

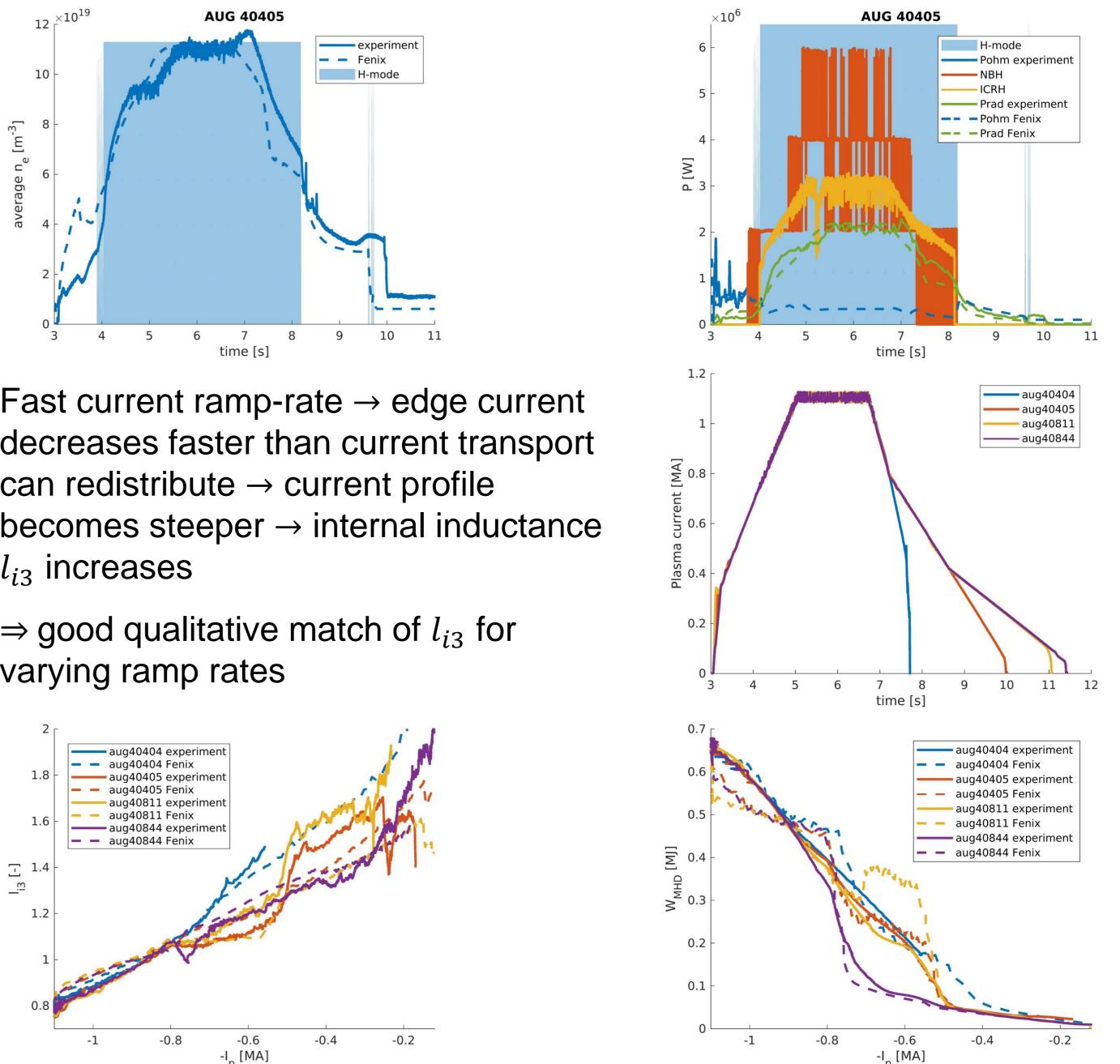
Analysis of the ramp-down phase using the Fenix flight simulator

R. Coosemans¹, E. Fable², C. Contré¹, P. David², F. Felici¹, S. Medvedev³, A. Merle¹, T. Pütterich², O. Sauter¹, S. Van Mulders¹, C. Wu⁴, the ASDEX Upgrade Team^[1]

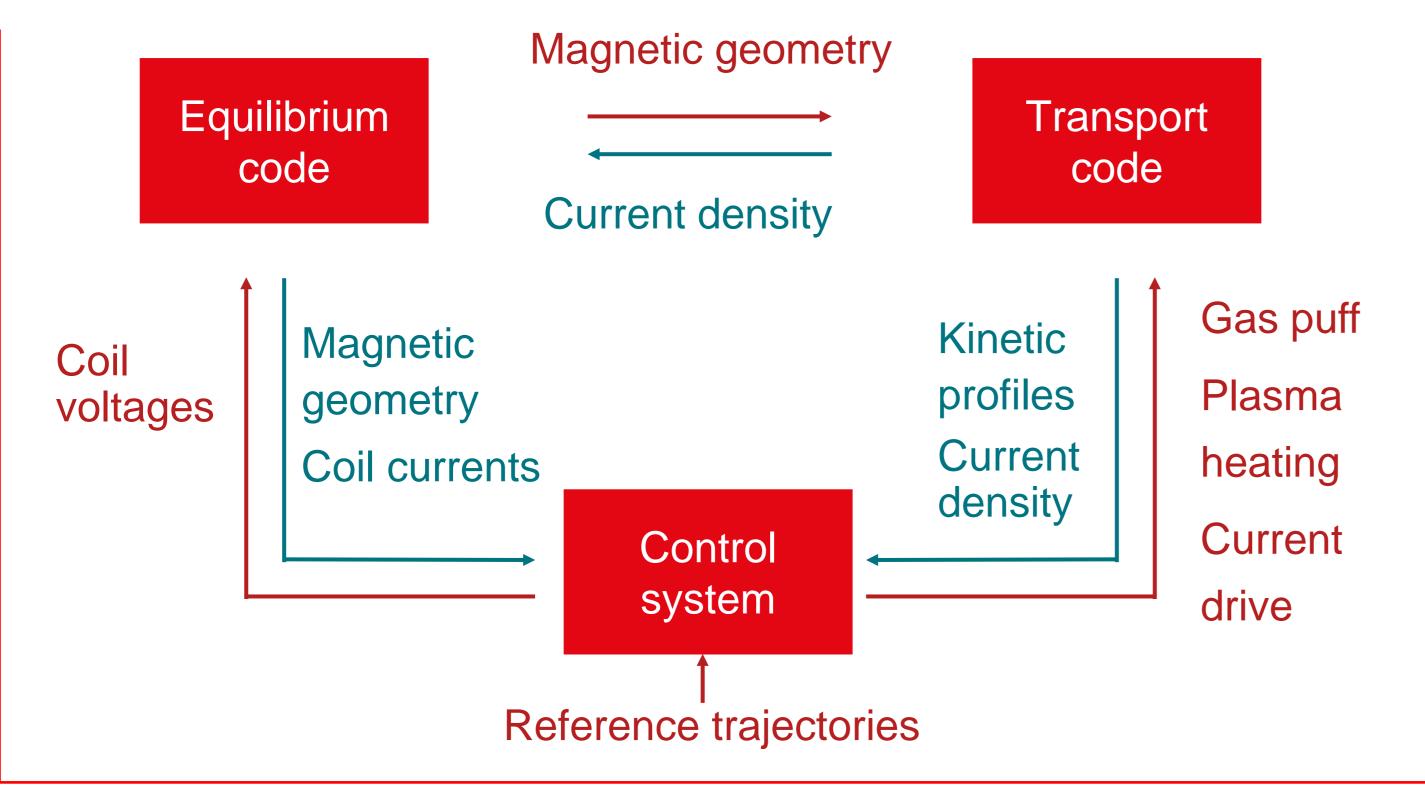
¹ Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland

² Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany

³ Tokamak Energy Ltd, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom

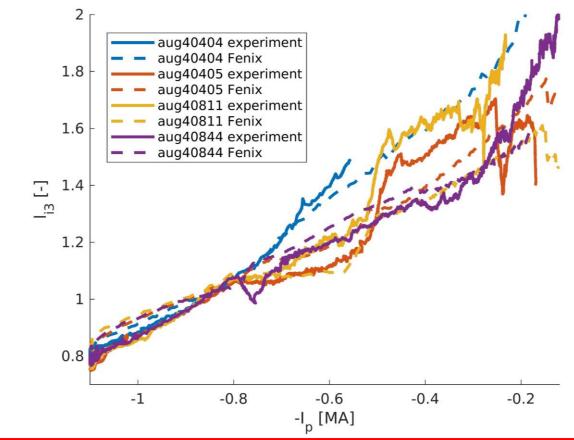

⁴ Karlsruher Institut für Technologie, 76344 Eggenstein-Leopoldshafen, Germany

Abstract


- Accurate design of plasma scenarios required for success of future reactors
- Tokamak flight simulators integrate physics and control for testing and discharge preparation
- \Rightarrow Fast, relatively accurate simulations of the complete discharge
- Ramp-down phase is important for future reactors because of high energy content needing to be removed safely Highly transient phase, challenging test for flight simulators \Rightarrow Apply Fenix flight simulator [2] to AUG IBL ramp-downs [3]

ASDEX ramp-down cases

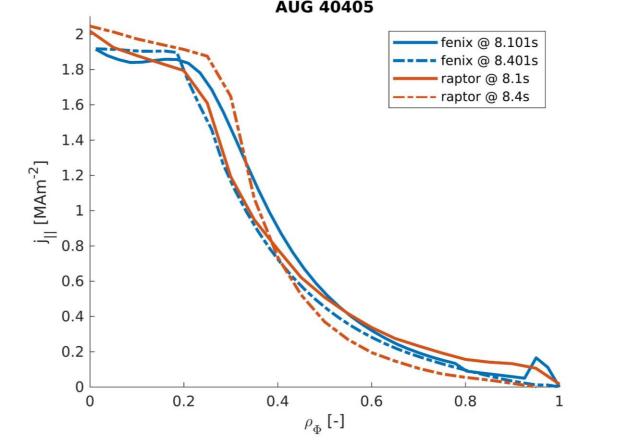
Simulate ASDEX-Upgrade ITER baseline scenarios with variable current ramp down rates [3]

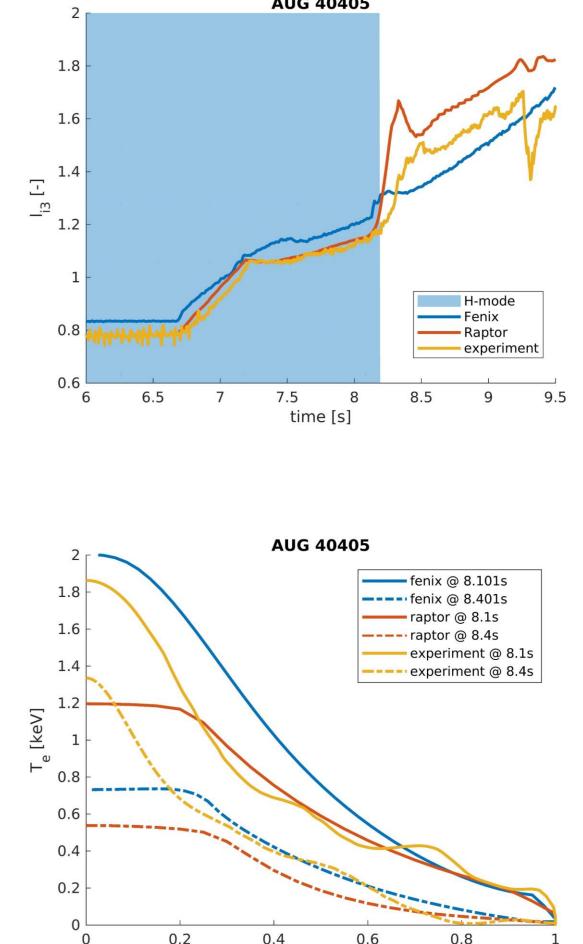


Fenix Flight simulator

Fast current ramp-rate \rightarrow edge current decreases faster than current transport can redistribute \rightarrow current profile becomes steeper \rightarrow internal inductance l_{i3} increases

 \Rightarrow good qualitative match of l_{i3} for varying ramp rates




Fenix model

Generic?

Zoom on H-L transition

			Generic	Zoom on H -L transition	
transport		ASTRA code [4]		H-L transition \rightarrow sudden decrease of J_{BS}	AUG 40405
	NBI	Rabbit code [5]	\checkmark	and T_e in edge \rightarrow more j_{OH} required and fast current decay in edge \rightarrow jump in l_{i3} \Rightarrow H-L transition not abrupt enough to capture this in Fenix \Rightarrow RAPTOR simulations were able to reproduce this [11]	1.6
	ECRH	Torbeam code [6]			
	ICRH	Gaussian distribution			
	radiation	Bremsstrahlung + synchrotron + impurities			0.8 Fenix Raptor
	Current transport	Neoclassical conductivity + bootstrap + sawthooth	\checkmark	Remark: auxiliary heating in L-mode avoids l_{i3} jump in AUG 40844	time [s]
	Heat transport	Gyrobohm with empirical constant in core	X		
		Pedestal scaling [7] with empirical constant in H-mode edge	X		1.4 1.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.8
		Fixed edge diffusivity in L-mode	X	0.6	0.6
	Particle transport	Continuity equations for D,He,B,W,N,Ne,H,Kr,Ar		$\begin{array}{c} 0.1 \\ 0.2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	
		Semi-empirical diffusion and convection coefficients	X	Conclusions	
	SOL-divertor- wall	Multi-zone model for particle content	X	 Fenix manages to capture the salient features of AUG IBL ramp- down discharges ⇒ testifies of Fenix robustness Some parameter tuning was needed though Some details remain elusive, e.g. improved L-mode transport model required for <i>T_e</i> flattening in the edge (see also [11]) Application to TCV should allow to further validate Fenix and pinpoint deficiencies and models that need to be generalised 	
		Two-point model for temperature at separatrix [10]	\checkmark		
equilibrium		SPIDER free boundary [8]	\checkmark		
controller		PCSSP-Simulink [9] emulating AUG controller	X		
[2] E. Fable et [3] T. Pütterich [4] E. Fable et	t al. NF, 62 , 2022 al. PPCF, 64 , 2022 et al. 27 th IAEA FEC, al. PPCF, 55 , 2013 et al. NF, 58 , 2018	•••••••••••••••••••••••••••••••••••••••	Plasma Physics, Des., 96-97 , 2015 oundary of Magnet	29C, 2005 the Sy tic Fusion Devices, IoP Publishing, 2000	was supported in part by wiss National Science Foundation.

Swiss Plasma Center

This work has been carried out within the framework of the EUROfusion Consortium, partially funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). The Swiss contribution to this work has been funded by the Swiss State Secretariat for Education, Research and Innovation (SERI). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union, the European Commission or SERI. Neither the European Union nor the European Commission nor SERI can be held responsible for them.

