomly initialized network weights,

so as to minimize the objective of the proximal operator (4.4). Exact details on the training

parameters are available in Section 4.10. With these parameters at hand, we train the networks

on the full training set, and plot the validation accuracy as a function of the training epoch
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Figure 4.2: For randomly initialized W (network parameters), we plot the objective value of the
proximal mapping 0.5∥W −Z∥2+λP1(Z ) as a function of iteration, using the inner-most loop in
the algorithms Prox-AD (Algorithm 4.3) and Prox-DIF (Algorithm 4.4). Left column correspond
to shallow networks (MLP1), for which we plot the theoretical optimal value obtained with
the exact proximal algorithm from Latorre et al. (2020c). Middle column corresponds to
fully-connected networks with 3 hidden layers (MLP3). Right column corresponds to CNNs
with 4 convolutional layers and 2 fully-connected layers (CNN6). Top row corresponds to high
regularization parameter λ= 1e−2. Bottom row corresponds to low regularization parameter
λ= 1e−6. All values are averaged over 5 random initializations, with standard error shown as
shaded area.
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Figure 4.3: Validation accuracy as a function of training epoch, for different training algorithms.
First and second panels: fully-connected architectures with 2 and 3 hidden layers (MLP2 and
MLP3) on the FashionMNIST dataset. Third panel: fully-connected architecture with 3 hidden
layers (MLP3) on the CIFAR10 dataset. Fourth panel: CNN with 6 hidden layers (CNN6) on the
CIFAR10 dataset. All values are averaged over 5 independent runs, with standard error shown
as shaded area.

Table 4.1: Comparison of test set accuracy (%) for networks trained with different regulariza-
tion.

Model Dataset Regularization

None L2 Path-AD Prox-AD Prox-DIF

MLP2 FMNIST 85.6 ± 1.2 85.4 ± 1.2 89.0 ± 0.1 88.6 ± 0.1 88.6 ± 0.2
MLP3 FMNIST 84.4 ± 1.1 85.9 ± 0.3 88.86 ± 0.02 88.9 ± 0.1 88.9 ± 0.1
MLP3 CIFAR10 53.5 ± 0.1 53.8 ± 0.2 54.7 ± 0.1 54.9 ± 0.1 54.2 ± 0.2
CNN6 CIFAR10 66.6 ± 0.6 74.6 ± 0.2 73.4 ± 0.3 73.7 ± 0.6 73.4 ± 0.3

in Figure 4.3. Finally, the test accuracy for each model, dataset and regularization method

is reported in Table 4.1. We observe that for fully connected networks, the 1-path-norm is a

significantly better choice than no-regularization or weight-decay (L2 regularization).

Regarding the optimization methods for 1-path-norm regularization, we do not observe

major differences other than Prox-DIF achieving slightly less accuracy, or Prox-AD achieving

a slightly more accurate MLP in CIFAR10. This is probably due to the fact that the values

between λ= 10−6 and λ= 10−3, which we find lead to higher accuracy, are really small. This is

a common feat in computer vision tasks where only small amounts of regularization is needed.

Moreover, given that the error on the test set is a stochastic estimate, better optimization of

the training loss does not necessarily lead to gains in test accuracy (Bottou and Bousquet,

2007). In such setting, the simplest approach of just using automatic differentiation on the

1-path-norm objective works well, despite lacking theory. This has the advantage that AD

is the most common approach among practitioners. Prox-DIF might work better in settings

where a high value of regularization strength is required to improve performance, like data

with low signal-to-noise ratio. We synthetically test this setting later on.

On the other hand, for CNNs, 1-path-norm regularization struggles to improve over weight

decay. This can be attributed to the fact that CNNs are highly-sparse fully connected networks
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Figure 4.4: Absolute difference in test accuracy with regards to the unregularized model as a
function of percentage of noisy labels in the training set (top), or as a function of image noise
level (bottom), for different training algorithms. First and second columns: fully-connected
architectures with 2 and 3 hidden layers (MLP2 and MLP3) on the FashionMNIST dataset.
Third column: fully-connected architecture with 3 hidden layers (MLP3) on the CIFAR10
dataset. Fourth column: CNN with 6 hidden layers (CNN6) on the CIFAR10 dataset. All values
are averaged over 5 independent runs, with standard error shown as shaded area.

(Sedghi et al., 2019), given the parameter sharing structure of the convolutional layers. Indeed,

due to the reduced parameter count in CNNs, the number of different paths from input to

output is small by design. Recall that the 1-path-norm controls complexity by reducing the

number of paths and hence, it can be expected to perform poorly for CNNs. As such, 1-path-

norm regularization might be more suitable to architectures like MLP-mixer (Tolstikhin et al.,

2021).

Robustness to Noise. We study the effect of the regularization on the model performance in

the case of noisy data or noisy labels. In the former case, a uniform random noise sampled

from the ℓ∞-ball of varying radius (referred to as the noise level) is added to the images at

inference time. In the latter case, the learning with noisy labels task (Song et al., 2022) consists

in training a model on a dataset where a fraction of the labels are corrupted, then evaluating

its accuracy on the correctly labelled test set. In the noisy labels regime (figure 4.4-top), 1-

path-norm regularization improves robustness in the FashionMNIST dataset. In contrast,

in CIFAR10 1-path-norm does not induce noisy-labels robustness for MLPs, while it does

for CNNs, which is not consistent. For CNNs, however, L2 provides better robustness to

noisy labels when the noise is small, and 1-path-norm is better for higher values of the noise.

Nevertheless, we stress that 1-path-norm is not designed to induce robustness to noisy labels,

but it is always useful to identify whether it has unexpected benefits. In this case, the effect

is not always positive but rather it depends on the architecture and dataset. Similarly as in

the previous experiment, we do not see a big difference between the different optimization

algorithms used for 1-path-norm regularization.
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In the noisy data regime the 1-path-norm regularization improves all fully-connected networks

and achieves significantly higher accuracy than weight-decay or no regularization on the

majority of noise levels, for both datasets. In MLPs we observe that the proximal methods

Prox-AD and Prox-DIF are better than Path-AD consistently, in particular for CIFAR10 it is

crucial to use them to achieve higher robustness, with Prox-DIF achieving higher robustness

over Prox-AD for large levels of the noise, in particular visible for FashionMNIST-MLP2 and

CIFAR10-MLP3. This is consistent with the sparsity-inducing property of Prox-DIF (section 4.4).

For CNNs 1-path-norm again fails to provide benefits, probably due to the already highly

sparse structure of the CNNs. We stress that the goal is not to provide state-of-the-art numbers

for robustness, rather, regularization can be used together with Adversarial Training (Madry

et al., 2018b) to enhance robustness, as is done for example in (Zhu et al., 2022)

4.7 Appendix: Proof of theorem 4.1

We prove theorem 4.1 by first showing that the 1-path-norm is upper bounded by the product-

of-norms lemma 4.2 and then showing that the 1-path-norm upper bounds the Lipschtiz

constant of the network lemma 4.3.

Lemma 4.2. Let W = [W 1, . . . ,W L] be the weight matrices of a fully-connected network with a

single output. Then

P1(W ) ≤ΠL
ℓ=1∥W ℓ∥∞ (4.9)

Proof. We proceed by induction. The base case corresponds to shallow networks and is already

known as Latorre et al. (2020c, Theorem 1.). Assume that the result is true for L layers. Let

W = [W 1, . . . ,W L+1] where W L+1 ∈R1,dL is a matrix with a single row. In this case we have

P1(W ) =1T |W L+1||W L ||W L−1| . . . |W 1|1

=
dL∑

i=1
|W L+1

i ||W L[i , :]||W L−1| . . . |W 1|1

=
dL∑

i=1
|W L+1

i |P1(W L[i , :], . . . ,W 1)

≤
dL∑

i=1
|W L+1[1, i ]|∥W L[i , :]∥1︸ ︷︷ ︸

≤∥W L∥∞

ΠL−1
ℓ=1∥W ℓ∥∞

≤
dL∑

i=1
|W L+1[1, i ]|∥W L∥∞ΠL−1

ℓ=1∥W ℓ∥∞

= ∥W L+1[1, :]∥1∥W L∥∞ΠL−1
ℓ=1∥W ℓ∥∞

=ΠL+1
ℓ=1∥W ℓ∥∞

(4.10)

where the second equality is due to the definition of the path-norm, the first inequality is

due to the induction hypothesis and the second inequality is due to the definition of the

∞-operator norm ∥W ∥∞ = maxd
i=1 ∥W [i , :]∥1 is the maximum ℓ1-norm of the rows. Note that
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in the last two lines ∥W L+1[1, :]∥1 denotes the ℓ1-norm as a vector while ∥W L+1∥∞ denotes the

∞-operator norm of W L+1 as a matrix with a single row. □

Lemma 4.3. Let fW :Rd0 →R, fW (x) =W Lσ(W L−1σ(. . .σ(W 1x) . . .) be a neural network where

W L ∈ RdL×1, i.e., a single-output network. In the case of a differentiable activation function

suppose that that the derivative of the activation is globally bounded between zero and one. For

ReLU, we have that the subgradient satisfiest 0 ≤σ′(x) ≤ 1. Its Lipschitz constant, denoted as

LW , with respect to the ℓ∞ norm (for the input space) and absolute-value (for the output space)

satisfies the inequality LW ≤ P1(W ).

Proof. In the case of differentiable activation functions, we have that the ℓ∞-Lipschitz con-

stant of fW is equal to the supremum of the ℓ1-norm of its gradient, over its domain (c.f.,

Latorre et al. (2020c, Theorem 1)). In the case of ReLU activations, Chen et al. (2020b, Lemma

1) ensures that the ℓ∞-Lipschitz constant is still equal to the supremum of the ℓ1-norm of the

“gradient” computed with the backpropagation algorithm, which applies the chain-rule even in

the presence of the non-differentiable ReLU activation. Despite not being the true gradient, we

will denote this element as ∇ fW (x). We use the notation D f =∇⊤ f for the Jacobian (transpose

of gradient).

Denote by f ℓW (x) the value of the ℓ-th hidden layer (pre-activation) in the forward pass over

the network, that is:

f ℓW (x) =W ℓσ(W ℓ−1σ(. . .σ(W1x) . . .)) (4.11)

We now upper bound the Lipschitz constant as follows, using Latorre et al. (2020c, Theorem 1)

and the chain rule:

LW = sup
x

∥∇ fW (x)∥1 (4.12)

= sup
x

sup
∥t∥∞≤1

D fW (x)t (4.13)

= sup
x

sup
∥t∥∞≤1

W L Diag(σ′( f L−1
W (x)))W L−1 Diag(σ′( f L−2

W (x))) . . .W 1t (4.14)

≤ sup
0≤sℓ≤1

sup
∥t∥∞≤1

W L Diag(sL)W L−1 Diag(sL−1) . . .W 2 Diag(s2)W 1t (4.15)

≤ sup
0≤sℓ≤1

sup
∥t∥∞≤1

Ŵ LŴ L−1Ŵ L−2 . . .Ŵ 2W 1t (4.16)

where Ŵ ℓ =W ℓDiag(sℓ). We see tthe right hand side of eq. (4.12) is equivalent to evaluating a

fully connected linear neural network on the input t , and then taking the supremum over all

possible values of t i.e., −1 ≤ t ≤ 1 and sℓ =σ′( f L−1
W (x)), so 0 ≤ sℓ ≤ 1 by our assumption on the

gradient of the activation (or subgradient in the case of ReLU). The output of a linear neural

network precisely corresponds to summing the product of weights over all input-output paths.
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Algorithm 4.5 Single path proximal operator

Input: Weights along the path w = (w1, . . . , wL) ∈RL , regularization parameter λ≥ 0
Output: proxλg (w)

1: σ← argsort(|w |) ▷ decreasing order
2: w̃i ←|w |σ(i ) ▷ sort

3: Let fλ(w̃ ,β) := 22−Lλ
∏L−1

i=2

(
w̃i +

√
4β2 + w̃2

i − w̃2
1

)
4: Find the set B of values β satisfying:

w̃1 = 2β+2w̃L fλ(w̃ ,β)− (2β+ w̃1) f 2
λ (w̃ ,β) (4.20)

subject to 1
2

√
w̃2

1 − w̃2
L ≤β≤ 1

2 w̃1.
5: For each value of β, compute:

▷ zβ1 ←β+ w̃1
2

▷ zβi ← 1
2 (w̃i +

√
w̃2

i −4zβ1 (w̃1 − zβ1 )), i = 2, . . . ,L

▷ zβ← sign(w)⊙σ−1(zβ), where ⊙ stands for element-wise multiplication

6: z0
i = 0 for i = argmin

k
|wk |, z0

j = w j for j ̸= i

7: return z ∈ {zβ :β ∈ B}∪ {z0} achieving the smallest objective value in (4.5)

We arrive at the following:

LW ≤ sup
0≤sℓ≤1

sup
∥t∥∞≤1

∑
(i0,...,iL )

W 1[i1, i0]ti0Π
L
ℓ=2Ŵ ℓ[iℓ, iℓ−1] (4.17)

LW ≤ sup
0≤sℓ≤1

sup
∥t∥∞≤1

∑
(i0,...,iL )

W 1[i1, i0]ti0Π
L
ℓ=2W ℓ[iℓ, iℓ−1]sℓiℓ−1

(4.18)

LW ≤ ∑
(i0,...,iL )

ΠL
ℓ=1|W ℓ[iℓ, iℓ−1]| = P1(W ) (4.19)

□

4.8 Appendix: Proof of lemma 4.4

We will now show the following:

Lemma 4.4. Let zβ
∗

be the solution returned by Algorithm 4.5. Then, zβ
∗

is a solution of eq. (4.5).

Recall that we want to solve the following problem:

argmin
z∈RL

1

2

L∑
i=1

(zi −wi )2 +λ|z1 · z2 · · ·zL |, (4.21)

Since our domain is the entire space, and the proximal gradient is a solution to a symmetric
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problem, we can just ignore the absolute value and write the problem (4.21) as

argmin
z∈Rm+

1

2

m∑
i=1

(zi −|wi |)2 +λz1 · · ·zL , (4.22)

The problem in (4.22) is coercive and bounded from below, meaning that it has an optimal

solution.

Lemma 4.5. There exist an optimal solution for eq. (4.22).

Additionally, since the regularizer in eq. (4.22) is symmetric, the order of the elements with

respect to magnitude is maintained by the optimal solution.

Lemma 4.6. Suppose that |w1| ≥ |w2| ≥ · · · ≥ |wL |, and let z∗ be an optimal solution of eq. (4.21).

Then

z∗
1 ≥ z∗

2 ≥ ·· · ≥ z∗
L . (4.23)

Proof. Assume the contrary, that there exist an optimal solution of (4.22) such that (4.22) does

not hold. Without loss of generality, suppose that z∗
1 < z∗

2 , and consider the solution z̃ given by

z̃i =


z∗

i , i = 3,4, . . . ,L,

z∗
1 , i = 2,

z∗
2 , i = 1.

Then by the optimality of z∗, |w1| ≥ |w2|, and our assumption that z∗
1 < z∗

2 , we obtain that

0 ≥ 1

2

l∑
i=1

(z∗
i −|wi |)2 +λz∗

1 · z∗
2 · · ·z∗

L − 1

2

l∑
i=1

(z̃i −|wi |)2 −λz̃1 · z̃2 · · · z̃L

= 1

2

[
(z∗

1 −|w1|)2 + (z∗
2 −|w2|)2 − (z̃1 −|w1|)2 − (z̃2 −|w2|)2]

= 1

2

[
(z∗

1 −|w1|)2 + (z∗
2 −|w2|)2 − (z∗

2 −|w1|)2 − (z∗
1 −|w2|)2]

= (|w1|− |w2|)(z∗
2 − z∗

1 ) > 0,

which is a contradiction. □

It is not hard to derive from (4.22) that if one weight is set to zero then the regularizer has no

influence on the solution, and thus the solution is trivial; from Lemma 4.6 this must be the

element corresponding to the smallest wi .

Lemma 4.7. If there exists an optimal solution z∗ of (4.21) with z∗
i = 0 for some i . Then

|wi | = min j |w j |, and the optimal solution satisfies that z∗
j = |w j | for all j ̸= i .
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To focus on the main difficulty in finding a solution to (4.21), let us make the following

conventions until the end of this section:

A. Order: It holds that |w1| ≥ |w2| ≥ · · · ≥ |wL |;

B. Nontrivial Solution: There exists a nontrivial solution z∗ of (4.21), that is, satisfying that

z∗
i > 0 for all i = 1,2, . . . ,L.

We will now solve (4.22) under the assumptions above and we will casually regard any solution

as positive, i.e., z > 0. Once possible solutions satisfying z > 0 are found, they must be

compared to the trivial possible solution of Lemma 4.7 in terms of the objective value in (4.21).

Lemma 4.8 (First-order optimality conditions). Let z∗ be an optimal solution of (4.21). Then:

z∗
i −|wi |+λ

z∗
1 · z∗

2 · · ·z∗
L

z∗
i

= 0, i = 1,2, . . . ,L. (4.24)

Proof. This set of equations is obtained by setting the gradient of the objective of (4.22) to 0. □

The optimality conditions imply the following useful result.

Corollary 4.1. Let z∗ be an optimal solution of (4.21). Then:

z∗
i (|wi |− z∗

i ) = z∗
j (|w j |− z∗

j ), ∀i , j = 1,2, . . . ,L. (4.25)

Corollary 4.1 suggests that the elements of the optimal solution z∗
1 , z∗

2 , . . . , z∗
L must satisfy that

their values yield value equality of all their corresponding parabolas. Analyzing this graphically

yields a very interesting phenomenon. Observe the illustration in Figure 4.5 which depicts

two parabolas with different |wi |.

Figure 4.5: Red lines depict parabolas for |w2| = 1, |w1| = 2, blue line depicts maximal value for
the two parabolas to have the same value.

For the two parabolas in Figure 4.5 to have the same value, z1 must satisfy that z1(|w1|− z1) ≤
|w2|2

4
, which means intuitively that its possible values are close to the extremes of its parabola.
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Moreover, since Lemma 4.6 implies that z1 ≥ z2, z1 must be on the right side of the parabola,

i.e., z1 > |w1|
2

. By the same argument, we can deduce that zi ≥ |wi |
2

for all i = 1,2, . . . ,L −1;

note that zL is not constrained by this argument.

We now formulate and prove all of this discussion properly.

Lemma 4.9 (Properties of solutions for (4.21)). Let z∗ be an optimal solution of (4.21) (such

that z∗ > 0). Then:

1. For any i = 1,2, . . . ,L it holds that

z∗
i (|wi |− z∗

i ) ≤ |wL |2
4

.

2. For any i = 1,2, . . . ,L−1, the element z∗
i satisfies that

1

2
|wi |+ 1

2

√
|wi |2 −|wL |2 ≤ z∗

i ≤ |wi | (4.26)

3. For any i = 1,2, . . . ,L−1, the element z∗
i satisfies that

z∗
i = 1

2

(
|wi |+

√
|wi |2 −4z∗

1 (|w1|− z∗
1 )

)
,

and

z∗
L = |wL |−λz∗

1 · z∗
2 · · ·z∗

L−1.

4. It holds that

|w1| = z∗
1 + λ

2l−2

(
|wL |− λ

2l−2
z∗

1

L−1∏
i=2

(
|wi |+

√
|wi |2 −4z∗

1 (|w1|− z∗
1 )

))

·
L−1∏
i=2

(
|wi |+

√
|wi |2 −4z∗

1 (|w1|− z∗
1 )

)
.

(4.27)

Proof. 1. This claim immediately follows from Corollary 4.1, as for any i = 1,2, . . . ,L, it

holds that

z∗
i (|wi |− z∗

i ) = z∗
L (|wL |− z∗

L ) ≤ |wL |2
4

.

2. First, it is obvious that z∗
i ≤ |wi | for any i = 1,2, . . . ,L. We now proceed to prove the lower

bound on z∗
i .

By the first part, z∗
i (|wi |− z∗

i ) ≤ |wL |2
4

for all i = 1,2, . . . ,L, which implies that:

z∗
i ≤ 1

2

(
|wi |−

√
|wi |2 −|wL |2

)
or z∗

i ≥ 1

2

(
|wi |+

√
|wi |2 −|wL |2

)
.
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Suppose that z∗
i < 1

2
|wi |. Then from the properties of the parabola (illustrated by Figure

4.5) we can derive that in order for

z∗
i (|wi |− z∗

i ) = z∗
L (|wL |− z∗

L )

we must have that z∗
i < z∗

L , which by Lemma 4.6 is a contradiction to our assumption

that |wi | ≥ |wL |.

3. The equality for i = 1,2, . . . ,L−1 follows from Corollary 4.1 (by finding roots of the order

two polynomial) together with the second part (that excludes one of the two solutions).

The equality for z∗
L trivially follows from Lemma 4.8.

4. By Lemma 4.8, we have that

|w1| = z∗
1 +λz∗

2 · z∗
3 · · ·z∗

L .

The desired then follows by plugging the formulas in part 3 to the latter.

□

Lemma 4.9 suggests that candidates for an optimal solution can be found by finding feasible

roots in the nonlinear univariate function (4.27) over a specific bounded interval (4.26). This

is considered an easy task in optimization (there are some well-known search procedures in

the literature). Algorithm 4.5 is thus obtained by making the change of variable β= z∗
1 − |w1|

2 .

Complexity of Algorithm 4.5: The first step in the procedure involves sorting the weights along

the path, and has complexity O(L logL). Although we do not theoretically bound the number

of solutions of equation (4.27), we empirically observe that this equation has a finite number

of solutions (at most 4 in practice), independently of the path’s depth. Since evaluating the

RHS of equation (4.20) takes time O(L), and since grid search can be trivially parallelized on

GPU, applying grid search over a bounded domain has the same complexity O(L). Overall, we

thus conclude that the total complexity of Algorithm 4.5 is O(L logL).

4.9 Appendix: Proof of lemma 4.1

Let P be a function satisfying P (W ) =Q(|W |). Denote by ⊙ the element-wise multiplication

operation. First note that

∥sign(X ⊙W )⊙X −W ∥2 ≤ ∥X −W ∥2 (4.28)

Too see this there are two cases. In the first case Xi has the same sign as Wi so sign(Xi Wi ) = 1

and (sign(Xi Wi )Xi −Wi )2 = (Xi −Wi )2. In the second case, they have opposite signs, then

|sign(Xi Wi )Xi −Wi | = |− Xi −Wi | ≤ |Xi | + |Wi | = |Xi −Wi |. Now, due to the assumption we

86



4.10 Appendix: Experimental Setup Details

also have P (sign(X ⊙W )⊙X ) = P (X ) i.e., P doesn’t change after changing signs of variables.

With these observations we have:

1

2
∥sign(X ⊙W )⊙X −W ∥2 +P (sign(X ⊙W )⊙X ) ≤ 1

2
∥X −W ∥2 +P (X ) (4.29)

this implies

min
X

1

2
∥sign(X ⊙W )⊙X −W ∥2 +P (sign(X ⊙W )⊙X ) ≤ min

X

1

2
∥X −W ∥2 +P (X ) (4.30)

Letting sign(X ⊙W )⊙X = X̂ we see that the opposite inequality also holds. Hence,

min
X

1

2
∥sign(X ⊙W )⊙X −W ∥2 +P (sign(X ⊙W )⊙X ) = min

X

1

2
∥X −W ∥2 +P (X ) (4.31)

Now, we modify the objective function in the left hand side as follows:

1

2
∥sign(X ⊙W )⊙X −W ∥2 +P (sign(X ⊙W )⊙X )

= 1

2
∥sign(W )⊙ (sign(X )⊙X −|W |)∥2 +P (sign(X ⊙W )⊙X )

= 1

2
∥sign(X )⊙X −|W |∥2 +P (sign(X )⊙X )

(4.32)

Noting that sign(X )⊙X is a matrix with nonnegative entries, we have the following:

min
X≥0

1

2
∥X −|W |∥2 +P (X ) = min

X

1

2
∥X −W ∥2 +P (X ) (4.33)

Hence we see that both objective functions defining proxP (W ) and prox+P (|W |) have the same

value. By the previous arguments the way to transform an element of prox+P (|W |) into an

optimal solution of proxP (W ) is by multiplying by the sign of W , this follows from the last

equation in eq. (4.32). This concludes the result.

4.10 Appendix: Experimental Setup Details

Model Architectures. We now detail the specific model architectures referred to in section 4.6.

The dimensions of the multilayer perceptrons trained on both Fashion-MNIST and CIFAR-10

are listed in the table below. A single convolutional neural network architecture (CNN6) was

trained on CIFAR-1. The CNN model consists of an input layer followed by four convolutional

layers and two fully connected layers. The convolutional layers each have a kernel of size

3×3, and respectively had 32,32,64,64 output channels. A max pooling layer with 2×2 kernel

size was applied after each pair of convolutional layers. Then, two fully-connected layers

were added, respectively of widths 1600 and 512. ReLu activation was applied after each

convolutional layer except the last fully connected layer. No dropout was used for any of the

models, as we aimed to isolate the effects of each regularization method. All models were

trained with batches of 64 samples.
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Table 4.2: Layer dimensions of fully-connected networks.

Model Dataset Dimensions

Input Hidden layers Output

MLP2 FMNIST [28,28,1] [500,500] 10
MLP3 FMNIST [28,28,1] [500,500,500] 10
MLP3 CIFAR10 [32,32,3] [1024,512,256] 10

Hyperparameter selection. Training hyperparameters, such as step size γ, momentum β and

regularization strength λ were selected through independent grid search for each regulariza-

tion method, model architecture and dataset. An initial round of grid search was run on a wide

grid of parameters for 50 training epochs on 3 independent runs. The best hyperparameters

were then selected for each model, then the models were retrained for 200 training epochs on

5 independent runs. Model training included early stopping, by which each model’s training

was halted when maximal validation accuracy was reached. All grid searches included both

stochastic gradient descent (SGD) and Adam optimizers.

Additional parameters were required by the Prox-AD (algorithm 4.3) and Prox-DIF (algo-

rithm 4.4) regularization methods for the optimizer of the proximal objective; namely the

inner step size γ′ and inner momentum β′. These parameters were pre-tuned by minimizing

the proximal objective eq. (4.4) on randomly initialized network weights and a wide range of

regularization strengths λ′ =λ ·γ on for each architecture (refer to algorithm 4.2 for notation

and Figure 4.2 for examples). During grid search for the outer loop parameters, the inner loop

optimizer and parameters were selected for both Prox-AD and Prox-DIF as those minimizing

the average final proximal objective after 250 iterations of Prox-AD over 5 independent runs.

Once the best combination of the above parameters were selected, a third and final round of

grid search was performed to tune the number of inner iterations T ′ and skip-prox parameter

B . The values for the skip-prox parameter were chosen as divisors of the total number of

batches so that every epoch training would end with a proximal step. All selected parameters

are shown in the table below.

Noise robustness. Training hyperparameters were selected at noiseless conditions then reused

for the noise robustness experiments at all noise levels, since the same parameters were often

found to yield the highest performance under all noise conditions. The robustness to noisy

data of different regularization methods was compared by evaluating the accuracy of each

trained model on the same test set at different noise levels, as shown in (figure 4.4-bottom).

Examples of images at varying amounts of image corruption with uniform random noise are

shown below.
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0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 4.6: Examples of noisy images generated from the Fashion-MNIST dataset (top) and
the CIFAR-10 dataset (bottom), at various noise levels ranging from 0% to 90%.
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Table 4.3: Training parameters selected for each regularization method.

Model Dataset Regularization Hyperparameters

MLP2 FMNIST

None SGD; γ= .1,β= .6

L2 SGD; γ= .1,β= .6,λ= 10−4

Path-AD SGD; γ= .1,β= .9,λ= 10−6

Prox-AD
Outer: SGD; γ= .1,β= .9,λ= 10−3

Inner: Adam; γ′ = 10−4,T ′ = 250,B ′ = 125

Prox-DIF
Outer: SGD; γ= .1,β= .9,λ= 10−3

Inner: Adam; γ′ = 10−4,T ′ = 250,B ′ = 125

MLP3 FMNIST

None SGD; γ= 10−2,β= .9

L2 SGD; γ= .1,β= .5,λ= 10−3

Path-AD SGD; γ= .1,β= .9,λ= 10−6

Prox-AD
Outer: SGD; γ= .1,β= .8,λ= 10−4

Inner: Adam; γ′ = 10−3,T ′ = 250,B ′ = 125

Prox-DIF
Outer: SGD; γ= .1,β= .9,λ= 10−3

Inner: Adam; γ′ = 10−3,T ′ = 250,B ′ = 125

MLP3 FMNIST

None SGD; γ= .1,β= .1

L2 SGD; γ= .1,β= .1,λ= 10−4

Path-AD SGD; γ= .1,β= .8,λ= 10−7

Prox-AD
Outer: SGD; γ= .1,β= .7,λ= 10−3

Inner: Adam; γ′ = 10−3,T ′ = 250,B ′ = 125

Prox-DIF
Outer: SGD; γ= .1,β= .7,λ= 10−3

Inner: Adam; γ′ = 10−3,T ′ = 250,B ′ = 125

MLP3 FMNIST

None SGD; γ= 10−2,β= .9

L2 SGD; γ= 10−2,β= .9,λ= 10−4

Path-AD SGD; γ= 10−2,β= .9,λ= 10−9

Prox-AD
Outer: SGD; γ= 10−2,β= .9,λ= 10−5

Inner: Adam; γ′ = 10−4,T ′ = 200,B ′ = 125

Prox-DIF
Outer: SGD; γ= 10−2,β= .9,λ= 10−5

Inner: Adam; γ′ = 10−4,T ′ = 200,B ′ = 125
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5 Controlling the Complexity and Lips-
chitz Constant Improves Polynomial
Nets

Zhenyu Zhu, Fabian Latorre, Grigorios G Chrysos and Volkan Cevher. International Conference

on Learning Representations (ICLR) 2022.

Abstract. While the class of Polynomial Nets demonstrates comparable performance to

neural networks (NN), it currently has neither theoretical generalization characterization nor

robustness guarantees. To this end, we derive new complexity bounds for the set of Coupled

CP-Decomposition (CCP) and Nested Coupled CP-decomposition (NCP) models of Polynomial

Nets in terms of the ℓ∞-operator-norm and the ℓ2-operator norm. In addition, we derive

bounds on the Lipschitz constant for both models to establish a theoretical certificate for their

robustness. The theoretical results enable us to propose a principled regularization scheme

that we also evaluate experimentally in six datasets and show that it improves the accuracy

as well as the robustness of the models to adversarial perturbations. We showcase how this

regularization can be combined with adversarial training, resulting in further improvements.

5.1 Introduction

Recently, high-degree Polynomial Nets (PNs) have been demonstrating state-of-the-art per-

formance in a range of challenging tasks like image generation (Karras et al., 2019; Chrysos

and Panagakis, 2020), image classification (Wang et al., 2018), reinforcement learning (Jayaku-

mar et al., 2020), non-euclidean representation learning (Chrysos et al., 2020) and sequence

models (Su et al., 2020). In particular, in public benchmarks like the Face verification on

MegaFace task1 (Kemelmacher-Shlizerman et al., 2016), Polynomial Nets are currently the top

performing model.

A major advantage of Polynomial Nets over traditional Neural Networks2 is that they are

compatible with efficient Leveled Fully Homomorphic Encryption (LFHE) protocols (Brakerski

et al., 2014). Such protocols allow efficient computation on encrypted data, but they only

1https://paperswithcode.com/sota/face-verification-on-megaface
2with non-polynomial activation functions.
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support addition or multiplication operations i.e., polynomials. This has prompted an effort

to adapt neural networks by replacing typical activation functions with polynomial approxi-

mations (Gilad-Bachrach et al., 2016; Hesamifard et al., 2018). Polynomial Nets do not need

any adaptation to work with LFHE.

Without doubt, these arguments motivate further investigation about the inner-workings of

Polynomial Nets. Surprisingly, little is known about the theoretical properties of such high-

degree polynomial expansions, despite their success. Previous work on PNs (Chrysos et al.,

2020; Chrysos and Panagakis, 2020) have focused on developing the foundational structure

of the models as well as their training, but do not provide an analysis of their generalization

ability or robustness to adversarial perturbations.

In contrast, such type of results are readily available for traditional feed-forward Deep Neural

Networks, in the form of high-probability generalization error bounds (Neyshabur et al., 2015d;

Bartlett et al., 2017a; Neyshabur et al., 2017; Golowich et al., 2018) or upper bounds on their

Lipschitz constant (Scaman and Virmaux, 2018; Fazlyab et al., 2019b; Latorre et al., 2020a).

Despite their similarity in the compositional structure, theoretical results for Deep Neural

Networks2 do not apply to Polynomial Nets, as they are essentialy two non-overlapping classes

of functions.

Why are such results important? First, they provide key theoretical quantities like the sample

complexity of a hypothesis class: how many samples are required to succeed at learning in

the PAC-framework. Second, they provide certified performance guarantees to adversarial

perturbations (Szegedy et al., 2013; Goodfellow et al., 2015) via a worst-case analysis c.f.

Scaman and Virmaux (2018). Most importantly, the bounds themselves provide a principled

way to regularize the hypothesis class and improve their accuracy or robustness.

For example, Generalization and Lipschitz constant bounds of Deep Neural Networks that

depend on the operator-norm of their weight matrices (Bartlett et al., 2017a; Neyshabur et al.,

2017) have layed out the path for regularization schemes like spectral regularization (Yoshida

and Miyato, 2017; Miyato et al., 2018b), Lipschitz-margin training (Tsuzuku et al., 2018b) and

Parseval Networks (Cisse et al., 2017c), to name a few.

Indeed, such schemes have been observed in practice to improve the performance of Deep

Neural Networks. Unfortunately, similar regularization schemes for Polynomial Nets do not

exist due to the lack of analogous bounds. Hence, it is possible that PNs are not yet being

used to their fullest potential. We believe that theoretical advances in their understanding

might lead to more resilient and accurate models. In this work, we aim to fill the gap in the

theoretical understanding of PNs. We summarize our main contributions as follows:

Rademacher Complexity Bounds. We derive bounds on the Rademacher Complexity of

the Coupled CP-decomposition model (CCP) and Nested Coupled CP-decomposition model

(NCP) of PNs, under the assumption of a unit ℓ∞-norm bound on the input (theorems 5.1

and 5.3), a natural assumption in image-based applications. Analogous bounds for the ℓ2-
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norm are also provided (subsections 5.9.3 and 5.10.3). Such bounds lead to the first known

generalization error bounds for this class of models.

Lipschitz constant Bounds. To complement our understanding of the CCP and NCP models,

we derive upper bounds on their ℓ∞-Lipschitz constants (theorems 5.2 and 5.4), which are

directly related to their robustness against ℓ∞-bounded adversarial perturbations, and provide

formal guarantees. Analogous results hold for any ℓp -norm (subsections 5.9.4 and 5.10.4).

Regularization schemes. We identify key quantities that simultaneously control both Rademacher

Complexity and Lipschitz constant bounds that we previously derived, i.e., the operator norms

of the weight matrices in the Polynomial Nets. Hence, we propose to regularize the CCP and

NCP models by constraining such operator norms. In doing so, our theoretical results indicate

that both the generalization and the robustness to adversarial perturbations should improve.

We propose a Projected Stochastic Gradient Descent scheme (algorithm 5.1), enjoying the

same per-iteration complexity as vanilla back-propagation in the ℓ∞-norm case, and a variant

that augments the base algorithm with adversarial traning (algorithm 5.2).

Experiments. We conduct experimentation in five widely-used datasets on image recognition

and on dataset in audio recognition. The experimentation illustrates how the aforementioned

regularization schemes impact the accuracy (and the robust accuracy) of both CCP and NCP

models, outperforming alternative schemes such as Jacobian regularization and the L2 weight

decay. Indeed, for a grid of regularization parameters we observe that there exists a sweet-spot

for the regularization parameter which not only increases the test-accuracy of the model, but

also its resilience to adversarial perturbations. Larger values of the regularization parame-

ter also allow a trade-off between accuracy and robustness. The observation is consistent

across all datasets and all adversarial attacks demonstrating the efficacy of the proposed

regularization scheme.

5.2 Rademacher Complexity and Lipschitz constant bounds for Poly-

nomial Nets

Notation. The symbol ◦ denotes the Hadamard (element-wise) product, the symbol • is

the face-splitting product, while the symbol ⋆ denotes a convolutional operator. Matrices

are denoted by uppercase letters e.g., V . Due to the space constraints, a detailed notation is

deferred to section 5.7.

Assumption on the input distribution. Unless explicitly mentioned otherwise, we assume

an ℓ∞-norm unit bound on the input data i.e., ∥z∥∞ ≤ 1 for any input z. This is the most

common assumption in image-domain applications in contemporary deep learning, i.e., each

pixel takes values in [−1,1] interval. Nevertheless, analogous results for ℓ2-norm unit bound

assumptions are presented in subsections 5.9.3, 5.9.4, 5.10.3 and 5.10.4.

We now introduce the basic concepts that will be developed throughout the paper i.e., the

93



Chapter 5. Controlling the Complexity and Lipschitz Constant Improves Polynomial Nets

Figure 5.1: Schematic of CCP model (left) and NCP model (right), where ◦ denotes the
Hadamard product. Blue boxes correspond to learnable parameters. Green and red boxes
denote input and output, respectively. Yellow boxes denote operations.

Rademacher Complexity of a class of functions (Bartlett and Mendelson, 2002) and the Lips-

chitz constant.

Definition 5.1 (Empirical Rademacher Complexity). Let Z = {z1, . . . , zn} ⊆Rd and let σ j , j =
1, . . . ,n be independent Rademacher random variables i.e., taking values uniformly in {−1,+1}.

Let F be a class of real-valued functions over Rd . The Empirical Rademacher complexity of F

with respect to Z is defined as follows:

RZ (F ) := Eσ
[

sup
f ∈F

1

n

n∑
j=1

σ j f (z j )

]
.

Definition 5.2 (Lipschitz constant). Given two normed spaces (X , ∥ · ∥X ) and (Y , ∥ · ∥Y ), a

function f : X →Y is called Lipschitz continuous with Lipschitz constant K ≥ 0 if for all x1, x2

in X :

∥ f (x1)− f (x2)∥Y ≤ K ∥x1 −x2∥X .

5.2.1 Coupled CP-Decomposition of Polynomial Nets (CCP model)

The Coupled CP-Decomposition (CCP) model of PNs (Chrysos et al., 2020) leverages a coupled

CP Tensor decomposition (Kolda and Bader, 2009) to vastly reduce the parameters required to

describe a high-degree polynomial, and allows its computation in a compositional fashion,

much similar to a feed-forward pass through a traditional neural network. The CCP model was

used in Chrysos and Panagakis (2020) to construct a generative model. CCP can be succintly

defined as follows:

f (z) =C ◦k
i=1 Ui z , (CCP)

where z ∈Rd is the input data, f (z) ∈Ro is the output of the model and Un ∈Rm×d ,C ∈Ro×m

are the learnable parameters, where m ∈ N is the hidden rank. In figure 5.1 we provide a

schematic of the architecture, while in subsection 5.8.1 we include further details on the

original CCP formulation (and how to obtain our equivalent re-parametrization) for the

interested reader.

In theorem 5.1 we derive an upper bound on the complexity of CCP models with bounded

ℓ∞-operator-norms of the face-splitting product of the weight matrices. Its proof can be found

in subsection 5.9.1. For a given CCP model, we derive an upper bound on its ℓ∞-Lipschitz
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constant in theorem 5.2 and its proof is given in subsection 5.9.4.

Theorem 5.1. Let Z = {z1, . . . , zn} ⊆Rd and suppose that ∥z j∥∞ ≤ 1 for all j = 1, . . . ,n. Let

F k
CCP :=

{
f (z) =

〈
c,◦k

i=1Ui z
〉

: ∥c∥1 ≤µ,
∥∥∥•k

i=1Ui

∥∥∥∞ ≤λ
}

.

The Empirical Rademacher Complexity of CCPk (k-degree CCP polynomials) with respect to Z

is bounded as:

RZ (F k
CCP) ≤ 2µλ

√
2k log(d)

n
.

Proof sketch of theorem 5.1. We now describe the core steps of the proof. For the interested

reader, the complete and detailed proof steps are presented in subsection 5.9.1. First, Hölder’s

inequality is used to bound the Rademacher complexity as:

RZ (F k
CCP) = E sup

f ∈F k
CCP

1

n

〈
c,

n∑
j=1

[σ j◦k
i=1(Ui z j )]

〉
≤ E sup

f ∈F k
CCP

1

n
∥c∥1

∥∥∥∥∥ n∑
j=1

[σ j◦k
i=1(Ui z j )]

∥∥∥∥∥
∞

. (5.1)

This shows why the factor ∥c∥1 ≤µ appears in the final bound. Then, using the mixed product

property (Slyusar, 1999) and its extension to repeated Hadamard products (lemma 5.7 in

subsection 5.7.3), we can rewrite the summation in the right-hand-side of (5.1) as follows:

n∑
j=1

σ j◦k
i=1(Ui z j ) =

n∑
j=1

σ j •k
i=1 (Ui )∗k

i=1 (z j ) = •k
i=1(Ui )

n∑
j=1

σ j ∗k
i=1 (z j ) .

This step can be seen as a linearization of the polynomial by lifting the problem to a higher

dimensional space. We use this fact and the definition of the operator norm to further bound

the term inside the ℓ∞-norm in the right-hand-side of (5.1). Such term is bounded as the

product of the ℓ∞-operator norm of •k
i=1(Ui ), and the ℓ∞-norm of an expression involving the

Rademacher variables σ j and the vectors ∗k
i=1(z j ). Finally, an application of Massart’s Lemma

(Shalev-Shwartz and Ben-David (2014a), Lemma 26.8) leads to the final result.

Theorem 5.2. The Lipschitz constant (with respect to the ℓ∞-norm) of the function defined in

eq. (CCP), restricted to the set {z ∈Rd : ∥z∥∞ ≤ 1} is bounded as:

Lip∞( f ) ≤ k∥C∥∞
k∏

i=1
∥Ui∥∞ .

5.2.2 Nested Coupled CP-Decomposition (NCP model)

The Nested Coupled CP-Decomposition (NCP) model leverages a joint hierarchical decompo-

sition, which provided strong results in both generative and discriminative tasks in Chrysos

et al. (2020). A slight re-parametrization of the model (subsection 5.8.2) can be expressed with
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the following recursive relation:

x1 = (A1z)◦ (s1), xn = (An z)◦ (Sn xn−1), f (z) =C xk , (NCP)

where z ∈ Rd is the input vector and C ∈ Ro×m , An ∈ Rm×d , Sn ∈ Rm×m and s1 ∈ Rm are the

learnable parameters. In figure 5.1 we provide a schematic of the architecture.

In theorem 5.3 we derive an upper bound on the complexity of NCP models with bounded

ℓ∞-operator-norm of a matrix function of its parameters. Its proof can be found in subsec-

tion 5.10.1. For a given NCP model, we derive an upper bound on its ℓ∞-Lipschitz constant in

theorem 5.4 and its proof is given in subsection 5.10.4.

Theorem 5.3. Let Z = {z1, . . . , zn} ⊆ Rd and suppose that ∥z j∥∞ ≤ 1 for all j = 1, . . . ,n. Define

the matrix Φ(A1,S1, . . . , An ,Sn) := (Ak •Sk )
∏k−1

i=1 I ⊗ Ai •Si . Consider the class of functions:

F k
NCP := {

f (z) as in (NCP) : ∥C∥∞ ≤µ,∥Φ(A1,S1, . . . , Ak ,Sk )∥∞ ≤λ}
,

where C ∈R1×m (single output), thus, we will write it as c, and the corresponding bound also

becomes ∥c∥1 ≤µ. The Empirical Rademacher Complexity of NCPk (k-degree NCP polynomials)

with respect to Z is bounded as:

RZ (F k
NCP) ≤ 2µλ

√
2k log(d)

n
.

Theorem 5.4. The Lipschitz constant (with respect to the ℓ∞-norm) of the function defined in

eq. (NCP), restricted to the set {z ∈Rd : ∥z∥∞ ≤ 1} is bounded as:

Lip∞( f ) ≤ k∥C∥∞
k∏

i=1
(∥Ai∥∞∥Si∥∞) .

5.3 Algorithms

By constraining the quantities in the upper bounds on the Rademacher complexity (theo-

rems 5.1 and 5.3), we can regularize the empirical loss minimization objective (Mohri et al.,

2018a, Theorem 3.3). Such method would prevent overfitting and can lead to an improved

accuracy. However, one issue with the quantities involved in theorems 5.1 and 5.3, namely

∥∥∥•k
i=1Ui

∥∥∥∞ ,

∥∥∥∥∥(Ak •Sk )
k−1∏
i=1

I ⊗ Ai •Si

∥∥∥∥∥∞ ,

is that projecting onto their level sets correspond to a difficult non-convex problem. Neverthe-

less, we can control an upper bound that depends on the ℓ∞-operator norm of each weight

matrix:

Lemma 5.1. It holds that
∥∥•k

i=1Ui
∥∥
∞ ≤∏k

i=1 ∥Ui∥∞.
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Lemma 5.2. It holds that
∥∥(Ak •Sk )

∏k−1
i=1 I ⊗ Ai •Si

∥∥
∞ ≤∏k

i=1 ∥Ai∥∞∥Si∥∞.

The proofs of lemmas 5.1 and 5.2 can be found in subsection 5.9.2 and subsection 5.10.2.

These results mean that by constraining the operator norms of each weight matrix, we can

control the overall complexity of the CCP and NCP models.

Projecting a matrix onto an ℓ∞-operator norm ball is a simple task that can be achieved by

projecting each row of the matrix onto an ℓ1-norm ball, for example, using the well-known

algorithm from Duchi et al. (2008a). The final optimization objective for training a regularized

CCP is the following:

min
C ,U1,...,Uk

1

n

n∑
i=1

L(C ,U1, . . . ,Uk ; xi , yi ) subject to ∥C∥∞ ≤µ,∥Ui∥∞ ≤λ , (5.2)

where (xi , yi )n
i=1 is the training dataset, L is the loss function (e.g., cross-entropy) and µ,λ are

the regularization parameters. We notice that the constraints on the learnable parameters

Ui and C have the effect of simultaneously controlling the Rademacher Complexity and the

Lipschitz constant of the CCP model. For the NCP model, an analogous objective function is

used.

To solve the optimization problem in eq. (5.2) we will use a Projected Stochastic Gradient

Descent method (algorithm 5.1). We also propose a variant that combines Adversarial Training

with the projection step (algorithm 5.2) with the goal of increasing robustness to adversarial

examples.

Algorithm 5.1 Projected SGD

Input: dataset Z , learning rate
{
γt > 0

}T−1
t=0 , iterations T , hyper-parameters R, f , Loss L.

Output: model with parameters θ.

1: Initialize θ.

2: for t = 0 to T −1 do

3: Sample (x, y) from Z

4: θ = θ−γt▽θL(θ; x, y).

5: if t mod f = 0 then

6: θ =∏
{θ:∥θ∥∞≤R}(θ)

7: end if

8: end for
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Algorithm 5.2 Projected SGD + Adversarial Training

Input: dataset Z , learning rate
{
γt > 0

}T−1
t=0 , iterations T and n, hyper-parameters R , f , ϵ and

α, Loss L

Output: model with parameters θ.

1: Initialize θ.

2: for t = 0 to T −1 do

3: Sample (x, y) from Z

4: for i = 0 to n −1 do

5: xadv =∏{
x ′ :||x ′−x||∞≤ϵ} {

x +α∇x L(θ; x, y)
}

6: end for

7: θ = θ−γt▽θL(θ; xadv, y)

8: if t mod f = 0 then

9: θ =∏
{θ:∥θ∥∞≤R}(θ)

10: end if

11: end for

In algorithms 5.1 and 5.2 the parameter f is set in practice to a positive value, so that the

projection (denoted by Π) is made only every few iterations. The variable θ represents the

weight matrices of the model, and the projection in the last line should be understood as

applied independently for every weight matrix. The regularization parameter R corresponds

to the variables µ,λ in eq. (5.2).

Convolutional layers. Frequently, convolutions are employed in the literature, especially in

the image-domain. It is important to understand how our previous results extend to this case,

and how the proposed algorithms work in that case. Below, we show that the ℓ∞-operator

norm of the convolutional layer (as a linear operator) is related to the ℓ∞-operator norm of

the kernel after a reshaping operation. For simplicity, we consider only convolutions with zero

padding.

We study the cases of 1D, 2D and 3D convolutions. For clarity, we mention below the result

for the 3D convolution, since this is relevant to our experimental validation, and we defer the

other two cases to section 5.11.

Theorem 5.5. Let A ∈ Rn×m×r be an input image and let K ∈ Rh×h×r×o be a convolutional

kernel with o output channels. For simplicity assume that k ≤ min(n,m) is odd. Denote by

B = K ⋆ A the output of the convolutional layer. Let U ∈ Rnmo×nmr be the matrix such that

vec(B) =U vec(A) i.e., U is the matrix representation of the convolution. Let M(K ) ∈Ro×hhr be

the matricization of K , where each row contains the parameters of a single output channel of

the convolution. It holds that: ∥U∥∞ = ∥M(K )∥∞.

Thus, we can control the ℓ∞-operator-norm of a convolutional layer during training by con-

trolling that of the reshaping of the kernel, which is done with the same code as for fully

98



5.4 Numerical Evidence

connected layers. It can be seen that when the padding is non-zero, the result still holds.

5.4 Numerical Evidence

The generalization properties and the robustness of PNs are numerically verified in this

section. We evaluate the robustness to three widely-used adversarial attacks in sec. 5.4.2. We

assess whether the compared regularization schemes can also help in the case of adversarial

training in sec. 5.4.3. Experiments with additional datasets, models (NCP models), adversarial

attacks (APGDT, PGDT) and layer-wise bound (instead of a single bound for all matrices) are

conducted in section 5.12 due to the restricted space. The results exhibit a consistent behavior

across different adversarial attacks, different datasets and different models. Whenever the

results differ, we explicitly mention the differences in the main body below.

5.4.1 Experimental Setup

The accuracy is reported as as the evaluation metric for every experiment, where a higher

accuracy translates to better performance.

Datasets and Benchmark Models: We conduct experiments on the popular datasets of

Fashion-MNIST (Xiao et al., 2017b), E-MNIST (Cohen et al., 2017) and CIFAR-10 (Krizhevsky

et al., 2014). The first two datasets include grayscale images of resolution 28×28, while CIFAR-

10 includes 60,000 RGB images of resolution 32×32. Each image is annotated with one out

of the ten categories. We use two popular regularization methods from the literature for

comparison, i.e., Jacobian regularization (Hoffman et al., 2019) and L2 regularization (weight

decay).

Models: We report results using the following three models: 1) a 4th-degree CCP model named

"PN-4", 2) a 10th-degree CCP model referenced as "PN-10" and 3) a 4th-degree Convolutional

CCP model called "PN-Conv". In the PN-Conv, we have replaced all the Ui matrices with

convolutional kernels. None of the variants contains any activation functions.

Hyper-parameters: Unless mentioned otherwise, all models are trained for 100 epochs with

a batch size of 64. The initial value of the learning rate is 0.001. After the first 25 epochs, the

learning rate is multiplied by a factor of 0.2 every 50 epochs. The SGD is used to optimize all

the models, while the cross-entropy loss is used. In the experiments that include projection

or adversarial training, the first 50 epochs are pre-training, i.e., training only with the cross-

entropy loss. The projection is performed every ten iterations.

Adversarial Attack Settings: We utilize two widely used attacks: a) Fast Gradient Sign Method

(FGSM) and b) Projected Gradient Descent (PGD). In FGSM the hyper-parameter ϵ represents

the step size of the adversarial attack. In PGD there is a triple of parameters (ϵtotal, niters, ϵiter),

which represent the maximum step size of the total adversarial attack, the number of steps to

perform for a single attack, and the step size of each adversarial attack step respectively. We
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Method
No proj. Our method Jacobian L2

Fashion-MNIST

PN-4

Clean 87.28±0.18% 87.32±±±0.14% 86.24±0.14% 87.31±0.13%
FGSM-0.1 12.92±2.74% 46.43±±±0.95% 17.90±6.51% 13.80±3.65%
PGD-(0.1, 20, 0.01) 5.64±1.76% 49.58±±±0.59% 12.23±5.63% 5.01±2.44%
PGD-(0.3, 20, 0.03) 0.18±0.16% 28.96±±±2.31% 1.27±1.29% 0.28±0.18%

PN-10

Clean 88.48±0.17% 88.72±±±0.12% 88.12±0.11% 88.46±0.19%
FGSM-0.1 15.96±1.00% 44.71±±±1.24% 19.52±1.14% 16.51±2.33%
PGD-(0.1, 20, 0.01) 1.94±0.82% 47.94±±±2.29% 5.44±0.81% 2.16±0.95%
PGD-(0.3, 20, 0.03) 0.02±0.03% 30.51±±±1.22% 0.05±0.02% 0.01±0.02%

PN-Conv

Clean 86.36±0.21% 86.38±0.26% 84.69±0.44% 86.45±±±0.21%
FGSM-0.1 10.80±1.82% 48.15±±±1.23% 10.62±0.77% 10.73±1.58%
PGD-(0.1, 20, 0.01) 9.37±1.00% 46.63±±±3.68% 10.20±0.32% 8.96±0.83%
PGD-(0.3, 20, 0.03) 1.75±0.83% 28.94±±±1.20% 8.26±1.05% 2.03±0.99%

E-MNIST

PN-4

Clean 84.27±0.26% 84.34±±±0.31% 81.99±0.33% 84.22±0.33%
FGSM-0.1 8.92±1.99% 27.56±±±3.32% 14.96±1.32% 8.18±3.48%
PGD-(0.1, 20, 0.01) 6.24±1.43% 29.46±±±2.73% 6.75±2.92% 5.93±1.97%
PGD-(0.3, 20, 0.03) 1.22±0.85% 19.07±±±0.98% 3.06±0.53% 1.00±0.76%

PN-10

Clean 89.31±0.09% 90.56±±±0.10% 89.19±0.07% 89.23±0.13%
FGSM-0.1 15.56±1.16% 37.11±±±2.81% 24.21±1.89% 16.30±1.82%
PGD-(0.1, 20, 0.01) 2.63±0.65% 37.89±±±2.91% 9.18±1.09% 2.33±0.43%
PGD-(0.3, 20, 0.03) 0.00±0.00% 20.47±±±0.96% 0.11±0.08% 0.02±0.03%

PN-Conv

Clean 91.49±0.29% 91.57±±±0.19% 90.38±0.13% 91.41±0.18%
FGSM-0.1 4.28±0.55% 35.39±±±7.51% 3.88±0.04% 4.13±0.41%
PGD-(0.1, 20, 0.01) 3.98±0.82% 33.75±±±7.17% 3.86±0.01% 4.83±0.87%
PGD-(0.3, 20, 0.03) 3.24±0.76% 28.10±±±3.27% 3.84±0.01% 2.76±0.65%

Table 5.1: Comparison of regularization techniques on Fashion-MNIST (top) and E-MNIST
(bottom). In each dataset, the base networks are PN-4, i.e., a 4th degree polynomial, on the top
four rows, PN-10, i.e., a 10th degree polynomial, on the middle four rows and PN-Conv, i.e., a
4th degree polynomial with convolutions, on the bottom four rows. Our projection method
exhibits the best performance in all three attacks, with the difference on accuracy to stronger
attacks being substantial.

consider the following hyper-parameters for the attacks: a) FGSM with ϵ = 0.1, b) PGD with

parameters (0.1, 20, 0.01), c) PGD with parameters (0.3, 20, 0.03).

5.4.2 Evaluation of the robustness of PNs

In the next experiment, we assess the robustness of PNs under adversarial noise. That is, the

method is trained on the train set of the respective dataset and the evaluation is performed

on the test set perturbed by additive adversarial noise. That is, each image is individually

perturbed based on the respective adversarial attack. The proposed method implements

algorithm 5.1.
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The quantitative results in both Fashion-MNIST and E-MNIST using PN-4, PN-10 and PN-

Conv under the three attacks are reported in table 5.1. The column ‘No-proj’ exhibits the

plain SGD training (i.e., without regularization), while the remaining columns include the

proposed regularization, Jacobian and the L2 regularization respectively. The results without

regularization exhibit a substantial decrease in accuracy for stronger adversarial attacks. The

proposed regularization outperforms all methods consistently across different adversarial

attacks. Interestingly, the stronger the adversarial attack, the bigger the difference of the

proposed regularization scheme with the alternatives of Jacobian and L2 regularizations.

Next, we learn the networks with varying projection bounds. The results on Fashion-MNIST

and E-MNIST are visualized in figure 5.2, where the x-axis is plotted in log-scale. As a reference

point, we include the clean accuracy curves, i.e., when there is no adversarial noise. Projection

bounds larger than 2 (in the log-axis) leave the accuracy unchanged. As the bounds decrease,

the results gradually improve. This can be attributed to the constraints the projection bounds

impose into the Ui matrices.

Similar observations can be made when evaluating the clean accuracy (i.e., no adversarial

noise in the test set). However, in the case of adversarial attacks a tighter bound performs

better, i.e., the best accuracy is exhibited in the region of 0 in the log-axis. The projection

bounds can have a substantial improvement on the performance, especially in the case

of stronger adversarial attacks, i.e., PGD. Notice that all in the aforementioned cases, the

intermediate values of the projection bounds yield an increased performance in terms of the

test-accuracy and the adversarial perturbations.

Beyond the aforementioned datasets, we also validate the proposed method on CIFAR-10

dataset. The results in figure 5.3 and table 5.2 exhibit similar patterns as the aforementioned

experiments. Although the improvement is smaller than the case of Fashion-MNIST and E-

MNIST, we can still obtain about 10% accuracy improvement under three different adversarial

attacks.

5.4.3 Adversarial training (AT) on PNs

Adversarial training has been used as a strong defence against adversarial attacks. In this

experiment we evaluate whether different regularization methods can work in conjunction

with adversarial training that is widely used as a defence method. Since multi-step adversarial

attacks are computationally intensive, we utilize the FGSM attack during training, while we

evaluate the trained model in all three adversarial attacks. For this experiment we select PN-10

as the base model. The proposed model implements algorithm 5.2.

The accuracy is reported in table 5.3 with Fashion-MNIST on the top and E-MNIST on the

bottom. In the FGSM attack, the difference of the compared methods is smaller, which

is expected since similar attack is used for the training. However, for stronger attacks the

difference becomes pronounced with the proposed regularization method outperforming
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Figure 5.2: Adversarial attacks during testing on Fashion-MNIST (top), E-MNIST (bottom)
with the x-axis is plotted in log-scale. Note that intermediate values of projection bounds
yield the highest accuracy. The patterns are consistent in both datasets and across adversarial
attacks.
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Figure 5.3: Adversarial attacks during testing on CIFAR-10.

Model PN-Conv
Projection No-proj Our method Jacobian L2

Clean accuracy 65.09±0.14% 65.22±±±0.13% 64.43±0.19% 65.11±0.08%
FGSM-0.1 6.00±0.53% 15.13±±±0.81% 3.34±0.40% 1.27±0.10%
PGD-(0.1, 20, 0.01) 7.08±0.68% 15.17±±±0.88% 1.74±0.14% 1.05±0.05%
PGD-(0.3, 20, 0.03) 0.41±0.09% 11.71±±±1.11% 0.04±0.02% 0.51±0.04%

Table 5.2: Evaluation of the robustness of PN models on CIFAR-10. Each line refers to a
different adversarial attack. The projection offers an improvement in the accuracy in each
case; in PGD attacks the projection improves the accuracy by a significant margin.
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both the Jacobian and the L2 regularization methods.

Method
AT Our method + AT Jacobian + AT L2 + AT
Adversarial training (AT) with PN-10 on Fashion-MNIST

FGSM-0.1 65.33±0.46% 65.64±±±0.35% 62.04±0.22% 65.62±0.15%
PGD-(0.1, 20, 0.01) 57.45±0.35% 59.89±±±0.22% 57.42±0.24% 57.40±0.36%
PGD-(0.3, 20, 0.03) 24.46±0.45% 39.79±±±1.40% 25.59±0.20% 24.99±0.57%

Adversarial training (AT) with PN-10 on E-MNIST
FGSM-0.1 78.30±0.18% 78.61±±±0.58% 70.11±0.18% 78.31±0.32%
PGD-(0.1, 20, 0.01) 68.40±0.32% 68.51±±±0.19% 64.61±0.16% 68.41±0.37%
PGD-(0.3, 20, 0.03) 35.58±0.33% 42.22±±±0.60% 39.83±0.24% 35.17±0.46%

Table 5.3: Comparison of regularization techniques on (a) Fashion-MNIST (top) and (b) E-
MNIST (bottom) along with adversarial training (AT). The base network is a PN-10, i.e., 10th

degree polynomial. Our projection method exhibits the best performance in all three attacks.

The limitations of the proposed work are threefold. Firstly, theorem 5.1 relies on the ℓ∞-

operator norm of the face-splitting product of the weight matrices, which in practice we relax

in lemma 5.1 for performing the projection. In the future, we aim to study if it is feasible

to compute the non-convex projection onto the set of PNs with bounded ℓ∞-norm of the

face-splitting product of the weight matrices. This would allow us to let go off the relax-

ation argument and directly optimize the original tighter Rademacher Complexity bound

(theorem 5.1).

Secondly, the regularization effect of the projection differs across datasets and adversarial

attacks, a topic that is worth investigating in the future.

Thirdly, our bounds do not take into account the algorithm used, which corresponds to a

variant of the Stochastic Projected Gradient Descent, and hence any improved generalization

properties due to possible uniform stability (Bousquet and Elisseeff, 2002) of the algorithm or

implicit regularization properties (Neyshabur, 2017), do not play a role in our analysis.

5.5 Related Work

Rademacher Complexity: Known bounds for the class of polynomials are a consequence

of more general result for kernel methods (Mohri et al., 2018a, Theorem 6.12). Support

Vector Machines (SVMs) with a polynomial kernel of degree k effectively correspond to a

general polynomial with the same degree. In contrast, our bound is tailored to the parametric

definition of the CCP and the NCP models, which are a subset of the class of all polynomials.

Hence, they are tighter than the general kernel complexity bounds.

Bounds for the class of neural networks were stablished in (Bartlett et al., 2017a; Neyshabur

et al., 2017), but they require a long and technical proof, and in particular it assumes an

ℓ2-bound on the input, which is incompatible with image-based applications. This bound
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also depend on the product of spectral norms of each layer. In contrast, our bounds are more

similar in spirit to the path-norm-based complexity bounds (Neyshabur et al., 2015d), as

they depend on interactions between neurons at different layers. This interaction precisely

corresponds to the face-splitting product between weight matrices that appears in theorem 5.1.

Lipschitz constant: A variety of methods have been proposed for estimating the Lipschitz

constant of neural networks. For example, Scaman and Virmaux (2018) (SVD), Fazlyab et al.

(2019b) (Semidefinite programming) and Latorre et al. (2020a) (Polynomial Optimization)

are expensive optimization methods to compute tighter bounds on such constant. These

methods are unusable in our case as they would require a non-trivial adaptation to work with

Polynomial Nets. In contrast we find an upper bound that applies to such family of models,

and it can be controlled with efficient ℓ∞-operator-norm projections. However, our bounds

might not be the tightest. Developing tighter methods to bound and control the Lipschitz

constant for Polynomial Nets is a promising direction of future research.

5.6 Appendix: introduction

The Appendix is organized as follows:

▷ The related work is summarized in section 5.5.

▷ In section 5.7 the notation and the core Lemmas from the literature are described.

▷ Further details on the Polynomial Nets are provided in section 5.8.

▷ The proofs on the CCP and the NCP models are added in section 5.9 and section 5.10

respectively.

▷ The extensions of the theorems for convolutional layers and their proofs are detailed in

section 5.11.

▷ Additional experiments are included in section 5.12.

5.7 Appendix: Background

Below, we develop a detailed notation in subsection 5.7.1, we include related definitions in

subsection 5.7.2 and Lemmas required for our proofs in subsection 5.7.3. The goal of this

section is to cover many of the required information for following the proofs and the notation

we follow in this work. Readers familiar with the different matrix/vector products, e.g., Khatri-

Rao or face-splitting product, and with basic inequalities, e.g., Hölder’s inequality, can skip to

the next section.
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Table 5.4: Symbols for various matrix products. The precise definitions of the products are
included in subsection 5.7.2 for completion.

Symbol Definition
◦ Hadamard (element-wise) product.
∗ Column-wise Khatri–Rao product.
• Face-splitting product.
⊗ Kronecker product.
⋆ Convolution.

5.7.1 Notation

Different matrix products and their associated symbols are referenced in table 5.4, while

matrix operations on a matrix A are defined on table 5.5. Every matrix product, e.g., Hadamard

product, can be used in two ways: a) A ◦B , which translates to Hadamard product of matrices

A and B , b) ◦N
i=1 Ai abbreviates the Hadamard products A1 ◦ A2 ◦ . . . AN︸ ︷︷ ︸

N products

.

Table 5.5: Operations and symbols on a matrix A.

Symbol Definition
∥A∥∞ ℓ∞-operator-norm; corresponds to the maximum ℓ1-norm of its rows.

Ai i th row of A.
ai , j (i , j )th element of A.
Ai , j (i , j )th block of a block-matrix A
Ai The i-th matrix in a set of matrices {A1, · · · , AN }.

The symbol x j
i refers to j th element of vector xi .

5.7.2 Definitions

For thoroughness, we include the definitions of the core products that we use in this work.

Specifically, the definitions of the Hadamard product (definition 5.3), Kronecker product

(definition 5.4), the Khatri-Rao product (definition 5.5), column-wise Khatri-Rao product

(definition 5.6) and the face-splitting product (definition 5.7) are included.

Definition 5.3 (Hadamard product). For two matrices A and B of the same dimension m × n,

the Hadamard product A ◦B is a matrix of the same dimension as the operands, with elements

given by

(a ◦b)i , j = ai , j bi , j .

Definition 5.4 (Kronecker product). If A is an m × n matrix and B is a p × q matrix, then the
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Kronecker product A ⊗ B is the pm × qn block matrix, given as follows:

A⊗B =


a1,1B · · · a1,nB

...
. . .

...

am,1B · · · am,nB

 .

Example: the Kronecker product of the matrices A ∈R2×2 and B ∈R2×2 is computed below:

[
a1,1 a1,2

a2,1 a2,2

]
︸ ︷︷ ︸

A

⊗
[

b1,1 b1,2

b2,1 b2,2

]
︸ ︷︷ ︸

B

=


a1,1b1,1 a1,1b1,2 a1,2b1,1 a1,2b1,2

a1,1b2,1 a1,1b2,2 a1,2b2,1 a1,2b2,2

a2,1b1,1 a2,1b1,2 a2,2b1,1 a2,2b1,2

a2,1b2,1 a2,1b2,2 a2,2b2,1 a2,2b2,2


︸ ︷︷ ︸

A⊗B

.

Definition 5.5 (Khatri–Rao product). The Khatri–Rao product is defined as:

A∗B = (Ai , j ⊗Bi , j )i , j ,

in which the (i , j )-th block is the mi pi ×n j q j sized Kronecker product of the corresponding

blocks of A and B, assuming the number of row and column partitions of both matrices is equal.

The size of the product is then (
∑

i mi pi )× (
∑

i n j q j ).

Example: if A and B both are 2 × 2 partitioned matrices e.g.:

A =
[

A1,1 A1,2

A2,1 A2,2

]
=

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 ,

B =
[

B1,1 B1,2

B2,1 B2,2

]
=

 b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

 ,

then we obtain the following:

A∗B =
[

A1,1 ⊗B1,1 A1,2 ⊗B1,2

A2,1 ⊗B2,1 A2,2 ⊗B2,2

]
=


a1,1b1,1 a1,2b1,1 a1,3b1,2 a1,3b1,3

a2,1b1,1 a2,2b1,1 a2,3b1,2 a2,3b1,3

a3,1b2,1 a3,2b2,1 a3,3b2,2 a3,3b2,3

a3,1b3,1 a3,2b3,1 a3,3b3,2 a3,3b3,3

 .

Definition 5.6 (Column-wise Khatri–Rao product). A column-wise Kronecker product of two

matrices may also be called the Khatri–Rao product. This product assumes the partitions of

the matrices are their columns. In this case m1 = m, p1 = p, n = q and for each j: n j = p j = 1.
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The resulting product is a mp ×n matrix of which each column is the Kronecker product of the

corresponding columns of A and B.

Example: the Column-wise Khatri–Rao product of the matrices A ∈ R2×3 and B ∈ R3×3 is

computed below:

[
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

]
︸ ︷︷ ︸

A

∗

b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3


︸ ︷︷ ︸

B

=



a1,1b1,1 a1,2b1,2 a1,3b1,3

a1,1b2,1 a1,2b2,2 a1,3b2,3

a1,1b3,1 a1,2b3,2 a1,3b3,3

a2,1b1,1 a2,2b1,2 a2,3b1,3

a2,1b2,1 a2,2b2,2 a2,3b2,3

a2,1b3,1 a2,2b3,2 a2,3b3,3


︸ ︷︷ ︸

A∗B

.

From here on, all ∗ refer to Column-wise Khatri–Rao product.

Definition 5.7 (Face-splitting product). The alternative concept of the matrix product, which

uses row-wise splitting of matrices with a given quantity of rows. This matrix operation was

named the face-splitting product of matrices or the transposed Khatri–Rao product. This type

of operation is based on row-by-row Kronecker products of two matrices.

Example: the Face-splitting product of the matrices A ∈R3×2 and B ∈R3×2 is computed below:

a1,1 a1,2

a2,1 a3,2

a3,1 a3,2


︸ ︷︷ ︸

A

•

b1,1 b1,2

b2,1 b2,2

b3,1 b3,2


︸ ︷︷ ︸

B

=

a1,1b1,1 a1,2b1,1 a1,1b1,2 a1,2b1,2

a2,1b2,1 a2,2b2,1 a2,1b2,2 a2,2b2,2

a3,1b3,1 a3,2b3,1 a3,1b3,2 a3,2b3,2


︸ ︷︷ ︸

A•B

.

5.7.3 Well-known Lemmas

In this section, we provide the details on the Lemmas required for our proofs along with their

proofs or the corresponding citations where the Lemmas can be found as well.

Lemma 5.3. (Federer, 2014) Let g , h be two composable Lipschitz functions. Then g ◦h is also

Lipschitz with Lip(g ◦h) ≤ Lip(g )Lip(h). Here and only here ◦ represents function composition.

Lemma 5.4. (Federer, 2014) Let f : X ⊆Rn →Rm be differentiable and Lipschitz continuous. Let

J f (x) denote its total derivative (Jacobian) at x. Then Lipp ( f ) = sup
x∈X

∥∥J f (x)
∥∥

p where
∥∥J f (x)

∥∥
p

is the induced operator norm on J f (x).

Lemma 5.5 (Hölder’s inequality). (Cvetkovski, 2012) Let (S,Σ,µ) be a measure space and let

p, q ∈ [1,∞] with 1
p + 1

q = 1. Then, for all measurable real-valued functions f and g on S, it

holds that: ∥∥ f g
∥∥

1 ≤
∥∥ f

∥∥
p

∥∥g
∥∥

q .
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Lemma 5.6 (Mixed Product Property 1). (Slyusar, 1999) The following holds:

(A1B1)◦ (A2B2) = (A1 • A2)(B1 ∗B2) .

Lemma 5.7 (Mixed Product Property 2). The following holds:

◦N
i=1(Ai Bi ) = •N

i=1(Ai )∗N
i=1 (Bi ) .

Proof. We prove this lemma by induction on N .

Base case (N = 1): A1B1 = A1B1.

Inductive step: Assume that the induction hypothesis holds for a particular k, i.e., the case

N = k holds. That can be expressed as:

◦k
i=1(Ai Bi ) = •k

i=1(Ai )∗k
i=1 (Bi ) . (5.3)

Then we will prove that it holds for N = k +1:

◦k+1
i=1 (Ai Bi )

= [◦k
i=1(Ai Bi )]◦ (Ak+1Bk+1)

= [•k
i=1(Ai )∗k

i=1 (Bi )]◦ (Ak+1Bk+1) use inductive hypothesis (eq. (5.3))

= [•k
i=1(Ai )• Ak+1][∗k

i=1(Bi )∗Bk+1] lemma 5.6 [Mixed product property 1]

= •k+1
i=1 (Ai )∗k+1

i=1 (Bi ) .

That is, the case N = k +1 also holds true, establishing the inductive step. □

Lemma 5.8 (Massart Lemma. Lemma 26.8 in Shalev-Shwartz and Ben-David (2014a)). Let A

={a1, · · · , aN } be a finite set of vectors in Rm . Define ā = 1
N

∑N
i=1 ai . Then:

R(A ) ≤ max
a∈A

∥a − ā∥
√

2log N

m
.

Definition 5.8 (Consistency of a matrix norm). A matrix norm is called consistent on Cn,n , if

∥AB∥ ≤ ∥A∥∥B∥ .

holds for A,B ∈Cn,n .

Lemma 5.9 (Consistency of the operator norm). (Lyche, 2020) The operator norm is consistent

if the vector norm ∥·∥α is defined for all m ∈N and ∥·∥β = ∥·∥α
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Proof.

∥AB∥ = max
B x ̸=0

∥AB x∥α
∥x∥α

= max
B x ̸=0

∥AB x∥α
∥B x∥α

∥B x∥α
∥x∥α

≤ max
y ̸=0

∥∥Ay
∥∥
α∥∥y

∥∥
α

max
x ̸=0

∥B x∥α
∥x∥α

= ∥A∥∥B∥ .

□

Lemma 5.10. (Rao, 1970)

(AC )∗ (BD) = (A⊗B)(C ∗D) .

5.8 Appendix: Details on polynomial networks

In this section, we provide further details on the two most prominent parametrizations pro-

posed in Chrysos et al. (2020). This re-parametrization creates equivalent models, but enables

us to absorb the bias terms into the input terms. Firstly, we provide the re-parametrization

of the CCP model in subsection 5.8.1 and then we create the re-parametrization of the NCP

model in subsection 5.8.2.

5.8.1 Re-parametrization of CCP model

The Coupled CP-Decomposition (CCP) model of PNs (Chrysos et al., 2020) leverages a coupled

CP Tensor decomposition. A k-degree CCP model f (ζ) can be succinctly described by the

following recursive relations:

y1 =V1ζ, yn = (Vnζ)◦ yn−1 + yn−1, f (ζ) =Q yk +β , (5.4)

where ζ ∈Rδ is the input data with δ ∈N, f (ζ) ∈Ro is the output of the model and Vn ∈Rµ×δ,

Q ∈ Ro×µ and β ∈ Ro are the learnable parameters, where µ ∈N is the hidden rank. In order

to simplify the bias terms in the model, we will introduce a minor re-parametrization in

lemma 5.11 that we will use to present our results in the subsequent sections.

Lemma 5.11. Let z = [ζ⊤,1]⊤ ∈Rd , xn = [y⊤
n ,1]⊤ ∈Rm , C = [Q,β] ∈Ro×m ,d = δ+1,m = µ+1.

Define:

U1 =
[

V1 0

0⊤ 1

]
∈Rm×d , Ui =

[
Vi 1

0⊤ 1

]
∈Rm×d (i > 1) .

where the boldface numbers 0 and 1 denote all-zeros and all-ones column vectors of appropriate

size, respectively. The CCP model in eq. (5.4) can be rewritten as f (z) =C ◦k
i=1 Ui z, which is the

one used in eq. (CCP).

As a reminder before providing the proof, the core symbols for this proof are summarized in

110



5.8 Appendix: Details on polynomial networks

table 5.6.

Table 5.6: Core symbols in the proof of lemma 5.11.

Symbol Dimensions Definition
◦ - Hadamard (element-wise) product.
ζ Rδ Input of the polynomial expansion.

f (ζ) Ro Output of the polynomial expansion.
k N Degree of polynomial expansion.
m N Hidden rank of the expansion.
Vn Rµ×δ Learnable matrices of the expansion.
Q Ro×µ Learnable matrix of the expansion.
β Ro Bias of the expansion.
z Rd Re-parametrization of the input.
C Ro×m C = (Q,β).

Proof. By definition, we have:

x1 = [y⊤
1 ,1]⊤ =

[
y1

1

]
=

[
V1ζ

1

]
=

[
V1 0

0⊤ 1

][
ζ

1

]
=

[
V1 0

0⊤ 1

]
[ζ⊤,1]⊤ =U1z .

xn = [y⊤
n ,1]⊤ =

[
yn

1

]
=

[
(Vnζ)◦ yn−1 + yn−1

1

]
=

[
Vnζ+1

1

]
◦
[

yn−1

1

]

=
[

Vn 1

0⊤ 1

][
ζ

1

]
◦
[

yn−1

1

]
=

[
Vn 1

0⊤ 1

]
[ζ⊤,1]⊤ ◦ [y⊤

n−1,1]⊤ =Un z ◦xn−1 .

Hence, it holds that:

f (z) =Q yk +β= (Q,β)

[
yk

1

]
=C xk

=C Uk z ◦xk−1

=C Uk z ◦ (Uk−1z)◦xk−2

= ·· ·
=C Uk z ◦ (Uk−1z)◦ · · · ◦ (U2z)◦x1

=C Uk z ◦ (Uk−1z)◦ · · · ◦ (U2z)◦ (U1z)

=C ◦k
i=1 (Ui z) .

□
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5.8.2 Reparametrization of the NCP model

The nested coupled CP decomposition (NCP) model of PNs (Chrysos et al., 2020) leverages a

joint hierarchical decomposition. A k-degree NCP model f (ζ) is expressed with the following

recursive relations:

y1 = (V1ζ)◦ (b1), yn = (Vnζ)◦ (Un yn−1 +bn), f (ζ) =Q yk +β . (5.5)

where ζ ∈Rδ is the input data with δ ∈N, f (ζ) ∈Ro is the output of the model and Vn ∈Rµ×δ,

bn ∈ Rµ, Un ∈ Rµ×µ, Q ∈ Ro×µ and β ∈ Ro are the learnable parameters, where µ ∈ N is the

hidden rank. In order to simplify the bias terms in the model, we will introduce a minor

re-parametrization in lemma 5.12 that we will use to present our results in the subsequent

sections.

Lemma 5.12. Let z = [ζ⊤,1]⊤ ∈Rd , xn = [y⊤
n ,1]⊤ ∈Rm , C = [Q,β] ∈Ro×m ,d = δ+1,m = µ+1.

Let:

s1 = [b⊤
1 ,1]⊤ ∈Rm , Si =

[
Ui bi

0⊤ 1

]
∈Rm×m(i > 1), Ai =

[
Vi 0

0⊤ 1

]
∈Rm×d .

where the boldface numbers 0 and 1 denote all-zeros and all-ones column vectors of appropriate

size, respectively. The NCP model in eq. (5.5) can be rewritten as

x1 = (A1z)◦ (s1), xn = (An z)◦ (Sn xn−1), f (z) =C xk . (5.6)

In the aforementioned eq. (5.6), we have written Sn even for n = 1, when s1 is technically a

vector, but this is done for convenience only and does not change the end result.

5.9 Appendix: Result of the CCP model

5.9.1 Proof of theorem 5.1: Rademacher Complexity bound of CCP underℓ∞ norm

To facilitate the proof below, we include the related symbols in table 5.7. Below, to avoid

cluttering the notation, we consider that the expectation is over σ and omit the brackets as

well.
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Table 5.7: Core symbols for proof of theorem 5.1.

Symbol Dimensions Definition
◦ - Hadamard (element-wise) product.
• - Face-splitting product.
∗ - Column-wise Khatri–Rao product.
z Rd Input of the polynomial expansion.

f (z) R Output of the polynomial expansion.
k N Degree of polynomial expansion.
m N Hidden rank of the expansion.
Ui Rm×d Learnable matrices.
c R1×m Learnable matrix.
µ R ∥c∥1 ≤µ.
λ R

∥∥•k
i=1(Ui )

∥∥
∞ ≤λ.

Proof.

RZ (F k
CCP) = E sup

f ∈F k
CCP

1

n

n∑
j=1

σ j f (z j )

= E sup
f ∈F k

CCP

1

n

n∑
j=1

(
σ j

〈
c,◦k

i=1(Ui z j )
〉)

= E sup
f ∈F k

CCP

1

n

〈
c,

n∑
j=1

[σ j◦k
i=1(Ui z j )]

〉

≤ E sup
f ∈F k

CCP

1

n
∥c∥1

∥∥∥∥∥ n∑
j=1

[σ j◦k
i=1(Ui z j )]

∥∥∥∥∥
∞

(lemma 5.5)

= E sup
f ∈F k

CCP

1

n
∥c∥1

∥∥∥∥∥ n∑
j=1

[σ j •k
i=1 (Ui )∗k

i=1 (z j )]

∥∥∥∥∥
∞

(lemma 5.7)

= E sup
f ∈F k

CCP

1

n
∥c∥1

∥∥∥∥∥•k
i=1(Ui )

n∑
j=1

[σ j ∗k
i=1 (z j )]

∥∥∥∥∥
∞

≤ E sup
f ∈F k

CCP

1

n
∥c∥1

∥∥∥∥∥ n∑
j=1

[σ j ∗k
i=1 (z j )]

∥∥∥∥∥
∞

∥∥∥•k
i=1(Ui )

∥∥∥∞
≤ µλ

n
E

∥∥∥∥∥ n∑
j=1

[σ j ∗k
i=1 (z j )]

∥∥∥∥∥
∞

.

(5.7)

Next, we compute the bound of E
∥∥∥∑n

j=1[σ j ∗k
i=1 (z j )]

∥∥∥∞.

Let Z j = ∗k
i=1(z j ) ∈ Rd k

. For each l ∈ [d k ], let vl = (Z l
1, . . . , Z l

n) ∈ Rn . Note that ∥vl∥2 ≤p
n max j

∥∥Z j
∥∥∞. Let V = {

v1, . . . , vd k

}
. Then, it is true that:
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E

∥∥∥∥∥ n∑
j=1

[σ j ∗k
i=1 (z j )]

∥∥∥∥∥
∞

= E
∥∥∥∥∥ n∑

j=1
σ j Z j

∥∥∥∥∥
∞

= E d k

max
l=1

∣∣∣∣∣ n∑
j=1

σ j (vl ) j

∣∣∣∣∣= nR(V ) . (5.8)

Using lemma 5.8 [Massart Lemma] we have that:

R(V ) ≤ 2max
j

∥∥Z j
∥∥∞√

2log(d k )/n . (5.9)

Then, it holds that:

RZ (F k
CCP) = E sup

f ∈F k
CCP

1

n

n∑
j=1

σ j f (z j )

≤ µλ

n
E

∥∥∥∥∥ n∑
j=1

[σ j ∗k
i=1 (z j )]

∥∥∥∥∥
∞

eq. (5.7)

= µλ

n
nR(V ) eq. (5.8)

≤ 2µλmax
j

∥∥Z j
∥∥∞√

2log
(
d k

)
/n eq. (5.9)

= 2µλmax
j

∥∥∥∗k
i=1(z j )

∥∥∥∞
√

2log(d k )/n

≤ 2µλ(max
j

∥∥z j
∥∥∞)k

√
2log(d k )/n

≤ 2µλ
√

2k log(d)/n .

(5.10)

□

5.9.2 Proof of lemma 5.1

Table 5.8: Core symbols in the proof of lemma 5.1.

Symbol Dimensions Definition
⊗ - Kronecker product.
• - Face-splitting product.
z Rd Input of the polynomial expansion.

f (z) R Output of the polynomial expansion.
k N Degree of polynomial expansion.
m N Hidden rank of the expansion.
Ui Rm×d Learnable matrices.

U j
i Rd j th row of Ui .
λi R ∥Ui∥∞ ≤λi for i = 1,2, . . . ,k.
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Proof. ∥∥∥•k
i=1(Ui )

∥∥∥∞ = m
max

j=1

∥∥∥[•k
i=1(Ui )] j

∥∥∥
1

= m
max

j=1

∥∥∥⊗k
i=1[U j

i ]
∥∥∥

1
Definition of Face-splitting product

= m
max

j=1

[
k∏

i=1

∥∥∥U j
i

∥∥∥
1

]
Multiplicativity of absolute value

≤
k∏

i=1

[
m

max
j=1

∥∥∥U j
i

∥∥∥
1

]

=
k∏

i=1
∥Ui∥∞ .

□

5.9.3 Rademacher Complexity bound under ℓ2 norm

Theorem 5.6. Let Z = {z1, . . . , zn} ⊆Rd and suppose that ∥z j∥∞ ≤ 1 for all j = 1, . . . ,n. Let

F k
CCP :=

{
f (z) =

〈
c,◦k

i=1Ui z
〉

: ∥c∥2 ≤µ,
∥∥∥•k

i=1Ui

∥∥∥
2
≤λ

}
.

The Empirical Rademacher Complexity of CCPk (k-degree CCP polynomials) with respect to Z

is bounded as:

RZ (F k
CCP) ≤ µλp

n
.

To facilitate the proof below, we include the related symbols in table 5.9. Below, to avoid

cluttering the notation, we consider that the expectation is over σ and omit the brackets as

well.

Table 5.9: Core symbols for proof of theorem 5.6.

Symbol Dimensions Definition
◦ - Hadamard (element-wise) product.
• - Face-splitting product.
∗ - Column-wise Khatri–Rao product.
z Rd Input of the polynomial expansion.

f (z) R Output of the polynomial expansion.
k N Degree of polynomial expansion.
m N Hidden rank of the expansion.
Ui Rm×d Learnable matrices.
c R1×m Learnable matrix.
µ R ∥c∥2 ≤µ.
λ R

∥∥•k
i=1(Ui )

∥∥
2
≤λ.

115



Chapter 5. Controlling the Complexity and Lipschitz Constant Improves Polynomial Nets

Proof.

RZ (F k
CCP) = E sup

f ∈F k
CCP

1

n

n∑
j=1

σ j f (z j )

= E sup
f ∈F k

CCP

1

n

n∑
j=1

(
σ j

〈
c,◦k

i=1(Ui z j )
〉)

= E sup
f ∈F k

CCP

1

n

〈
c,

n∑
j=1

[σ j◦k
i=1(Ui z j )]

〉

≤ E sup
f ∈F k

CCP

1

n
∥c∥2

∥∥∥∥∥ n∑
j=1

[σ j◦k
i=1(Ui z j )]

∥∥∥∥∥
2

(lemma 5.5)

= E sup
f ∈F k

CCP

1

n
∥c∥2

∥∥∥∥∥ n∑
j=1

[σ j •k
i=1 (Ui )∗k

i=1 (z j )]

∥∥∥∥∥
2

(lemma 5.7)

= E sup
f ∈F k

CCP

1

n
∥c∥2

∥∥∥∥∥•k
i=1(Ui )

n∑
j=1

[σ j ∗k
i=1 (z j )]

∥∥∥∥∥
2

≤ E sup
f ∈F k

CCP

1

n
∥c∥2

∥∥∥∥∥ n∑
j=1

[σ j ∗k
i=1 (z j )]

∥∥∥∥∥
2

∥∥∥•k
i=1(Ui )

∥∥∥
2

.

E

∥∥∥∥∥ n∑
j=1

[σ j ∗k
i=1 (z j )]

∥∥∥∥∥
2

= E
√√√√∥∥∥∥∥ n∑

j=1
[σ j ∗k

i=1 (z j )]

∥∥∥∥∥
2

2

≤
√√√√E

∥∥∥∥∥ n∑
j=1

[σ j ∗k
i=1 (z j )]

∥∥∥∥∥
2

2

Jensen’s inequality

=
√√√√E

n∑
s, j

[σsσ j
〈∗k

i=1(zs),∗k
i=1(z j )

〉
]

=
√√√√ n∑

j=1
[
∥∥∗k

i=1(z j )
∥∥2

2
]

=
√√√√ n∑

j=1
(

k∏
i=1

∥∥z j
∥∥2

2)

≤p
n .

(5.11)
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So:

RZ (F k
CCP) ≤ E sup

f ∈F k
CCP

1

n
∥c∥2

∥∥∥∥∥ n∑
j=1

[σ j ∗k
i=1 (z j )]

∥∥∥∥∥
2

∥∥∥•k
i=1(Ui )

∥∥∥
2

≤
sup

f ∈F k
CCP

∥c∥2

∥∥∥•k
i=1(Ui )

∥∥∥
2

p
n

≤ µλp
n

.

□

5.9.4 Lipschitz constant bound of the CCP model

We will first prove a more general result about the ℓp -Lipschitz constant of the CCP model.

Theorem 5.7. The Lipschitz constant (with respect to the ℓp -norm) of the function defined in

eq. (CCP), restricted to the set {z ∈Rd : ∥z∥p ≤ 1} is bounded as:

Lipp ( f ) ≤ k∥C∥p

k∏
i=1

∥Ui∥p .

Proof. Let g (x) =C x and h(z) = ◦k
i=1(Ui z). Then it holds that f (z) = g (h(z)). By lemma 5.3,

we have: Lipp ( f ) ≤ Lipp (g )Lipp (h). We will compute an upper bound of each function indi-

vidually.

Let us first consider the function g (x) =C x. By lemma 5.4, because g is a linear map repre-

sented by a matrix C , its Jacobian is Jg (x) =C . So:

Lipp (g ) = ∥C∥p := sup
∥x∥p=1

∥C x∥p .

where ∥C∥p is the operator norm on matrices induced by the vector p-norm.

Now, let us consider the function h(z) = ◦k
i=1Ui z. Its Jacobian is given by:

dh

d z
=

k∑
i=1

diag(◦ j ̸=iU j z)Ui .
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Using lemma 5.4 we have:

Lipp (h) ≤ sup
z:∥z∥p≤1

∥∥∥∥∥ k∑
i=1

[diag(◦ j ̸=i (U j z))Ui ]

∥∥∥∥∥
p

≤ sup
z:∥z∥p≤1

k∑
i=1

∥∥diag(◦ j ̸=i (U j z))Ui
∥∥

p Triangle inequality

≤ sup
z:∥z∥p≤1

k∑
i=1

∥∥diag(◦ j ̸=i (U j z))
∥∥

p ∥Ui∥p lemma 5.9 [consistency]

≤ sup
z:∥z∥p≤1

k∑
i=1

∥∥◦ j ̸=i (U j z)
∥∥

p ∥Ui∥p

≤ sup
z:∥z∥p≤1

k∑
i=1

∏
j ̸=i

(
∥∥U j z

∥∥
p )∥Ui∥p

≤ sup
z:∥z∥p≤1

k∑
i=1

∏
j ̸=i

(
∥∥U j

∥∥
p ∥z∥p )∥Ui∥p

≤ sup
z:∥z∥p≤1

k∑
i=1

k∏
j=1

(
∥∥U j

∥∥
p )

= k
k∏

j=1

∥∥U j
∥∥

p .

So:

Li pp (FL) ≤ Li pp (g )Li pp (h)

≤ k∥C∥p

k∏
i=1

∥Ui∥p .

□

Proof of theorem 5.2

Proof. This is a particular case of theorem 5.7 when p =∞. □
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5.10 Appendix: Result of the NCP model

5.10.1 Proof of Theorem 5.3: Rademacher Complexity of NCP under ℓ∞ norm

Proof.

RZ (F k
NCP) = E sup

f ∈F k
NCP

1

n

n∑
j=1

σ j f (z j )

= E sup
f ∈F k

NCP

1

n

n∑
j=1

(
σ j

〈
c, xk (z j )

〉)
= E sup

f ∈F k
NCP

1

n

〈
c,

n∑
j=1

[σ j xk (z j )]

〉

≤ E sup
f ∈F k

NCP

1

n
∥c∥1

∥∥∥∥∥ n∑
j=1

[σ j xk (z j )]

∥∥∥∥∥
∞

(lemma 5.5)

= E sup
f ∈F k

NCP

1

n
∥c∥1

∥∥∥∥∥ n∑
j=1

[σ j ((Ak z j )◦ (Sk xk−1(z j )))]

∥∥∥∥∥
∞

= E sup
f ∈F k

NCP

1

n
∥c∥1

∥∥∥∥∥ n∑
j=1

[σ j ((Ak •Sk )(z j ∗xk−1(z j )))]

∥∥∥∥∥
∞

(lemma 5.7)

= E sup
f ∈F k

NCP

1

n
∥c∥1

∥∥∥∥∥(Ak •Sk )
n∑

j=1
[σ j (z j ∗xk−1(z j ))]

∥∥∥∥∥
∞

.

(5.12)

Now, because of the recursive definition of the eq. (NCP), we obtain:

n∑
j=1

σ j (z j ∗xk−1(z j )) =
n∑

j=1
σ j (z j ∗ (Ak−1z j )◦ (Sk−1xk−2(z j )))

=
n∑

j=1
σ j (z j ∗ ((Ak−1 •Sk−1)(z j ∗xk−2(z j )))) (lemma 5.7)

=
n∑

j=1
σ j (I ⊗ (Ak−1 •Sk−1))(z j ∗ (z j ∗xk−2(z j ))) (lemma 5.10)

= I ⊗ (Ak−1 •Sk−1)
n∑

j=1
[σ j (z j ∗ (z j ∗xk−2(z j ))) .

(5.13)

recursively applying this argument we have:

n∑
j=1

σ j (z j ∗xk−1(z j )) =
(

k−1∏
i=1

I ⊗ Ai •Si

)
n∑

j=1
σ j ∗k

i=1 (z j ) . (5.14)

Combining the two previous equations (eqs. (5.13) and (5.14)) inside eq. (5.12) we finally

obtain
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RZ (F k
NCP) ≤ E sup

f ∈F k
NCP

1

n
∥c∥1

∥∥∥∥∥(Ak •Sk )

(
k−1∏
i=1

I ⊗ Ai •Si

)
n∑

j=1
σ j ∗k

i=1 (z j )

∥∥∥∥∥
∞

≤ E sup
f ∈F k

NCP

1

n
∥c∥1

∥∥∥∥∥(Ak •Sk )

(
k−1∏
i=1

I ⊗ Ai •Si

)∥∥∥∥∥∞
∥∥∥∥∥ n∑

j=1
σ j ∗k

i=1 (z j )

∥∥∥∥∥
∞

≤ µλ

n
E

∥∥∥∥∥ n∑
j=1

σ j ∗k
i=1 (z j )

∥∥∥∥∥
∞

= µλ

n
nR(V ) =µλR(V ) . eq. (5.8) .

following the same arguments as in eq. (5.10) it follows that:

RZ (F k
NCP) ≤ 2µλ

√
2k log(d)

n
.

□

5.10.2 Proof of lemma 5.2

Proof. ∥∥∥∥∥(Ak •Sk )
k−1∏
i=1

I ⊗ Ai •Si

∥∥∥∥∥∞ ≤ ∥Ak •Sk∥∞
k−1∏
i=1

∥I ⊗ Ai •Si∥∞ (lemma 5.9)

=
k∏

i=1
∥Ai •Si∥∞

≤
k∏

i=1
∥Ai∥∞∥Si∥∞ (lemma 5.1) .

□

5.10.3 Rademacher Complexity under ℓ2 norm

Theorem 5.8. Let Z = {z1, . . . , zn} ⊆ Rd and suppose that ∥z j∥∞ ≤ 1 for all j = 1, . . . ,n. Define

the matrix Φ(A1,S1, . . . , An ,Sn) := (Ak •Sk )
∏k−1

i=1 I ⊗ Ai •Si . Consider the class of functions:

F k
NCP := {

f (z) as in (NCP) : ∥C∥2 ≤µ,∥Φ(A1,S1, . . . , Ak ,Sk )∥2 ≤λ
}

,
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where C ∈R1×m (single output case). The Empirical Rademacher Complexity of NCPk (k-degree

NCP polynomials) with respect to Z is bounded as:

RZ (F k
NCP) ≤ µλp

n
.

Proof.

RZ (F k
NCP) = E sup

f ∈F k
NCP

1

n

n∑
j=1

σ j f (z j )

= E sup
f ∈F k

NCP

1

n

n∑
j=1

(
σ j

〈
c, xk (z j )

〉)
= E sup

f ∈F k
NCP

1

n

〈
c,

n∑
j=1

[σ j xk (z j )]

〉

≤ E sup
f ∈F k

NCP

1

n
∥c∥2

∥∥∥∥∥ n∑
j=1

[σ j xk (z j )]

∥∥∥∥∥
2

(lemma 5.5)

= E sup
f ∈F k

NCP

1

n
∥c∥2

∥∥∥∥∥ n∑
j=1

[σ j ((Ak z j )◦ (Sk xk−1(z j )))]

∥∥∥∥∥
2

= E sup
f ∈F k

NCP

1

n
∥c∥2

∥∥∥∥∥ n∑
j=1

[σ j ((Ak •Sk )(z j ∗xk−1(z j )))]

∥∥∥∥∥
2

(lemma 5.7)

= E sup
f ∈F k

NCP

1

n
∥c∥2

∥∥∥∥∥(Ak •Sk )
n∑

j=1
[σ j (z j ∗xk−1(z j ))]

∥∥∥∥∥
2

= E sup
f ∈F k

NCP

1

n
∥c∥2

∥∥∥∥∥(Ak •Sk )

(
k−1∏
i=1

I ⊗ Ai •Si

)
n∑

j=1
σ j ∗k

i=1 (z j )]

∥∥∥∥∥
2

eq. (5.14)

≤ E sup
f ∈F k

NCP

1

n
∥c∥2

∥∥∥∥∥(Ak •Sk )

(
k−1∏
i=1

I ⊗ Ai •Si

)∥∥∥∥∥
2

∥∥∥∥∥ n∑
j=1

σ j ∗k
i=1 (z j )]

∥∥∥∥∥
2

≤ µλ

n
E

∥∥∥∥∥ n∑
j=1

σ j ∗k
i=1 (z j )

∥∥∥∥∥
2

≤ µλp
n

. (eq. (5.11)) .

□
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5.10.4 Lipschitz constant bound of the NCP model

Theorem 5.9. Let FL be the class of functions defined as

FL :=
{

x1 = (A1z)◦ (S1), xn = (An z)◦ (Sn xn−1), f (z) =C xk :

∥C∥p ≤µ,∥Ai∥p ≤λi ,∥Si∥p ≤ ρi ,∥z∥p ≤ 1

}
.

The Lipschitz Constant of FL (k-degree NCP polynomial) under ℓp norm restrictions is bounded

as:

Lipp (FL) ≤ kµ
k∏

i=1
(λiρi ) .

Proof. Let g (x) =C x, h(z) = (An z)◦ (Sn xn−1(z)). Then it holds that f (z) = g (h(z)).

By lemma 5.3, we have: Lip( f ) ≤ Lip(g )Lip(h). This enables us to compute an upper bound of

each function (i.e., g ,h) individually.

Let us first consider the function g (x) =C x. By lemma 5.4, because g is a linear map repre-

sented by a matrix C , its Jacobian is Jg (x) =C . So:

Lipp (g ) = ∥C∥p := sup
∥x∥p=1

∥C x∥p =
σmax(C ) if p = 2

maxi
∑

j

∣∣C(i , j )
∣∣ if p =∞ .

where ∥C∥p is the operator norm on matrices induced by the vector p-norm, and σmax(C ) is

the largest singular value of C .

Now, let us consider the function xn(z) = h(z) = (An z)◦ (Sn xn−1(z)). Its Jacobian is given by:

Jxn = diag(An z)Sn Jxn−1 +diag(Sn xn−1)An , Jx1 = diag(S1)A1 .
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Li pp (h) = sup
z:∥z∥p≤1

∥Jxn∥p

= sup
z:∥z∥p≤1

∥diag(An z)Sn Jxn−1 +diag(Sn xn−1)An∥p

≤ sup
z:∥z∥p≤1

∥diag(An z)Sn Jxn−1∥p +∥diag(Sn xn−1)An∥p (Triangle inequality)

≤ sup
z:∥z∥p≤1

∥diag(An z)∥p∥Sn∥p∥Jxn−1∥p +∥diag(Sn xn−1)∥p∥An∥p (lemma 5.9)

≤ sup
z:∥z∥p≤1

∥An z∥p∥Sn∥p∥Jxn−1∥p +∥Sn xn−1∥p∥An∥p

≤ sup
z:∥z∥p≤1

∥An∥p∥z∥p∥Sn∥p∥Jxn−1∥p +∥Sn∥p∥xn−1∥p∥An∥p

= sup
z:∥z∥p≤1

∥An∥p∥z∥p∥Sn∥p∥Jxn−1∥p +∥Sn∥p∥(An−1z)◦ (Sn−1xn−2)∥p∥An∥p

≤ sup
z:∥z∥p≤1

∥An∥p∥z∥p∥Sn∥p∥Jxn−1∥p +∥Sn∥p∥An−1z∥p∥Sn−1xn−2∥p∥An∥p

≤ sup
z:∥z∥p≤1

∥An∥p∥z∥p∥Sn∥p∥Jxn−1∥p +∥Sn∥p∥An−1∥p∥z∥p∥Sn−1∥p∥xn−2∥p∥An∥p

= sup
z:∥z∥p≤1

∥An∥p∥z∥p∥Sn∥p (∥Jxn−1∥p +∥An−1∥p∥Sn−1∥p∥xn−2∥p )

≤ sup
z:∥z∥p≤1

∥An∥p∥z∥p∥Sn∥p (∥Jxn−1∥p +
n−1∏
i=1

(∥Si∥p∥Ai∥p )∥z∥n−2
p ) .

Then we proof the result by induction.

Inductive hypothesis:

sup
z:∥z∥p≤1

∥Jxn∥p ≤ n
n∏

i=1
(∥Si∥p∥Ai∥p ) .

Case k = 1:

Lipp (h) = sup
z:∥z∥p≤1

∥Jx1∥p

= ∥diag(S1)A1∥p

≤ ∥diag(S1)∥p∥A1∥p

≤ ∥S1∥p∥A1∥p .

Case k = n:
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Lipp (h) = sup
z:∥z∥p≤1

∥Jxn∥p

≤ sup
z:∥z∥p≤1

∥An∥p∥z∥p∥Sn∥p (∥Jxn−1∥p +
n−1∏
i=1

(∥Si∥p∥Ai∥p )∥z∥n−2
p )

≤ sup
z:∥z∥p≤1

∥An∥p∥z∥p∥Sn∥p ((n −1)
n−1∏
i=1

(∥Si∥p∥Ai∥p )+
n−1∏
i=1

(∥Si∥p∥Ai∥p )∥z∥n−2
p )

≤ n
n∏

i=1
(∥Si∥p∥Ai∥p ) .

So:

Lipp (FL) ≤ Lipp (g )Lipp (h)

≤ k∥C∥p

k∏
i=1

(∥Si∥p∥Ai∥p ) .

□

proof of theorem 5.4

Proof. This is particular case of theorem 5.9 with p =∞. □

5.11 Appendix: Relationship between a Convolutional layer and a

Fully Connected layer

In this section we discuss various cases of input/output types depending on the dimensionality

of the input tensor and the output tensor. We also provide the proof of theorem 5.5.

Theorem 5.10. Let A ∈Rn . Let K ∈Rh be a 1-D convolutional kernel. For simplicity, we assume

h is odd and h ≤ n. Let B ∈ Rn , B = K ⋆ A be the output of the convolution. Let U be the

convolutional operator i.e., the linear operator (matrix) U ∈Rn×n such that B = K ⋆ A =U A. It

holds that ∥U∥∞ = ∥K ∥1.

Theorem 5.11. Let A ∈Rn×m , and let K ∈Rh×h be a 2-D convolutional kernel. For simplicity

assume h is odd number and h ≤ min(n,m). Let B ∈ Rn×m , B = K ⋆ A be the output of the

convolution. Let U be the convolutional operator i.e., the linear operator (matrix) U ∈Rnm×nm

such that vec(B) =U vec(A). It holds that ∥U∥∞ = ∥vec(K )∥1.
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5.11.1 Proof of theorem 5.10

Proof. From, B = K ⋆ A =U A we can obtain the following:


u1,1 u1,2 · · · u1,n

u2,1 u2,2 · · · u2,n
...

...
. . .

...

un,1 un,2 · · · un,n

 (A1, · · · , An)⊤ = (K 1, · · · ,K h)⊤⋆ (A1, · · · , An)⊤ .

We observe that:

ui , j =
K

h+1
2 + j−i if

∣∣i − j
∣∣≤ h−1

2 ;

0 if
∣∣i − j

∣∣> h−1
2 .

Then, it holds that:

∥U∥∞ = n
max
i=1

n∑
j=1

∣∣ui , j
∣∣≤ n

max
i=1

h∑
j=1

∣∣∣K j
∣∣∣= ∥K ∥1 .

□

5.11.2 Proof of theorem 5.11

Proof. We partition U into n ×n partition matrices of shape m ×m. Then the (i , j )th partition

matrix U(i , j ) describes the relationship between the B i and the A j . So, U(i , j ) is also similar to

the Toeplitz matrix in the previous result.

U(i , j ) =
M h+1

2 + j−i if
∣∣i − j

∣∣≤ h−1
2 ;

0 if
∣∣i − j

∣∣> h−1
2 .

Meanwhile, the matrix M satisfies:

mi (s,l ) =
k(i , h+1

2 +l−s) if |s − l | ≤ h−1
2 ;

0 if |s − l | > h−1
2 .

Then, we have the following:

∥U∥∞ = n×m
max
i=1

n×m∑
j=1

∣∣ui , j
∣∣≤ n

max
i=1

n∑
j=1

∥∥Ui , j
∥∥∞ ≤ n

max
i=1

h∑
j=1

∥∥∥K j
∥∥∥

1
=

h∑
i=1

∥∥∥K i
∥∥∥

1
= ∥vec(K )∥1 .
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In addition, by h ≤ n, h ≤ m we have:

∥∥∥U
h+1

2 +M( h−1
2 )

∥∥∥
1
=

h∑
i=1

∥∥∥K i
∥∥∥

1
. (5.15)

Then, it holds that ∥U∥∞ =∑h
i=1

∥∥K i
∥∥

1. □

5.11.3 Proof of theorem 5.5

Proof. We partition U into o × r partition matrices of shape nm ×nm. Then the (i , j )th parti-

tion of the matrix U(i , j ) describes the relationship between the i th channel of B and the j th

channel of A. Then, the following holds:
∥∥U(i , j )

∥∥∞ =∑h
i=1

∥∥∥K i
i j

∥∥∥
1
, where Ki j means the two-

dimensional tensor obtained by the third dimension of K takes j and the fourth dimension of

K takes i .

∥U∥∞ = n×m×o
max
i=1

n×m×r∑
j=1

∣∣u(i , j )
∣∣

= o−1
max
l=0

n×m
max
i=1

r−1∑
s=0

n×m∑
j=1

∣∣u(i+nml , j+nms)
∣∣

≤ o−1
max
l=0

r−1∑
s=0

(
n×m
max
i=1

n×m∑
j=1

∣∣u(i+nml , j+nms)
∣∣)

= o−1
max
l=0

r−1∑
s=0

∥∥U(l+1,s+1)
∥∥∞

= o
max
l=1

r∑
s=1

∥∥U(l ,s)
∥∥∞

= o
max
l=1

r∑
s=1

h∑
i=1

∥∥∥K i
l s

∥∥∥
1

≤ o
max
l=1

∥∥∥K̂ l
∥∥∥

1

= ∥∥K̂
∥∥∞ .

Similar to eq. (5.15): for every nm rows, we choose k+1
2

th
row. Then its 1-norm is equal to this

nm rows of the K̂ ’s ∞-norm. So the equation holds. □

5.12 Appendix: Auxiliary numerical evidence

A number of additional experiments are conducted in this section. Unless explicitly mentioned

otherwise, the experimental setup remains similar to the one in the main paper. The following

experiments are conducted below:
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1. The difference between the theoretical and the algorithmic bound and their evolution

during training is studied in subsection 5.12.1.

2. An ablation study on the hidden size is conducted in subsection 5.12.2.

3. An ablation study is conducted on the effect of adversarial steps in subsection 5.12.3.

4. We evaluate the effect of the proposed projection into the testset performance in sub-

section 5.12.4.

5. We conduct experiments on four new datasets, i.e., MNIST, K-MNIST, E-MNIST-BY,

NSYNTH in subsection 5.12.5. These experiments are conducted in addition to the

datasets already presented in the main paper.

6. In subsection 5.12.6 experiments on three additional adversarial attacks, i.e., FGSM-0.01,

APGDT and TPGD, are performed.

7. We conduct an experiment using the NCP model in subsection 5.12.7.

8. The layer-wise bound (instead of a single bound for all matrices) is explored in subsec-

tion 5.12.8.

9. The comparison with adversarial defense methods is conducted in subsection 5.12.9.

5.12.1 Theoretical and algorithmic bound

As mentioned in section 5.3, projecting the quantity θ = ∥∥•k
i=1Ui

∥∥
∞ onto their level set corre-

sponds to a difficult non-convex problem. Given that we have an upper bound

θ =
∥∥∥•k

i=1Ui

∥∥∥∞ ≤Πk
i=1∥Ui∥∞ =: γ .

we want to understand in practice how tight is this bound. In figure 5.4 we compute the ratio
γ
θ for PN-4. In figure 5.5 the ratio is illustrated for randomly initialized matrices (i.e., untrained

networks).

5.12.2 Ablation study on the hidden size

Initially, we explore the effect of the hidden rank of PN-4 and PN-10 on Fashion-MNIST.

figure 5.6 exhibits the accuracy on both the training and the test-set for both models. We

observe that PN-10 has a better accuracy on the training set, however the accuracy on the test

set is the same in the two models. We also note that increasing the hidden rank improves the

accuracy on the training set, but not on the test set.

127



Chapter 5. Controlling the Complexity and Lipschitz Constant Improves Polynomial Nets

2 0 2 4 6 8 10 12
Log of bound for each matrix in regularization

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Ra
tio

 
/

PN-4 Fashion-MNIST

10 20 30 40 50
Epochs

42000

44000

46000

48000

50000

52000

54000

56000

58000

Bo
un

d

PN-4 Fashion-MNIST

2 0 2 4 6 8 10 12
Log of bound for each matrix in regularization

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

1.200

Ra
tio

 
/

PN-4 K-MNIST

10 20 30 40 50
Epochs

42000

44000

46000

48000

50000

52000
Bo

un
d

PN-4 K-MNIST

Figure 5.4: Visualization of the difference between the bound results on Fashion-MNIST
(top row) and on K-MNIST (bottom row). Specifically, in (a) and (c) we visualize the ratio
γ
θ =

∏k
i=1 ∥Ui ∥∞

∥•k
i=1Ui∥∞

for different log bound values for PN-4. In (b), (d) the exact values of the two

bounds are computed over the course of the unregularized training. Notice that there is a gap
between the two bounds, however importantly the two bounds are increasing at the same rate,
while their ratio is close to 1.
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Figure 5.5: Visualization of the ratio
∏k

i=1 ∥Ui ∥∞
∥•k

i=1Ui∥∞
in a randomly initialized network (i.e., using

normal distribution random matrices). Specifically, in (a) we visualize the ratio for different
log hidden rank values for PN-10. In (b) we visualize the ratio for different depth values for
hidden rank = 16. Neither of two plots contain any regularization.
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Figure 5.6: Accuracy of PN-4 and PN-10 when the hidden rank varies (plotted in log-scale).

5.12.3 Ablation study on the effect of adversarial steps

Our next experiment scrutinizes the effect of the number of adversarial steps on the robust

accuracy. We consider in all cases a projection bound of 1, which provides the best empirical

results. We vary the number of adversarial steps and report the accuracy in figure 5.7. The

results exhibit a similar performance both in terms of the dataset (i.e., Fashion-MNIST and

K-MNIST) and in terms of the network (PN-4 and PN-Conv). Notice that when the adversarial

attack has more than 10 steps the performance does not vary significantly from the perfor-

mance at 10 steps, indicating that the projection bound is effective for stronger adversarial

attacks.

5.12.4 Evaluation of the accuracy of PNs

In this experiment, we evaluate the accuracy of PNs. We consider three networks, i.e., PN-4,

PN-10 and PN-Conv, and train them under varying projection bounds using algorithm 5.1.

Each model is evaluated on the test set of (a) Fashion-MNIST and (b) E-MNIST.

The accuracy of each method is reported in figure 5.8, where the x-axis is plotted in log-scale

(natural logarithm). The accuracy is better for bounds larger than 2 (in the log-axis) when

compared to tighter bounds (i.e., values less than 0). Very tight bounds stifle the ability of the

network to learn, which explains the decreased accuracy. Interestingly, PN-4 reaches similar

accuracy to PN-10 and PN-Conv in Fashion-MNIST as the bound increases, while in E-MNIST

it cannot reach the same performance as the bound increases. The best bounds for all three

models are observed in the intermediate values, i.e., in the region of 1 in the log-axis for PN-4

and PN-10.

We scrutinize further the projection bounds by training the same models only with cross-

entropy loss (i.e., no bound regularization). In table 5.10, we include the accuracy of the

three networks with and without projection. Note that projection consistently improves the

accuracy, particularly in the case of larger networks, i.e., PN-10.
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Figure 5.7: Ablation study on the effect of adversarial steps in Fashion-MNIST (top row) and
K-MNIST (bottom row). All methods are run by considering a projection bound of 1.

PN-4 PN-10 PN-Conv

0 2 4 6
Log of Bound

0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

Fashion-MNIST

0 2 4 6
Log of Bound

E-MNIST

Figure 5.8: Accuracy of PN-4, PN-10 and PN-Conv under varying projection bounds (x-axis in
log-scale) learned on (a) Fashion-MNIST, (b) E-MNIST. Notice that the performance increases
for intermediate values, while it deteriorates when the bound is very tight.
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Method
PN-4 PN-10 PN-Conv

Fashion-MNIST
No projection 87.28±0.18% 88.48±0.17% 86.36±0.21%
Projection 87.32±0.14% 88.72±0.12% 86.38±0.26%

E-MNIST
No projection 84.27±0.26% 89.31±0.09% 91.49±0.29%
Projection 84.34±0.31% 90.56±0.10% 91.57±0.19%

Table 5.10: The accuracy of different PN models on Fashion-MNIST (top) and E-MNIST
(bottom) when trained only with SGD (first row) and when trained with projection (last row).

5.12.5 Experimental results on additional datasets

To validate even further we experiment with additional datasets. We describe the datasets

below and then present the robust accuracy in each case. The experimental setup remains the

same as in subsection 5.4.2 in the main paper. As a reminder, we are evaluating the robustness

of the different models under adversarial noise.

Dataset details: There are six datasets used in this work:

1. Fashion-MNIST (Xiao et al., 2017b) includes grayscale images of clothing. The training

set consists of 60,000 examples, and the test set of 10,000 examples. The resolution of

each image is 28×28, with each image belonging to one of the 10 classes.

2. E-MNIST (Cohen et al., 2017) includes handwritten character and digit images with a

training set of 124,800 examples, and a test set of 20,800 examples. The resolution of

each image is 28×28. E-MNIST includes 26 classes. We also use the variant EMNIST-BY

that includes 62 classes with 697,932 examples for training and 116,323 examples for

testing.

3. K-MNIST (Clanuwat et al., 2018b) depicts grayscale images of Hiragana characters with

a training set of 60,000examples, and a test set of 10,000 examples. The resolution of

each image is 28×28. K-MNIST has 10 classes.

4. MNIST (Lecun et al., 1998) includes handwritten digits images. MNIST has a training

set of 60,000 examples, and a test set of 10,000 examples. The resolution of each image

is 28×28.

5. CIFAR-10 (Krizhevsky et al., 2014) depicts images of natural scenes. CIFAR-10 has a

training set of 50,000 examples, and a test set of 10,000 examples. The resolution of

each RGB image is 32×32.

6. NSYNTH (Engel et al., 2017) is an audio dataset containing 305,979 musical notes, each

with a unique pitch, timbre, and envelope.
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We provide a visualization3 of indicative samples from MNIST, Fashion-MNIST, K-MNIST and

E-MNIST in figure 5.9.

We originally train PN-4, PN-10 and PN-Conv without projection bounds. The results are

reported in table 5.11 (columns titled ‘No proj’) for MNIST and K-MNIST, table 5.13 (columns

titled ‘No proj’) for E-MNIST-BY and table 5.14 (columns titled ‘No proj’) for NSYNTH. Next,

we consider the performance under varying projection bounds; the accuracy in each case is

depicted in figure 5.10 for K-MNIST, MNIST and E-MNIST-BY and figure 5.11 for NSYNTH. The

figures (and the tables) depict the same patterns that emerged in the two main experiments,

i.e., the performance can be vastly improved for intermediate values of the projection bound.

Similarly, we validate the performance when using adversarial training. The results in table 5.12

demonstrate the benefits of using projection bounds even in the case of adversarial training.

5.12.6 Experimental results of more types of attacks

To further verify the results of the main paper, we conduct experiments with three addi-

tional adversarial attacks: a) FGSM with ϵ = 0.01, b) Projected Gradient Descent in Trades

(TPGD) (Zhang et al., 2019a), c) Targeted Auto-Projected Gradient Descent (APGDT) (Croce

and Hein, 2020a). In TPGD and APGDT, we use the default parameters for a one-step attack.

The quantitative results are reported in table 5.15 for four datasets and the curves of Fashion-

MNIST and E-MNIST are visualized in figure 5.12 and the curves of K-MNIST and MNIST are

visualized in figure 5.13. The results in both cases remain similar to the attacks in the main

paper, i.e., the proposed projection improves the performance consistently across attacks,

types of networks and adversarial attacks.

5.12.7 Experimental results in NCP model

To complement, the results of the CCP model, we conduct an experiment using the NCP

model. That is, we use a 4th degree polynomial expansion, called NCP-4, for our experiment.

We conduct an experiment in the K-MNIST dataset and present the result with varying bound

in figure 5.14. Notice that the patterns remain similar to the CCP model, i.e., intermediate

values of the projection bound can increase the performance significantly.

5.12.8 Layer-wise bound

To assess the flexibility of the proposed method, we assess the performance of the layer-wise

bound. In the previous sections, we have considered using a single bound for all the matrices,

i.e., ∥Ui∥∞ ≤λ, because the projection for a single matrix has efficient projection algorithms.

However, lemma 5.1 enables each matrix Ui to have a different bound λi . We assess the

performance of having different bounds for each matrix Ui .

3The samples were found in https://www.tensorflow.org/datasets/catalog.
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Figure 5.9: Samples from the datasets used for the numerical evidence. MNIST (top left),
Fashion-MNIST (top right), K-MNIST (bottom left), E-MNIST (bottom right). Below each
image, the class name and the class number are denoted.
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Figure 5.10: Adversarial attacks during testing on K-MNIST (top row), MNIST (middle row),
E-MNIST-BY (bottom row) with the x-axis is plotted in log-scale. Note that intermediate values
of projection bounds yield the highest accuracy. The patterns are consistent in all datasets
and across adversarial attacks.
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Figure 5.11: Adversarial attacks during testing on NSYNTH.
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Figure 5.12: Three new adversarial attacks during testing on Fashion-MNIST (top row), E-
MNIST (bottom row) with the x-axis is plotted in log-scale. Note that intermediate values of
projection bounds yield the highest accuracy. The patterns are consistent in both datasets and
across adversarial attacks.
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Figure 5.13: Three new adversarial attacks during testing on K-MNIST (top row), MNIST
(bottom row) with the x-axis is plotted in log-scale. Note that intermediate values of projection
bounds yield the highest accuracy. The patterns are consistent in both datasets and across
adversarial attacks.
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Figure 5.14: Experimental result of K-MNIST in NCP model.
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Method
No proj. Our method Jacobian L2

K-MNIST

PN-4

Clean 84.04±0.30% 84.23±±±0.30% 83.16±0.31% 84.18±0.44%
FGSM-0.1 18.86±2.61% 35.84±±±1.67% 22.61±1.30% 22.05±2.76%
PGD-(0.1, 20, 0.01) 11.20±4.27% 40.26±±±1.36% 16.00±5.63% 10.93±2.42%
PGD-(0.3, 20, 0.03) 1.94±1.11% 24.75±±±1.32% 4.46±2.59% 2.70±1.26%

PN-10

Clean 87.90±0.24% 88.80±±±0.19% 88.73±0.16% 87.93±0.18%
FGSM-0.1 24.52±1.44% 41.83±±±2.00% 26.90±1.02% 26.62±1.59%
PGD-(0.1, 20, 0.01) 7.54±0.79% 39.55±±±0.64% 11.50±1.35% 5.09±0.68%
PGD-(0.3, 20, 0.03) 0.05±0.04% 25.24±±±0.93% 1.24±0.64% 0.19±0.12%

PN-Conv

Clean 88.41±0.37% 88.48±0.42% 86.57±0.46% 88.56±±±0.62%
FGSM-0.1 13.34±2.01% 47.75±±±2.03% 14.16±3.05% 12.43±2.58%
PGD-(0.1, 20, 0.01) 10.81±1.25% 45.68±±±3.11% 12.05±0.82% 11.05±0.85%
PGD-(0.3, 20, 0.03) 6.91±2.04% 31.68±±±1.43% 7.54±1.39% 6.28±2.37%

MNIST

PN-4

Clean 96.52±0.13% 96.62±±±0.17% 95.88±0.16% 96.44±0.18%
FGSM-0.1 20.96±5.16% 64.09±±±2.41% 33.59±8.46% 26.07±5.64%
PGD-(0.1, 20, 0.01) 14.23±5.39% 66.05±±±7.06% 20.83±5.64% 16.06±5.84%
PGD-(0.3, 20, 0.03) 2.59±2.01% 51.47±±±3.17% 4.92±1.18% 4.26±2.44%

PN-10

Clean 97.46±0.11% 97.63±±±0.06% 97.36±0.05% 97.53±0.10%
FGSM-0.1 30.12±4.58% 70.02±±±1.28% 40.22±2.31% 28.77±2.41%
PGD-(0.1, 20, 0.01) 9.70±2.11% 73.57±±±1.17% 18.74±5.39% 10.91±2.32%
PGD-(0.3, 20, 0.03) 0.47±0.53% 55.36±±±2.32% 2.49±1.46% 0.44±0.29%

PN-Conv

Clean 98.32±0.12% 98.40±±±0.12% 97.88±0.12% 98.32±0.11%
FGSM-0.1 18.98±2.99% 67.50±±±6.22% 27.02±9.88% 23.77±5.58%
PGD-(0.1, 20, 0.01) 12.57±2.81% 72.85±±±12.23% 13.96±2.57% 13.84±3.18%
PGD-(0.3, 20, 0.03) 10.57±4.08% 55.56±±±8.48% 10.22±0.52% 9.10±3.62%

Table 5.11: Comparison of regularization techniques on K-MNIST (top) and MNIST (bottom).
In each dataset, the base networks are PN-4, i.e., a 4th degree polynomial, on the top four rows,
PN-10, i.e., a 10th degree polynomial, on the middle four rows and PN-Conv, i.e., a 4th degree
polynomial with convolutions, on the bottom four rows. Our projection method exhibits the
best performance in all three attacks, with the difference on accuracy to stronger attacks being
substantial.

We experiment on PN-4 that we set a different projection bound for each matrix Ui . Specifically,

we use five different candidate values for each λi and then perform the grid search on the

Fashion-MNIST FGSM-0.01 attack. The results on Fashion-MNIST in table 5.16 exhibit how

the layer-wise bounds outperform the previously used single bound4. The best performing

values for PN-4 are λ1 = 1.5,λ2 = 2,λ3 = 1.5,λ4 = 2,µ = 0.8. The values of λi in the first few

layers are larger, while the value in the output matrix C is tighter.

To scrutinize the results even further, we evaluate whether the best performing λi can im-

prove the performance in different datasets and the FGSM-0.1 attack. In both cases, the best

4The single bound is mentioned as ‘Our method’ in the previous tables. In this experiment both ‘single bound’
and ‘layer-wise bound’ are proposed.
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Method
AT Our method + AT Jacobian + AT L2 + AT

Adversarial training (AT) with PN-10 on K-MNIST
FGSM-0.1 70.93±0.46% 71.14±±±0.30% 64.48±0.51% 70.90±0.57%
PGD-(0.1, 20, 0.01) 60.94±0.71% 61.20±0.39% 57.89±0.31% 61.47±±±0.44%
PGD-(0.3, 20, 0.03) 30.77±0.26% 33.07±±±0.58% 29.96±0.21% 30.35±0.42%

Adversarial training (AT) with PN-10 on MNIST
FGSM-0.1 91.89±0.30% 91.94±0.17% 87.85±0.27% 92.22±±±0.30%
PGD-(0.1, 20, 0.01) 87.36±0.29% 87.38±±±0.37% 84.96±0.25% 87.26±0.49%
PGD-(0.3, 20, 0.03) 61.96±0.92% 63.96±±±1.02% 62.24±0.24% 62.44±0.76%

Table 5.12: Comparison of regularization techniques on (a) K-MNIST (top) and (b) MNIST
(bottom) along with adversarial training (AT). The base network is a PN-10, i.e., 10th degree
polynomial. Our projection method exhibits the best performance in all three attacks.

Method
PN-4, PN-10 and PN-Conv on E-MNIST-BY

No proj. Our method

PN-4

Clean 80.18±0.19% 80.26±±±0.17%
FGSM-0.1 3.65±0.76% 16.58±±±3.87%
PGD-(0.1, 20, 0.01) 4.57±1.98% 19.77±±±4.42%
PGD-(0.3, 20, 0.03) 0.59±0.40% 10.13±±±2.08%

PN-10

Clean 84.17±0.06% 85.32±±±0.04%
FGSM-0.1 11.67±1.21% 32.37±±±2.58%
PGD-(0.1, 20, 0.01) 2.48±0.66% 31.22±±±2.32%
PGD-(0.3, 20, 0.03) 0.03±0.05% 13.74±±±0.77%

PN-Conv

Clean 85.92±0.08% 86.03±±±0.08%
FGSM-0.1 0.65±0.17% 29.07±±±2.72%
PGD-(0.1, 20, 0.01) 1.57±1.40% 31.06±±±4.70%
PGD-(0.3, 20, 0.03) 0.33±0.06% 23.93±±±6.32%

Table 5.13: Comparison of regularization techniques on E-MNIST-BY. The base network are
PN-4, i.e., 4th degree polynomial, on the top four rows, PN-10, i.e., 10th degree polynomial,
on the middle four rows and PN-Conv, i.e., a 4th degree polynomial with convolution, on the
bottom four rows. Our projection method exhibits the best performance in all three attacks,
with the difference on accuracy to stronger attacks being substantial.

Model PN-4
Projection No-proj Proj
Clean accuracy 80.25±0.27% 80.33±±±0.26%
FGSM-0.1 0.91±0.14% 22.25±±±0.04%
PGD-(0.1, 20, 0.01) 0.31±0.11% 22.27±±±0.00%
PGD-(0.3, 20, 0.03) 0.46±0.29% 20.38±±±2.30%

Table 5.14: Evaluation of the robustness of PN models on NSYNTH. Each line refers to a
different adversarial attack. The projection offers an improvement in the accuracy in each
case; in PGD attacks projection improves the accuracy by a remarkable margin.
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performing λi can improve the performance of the single bound.

5.12.9 Adversarial defense method

One frequent method used against adversarial perturbations are the so called adversarial

defense methods. We assess the performance of adversarial defense methods on the PNs

when compared with the proposed method.

We experiment on PN-4 in Fashion-MNIST. We chose three different methods: gaussian

denoising, median denoising and guided denoising (Liao et al., 2018). Gaussian denoising

and median denoising are the methods of using gaussian filter and median filter for feature

denoising (Xie et al., 2019). The results in table 5.17 show that in both attacks our method

performs favourably to the adversarial defense methods.

5.13 Bibliographic Note

The candidate proposed the original idea of this paper and derived the main results for the

Rademacher Complexity and Lipschtiz constant of the CCP Decomposition (theorems 5.1

and 5.2). Theorem 5.6 and theorem 5.7 where derived by Z. Zhu under the candidate’s supervi-

sion and feedback.
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Method
No proj. Our method

Fashion-MNIST

PN-4
FGSM-0.01 26.49±3.13% 58.09±±±1.63%
APGDT 16.59±4.35% 50.83±±±1.55%
TPGD 26.88±6.78% 59.03±±±1.45%

PN-10
FGSM-0.01 18.59±1.82% 60.56±±±1.06%
APGDT 8.76±1.14% 51.93±±±1.91%
TPGD 14.53±1.49% 63.33±±±0.51%

PN-Conv
FGSM-0.01 15.30±3.10% 55.90±±±2.60%
APGDT 11.88±1.33% 53.49±±±0.72%
TPGD 14.50±1.59% 58.72±±±1.87%

E-MNIST

PN-4
FGSM-0.01 13.40±5.16% 32.83±±±2.08%
APGDT 9.33±4.00% 26.38±±±2.70%
TPGD 17.40±3.11% 34.68±±±1.92%

PN-10
FGSM-0.01 14.47±1.80% 48.28±±±3.06%
APGDT 10.13±0.93% 41.72±±±4.05%
TPGD 13.97±0.88% 47.44±±±3.62%

PN-Conv
FGSM-0.01 4.71±1.10% 39.37±±±5.43%
APGDT 3.58±0.66% 30.43±±±4.87%
TPGD 4.08±0.33% 35.85±±±10.20%

K-MNIST

PN-4
FGSM-0.01 23.31±5.34% 43.74±±±5.97%
APGDT 17.02±6.97% 39.43±±±1.89%
TPGD 23.45±7.67% 48.46±±±3.84%

PN-10
FGSM-0.01 26.87±2.14% 50.99±±±3.52%
APGDT 16.23±1.32% 41.46±±±3.85%
TPGD 22.63±0.99% 49.91±±±1.37%

PN-Conv
FGSM-0.01 12.31±2.03% 52.58±±±6.80%
APGDT 13.47±2.19% 42.94±±±1.68%
TPGD 14.25±2.51% 48.19±±±3.02%

MNIST

PN-4
FGSM-0.01 34.14±7.63% 73.95±±±5.18%
APGDT 29.88±9.47% 71.26±±±4.88%
TPGD 27.01±9.77% 76.88±±±1.98%

PN-10
FGSM-0.01 32.34±4.67% 78.83±±±1.63%
APGDT 19.55±1.72% 75.22±±±2.05%
TPGD 28.11±3.87% 79.74±±±2.07%

PN-Conv
FGSM-0.01 22.73±3.10% 69.83±±±8.91%
APGDT 17.95±3.39% 64.94±±±8.96%
TPGD 21.82±3.07% 66.47±±±11.83%

Table 5.15: Evaluation of the robustness of PN models on four datasets with three new types of
attacks. Each line refers to a different adversarial attack. The projection offers an improvement
in the accuracy in each case.
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Method
No proj. Jacobian L2 Single bound Layer-wise bound

Fashion-MNIST
FGSM-0.01 26.49±3.13% 39.88±4.59% 24.36±1.95% 58.09±1.63% 63.95±±±1.26%
FGSM-0.1 12.92±2.74% 17.90±6.51% 13.80±3.65% 46.43±0.95% 55.14±±±3.65%

K-MNIST
FGSM-0.01 23.31±5.34% 25.46±3.51% 27.85±7.62% 43.74±5.97% 49.61±±±1.44%
FGSM-0.1 18.86±2.61% 22.61±1.30% 22.05±2.76% 35.84±1.67% 47.54±±±3.74%

MNIST
FGSM-0.01 34.14±7.63% 32.78±6.94% 29.31±3.95% 73.95±5.18% 79.23±±±3.65%
FGSM-0.1 20.96±5.16% 33.59±8.46% 26.07±5.64% 64.09±2.41% 74.97±±±5.60%

Table 5.16: Evaluation of our layer-wise bound versus our single bound. To avoid confusion
with previous results, note that ’single bound’ corresponds to ’Our method’ in the rest of
the tables in this work. The different λi values are optimized on Fashion-MNIST FGSM-0.01
attack. Then, the same λi values are used for training the rest of the methods. The proposed
layer-wise bound outperforms the single bound by a large margin, improving even further by
baseline regularization schemes.

Method
No proj. Single bound Layer-wise bound Gaussian denoising Median denoising Guided denoising

Fashion-MNIST
FGSM-0.01 26.49±3.13% 58.09±1.63% 63.95±±±1.26% 18.80±3.08% 19.68±3.20% 29.69±5.37%
FGSM-0.1 12.92±2.74% 46.43±0.95% 55.14±±±3.65% 14.14±2.77% 14.02±1.95% 22.94±5.65%

Table 5.17: Comparison of the proposed method against adversarial defense methods on
feature denoising (Xie et al., 2019) and guided denoising (Liao et al., 2018). Notice that the
single bound (cf. subsection 5.12.8 for details) already outperforms the proposed defense
methods, while the layer-wise bounds further improves upon our single bound case.
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6 Finding Actual Descent Directions for
Adversarial Training

Fabian Latorre, Igor Krawczuk, Leello Dadi, Thomas Pethick and Volkan Cevher. International

Conference on Learning Representations (ICLR) 2023.

Abstract. Adversarial Training using a strong first-order adversary (PGD) is the gold standard

for training Deep Neural Networks that are robust to adversarial examples. We show that,

contrary to the general understanding of the method, the gradient at an optimal adversarial

example may increase, rather than decrease, the adversarially robust loss. This holds inde-

pendently of the learning rate. More precisely, we provide a counterexample to a corollary of

Danskin’s Theorem presented in the seminal paper of Madry et al. (2018a) which states that a

solution of the inner maximization problem can yield a descent direction for the adversarially

robust loss. Based on a correct interpretation of Danskin’s Theorem, we propose Danskin’s

Descent Direction (DDi) and we verify experimentally that it provides better directions than

those obtained by a PGD adversary. Using the CIFAR10 dataset we further provide a real world

example showing that our method achieves a steeper increase in robustness levels in the early

training stages of smooth-activation networks without BatchNorm, and is more stable than

the PGD baseline. As a limitation, PGD training of ReLU+BatchNorm networks still performs

better, but current theory is unable to explain this.

6.1 Introduction

Adversarial Training (AT) (Goodfellow et al., 2015; Madry et al., 2018a) has become the de-facto

algorithm used to train Neural Networks that are robust to adversarial examples (Szegedy

et al., 2014b). Variations of AT together with data augmentation yield the best-performing

models in public benchmarks (Croce et al., 2020a). Despite lacking optimality guarantees for

the inner-maximization problem, the simplicity and performance of AT are enough reasons to

embrace its heuristic nature.

From an optimization perspective, the consensus is that AT is a sound algorithm: based on

Danskin’s Theorem, Madry et al. (2018a, Corollary C.2) posit that by finding a maximizer of
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the inner non-concave maximization problem, i.e., an optimal adversarial example, one can

obtain a descent direction for the adversarially robust loss. What if this is not true? are we

potentially overlooking issues in its algorithmic framework?

As mentioned in (Dong et al., 2020, Section 2.3), Corollary C.2 in Madry et al. (2018a) can

be considered the theoretical optimization foundation of the non-convex non-concave min-

max optimization algorithms that we now collectively refer to as Adversarial Training. It

justifies the two-stage structure of the training loop: first we find one approximately optimal

adversarial example and then we update the model using the gradient (with respect to the

model parameters) at the perturbed input.

The only drawbacks of a first-order adversary seem to be its computational complexity and its

approximate suboptimal solver nature. Ignoring the computational complexity issue, suppose

we have access to a theoretical oracle that provides a single solution of the inner-maximization

problem. In such idealized setting, can we safely assume AT is decreasing the adversarially

robust loss on the data sample? According to the aforementioned theoretical results, it would

appear so.

In this work, we scrutinize the optimization paradigm on which Adversarial Training (AT) has

been founded, and we posit that finding multiple solutions of the inner-maximization problem

is necessary to find good descent directions of the adversarially robust loss. In doing so, we

hope to improve our understanding of the non-convex/non-concave min-max optimization

problem that underlies the Adversarial Training methodology, and potentially improving its

performance.

Our contributions: We present two counterexamples to Madry et al. (2018a, Corollary C.2),

the motivation behind AT. They show that using the gradient (with respect to the parameters of

the model) evaluated at a single solution of the inner-maximization problem, can increase the

robust loss, i.e., it can harm the robustness of the model. In particular, in counterexample 6.2

many descent directions exist, but they cannot be found if we only compute a single solution

of the inner-maximization problem. In section 6.2 we explain that the flaw in the proof is due

to a misunderstanding of the directional derivative notion that is used in the original work of

Danskin (1966).

Based on our findings, we propose Danskin’s Descent Direction (DDi, algorithm 6.1). It aims

to overcome the problems of the single adversarial example paradigm of AT by exploiting

multiple adversarial examples, obtaining better update directions for the network. For a

data-label pair, DDi finds the steepest descent direction for the robust loss, assuming that (i )

there exists a finite number of solutions of the inner-maximization problem and (i i ) they can

be found with first-order methods.

In section 2.7 we verify experimentally that: (i ) it is unrealistic to assume a unique solution of

the inner-maximization problem, hence making a case for our method DDi, (i i ) our method

can achieve more stable descent dynamics than the vanilla AT method in synthetic scenarions
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Figure 6.1: (a) and (b): comparison of our method (DDi) and the single-adversarial-example
method (PGD) on a synthetic min-max problem. Using a single example may increase the
robust loss. DDi computes 10 examples and can avoid this. (c): similar improvement over
PGD training shown on CIFAR10, where DDi with 10 examples speeds up convergence. More
details in section 2.7

and (i i i ) on the CIFAR10 dataset DDi is more stable and achieves higher robustness levels

in the early stages of traning, compared with a PGD adversary of equivalent complexity.

This is observed in a setting where the conditions of Danskin’s Theorem holds, i.e., using

differentiable activation functions and removing BatchNorm. As a limitation, PGD training of

ReLU+BatchNorm networks still performs better, but there is no theory explaining this.

Remark. The fact that (Madry et al., 2018a, Corollary C.2) is false, might be well-known in

the optimization field. In the convex setting it corresponds to the common knowledge that a

negative subgradient of a non-smooth convex function might not be a descent direction c.f.,

(Boyd, 2014, Section 2.1). However, we believe this is not well-known in the AT community

given that (i ) its practical implications i.e., methods deriving steeper descent updates using

multiple adversarial examples, have not been previously introduced, and (i i ) the results in

Madry et al. (2018a) have been central in the development of AT. Hence, our contribution

can be understood as raising awareness about the issue, and demonstrating its practical

implications for AT.

6.2 A Counterexample to Madry et al. (2018a, Corollary C.2)

Preliminaries. Let θ ∈Rd be the parameters of a model, (x, y) ∼D a data-label distribution, δ

a perturbation in a compact set S0 and L a loss function. The optimization objective of AT is:

min
θ
ρ(θ), where ρ(θ) := E(x,y)∼D

[
max
δ∈S0

L(θ, x +δ, y)

]
(6.1)

In this setting ρ(θ) is referred to as the adversarial loss or robust loss. In order to optimize

eq. (6.1) via iterative first-order methods, we need access to an stochastic gradient of the

adversarial loss ρ or at least, the weaker notion of stochastic descent direction i.e., a direction
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along which the function

φ(θ) := max
δ∈S :=S k

0

{
g (θ,δ) := 1

k

k∑
i=1

L(θ, xi +δi , yi )

}
(6.2)

decreases in value. We have collected the perturbations δi ∈S0 on the batch {(xi , yi )}k
i=1 as

the columns of a matrix δ = [δ1, . . . ,δk ] ∈ S := S k
0 which is also a compact set. To obtain a

descent direction for partial maximization functions like φ we resort to Danskin’s Theorem:

Theorem 6.1 (Danskin (1966)). Let S be a compact topological space, and let g :Rd ×S be a

continuous function such that g (·,δ) is differentiable for all δ ∈S and ∇θg (θ,δ) is continuous

on Rd ×S . Let

φ(θ) := max
δ∈S

g (θ,δ), S ⋆(θ) := argmax
δ∈S

g (θ,δ) (6.3)

Let γ ∈Rd with ∥γ∥2 = 1 be an arbitrary unit vector. The directional derivative Dγφ(θ) of φ in

the direction γ at the point θ exists, and is given by the formula

Dγφ(θ) = max
δ∈S ⋆(θ)

〈γ,∇θg (θ,δ)〉 (6.4)

Remark. γ ̸= 0 is called a descent direction of φ at θ if and only if Dγφ(θ) < 0, i.e., if the

directional derivative is strictly negative.

corollary 6.1 is an equivalent rephrasing of Madry et al. (2018a, Corollary C.2.), and was

originally claimed to be a consequence of theorem 6.1. Unfortunately counterexample 6.1

shows that the corollary is false. As theorem 6.1 (Danskin’s Theorem) is true, this means that

there is some mistake in the proof of the corollary provided in Madry et al. (2018a).

Corollary 6.1. Let δ⋆ ∈S ⋆(θ). If −∇θg (θ,δ⋆) ̸= 0, then it is a descent direction for φ at θ.

Counterexample 6.1. Let S := [−1,1] and g (θ,δ) = θδ. The conditions of Danskin’s theorem

clearly hold in this case, and

φ(θ) := max
δ∈[−1,1]

θδ= |θ|. (6.5)

Note that at θ = 0, we have S ⋆(0) = [−1,1]. Choosing δ= 1 ∈S ⋆(0) we have that g (θ,1) = θ
and so −∇θg (0,1) =−1 ̸= 0. Hence, corollary 6.1 would imply that −1 is a descent direction for

φ(θ) = |θ|. However, θ = 0 is a global minimizer of the absolute value function, which means

that there exists no descent direction. This is a contradiction.

To cast more clarity on why corollary 6.1 is false, we explain what is the mistake in the proof

provided in Madry et al. (2018a). The main issue is the definition of the directional derivative,

a concept in multivariable calculus that is defined in slightly different ways in the literature.

Definition 6.1. Let φ :Rd →R. For a nonzero vector γ ∈Rd , the one-sided directional derivative
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of φ in the direction γ at the point θ is defined as the one-sided limit:

Dγφ(θ) := lim
t→0+

φ(θ+ tγ)−φ(θ)

t∥γ∥2
(6.6)

The two-sided directional derivative is defined as the two-sided limit:

D̂γφ(θ) := lim
t→0

φ(θ+ tγ)−φ(θ)

t∥γ∥2
(6.7)

Unfortunately, it is not always clear which one of the two notions is meant when the term

directional derivative is used. Indeed, as our notation suggests, the one-sided definition

eq. (6.6) is the one used in the statement of Danskin’s Theorem (Danskin, 1966). However,

the proof of corollary 6.1 provided in Madry et al. (2018a) mistakenly assumes the two-

sided definition eq. (6.7), and inadvertently uses the following property that holds for D̂γφ(θ)

(eq. (6.7)) but not for Dγφ(θ) (eq. (6.6)):

Lemma 6.1. For the two-sided directional derivative definition (6.7) it holds that −D̂γφ(θ) =
D̂−γφ(θ) provided that D̂γ exists. In particular, if D̂γφ(θ) > 0 then D̂−γφ(θ) < 0. However this is

not true for the one-sided directional derivative (6.6), as the example φ(θ) = |θ| at θ = 0 shows

(both directional derivatives are strictly positive).

We provide a proof of this fact in section 6.11. The (flawed) proof of corollary 6.1 provided in

Madry et al. (2018a) starts by noting that for a solution δ of the inner-maximization problem,

the directional derivative in the direction γ = ∇θg (θ,δ) is positive, as implied by Danskin’s

Theorem:

Dγφ(θ) = max
δ∈S ⋆(θ)

〈γ,∇θg (θ,δ)〉 ≥ 〈∇θg (θ,δ),∇θg (θ,δ)〉 = ∥∇θg (θ,δ)∥2 > 0 (6.8)

assuming that ∇θg (θ,δ) is non-zero. The mistake in the proof lies in concluding that

D−γφ(θ) < 0. Following lemma 6.1, this property does not hold for the one-sided directional

derivative definition eq. (6.6), the one used in Danskin’s Theorem.

6.3 A Counterexample at a point that is not locally optimal

The question remains whether a slightly modified version of corollary 6.1 holds true: it might

be the case that by adding some mild assumption, we exclude all possible counterexamples. In

the particular case of counterexample 6.1, θ = 0 is a local optimum of the function φ(θ) = |θ|.
At such points, descent directions do not exist. However, in the trajectory of an iterative

optimization algorithm we are mostly concerned with non-locally-optimal points. Hence, we

explore whether adding the assumption that θ is not locally optimal can make corollary 6.1

true. Unfortunately, we will show that this is not the case.

To this end we construct a family of counterexamples to corollary 6.1 with the following
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properties: (i ) there exists a descent direction at a point θ (that is, θ is not locally optimal)

and (i i ), it does not coincide with −∇θg (θ,δ), for any optimal δ ∈ S ⋆(θ). Moreover, all the

directions −∇θg (θ,δ) are in fact ascent directions i.e., they lead to an increase in the function

φ(θ).

Counterexample 6.2. Let S := [0,1] and let u, v ∈R2 be unit vectors such that −1 < 〈u, v〉 < 0.

That is, u and v form an obtuse angle. Let

g (θ,δ) = δ〈θ,u〉+ (1−δ)〈θ, v〉+δ(δ−1) (6.9)

Clearly, the function satisfies all conditions of theorem 6.1. At θ = 0, we have that S ⋆(0) =
argmax
δ∈[0,1]

δ(δ− 1) = {0,1}. At δ = 0 we have ∇θg (θ,0) = ∇θ〈θ, v〉 = v and at δ = 1 we have

∇θg (θ,1) =∇θ〈θ,u〉 = u. We compute the value of the directional derivatives in the negative

direction of such vectors. According to Danskin’s Theorem we have

D−vφ(0) = max
δ∈{0,1}

〈−v,∇θg (θ,δ)〉 = max(〈−v, v〉,〈−v,u〉) ≥−〈v,u〉 > 0 (6.10)

where −〈v,u〉 > 0 holds by construction. Analogously, D−uφ(0) > 0. This means that all such

directions are ascent directions. However, for the direction γ=−(u + v) we have

Dγφ(θ) ∝ max
δ∈{0,1}

〈−(u + v),∇θg (θ,δ)〉

= max(〈−u − v,u〉,〈−u − v, v〉) =−1−〈u, v〉 < 0
(6.11)

where the last inequality also follows by construction. Hence, −(u + v) is a descent direction.

As counterexample 6.2 shows, Adversarial Training has the following problem: even if we are

able to compute one solution of the inner-maximization problem δ ∈ S it can be the case

that moving in the direction −∇θg (θ,δ) increases the robust training loss i.e., the classifier

becomes less, rather than more, robust. This can happen at any stage, independently of the

local optimality of θ.

For a non-locally-optimal θ ∈ Rd , the construction of the counterexamples relies on the

following: if for any gradient computed at one inner-max solution, there exist another gradient

(at a different inner-max solution) forming an obtuse angle, then no single inner-max solution

yields a descent direction. Consequently, it suffices to ensure that for any gradient that can be

found by solving the inner problem, there exists another one that has a negative inner product

with it. Precisely, our counterexample 6.2 is carefully crafted so that this property holds.

6.4 Danskin’s Descent Direction

Danskin’s Theorem implies that the directional derivative depends on all the solutions of the

inner-max problem S ⋆(θ) c.f., eq. (6.4). One possible issue in Adversarial Training is relying on

a single solution, as it does not necessarily lead to a descent direction c.f. counterexample 6.2.
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To fix this, we design an algorithm that uses multiple adversarial perturbations per data

sample. In theory, we can obtain the steepest descent direction for the robust loss on a batch

{(xi , yi ) : i = 1, . . . ,k} by solving the following min-max problem:

γ⋆ ∈ argmin
γ:∥γ∥2=1

max
δ∈S ⋆(θ)

〈γ,∇θg (θ,δ)〉, g (θ,δ) := 1

k

k∑
i=1

L(θ, xi +δi , yi ) (6.12)

On the one hand, if the set of maximizers S ⋆(θ) is infinite, eq. (6.12) would be out of reach

for computationally tractable methods. On the other hand, the solution is trivial if there is a

single maximizer , but we verify experimentally in section 2.7 that such assumption is wrong in

practice. In conclusion, a compromise has to be made in order to devise an tractable algorithm

that is relevant in practical scenarios. First, we assume that the set of optimal adversarial

perturbations is finite:

S ⋆(θ) := argmax
δ∈S

g (θ,δ) =S ⋆
m (θ) ={δ(1), . . . ,δ(m)}, m ≥ 1,m ∈Z (6.13)

Under such assumption, it is possible to compute the steepest descent direction in eq. (6.12)

efficiently.

Theorem 6.2. Let ∆m be the m-dimensional simplex i.e., α ≥ 0,
∑m

i=1αi = 1. Suppose that

S ⋆(θ) =S ⋆
m (θ) :={δ(1), . . . ,δ(m)} and denote by∇θg (θ,S ⋆

m (θ)) the matrix with columns∇θg (θ,δ(i ))

for i = 1, . . . ,m. As long as θ is not a local minimizer of the robust loss φ(θ) = maxδ∈S g (θ,δ),

then the steepest descent direction of φ at θ can be computed as:

γ⋆ :=− ∇θg (θ,S ⋆
m (θ))α⋆

∥∇θg (θ,S ⋆
m (θ))α⋆∥ , α⋆ ∈ argmin

α∈∆m
∥∇θg (θ,S ⋆

m (θ))α∥2
2 (6.14)

We present the proof of theorem 6.2 in section 6.9. We now relax our initial finiteness

assumption eq. (6.13), as it might not hold in practice. We show that it might suffice to

approximate the (possibly infinite) set of maximizers S ⋆(θ) with a finite set S ⋆
m (θ). If the

direction γ⋆ defined in eq. (6.14) satisfies an additional inequality involving the finite set

S ⋆
m (θ), it will be a certified descent direction.

Theorem 6.3. Suppose that∇θg (θ,δ) is L-Lipschitz as a function ofδ, i.e., ∥∇θg (θ,δ)−∇θg (θ,δ′)∥2 ≤
L∥δ− δ′∥2. Let S ⋆(θ) be the set of solutions of the inner maximization problem, and let

S ⋆
m (θ) := {δ(1), . . . ,δ(m)} be a finite set that ϵ-approximates S ⋆(θ) in the following sense: for

any δ ∈ S ⋆(θ) there exists δ(i ) ∈ S ⋆
m (θ) such that ∥δ−δ(i )∥2 ≤ ϵ. Let γ⋆ be as in eq. (6.14). If

maxδ∈S ⋆
m (θ)〈γ⋆,∇θg (θ,δ)〉 <−Lϵ then γ⋆ is a descent direction for φ at θ.

The Lipschitz gradient assumption in theorem 6.3 is standard in the optimization literature. We

provide a proof of theorem 6.3 in section 6.10. This results motivate Danskin’s Descent Direction

(algorithm 6.1). We assume an oracle providing a finite set of adversarial perturbations

S ⋆
m (θ) that satifies the approximation assumption in theorem 6.3. In particular, this does

not require solving the inner-maximization problem to optimality, which is out of reach
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for computationally tractable methods and requires expensive branch-and-bound or MIP

techniques (Zhang et al., 2022a; Tjeng et al., 2019; Palma et al., 2021; Wang et al., 2021). Given

S ⋆
m (θ), we compute γ⋆ as in eq. (6.14), which corresponds to algorithm 6.1 of algorithm 6.1.

If the values of L and ϵ in theorem 6.3 are not available (they might be hard to compute), we

cannot certify that γ⋆ is a descent direction. However, note that given a set of adversarial

examples S ⋆
m (θ), γ⋆ is still the best choice as it ensures we improve the loss on all elements of

S ⋆
m (θ).

The optimization problem defining α⋆ and γ⋆ can be solved to arbitrary accuracy efficiently:

It corresponds to the minimization of a smooth objective subject to the convex constraint

α ∈∆m . We use the accelerated PGD algorithm proposed in (Parikh et al., 2014, section 4.3)

and pair it with the efficient simplex projection algorithm given in Duchi et al. (2008a). As the

problem is smooth, a fixed step-size choice guarantees convergence. We set it as the inverse of

the spectral norm of ∇θg (θ,S ⋆(θ))⊤∇θg (θ,S ⋆(θ)) and run the algorithm for a fixed number

of iterations. Alternatively, one can consider Frank-Wolfe with away steps (Lacoste-Julien and

Jaggi, 2015).

Remark 6.1. In general, in the case of Deep Neural Netwworks, the set S ⋆
m (θ) cannot be com-

puted, as the maximization problem is non-concave. Moreover, the dimension of the variable

δ is fixed and hence one cannot employ overparametrization arguments to show convergence

of gradient ascent to an optimal solution (Neyshabur et al., 2019b) . Vanishing suboptimality

has only been shown in the severely restricted scenario of two-layer networks with LeakyReLU

activations (Mianjy and Arora, 2023). Finally, even if we could find an algorithm that gener-

ates an optimal adversarial perturbation, this does not guarantee that it can find all optimal

adversarial perturbations, a requirement for our results to follow.

In practice, the theoretical oracle algorithm that computes the set S ⋆
m (θ) is replaced by heuristics

like performing multiple runs of the Fast Gradient Sign Method (FGSM) or Iterative FGSM

(Kurakin et al., 2017) (referred to as PGD in Madry et al. (2018a)). In this sense, our proposed

practical algorithm in the setting of Deep Neural Networks is a heuristic, as we currently cannot

guarantee the optimality of the perturbations δ generated by gradient ascent. Despite this

drawback, our goal is to produce a heuristic motivated by correct theoretical arguments, in

hopes that this will lead to better practical performance in empirical benchmarks.

The complexity of an iteration in algorithm 6.1 depends on the choice of heuristic to generate

adversarial perturbations. In section 2.7 we explore different choices and how it affects the the

practical performance of the method.
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Algorithm 6.1 Danskin’s Descent Direction (DDi)

1: Input: Batch size k ≥ 1, number of adversarial examples m, initial iterate θ0 ∈Rd , number
of iterations T ≥ 1, step-sizes {βt }T

t=1.
2: for t = 0 to T −1 do
3: Draw (x1, y1), . . . , (xk , yk ) from data distribution D

4: g (θ,δ) ← 1
k

∑k
i=1 L(θ, x +δi , yi )

5: δ(1), . . . ,δ(m) ← MAXIMIZEδ∈S g (θt ,δ) ▷ Using a heuristic like PGD
6: M ← [∇θg (θt ,δ(i )) : i = 1, . . . ,m

] ∈Rd×m

7: α⋆← MINIMIZEα∈∆m∥Mα∥2
2 ▷ To ϵ-suboptimality

8: γ⋆← Mα⋆

∥Mα⋆∥2

9: θt+1 ← θt +βtγ
⋆

10: end for
11: return θT

6.5 Experiments

6.5.1 Existence of multiple optimal adversarial solutions

This section provides evidence that the set of optimal adversarial examples for a given sample

is not a singleton. The hypothesis is tested by using a ResNet-18 pretrained on CIFAR10

and computing multiple randomly initialized PGD-7 attacks for each image with ε= 8
255 . We

compute all pairwise ℓ2-distances between attacks for a given image and plot a joint histogram

for 10 examples in Figure 6.2. There is a clear separation away from zero for all pairwise

distances indicating that the attacks are indeed distinct in the input space. Additionally,

we plot a histogram over the adversarial losses for each image. An example is provided in

Figure 6.2, which is corroborated by similar results for other images (see figure 6.6§section 6.8).

We find that the adversarial losses all concentrate with low variance far away from the clean

loss. This confirms that all perturbations are in fact both strong and distinct.
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Figure 6.2: Non-uniqueness of an optimal adversarial perturbation. (left) Pairwise ℓ2-distances
between PGD-based perturbations are bounded away from zero by a large margin, showing
that they are distinct. (right) The losses of multiple perturbations on the same sample concen-
trate around a value much larger than the clean loss (see figure 6.7 for zoomed-in version).
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6.5.2 Exploring the Optimization Landscape of DDi and Standard Adversarial
Training

Having established that there exist multipe adversarial examples, we now show that the

gradients computed can exhibit the behaviors discussed in Section 6.3. In a first synthetic

example we borrow from (Orabona, 2019, Chapter 6), we consider the function g (θ,δ) =
δ

(
θ2

1 + (θ2 +1)2
)+ (1−δ)

(
θ2

1 + (θ2 −1)2
)

where θ ∈ R2 and δ ∈ [0,1]. As can be seen from Fig-

ure 6.1a and Figure 6.1b, following a gradient computed at a single example leads to a increase

in the objective and an unstable optimization behavior despite the use of a decaying step-size.

In a second synthetic examples, we consider robust binary classification with a feed-forward

neural network on a synthetic 2-dimensional dataset, trained with batch gradient descent. We

observe that during training, after an initial phase where all gradients computed at different

perturbations point roughly in the same direction, we begin to observe pairs of gradients

with negative inner-products (see Figure 6.3 (left)). That means that following one of those

gradients would lead to an increase of the robust loss, as shown by the different optimization

behavior (see Figure 6.3 (center)). Therefore, the benefits DDi kick in later in training, once

the loss has stabilized and the inner-solver starts outputting gradients with negative inner

products. Indeed, we see that in the middle of training (iteration 250), DDi finds a descent

direction of the (linearized) robust objective, whereas all individual gradients lead to an

increase.
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Figure 6.3: Count of negative inner products pairs among the 10 gradients computed per
iteration(left), corresponding robust loss behavior along optimization (center). At iteration
250, comparison of the direction obtained by DDi and individual gradients.(right).

6.5.3 Accuracy/Robustness comparison of DDi vs Adversarial Training

We compare the robust test and training error of Adversarial Training vs our proposed method

DDi, on the CIFAR10 benchmark. As baseline we useℓ∞-PGD with ϵ= 8/255,α= 2/255,ni nner =
7. We train a ResNet18 with SGD, using the settings from Pang et al. (2021), Table 1 ex-

cept for some modifications noted below. This means SGD with hyperparameters lr= 0.1,

momentum=0.0 (not the default 0.9, we explain why below), batch_size= 128 and weight_decay=
5e −4. We run for 200 epochs, no warmup, decreasing lr by a factor of 0.1 at 50% and 75% of

the epochs.
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Figure 6.4: (left) Evolution of the robust accuracy on the CIFAR10 validation set, using a
standard PGD-20 adversary for evaluation and DDi/PGD-7 during training. (right) an ablation
testing the effect of adding the elements not covered by theory (BN,ReLU,momentum) back
into our setting.

Satisfying theoretical assumptions:Real world architectures are often not covered by theory

while simple toy examples are often far removed from practice. To demonstrate the real

world impact of our results, we therefore study a setting where the conditions of Danskin’s

Theorem hold, but which also uses standard building blocks used by practitioners, specifically

replacing ReLU with CELU(Barron, 2017), replacing BatchNorm (BN) (Ioffe and Szegedy,

2015) with GroupNorm (GN) (Wu and He, 2018) and removing momentum. This ensures

differentiability, removes intra-batch dependencies and ensures each update depends only on

the descent direction found at that step respecively. We present more detailed justification

in subsection 6.8.2 due to space constraints and additionally show an ablation study on the

effect of our modifications in (subsection 6.5.3) 1.

Our main results can be seen in subsection 6.5.3. The robust accuracy of the DDi-trained

model increases much more rapidly in the early stages, it increases more after the first drop in

the learning rate, and is more stable when compared to the baseline. Subsection 6.5.3 also

gives evidence that our method has (generally positive or neutral) effects in all settings. Using

ReLU instead of C ELU re-introduces the characteristic bump in robust accuracy that has led

to early stopping becoming standard practice in robust training. It also diminishes the benefit

of DDi, but DDi remains on par with PGD in terms of training speed and decays slightly less

towards the end of the training. Adding momentum does not help either method in terms of

training speed and makes them behave almost identically.

Finally, BN seems to significantly ease the optimisation for both methods, raising overall

performance and amplifying the bump on both methods. Here, PGD actually reaches a higher

maximum robust accuracy and rises faster initially, but then converges to a lower value. This

implies that some benefits of DDi remain even outside the setting covered by the theory.

1It is worth noting that the early stopping robust accuracy we achieve in ablations approximately matches that
reported in Engstrom et al. (2019) on resnet50
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Although these are promising results indicating that DDi can give real world benefits in terms

of iterations and reduce the need for early stopping, it is worth asking whether once could

get the same benefit with a simpler or cheaper method. The final robust accuracies obtained

are very close, and the increased convergence rate in terms of steps comes at a more than

10x slowdown due to having to perform 10 independent forward-backward passes and then

solving an additional inner problem. Additionally, it could be argued that these results are to

be expected and trivial: we are spending 10x the compute to get 10x the gradients.

One might even say there is no need to solve the inner product and a simpler method to

select the best adversary would suffice. In figure 6.5a we address these concerns by comparing

subsection 6.5.3 to the results of the following variants attempting to match the computational

complexity: PGD-70 runs a single PGD adversary for 10x the number of steps, PGD-70− 1
t

runs a single PGD adversary for 10x the number of steps, using a 1/t learning rate decay

after leaving the "standard" PGD regime (i.e. after 8 adversary steps) to converge closer to an

optimal adversarial example, PGD-max-10 runs ten parallel, independent PGD adversaries for

each image and select the adversarial example that induces the largest loss. Finally, PGD-min-

10 runs ten parallel, independent PGD adversaries for each image, then computes the gradients

and selects the one with the lowest norm.This is an approximation of DDi that avoids solving

algorithm 6.1 in algorithm 6.1.

In figure 6.5b we create a DDi variant based on the FAST adversary (Wong et al., 2020) (using ϵ=
8/255,α= 10/255). Using PGD for the evaluation attack, we compare against vanilla FAST in

our setting (no BN, momentum and using CELU) as well as a FAST-max-10 variant analoguous

to PGD-max-10. As we can see in figure 6.5a, every step of the pipeline of DDi seems to be

necessary, with none of the PGD variants achieving the fast initial rise in robustness. PGD-

70− 1
t and PGD-min-10 reach a higher final robust accuracy, which we attribute to the higher

quality adversarial example and informed selection respectively. This is corroborated in

figure 6.5b. Using a single step adversary is sufficient to speed up convergence in the early

stages of training, but does not reach the same final robust accuracy.

PGD and DDi seem to behave similarly in the later stages of training. We would suggest a

computationally cheaper DDi variant which uses single ascent steps (FAST) in the beginning of

training and PGD in the later stages. In any case, the bulk of the overhead lies in the subroutine

in algorithm 6.1 of algorithm 6.1. A faster approximate solution could also speed up the

method significantly. Such incremental improvements are left for future work Neverthelss, in

subsection 6.8.4 we explore some modifications that can reduce the runtime of algorithm 6.1

by at least 70% while retaining its benefits.

6.6 Related Work

Wang et al. (2019) derive suboptimality bounds for the robust training problem, under a locally

strong concavity assumption on the inner-maximization problem. However, such results do

not extend to Neural Networks, as the inner-maximization problem is not strongly concave, in
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Figure 6.5: (a) Ablations comparing PGD-variants matching the number of adversarial gradi-
ents/steps used for DDi. (b) Ablation over single-step adversaries (FAST/DDi-FAST).

general. In contrast, we do not make unrealistic assumptions like strong concavity, and we

deal with the existence multiple solutions of the inner-maximization problem.

In Nouiehed et al. (2019), it is shown that if the inner-maximization problem is unconstrained

and satisfies the PL-condition, it is differentiable, and the gradient can be computed after

obtaining a single solution of the problem. However, in the robust learning problem the adver-

sary is usually constrained to a compact set, and the PL condition does not hold generically.

This renders such assumptions hard to justify in the AT setting.

Tramer and Boneh (2019); Maini et al. (2020) study robustness to multiple perturbation types,

which might appear similar to our approach, but is not. Such works strike to train models

that are simultaneously robust against ℓ∞- and ℓ2-bounded perturbations, for example. In

contrast, we focus on a single perturbation type, and we study how to use multiple adversarial

examples of the same sample to improve the update directions of the network parameters.

Finally, we back our claim that the falseness of Madry et al. (2018a, Corollary C.2.) is not

well-known in the literature on Adversarial Training. For example, such result is included in

the textbook (Vorobeychik et al., 2018, Proposition 8.1). It has also been either reproduced or

mentioned in conference papers like Liu et al. (2020, Section 2), Viallard et al. (2021, Appendix

B), Wei and Ma (2020, Section 5) and possibly many others. This supports our claim that

raising awareness about the mistake in the proof is an important contribution.

6.7 Appendix: More on counterexamples

Here we give more details on the construction of the counterexamples. First observe that for

a given point θ0, and a direction γ, if there exists a δ0 ∈S ⋆(θ0) such that 〈γ,∇θg (θ0,δ)〉 > 0,

then γ is not a descent direction since Dγφ(θ0) ≥ 0.
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In order to ensure that no descent directions can be recovered by solving the inner-maximization,

it suffices to guarantee that for any δ ∈S ⋆(θ0), there exists δ′ ∈S ⋆(θ0) such that

〈∇θg (θ0,δ′),∇θg (θ0,δ)〉 < 0 (6.15)

This way, neither −∇θg (θ0,δ) nor −∇θg (θ0,δ′) would be descent directions.

It easy to generate instances verifying the above using linear functions. More formally, by taking

any family of vectors V = {v1, . . . , vn} such that for any i ∈ {1, . . . ,n} there exists j ∈ {1, . . . ,n}

such that 〈vi , v j 〉 < 0, we can construct the objective g (θ,δ) =∑
δi v⊤

i (θ−θ0)−H (δ), where δ is

in the n-dimensional Simplex and H is the Shannon entropy. Solving the inner-maximization

would yield any one of the vectors {v1, . . . , vn}, and by construction, none of them are descent

directions.

6.8 Appendix: Experiments

6.8.1 Multiple attacks
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Figure 6.6: The losses of multiple perturbations on 9 different example all concentrate around
a value much larger than the clean loss. See Subsection 6.5.1 for experimental details. The
histograms have been enlarged in Figure 6.7.
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Figure 6.7: The losses of multiple perturbations on 9 different example all concentrate around
a value much larger than the clean loss (see Figure 6.6 for comparison with the clean loss).

6.8.2 Justifying our modifications

For Danskin’s Theorem theorem 6.1 to hold, we require the function to be differentiable. To

satisfy differentiability, we replace ReLU with CELU (Barron, 2017) , which has been found to

have comparable performance and sometimes outperform ReLU (Dubey et al., 2022).

To operate on individual images and remove the batch-wise correlations across samples we

replace BatchNorm (BN) (Ioffe and Szegedy, 2015) with GroupNorm (GN) (Wu and He, 2018)2.

Finally, to make each update depend only on the current state, we set momentum = 0.0.

Since momentum is standard practice in the CV community and works like Yan et al. (2018)

argue that it can improve generalisation, we rely on our ablation to show that removing it is

safe.

2There are whole lines of work studying the effects of BN (Bjorck et al., 2018; Santurkar et al., 2018; Kohler
et al., 2019) as well as removing it altogether(Brock et al., 2021). It has also been found to interact with adversarial
robustness in Wang et al. (2022) and Benz et al. (2021), the latter also finds GN to be a well performing alternative,
justifying our choice.
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6.8.3 Further details on synthetic experiments

The synthetic experiment in figure 6.1a is conducted with the following settings. The inner-

maximization is approximated with 10 steps of projected gradient ascent in order to match the

traditional AT setting. The outer iterations have a decaying 0.5p
k

step-size schedule. We observe

the same erratic behavior for PGD with a fixed outer stepsize, while DDi consitently remains

well-behaved.

The synthetic experiment in figure 6.3 is conducted on a dataset of size 100 in dimension 2

where the coordinates are standard Gaussian. The neural network is a 2-layer network with

ELU activation with a hidden layer of width 2. The inner solver is PGD with 10 steps with

stepsize 0.1 and optimizes over the unit cube. The outer step-size is 0.01 and the weights are

optimized with full batch gradient descent.

The linear approximation at iteration 250 of the robust loss consits of taking the 10 adversarial

examples computed at iteration 250 and approximating it with

φ̃(θ) = max
δ1...δ10

φ(θ250)+〈∇θg (θ250,δi ),θ−θ250〉

Interestingly we do not observe the same drastic improvement over PGD when observing the

non-linearized loss at iteration 250.
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6.8.4 Improving the running time

While the focus of this paper is not to obtain a state-of-the-art method, it does matter whether

it is feasible to efficiently capture the benefit of DDi. The naive implementation has about

a 10−12 times overhead compared to PGD, mainly due to three bottlenecks (in descending

impact)

1. for k-DDi, generating k adversarial examples with PGD as the base attack involves a k-

times overhead
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Figure 6.8: (a) Epoch evolution of a more efficient implementation of DDi. (b) Wallclock
evolution of the same methods.

2. then k separate gradient samples need to be computed on these adversarial examples,

which involes k forward-backward passes

3. finally, one additional optimization problem needs to be solved.

While steps 1) and 2) can be somewhat parallelized, they still cause a massive increase in

compute and memory. We therefore adopt two heuristic approaches to speed up the algorithm

while (hopefully) maintaining it’s benefits:

1. since later in training the benefits of DDi appear to diminish, we linearly decay the

number of gradients sampled k from 10 down to 1 along the 200 epochs (referred to as

decay)

2. we also adopt a method of creating k unique batches from only 2 independent adversar-

ial attacks (described below in subsection 6.8.4, referred to as comb).

We evaluate this method using both PGD and FAST as base attacks and show the results in

figure 6.8a and figure 6.8b. As can be seen, DA-PGD-decay-comb and DA-PGD-comb both

enjoy a massive speedup in wallclock time (reducing the 12× overhead to about 3×) while

retaining the improved per-step progress of base DDi .

Combinatorial batch construction

Suppose we have a batch of data-label pairs (xi , yi ) of size B . In order to construct k ≤ 2B

different gradients by computing only 2 adversarial examples per data sample xi in the batch

we do the following:
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1. for each i = 1, . . . ,B compute δi ,0,δi ,1 two adversarial examples using the data-label pair

(xi , yi ) in the batch.

2. for each j = 1, . . . ,k repeat the following steps:

3. Define ∆= [ ] as an empty list.

4. generate a random bitvector b ⊆ {0,1}B of length B

5. when bi is 0 we append δi ,0 to ∆, otherwise when bi is 1 we append δi ,1 to ∆.

6. compute the gradient w.r.t. the network parameters using the perturbations in ∆

While this still incurs overhead of computing k gradients, it greatly reduces running time as

seen in figure 6.8b and could further improved by e.g. reusing gradients from past epochs to

construct the examples.

6.9 Appendix: Proof of theorem 6.2.

The steepest descent direction is computed, following eq. (6.4) as:

γ⋆ ∈ argmin
γ:∥γ∥2=1

Dγφ(θ) = argmin
γ:∥γ∥2=1

max
δ∈S ⋆

m (θ)
〈γ,∇θg (θ,δ)〉 (6.16)

Whenever θ is not a local optimum, there exists a non-zero descent direction. In this case we

can relax the constraint that ∥γ∥2 = 1 to ∥γ∥2 ≤ 1 without changing the solutions or optimal

value of (6.16), which is strictly negative:

min
γ:∥γ∥2=1

max
δ∈S ⋆

m (θ)
〈γ,∇θg (θ,δ)〉 = min

γ:∥γ∥2≤1
max

δ∈S ⋆
m (θ)

〈γ,∇θg (θ,δ)〉 < 0 (6.17)

We can now transform (6.16) into a bilinear convex-concave min-max problem, subject to

convex and compact constraints:

γ⋆ ∈ argmin
γ:∥γ∥2≤1

Dγφ(θ) = argmin
γ:∥γ∥2≤1

max
δ∈S ⋆

m (θ)
〈γ,∇θg (θ,δ)〉

= argmin
γ:∥γ∥2≤1

max
i=1,...,m

γ⊤∇θg (θ,δ(i ))

= argmin
γ:∥γ∥2≤1

max
α∈∆m

γ⊤∇θg (θ,S ⋆
m (θ))α

(6.18)

By Sion’s minimax Theorem Sion (1958), we can solve eq. (6.18) by swapping the operator

order:

min
γ:∥γ∥2≤1

max
α∈∆m

γ⊤∇θg (θ,S ⋆
m (θ))α= max

α∈∆m
min

γ:∥γ∥2≤1
γ⊤∇θg (θ,S ⋆

m (θ))α

= max
α∈∆m

−∥∇θg (θ,S ⋆
m (θ))α∥2

=− min
α∈∆m

∥∇θg (θ,S ⋆
m (θ))α∥2 < 0

(6.19)
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Finally, by noting that squaring the objective function in the right-hand side of eq. (6.19) does

not change the set of solutions, we arrive at the formula for α⋆ in eq. (6.14). Indeed for a

solution α⋆ to this problem we have

argmin
γ:∥γ∥2≤1

max
α∈∆m

γ⊤∇θg (θ,S ⋆
m (θ))α= argmin

γ:∥γ∥2≤1
γ⊤∇θg (θ,S ⋆

m (θ))α⋆

=− ∇θg (θ,S ⋆
m (θ))α⋆

∥∇θg (θ,S ⋆
m (θ))α⋆∥

(6.20)

where the denominator is nonnegative as the optimal objective value is nonzero c.f. eq. (6.19).

6.10 Appendix: Proof of theorem 6.3.

For any δ ∈ S ⋆(θ) let i (δ) ∈ {1, . . . ,m} be such that ∥δ(i (δ)) −δ∥2 ≤ ϵ. That is, we map any

maximizer δ to an index i ∈ {1, . . . ,m} such that the corresponding perturbation δ(i ) in the

finite set S ⋆
m (θ) is at most at an ϵ distance. This map can be constructed by the assumption

on S ⋆
m (θ).

For any γ such that ∥γ∥2 = 1 we have

〈γ,∇θg (θ,δ)〉 = 〈γ,∇θg (θ,δ)−∇θg (θ,δ(i (δ))〉+〈γ,∇θg (θ,δ(i (δ)))〉
≤ ∥γ∥2︸︷︷︸

=1

∥∇θg (θ,δ)−∇θg (θ,δ(i (δ)))∥︸ ︷︷ ︸
≤L∥δ−δ(i (δ))∥≤Lϵ

+〈γ,∇θg (θ,δ(i (δ)))〉

≤ 〈γ,∇θg (θ,δ(i (δ)))〉+Lϵ

≤ sup
δ∈S ⋆

m (θ)
〈γ,∇θg (θ,δ(i ))〉+Lϵ

(6.21)

Taking the supremum over δ ∈S ⋆(θ) on the left-hand-side we obtain

Dγφ(θ) := sup
δ∈S ⋆(θ)

〈γ,∇θg (θ,δ)〉 ≤ sup
δ∈S ⋆

m (θ)
〈γ,∇θg (θ,δ(i ))〉+Lϵ (6.22)

Hence if the supremum on the right-hand-side is strictly smaller than −Lϵ we have that

Dγφ(θ) < 0, which yields the desired result.
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6.11 Appendix: Proof of lemma 6.1

Assume the limit that defines D̂γφ(θ) exists (and is finite).

D̂−γφ(θ) = lim
t→0

φ(θ+ t (−γ))−φ(θ)

t∥−γ∥2

= lim
t→0

φ(θ+ (−t )γ)−φ(θ)

−(−t )∥γ∥2

= lim
(−t )→0

φ(θ+ (−t )γ)−φ(θ)

−(−t )∥γ∥2

= lim
s→0

−φ(θ+ sγ)−φ(θ)

s∥γ∥2
(let s = (−t ))

=− lim
s→0

φ(θ+ sγ)−φ(θ)

s∥γ∥2

=−D̂γφ(θ)

(6.23)
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7 Adversarial Training Should Be Cast
As a Non-Zero-Sum Game

Alexander Robey, Fabian Latorre, George Pappas, Hamed Hassani, Volkan Cevher. Under

submission, 2023.

Abstract. One prominent approach toward resolving the adversarial vulnerability of deep

neural networks is the two-player zero-sum paradigm of adversarial training, in which pre-

dictors are trained against adversarially-chosen perturbations of data. Despite the promise

of this approach, algorithms based on this paradigm have not engendered sufficient levels

of robustness, and suffer from pathological behaviour like robust overfitting. To understand

this shortcoming, we first show that the commonly used surrogate-based relaxation used

in adversarial training algorithms voids all guarantees on the robustness of trained classi-

fiers. The identification of this pitfall informs a novel non-zero-sum bilevel formulation of

adversarial training, wherein each player optimizes a different objective function. Our for-

mulation naturally yields a simple algorithmic framework that matches and in some cases

outperforms state-of-the-art attacks, attains comparable levels of robustness to standard

adversarial training algorithms, and does not suffer from robust overfitting.

7.1 Introduction

A longstanding disappointment in the machine learning (ML) community is that deep neural

networks (DNNs) remain vulnerable to seemingly innocuous changes to their input data in-

cluding nuisances in visual data (Robey et al., 2020; Hendrycks and Dietterich, 2019; Hendrycks

et al., 2021; Eykholt et al., 2018b), sub-populations (Santurkar et al., 2021; Sohoni et al., 2020;

Koh et al., 2021), and distribution shifts (Xiao et al., 2021; Arjovsky et al., 2019; Sagawa et al.,

2020; Robey et al., 2021b). Prominent amongst these vulnerabilities is the setting of adversarial

examples, wherein it has been conclusively shown that imperceptible, adversarially-chosen

perturbations can fool state-of-the-art classifiers parameterized by DNNs (Szegedy et al.,

2013; Biggio et al., 2013b, 2012; Carlini and Wagner, 2017; Biggio et al., 2013a). In response, a

plethora of research has proposed so-called adversarial training (AT) algorithms (Huang et al.,

2015; Wong and Kolter, 2018b; Kurakin et al., 2017; Madry et al., 2018a; Goodfellow et al., 2015),
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which are designed to improve robustness against adversarial examples.

AT is ubiquitously formulated as a two-player zero-sum game, where both players—often

referred to as the defender and the adversary—respectively seek to minimize and maximize

the classification error. However, this zero-sum game is not implementable in practice as the

discontinuous nature of the classification error is not compatible with first-order optimization

algorithms. To bridge this gap between theory and practice, it is commonplace to replace

the classification error with a smooth surrogate loss (e.g., the cross-entropy loss) which is

amenable to gradient-based optimization (Madry et al., 2018a; Zhang et al., 2019b). And while

this seemingly harmless modification has a decades-long tradition in the ML literature due to

the guarantees it imparts on non-adversarial objectives (Bartlett et al., 2006; Shalev-Shwartz

and Ben-David, 2014b; nicolas le roux, 2017), there is a pronounced gap in the literature

regarding the implications of this relaxation on the standard formulation of AT.

As the field of robust ML has matured, surrogate-based AT algorithms (see, e.g., Madry et al.

(2018a); Zhang et al. (2019b); Goodfellow et al. (2015); Wang et al. (2020)) have collectively

ushered in significant progress toward designing stronger attacks and obtaining more robust

defenses (Croce et al., 2020a). However, despite these advances, recent years have witnessed a

plateau in robustness measures on leaderboards such as RobustBench, resulting in the widely

held beliefs that robustness and accuracy may be irreconcilable (Tsipras et al., 2019; Dobriban

et al., 2020; Javanmard et al., 2020) and that robust generalization requires significantly more

data (Schmidt et al., 2018; Chen et al., 2020a; Stutz et al., 2019). Moreover, various phenomena

such as robust overfitting (Rice et al., 2020) and insufficient robustness evaluation (Carlini

et al., 2019) have indicated that progress has been overestimated (Croce and Hein, 2020b). To

combat these pitfalls, state-of-the-art algorithms increasingly rely on ad-hoc regularization

schemes (Kannan et al., 2018; Zhang et al., 2019b; Chan et al., 2020; Hoffman et al., 2019;

Finlay et al., 2018), weight perturbations (Wu et al., 2020; Sun et al., 2021; Foret et al., 2021),

and heuristics such as multiple restarts (Madry et al., 2018a), carefully crafted learning rate

schedules (Rice et al., 2020), and convoluted stopping conditions (Croce and Hein, 2020b),

all of which contribute to an unclear set of best practices and a growing literature concerned

with identifying flaws in various AT schemes (Latorre et al., 2023).

Motivated by these challenges, we argue that the pervasive surrogate-based zero-sum ap-

proach to AT suffers from a fundamental flaw. Our analysis of the standard minimax formula-

tion of AT reveals that maximizing a surrogate like the cross-entropy provides no guarantee

that the the classification error will increase, resulting in weak adversaries and ineffective

AT algorithms. In identifying this shortcoming, we prove that to preserve guarantees on the

optimality of the classification error objective, the defender and the adversary must optimize

different objectives, resulting in a non-zero-sum game. This leads to a novel, yet natural bilevel

formulation (Bard, 2013) of AT in which the defender minimizes an upper bound on the classi-

fication error, while the attacker maximizes a continuous reformulation of the classification

error. We then propose an algorithm based on our formulation which is free from heuristics

and ad hoc optimization techniques. Our empirical evaluations reveal that our approach
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matches the test robustness achieved by the state-of-the-art, yet highly heuristic approaches

such as AutoAttack, and that it eliminates the problem of robust overfitting.

Contributions. We summarize our contributions in the following bullets.

▷ New formulation for adversarial robustness. Starting from the discontinuous minmax

formulation of AT with respect to the 0-1 loss, we derive a novel continuous bilevel

optimization formulation, the solution of which guarantees improved robustness against

the optimal adversary.

▷ New adversarial training algorithm. We derive a new, heuristic-free algorithm (Algo-

rithm 7.2) based on our bilevel formulation, and show that offers strong robustness on

CIFAR-10.

▷ Elimination of robust overfitting. Without the need of heuristic modifications, our

algorithm does not suffer from robust overfitting (RO). This suggest that RO is an artifact

of the use of improper surrogates in the original AT paradigm, and that the use of a

correct optimization formulation is enough to solve it.

▷ State-of-the-art robustness evaluation. We show that our proposed optimization

objective for the adversary yields a simple algorithm that matches the performance of

the state-of-the-art, yet highly complex AutoAttack method, on classifiers trained on

CIFAR-10.

7.2 The promises and pitfalls of adversarial training

7.2.1 Preliminaries: Training DNNs with surrogate losses

We consider a k-way classification setting, wherein data arrives in the form of instance-

label pairs (X ,Y ) drawn i.i.d. from an unknown joint distribution D taking support over

X×Y ⊆Rd×[K ], where [K ] := {1, . . . ,K }. Given a suitable hypothesis class F , one fundamental

goal in this setting is to select an element f ∈ F which correctly predicts the label Y of a

corresponding instance X . In practice, this hypothesis class F often comprises functions

fθ : Rd → RK which are parameterized by a vector θ ∈ Θ ⊂ Rp , as is the case when training

DNNs. In this scenario, the problem of learning a classifier that correctly predicts Y from X

can written as follows:

min
θ∈Θ

E

{
argmax

i∈[K ]
fθ(X )i ̸= Y

}
(7.1)

Here fθ(X )i denotes the i th component of the logits vector fθ(X ) ∈ RK and we use the no-

tation {A} to denote the indicator function of an event A, i.e., {A} := IA(·). In this sense,

{argmax
i∈[K ]

fθ(X )i ̸= Y } denotes the classification error of fθ on the pair (X ,Y ).

Prominent among the barriers to solving (7.1) in practice is the fact that the classification

error is a discontinuous function of θ, which in turn renders continuous first-order methods
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(e.g., gradient descent) intractable. Fortunately, this pitfall can be resolved by minimizing a

surrogate loss function ℓ : [k]× [k] → R in place of the classification error (Shalev-Shwartz

and Ben-David, 2014b, §12.3). For minimization problems, surrogate losses are chosen to be

differentiable upper bounds of the classification error of fθ, in the sense that{
argmax

i∈[K ]
fθ(X )i ̸= Y

}
≤ ℓ( fθ(X ),Y ). (7.2)

This inequality gives rise to a differentiable counterpart of (7.1) which is amenable to minimiza-

tion via first-order methods and can be compactly expressed in the following optimization

problem:

min
θ∈Θ

Eℓ( fθ(X ),Y ). (7.3)

Examples of commonly used surrogates are the hinge loss and the cross-entropy loss. Crucially,

the inequality in (7.2) guarantees that the problem in (7.3) provides a solution that decreases

the classification error (Bartlett et al., 2006), which, as discussed above, is the primary goal in

supervised classification.

7.2.2 The pervasive setting of adversarial examples

For common hypothesis classes, it is well-known that classifiers obtained by solving (7.3)

are sensitive to seemingly benign changes to their input data. Among these vulnerabilities,

perhaps the most well-studied is the setting of adversarial examples, wherein a plethora of

research has demonstrated that state-of-the-art classifiers can be fooled by small, adversarially-

chosen perturbations (Szegedy et al., 2013; Biggio et al., 2013b, 2012; Carlini and Wagner,

2017; Biggio et al., 2013c). In other words, given an instance label pair (X ,Y ), it is relatively

straightforward to find perturbations η ∈Rd with small norm
∥∥η∥∥≤ ϵ for some fixed ϵ> 0 such

that

argmax
i∈[K ]

fθ(X )i = Y and argmax
i∈[K ]

fθ(X +η)i ̸= argmax
i∈[K ]

fθ(X )i . (7.4)

The task of finding such perturbations η which cause the classifier fθ to misclassify perturbed

data points X +η can be compactly cast as the following maximization problem:

η⋆ ∈ argmax
η:∥η∥≤ϵ

{
argmax

i∈[K ]
fθ(X +η)i ̸= Y

}
(7.5)

Here, if both of the expressions in (7.4) hold for the perturbation η= η⋆, then the perturbed

instance X +η⋆ is called an adversarial example for fθ with respect to the instance-label pair

(X ,Y ).

Due to prevalence of adversarial examples, there has been pronounced interest in solving

the robust analog of (7.1), which is designed to find classifiers that are insensitive to small
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perturbations. This robust analog is ubiquitously written as the following a two-player zero-

sum game with respect to the discontinuous classification error:

min
θ∈Θ

E

[
max
η:∥η∥≤ϵ

{
argmax

i∈[K ]
fθ(X +η)i ̸= Y

}]
(7.6)

An optimal solution θ⋆ for (7.6) yields a model fθ⋆ that achieves the lowest possible classifica-

tion error despite the presence of adversarial perturbations. For this reason, this problem—

wherein the interplay between the maximization over η and the minimization over θ comprises

a two-player zero-sum game— is the starting point for numerous algorithms which aim to

improve robustness.

7.2.3 Surrogate-based approaches to robustness

As discussed in § 7.2.1, the discontinuity of the classification error complicates the task of

finding adversarial examples, as in (7.5), and of training against these perturbed instances, as

in (7.6). One appealing approach toward overcoming this pitfall is to simply deploy a surrogate

loss in place of the classification error inside (7.6), which gives rise to the following pair of

optimization problems:

η⋆ ∈ argmax
η:∥η∥≤ϵ

ℓ( fθ(X +η),Y ) (7.7)
min
θ∈Θ

E

[
max
η:∥η∥≤ϵ

ℓ( fθ(X +η),Y )

]
(7.8)

Indeed, this surrogate-based approach is pervasive in practice. Madry et al.’s seminal paper on

the subject of adversarial training employs this formulation (Madry et al., 2018a), which has

subsequently been used as the starting point for numerous AT schemes (Huang et al., 2015;

Wong and Kolter, 2018a; Kurakin et al., 2017; Madry et al., 2018a; Goodfellow et al., 2015).

Pitfalls of surrogate-based optimization. Despite the intuitive appeal of this paradigm,

surrogate-based adversarial attacks are known to overestimate robustness (Mosbach et al.,

2018; Croce et al., 2020b; Croce and Hein, 2020b), and standard adversarial training algorithms

are known to fail against strong attacks. Furthermore, this formulation suffers from pitfalls

such as robust overfitting (Rice et al., 2020) and trade-offs between robustness and accuracy

(Tsipras et al., 2019). To combat these shortcomings, empirical adversarial attacks and defenses

have increasingly relied on heuristics such as multiple restarts, variable learning rate schedules

(Croce and Hein, 2020b), and carefully crafted initializations, resulting in a widening gap

between the theory and practice of adversarial learning. In the next section, we argue that

these pitfalls can be attributed to the fundamental limitations of (7.8).
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7.3 Non-zero-sum formulation of adversarial training

7.3.1 Fundamental limitations of surrogates in adversarial learning

From an optimization perspective, the surrogate-based approaches to adversarial evaluation

and training outlined in § 7.2.3 engenders two fundamental limitations.

▷ Limitation I: Weak attackers. In the adversarial evaluation problem of (7.7), the adver-

sary maximizes an upper bound on the classification error. This means that any solution

η⋆ to (7.7) is not guaranteed to increase the classification error in (7.5), resulting in

weakened adversaries which are misaligned with the goal of finding adversarial exam-

ples that fool DNNs. Indeed, when the surrogate is an upper bound on the classification

error, the only conclusion about the adversarial perturbation η⋆ obtained from (7.7)

and its true objective (7.5) is:{
argmax

i∈[K ]
fθ(X +η⋆)i ̸= Y

}
≤ max
η:∥η∥≤ϵℓ( fθ(X +η),Y ) (7.9)

Notably, the right hand side of (7.9) can be arbitrarily large while the left hand side

can simultaneously be equal to zero, i.e., the problem in (7.7) can fail to produce an

adversarial example, even at optimality. Thus, while it is known empirically that attacks

based on (7.7) tend to overestimate robustness (Croce and Hein, 2020b; Croce et al.,

2020b; Gowal et al., 2019), we show that this shortcoming is evident a priori.

▷ Limitation II: Ineffective defenders. Because attacks which seek to maximize upper

bounds on the classification error are not proper surrogates for the classification error

(c.f., Limitation I), training a model fθ on such perturbations does not guarantee any

improvement in robustness. Therefore, AT algorithms which seek to solve (7.8) are

ineffective in that they do not optimize the worst-case classification error. For this

reason, it should not be surprising that robust overfitting (Rice et al., 2020) occurs for

models trained to solve eq. (7.8).

Both of these limitations arise directly by virtue of rewriting (7.7) and (7.8) with the surrogate

loss ℓ. Therefore, to summarize, there is a distinct tension between the efficient, yet misaligned

paradigm of surrogate-based adversarial training with the principled, yet intractable paradigm

of minimax optimization on the classification error. In the remainder of this section, we

resolve this tension by decoupling the optimization problems of the adversary and the training

algorithm.
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7.3.2 Decoupling adversarial attacks and defenses

Our starting point is the two-player zero-sum formulation in (7.6). Observe that this minimax

optimization problem can be equivalently cast as a bilevel optimization problem1:

min
θ∈Θ

E

{
argmax

i∈[K ]
fθ(X +η⋆)i ̸= Y

}
(7.10)

subject to η⋆ ∈ argmax
η:∥η∥≤ϵ

{
argmax

i∈[K ]
fθ(X +η)i ̸= Y

}
(7.11)

While this problem still constitutes a zero-sum game, the role of the attacker (the constraint

in (7.11)) and the role of the defender (the objective in (7.10)) are now decoupled. From this

perspective, the tension engendered by introducing surrogate losses is laid bare: the attacker

ought to maximize a lower bound of the classification error (c.f., Limitation I), whereas the

defender ought to minimize an upper bound on the classification error (c.f., Limitation II). This

implies that to preserve guarantees on optimality, the attacker and defender must optimize

separate objectives. In what follows, we discuss these objectives for the attacker and defender

in detail.

The attacker’s objective. We first address the role of the attacker. To do so, we define the

negative margin Mθ(X ,Y ) of the classifier fθ as follows:

Mθ : X ×Y →Rk , Mθ(X ,Y ) j ≜ fθ(X ) j − fθ(X )Y (7.12)

We call Mθ(X ,Y ) the negative margin because a positive value of (7.12) corresponds to a

misclassification. As we show in the following proposition, the negative margin function

(which is differentiable) provides an alternative characterization of the classification error.

Proposition 7.1. Given a fixed data pair (X ,Y ), let η⋆ denote any maximizer of Mθ(X +η,Y ) j

over the classes j ∈ [K ]− {Y } and perturbations η ∈Rd satisfying
∥∥η∥∥≤ ϵ, i.e.,

( j⋆,η⋆) ∈ argmax
j∈[K ]−{Y },η:∥η∥≤ϵ

Mθ(X +η,Y ) j . (7.13)

Then if Mθ(X +η⋆,Y ) j⋆ > 0, η⋆ induces a misclassification and satisfies the constraint in (7.11),

meaning that X +η⋆ is an adversarial example. Otherwise, if Mθ(X +η⋆,Y ) j⋆ ≤ 0, then any

η :
∥∥η∥∥< ϵ satisfies (7.11), and no adversarial example exists for the pair (X ,Y ). In summary, if

η⋆ is as in eq. (7.13), then η⋆ solves the lower level problem in eq. (7.11).

We present a proof in section 7.72. Proposition 7.1 implies that the non-differentiable con-

straint in (7.11) can be equivalently recast as an ensemble of K differentiable optimization

1To be precise, the optimal value η⋆ in (7.16) is a function of (X ,Y ), i.e., η⋆ = η⋆(X ,Y ), and the constraint must
hold for almost every (X ,Y ) ∼D. We omit these details for ease of exposition.

2This result is similar in spirit to (Gowal et al., 2019, Theorem 3.1). However, (Gowal et al., 2019, Theorem 3.1)
only holds for linear functions, whereas Proposition 7.1 holds for an abitrary function fθ .
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problems that can be solved independently. This can collectively be expressed as

η⋆ ∈ argmax
η:∥η∥<ϵ

max
j∈[K ]−{Y }

Mθ(X +η,Y ) j . (7.14)

Note that this does not constitute a relaxation; (7.11) and (7.14) are equivalent optimization

problems. This means that the attacker can maximize the classification error directly using

first-order optimization methods without resorting to a relaxation.

The defender’s objective. Next, we consider the role of the defender. To handle the discontinu-

ous upper-level problem in (7.10), note that this problem is equivalent to a perturbed version

of the supervised learning problem in (7.1). As discussed in § 7.2.1, the strongest results for

problems of this kind have historically been achieved by means of a surrogate-based relaxation.

Subsequently, replacing the 0-1 loss with a differentiable upper bound like the cross-entropy

is a principled, guarantee-preserving approach for the defender.

7.3.3 Putting the pieces together: Non-zero-sum adversarial training

By combining the disparate problems discussed in the preceeding section, we arrive at a novel

non-zero-sum (almost-everywhere) differentiable formulation of adversarial training:

min
θ∈Θ

Eℓ( fθ(X +η⋆),Y ) (7.15)

subject to η⋆ ∈ argmax
η:∥η∥≤ϵ

max
j∈[K ]−{Y }

Mθ(X +η, y) j (7.16)

Notice that the second level of this bilevel problem remains non-smooth due to the maximiza-

tion over the classes j ∈ [K ]− {Y }. To impart smoothness on the problem without relaxing

the constraint, observe that we can equivalently solve K − 1 distinct smooth problems in

the second level for each sample (X ,Y ), resulting in the following equivalent optimization

problem:

min
θ∈Θ

Eℓ( fθ(X +η⋆j⋆),Y ) (7.17)

subject to η⋆j ∈ argmax
η:∥η∥≤ϵ

Mθ(X +η, y) j ∀ j ∈ [K ]− {Y } (7.18)

j⋆ ∈ argmax
j∈[K ]−{Y }

Mθ(x +η⋆j , y) j (7.19)

Hence, in (7.19), we first obtain one perturbation η⋆j per class which maximizes the negative

margin Mθ(X +η⋆j ,Y ) for that particular class. Next, in (7.18), we select the class index j⋆

corresponding to the perturbation η⋆j that maximized the negative margin. And finally, in the

upper level, the surrogate minimization over θ ∈Θ is on the perturbed data pair (X +η⋆j⋆ ,Y ).

The result is a non-zero-sum formulation for AT that is amenable to gradient-based optimiza-

tion, and preserves the optimality guarantees engendered by surrogate loss minimization
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Algorithm 7.1 Best Targeted Attack (BETA)

Input: Data-label pair (x, y), perturbation size ϵ, model fθ, number of classes K , iterations T .
Output: Adversarial perturbation η⋆

1: for j ∈ 1, . . . ,K do
2: η j ← Unif[max(X −ϵ,0),min(X +ϵ,1)] ▷ (assume images in [0,1]d )
3: end for
4: for t = 1, . . . ,T do
5: for j ∈ 1, . . . ,K do
6: η j ← OPTIM(η j ,∇ηi Mθ(x +η j , y) j ) ▷ (optimizer step, e.g., RMSprop)
7:

8: η j ←ΠBϵ(X )∩[0,1]d (η j ) ▷ (Projection onto valid perturbation set)
9: end for

10: end for
11: j⋆← argmax

j∈[K ]−{y}
Mθ(x +η j , y)

12: return η j⋆

Algorithm 7.2 BETA Adversarial Training (BETA-AT)

Input: Dataset (X ,Y ) = (xi , yi )n
i=1, perturbation size ϵ, model fθ, number of classes K , itera-

tions T , attack iterations T ′.
Output: Robust model fθ⋆

1: for t ∈ 1, . . . ,T do
2: Sample i ∼ Unif[n]
3: η⋆← BETA(xi , yi ,ϵ, fθ,T ′)
4: L(θ) ← ℓ( fθ(xi +η⋆), yi )
5: θ← OPTIM(θ,∇L(θ)) ▷ (optimizer step, e.g., SGD)
6: end for
7: return fθ

without weakening the adversary.

7.4 Algorithms

Given the non-zero-sum formulation of AT in the previous section, the next question is

how one should solve this bilevel optimization problem in practice. Our starting point is

the empirical version of this bilevel problem, wherein we assume access to a finite dataset

{(xi , yi )}n
i=1 of n instance-label pairs sampled i.i.d. from D.

min
θ∈Θ

1

n

n∑
i=1

ℓ( fθ(xi +η⋆i j⋆), yi ) (7.20)

subject to η⋆i j ∈ argmax
η:∥η∥≤ϵ

Mθ(xi +η, yi ) j ∀i , j ∈ [n]× [K ]− {Y } (7.21)

j⋆ ∈ argmax
j∈[K ]−{yi }

Mθ(xi +η⋆i j , yi ) j ∀i ∈ [n] (7.22)
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To solve this empirical problem, we adopt a stochastic optimization based approach. That

is, we first iteratively sample mini-batches from our dataset uniformly at random, and then

obtain adversarial perturbations by solving the lower level problems in (7.21) and (7.22). Note

that given the differentiability of the negative margin, the lower level problems can be solved

iteratively with generic optimizers, e.g., Adam (Kingma and Ba, 2014) or RMSprop. This

procedure is summarized in Algorithm 7.1, which we call the BEst Targeted Attack (BETA),

given that it directly maximizes the classification error.

After obtaining such perturbations, we calculate the perturbed loss in (7.20), and then dif-

ferentiate through this loss with respect to the model parameters. By updating the model

parameters θ in the negative direction of this gradient, our algorithm seeks classifiers that are

robust against perturbations found by BETA. We call the full adversarial training procedure

based on this attack BETA Adversarial Training (BETA-AT), as it invokes BETA as a subroutine;

see Algorithm 7.2 for details.

Smoothing the lower level. One potential limitation of the BETA-AT algorithm introduced in

Algorithm 7.2 is its sample efficiency: BETA computes one adversarial perturbation per class,

but only one of these perturbations is chosen for the upper level of the bilevel formulation

(7.20). In this way, one could argue that there is wasted computational effort in discarding

perturbations that achieve high values of the negative margin (7.12). This potential shortcom-

ing is a byproduct of the non-smoothness of the max operator in (7.22). Fortunately, we can

alleviate this limitation by using smooth under-approximations of the max (e.g., the softmax

function), which is continuously differentiable. We explore this scheme in Appendix 7.8.

7.5 Experiments

In this section, we evaluate the performance of BETA and BETA-AT on CIFAR-10 (Krizhevsky,

2009). Throughout, we consider a range of AT algorithms, including PGD (Madry et al., 2018a),

FGSM (Goodfellow et al., 2015), TRADES (Zhang et al., 2019b), MART (Wang et al., 2020), as well

as a range of adversarial attacks, including APGD and AutoAttack (Croce and Hein, 2020b). We

consider the standard perturbation budget of ϵ= 8/255, and all training and test-time attacks

use a step size of α= 2/255. For both TRADES and MART, we set the trade-off parameter λ= 5,

which is consistent with the original implementations (Wang et al., 2020; Zhang et al., 2019b).

The bilevel formulation eliminates robust overfitting. Robust overfitting occurs when the

robust test accuracy peaks immediately after the first learning rate decay, and then falls

significantly in subsequent epochs as the model continues to train (Rice et al., 2020). This

is illustrated in Figure 7.1a, in which we plot the learning curves (i.e., the clean and robust

accuracies for the training and test sets) for a ResNet-18 (He et al., 2016) model trained using

10-step PGD against a 20-step PGD adversary. Notice that after the first learning rate decay

step at epoch 100, the robust test accuracy spikes, before dropping off in subsequent epochs.

On the other hand, BETA-AT does not suffer from robust overfitting, as shown in Figure 7.1b.

We argue that this strength of our method is a direct result of our bilevel formulation, in which
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(a) PGD10 learning curves.
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(b) BETA-AT10 learning curves.

Figure 7.1: BETA does not suffer from robust overfitting. We plot the learning curves against
a PGD20 adversary for PGD10 and BETA-AT10. Observe that although PGD displays robust
overfitting after the first learning rate decay step, BETA-AT does not suffer from this pitfall.

we train against a proper surrogate for the adversarial classification error.

BETA-AT outperforms baselines on the last iterate of training. We next compare the perfor-

mance of ResNet-18 models trained using four different AT algorithms: FGSM, PGD, TRADES,

MART, and BETA. PGD, TRADES, and MART used a 10-step adversary at training time. At test

time, the models were evaluated against five different adversaries: FGSM, 10-step PGD, 40-

step PGD, 10-step BETA, and APGD. We report the performance of two different checkpoints

for each algorithm: the best performing checkpoint chosen by early stopping on a held-out

validation set, and the performance of the last checkpoint from training. Note that while BETA

performs comparably to the baseline algorithms with respect to early stopping, it outperforms

these algorithms significantly when the test-time adversaries attack the last checkpoint of

training. This owes to the fact that BETA does not suffer from robust overfitting, meaning that

the last and best checkpoints perform similarly.

BETA matches the robustness estimate of AutoAttack. AutoAttack is a state-of-the-art

adversarial attack which is widely used to estimate the robustness of trained models on

leaderboards such as RobustBench (Croce et al., 2020a; Croce and Hein, 2020b). In brief,

AutoAttack comprises a collection of four disparate attacks: APGD-CE, APGD-T, FAB, and

Square Attack. AutoAttack also involves several heuristics, including multiple restarts and

variable stopping conditions. In Table 7.2, we compare the performance of the top-performing

models on RobustBench against AutoAttack, APGD-T, and BETA with RMSprop. Both APGD-

T and BETA used thirty steps, whereas we used the default implementation of AutoAttack,

which runs for 100 iterations. We also recorded the gap between AutoAttack and BETA. Notice
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Table 7.1: Adversarial performance on CIFAR-10. We report the test accuracies of various AT
algorithms against different adversarial attacks on the CIFAR-10 dataset.

Training
algorithm

Test accuracy

Clean FGSM PGD10 PGD40 BETA10 APGD

Best Last Best Last Best Last Best Last Best Last Best Last

FGSM 81.96 75.43 94.26 94.22 42.64 1.49 42.66 1.62 40.30 0.04 41.56 0.00
PGD10 83.71 83.21 51.98 47.39 46.74 39.90 45.91 39.45 43.64 40.21 44.36 42.62

TRADES10 81.64 81.42 52.40 51.31 47.85 42.31 47.76 42.92 44.31 40.97 43.34 41.33
MART10 78.80 77.20 53.84 53.73 49.08 41.12 48.41 41.55 44.81 41.22 45.00 42.90

BETA-AT5 87.02 86.67 51.22 51.10 44.02 43.22 43.94 42.56 42.62 42.61 41.44 41.02
BETA-AT10 85.37 85.30 51.42 51.11 45.67 45.39 45.22 45.00 44.54 44.36 44.32 44.12
BETA-AT20 82.11 81.72 54.01 53.99 49.96 48.67 49.20 48.70 46.91 45.90 45.27 45.25

Table 7.2: Estimated ℓ∞ robustness (robust test accuracy). BETA+RMSprop (ours) vs APGD-
targeted (APGD-T) vs AutoAttack (AA). CIFAR-10. BETA and APGD-T use 30 iterations + single
restart. ϵ= 8/255. AA uses 4 different attacks with 100 iterations and 5 restarts.

Model BETA APGD-T AA BETA/AA gap Architecture

Wang et al. (2023) 70.78 70.75 70.69 0.09 WRN-70-16

Wang et al. (2023) 67.37 67.33 67.31 0.06 WRN-28-10

Rebuffi et al. (2021) 66.75 66.71 66.58 0.17 WRN-70-16

Gowal et al. (2021) 66.27 66.26 66.11 0.16 WRN-70-16

Huang et al. (2022) 65.88 65.88 65.79 0.09 WRN-A4

Rebuffi et al. (2021) 64.73 64.71 64.64 0.09 WRN-106-16

Rebuffi et al. (2021) 64.36 64.27 64.25 0.11 WRN-70-16

Gowal et al. (2021) 63.58 63.45 63.44 0.14 WRN-28-10

Pang et al. (2022) 63.38 63.37 63.35 0.03 WRN-70-16

that the 30-step BETA—a heuristic-free algorithm derived from our bilevel formulation of

AT—performs almost identically to AutoAttack, despite the fact that AutoAttack runs for

significantly more iterations and uses five restarts, which endows AutoAttack with an unfair

computational advantage. That is, excepting for a negligible number of samples, BETA matches

the robustness estimate of AutoPGD-targeted and AutoAttack, despite using an off-the-shelf

optimizer.

7.6 Related work

Robust overfitting. Several recent papers (see, e.g., Rebuffi et al. (2021); Chen et al. (2021b); Yu

et al. (2022); Dong et al. (2022); Wang et al. (2020); Lee et al. (2020)) have attempted to explain

and resolve robust overfitting (Rice et al., 2020). However, none of these works point to a

fundamental limitation of adversarial training as the cause of robust overfitting. Rather, much
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of this past work has focused on proposing heuristics for algorithms specifically designed

to reduce robust overfitting, rather than to improve adversarial training. In contrast, we

posit that the lack of guarantees of the zero-sum surrogate-based AT paradigm (Madry et al.,

2018a) is at fault, as this paradigm is not designed to maximize robustness with respect to

classification error. And indeed, our empirical evaluations in the previous section confirm

that our non-zero-sum formulation eliminates robust overfitting.

Estimating adversarial robustness. There is empirical evidence that attacks based on surro-

gates (e.g., PGD) overestimate the robustness of trained classifiers (Croce and Hein, 2020b;

Croce et al., 2020b; Gowal et al., 2019). Indeed, this evidence served as motivation for the

formulation of more sophisticated attacks like AutoAttack Croce and Hein (2020b), which

empirically tend to provide more accurate estimates of robustness. In contrast, we provide

solid, theoretical evidence that commonly used attacks overestimate robustness due to the

misalignment between standard surrogate losses and the adversarial classification error. More-

over, we show that optimizing the BETA objective with a standard optimizer (e.g., RMSprop)

achieves the same robustness as AutoAttack without employing ad hoc training procedures

such as multiple restarts. convoluted stopping conditions, or adaptive learning rates.

One notable feature of past work is an observation made in (Gowal et al., 2019), which finds that

multitargeted attacks tend to more accurately estimate robustness. However, their theoretical

analysis only applies to linear functions, whereas our work extends these ideas to the nonlinear

setting of DNNs. Moreover, (Gowal et al., 2019) do not explore training using a multitargeted

attack, whereas we show that BETA-AT is an effective AT algorithm that mitigates the impact

of robust overfitting.

Bilevel formulations of AT. Prior to our work, (Zhang et al., 2022b) proposed a different pseudo-

bilevel3 formulation for AT, wherein the main objective was to justify the Fast AT algorithm

introduced in (Wong et al., 2020). More specifically, the formulation in (Zhang et al., 2022b)

is designed to produce solutions that coincide with the iterates of Fast AT by linearizing the

attacker’s objective. In contrast, our bilevel formulation appears naturally following principled

relaxations of the intractable classification error AT formulation. In this way, the formulation

in Zhang et al. (2022b) applies only in the context of Fast AT, whereas our formulation deals

more generally with the task of adversarial training.

Perhaps the closest variant related to our work is the Bilevel formulation presented in Mianjy

and Arora (2023), where the upper level player minimizes an upper bound of the classification

error (as in our case), whereas the adversary maximizes a lower bound thereof. Our work is

different in that we show the adversary does not need to optimize lower bound, rather, it can

3In a strict sense, the formulation of Zhang et al. (2022b) is not a bilevel problem. In general, the most concise
way to write a bilevel optimization problem is minθ f (θ,δ⋆(θ)) subject to δ⋆(θ) ∈ argmax g (θ,δ). In such problems
the value δ⋆(θ) only depends on θ, as the objective function g (θ, ·) is then uniquely determined. This is not
the case in (Zhang et al., 2022b, eq. (7)), where an additional variable z appears, corresponding to the random
initialization of Fast-AT. Hence, in (Zhang et al., 2022b) the function g (θ, ·) is not uniquely defined by θ, but is a
random function realized at each iteration of the algorithm. Thus, it is not a true bilevel optimization problem in
the sense of the textbook definition (Bard, 2013).
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directly solve the objective via proposition 7.1, leading to a stronger adversary. Moreover, we

focus on demonstrating the practical consequences of our reformulation, like the elimination

of the Robust Overfitting phenomenon. Also note that Mianjy and Arora (2023) provide

a method that works in binary classification whereas our approach works for the general

multi-class setting.

Finally, Robey et al. (2021a) propose a constrained optimization formulation of Adversarial

Training. Unfortunately in this case, the objective still defines the adversary as the maximiza-

tion of a surrogate loss function like the cross-entropy. As such, this formulation still suffers

from the pitfalls of the zero-sum formulation of adversarial training from Madry et al. (2018b).

7.7 Appendix: Proof of proposition 7.1

Suppose there exists η̂ satisfying
∥∥η̂∥∥ ≤ ϵ such that for some j ∈ [K ], j ̸= Y we have Mθ(X +

η̂,Y ) j > 0, i.e., assume

max
j∈[K ]−{Y },η:∥η∥≤ϵ

Mθ(X +η,Y ) j > 0 (7.23)

for such η̂ and such j we have fθ(X + η̂) j > fθ(X + η̂)Y and thus argmax
j∈[K ]

fθ(X + η̂) j ̸= Y . Hence,

such η̂ induces a misclassification error i.e.,

η̂ ∈ argmax
η:∥η∥2≤ϵ

{
argmax

j∈[K ]
fθ(X +η) j ̸= Y

}
(7.24)

In particular if

( j⋆,η⋆) ∈ argmax
j∈[K ]−{Y },η:∥η∥≤ϵ

Mθ(X +η,Y ) j ⇒ η⋆ ∈ argmax
η:∥η∥2≤ϵ

{
argmax

j∈[K ]
fθ(X +η) j ̸= Y

}
(7.25)

Otherwise, assume

max
j∈[K ]−{Y },η:∥η∥≤ϵ

Mθ(X +η,Y ) j < 0, (7.26)

then for all η :
∥∥η∥∥< ϵ and all j ̸= Y we have fθ(X +η) j < fθ(X +η)Y , so that argmax

j∈[K ]
fθ(x+η) j =

Y i.e., there is no adversarial example in the ball. In this case for any η, in particular In

particular if

( j⋆,η⋆) ∈ argmax
j∈[K ]−{Y },η:∥η∥≤ϵ

Mθ(X +η,Y ) j (7.27)

Then

0 =
{

argmax
j∈[K ]

fθ(X +η⋆) j ̸= Y

}
= max
η:∥η∥2≤ϵ

{
argmax

j∈[K ]
fθ(X +η) j ̸= Y

}
(7.28)
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In conclusion, the solution

( j⋆,η⋆) ∈ argmax
j∈[K ]−{Y },η:∥η∥≤ϵ

Mθ(X +η,Y ) j (7.29)

always yields a maximizer of the misclassification error.

7.8 Appendix: Smooth reformulation of the lower level

First, note that the problem in eqs. (7.20) to (7.22) is equivalent to

min
θ∈Θ

1

n

n∑
i=1

K∑
j=1

λ⋆i jℓ( fθ(xi +η⋆i j ), yi )

subject to λ⋆i j ,η⋆i j ∈ argmax
∥ηi j ∥≤ϵ

λi j≥0,∥λi ∥1=1,λi y=0

K∑
j=1

λi j Mθ(xi +ηi j , yi ) j ∀i ∈ [n]
(7.30)

This is because the maximum over λi in eq. (7.30) is always attained at the coordinate vector

e j such that Mθ(xi +η⋆i j , yi ) is maximum.

An alternative is to smooth the lower level optimization problem by adding an entropy regu-

larization:

max
η:∥η∥≤ϵ

max
j∈[K ]−{y}

Mθ(x +η j , y) j = max
η:∥η∥≤ϵ

max
λ≥0,∥λ∥1=1,λy=0

〈λ, Mθ(x +η j , y)K
j=1〉

≥ max
η:∥η∥≤ϵ

max
λ≥0,∥λ∥1=1,λy=0

〈λ, Mθ(x +η j , y)K
j=1〉−

1

µ

K∑
j=1

λ j log
(
λ j

)

= max
η:∥η∥≤ϵ

1

µ
log

 K∑
j=1
j ̸=y

eµMθ(X+η,y) j


(7.31)

where µ > 0 is some temperature constant. The inequality here is due to the fact that the

entropy of a discrete probability λ is positive. The innermost maximization problem in (7.31)

has the closed-form solution:

λ⋆j = eµMθ(x+η j ,y) j∑K
j=1
j ̸=y

eµMθ(x+η j ,y) j
: j ̸= y, λ⋆y = 0 (7.32)

Hence, after relaxing the second level maximization problem following eq. (7.31), and plugging
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in the optimal values for λ we arrive at:

min
θ∈Θ

1

n

n∑
i=1

K∑
j=1
j ̸=yi

eµMθ(xi+ηi j ,yi ) j∑K
j=1
j ̸=yi

eµMθ(xi+ηi j ,yi ) j
ℓ( fθ(xi +η⋆i j ), yi )

subject to η⋆i j ∈ argmax
∥ηi j ∥≤ϵ

Mθ(xi +ηi j , yi ) j ∀i ∈ [n], j ∈ [K ]

(7.33)

min
θ∈Θ

1

n

n∑
i=1

K∑
j=1
j ̸=yi

eµMθ(xi+η⋆i j ,yi ) j∑K
j=1
j ̸=yi

eµMθ(xi+η⋆i j ,yi ) j
ℓ( fθ(xi +η⋆i j ), yi ) (7.34)

subject to η⋆i j ∈ argmax
η:∥η∥≤ϵ

Mθ(xi +η, yi ) j ∀i ∈ [n] (7.35)

In this formulation, both upper- and lower-level problems are smooth (barring the possible use

of nonsmooth components like ReLU). Most importantly (I) the smoothing is obtained through

a lower bound of the original objective in eqs. (7.21) and (7.22), retaining guarantees that the

adversary will increase the misclassification error and (II) all the adversarial perturbations

obtained for each class now appear in the upper level (7.34), weighted by their corresponding

negative margin. In this way, we make efficient use of all perturbations generated: if two

perturbations from different classes achieve the same negative margin, they will affect the

upper-level objective in fair proportion. This formulation gives rise to algorithm 7.3.

Algorithm 7.3 Smooth BETA Adversarial Training (SBETA-AT)

Input: Dataset (X ,Y ) = (xi , yi )n
i=1, perturbation size ϵ, model fθ, number of classes K , itera-

tions T , attack iterations T ′, temperature µ> 0
Output: Robust model fθ⋆

1: for t ∈ 1, . . . ,T do
2: Sample i ∼ Unif[n]
3: Initialize η j ∼ Unif[max(0, xi −ϵ),min(xi +ϵ,1)],∀ j ∈ [K ]
4: for j ∈ 1, . . . ,K do
5: for t ∈ 1, . . . ,T ′ do
6: η j ← OPTIM(η j ,∇ηMθ(xi +η j , yi ) j ) ▷ (attack optimizer step, e.g., RMSprop)
7:

8: η j ←ΠBϵ(xi )∩[0,1]d (η j ) ▷ (Projection onto valid perturbation set)
9: end for

10: end for
11: Compute L(θ) =∑K

j=1, j ̸=yi

eµMθ (xi +η j ,yi ) j∑K
j=1, j ̸=yi

eµMθ (xi +η j ,yi ) j
ℓ( fθ(xi +η j ), yi ) θ← OPTIM(θ,∇L(θ)) ▷

(model optimizer step)
12: end for
13: return fθ
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7.9 Bibliographic Note

The main ideas of this work were developed together with Alexander Robey. The candidate

derived (Proposition 7.1) and performed the experiments summarized in table 7.2.
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8 Fast and Provable ADMM for Learning
with Generative Priors

Fabian Latorre, Armin Eftekhari and Volkan Cevher. Advances in Neural Information Processing

Systems (NeurIPS) 2019.

Abstract. In this work, we propose a (linearized) Alternating Direction Method-of-Multipliers

(ADMM) algorithm for minimizing a convex function subject to a nonconvex constraint. We

focus on the special case where such constraint arises from the specification that a variable

should lie in the range of a neural network. This is motivated by recent successful applications

of Generative Adversarial Networks (GANs) in tasks like compressive sensing, denoising and

robustness against adversarial examples. The derived rates for our algorithm are characterized

in terms of certain geometric properties of the generator network, which we show hold for

feedforward architectures, under mild assumptions. Unlike gradient descent (GD), it can

efficiently handle non-smooth objectives as well as exploit efficient partial minimization

procedures, thus being faster in many practical scenarios.

8.1 Introduction

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) show great promise for

faithfully modeling complex data distributions, such as natural images (Radford et al., 2015;

Brock et al., 2019) or audio signals (Engel et al., 2019; Donahue et al., 2019). Understanding and

improving the theoretical and practical aspects of their training has thus attracted significant

interest (Lucic et al., 2018; Mescheder et al., 2018; Daskalakis et al., 2018; Hsieh et al., 2018;

Gidel et al., 2019).

Researchers have also begun to leverage the modeling power of GANs and other generative

models like Variational Auto-encoders (Kingma and Welling, 2013) in applications ranging

from compressive sensing (Bora et al., 2017), to image denoising (Lipton and Tripathi, 2017;

Tripathi et al., 2018), to robustness against adversarial examples (Ilyas et al., 2017; Samangouei

et al., 2018).

These and other (Dhar et al., 2018; Ulyanov et al., 2018) applications model high-dimensional
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data as the output of the generator network associated with a generative model, and often

lead to a highly non-convex optimization problem of the form minz f (G(z)), where the the

generator G is nonlinear and f is convex. We then find the optimal latent vector z, as illustrated

in section 8.5 with several examples.

This optimization problem involving a generative model poses various difficulties for existing

first-order algorithms. Indeed, to our knowledge, the only existing provable algorithm for

solving (8.1) relies on the existence of a projection oracle, and is limited to the special case

of compressive sensing with a generative prior (Shah and Hegde, 2018; Hegde, 2018), see

section 8.4 for the details. The main computational bottleneck is of course the non-convex

projection step, for which no convergence analysis in terms of the geometry of the underlying

generator G currently exists.

On the other hand, Gradient Descent (GD) and its adaptive variants (Kingma and Ba, 2014)

cannot efficiently handle non-smooth objective functions, as they are entirely oblivious to the

composite structure of the problem (Nesterov, 2013a). A simple example is denoising with the

ℓ∞-norm, for which subgradient descent (as the standard non-smooth alternative to GD) fails

in practice, as observed in Section section 8.5.

With the explosion of generative models in popularity, there is consequently a pressing need for

provable and flexible optimization algorithms to solve the resulting non-convex and (possibly)

non-smooth problems. The present work addresses this need by focusing on the general

optimization template

minimize
w,z

F (w, z) := L(w)+R(w)+H(z)

subject to w =G(z),
(8.1)

where L : Rd → R is convex and smooth, R : Rd → R and H : Rs → R are convex but not

necessarily smooth, and G :Rs →Rd is differentiable but often non-linear, corresponding to

the generator network associated with a generative model. Even though R and H might not be

smooth, we assume throughout that their proximal mappings can be efficiently computed

(Parikh et al., 2014).

For brevity, we refer to (8.1) as optimization with a generative prior whenever G is given by the

generator network associated with a generative model (Kingma and Welling, 2013; Goodfellow

et al., 2014). In this context, we make three key contributions, summarized below:

1. Algorithm: We propose an efficient and scalable (linearized) Alternating Direction Method-

of-Multipliers (ADMM) framework to solve (8.1), see Algorithm 8.1. To our knowledge, this is

the first non-convex and linearized ADMM algorithm for nonlinear constraints with provable

fast rates to solve problem (8.1), see section 8.4 for a detailed literature review.

We evaluate this algorithm numerically in the context of denoising with GANs in the pres-

ence of adversarial or stochastic noise, as well as compressive sensing (Bora et al., 2017). In

184



8.2 Algorithm

particular, Algorithm 8.1 allows for efficient denoising with the ℓ∞- and ℓ1-norms, with appli-

cations in defenses against adversarial examples (Szegedy et al., 2014a) and signal processing,

respectively.

2. Optimization guarantees: We prove fast approximate convergence for Algorithm 8.1 under

the assumptions of smoothness and near-isometry of G , as well as strong convexity of L. That

is, we distill the key geometric attributes of the generative network G responsible for the

success of Algorithm 8.1. We then show how some common neural network architectures

satisfy these geometric assumptions.

We also establish a close relation between a variant of Algorithm 8.1 and the gradient descent

in (Bora et al., 2017) and, in this sense, provide the first rates for it, albeit in a limit case detailed

in section 8.3. Indeed, one key advantage of the primal-dual formulation studied in this paper

is exactly this versatility, as well as the efficient handling of non-smooth objectives.

Lastly, we later relax the assumptions on L to restricted strong convexity/smoothness, thus

extending our results to the broader context of statistical learning with generative priors,

which includes compressive sensing (Bora et al., 2017) as a special case.

3. Statistical guarantees: In the context of statistical learning with generative priors, where L

in (8.1) is replaced with an empirical risk, we provide the generalization error associated with

Algorithm 8.1. That is, we use the standard notion of Rademacher complexity (Mohri et al.,

2018c) to quantify the number of training data points required for Algorithm 8.1 to learn the

true underlying parameter w ♮.

8.2 Algorithm

In this section, we adapt the powerful Alternating Descent Method of Multipliers (ADMM) (Glowin-

ski and Marroco, 1975; Gabay and Mercier, 1976; Boyd et al., 2011) to solve the non-convex

problem (8.1). We define the corresponding augmented Lagrangian with the dual variable

λ ∈Rp as

Lρ(w, z,λ) := L(w)+〈w −G(z),λ〉+ ρ

2
∥w −G(z)∥2

2, (8.2)

for a penalty weight ρ > 0. By a standard duality argument, (8.1) is equivalent to

min
w,z

max
λ

Lρ(w, z,λ)+R(w)+H(z). (8.3)

Applied to (8.3), every iteration of ADMM would minimize the augmented Lagrangian with

respect to z, then with respect to w , and then update the dual variable λ. Note that Lρ(w, z,λ)

is often non-convex with respect to z due to the nonlinearity of the generator G :Rs →Rd and,

consequently, the minimization step with respect to z in ADMM is often intractable.

To overcome this limitation, we next linearize ADMM. In the following, we let PR and PH
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denote the proximal maps of R and H , respectively (Parikh et al., 2014).

The equivalence of problems (8.1) and (8.3) motivates us to consider the following algorithm

for the penalty weight ρ > 0, the primal step sizes α,β > 0, and the positive dual step sizes

{σt }t≥0:

zt+1 = PβH
(
zt −β∇zLρ(wt , zt ,λt )

)
,

wt+1 = PαR
(
wt −α∇wLρ(wt , zt+1,λt )

)
,

λt+1 =λt +σt+1(wt+1 −G(zt+1)).

(8.4)

As opposed to ADMM, to solve (8.1), the linearized ADMM in (8.4) takes only one descent step

in both z and w , see Algorithm 8.1 for the summary. The particular choice of the dual step sizes

{σt }t in Algorithm 8.1 ensures that the dual variables {λt }t remain bounded, see (Bertsekas,

1976) for a precedent in the convex literature.

EADMM. Let us introduce an important variant of Algorithm 8.1. In our setting, Lρ(w, z,λ) is

in fact convex with respect to w and therefore EADMM replaces the second step in (8.4) with

exact minimization over w . This exact minimization step can be executed with an off-the-shelf

convex solver, or might sometimes have a closed-form solution. Moreover, EADMM gradually

increases the penalty weight to emulate a multi-scale structure. More specifically, for an

integer K , consider the sequences of penalty weights and primal step sizes {ρk ,αk ,βk }K
k=1,

specified as

ρk = 2kρ, αk = 2−kα, βk = 2−kβ, k ≤ K . (8.5)

Consider also a sequence of integers {nk }K
k=1, where

nk = 2k n, k ≤ K , (8.6)

for an integer n. At (outer) iteration k, EADMM executes nk iterations of Algorithm 8.1

with exact minimization over w . Then it passes the current iterates of w , z, and dual step

size to the next (outer) iteration. Loosely speaking, EADMM has a multi-scale structure,

allowing it to take larger steps initially and then slowing down as it approaches the solution.

As discussed in Section 8.3, the theoretical guarantees for Algorithm 8.1 also apply to EADMM.

The pseudocode for EADMM is given in section 8.14.

As the closing remark, akin to the convex case (He et al., 2000; Xu et al., 2017), it is also possible

to devise a variant of Algorithm 8.1 with adaptive primal step sizes, which we leave for a future

work.

8.3 Optimization Guarantees

Let us study the theoretical guarantees of Algorithm 8.1 for solving program (8.1), whose

constraints are nonlinear and non-convex (since G is specified by a neural network). The main
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Algorithm 8.1 Linearized ADMM for solving problem (8.1)

Input: Differentiable L, proximal-friendly convex regularizers R and H , differentiable prior G ,
penalty weight ρ > 0, primal step sizesα,β> 0, initial dual step sizeσ0 > 0, primal initialization
w0 and z0, dual initialization λ0, stopping threshold τc > 0.

1: for t = 0,1, . . . ,T −1 do
2: zt+1 ← PβH

(
zt −β∇zLρ(wt , zt ,λt )

)
▷ primal updates

3: wt+1 ← PαR
(
wt −α∇wLρ(wt , zt+1,λt )

)
4: σt+1 ← min

(
σ0,

σ0

∥wt+1 −G(zt+1)∥2t log2(t +1)

)
▷ dual step size

5: λt+1 ←λt +σt+1(wt+1 −G(zt+1)) ▷ dual update

6: s ← ∥zt+1 − zt∥2
2

α
+ ∥wt+1 −wt∥2

2

β
+σt∥wt −G(zt )∥2

2 ≤ τc ▷ stopping criterion

7: if s ≤ τc then
8: return (wt+1, zt+1)
9: end if

10: end for
11: return (wT , zT )

contribution of this section is Theorem 8.1, which is inherently an optimization result stating

that Algorithm 8.1 succeeds under certain assumptions on (8.1).

From an optimization perspective, to our knowledge, Theorem 8.1 is the first to provide (fast)

rates for non-convex and linearized ADMM, see section 8.4 for a detailed literature review.

The assumptions imposed below on L and the generator G ensure the success of Algorithm 8.1

and are shortly justified for our setup, where G is a generator network.

Assumption 8.1. strong convexity / smoothness of L: We assume that L in (8.1) is both

strongly convex and smooth, namely, there exist 0 <µL ≤ νL such that

µL

2
∥w −w ′∥2 ≤ L(w ′)−L(w)−〈w ′−w,∇L(w)〉 ≤ νL

2
∥w −w ′∥2, ∀w, w ′ ∈Rd . (8.7)

Assumption 8.1 is necessary to establish fast rates for Algorithm 8.1, and is readily met for

L(w) = ∥w − ŵ∥2
2 with µL = νL = 1, which renders Algorithm 8.1 applicable to ℓ2-denoising

with generative prior in (Tripathi et al., 2018; Samangouei et al., 2018; Ilyas et al., 2017). Here,

ŵ is the noisy image.

In section 8.6, we also relax the strong convexity/smoothness in Assumption 8.1 to restricted

strong convexity/smoothness, which enables us to apply Theorem 8.1 in the context of statisti-

cal learning with a generative prior, for example in compressive sensing (Bora et al., 2017).

Under Assumption 8.1, even though L and consequently the objective function of (8.1) are

strongly convex, problem (8.1) might not have a unique solution, which is in stark contrast

with convex optimization. Indeed, a simple example is minimizing x2 + y2 with the constraint

x2 + y2 = 1. We next state our assumptions on the generator G .
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Assumption 8.2. Strong smoothness of G: Let DG be the Jacobian of G. We assume that

G :Rs →Rd is strongly smooth, namely, there exists νG ≥ 0 such that

∥G(z ′)−G(z)−DG(z) · (z ′− z)∥2 ≤ νG

2
∥z ′− z∥2

2, ∀z, z ′ ∈Rs , (8.8)

Assumption 8.3. Near-isometry of G: We assume that the generative prior G is a near-isometric

map, namely, there exist 0 < ιG ≤ κG such that

ιG∥z ′− z∥2 ≤ ∥G(z ′)−G(z)∥2 ≤ κG∥z ′− z∥2, ∀z, z ′ ∈Rs . (8.9)

The invertibility of certain network architectures have been established before in (Ma et al.,

2018; Hand and Voroninski, 2017). More concretely, Assumptions 8.2 and 8.3 hold for a broad

class of generators, as summarized in Proposition 8.1 and proved in section 8.7.

Proposition 8.1. Let GΞ : X ⊂Rd →Rs be a feedforward neural network with weights Ξ ∈Rh ,

k layers, non-decreasing layer sizes s ≤ s1 ≤ . . . sk ≤ d, with ωi as activation function in the i -th

layer, and compact domain X . For every layer i , suppose that the activation ωi : R→ R is of

class C 1 (continuously-differentiable) and strictly increasing. Then, after an arbitrarily small

perturbation to the weights Ξ, Assumptions 8.2 and 8.3 hold almost surely with respect to the

Lebesgue measure.

A few comments about the preceding result are in order.

Choice of the activation function: Strictly-increasing C 1 activation functions in Proposition

8.1, such as the Exponential Linear Unit (ELU) (Clevert et al., 2015) or softplus (Dugas et al.,

2001), achieve similar or better performance compared to the commonly-used (but non-

smooth) Rectified Linear Activation Unit (ReLU) (Xu et al., 2015; Clevert et al., 2015; Gulrajani

et al., 2017; Kumar et al., 2017; Kim et al., 2018).

In our experiments in Section 2.7, we found that using ELU activations for the generator G does

not adversely affect the representation power of the trained generator. Lastly, the activation

function for the final layer of the generator is typically chosen as the sigmoid or tanh (Radford

et al., 2015), for which the conditions in Proposition 8.1 are also met.

Compact domain: The compactness requirement in Proposition 8.1 is mild. Indeed, even

though the Gaussian distribution is the default choice as the input for the generator in GANs,

training has also been successful using compactly-supported distributions, such as the uni-

form distribution (Lipton and Tripathi, 2017).

Interestingly, even after training with Gaussian noise, limiting the resulting generator to a

truncated Gaussian distribution can in fact boost the performance of GANs (Brock et al.,

2019), as measured with common metrics like the Inception Score (Salimans et al., 2016) or

Frechet Inception Distance (Heusel et al., 2017). This evidence suggests that obtaining a good

generator G with compact domain is straightforward. In the experiments of Section 2.7, we
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use truncated Gaussian on an Euclidean ball centered at the origin.

Non-decreasing layer sizes: This is a standard feature of popular generator architectures

such as the DCGAN (Radford et al., 2015) or infoGAN (Chen et al., 2016). This property

is also exploited in the analysis of the optimization landscape of problem (8.1) by Hand

and Voroninski (2017); Heckel et al. (2019) and for showing invertiblity of (de)convolutional

generators (Ma et al., 2018).

Necessity of assumptions on G: Assumptions 8.2 and 8.3 on the generator G are necessary

for the provable success of Algorithm 8.1. Loosely speaking, Assumption 8.2 controls the

curvature of the generative prior, without which the dual iterations can oscillate without

improving the objective.

On the other hand, the lower bound in (8.9) means that the generative prior G must be stably

injective: Faraway latent parameters should be mapped to faraway outputs under G . As a

pathological example, consider the parametrization of a circle as {(sin z,cos z) : z ∈ [0,2π)}.

This stable injectivity property in (8.9) is necessary for the success of Algorithm 8.1 and is not

an artifact of our proof techniques. Indeed, without this condition, the z updates in Algorithm

8.1 might not reduce the feasibility gap ∥w −G(z)∥2. Geometric assumptions on nonlinear

constraints have precedent in the optimization literature (Birgin et al., 2016; Flores-Bazán

et al., 2012; Cartis et al., 2018) and to a lesser extent in the literature of neural networks too

(Hand and Voroninski, 2017; Ma et al., 2018), which we further discuss in Section 8.4.

Having stated and justified our assumptions on L and the generator G in (8.1), we are now

prepared to present the main technical result of this section. Theorem 8.1 states that Algorithm

8.1 converges linearly to a small neighborhood of a solution, see section 8.8 for the proof.

Theorem 8.1. (guarantees for Algorithm 8.1) Suppose that Assumptions 8.1-8.3 hold. Let

(w∗, z∗) be a solution of program (8.1) and let λ∗ be a corresponding optimal dual variable. Let

also {wt , zt ,λt }t≥0 denote the output sequence of Algorithm 8.1. Suppose that the primal step

sizes α,β satisfy

α≤ 1

νρ
, β≤ 1

ξρ+2ατ2
ρ

. σ0 ≤σ0,ρ . (8.10)

Then it holds that

∥wt −w∗∥2
2

α
+ ∥zt − z∗∥2

2

β
≤ 2(1−ηρ)t∆0 +

ηρ

ρ
, (8.11)

∥wt −G(zt )∥2
2 ≤

4(1−ηρ)t∆0

ρ
+ η̃ρ

ρ2 , (8.12)

for every iteration t. Above, ∆0 = Lρ(w0, z0,λ0)−Lρ(w∗, z∗,λ∗) is the initialization error,

see (8.2). The convergence rate 1−ηρ ∈ (0,1) and the quantities νρ ,ξρ ,τρ ,σ0,ρ ,ηρ , η̃ρ above
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depend on the parameters in Assumptions 8.1-8.3 and on λ∗, as specified in the proof. As an

example, in the regime where µL ≫ ρ and ι2G ≫ νG , we can take

α≈ 1

νL
, β≈ 1

ρκ2
G

,
ρνG

κ2
G

≲σ0 ≲ ρmin

(
µ2

L

ν2
L

,
ι4G

κ4
G

)
,

ηρ ≈ min

(
µL

νL
,
ι2G

κ2
G

)
, ηρ ≈ η̃ρ ≈ max

(
νL

µL
,
κ2

G

ι2G

)
. (8.13)

Above, for the sake of clarity, ≈ and ≲ suppress the universal constants, dependence on the

initial dual λ0 and the corresponding step size σ0.

A few clarifying comments about Theorem 8.1 are in order.

Error: According to Theorem 8.1, if the primal and dual step sizes are sufficiently small and

Assumptions 8.1-8.3 are met, Algorithm 8.1 converges linearly to a neighborhood of a solution

(w∗, z∗). The size of this neighborhood depends on the penalty weight ρ in (8.2). For instance,

in the example in Theorem 8.1, it is easy to verify that this neighborhood has a radius of O(1/ρ),

which can be made smaller by increasing ρ.

Theorem 8.1 is however silent about the behavior of Algorithm 8.1 within this neighborhood.

This is to be expected. Indeed, even in the simpler convex case, where G in program (8.1)

would have been an affine map, provably no first-order algorithm could converge linearly to

the solution (Ouyang and Xu, 2018; Agarwal et al., 2010).

Investigating the behavior of Algorithm 8.1 within this neighborhood, while interesting, ar-

guably has little practical value. For example, in the convex case, ADMM would converge

slowly (sublinearly) in this neighborhood, which does not appeal to the practitioners.

As another example, when Algorithm 8.1 is applied in the context of statistical learning, there

is no benefit in solving (8.1) beyond the statistical accuracy of the problem at hand (Agarwal

et al., 2010), see the discussion in subsection 8.6.1. As such, we defer the study of the local

behavior of Algorithm 8.1 to a future work.

Feasibility gap: Likewise, according to (8.24) in Theorem 8.1, the feasibility gap of Algorithm

8.1 rapidly reaches a plateau. In the example in Theorem 8.1, the feasibility gap rapidly reaches

O(1/ρ), where ρ is the penalty weight in (8.2). As before, even in the convex case, no first-order

algorithm could achieve exact feasibility at linear rate (Ouyang and Xu, 2018; Agarwal et al.,

2010).

Intution: While the exact expressions for the quantities in Theorem 8.1 are given in section 8.8,

the example provided in Theorem 8.1 highlights the simple but instructive regime where

µL ≫ ρ and ι2G ≫ νG , see Assumptions 8.1-8.3. Intuitively, µL ≫ ρ means that minimizing the

objective of (8.1) is prioritized over reducing the feasibility gap, see (8.2). In addition, ι2G ≫ νG
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suggests that the generative prior G is very smooth.

In this regime, the primal step size α for w updates is determined by how smooth L is, and the

primal step size β in the latent variable z is determined by how smooth G is, see (8.13). Similar

restrictions are standard in first-order algorithms to avoid oscillations (Nesterov, 2013b).

As discussed earlier, the algorithm rapidly reaches a neighborhood of size O(1/ρ) of a solution

and the feasibility gap plateaus at O(1/ρ). Note the trade-off here for the choice of ρ: the larger

the penalty weight ρ is, the more accurate Algorithm 8.1 would be and yet increasing ρ is

restricted by the assumption ρ≪µL . Moreover, in this example, the rate 1−ηρ of Algorithm 8.1

depends only on the regularity of L and G in program (8.1), see (8.13). Indeed, the more well-

conditioned L is and the more near-isometric G is, the larger ηρ and the faster the convergence

would be.

Generally speaking, increasing the penalty weight ρ reduces the bias of Algorithm 8.1 at the

cost of a slower rate. Beyond our work, such dependence on the geometry of the constraints

has precedent in the literature of optimization (Birgin et al., 2016; Flores-Bazán et al., 2012;

Cartis et al., 2018) and manifold embedding theory (Eftekhari and Wakin, 2015, 2017).

Relation to simple gradient descent: Consider a variant of Algorithm 8.1 that replaces the

linearized update for w in (8.4) with exact minimization with respect to w , which can be

achieved with an off-the-shelf convex solver or might have a closed-form solution in some

cases. The exact minimization over w and Lemma 8.4 together guarantee that Theorem 8.1

also applies to this variant of Algorithm 1.

Moreover, as a special case of (8.1) where R ≡ 0 and H ≡ 0, this variant is closely related to

GD (Bora et al., 2017), presented there without any rates. In Appendix 8.11, we establish that

the updates of both algorithms match as the feasibility gap vanishes.

In this sense, Theorem 8.1 provides the first rates for GD, albeit in the limit case of vanishing

feasibility gap. Indeed, one key advantage of the primal-dual formulation studied in this paper

is exactly this versatility in providing a family of algorithms, such as Algorithms 8.1 and 2, that

can be tuned for various scenarios and can also efficiently handle the non-smooth case where

R or H are nonzero in (8.1).

8.4 Related Work

Bora et al. (2017) empirically tune gradient descent for compressive sensing with a generative

prior

min
z

∥A ·G(z)−b∥2
2, (8.14)

which is a particular case of template (8.1) (without splitting). They also provide a statistical

generalization error dependent on a certain set restricted isometry property on the matrix
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A. More generally, Theorem 8.3 in Supplementary 8.6 provides statistical guarantees for

Algorithm 8.1 using the standard notion of empirical Rademacher complexity (Mohri et al.,

2018c).

Hand and Voroninski (2017) analyze the optimization landscape of (8.14) under the assump-

tion that G (i ) is composed of linear layers and ReLU activation functions, (i i ) is sufficiently

expansive at each layer and (i i i ) the network’s weights have a Gaussian distribution or an

equivalent deterministic weight distribution condition. Under such conditions, they show

global existence of descent directions outside small neighborhoods around two points, but

do not provide algorithmic convergence rates. Their analysis requires ReLU activation in all

layers of the generator G , including the last one, which is often not met in practice.

On the other hand, our framework is not restricted to a particular network architecture and

instead isolates the necessary assumptions on the network G for the success of Algorithm 8.1.

In doing so, we effectively decouple the learning task from the network structure G and

study them separately in Theorem 2.1 and Proposition 8.1, respectively. In particular, our

theory in Section 8.3 (Supplementary 8.6) applies broadly to any nonlinear map G that meets

Assumptions 8.1-8.3 (Assumptions 8.2-8.5), respectively.

In turn, Proposition 8.1 establishes that the standard feed forward network with common

differentiable activation functions almost surely meets these assumptions. In this sense, let

us also point to the work of Oymak et al. (2018), which is limited to linear regression with a

nonlinear constraint, with its convex analogue studied in (Agarwal et al., 2010; Giryes et al.,

2016).

Heckel et al. (2019) provides a convergence proof for a modified version of gradient descent,

limited to (8.14) and without specifying a rate. We provide the convergence rate for a broad

range of learning problems, and study the statistical generalization. Hand et al. (2018) studied

the phase retrieval problem, with a non-convex objective function that is not directly covered

by (8.1).

For the problem (8.14), Shah and Hegde (2018); Hegde (2018) proposed to use Projected

Gradient Descent (PGD) after splitting in a manner similar to our template (8.1). If the

projection (onto the range of the prior G) is successful, and under certain additional conditions,

the authors establish linear convergence of PGD to a minimizer of (8.14). However, the

projection onto the nonlinear range of G is itself a difficult non-convex program without any

theoretical guarantees. In contrast, we can solve the same problem without any projections

while still providing a convergence rate.

From an optimization perspective, there are no fast rates for linearized ADMM with nonlinear

constraints to our knowledge, but convergence to a first-order stationary point and special

cases in a few different settings have been studied (Liu et al., 2017; Shen et al., 2016; Chen and

Gu, 2014; Qiao et al., 2016). Let us again emphasize that Assumptions 8.2 and 8.3 extract the

key attributes of G necessary for the success of Algorithm 8.1, which is therefore not limited
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to a generator network. It is also worth noting another line of work that applies tools from

statistical physics to inference with deep neural networks, see (Manoel et al., 2017; Rezende

et al., 2014) and the references therein.

8.5 Experiments

In this section we evaluate our algorithms for image recovery tasks with a generative prior. The

datasets we consider are the CelebA dataset of face images (Liu et al., 2015) and the MNIST

dataset of handwritten digits (LeCun and Cortes, 2010b). We train a generator G with ELU

activation functions Clevert et al. (2015), in order to satisfy Assumption 8.2. The generators are

trained using the Wasserstein GAN framework (Arjovsky et al., 2017). For the CelebA dataset

we downsample the images to 64×64 pixels as in Gulrajani et al. (2017) and we use the same

residual architecture (He et al., 2015) for the generator with four residual blocks followed by a

convolutional layer. For MNIST, we use the same architecture as one in Gulrajani et al. (2017),

which contains one fully connected layer followed by three deconvolutional layers.

We recover images on the range of the generator G , by choosing z⋆ ∈Rs and setting w⋆ :=G(z⋆)

as the true image to be recovered. This sets the global minimum of our objective functions at

zero, and allows us to illustrate and compare the convergence rates of various algorithms.

Our Algorithm 8.1 mantains iterates {wt , zt }t where wt might not be feasible, namely, wt

might not be in the range of G . As the goal in the following tasks is to recover an element in

the range of G (feasible points of (8.1)), we plot the objective value at the point G(zt ).

Baseline. We compare to the most widely-used algorithm in the current literature, the

gradient descent algorithm (GD) as used in (Bora et al., 2017), where a fixed number of

iterations with constant step size are performed for the function L(G(z)). We tune its learning

rate to be as large as possible without overshooting. (See Supplementary 8.13 for details on the

hyperparameter tuning).

Our goal is to illustrate our theoretical results and highlight scenarios where Algorithm 8.1 can

have better performance than GD in optimization problems with a generative prior. Hence,

we do not compare with sparsity-prior based algorithms, such as LASSO (Tibshirani, 1996), or

argue about GAN vs. sparsity priors as in Bora et al. (2017).

Our algorithms. We will use (i ) (linearized) ADMM (Algorithm 8.1), and (i i ) ADMM with

exact minimization (EADMM), described in section 8.14. For both ADMM and EADMM, we

choose a starting iterate (random z0 and w0 =G(z0)) and initial dual variable λ0 = 0 (for GD

we choose the same z0 as initial iterate).. We carefully track the objective function value vs.

computation time for a fair comparison.

Compressive sensing. The exact minimization step of EADMM involves the solution of a

system of linear equations in each iteration. Performing Singular Value Decomposition (SVD)

once on the measurement matrix A, and storing its components in memory, allows us to
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Figure 8.1: Reconstruction error and measurement error vs time. MNIST (left) and CelebA
(right)
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Figure 8.2: Test error on denoised adversarial
examples vs computation time.
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Figure 8.3: ℓ∞ reconstruction error per itera-
tion for ADAM, GD, and EADMM.

solve such linear systems with a very low per-iteration complexity (see Supplementary 8.13.3).

We plot the objective function value as well as the reconstruction error with 50% relative

measurements in Figure 8.1(average over 20 images (MNIST) and 10 images (CelebA)).

Adversarial Denoising with ℓ∞-norm Projection onto the range of a deep-net prior has been

considered by Samangouei et al. (2018); Ilyas et al. (2017) as a defense mechanism against

adversarial examples (Szegedy et al., 2014a). In their settings, samples are denoised with

a generative prior, before being fed to a classifier. Even though the adversarial noise intro-

duced is typically bounded in ℓ∞-norm, the projection is done in ℓ2-norm. Such projection

corresponds to F (w, z) = ∥w −w ♮∥2 in (8.1).

We instead propose to project using the ℓ∞-norm that bounds the adversarial perturbation.

To this end we let F (w, z) = γ∥w−w ♮∥2
2+∥w−w ♮∥∞ in the template (8.1), for some small value

of γ. The proximal of the ℓ∞ norm is efficiently computable (Duchi et al., 2008b), allowing

us to split F (w, z) in its components L(w) = γ∥w −w ♮∥2
2 and R(w) = ∥w −w ♮∥∞ (Note that the

small γ ensures that Assumption 8.1 holds)

We compare the ADAM optimizer (Kingma and Ba, 2014), GD and ADMM (450 iterations and

for GD and ADAM, and 300 iterations for EADMM). We use ADAM to solve the ℓ2 projection,

while ADMM solves the ℓ∞ projection. We evaluate on a test set of 2000 adversarial examples

from the MNIST dataset, obtained with the Projected Gradient Algorithm of Madry et al.

(2018b) with 30 iterations, stepsize 0.01 and attack size 0.2. For the classifier, we use a standard

convolutional network trained on clean MNIST samples. We also test ADAM, GD (3000

iterations) and EADMM (2000 iterations) on the ℓ∞ denoising task.

The test error as a function of computation time is in Figure 8.2. We observe that the ℓ∞
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denoising performs better when faced with ℓ∞ bounded attacks, in the sense that it achieves

a lower error with less computation time. In Figure 8.3, we plot the ℓ∞ reconstruction error

achieved by ADAM, GD and EADMM, averaged over 7 images. GD was unable to decrease the

initial error, while ADAM takes a considerable number of iterations to do so. In contrast, our

ADMM already achieves the final error of ADAM within its first 100 iterations.

8.6 Appendix: Statistical Learning with Generative Priors

So far, we have assumed L to be strongly convex in (8.1), see Assumption 8.1 and Theorem

2.1. In this section, we relax this assumption on L in the context of statistical learning with

generative priors, thus extending Theorem 2.1 to applications such as compressive sensing.

We also provide the corresponding generalization error in this section.

Here, we follow the standard setup in learning theory Mohri et al. (2018c). Consider the

probability space (X,χ), whereX⊂Rd is a compact set, equipped with the Borel sigma algebra,

and χ is the corresponding probability measure. To learn an unknown parameter w ♮ ∈ Rd ,

consider the optimization program

min
w∈Rp

L(w), L(w) := Ex∼χl (w, x), (8.15)

where L :Rp →R is the differentiable population risk and l :Rd ×Rp →R is the corresponding

loss function. We also assume that Program (8.15) has a unique solution w ♮ ∈Rp . The proba-

bility measure χ above is itself often unknown and we instead have access to m samples drawn

independently from χ, namely, {xi }m
i=1 ∼χ. This allows us to form the empirical loss

Lm(w) := 1

m

m∑
i=1

l (w, xi ). (8.16)

Often, m ≪ p and to avoid an ill-posed problem, we must leverage any inherent structure in

w ♮. In this work, we consider a differentiable map G :Rs →Rd and we assume that w ♮ ∈G(Rs).

That is, there exists z♮ ∈Rs such that w ♮ =G(z♮). While not necessary, we limit ourselves in this

section to the important case where G corresponds to a neural network, see Section 8.1.

To learn w ♮ with the generative prior w ♮ =G(z♮), we propose to solve the program

minimize
w,z

Lm(w)+R(w)+H(z)

subject to w =G(z),
(8.17)

where R :Rp →R and H :Rs →R are convex but not necessarily smooth. Depending on the

specific problem at hand, the regularizers R and H allow us to impose additional structure

on w and z, such as sparsity or set inclusion. Throughout, we again require that the proximal

maps (Parikh et al., 2014) for R and H can be computed efficiently, as detailed in Section 8.2.

Let us now state our assumptions, some of which differ from Section 8.3.
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Assumption 8.4. Convexity / strong smoothness of loss: We assume that l (·, ·) is convex in

both of its arguments. Moreover, we assume that l (w, ·) is strongly smooth, namely, there exists

σl ≥ 0 such that for every x, x ′ ∈X

Dl (x, x ′; w) ≤ σl

2

∥∥x −x ′∥∥2
2, (8.18)

where Dl stands for the Bregman divergence associated with l (w, ·),

Dl (x, x ′; w) = l (w, x ′)− l (w, x)−〈x ′−x,∇x l (w, x)〉.

Assumption 8.5. Strong convexity / smoothness of the population risk: We assume that the

population risk L defined as

L(w) := Ex∼χl (w, x), (8.19)

is both strongly convex and smooth, i.e., there exist 0 < ζL ≤σL such that

ζL

2
∥w −w ′∥2 ≤ DL(w, w ′) ≤ σL

2
∥w −w ′∥2,

DL(w, w ′) = L(w ′)−L(w)−〈w ′−w,∇L(w)〉, (8.20)

for every w, w ′ ∈Rd . In the following we denote by w ♮ the minimizer of (8.19). In view of our

assumption, such minimizer is unique.

Assumptions 8.4 and 8.5 are standard in statistical learning Mohri et al. (2018c). For example,

in linear regression, we might take

l (w, x) = 1

2
|〈w −w ♮, x〉|2,

Lm(w) = 1

2m

m∑
i=1

|〈w −w ♮, xi 〉|2,

for which both Assumptions 8.4 and 8.5 are met. Lastly, we require that the Assumptions 8.2

and 8.3 on G hold in this section, see and Proposition 8.1 for when these assumptions hold for

generative priors.

As a consequence of Assumption 8.4, we have that Lm is convex. We additionally require Lm to

be strongly convex and smooth in the following restricted sense. Even though Lm is random

because of its dependence on the random training data {xi }m
i=1, we ensure later in this section

that the next condition is indeed met with high probability when m is large enough.

Definition 8.1. Restricted strong convexity / smoothness of empirical loss: We say that Lm

is strongly convex and smooth on the set W ⊂Rp if there exist 0 <µL ≤ νL and µL ,νL ≥ 0 such
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that

DLm (w, w ′) ≥ µL

2
∥w ′−w∥2

2 −µL ,

DLm (w, w ′) ≤ νL

2
∥w ′−w∥2

2 +νL , (8.21)

DLm (w, w ′) := Lm(w ′)−Lm(w)−〈w ′−w,∇Lm(w)〉,

for every w, w ′ ∈W .

Under the above assumptions, a result similar to Theorem 2.1 holds, which we state without

proof.

Theorem 8.2. (guarantees for Algorithm 8.1) Suppose that Assumptions 8.2-8.5 hold. Let

(w∗, z∗) be a solution of program (8.1) and let λ∗ be a corresponding optimal dual variable. Let

also {wt , zt ,λt }t≥0 denote the output sequence of Algorithm 8.1. Suppose that Lm satisfies the

restricted strong convexity and smoothness in Definition 8.1 for a set W ⊂Rp that contains a

solution w∗ of (8.1) and all the iterates {wt }t≥0 of Algorithm 8.1.1 Suppose also that the primal

step sizes α,β in Algorithm 8.1 satisfy

α≤ 1

νρ
, β≤ 1

ξρ+2ατ2
ρ

. σ0 ≤σ0,ρ , (8.22)

Then it holds that

∥wt −w∗∥2
2

α
+ ∥zt − z∗∥2

2

β
≤ 2(1−ηρ)t∆0 +

ηρ

ρ
, (8.23)

∥wt −G(zt )∥2
2 ≤

4(1−ηρ)t∆0

ρ
+ η̃ρ

ρ2 , (8.24)

for every iteration t. Above, ∆0 = Lρ(w0, z0,λ0)−Lρ(w∗, z∗,λ∗) is the initialization error,

see (8.2). The convergence rate 1−ηρ ∈ (0,1) and the quantities νρ ,ξρ ,τρ ,σ0,ρ ,ηρ , η̃ρ above

depend on the parameters in the Assumptions 8.2-8.5 and on λ0,σ0.

The remarks after Theorem 2.1 apply here too.

8.6.1 Generalization Error

Building upon the optimization guarantee in Theorem 8.3, our next result in this section is

Theorem 8.3, which quantifies the convergence of the iterates {wt }t≥0 of Algorithm 8.1 to the

true parameter w ♮.

1If necessary, the inclusion {wt }t≥0 ⊂W might be enforced by adding the indicator function of the convex hull
of W to R in (8.1), similar to Agarwal et al. (2010).
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In other words, Theorem 8.3 below controls the generalization error of (8.1), namely, the error

incurred by using the empirical risk Lm in lieu of the population risk L. Indeed, Theorem 2.1

is silent about ∥wt −w ♮∥2. We address this shortcoming with the following result, proved in

Section 8.12 of the supplementary material.

Lemma 8.1. Let R = 1W be the indicator function on W ⊂Rp and set H = 0 in (8.1).2 Suppose

that w∗ belongs to the relative interior of W . Then it holds that

∥w ♮−w∗∥2 ≤ 1

ζL
max
w∈W

∥∇Lm(w)−∇L(w)∥2. (8.25)

Before bounding the right-hand side of (8.25), we remark that it is possible to extend Lemma 8.1

to the case where the regularizer R is a decomposable norm, along the lines of Negahban et al.

(2012). We will however not pursue this direction in the present work. Next note that (8.23)

and Lemma 8.1 together imply that

∥wt −w ♮∥2
2

α2 ≤
(∥wt −w∗∥2

α
+ ∥w∗−w ♮∥2

β

)2

(triangle inequality)

≤ 2∥wt −w∗∥2
2

α2 + 2∥w∗−w ♮∥2
2

β2 ((a +b)2 ≤ 2a2 +2b2)

≤ 4(1−ηρ)t∆0 +
2ηρ
ρ

+ 2

ζ2
L

max
w∈W

∥∇Lm(w)−∇L(w)∥2
2. (8.26)

According to Theorem 2.1, the right-hand side of (8.26) depends on µL ,µL ,νL ,νL , which were

introduced in Definition 8.1. Note that µL ,µL ,νL ,νL and the right-hand side of (8.25) are all

random variables because they depend on Lm and thus on the randomly drawn training data

{xi }m
i=1. To address this issue, we apply a basic result in statistical learning theory as follows.

For every w ∈Rp and every pair x, x ′ ∈X, we use Assumption 8.4 to write that

∥∇l (w, x)−∇l (w, x ′)∥2 ≤σl∥x −x ′∥2 (see (8.18))

≤σl diam(X), (8.27)

where diam(X) denotes the diameter of the compact set X. Note also that

E{xi }i ∇Lm(w) =∇L(w), ∀w ∈W, (8.28)

where the expectation is over the training data {xi }i . Then, for ε> 0 and except with a proba-

bility of at most e−ε, it holds that

∥∇Lm(w)−∇L(w)∥2

≤ 2RW (x1, · · · , xm)+3σl diam(X)

√
ε+2

2m

=:Υm,W (ε), (8.29)

2To be complete, 1W (w) = 0 if w ∈W and 1W (w) =∞ otherwise.
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for every w ∈W (Mohri et al., 2018c). Above,

RW (x1, · · · , xm) = EE

[
max
w∈W

∥∥∥∥∥ 1

m

m∑
i=1

ei∇w l (w, xi )

∥∥∥∥∥
2

]
, (8.30)

is the empirical Rademacher complexity and E = {ei }i is a Rademacher sequence, namely, a

sequence of independent random variables taking ±1 with equal probabilities. We can now

revisit (8.26) and write that

∥wt −w ♮∥2
2 ≤ 4α2(1−ηρ)t∆0 +

2α2ηρ

ρ
+

2α2Υ2
m,W (ε)

ζ2
L

, (8.31)

which holds except with a probability of at most e−ε. In addition, for every w, w ′ ∈W , we may

write that

∥∇Lm(w)−∇Lm(w ′)∥2

≤ ∥∇L(w)−∇L(w ′)∥2 +∥∇Lm(w)−∇L(w)∥2

+∥∇Lm(w ′)−∇L(w ′)∥2 (triangle inequality)

≤σL∥w −w ′∥2 +2Υm,W (ε), (see (8.20,8.29)) (8.32)

except with a probability of at most e−ε. Likewise, for every w, w ′ ∈W , we have that

∥∇Lm(w)−∇Lm(w ′)∥2

≥ ∥∇Lm(w)−∇Lm(w)∥2 −∥∇Lm(w)−∇L(w)∥2

−∥∇Lm(w ′)−∇L(w ′)∥2 (triangle inequality)

≥ ζL∥w −w ′∥2 −2Υm,W (ε), (see (8.20,8.29 )) (8.33)

except with a probability of at most e−ε. Therefore, Lm satisfies the restricted strong convexity

and smoothness in Definition 8.1 with

µL =σL , νL = ζL ,

µL = ζL = 2Υm,W (ε). (8.34)

Our findings in this section are summarized below.

Theorem 8.3. (generalization error) Suppose that Assumptions 8.2-8.5 hold and recall that

the training samples {xi }m
i=1 are drawn independently from the probability space (X,χ) for a

compact set X⊂Rd with diameter diam(X).

For a set W ⊂Rp , let R = 1W be the indicator function on W , and set H ≡ 0 in (8.1). Suppose

that solution w∗ of (8.1) belongs to the relative interior of W . For ε> 0, evaluate the quantities

in Theorem 8.2 with

µL =σL , νL = ζL ,
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µL = ζL = 4RW (x1, · · · , xm)

+6σl diam(X)

√
ε+2

2m
, (8.35)

where RW (x1, · · · , xm) in the empirical Rademacher complexity defined in (8.30). If the require-

ments on the step sizes in (8.22) hold, we then have that

∥wt −w ♮∥2
2 ≤ 4α2(1−ηρ)t∆0 +

2α2ηρ

ρ
+ 8α2

ζ2
L

RW (x1, · · · , xm)2

+ 18α2σ2
l diam(X)2(ε+2)

m
, (8.36)

except with a probability of at most e−ε.

Most of the remarks about Theorem 2.1 also apply to Theorem 8.3 and we note that ∥wt −w ♮∥2

reduces by increasing the number of training samples m, before asymptotically reaching the

generalization error

2ψρ+ 8

ζ2
L

RW (x1, · · · , xm)2. (8.37)

Computing the Rademacher complexity above for specific choices of the network structure

and loss is itself potentially a complicated task, which we will not pursue by the virtue of the

generality of our results so far. The key technical challenge there is computing the correspond-

ing entropy integral, which involves estimating the covering numbers of the set W Mohri et al.

(2018c). One last takeaway point from the statistical accuracy in (8.37) is the following. If

ηρ =O(ρ ·RW (x1, · · · , xm)2/ζ2
L), (8.38)

the asymptotic optimization error in Theorem 2.1 does not play an important role in deter-

mining the generalization error above. In words, if (8.38) holds, then Algorithm 8.1 converges

to the ball of statistical accuracy around w ♮. Here, O stands for the standard Big-O notation.

8.7 Appendix: Proof of Proposition 8.1

The feedforward network G =GΞ : Rs → Rd is a composition of linear maps and entry-wise

applications of the activation functions, and hence is also of class C 1. Its Jacobian DG :

Rs →Rd×s is thus a continuous function and its restriction to the compact subset X ⊆Rs is

Lipschitz-continuous. Therefore, there exists νG ≥ 0 such that∥∥DG(z ′)−DG(z)
∥∥

2 ≤ νG
∥∥z ′− z

∥∥, ∀z, z ′ ∈X .
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From standard arguments it then follows that Assumption 8.2 holds in the sense that

∥∥G(z ′)−G(z)−DG(z)(z ′− z)
∥∥

2 =
∥∥∥∥∫ 1

0
(DG(t z ′+ (1− t )z)−DG(z))(z ′− z)d t

∥∥∥∥
2

≤
∫ 1

0

∥∥DG(t z ′+ (1− t )z)−DG(z)
∥∥

2

∥∥z ′− z
∥∥

2d t

≤ νG

∫ 1

0
t
∥∥z ′− z

∥∥2d t = νG

2

∥∥z ′− z
∥∥2

2,

for every z, z ′ ∈Rs .

In order to show that Assumption 8.3 (near-isometry) also holds, we will require the following

simple fact:

Lemma 8.2. Let G : X ⊆ Rs → Rd have a left inverse H : G(X ) ⊆ Rd → Rs which is Lipschitz-

continuous with constant ιG > 0. Then it holds that

1

ιG

∥∥z ′− z
∥∥≤ ∥∥G(z ′)−G(z)

∥∥, ∀z ′, z ∈ D.

Proof. ∥∥z ′− z
∥∥= ∥∥H(G(z ′))−H(G(z))

∥∥≤ ιG
∥∥G(z ′)−G(z)

∥∥.

□

We now proceed to show that Assumption 8.3 holds. We suppose G is of the form

G(z) =ωkWk (ωk−1Wk−1 . . . (ω1W1z) . . .),

for weight matrices {Wk }k . First note that, by the compactness of the domain of G , the values

of the hidden layers are always contained in a product of compact intervals, and so we can

replace ωi by its restriction to such sets. Each ωi is continuous, defined on a product of

intervals, and is stricly increasing so that they have a continuous left inverse ω−1
i (Garling,

2014, Proposition 6.4.5). The assumption of non-decreasing layer sizes implies that the Wi are

tall matrices of dimensions (mi ,ni ) with mi ≥ ni , whose columns are almost surely linearly

independent after an arbitrarily small perturbation. In such case they have a left matrix inverse

W −1
i , which as a bounded linear map, is continuous. It then follows that G has a continuous

left inverse of the form

G−1 =W −1
1 ◦ω−1

1 . . .W −1
k ◦ω−1

k ,

which is a continuous mapping and is defined on G(X ) which by continuity of G is compact,

hence G−1 is Lipschitz-continuous. The result then follows by the Lipschitz continuity of the

map G (restricted to the compact domain X ) and Lemma 8.2.
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8.8 Appendix: Proof of Theorem 8.1

It is convenient throughout the supplementary material to use a slightly different notation for

Lagrangian, compared to the body of the paper. To improve the readability of the proof, let us

list here the assumptions on the empirical loss L and prior G that are used throughout this

proof. For every iteration t , we assume that

L(wt )−L(w∗)−〈wt −w∗,∇L(w∗)〉
≥ µL

2
∥wt −w∗∥2

2,
(
strong convexity of L

)
(8.39)

L(wt+1)−L(wt )−〈wt+1 −wt ,∇L(wt )〉
≤ νL

2
∥wt+1 −wt∥2

2,
(
strong smoothness of L

)
(8.40)

∥G(z ′)−G(z)−DG(z) · (z ′− z)∥2

≤ νG

2
∥z ′− z∥2

2,
(
strong smoothness of G

)
(8.41)

ιG∥z ′− z∥2 ≤ ∥G(z ′)−G(z)∥2 ≤ κG∥z ′− z∥2,
(
near-isometry of G

)
(8.42)

∥DG(z) · (z ′− z)∥2 ≤ κG∥z ′− z∥2,
(
Lipschitz continuty of G

)
(8.43)

For the sake of brevity, let us set

v = (w, z) ∈Rp+s ,

Lρ(v,λ) :=Lρ(w, z,λ) := L(w)+R(w)+H(z)+〈w −G(z),λ〉
+ ρ

2
∥w −G(z)∥2

2, (augmented Lagrangian) (8.44)

L ′
ρ(v,λ) :=L ′

ρ(w, z,λ) = L(w)+〈w −G(z),λ〉+ ρ

2
∥w −G(z)∥2

2, (8.45)

A(v) = A(w, z) := w −G(z). (feasibility gap) (8.46)
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Let also v∗ = (w∗, z∗) be a solution of (8.1) and let λ∗ be a corresponding optimal dual variable.

The first-order necessary optimality conditions for (8.1) are−∇vL ′
ρ(v∗,λ∗) ∈ ∂R(w∗)×∂H(z∗),

w∗ =G(z∗),
(8.47)

where ∂R(w∗) and ∂H(z∗) are the subdifferentials of R and H , respectively, at w∗ and z∗.

Throughout the proof, we will also often use the notation

∆t :=Lρ(vt ,λt )−Lρ(v∗,λ∗), (8.48)

∆′
t :=L ′

ρ(vt ,λt )−L ′
ρ(v∗,λ∗), (8.49)

δt := ∥wt −w∗∥2, δ′t := ∥zt − z∗∥2, (8.50)

At := A(vt ) = wt −G(zt ). (8.51)

In particular, with this new notation, the dual update can be rewritten as

λt+1 =λt +σt+1 At+1. (see Algorithm 8.1) (8.52)

First, in Appendix 8.9, we control the smoothness of L ′
ρ over the trajectory of the algorithm.

Lemma 8.3. For every iteration t , it holds that

L ′
ρ(wt+1, zt+1,λt )−L ′

ρ(wt , zt+1,λt )−〈wt+1 −wt ,∇wL ′
ρ(wt , zt+1,λt )〉

≤ νρ

2
∥wt+1 −wt∥2

2, (8.53)

L ′
ρ(wt , zt+1λt )−L ′

ρ(wt , zt ,λt )−〈zt+1 − zt ,∇zL
′
ρ(wt , zt ,λt )〉

≤ ξρ

2
∥zt+1 − zt∥2

2, (8.54)

∥∇wL ′
ρ(wt , zt+1,λt )−∇wL ′

ρ(wt , zt ,λt )∥2 ≤ τρ∥zt+1 − zt∥2
2, (8.55)

where

νρ := νL +ρ. (8.56)

ξρ := νG (λmax +ρmax
i

∥Ai∥2)+2ρκ2
G , (8.57)
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τρ := ρκG . (8.58)

Second, in the following result we ensure that Lρ and L ′
ρ are sufficiently regular along the

trajectory of our algorithm, see Appendix 8.10 for the proof.

Lemma 8.4. For every iteration t , it holds that

∆t ≥
µρδ

2
t

2
+
µ′
ρδ

′2
t

2
−µρ , (8.59)

∆′
t +〈v∗− vt ,∇vL ′

ρ(vt )〉 ≤ ωρδ
2
t

2
+
ω′
ρδ

′2
t

2
, (8.60)

where

µρ :=µL −2ρ, µ′
ρ := ρι2G

2
−νG∥λ∗∥2, (8.61)

µρ := 3

ρ

(
λ2

max +∥λ∗∥2
2

)
, (8.62)

ωρ := 0, ω′
ρ := νG

2

(
λmax +ρ

)
. (8.63)

Having listed all the necessary technical lemmas above, we now proceed to prove Theorem

2.1. Using the smoothness of L ′
ρ , established in Lemma 8.3, we argue that

L ′
ρ(vt+1,λt+1)

= L(wt+1)+〈At+1,λt+1〉+ ρ

2
∥At+1∥2

2 (see (8.45))

= L(wt+1)+〈At+1,λt 〉+
(ρ

2
+σt+1

)
∥At+1∥2

2 (see (8.52))

=L ′
ρ(wt+1, zt+1,λt )+σt+1∥At+1∥2

2 (see (8.44))

≤L ′
ρ(wt , zt+1,λt )+〈wt+1 −wt ,∇wL ′

ρ(wt , zt+1,λt )〉+ νρ

2
∥wt+1 −wt∥2

2

+νρ+σt+1∥At+1∥2
2 (see (8.53))

≤L ′
ρ(wt , zt+1,λt )+〈wt+1 −wt ,∇wL ′

ρ(wt , zt+1,λt )〉+ 1

2α
∥wt+1 −wt∥2

2

+νρ+σt+1∥At+1∥2
2, (8.64)

where the last line above holds if the step size α satisfies

α≤ 1

νρ
. (8.65)
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According to Algorithm 8.1, we can equivalently write the w updates as

wt+1 = argmin
w

〈
w −wt ,∇wL ′

ρ(wt , zt+1,λt )
〉
+ 1

2α
∥w −wt∥2

2 +R(w). (8.66)

In particular, consider above the choice of w = θw∗+ (1−θ)wt for θ ∈ [0,1] to be set later. We

can then bound the last line of (8.64) as

L ′
ρ(vt+1,λt+1)+R(wt+1)

=L ′
ρ(wt , zt+1,λt )+min

w
〈w −wt ,∇wL ′

ρ(wt , zt+1,λt )〉

+ 1

2α
∥w −wt∥2

2 +R(w)+σt+1∥At+1∥2
2 (see (8.64,8.66))

≤L ′
ρ(wt , zt+1,λt )+θ〈w∗−wt ,∇wL ′

ρ(wt , zt+1,λt )〉+ θ2δ2
t

2α

+θR(w∗)+ (1−θ)R(wt )+σt+1∥At+1∥2
2 (convexity of R)

=L ′
ρ(wt , zt+1,λt )+θ〈w∗−wt ,∇wL ′

ρ(wt , zt ,λt )〉+ θ2δ2
t

2α

+θ〈w∗−wt ,∇wL ′
ρ(wt , zt+1,λt )−∇wL ′

ρ(wt , zt ,λt )〉
+θR(w∗)+ (1−θ)R(wt )+σt+1∥At+1∥2

2. (8.67)

The last inner product above can be controlled as

θ〈w∗−wt ,∇wL ′
ρ(wt , zt+1,λt )−∇wL ′

ρ(wt , zt ,λt )〉

≤ θ2δ2
t

2α
+ α

2
∥∇wL ′

ρ(wt , zt+1,λt )−∇wL ′
ρ(wt , zt ,λt )∥2

2 (2〈a,b〉 ≤ ∥a∥2
2 +∥b∥2

2 and (8.50))

≤ θ2δ2
t

2α
+ατ2

ρ∥zt+1 − zt∥2
2, (see (8.55)) (8.68)

which, after substituting in (8.67), yields that

L ′
ρ(vt+1,λt+1)+R(wt+1)

≤L ′
ρ(wt , zt+1,λt )+θ〈w∗−wt ,∇wL ′

ρ(wt , zt ,λt )〉+ θ2δ2
t

α

+ατ2
ρ∥zt+1 − zt∥2

2 +θR(w∗)+ (1−θ)R(wt )+σt+1∥At+1∥2
2. (8.69)

Regarding the right-hand side above, the smoothness of L ′
ρ in Lemma 8.3 allows us to write

that

L ′
ρ(wt , zt+1,λt )+ατ2

ρ∥zt+1 − zt∥2
2

≤L ′
ρ(wt , zt ,λt )+〈zt+1 − zt ,∇zL

′
ρ(wt , zt ,λt )〉

+
(
ξρ

2
+ατ2

ρ

)
∥zt+1 − zt∥2

2. (see (8.54)) (8.70)
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If we assume that the primal step sizes α,β satisfy

ξρ

2
+ατ2

ρ ≤
1

2β
, (8.71)

we can simplify (8.70) as

L ′
ρ(wt , zt+1,λt )+ατ2

ρ∥zt+1 − zt∥2
2

≤L ′
ρ(wt , zt ,λt )+〈zt+1 − zt ,∇zL

′
ρ(wt , zt ,λt )〉+ 1

2β
∥zt+1 − zt∥2

2. (see (8.71)) (8.72)

From Algorithm 8.1, recall the equivalent expression of the z updates as

zt+1 = argmin
z

〈z − zt ,∇zL
′
ρ(wt , zt ,λt )〉+ 1

2β
∥z − zt∥2

2 +H(z), (8.73)

and consider the choice of z = θz∗+ (1−θ)zt above, with θ ∈ [0,1] to be set later. Combining

(8.72,8.73) leads us to

L ′
ρ(wt , zt+1,λt )+ατ2

ρ∥zt+1 − zt∥2
2 +H(zt+1)

=L ′
ρ(wt , zt ,λt )+min

z
〈z − zt ,∇zL

′
ρ(wt , zt ,λt )〉+ 1

2β
∥z − zt∥2

2 +H(z) (see (8.72,8.73))

≤L ′
ρ(wt , zt ,λt )+θ〈z∗− zt ,∇zL

′
ρ(wt , zt ,λt )〉+ θ2δ

′2
t

2β
+H(θz∗+ (1−θ)zt )

≤L ′
ρ(wt , zt ,λt )+θ〈z∗− zt ,∇zL

′
ρ(wt , zt ,λt )〉+ θ2δ

′2
t

2β

+θH(z∗)+ (1−θ)H(zt ). (convexity of H) (8.74)

By combining (8.69,8.74), we reach

Lρ(vt+1,λt+1)

=L ′
ρ(vt+1,λt+1)+R(wt+1)+H(zt+1) (see (8.44,8.45))

≤L ′
ρ(wt , zt+1,λt )+θ〈w∗−wt ,∇wL ′

ρ(wt , zt ,λt )〉+ θ2δ2
t

α
+ατ2

ρ∥zt+1 − zt∥2
2

+θR(w∗)+ (1−θ)R(wt )+H(zt+1)+σt+1∥At+1∥2
2 (see (8.69))

≤L ′
ρ(vt ,λt )+θ〈v∗− vt ,∇zL

′
ρ(vt ,λt )〉+ θ2δ2

t

α
+ θ2δ

′2
t

2β

+θR(z∗)+ (1−θ)R(zt )+θH(z∗)+ (1−θ)H(zt )

+σt+1∥At+1∥2
2 (see (8.74))

=Lρ(vt ,λt )+θ〈v∗− vt ,∇zL
′
ρ(vt ,λt )〉+ θ2δ2

t

α
+ θ2δ

′2
t

2β

+θ(R(z∗)+H(z∗)−R(zt )−H(zt ))+σt+1∥At+1∥2
2 (see (8.44,8.45))
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≤Lρ(vt ,λt )+θ
(
ωρδ

2
t

2
+
ω′
ρδ

′2
t

2
−∆′

t

)
+ θ2δ2

t

α
+ θ2δ

′2
t

2β

+θ(R(z∗)+H(z∗)−R(zt )−H(zt ))+σt+1∥At+1∥2
2 (see (8.60))

=Lρ(vt ,λt )+θ
(
ωρδ

2
t

2
+
ω′
ρδ

′2
t

2
−∆t

)
+ θ2δ2

t

α
+ θ2δ

′2
t

2β

+σt+1∥At+1∥2
2 (see (8.44,8.45)) (8.75)

After recalling (8.48) and by subtracting Lρ(v∗,λ∗) from both sides, (8.75) immediately implies

that

∆t+1 ≤∆t +
ωρδ

2
t

2
+
ω′
ρδ

′2
t

2
+θ (

ωρ−∆t
)+ θ2δ2

t

α
+ θ2δ

′2
t

2β

+σt+1∥At+1∥2
2, (see (8.48,8.75)) (8.76)

where we also used the assumption that θ ≤ 1 above. To remove the feasibility gap ∥At+1∥2

from the right-hand side above, we write that

∥At+1∥2 = ∥wt+1 −G(zt+1)∥2 (see (8.51))

= ∥wt+1 −w∗− (G(zt+1)−G(z∗))∥2 ((w∗, z∗) is a solution of (8.1))

≤ ∥wt+1 −w∗∥2 +∥G(zt+1)−G(z∗)∥2 (triangle inequality)

≤ ∥wt+1 −w∗∥2 +κG∥zt+1 − z∗∥2 (see (8.42))

= δt+1 +κGδ
′
t+1, (see (8.50)) (8.77)

which, after substituting in (8.76), yields that

∆t+1 ≤∆t +
ωρδ

2
t

2
+
ω′
ρδ

′2
t

2
+θ (

ωρ−∆t
)+ θ2δ2

t

α
+ θ2δ

′2
t

2β
+2σt+1δ

2
t+1 +2σt+1κ

2
Gδ

′2
t+1

(see (8.77) and (a +b)2 ≤ 2a2 +2b2)

≤∆t +
ωρδ

2
t

2
+
ω′
ρδ

′2
t

2
+θ (

ωρ−∆t
)+ θ2δ2

t

α
+ θ2δ

′2
t

2β
+2σ0δ

2
t+1 +2σ0κ

2
Gδ

′2
t+1.

. (σt+1 ≤σ0 in Algorithm 8.1) (8.78)

For every iteration t , suppose that

δ2
t

α
+ δ

′2
t

β
≥ ηρ ≥

µρ

min
(
αµρ

4 ,
βµ′

ρ

2

)
−

√
max

(
α
2 (ωρ+4σ0),β(ω′

ρ+4σ0κ
2
G )

) , (8.79)
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for ηρ to be set later. Consequently, it holds that

∆t

2δ2
t

α + δ′2t
β

≥
µρδ

2
t

2 + µ′
ρδ

′2
t

2 −µρ
2δ2

t
α + δ′2t

β

(see (8.59))

≥ min

(
αµρ

4
,
βµ′

ρ

2

)
−

µρ
2δ2

t
α + δ′2

β

≥ min

(
αµρ

4
,
βµ′

ρ

2

)
−
µρ

ηρ
(see (8.79))

≥
√

max
(α

2

(
ωρ+4σ0

)
,β(ω′

ρ+4σ0κ
2
G )

)
. (see (8.79)) (8.80)

We now set

θ̂t := min


√√√√√ ∆2

t(
2δ2

t
α + δ′2t

β

)2 −max
(α

2

(
ωρ+4σ0

)
,β

(
ω′
ρ+4σ0κ

2
G

))
,1

 , (8.81)

which is well-defined, as verified in (8.80). From (8.80,8.81), it also immediately follows that

θ̂t ∈ [0,1], ∀t , (8.82)

∆t ≥ 0, ∀t , (8.83)

which we will use later on in the proof. Consider first the case where θ̂t < 1. To study the

choice of θ = θ̂t in (8.76), we will need the bound

− θ̂t∆t + θ̂2
t

(
δ2

t

α
+ δ′2t

2β

)

=−
√√√√√ ∆4

t(
2δ2

t
α + δ′2t

β

)2 −∆2
t max

(α
2

(
ωρ+4σ0

)
,β

(
ω′
ρ+4σ0κ

2
G

))

+ ∆2
t

4δ2
t

α + 2δ′2t
β

−max
(α

2

(
ωρ+4σ0

)
,β

(
ω′
ρ+4σ0κ

2
G

))(
δ2

t

α
+ δ′2t

2β

)
(see (8.83))

≤− ∆2
t

4δ2
t

α + 2δ′2
β

+∆t

√
max

(α
2

(
ωρ+4σ0

)
,β

(
ω′
ρ+4σ0κ

2
G

))

−max
(α

2

(
ωρ+4σ0

)
,β

(
ω′
ρ+4σ0κ

2
G

))(
δ2

t

α
+ δ′2t

2β

)
, (8.84)

where the inequality above uses
p

a −b ≥p
a −p

b. Substituting (8.84) back into (8.78), we
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reach

∆t+1 ≤∆t −
∆2

t
4δ2

t
α + 2δ′2

β

+∆t

√
max

(α
2

(
ωρ+4σ0

)
,β

(
ω′
ρ+4σ0κ

2
G

))
(see (8.78,8.84))

≤∆t −
(

min

(
αµρ

4
,
βµ′

ρ

2

)
−
µρ

ηρ

)
∆t

2

+∆t

√
max

(α
2

(
ωρ+4σ0

)
,β

(
ω′
ρ+4σ0κ

2
G

))
(see third line of (8.80) and (8.83))

≤
(

1−min

(
αµρ

8
,
βµ′

ρ

4

)
+
µρ

2ηρ
+

√
max

(α
2

(
ωρ+4σ0

)
,β

(
ω′
ρ+4σ0κ

2
G

)))
∆t

=: ηρ,1∆t , if ∆t <
δ2

t

α
+ δ′2t
β

. (8.85)

Next consider the case where θ̂t = 1. With the choice of θ = θ̂t = 1 in (8.78), we find that

∆t+1 ≤
(
ωρ

2
+ 1

α
+ρ

)
δ2

t +
(
ω′
ρ

2
+ 1

2β
+ρκ2

G

)
δ′2t (see (8.78))

≤ 1

2

(
1+max

(α
2

(ωρ+4σ0),β(ω′
ρ+4σ0κ

2
G )

))
·
(

2δ2
t

α
+ δ′2t
β

)

≤ 1

2

√
1+max

(α
2

(ωρ+4σ0),β(ω′
ρ+4σ0κ

2
G )

)
∆t (see (8.81))

=: ηρ,2∆t , if ∆t ≥
δ2

t

α
+ δ′2t
β

. (8.86)

To simplify the above expressions, let us assume that√
max

(α
2

(ωρ+4σ0),β(ω′
ρ+4σ0κ

2
G )

)
≤ min

(
αµρ

16
,
βµ′

ρ

8

)
≤ 1

2
, (8.87)

from which it follows that

max(ηρ,1,ηρ,2) ≤ 1−min

(
αµρ

16
,
βµ′

ρ

8

)
+
µρ

2ηρ

≤ 1−min

(
αµρ

32
,
βµ′

ρ

16

)
=: 1−ηρ ∈ [0,1), (8.88)

where the second line above holds if

ηρ ≥
µρ

min
(
αµρ
16 ,

βµ′
ρ

8

) . (8.89)
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Then, by unfolding (8.85,8.86), we reach

∆t ≤ (1−ηρ)t∆0. (8.90)

Moreover, by combining (8.59,8.90), we can bound the error, namely,

δ2
t

α
+ δ′2t
β

≤ max(αµρ ,βµ′
ρ)

(
µρδ

2
t +µ′

ρδ
′2
t

)
≤µρδ2

t +µ′
ρδ

′2
t (see (8.65,8.71), Lemmas 8.3 and 8.4)

≤ 2(∆t +µρ) (see (8.59))

≤ 2(1−ηρ)t∆0 +
2µρ
ηρ

≤ 2(1−ηρ)t∆0 +
2µρ

min
(
αµρ
16 ,

βµ′
ρ

8

) (see (8.88))

=: 2(1−ηρ)t∆0 +
ηρ

ρ
. (this choice of ηρ satisfies (8.79,8.89)). (8.91)

It remains to bound the feasibility gap ∥At∥2, see (8.51). Instead of (8.77), we consider the

following alternative approach to bound ∥At∥2. Using definition of ∆t in (8.48), we write that

∆t =Lρ(vt ,λt )−Lρ(v∗,λ∗) (see (8.48))

=Lρ(vt ,λt )−Lρ(vt ,λ∗)+Lρ(vt ,λ∗)−Lρ(v∗,λ∗)

= 〈At ,λt −λ∗〉+L (vt ,λ∗)−L (v∗,λ∗)+ ρ

2
∥At∥2

2, (8.92)

where

L (v,λ) =L (w, z,λ) := L(w)+R(w)+H(z)+〈w −G(z),λ〉. (8.93)

It is not difficult to verify that L (v∗,λ∗) = Lρ(v∗,λ∗) is the optimal value of problem (8.1)

and that L (vt ,λ∗) ≥L (v∗,λ∗), from which it follows that

∆t ≥ 〈At ,λt −λ∗〉+ ρ

2
∥At∥2

2 (see (8.92))

≥−ρ
4
∥At∥2

2 −
1

ρ
∥λt −λ∗∥2

2 +
ρ

2
∥At∥2

2 (Holder’s inequality and 2ab ≤ a2 +b2)

≥− 2

ρ
∥λt∥2

2 −
2

ρ
∥λ∗∥2

2 +
ρ

4
∥At∥2

2 ((a +b)2 ≤ 2a2 +2b2)

≥−2λ2
max

ρ
− 2∥λ∗∥2

2

ρ
+ ρ

4
∥At∥2

2, (see (8.100)) (8.94)
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which, in turn, implies that

∥At∥2
2 ≤

4

ρ

(
∆t +

2λ2
max

ρ
+ 2∥λ∗∥2

2

ρ

)
(see (8.94))

≤ 4

ρ

(
(1−ηρ)t∆0 +

2(ηρ,1 +ηρ,2)

ηρ
+ 2λ2

max

ρ
+ 2∥λ∗∥2

2

ρ

)
(see (8.90))

≤ 4

ρ

(
(1−ηρ)t∆0 +

ηρ+2λ2
max +2∥λ∗∥2

2

ρ

)
(see (8.91))

=:
4(1−ηρ)t∆0

ρ
+ η̃ρ

ρ2 . (8.95)

This completes the proof of Theorem 2.1.

Let us also inspect the special case where µL ≫ ρ≳ 1 and ι2G ≫ νG , where ≈ and ≳ suppress

any universal constants and dependence on the dual optimal variable λ∗, for the sake of

simplicity. From Lemmas 8.3 and 8.4, it is easy to verify that

νρ ≈ νL , ξρ ≈ ρκ2
G , τρ = ρκG ,

µρ ≈µL , µ′
ρ ≈ ρι2G , µρ ≈ ρ−1, ω′

ρ ≈ ρνG . (8.96)

We can then take

α≈ 1

νL
, (see (8.65))

β≈ 1

ξρ
≈ 1

ρκ2
G

, (see (8.71))

ηρ ≈ min

(
µL

νL
,
ι2G

κ2
G

)
, (see (8.88))

ηρ ≈
ρµρ

min
(
αµρ ,βµ′

ρ

) ≈ max

(
νL

µL
,
κ2

G

ι2G

)
, (see (8.91))

η̃ρ ≈ ηρ ≈ max

(
νL

µL
,
κ2

G

ι2G

)
. (see (8.95)) (8.97)

Lastly, for (8.87) to hold, it suffices that

σ0 ≲ ρmin

(
µ2

L

ν2
L

,
ι4G

κ4
G

)
=:σ0,ρ . (8.98)
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8.9 Appendix: Proof of Lemma 8.3

To prove (8.53), we write that

L ′
ρ(wt+1, zt+1,λt )−L ′

ρ(wt , zt+1,λt )−〈wt+1 −wt ,∇wL ′
ρ(wt , zt+1,λt )〉

= L(wt+1)−L(wt )−〈wt+1 −wt ,∇w L(wt )〉
+ ρ

2
∥wt+1 −G(zt+1)∥2

2 −
ρ

2
∥wt −G(zt+1)∥2

2 −2ρ〈wt+1 −wt , wt −G(zt+1)〉 (see (8.45))

≤ νL

2
∥wt+1 −wt∥2

2 +νL + ρ

2
∥wt+1 −wt∥2

2 (see (8.40))

=:
νρ

2
∥wt+1 −wt∥2

2 +νρ . (8.99)

To prove (8.54), let us first control the dual sequence {λt }t by writing that

∥λt∥2 = ∥λ0 +
t∑

i=1
σi Ai∥2 (see (8.52))

≤ ∥λ0∥2 +
t∑

i=1
σi∥Ai∥2 (triangle inequality)

≤ ∥λ0∥2 +
t∑

t ′=1

σ0

i log2(i +1)

≤ ∥λ0∥2 + cσ0

=:λmax, (8.100)

where

c ≥
∞∑

t=1

1

t log2(t +1)
. (8.101)

We now write that

L ′
ρ(wt , zt+1,λt )−L ′

ρ(wt , zt ,λt )−〈zt+1 − zt ,∇zL
′
ρ(wt , zt ,λt )

=−〈G(zt+1)−G(zt )−DG(zt )(zt+1 − zt ),λt 〉
+ ρ

2
∥wt −G(zt+1)∥2

2 −
ρ

2
∥wt −G(zt )∥2

2

+ρ〈DG(zt )(zt+1 − zt ), wt −G(zt )〉. (see (8.45)) (8.102)

To bound the first inner product on the right-hand side above, we write that

〈G(zt+1)−G(zt )−DG(zt )(zt+1 − zt ),λt 〉
≤ ∥G(zt+1)−G(zt )−DG(zt )(zt+1 − zt )∥2 · ∥λt∥2 (Cauchy-Shwartz’s inequality)

≤ νGλmax

2
∥zt+1 − zt∥2

2 (see (8.41,8.100)) (8.103)
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The remaining component on the right-hand side of (8.102) can be bounded as

∥wt −G(zt+1)∥2
2 −∥wt −G(zt )∥2

2 +2〈DG(zt )(zt+1 − zt ), wt −G(zt )〉
= ∥wt −G(zt+1)∥2

2 −∥wt −G(zt )∥2
2 +2〈G(zt+1)−G(zt ), wt −G(zt )〉

−2〈G(zt+1)−G(zt )−DG(zt )(zt+1 − zt ), wt −G(zt )〉
= ∥G(zt+1)−G(zt )∥2

2

+2〈G(zt+1)−G(zt )−DG(zt )(zt+1 − zt ), wt −G(zt )〉
≤ ∥G(zt+1)−G(zt )∥2

2

+2∥G(zt+1)−G(zt )−DG(zt )(zt+1 − zt )∥2 · ∥wt −G(zt )∥2 (Cauchy-Shwartz’s inequality)

≤ κ2
G∥zt+1 − zt∥2

2 +νG∥zt+1 − zt∥2
2∥wt −G(zt )∥2 (see (8.41,8.42))

≤ κ2
G∥zt+1 − zt∥2

2 +νG∥zt+1 − zt∥2
2 max

i
∥Ai∥2. (see (8.51)) (8.104)

Substituting the bounds in (8.103,8.104) back into (8.102), we find that

L ′
ρ(wt , zt+1,λt )−L ′

ρ(wt , zt ,λt )−〈zt+1 − zt ,∇zL
′
ρ(wt , zt ,λt )

≤ 1

2

(
νG (λmax +ρmax

i
∥Ai∥2)+ρκ2

G

)
∥zt+1 − zt∥2

2

=:
ξρ

2
∥zt+1 − zt∥2

2 +ξρ , (8.105)

which proves (8.54). To prove (8.55), we write that

∥∇wL ′
ρ(wt , zt+1,λt )−∇wL ′

ρ(wt , zt ,λt )∥2

= ρ∥G(zt+1)−G(zt )∥2 (see (8.45))

≤ ρκG∥zt+1 − zt∥2 (see (8.42))

=: τρ∥zt+1 − zt∥2 +τρ . (8.106)

This completes the proof of Lemma 8.3.

8.10 Appendix: Proof of Lemma 8.4

For future reference, we record that

〈vt − v∗,∇vL ′
ρ(v∗)〉

= 〈wt −w∗,∇wL ′
ρ(v∗)〉+〈zt − z∗,∇zL

′
ρ(v∗)〉 (v = (w, z))

= 〈wt −w∗,∇L(w∗)+λ∗+ρ(w∗−G(z∗)〉−〈DG(z∗)(zt − z∗),λ∗+ρ(w∗−G(z∗))〉 (see (8.45))

= 〈wt −w∗,∇L(w∗)+λ∗〉−〈DG(z∗)(zt − z∗),λ∗〉, (see (8.47)) (8.107)

213



Chapter 8. Fast and Provable ADMM for Learning with Generative Priors

where the last line above uses the feasibility of v∗ in (8.1). To prove (8.59), we use the definition

of Lρ in (8.44) to write that

Lρ(vt ,λt )−Lρ(v∗,λ∗)

=L ′
ρ(vt ,λt )−L ′

ρ(v∗,λ∗)+R(wt )−R(w∗)+L(zt )−L(z∗) (see (8.44,8.45))

≥L ′
ρ(vt ,λt )−L ′

ρ(v∗,λ∗)−〈vt − v∗,∇vL ′
ρ(v∗,λ∗)〉 (see (8.47))

= L(wt )−L(w∗)−〈wt −w∗,∇L(u∗)〉
+〈At ,λt 〉−〈wt −w∗−DG(z∗)(zt − z∗),λ∗〉+ ρ

2
∥At∥2

2 (see (8.107))

≥ µLδ
2
t

2
+〈At ,λt −λ∗〉+ ρ

2
∥At∥2

2

+〈G(zt )−G(z∗)−DG(z∗)(zt − z∗
k ),λ∗〉 (see (8.39,8.50))

≥ µLδ
2
t

2
+〈At ,λt −λ∗〉+ ρ

2
∥At∥2

2 −
νGδ

′2
t

2
∥λ∗∥2. (see (8.41,8.50)) (8.108)

To control the terms involving At in the last line above, we write that

〈At ,λt −λ∗〉+ ρ

2
∥At∥2

2

= ρ

2

∥∥∥∥At − λt −λ∗

ρ

∥∥∥∥2

2
− ∥λt −λ∗∥2

2

2ρ

= ρ

2

∥∥∥∥wt −w∗− (G(zt )−G(z∗))− λt −λ∗

ρ

∥∥∥∥2

2
− ∥λt −λ∗∥2

2

2ρ
(see (8.47,8.51))

≥ ρ

4
∥G(zt )−G(z∗)∥2

2 −ρδ2
t −

3∥λt −λ∗∥2
2

2ρ

(
∥a −b − c∥2

2 ≥
∥a∥2

2

2
−2∥b∥2

2 −2∥c∥2
2

)

≥ ρι2Gδ
′2
t

4
−ρδ2

t −
3∥λt −λ∗∥2

2

2ρ
(see (8.50,8.42))

≥ ρι2Gδ
′2
t

4
−ρδ2

t −
3

ρ
(λ2

max +∥λ∗∥2
2), ((a +b)2 ≤ 2a2 +2b2 and (8.100)) (8.109)

which, after substituting in (8.108), yields that

Lρ(vt ,λt )−Lρ(v∗,λ∗)

≥ µL −2ρ

2
δ2

t +
1

2

(
ρι2G

2
−νG∥λ∗∥2

)
δ′2t − 3

ρ

(
λ2

max +∥λ∗∥2
2

)
≥ µρδ

2
t

2
+
µ′
ρδ

′2
t

2
−µρ , (8.110)

where

µρ :=µL −2ρ, µ′
ρ := ρι2G

2
−νG∥λ∗∥2, (8.111)
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µρ := 3

ρ

(
λ2

max +∥λ∗∥2
2

)
. (8.112)

This proves (8.59). To prove (8.60), we use the definition of L ′
ρ in (8.45) to write that

L ′
ρ(v∗,λ∗)−L ′

ρ(vt ,λt )−〈v∗− vt ,∇vL ′
ρ(vt ,λt )〉

= L(w∗)−L(wt )−〈w∗−wt ,∇L(wt )〉
−〈At +D A(vt )(v∗− vt ),λt 〉
− ρ

2
〈At +2D A(vt )(v∗− vt ), At 〉, (see (8.45)) (8.113)

where

D A(v) =
[

Id −DG(z)
]

, (8.114)

is the Jacobian of the map A. The second inner product on the right-hand side of (8.113) can

be bounded as

−〈At +D A(vt )(v∗− vt ),λt 〉
=−〈wt −G(zt )+ (w∗−wt )−DG(zt )(z∗− zt ),λt 〉 (see (8.51,8.114))

=−〈G(z∗)−G(zt )−DG(zt )(z∗− zt ),λt 〉
(
w∗ =G(z∗)

)
≥−νGδ

′2
t

2
∥λt∥2 (see (8.41,8.50))

≥−νGδ
′2
t

2
λmax. (see (8.100)) (8.115)

To control the last inner product on the right-hand side of (8.113), we write that

− ρ

2
〈At +2D A(vt )(v∗− vt ), At 〉

= ρ

2
∥At∥2

2 −ρ〈At +D A(vt )(v∗− vt ), At 〉
≥−ρ∥At +D A(vt )(v∗− vt )∥2∥At∥2 (Holder’s inequality)

=−ρ∥(w∗−G(z∗))− (wt −G(zt ))− (w∗−wt )+DG(zt )(z∗− zt )∥2 (see (8.51,8.114) and w∗ =G(z∗))

=−ρ∥G(z∗)−G(zt )−DG(zt )(z∗− zt )∥2

≥−ρνG

2
∥z∗− zt∥2

2 (see (8.41))

=−ρνGδ
′2
t

2
. (see (8.50)) (8.116)

By substituting the bounds in (8.115,8.116) back into (8.113) and also using the convexity of L,

we reach

L ′
ρ(v∗,λ∗)−L ′

ρ(vt ,λt )−〈v∗− vt ,∇vL ′
ρ(vt ,λt )〉

≥−νG

2

(
λmax +ρ

)
δ′2t . (8.117)
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This proves (8.60), thus completing the proof of Lemma 8.4.

8.11 Appendix: Relation with Gradient Descent

Throughout this section, we set R ≡ 0 and H ≡ 0 in problem (8.1) and consider the updates in

algorithm 8.2, namely,

zt+1 = zt −β∇∇∇zLρ(wt , zt ,λt ),

wt+1 ∈ argmin
w

Lρ(w, zt+1,λt ),

λt+1 =λt +σt+1(wt+1 −G(zt+1)).

(8.118)

From (8.2), recall that Lρ(w, z,λ) is convex in w and the second step in (8.118) is therefore

often easy to implement with any over-the-shelf standard convex solver. Recalling (8.2), note

also that the optimality condition for wt+1 in (8.118) is

wt+1 −G(zt ) =− 1

ρ
(∇Lm(wt+1)+λt ). (8.119)

Using (8.2) again, we also write that

∇zLρ(wt+1, zt ,λt )

=−DG(zt )⊤(λt +ρ(wt+1 −G(zt ))

=−DG(zt )⊤(λt −λt−1 −∇Lm(wt ))

=−DG(zt )⊤(σt (wt −G(zt ))−∇L(wt )), (8.120)

where the last two lines above follow from (8.119,8.118), respectively. Substituting back into

the z update in (8.118), we reach

zt+1 = zt +βσt DG(zt )⊤(wt −G(zt ))−β∇L(wt ) (see (8.118,8.120)), (8.121)

from which it follows that∥∥zt+1 − (zt −β∇L(G(zt )))
∥∥

2

≤βσt∥DG(zt )⊤(wt −G(zt ))∥2 +β∥∇L(wt )−∇L(G(zt ))∥2 (see (8.121))

≤β (σtκG +νL)∥wt −G(zt )∥2. (see Assumptions 8.1 and 8.3) (8.122)

That is, as the feasibility gap vanishes in (8.24) in Theorem 2.1, the updates of Algorithm 2

match those of GD.
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8.12 Appendix: Proof of Lemma 8.1

Recall that R = 1W and H ≡ 0 for this proof. Using the optimality of w∗ ∈ relint(W ) in (8.17),

we can write that

∥∇L(w∗)∥2 ≤ ∥∇Lm(w∗)∥2 +∥∇Lm(w∗)−∇L(w∗)∥2 (triangle inequality)

= ∥∇Lm(w∗)−∇L(w∗)∥2
(∇Lm(w∗) = 0

)
≤ max

w∈W
∥∇Lm(w)−∇L(w)∥2. (8.123)

On the other hand, using the strong convexity of L in (8.20), we can write that

∥w ♮−w∗∥2 ≤ 1

ζL
∥∇L(w ♮)−∇L(w∗)∥2 (see (8.20))

= 1

ζL
∥∇L(w∗)∥ (∇L(w ♮) = 0)

≤ 1

ζL
max
w∈W

∥∇Lm(w)−∇L(w)∥2, (see (8.123)) (8.124)

which completes the proof of Lemma 8.1.

8.13 Appendix: Experimental Setup Details

8.13.1 Per-Iteration Computational Complexity

The gradient of the function

h(z) = 1

2
∥AG(z)−b∥2

2 (8.125)

follows the formula

∇h(z) =∇G(z)A⊤(AG(z)−b) (8.126)

which involves one forward pass through the network G , in order to compute G(z), as well as

one backward pass to compute ∇G(z), and finally matrix-vector products to compute the final

result.

On the other hand our ADMM first computes the iterate zt+1 with gradient descent on the

augmented lagrangian (8.2) as

zt+1 = zt −β∇zLρ(wt , zt ,λt ) =−∇G(zt )λ⊤
t −ρ∇G(zt )(wt −G(zt ))⊤ (8.127)

which involves one forward and one backward pass on the network G , as well as matrix-

vector products. Then we perform the exact minimization procedure on the w variable,

which requires recomputing G(z) on the new iterate zt+1, involving one forward pass through

the network, as well as the matrix-vector operations as described before. Recomputing the

quantity wt+1 −G(zt+1) is immediate upon which the dual stepsize σt+1 can be computed at
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negligible cost. Finally the dual variable update reads as

λt+1 =λt +σ(wt+1 −G(zt+1)) (8.128)

which involves only scalar products and vector additions of values already computed. All in all

each GD iteration involves one forward and one backward pass, while ADMM computes two

forward and one backward pass. Both algorithms require a few additional matrix-vector oper-

ations of similar complexity. For networks with multiple large layers, as usually encountered

in practice, the complexity per iteration can then be estimated as the number of forward and

backward passes, which are of similar complexity.

8.13.2 Parameter Tuning

We run a grid search for the gradient descent (GD) algorithm In order to do so we fix a number

of iterations and compare the average objective function over a batch of 100 random images

and choose the best performing parameters. We repeat the tuning in all possible escenarios in

the experiments. The results figures 8.4 - 8.5 (GD, Compressive sensing setup).
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Figure 8.4: Performance of GD on the compressive sensing task for different step sizes. MNIST
dataset. 156 (top) and 313 (bottom) linear measurements.

100 101 102 103

iteration

103

m
ea

su
re

m
en

t e
rro

r

0.01
0.02
0.03
0.001
0.002
0.003
0.0001
0.0002
0.0003

100 101 102 103

iteration

103

m
ea

su
re

m
en

t e
rro

r

0.01
0.02
0.03
0.001
0.002
0.003
0.0001
0.0002
0.0003

Figure 8.5: Performance of GD on the compressive sensing task for different step sizes. CelebA
dataset. 2457 (top) and 4915 (bottom) linear measurements.
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8.13.3 Fast Exact Augmented Lagrangian Minimization with Respect to Primal
Variable w

In the compressive sensing setup, the augmented lagrangian takes the form

Lρ(w, z,λ) := 1

2
∥Aw −b∥2

2 +〈λ, w −G(z)〉+ ρ

2
∥w −G(z)∥2

2 (8.129)

with respect to w , this is a strongly convex function which admits a unique minimizer given

by the first order optimality condition

∇wLρ(w, z,λ) = A⊤(Aw −b)+λ+ρ(w −G(z)) = 0 (8.130)

with solution

w∗ = (A⊤A+ρI )−1(−λ+G(z)+ A⊤b) (8.131)

Given the SVD of A =U SV ⊤ we have A⊤A = V DV ⊤, where D corresponds to the diagonal

matrix with the eigenvalues of AT A. We then have that A⊤A+ρI =V (D +ρI )V ⊤ so that

w∗ =V (D +ρI )V ⊤(−λ+G(z)+ A⊤b) (8.132)

which involves only a fixed number of matrix-vector products per-iteration.

8.13.4 Per-Iteration Computational Complexity

The gradient of the function

h(z) = 1

2
∥AG(z)−b∥2

2 (8.133)

follows the formula

∇h(z) =∇G(z)A⊤(AG(z)−b) (8.134)

which involves one forward pass through the network G , in order to compute G(z), as well as

one backward pass to compute ∇G(z), and finally matrix-vector products to compute the final

result.

On the other hand our ADMM first computes the iterate zt+1 with gradient descent on the

augmented lagrangian (8.129)

zt+1 = zt −β∇zLρ(wt , zt ,λt ) =−∇G(zt )λ⊤
t −ρ∇G(zt )(wt −G(zt ))⊤ (8.135)

which involves one forward and one backward pass on the network G , as well as matrix-

vector products. Then we perform the exact minimization procedure on the w variable, as

described in 8.13.3, which requires recomputing G(z) on the new iterate zt+1, involving one

forward pass through the network, as well as the matrix-vector operations as described before.

Recomputing the quantity wt+1−G(zt+1) is immediate upon which the dual stepsize σt+1 can
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be computed at negligible cost. Finally the dual variable update reads as

λt+1 =λt +σ(wt+1 −G(zt+1)) (8.136)

which involves only scalar products and vector additions of values already computed. All in all

each GD iteration involves one forward and one backward pass, while ADMM computes two

forward and one backward pass. Both algorithms require a few additional matrix-vector oper-

ations of similar complexity. For networks with multiple large layers, as usually encountered

in practice, the complexity per iteration can then be estimated as the number of forward and

backward passes, which are of similar complexity.

8.14 Appendix: Pseudocode for EADMM

Algorithm 8.2 Multi-scale Linearized ADMM with Exact Minimization (EADMM)

Input: Differentiable L, proximal-friendly convex regularizers R and H , differentiable prior G ,
penalty weight ρ > 0, primal step sizesα,β> 0, initial dual step sizeσ0 > 0, primal initialization
w0 and z0, dual initialization λ0, stopping threshold τc > 0, iterations parameter n.

1: z0,0 ← z0, w0,0 ← w0

2: for k=0,. . . , K do
3: ρk ← ρ2k , αk ←α2−k , βk ←β2−k

4: z0 ← z0,k , w0 ← w0,k

5: for t = 0,1, . . . ,2k n do
6: zt+1 ← Pβk H

(
zt −βk∇zLρk (wt , zt ,λt )

)
▷ primal updates

7: wt+1 ∈ argmin
w

Lρ(w, zt+1,λt )

8: σt+1 ← min

(
σ0,

σ0

∥wt+1 −G(zt+1)∥2t log2(t +1)

)
▷ dual step size

9: λt+1 ←λt +σt+1(wt+1 −G(zt+1)) ▷ dual update

10: s ← ∥zt+1 − zt∥2
2

αk
+ ∥wt+1 −wt∥2

2

βk
+σt∥wt −G(zt )∥2

2 ≤ τc ▷ stopping criterion

11: if s ≤ τc then return (wt+1, zt+1)
12: end if
13: (w0,k+1, z0,k+1) ← (wt+1, zt+1)
14: end for
15:

16: end for
17: return (w0,K+1, z0,K+1)

8.15 Bibliographic Note

The candidate derived one of the main theoretical results (Proposition 8.1) which shows

that indeed the proposed algorithm can be applied to Deep Neural Networks. A. Eftekhari

contributed with Theorem 1. the candidate coded all the experiments and obtained all the

numerical evidence.
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9 The Effect of the Intrinsic Dimension
on the Generalization of Quadratic
Classifiers

Fabian Latorre, Leello Dadi, Paul Rolland and Volkan Cevher. Advances in Neural Information

Processing Systems 34 (NeurIPS) 2021.

Abstract. It has been recently observed that neural networks, unlike kernel methods, enjoy a

reduced sample complexity when the distribution is isotropic (i.e., when the covariance matrix

is the identity). We find that this sensitivity to the data distribution is not exclusive to neural

networks, and the same phenomenon can be observed on the class of quadratic classifiers (i.e.,

the sign of a quadratic polynomial) with a nuclear-norm constraint. We demonstrate this by

deriving an upper bound on the Rademacher Complexity that depends on two key quantities:

(i) the intrinsic dimension, which is a measure of isotropy, and (ii) the largest eigenvalue of the

second moment (covariance) matrix of the distribution. Our result improves the dependence

on the dimension over the best previously known bound and precisely quantifies the relation

between the sample complexity and the level of isotropy of the distribution.

9.1 Introduction

We revisit the problem of supervised classification using quadratic features of the data. We

do so to highlight the influence of properties of data distrbution on the generalization error.

Most of the existing results on this error only use a bound on the support of the distribution.

By leveraging results from matrix concentration, we show an improved bound that uses more

refined properties of the data distribution, like the second moment matrix.

The use of the second moment matrix in the error bound shows that the intrinsic dimension of

the data distribution plays an important role. This is of particular interest because it is widely

believed that real-world data distributions have nice properties that allow classifiers, namely

neural networks, to avoid the worst-case sample complexities predicted by generalization

bounds (Jiang et al., 2020).

Indeed, assumptions like the manifold hypothesis, which state that the data lies on lower

dimensional embedded manifold, are often made to explain the practical success of some
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generative methods. A recent paper by Pope et al. (2021) computes estimates of this true

dimensionality of common machine learning datasets and shows that they are much lower

than the ambient dimension of the pixel space [0,1]d . It is therefore important that properties

of the data distribution, going beyond simple bounds on the support, intervene in the study of

generalization.

This influence of intrinsic dimension on generalization has been recently observed in the

context of differentiating neural networks and from their kernel approximations, like the

neural tangent kernel Jacot et al. (2018) or random feature models Yehudai and Shamir (2019).

In particular, Ghorbani et al. (2020) observe that neural networks seem to require fewer

samples than kernel methods to learn when the data distribution is isotropic.

We show that a similar phenomenon occurs in the simpler setting of quadratic classifiers,

which leads to a better understanding of the causes. An improvement in sample complexity

on isotropic data distributions can be proved when comparing nuclear-norm constrained

quadratic classifiers and the corresponding kernel method (Frobenius norm constrained

classifiers).

The study of quadratic classifiers can serve as an important first step in understanding how

neural networks take advantage of the intrinsic dimension to learn with fewer samples Du

and Lee (2018); Bai and Lee (2020). The nuclear-norm constraint is a natural one to study in

this context. Indeed, when applying weight-decay (or ℓ2-regularization) on a single-hidden

layer neural network with quadratic activations, the regularization is in effect encouraging a

low nuclear norm of the coefficient matrix of the quadratic polynomial.

A better understanding of quadratics is also a worthwhile goal in its own right: complex

architectures like those in Jayakumar et al. (2020) use quadratics as building blocks, attention

layers Vaswani et al. (2017b), which have seen great success in language processing tasks, are

multiplicative interactions.

For these reasons, we present theoretical and practical developments of nuclear-norm regular-

ization for quadratic classification. We summarize our contributions as follows

Rademacher complexity bounds. We present a new bound on the Rademacher complexity

of quadratic classifiers with a nuclear norm constraint c.f. Theorem 9.1. It improves upon the

previously known bound, implied by the results by Kakade et al. (2012), by up to a square-root

factor of the dimension, depending on the distribution of the data c.f. 9.4.

As a consequence of our bound, we draw attention to a clear difference between the complexity

of nuclear-norm constrained and Frobenius-norm constrained quadratic classifiers. When

the input data distribution is nearly-isotropic, the former enjoys a reduced dependency on the

dimension. In contrast, the complexity of Frobenius-norm constrained classifiers has the same

dependency on the dimension, independently of how isotropic the input data distribution is

(9.2).
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This observation motivates the use of data whitening pre-processing steps, which are com-

monly used in practice: such transformation might bring the second-order moment (covari-

ance) matrix of the distribution close to the identity matrix and thus to nearly-isotropicity.

Computable generalization bounds. The refined Rademacher complexity bound that we

obtain depends on the often unknown second-order moment of the distribution, rather than

simple bounds on the diameter of the support as in (Kakade et al., 2012). Even though useful

in theory, it is desirable in practice to obtain bounds that can be computed from a sample.

We overcome this difficulty in Theorem 9.3, where we provide high-probability computable

generalization error bounds for nuclear-norm constrained quadratic classifiers.

Experiments. We illustrate our theoretical results on synthetic data. We show how the isotropy

of the input distribution plays a major role in the generalization properties of quadratic

classifiers. As the dimension increases and the sample size remains proportional to it, we

observe a constant generalization gap for the nuclear-norm constrained classifier. In contrast,

for SVMs, the gap grows at a predicted
p

d rate. In the case of anisotropic distributions, we

observe similar performance for both regularization schemes.

9.1.1 Related work

Kakade et al. (2012) provides generalization error bounds for the more general problem of

learning a linear classifier over matrices. An upper bound for quadratic classifiers with a

nuclear norm constraint can be derived as a consequence of their results c.f. 9.1. To the best of

our knowledge, it is the only known bound for the hypothesis class we study, and thus the one

we compare to. Our analysis improves the dependency on the dimension. See subsection 9.2.1

for a technical discussion.

Because of the generality of the results in Kakade et al. (2012), it is only natural that the implied

bound in some particular case is not the tightest. We precisely give a step towards tight

complexity estimates for classification with quadratic polynomials. We look on our results as

relevant, given the simplicity and widespread use of linear learning over features.

Wimalawarne et al. (2016) study linear classifiers over higher-order tensor spaces, using

constraints on generalized notions of the nuclear norm. The problem we study is thus a

particular case. Generalization error bounds via Rademacher complexity are provided, but

they apply only under a highly restrictive assumption: the entries of the tensor are independent

standard normal random variables. In contrast we only require a boundedness condition.

Srebro et al. (2005); Srebro and Shraibman (2005) develop the theory of nuclear-norm reg-

ularization for matrix completion. Bounds on the Rademacher complexity of the class of

matrices with bounded nuclear-norm are obtained in Srebro (2005). However, in this setting

matrices are understood as mappings from an index pair to a value, and the generalization

error measures how well the missing entries of the target matrix can be predicted. In contrast,

in our setting the matrix corresponds to the coefficients of a quadratic polynomial, so the
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bounds are not comparable.

Pontil and Maurer (2013) study nuclear-norm regularization in the context of multi-task

learning (Caruana, 1997). Rademacher complexity bounds are obtained for nuclear-norm

constrained multi-task classifiers. In this setting, each row of the matrix corresponds to a

linear classifier for a different task, and each task corresponds to a different distribution over

data-label pairs.

Matrices with bounded trace norm also have been studied by Amit et al. (2007) and Yu et al.

(2014) in the related multi-class classification and multi-label learning setting, respectively. Yu

et al. (2014) remark essential differences between Rademacher complexity bounds of nuclear-

and Frobenius-norm constrained linear classifiers, similar to our conclusion in 9.2. In all such

problems, however, the setting is not comparable to ours: the matrix acts as a linear mapping

of the sample, rather than as a quadratic. Thus, the analysis is not analogous and requires a

different set of tools in our case.

The analysis in Yu et al. (2014) is closest in spirit to ours, as their bound also depends on the

intrinsic dimension of the distribution, and the largest eigenvalue of the second moment

(covariance) matrix. However, we go the extra mile and achieve bounds that can be computed

from the sample at hand (Theorem 9.3), as the true second moment (covariance) matrix is

usually unknown.

The papers Du and Lee (2018); Bai and Lee (2020) establish a similar result as ours for a different

norm for a non-convex parametrization of quadratic polynomials. The reparametrization

consits of writing the coefficient matrix as a sum of m rank 1 matrices which facilitates

analogies to neural networks. It is straighforward to see that their studied norm ∥ ·∥2,4 is, in

essence, a way of upper bounding the nuclear-norm by using the reparametrization.

9.2 Rademacher complexity bounds

Notation. Throughout this section x ∈ Rd is a random variable with distribution µ, and

Xn = (x1, . . .xn) is a sample of i.i.d. random variables drawn from µ. The second moment matrix

of µ is denoted by Σ := E[xxT ]. Note that, for centered (mean zero) random variables, this

notion coincides with the covariance matrix. For a square symmetric matrix A we denote with

∥A∥F ,∥A∥2 and ∥A∥tr its Frobenius-norm, spectral-norm and nuclear-norm, respectively. The

notation ≲ stands for less than or equal, but hides constants independent of the dimension

or number of samples. The notation x ≈ y means that there exist constants c,C > 0 such that

c y ≤ x ≤C y .

We consider a binary classifier obtained from a homogeneous quadratic polynomial. Such

a function can be parametrized as fA(x) := xT Ax, where A is a square symmetric matrix

containing the coefficients of the monomials. In order to control the complexity of a quadratic
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polynomial we choose a matrix norm ∥·∥ and consider only elements in a constrained set:

Q∥·∥,λ := { fA(x) = xT Ax : ∥A∥ ≤λ}, Q∥·∥ :=Q∥·∥,1 (9.1)

We quantify the complexity of such function classes using the classical notion of Rademacher

complexity. It is well known that high probability generalization error bounds can be obtained

in terms of this quantity (Koltchinskii and Panchenko, 2002; Bartlett and Mendelson, 2003).

For this reason, we focus only on deriving upper bounds on this complexity measure.

Definition 9.1 (Rademacher complexity). Let σ be uniformly distributed over the set {−1,1}n

and let Xn = [x1, . . . ,xn] ⊆Rd be an i.i.d. sample drawn according to µ. For a class of functions

F :Rd →Rwe define the empirical Rademacher complexity and the Rademacher complexity

(with respect to µ) of F , respectively, as:

R̂(F ;Xn) := Eσ
[

sup
f ∈F

1

n

n∑
i=1

σi f (xi )

]
, Rn,µ(F ) = E[R̂(F ;Xn)] (9.2)

Our bounds depend on the distribution through its intrinsic dimension (Tropp, 2015, Section

7), which measures how much the probability density concentrates near low-dimensional

subspaces.

Definition 9.2. The intrinsic dimension of a distribution µ is the ratio 1 ≤ r (Σ) := tr(Σ)/∥Σ∥2 ≤
d.

We are now ready to state our main results about the Rademacher complexity of homogeneous

quadratic polynomials with nuclear norm constraint:

Theorem 9.1. Let x ∈ Rd such that ∥x∥2
2 ≲ E∥x∥2

2 almost surely and suppose n ≳ r (Σ) logd. It

holds that

Rn,µ(Q∥·∥tr,λ)≲λ

√
r (Σ) logd

n
∥Σ∥2 (9.3)

Now we proceed to prove Theorem 9.1. First, we only focus on the class Q∥·∥ corresponding to

the unit nuclear-norm ball. This is justified by well-known technical result 9.1, whose proof is

included for completeness in section 9.8.

Lemma 9.1. Rn,µ(Q∥·∥,λ) ≤λRn,µ(Q∥·∥).

The backbone of Theorem 9.1 is 9.3, which relates the Rademacher complexity of a class of

functions to concentration of empirical means to expectations with respect to the dual norm.

It makes use of the technical 9.2, whose proof is included for completeness in section 9.6.

Lemma 9.2. For all even n ∈N, it holds that
∑n

k=0 |2k −n|(n
k

)<p
n2n
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Lemma 9.3. Denote by ∥·∥∗ the dual norm of ∥·∥. Define Mk := E∥Σk −Σ∥∗ , Σk := 1
k

∑k
i=1 xi xT

i

The Rademacher complexity of the class Q∥·∥ can be upper bounded as follows:

Rn,µ(Q∥·∥) ≤ 1

n2n−1

n∑
k=1

k

(
n

k

)
Mk +

∥Σ∥∗p
n

(9.4)

Proof. We first compute an upper bound on the empirical Rademacher complexity. The result

will follow after taking expectation of the bound over the sample Xn = [x1, . . . ,xn]. By definition

of the dual norm, using the basic algebraic identity xT Ax = 〈A,xxT 〉 we have

R̂(Q∥·∥;Xn) = 1

n
Eσ sup

∥A∥≤1

〈
A,

n∑
i=1

σi xi xT
i

〉
= 1

n
Eσ

∥∥∥∥∥ n∑
i=1

σi xi xT
i

∥∥∥∥∥∗ (9.5)

We now compute the expectation in Equation 9.5. There is a bijection between the possible

configurations of the Rademacher variable σ ∈ {−1,1}n and the power set of [n], namely

σ 7→ {i ∈ [n] :σi = 1}. This allows us to write Equation 9.5 as:

R̂(Q∥·∥;Xn) = 1

n
Eσ

∥∥∥∥∥ n∑
i=1

σi xi xT
i

∥∥∥∥∥∗ =
1

n2n

∑
B⊆[n]

∥∥∥∥∥∑
i∈B

xi xT
i − ∑

i∈B c

xi xT
i

∥∥∥∥∥∗︸ ︷︷ ︸
:=DB

(9.6)

Let ΣB := |B |−1 ∑
i∈B xi xT

i . Using the triangle inequality, we can bound DB as:

DB ≤|B |∥ΣB −Σ∥∗+
∣∣|B |− |B c |∣∣∥Σ∥∗+|B c |∥ΣB c −Σ∥∗ (9.7)

To obtain a bound on the Rademacher complexity, we need now sum over B ⊆ [n] the terms on

the right hand side of Equation 9.7, and take expectation with respect to the sample Xn . First,

we will deal with the sum of the second term in Equation 9.7, as it is actually a deterministic

value. We can sum over B ⊆ [n] by grouping together subsets B of the same cardinality |B | = k.

We obtain:

∑
B⊆[n]

||B |− |B c ||∥Σ∥∗ =
n∑

k=0

(
n

k

)
|2k −n|∥Σ∥∗ ≤

p
n2n∥Σ∥∗ (9.8)

where the last inequality follows from 9.2.

Finally, we compute the expectation of the sum over B ⊆ [n] of the first and third term in

Equation 9.7. After taking the sum, both terms become equal by symmetry. It suffices to

bound the sum of the first term. Notice that because the variables x1, . . . ,xn are i.i.d., the

distribution of ΣB depends only on the size of the set B . Using the same counting argument as
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in Equation 9.8 we arrive at:

E
∑

B⊆[n]
|B |∥ΣB −Σ∥∗ =

∑
B⊆[n]

|B |E∥ΣB −Σ∥∗

=
n∑

k=1
k

(
n

k

)
E∥Σk −Σ∥∗︸ ︷︷ ︸

=Mk

(9.9)

Combining the bounds in Equation 9.8 and Equation 9.9, and dividing by n2n we obtain the

result. □

Note that the proof of 9.3 follows from technical arguments but the final result is not to be

found in the literature, in this form or a similar one. In particular, it is completely unrelated to

the result by Vershynin (2011) with which it only shares the fairly trivial split of Rademacher

random variables preceding Equation 9.6.

9.3 provides a way to derive Rademacher complexity bounds from a bound on the expected

deviations Mk defined in 9.3, and might be of independent interest. In the particular case

where the norm in consideration is the nuclear-norm, this lemma will be used to establish The-

orem 9.1 as a simple application of a well-known non-asymptotic bound for the convergence

of the empirical second moment (covariance) matrix to the true second moment (covariance)

matrix.

Proof of Theorem 9.1. Recall that the dual norm of the nuclear-norm is the spectral-norm.

The value of Mk in 9.3 measures the average deviation of the empirical second moment matrix

Σk to the true Σ, in spectral-norm. Our assumption that ∥x∥2
2 ≲ E∥x∥2

2 almost surely, implies

the concentration result (Vershynin, 2018, Theorem 5.6.1), which concludes that

Mk ≲

√
r (Σ) logd

k
+ r (Σ) logd

k

∥Σ∥2 (9.10)

Plug this in Equation 9.4, and use the bound
p

k ≤p
n for k ≤ n to obtain the inequality

Rn,µ(Q∥·∥tr )≲

√
r (Σ) logd

n
+ r (Σ) logd

n

∥Σ∥2 (9.11)

By assumption n ≳ r (Σ) logd , so that the first term in Equation 9.11 is the largest. The second

term is of smaller order and thus ends up hidden by the notation ≲. We conclude

Rn,µ(Q∥·∥tr )≲

√
r (Σ) logd

n
∥Σ∥2 (9.12)

Invoking 9.1 we obtain the desired result. □
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9.2.1 Improvement upon previous work

We now show how our derived upper bound improves over the current best known bound by

Kakade et al. (2012). To the best of our knowledge, the Rademacher complexity of quadratic

classifiers with a nuclear-norm constraint has not been previously analyzed in a direct manner,

as we do. Instead, the only existing bound (9.1) appears as a particular case of Theorem 9.2.

Theorem 9.2 (Kakade et al. (2012) page 1876). Let

G∥·∥tr,λ := {gA(X) := 〈A,X〉 : ∥A∥tr ≤λ} (9.13)

be the class of nuclear-norm constrained linear functions over square d ×d matrices. Let µ be a

distribution supported on X ⊆Rd×d . It holds that:

Rn,µ(G∥·∥tr,λ)≲λX∞

√
logd

n
, X∞ = sup

X∈X

∥X∥2

Corollary 9.1. Let x ∈ X ⊆ Rd be a random variable with distribution µ. The Rademacher

complexity of the class in Equation 9.1 can be bounded as

Rn,µ(Q∥·∥tr,λ)≲λx∞

√
logd

n
, x∞ := sup

x∈X

∥x∥2
2

9.1 is a consequence of the fact that a function of the form fA(x) = xT Ax can be written as a

linear classifier on matrices, gA(X) = 〈A,X〉, where X = xxT . In this case, it is easy to see that

X∞ = sup
x∈X

∥∥xxT
∥∥= sup

x∈X

∥x∥2
2 =: x∞. The only difference with our bound in Theorem 9.1 is that

the term x∞ appears in place of
p

r (Σ)∥Σ∥2.

In order to understand the difference between the two bounds, we turn to the analysis of

the quotient between the bound in 9.1 and our bound Theorem 9.1. In 9.4 we show that this

quotient can differ drastically, depending on the distribution.

Remark 9.1. The variables X∞ and x∞ defined respectively in Theorem 9.2 and 9.1 respectively,

correspond to the supremum of a random variable. Because the Rademacher complexity arises

as an expectation, it is clear that such quantities can be (and should be) replaced by the closely

related measure-theoretic notion of essential supremum (denoted by esssup): the least upper

bound that holds almost surely. In this way the bounds are only tighter, and we believe this was

the true intended definition by Kakade et al. (2012). In the following we will compare our bound

to this tighter, modified bound.

Lemma 9.4. Let x be a random variable supported on a set X ⊆Rd , and such that ∥x∥2
2 ≲ E∥x∥2

2

almost surely, then: √
r (Σ)≲

esssupx∈X ∥x∥2
2p

r (Σ)∥Σ∥2
≲

√
r (Σ) (9.14)
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Proof. By definition of essential supremum it holds that E∥x∥2
2 ≤ esssupx∈X ∥x∥2

2. Further, our

assumption clearly implies that esssupx∈X ∥x∥2
2 ≲ E∥x∥2

2. The identity E∥x∥2
2 = tr(Σ) and 9.2

imply the result. □

In summary, 9.4 shows that the baseline bound of Kakade et al. (2012) is larger by a square-root

factor of the intrinsic dimension of the distribution (modulo global constants), compared to

our bound in Theorem 9.1. Such factor ranges between 1 and the square root of the ambient

dimension.

Precisely, when the intrinsic dimension of the distribution is equal to the ambient dimension,

our bound enjoys a reduced dimension complexity. This is the case, for example, for isotropic

distributions i.e., distributions such that their second moment matrix is the identity matrix.

The dependency of the Rademacher complexity on the intrinsic dimension of the distribution

is not revealed by the more general proof of Theorem 9.2 (Kakade et al., 2012).

Remark 9.2. The logarithmic term in Theorem 9.1 can be removed under the more restrictive

dimension-independent L-subgaussianity assumption (Mendelson and Zhivotovskiy, 2018).

9.3 Computable Generalization error bounds

Let y = (y1, . . . , yn) ∈ {−1,1}n be the labels associated with the data sample, and let

L( f ) :=P{sign( f (x)) ̸= y} (9.15)

L̂( f ;Xn) := 1

n

n∑
i=1

min(1,max(0,1− yi f (xi ))) (9.16)

be the missclassification probability and the empirical margin loss of the classifier f , respec-

tively. It is well-known (Mohri et al., 2018b, Theorem 5.8.) that with probability at least 1−δ,

for all f ∈Q∥·∥tr,λ:

L( f )≲ L̂( f ;Xn)+Rn,µ(Q∥·∥tr,λ)+
√

log 1
δ

2n
(9.17)

This bound, together with the results in section 9.2, allow high probability uniform bounds on

the misclassification error of a nuclear-norm constrained quadratic classifier.

However, the bound derived in this way is not actually computable: the Rademacher complex-

ity bound in Theorem 9.1 depends on the second moment matrix of the distribution, which is

unknown in practical applications. In the rest of this section we will overcome this drawback.

Rewriting our bound in Equation 9.3 as:

Rn,µ(Q∥·∥tr )≲

√
trΣ∥Σ∥2 logd

n
(9.18)
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we observe that we need to estimate the trace and the largest eigenvalue of the second order

moment matrix. Our hope is that the empirical estimators, based on the empirical second

moment matrix Σn , will provide a good approximation of the true values.

We arrive at the following high probability bound on the Rademacher complexity in Equa-

tion 9.18, which is readily computable from samples and a bound on the diameter of the

support of the distribution:

Theorem 9.3. Suppose that ∥x∥2
2 ≲ E∥x∥2

2 almost surely. This implies that ∥x∥2
2 ≤ B for some

B > 0. Define

K1 := logd

n −
√

nd(logd + log 1
δ )

K2 :=
√

2log 1
δ logd

2n(
p

n −
√

d(logd + log 1
δ ))

(9.19)

Let δ> 0 and fA ∈Q∥·∥tr,λ. Provided n ≳ d(logd + log 1
δ ), with probability at least 1−3δ it holds

that

Rn,µ(Q∥·∥tr )≲
√

K1 trΣn∥Σn∥2 +BK2∥Σn∥2︸ ︷︷ ︸
:=M(n,d ,δ)

(9.20)

Moreover, with probability at least 1−4δ, uniformly for all fA ∈Q∥·∥tr,λ it holds that

L( fA)≲ L̂( fA;Xn)+λM(n,d ,δ)+
√

log 1
δ

2n
(9.21)

Proof. See section 9.7. □

9.4 Frobenius vs Nuclear-norm constraint

Perhaps the most common way to use quadratic features is to use a support vector machine

(SVM) with the quadratic kernel K (x,y) := 〈x,y〉2. 9.5, which is folklore in the kernel methods

literature, precisely states that the RKHS norm constraint is equivalent to a Frobenius-norm

constraint on the matrix of coefficients A of the underlying quadratic polynomial. Its proof is

included for completeness in section 9.8.

Lemma 9.5. LetH be the Reproducing Kernel Hilbert Space associated to the symmetric, positive

semidefinite polynomial kernel K (x,y) = 〈x,y〉2, and denote its induced norm by ∥·∥H. Then

f ∈H if and only if there exists a symmetric matrix A such that f (x) = xT Ax and
∥∥ f

∥∥
H
= ∥A∥F .

For this reason, we now turn to compare the qualities of nuclear-norm and Frobenius-norm

constrained quadratic classifiers. As a consequence of our derived bound (Equation 9.3), we

uncover a fundamental difference between both regularization schemes (9.2): as the dimen-

sion increases, the growth rate of the complexity of nuclear-norm constrained quadratics

strongly depends on the intrinsic dimension of the distribution. In contrast, that of Frobenius-

norm constrained quadratics is insensitive to it.
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9.4 Frobenius vs Nuclear-norm constraint

In order to derive this rate, we need a way to argue about distributions across different di-

mensions and express our generalization bounds only in terms of dimension and number of

samples. To this end, we introduce a natural boundedness assumption on the data distribu-

tion:

Assumption 9.1. ∥x∥2
2 ≈ d almost surely.

We now argue why this is a natural scaling order for this norm: if the entries of the random

vector x are upper bounded as |xi | ≤αmax and their average magnitude is lower bounded as

0 <αmin ≤ 1
d

∑d
i=1 |xi |. Then

αmin

p
d ≤ 1p

d
∥x∥1 ≤ ∥x∥2 ≤

p
d∥x∥∞ ≤

p
dαmax,

and hence, 9.1 is satisfied. If we think about distributions of pixel (natural image) data of

increasing resolution, we indeed have an upper bound on the intensity of each pixel. A lower

bounded average pixel intensity only means that images are not arbitrarily dark, which often

holds in practice. Any distribution of similar characteristics (e.g., sensor data) will probably

satisfy our assumption.

We also introduce a growth condition on the intrinsic dimension, which states that r (Σ) ≈ d s

for some 0 ≤ s ≤ 1. Rather than being an assumption, this condition helps to understand how

our bounds change as the distribution falls between the two possible extremes given by the

bound 1 ≤ r (Σ) ≤ d . Traditionally, distributions that attain the lower bound (s = 0, r (Σ) = 1) or

the upper bound (s = 1, r (Σ) = d) are called anisotropic or isotropic, respectively.

Corollary 9.2. Let 9.1 hold, and suppose that r (Σ) ≈ d s for some s ∈ [0,1] and n ≥ r (Σ) logd.

Then

Rn,µ(Q∥·∥tr,λ)≲λ
d 1−s/2

√
logdp

n
(9.22)

Rn,µ(Q∥·∥F ,λ) ≈λ dp
n

(9.23)

Proof. For the first inequality, note that ∥x∥2
2 ≈ d implies that trΣ= E∥x∥2

2 ≈ d . Thus, trΣ
∥Σ∥2

=
r (Σ) ≈ d s =⇒∥Σ∥2 ≈ d 1−s Using these two identities in the inequality Equation 9.3 we obtain

the first result.

For the second identity, 9.5 implies the class of Frobenius-norm constrained quadratic func-

tions is equal to the ball of radius λ in the RKHS corresponding to the quadratic kernel. By

Mohri et al. (2018b, Theorem 5.5)1, we have that

R̂(Q∥·∥F ,λ;Xn) ≈ λ

n

√
n∑

i=1
K (xi ,xi ) = λ

n

√
n∑

i=1
∥xi∥4

2 ≈
λdp

n
(9.24)

1See remarks following the proof
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where the final inequality comes from our assumption that ∥x∥2
2 ≈ d . Taking expectation with

respect to the sample we obtain that Rn,µ(Q∥·∥F ,λ) ≈λ dp
n

. □

9.2 then states that the nuclear norm constraint adapts to the intrinsic dimension of the

distribution. In the worst case (s = 0) it grows linearly2 with dimension; In the best case (s = 1)

it is much slower, and grows as the square root of the dimension.

Note that we can bring any distribution to approximate isotropic position, given a good

approximation of Σ. Hence, it makes sense to expect performance gains if we perform such

normalization procedure before training nuclear-norm constrained quadratic classifiers. In

section 2.7 we will put to test this claim in synthetic datasets, to illustrate the theory.

9.5 Experiments

The results derived in corollary 9.2 pertain to the worst case generalization gap. This worst

case gap is not guaranteed to be attained by the function found through empirical loss mini-

mization. Therefore, in order to better test our results, we try to find the function that attains

this worst case generalization gap.

The experiment we propose to illustrate the difference in intrinsic dimension sensitivity

consists of computing the quadratic function f such that E[ℓ( f (x, y))]− 1
n

∑n
i=1ℓ( f (xi , yi )) is

maximized. The expectation in the term above being generally difficult to compute in closed

form, we replace the objective by an empirical estimate

1

ntest

ntest∑
k=1

ℓ( f (xk , yk ))− 1

ntrain

ntrain∑
i=1

ℓ( f (xi , yi )).

We expect this quantity to more faithfully track the upperbounds derived in corollary 9.2.

Indeed, what we evaluate here is the capacity of the class constraining f to attain a low loss on

ntrain samples while attaining a very high one on ntest samples.

To illustrate that Frobenius and nuclear norm constrained classifiers exhibit different be-

haviors depending on the intrinsic dimension of the data, we compute the result of the

maximization procedure on isotropic distributions on one hand and on anisotropic on the

other. We set the radius λ= 1 for both Nuclear and Frobenius norm constrained classifiers.

We then observe the evolution of these quantities as the dimension increases.

Generating Isotropic Data. To generate isotropic data satisfying our assumptions, we sample

a standard Gaussian random vector in Rd and normalize to obtain i.i.d samples xi that are

uniformly distributed on the sphere of radius
p

d .

Generating Anistropic Data. To generate anisotropic data, we first generate isotropic data

2for simplicity we ignore the logarithmic factor
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features by uniformly sampling points on the sphere of radius
p

d as described previously. We

then transform the samples into more anisotropic ones by multiplying each feature vector

coordinate-wise by a vector α(s) defined as α(s)
i = Cs

1
i s , i = 1, . . . ,d , for s ∈ [0,1] where Cs

is chosen such that ∥α(s)∥2 = p
d . That, way, s = 0 induces no change on the data, since

α(1) = [1,1, . . . ,1]T , and larger s implies that the data will be more squashed along the first few

coordinates, inducing smaller intrinsic dimension. This transform does not affect the norm of

the vectors since E[∥α(s) ×xi∥2] =∑d
k=1(α(s)

k )2E[[xi ]2
k ] =∑d

k=1(α(s)
k )2 =p

d

Generating the labels. We test two approaches for generating the labels : (1) We generate a

random matrix A with i.i.d standard Gaussian coordinates and set yi = sgn(x⊤i Axi ), (2) We set

the labels randomly with yi ∼ Bern(0.5).

The results.
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(a) Labels generated as yi = sgn(x⊤Ax)

0 50 100 150 200 250
d

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Tr

ai
n/

Te
st

 lo
ss

 g
ap

Nuc. isotropic
Nuc. anisotropic
Frob. isotropic
Frob. anisotropic

(b) Labels generated randomly

Figure 9.1: Maximized Train/Test loss gaps for each dimension d . The results are averaged
over 5 independent runs. The error bars correspond to the standard error.

We observe that the maximal gaps do indeed evolve as the theory predicts. We indeed have the

nuclear norm constrained classifier on isotropic data not exhibiting the same growth as the

others, indicating that the maximal generalization gap for nuclear norm constrained classifiers

is indeed sensitive to isotropy. Additional experiments and details are provided in section 9.9.

9.6 Appendix: Proof of lemma 9.2

For completeness, we include the following result, taken from https://math.stackexchange.

com/questions/3209660/show-that-2m-choose-m-leq-frac22m-sqrt2m:

Lemma 9.6. For m ∈Nwe have (
2m

m

)
< 22m

p
2m +1

< 22m

p
2m

(9.25)

Proof. By induction on m ∈ N. For m = 1 the inequality holds. Suppose it holds for some
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m ∈N
(2m +2)!

22m+2((m +1)!)2 = (2m)!

22m(m!)2 · 2m +1

2m +2
< 1p

2m +1
· 2m +1

2m +2

?≤ 1p
2m +3

. (9.26)

So it remains to prove that

4m2 +8m +3 = (
p

2m +1
p

2m +3)2 ≤ (2m +2)2 = 4m2 +8m +4 (9.27)

which holds. □

Lemma 9.7. For all n ∈N even:

n∑
k=0

(
n

k

)
|2k −n| = n

(
n
n
2

)

Proof. Suppose that n = 2m is even.

n∑
k=0

(
n

k

)
|2k −n| =

m∑
k=0

(
2m

k

)
(2m −2k)+

2m∑
k=m+1

(
2m

k

)
(2k −2m)

= 2
m∑

k=0

(
2m

k

)
(m −k)+

m−1∑
k=0

(
2m

2m −k

)
(2(2m −k)−2m)

= 2
m∑

k=0

(
2m

k

)
(m −k)+2

m−1∑
k=0

(
2m

k

)
(m −k)

= 4
m∑

k=0

(
2m

k

)
(m −k).

We now show by induction that ∀m ∈N,

m∑
k=0

(
2m

k

)
k = m22m−1. (9.28)

The result holds trivially true for m = 0. Suppose it is true for some m ≥ 0 and let’s prove it

remains true for m +1:

m+1∑
k=0

(
2m +2

k

)
k =

m+1∑
k=0

((
2m

k

)
+2

(
2m

k −1

)
+

(
2m

k −2

))
k

=
m+1∑
k=0

(
2m

k

)
k +2

m+1∑
k=1

(
2m

k −1

)
k +

m+1∑
k=2

(
2m

k −2

)
k

=
m+1∑
k=0

(
2m

k

)
k +2

m∑
k=0

(
2m

k

)
(k +1)+

m−1∑
k=0

(
2m

k

)
(k +2)

= 4
m∑

k=0

(
2m

k

)
k +

(
2m

m +1

)
(m +1)+2

m∑
k=0

(
2m

k

)
−

(
2m

m

)
m +2

m−1∑
k=0

(
2m

k

)

= 4m22m−1 +2
2m∑
k=0

(
2m

k

)
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= m22(m+1)−1 +222m

= (m +1)22(m+1)−1.

We thus proved that Equation 9.28 is true for all m ∈N. Thus, we have:

m∑
k=0

(
2m

k

)
(m −k) = m

m∑
k=0

(
2m

k

)
−m22m−1

= m

2

(
m∑

k=0

(
2m

k

)
+

2m∑
k=m

(
2m

k

))
−m22m−1

= m

2

(
2m∑
k=0

(
2m

k

)
+

(
2m

m

))
−m22m−1

= m

2

(
22m +

(
2m

m

))
−m22m−1

= m

2

(
2m

m

)
,

which concludes the proof. □

Proof of 9.2. Combine 9.6 and 9.7. □

9.7 Appendix: Proof of theorem 9.3

Lemma 9.8. Suppose that n ≳ d(log(d)+ log(1/δ)) and that ∥x∥2
2 ≲ E∥x∥2

2 almost surely. With

probability at least 1−2δ:

∥Σ∥2 ≲

1−
√

d(logd + log 1
δ )

n

−1

∥Σn∥2. (9.29)

Proof. The lemma is an application of the matrix Bernstein inequality. Recall that Σn =∑n
i=1 xi xT

i where xi for i ∈ {1, . . . ,n} are independent, identically distributed and, by assump-

tion, satisfy the inequality ∥xi∥2
2 ≲ E∥xi∥2

2 = tr(Σ) almost surely. Spelling out the definition of

≲, we have that there exists a C ≥ 1 such that

∀i ∈ {1, . . . ,n},
∥∥xi xT

i

∥∥
2 = ∥xi∥2

2 ≤C tr(Σ) almost surely.

Consequently, by matrix Bernstein, for any t ≥ 0,

P(∥
n∑

i=1

(
xi xT

i −Σ)∥2 ≥ t ) ≤ 2d exp

(
−

t 2

2

σ2 +K t
3

)
,

where K =C tr(Σ) and σ2 = ∥∥∑n
i=1E[(xi xT

i −Σ)2]
∥∥

2
.
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Now for any 0 < δ≤ 1, we take

t =
p

2

(
σ

√
logd + log

1

δ
+K (logd + log

1

δ
)

)
.

The term inside the exponential on the right hand side of the Bernstein bound then becomes

−
t 2

2

σ2 +K t
3

=−
σ2(logd + log 1

δ )+2Kσ
√

logd + log 1
δ (logd + log 1

δ )+K 2(logd + log 1
δ )2

σ2 +
p

2K
3 σ

√
logd + log 1

δ +
p

2K 2

3 (logd + log 1
δ )

=−
(logd + log 1

δ )
(
σ2 +2Kσ

√
logd + log 1

δ +K 2(logd + log 1
δ )

)
σ2 +

p
2K
3 σ

√
logd + log 1

δ +
p

2K 2

3 (logd + log 1
δ )

≤−(logd + log
1

δ
) (since

p
2

3
≤ 1 and logd + log

1

δ
≥ 0).

Consequently, the event

∥
n∑

i=1

(
xi xT

i −Σ)∥2 ≤
p

2

(
σ

√
logd + log

1

δ
+K (logd + log

1

δ
)

)
(9.30)

holds with probability at least 1−2δ. Now, by proceding just like Theorem 5.6.1 of Vershynin

(2018), we can bound σ2:

σ2 =
∥∥∥∥∥ n∑

i=1
E[(xi xT

i −Σ)2]

∥∥∥∥∥
2

= n
∥∥E[(x1xT

1 −Σ)2]
∥∥

2

= n
∥∥E[(x1xT

1 )2]−Σ2
∥∥

2 (by expanding the square)

≤ n
∥∥E[(x1xT

1 )2]
∥∥

2 (since Σ⪰ 0)

= n
∥∥E[∥x1∥2

2(x1xT
1 )]

∥∥
2

≤ nC tr(Σ)
∥∥E[x1xT

1 ]
∥∥

2 (by assumption)

= nC tr(Σ)∥Σ∥2.

Plugging this bound into (9.30) and dividing by n, we find that

∥Σn −Σ∥2 ≤
p

2

√
nC tr(Σ)∥Σ∥2

√
logd + log 1

δ

n
+C tr(Σ)

(logd + log 1
δ )

n


Factorizing by ∥Σ∥2 on the RHS and using the assumption that C d(logd + log 1

δ )≲ n, we find

∥Σn −Σ∥2 ≲

√
r (Σ)(logd + log 1

δ )

n
∥Σ∥2.
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With this in hand, we simply use the triangle inequality to obtain

∥Σ∥2 = ∥Σ−Σn +Σn∥2

= ∥Σn −Σ∥2 +∥Σn∥2

≲

√
r (Σ)(logd + log 1

δ )

n
∥Σ∥2 +∥Σn∥2

Isolating ∥Σ∥2 on the left hand side, we find that

∥Σ∥2 ≲

1−
√

r (Σ)(logd + log 1
δ )

n

−1

∥Σn∥2.

Finally we have that r (Σ) ≤ d . □

Lemma 9.9. Suppose that ∥x∥2
2 ≤ B almost surely. With probability at least 1−δ:

trΣ≤Σn +
√

B 2 log(1/δ)

2n
(9.31)

Proof. We define

σ(x1, . . . ,xn) = 1

n

n∑
i=1

tr(xi xT
i ) = trΣn (9.32)

The empirical second moment matrix is an unbiased estimator of the second moment matrix

Σ= EΣn . Hence

trΣ= trEΣn = E trΣn = Eσ(x1, . . . ,xn) (9.33)

We observe that the quantity we want to bound | trΣ− trΣn | is precisely the deviation of σ to

its expected value.

In order to obtain a high-probability bound on this deviation, we will make use of McDiarmid’s

Inequality. We first show that σ satisfies the bounded difference inequality

|σ(x1, . . . ,xi , . . . ,xn)−σ(x1, . . . , x̂i , . . . ,xn)| = 1

n
| tr(xi xT

i − x̂i x̂T
i )| = 1

n
|∥xi∥2 −∥∥x̂i

2
∥∥| ≤ B

n
(9.34)

Hence by McDiarmid’s inequality we conclude that

P (trΣn − trΣ<−t ) ≤ exp

(−2nt 2

B 2

)
(9.35)

Letting δ= exp
(
−2nt 2

B 2

)
we have t =

√
B 2 log(1/δ)

2n so that with probability at least 1−δ

trΣ≤Σn +
√

B 2 log(1/δ)

2n
(9.36)
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□

Proof of Theorem 9.3. The first result follows after bounding the Rademacher Complexity

using 9.8 and 9.9 in the inequality 9.18. The probability is obtained with a union bound.

From this result, the final computable uniform generalization bound in Equation 9.21 follows

from Equation 9.17 and a union bound. □

9.8 Appendix: Proof of lemma 9.1 and lemma 9.5

Proof of 9.1. Dividing by n and taking expectation on the following inequality yields the result.

sup
∥A∥≤λ

n∑
i=1

σi xT
i Axi = sup

∥A∥≤λ
∥A∥

n∑
i=1

σi xT
i (∥A∥−1 A)xi ≤λ sup

∥A∥≤1

n∑
i=1

σi xT
i Axi (9.37)

□

Proof of 9.5. By the Moore-Aaronszajn Theorem, the RKHS corresponding to the kernel K (x, y) =
〈x, y〉2, denoted by H, is built upon the vector space H0 corresponding to the linear span of

functions of the form Ky = K (·, y) = 〈·, y〉2 for y ∈Rd . We equipH0 with the inner product:〈
n∑

i=1
ai Kyi ,

m∑
i= j

b j Kz j

〉
:=

n∑
i=1

m∑
i= j

ai b j K (yi , z j ) (9.38)

H is precisely the completion ofH0, under the metric induced by this inner product. However,

because any Ky is a homogenous polynomial of second degree,H0 is finite-dimensional, hence

closed andH=H0. This shows thatH is a subspace of the space of homogenous polynomials

of second degree so f ∈H can be represented as f (x) = xT Ax for some symmetric matrix A.

On the other hand, for any symmetric matrix we can represent the function f (x) = xT Ax as

f (x) = xT Ax = xT U SU T x =
d∑

i=1
Si i 〈x,ui 〉2 =

d∑
i=1

Si i K (x,ui ) (9.39)

where A =U SU T is the SVD (orthogonal diagonalization) of the symmetric matrix A, and ui

are the columns of U . So any homogeneous polynomial is in the linear span of the functions

of the form Ky = K (·, y). We conclude that, as a set,H is equal to the space of homogeneous

polynomials of second degree.

Now we show that its norm is equal to the Frobenius norm of the associated matrix of coeffi-

cients. Let f (x) = xT Ax ∈H, where A is a symmetric matrix. Let A =U SU T be the SVD of A.
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We know that f =∑d
i=1 Si i Kui so that by definition of the RKHS norm

∥∥ f
∥∥2
H
=

〈
d∑

i=1
Si i Kui ,

d∑
i=1

Si i Kui

〉
H

=
d∑

i=1

d∑
j=1

Si i S j j 〈Kui ,Ku j 〉

=
d∑

i=1

d∑
j=1

Si i S j j K (ui ,u j ) =
d∑

i=1

d∑
j=1

Si i S j j 〈ui ,u j 〉2 =
d∑

i=1
S2

i i = ∥A∥2
F

(9.40)

□

9.9 Appendix: Additional experiments

9.9.1 A synthetic experiment maximizing the train/test loss gap

The results derived in corollary 9.2 pertain to the worst case generalization gap. This worst

case gap is not guaranteed to be attained by the function found through empirical loss mini-

mization. Therefore, in order to better test our results, we try to find the function that attains

this worst case generalization gap.

The experiment we propose consists of computing the quadratic function f such that

E[ℓ( f (x, y))]− 1

n

n∑
i=1

ℓ( f (xi , yi ))

is maximized. The expectation in the term above being generally difficult to compute in closed

form, we replace the objective by an empirical estimate

1

ntest

ntest∑
k=1

ℓ( f (xk , yk ))− 1

ntrain

ntrain∑
i=1

ℓ( f (xi , yi )).

We expect this quantity to more faithfully track the upperbounds derived in corollary 9.2.

Indeed, what we evaluate here is the capacity of the class constraining f to attain a low loss on

ntrain samples while attaining a very high one on ntest samples.

To illustrate that Frobenius and nuclear norm constrained classifiers exhibit different be-

haviors depending on the intrinsic dimension of the data, we compute the result of the

maximization procedure on isotropic distributions on one hand and on anisotropic on the

other. We set the radius λ= 1 for both Nuclear and Frobenius norm constrained classifiers.

We then observe the evolution of these quantities as the dimension increases.

Generating Isotropic Data.

To generate isotropic data satisfying our assumptions, we sample a standard Gaussian random
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vector in Rd and normalize it as follows :

xi =
p

d × zi

∥zi∥
where zi ∼N (0, Id ).

The zi ’s are sampled independently. The procedure generates i.i.d samples xi that are uni-

formly distributed on the sphere of radius
p

d .

Generating Anistropic Data.

To generate anisotropic data, we first generate isotropic data features by uniformly sampling

points on the sphere of radius
p

d as described previously. We then transform the samples

into more anisotropic ones.

The transform consists of multiplying each feature vector coordinate-wise by a vector α(s)

defined as α(s)
i =Cs

1
i s , i = 1, . . . ,d , for s ∈ [0,1] where Cs is chosen such that ∥α(s)∥2 =

p
d . That,

way, s = 0 induces no change on the data, since α(1) = [1,1, . . . ,1]T , and larger s implies that

the data will be more squashed along the first few coordinates, inducing smaller intrinsic

dimension. This transform does not affect the norm of the vectors since

E[∥α(s) ×xi∥2] =
d∑

k=1
(α(s)

k )2E[[xi ]2
k ] =

d∑
k=1

(α(s)
k )2 =

p
d

Generating the labels.

We test two approaches for generating the labels :

1. We generate a random matrix A with i.i.d standard Gaussian coordinates and set yi =
sgn(x⊤i Axi ).

2. We set the labels randomly with yi ∼ Bern(0.5).

The results.

We observe that the maximal gaps do indeed evolve as the theory predicts. We indeed have the

nuclear norm constrained classifier on isotropic data not exhibiting the same growth as the

others, indicating that the maximal generalization gap for nuclear norm constrained classifiers

is indeed sensitive to isotropy.

9.9.2 Additional details on the isotropic normalization effects on real data

Here we give additional details on the experimental setup. As mentioned in the main text,

each dataset is randomly split with an 80/20 ratio to define training and testing sets. The

training set is used to compute the normalizing factors Σn and νn . These factors are then used

to normalize the entire dataset.
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9.9 Appendix: Additional experiments
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(a) Labels generated as yi = sgn(x⊤Ax)
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(b) Labels generated randomly

Figure 9.2: Maximized Train/Test loss gaps for each dimension d . The results are averaged
over 5 independent runs. The error bars correspond to the standard error.

The nuclear- and Frobenius norm (or SVM) classifiers each have a hyperparameter C and λ

that needs to be set before training. We search for the optimal hyperparameter among the

grids [0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10] for C , and [0.0001, 0.001, 0.01,

0.1, 1, 10, 50, 100, 500, 1000, 10000] for λ. The best hyperparameter is determined through

4-fold cross-validation on the training set.

The SVM classifier results are computed using scikit learn’s (Buitinck et al., 2013) liblinear (Fan

et al., 2008) wrapper. Details on the nuclear norm classifier are given below.

9.9.3 Computational details on the Nuclear Norm Constrained Classifier

The classifier solves the following optimization problem

min
A∈Rd×d

1

n

n∑
i=1

ℓ(x⊤i Axi , yi )

subject to ∥A∥tr ≤λ

using accelerated projected gradient descent. The projection step makes use of the simplex

projection algorithm proposed in Duchi et al. (2008b). The loss function used is the smoothed

hinge loss, and its smoothness constant is upper bounded by L = 1
n

∑n
i=1 ∥xi∥4

2. We use 1/L as

the stepsize for the accelerated projected gradient descent. The gradients are computed with

JAX Bradbury et al. (2018). For the real dataset experiments, additional variables b ∈Rn and

c ∈R are added in order to optimize over non-homogeneous quadratic polynomials like the

SVM classifier.
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9.10 Bibliographic Note

the candidate proposed the original idea for this paper, and derived the main result (Theo-

rem 9.1) which uses the auxiliary results Lemma 9.2 (derived by P. Rolland) and Lemma 9.3

(derived by the candidate). The candidate also derived the secondary results Lemma 9.5,

Corollary 9.2 and Theorem 9.3.
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10 Conclusions and Future Work

In this thesis, we have provided algorithms with theoretical guarantees of robustness, either

trough upper bounds of the Lipschitz constant (chapters 2, 3, 5 and 9), through Adversar-

ial Training (chapters 6 and 7) or via denoising adversarial examples (chapter 8). We have

also provided algorithms with improved generalization in the presence of noisy input data

(chapter 9). We summarize the conclusions and possible extensions of each chapter as follows:

Chapter 2. We have introduced a general approach for computing an upper bound on the

Lipschitz constant of neural networks. This approach is based on polynomial positivity certifi-

cates and generalizes some existing methods available in the literature. We have empirically

demonstrated that it can tightly upper bound such constant. The resulting optimization

problems are computationally expensive but the sparsity of the network can reduce this

burden.

In order to further scale such methods to larger and deeper networks, we are interested in

several possible directions: (i ) divide-and-conquer approaches splitting the computation on

sub-networks in the same spirit of Fazlyab et al. (2019a), (i i ) exploiting parallel optimization

algorithms leveraging the structure of the polynomials, (i i i ) custom optimization algorithms

with low-memory costs such as Frank-wolfe-type methods for SDP (Yurtsever et al., 2019)

as well as stochastic handling of constraints (Fercoq et al., 2019) and (i v), exploting the

symmetries in the polynomial that arise from weight sharing in typical network architectures

to further reduce the size of the problems.

Chapter 3. We presented the first algorithm for 1-path-norm regularization of Shallow Neural

Networks with guarantees of convergence to stationarity. The 1-path-norm is a powerful

regularizer that non only has theoretical properties of good generalization, but also induces

sparsity and higher robustness to adversarial perturbations. As such, it should be considered

as a possible drop-in replacement for more common regularization methods like weight decay.

Of course, contemporary network architectures used in industrial applications like NLP and

computer vision are much different to shallow networks. As such, there is limited impact
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from our preliminary results, but they pave the way for further extensions to deeper and more

involved network architectures. Since the number of paths is potentially large, this scenario

requires more sophisticated treatment. Nonetheless, a trivial extension of our approach is

to divide a multi-layered network into pairs of consecutive layers, and apply our method

independently on such pairs.

Chapter 4. Our results indicate that 1-path-norm regularization clearly outperforms weight-

decay on robustness and generalization tasks using fully-connected networks (MLPs). On the

other hand, for highly sparse architectures like CNNs the effect is more muted or negative.

Indeed, 1-path-norm works better when the number of effective paths in the network is large

i.e., MLPs or MLP-Mixer (Tolstikhin et al., 2021). Nevertheless, the difference between different

optimizers for 1-path-norm regularization seems to be small, but appear more noticeable

when the sparsity of the network is crucial, e.g., robustness against noise in the data. Hence,

the use of AD for 1-path-norm regularization is not discouraged despite its lack of theory.

1-path-norm regularization is not without drawbacks. First, an initial round of tuning is

required for each model architecture to obtain satisfactory parameters for the proximal ap-

proximation method. Secondly, the computational cost of the proximal step might slow down

training, so a balance struck by skipping the proximal map in some iterations (Mishchenko

et al., 2022) or reducing the number of iterations for the proximal approximation step. Thirdly,

1-path-norm increases exponentially with regards to network depth, which might cause nu-

merical problems for 1-path-norm regularization of really deep neural networks. This issue

requires further attention and is left for future work. Finally, it does not consistently improve

the robustness in the noisy-labels task.

Chapter 5. In this work, we explore the generalization properties of the Coupled CP-

decomposition (CCP) and nested coupled CP-decomposition (NCP) models that belong in

the class of Polynomial Nets (PNs). We derive bounds for the Rademacher complexity and

the Lipschitz constant of the CCP and the NCP models. We utilize the computed bounds as a

regularization during training and we showcase that such they can improve the generalization

properties of CCP models. The regularization terms have also a substantial effect on the

robustness of the model, i.e., when adversarial noise is added to the test set. Along with the

recent empirical results on PNs, our derived bounds can further explain the benefits and

drawbacks of using PNs.

A future direction of research is to obtain generalization bounds for this class of functions

using stability notions, as it has been observed that the particular optimization algorithm can

induce strong properties without the need of explicit regularization. One possible drawback of

our approach is that it involves the products of norms of weight matrices. Similar to the case

of traditional Deep Neural Networks, such bound can be loose, as it does not take into account

the interactions between neurons in different layers. It would be of benefit to try directly

regularizing the norm of the product of matrices that appears as an intermediate steps in the

proof of theorem 5.1. This approach is more convoluted though, as it involves a non-convex
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and non-smooth regularizer.

Chapter 6. We presented a formal proof, counter examples and evidence about the real

world impact of the fact that a foundational corollary of the Adversarial Training literature

is in fact false. Raising awareness about an incorrect claim that has been present in the

Adversarial Training literature may provide opportunities to develop improved variants of

the method. Indeed, we see some improvents in an implementable algorithm that align

with our theoretical arguments: DDi exploits multiple approximate solutions of the inner-

maximization problem, yields better updates for the parameters of the network and improves

the optimization dynamics.

However, it is important to remember the limitations and opportunities for future work:

our algorithm requires multiple forward-backward passes and one additional optimization

problem. Reducing the overhead over the vanilla PGD method would certainly make our

results truly practical.

Non-smooth activations and the use of Batch Normalization or momentum still falls outside

the scope of existing theory but might achieve better performance in benchmarks. To date,

this requires using precise hyperparameters and tricks like early-stopping, that have only been

found to work a-posteriori through extensive trial and error. Since we observe lower decay

even in such setting, future work extending the analysis to cover this case might help alleviate

this cost.

Chapter 7. We rigorously studied the standard zero-sum formulation of adversarial training.

We argued that the surrogate-based relaxation commonly employed to improve the tractability

of this problem voids guarantees on the ultimate robustness of trained classifiers, resulting in

weak adversaries and ineffective AT algorithms. This shortcoming motivated the formulation

of a novel, yet natural bilevel approach to adversrial training and evaluation. In our paradigm,

the adversary and defender optimize separate objectives, which constitutes a non-zero-sum

game that preserves guarantees on robustness. Based on this formulation, we developed

a new adversarial attack algorithm—BETA, which stands for BEst Adversarial Attack—and

a concomitant AT algorithm, which we call BETA-AT. In our experiments, we showed that

BETA-AT eliminates robust overfitting, which we argued is a direct result of optimizing an

objective which is aligned with the goal of finding true adversarial examples. We also showed

that even when early stopping based model selection is used, BETA-AT performed comparably

to AT. And finally, we showed that BETA provides almost identical estimates of robustness to

AutoAttack, indicating that when the adversarial objective closely matches the true objective,

one need not resort to heuristics like multiple restarts, variable stopping conditions, and

adaptive learning rate schedules to accurately estimate robustness.

With regard to the bilevel formulation in this paper, future directions abound. One could

imagine applying this framework to other changes in the data space, including the kinds of dis-

tribution shifts that are common in fields like domain adaptation and domain generalization.

A convergence analysis of BETA and an analysis of the sample complexity of BETA-AT are two
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more directions that we leave for future work. The prospect of applying more sophisticated

bilevel optimization algorithmic techniques to this problem is also a promising avenue for

future research.

Chapter 8. We have proposed a flexible linearized ADMM algorithm for the minimization of a

convex function subject to a nonlinear constraint given by a neural network corresponding

to a generative model. Under mild assumptions we demonstrate a fast convergence rate to a

neighborhood of a solution of its Lagrangian formulation (8.3). Empirical evaluation shows

how it can handle nonsmooth terms more efficiently when compared to gradient descent and

its variants.

Some avenues of research are left open which could yield faster variants of our proposed

approach. First, ADMM-type algorithms admit acceleration and restart schemes with faster

convergence rates in the convex case (Goldstein et al., 2014) but their adaptation to the

nonlinear constraint given by a generative model is non-trivial. Secondly, adaptivity in the

choice of penalty parameter ρ can potentially improve the performance of the method and

reduce the need for tuning (He et al., 2000).

Chapter 9. Our result shows that given a fixed regularization parameter λ, nuclear-norm

constrained classifiers can take advantage of the properties of the data distribution to shave

off a
p

d factor from the Rademacher complexity, whereas Frobenius-norm constrained ones

cannot.

We rely on two main elements to show this : Hölder’s inequality in equation (9.5) which

introduces the dual norms and a bound on the expected deviations Mk , which quantifies

how fast the empirical moment estimate converges to the true moment matrix. Both these

elements admit extensions to higher order tensors which corresponds to polynomials of

higher degree. This is an avenue of research worth exploring, as having a good analysis for

higher-order polynomials can shed light on the behaviour for Neural Networks, by considering

polynomial approximations of the activation functions.

The extension of Hölder’s inequality is immediate. The main difficulty of extending our result

lies in establishing the convergence rate of the deviations E[∥ 1
k

∑k
i=1 x⊗m

i −M∥op ], where

M = E[x⊗m] is the tensor of m-th moments. For matrices, the rate is obtained through the

matrix Bernstein inequality. Therefore, an extension can be derived by using the recently

proved tensor Bernstein inequality in Luo et al. (2019) obtained by flattening the tensors and

recycling the results for matrices.
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