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Abstract—There is a strong incentive to develop computational
pathology models to i) ease the burden of tissue typology
annotation from whole slide histological images; ii) transfer
knowledge, e.g., tissue class separability from the withheld
source domain to the distributionally shifted unlabeled target
domain, and simultaneously iii) detect Open Set samples, i.e.,
unseen novel categories not present in the training source
domain. This paper proposes a highly practical setting by
addressing the abovementioned challenges in one fell swoop,
i.e., source-free Open Set domain adaptation (SF-OSDA), which
addresses the situation where a model pre-trained on the
inaccessible source dataset can be adapted on the unlabeled
target dataset containing Open Set samples. The central tenet
of our proposed method is distilling knowledge from a self-
supervised vision transformer trained in the target domain.
We propose a novel style-based data augmentation used as
hard positives for self-training a vision transformer in the
target domain, yielding strongly contextualized embedding.
Subsequently, semantically similar target images are clustered
while the source model provides their corresponding weak
pseudo-labels with unreliable confidence. Furthermore, we
propose cluster relative maximum logit score (CRMLS) to
rectify the confidence of the weak pseudo-labels and compute
weighted class prototypes in the contextualized embedding space
that are utilized for adapting the source model on the target
domain. Our method significantly outperforms the previous
methods, including open set detection, test-time adaptation, and
SF-OSDA methods, setting the new state-of-the-art on three
public histopathological datasets of colorectal cancer (CRC)
assessment- Kather-16, Kather-19, and CRCTP. Our code is
available at https://github.com/LTS5/Proto-SF-OSDA.

Index Terms—Histopathological image analysis, Colorectal can-
cer assessment, data augmentation, Open-set domain adaptation,
Vision transformer

1. Introduction

Computational pathology has become a ripe ground for
deep learning approaches as it has witnessed a rapid influx
of myriad tasks, such as tissue phenotyping from whole
slide images (WSIs). Nevertheless, even in routine clinical
practice, curating huge-size WSIs with the heterogeneity of
multiple tissues remains a daunting challenge.

Figure 1: Conceptual comparison of conventional SF-
OSDA vs. Proto SF-OSDA: (a) In conventional SF-OSDA,
the source model fs pre-trained on the inaccessible source
domain Ds is adapted to the unlabeled target domain Dt

comprising of Closed Set (known) and Open Set (unknown)
classes; (b) Proto SF-OSDA can avail from a self-supervised
vision transformer trained on the target domain, allowing
access to a stronger contextualized embedding for the target
data.

In this situation, transfer learning and domain adaptation
techniques from open-source image datasets [1], [2] can
mitigate or reduce costly annotation to be focused only on
the labeling of the region of interest, i.e., relevant tissues.
Albeit successful, access to a huge amount of labeled open-
source data may be unattainable after deployment due to
regulations on data privacy and computational limitations.
This heralds a practical domain adaptation scenario, namely
a source-free domain adaptation (SFDA) setting, where the
task is to transfer knowledge from inaccessible source data
to unlabeled target data using only a source-trained model.
Several source-free domain adaptation methods [3], [4], [5]
have been proposed en route to the goal based on test-time
training/adaptation [6], [7]. However, while promising, these
methods follow the closed-world assumption and do not
account for the Open Set samples from target data that
are not present in the training source set. The Open Set
samples are unknown novel categories outside the set of
initial categories annotated by the user, which could be
abundant but clinically irrelevant tissue categories for
the task at hand from histological slides or related to rare
diseases and/or caused by acquisition artifacts. Thus, these
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Open Set samples can be manually reviewed to avoid making
the model susceptible to a potential misdiagnosis.

In addition to Open Set samples, the source-trained model
may also encounter a shift in color appearance (chromatic
shift) between the source and target domains of histopathol-
ogy images, referred to as covariate shift due to different
types of scanners or staining procedures. Nonetheless, current
Open Set detection methods [8], [9], [10], [11] are often
incapable of disentangling semantically shifted Open Set
samples (changes in the underlying structures, e.g.,
unknown tissue categories) from the covariate shifted
Closed Set samples (known tissue categories with different
chromatic distribution) [12].

To this end, we propose Proto SF-OSDA, which focuses
on a more practical Source-Free Open Set Domain Adapta-
tion setting and mitigates the above challenges inherent in
classifying histopathological tissue images in the presence
of both covariate and semantic shifts. Contrary to previous
SF-OSDA methods (Fig. 1 left), Proto SF-OSDA distills
a self-supervised vision transformer to learn a stronger
contextualized embedding for the target data (Fig. 1 right).
Our major contributions are as follows:

• We propose automatic adversarial style augmentation
(AdvStyle), which emulates covariate shifts resem-
bling different chromatic staining shifts in histopatho-
logical images. The proposed data augmentation is
utilized for self-supervised training of the vision
transformer on the target data, yielding strongly
contextualized embedding by pushing similar tissue
features closer without using any labels.

• We propose Cluster Relative Maximum Logit Score
(CRMLS) computed in the transformer’s contextu-
alized embedding space to refine the weak-pseudo
labels with unreliable confidence from the source
model. Consequently, using these refined confidence
scores on the target images, we obtain weighted aver-
age class prototypes in the transformer’s embedding
space and generate reliable pseudo labels for adapting
the source model.

• The proposed Proto SF-OSDA is evaluated on three
histopathological datasets of CRC assessment. Exper-
imental results demonstrate the superior performance
of Proto SF-OSDA over the previous competing
methods, including open set detection, test-time
adaptation, and SF-OSDA methods under covariate
and semantic shifts.

2. Related Work

2.1. Open Set Detection

In an Open Set setting, a trained model must be able to
discriminate known (Closed Set) from unknown categories
(Open Set) that have not yet been encountered. There are
a few subcategories of Open Set recognition approaches.
The first is model activation rectification strategies [13],
[14], where Open Set examples can be detected using a

rectification scheme for the activation patterns of the model
related to Closed Set examples. Other approaches utilize
GANs to generate images resembling Open Set samples
[15] or train GAN-discriminator to distinguish closed from
Open Set samples [16]. Seminal work [9] demonstrates that
robust classifiers with high Closed Set accuracy also serve as
better Open Set detectors. The authors establish Maximum
Logit Score (MLS) as a baseline Open Set scoring metric
for distinguishing known from unknown classes. Motivated
by this, our method uses un-normalized logits for model
adaptation and open-set recognition instead of the softmax
output probabilities.

Other methods, such as Monte Carlo Dropout or Multi-
head convolutional neural network (CNN) models [17], [18],
measure uncertainty during inference to recognize Open
Set images with high uncertainty. Another subcategory of
methods evaluates the model on pretext tasks, e.g., predicting
geometric [19] or color transformations [8] applied to test
images during inference, with the assumption that the model
will perform poorly on Open Set samples. Nonetheless, most
of these methods require a specific source model training or
access to Closed Set examples, limiting their applicability
with off-the-shelf pre-trained models. Additionally, these
methods assume similar image characteristics in the test
domain, leading to failure under covariate shifts.

2.2. Source-Free Test-Time Domain Adaptation

Test-time domain adaptation, known as source-free do-
main adaptation (SFDA) [4], [20], [21], aims to improve
model robustness against distribution shifts during inference
without access to labeled source domain images. While
current pseudo-label-based SFDA methods [4], [21], [22],
[23], [24] work well in closed-world settings, they fail
significantly in open-world scenarios and require filtering of
Open Set examples during inference.

Moreover, another subcategory of SFDA methods, e.g.,
[25], [26], [27], solve particular auxiliary tasks (e.g., self-
supervised rotation prediction) to adapt the model under
common distributional shifts. Some other methods adapt
batch normalization (BN) statistics [6] or proposed test-time
augmentation to simulate augmentations resembling the saved
BN statistics [7] to mitigate errors from Open Set examples.
However, as shown in our experiments, solely bridging the
target-source feature statistics gap may not be sufficient for
improving Open Set recognition capabilities.

2.3. Source-Free Open Set Domain Adaptation

Existing SF-OSDA methods use self-supervised pseudo-
labeling [4], uncertainty quantification in the source model
prediction [28], or proposed specialized source training
strategy [29] to train an inheritable model capable of adapting
to the target domain with novel categories. In [4], the
authors introduced a source-free domain adaptation method
that involves a self-supervised pseudo-labeling scheme by
clustering known and unknown categories using K-Means
clustering. Subsequently, the model is adapted exclusively



on examples from the known categories in the target domain.
Recently, a balanced progressive graph learning framework
in introduced in [30] that decomposes the target hypothesis
space into shared and unknown subspaces, employing pro-
gressive pseudo-labeling for hypothesis adaptation. In [31],
inter-class relationships are modeled using the weights of
the classifier layer of the source model, and this information
is combined with contrastive learning to pseudo-label target
domain images for adaptation.

In contrast to the previous works, we employ a self-
supervised vision transformer to separately learn a con-
textualized embedding of target images and refine their
corresponding weak-pseudo labels obtained from the source
model. Our method does not rely on special source training
strategies and can be applied to any off-the-shelf pre-trained
source model.

3. Materials and Methods

Adapting a source model pre-trained on the inaccessible
source data to the unlabeled target data of histopathological
images under simultaneous covariate and semantic shifts
is extremely challenging as the uncertainty of the source
model’s predictions on the target domain’s images may come
from either or both types of distributional shifts.

Overcoming this challenge, we propose distilling knowl-
edge from a separate vision transformer (ViT) [32] based
feature extractor trained on the unlabeled target domain’s
images in a self-supervised manner. This is motivated firstly
because ViT-based models demonstrate better robustness
against, e.g., texture bias than CNN-based models [33].
Secondly, self-supervised vision transformers, e.g., [34],
yield a strong contextualized embedding space, which sug-
gests the clustering approach in its feature space would
function well. Nonetheless, recent self-supervised ViT-based
methods, in particular, DINO-ViT [34], are trained by
learning representational invariances to different augmented
views of the natural RGB images, which may be sub-
optimal to represent diverse color appearances simulating
substantial staining variations of tissue samples. Motivated
by the data augmentation policies used in [8], we propose
using automatic adversarial style augmentation by learning
the magnitudes of the color transformations for self-training
the ViT on the target domain images. However, unlike [8],
which utilizes an auxiliary network for test-time image
transform prediction, we automatically learn image style-
based adversarial augmentation policies to self-train ViT.
The generated style-based augmentation policies are treated
as hard positives, making distinguishing image pairs in the
ViT feature space difficult. Consequently, the self-trained ViT
provides contextualized embeddings of the target domain’s
images, while the original pre-trained source model provides
their corresponding weak pseudo-labels. We then propose to
refine the confidence of weak pseudo-labels by exploiting
the semantic smoothness hypothesis of ViT’s contextualized
embedding space via CRMLS score and computing weighted
class prototypes in this contextualized embedding space.

Eventually, the ViT-guided class prototypes are used for
adapting the source model to the target domain.

In summary, Proto SF-OSDA has two major components:
(1) Self-supervised training of vision transformer via pro-
posed automatic adversarial style augmentations to generate
contextualized embedding space on the unlabeled target
domain, and (2) Computing class prototypes using proposed
CRMLS in the ViT embedding space, followed by adapting
the source model on the obtained pseudo labels.

Problem formulation. Let fs : X → Y denote the
tissue-type classifier (source model) that is trained on the
inaccessible source domain Ds of tissue images belonging
to C known classes, where X ∈ RH×W×3 denotes an RGB
image with height H and width W , and Y ∈ RC denotes the
corresponding logits vector. Also, let Dt denote the unlabeled
target domain images belonging to the C known and C̄
unknown classes not seen during source model training,
i.e., C ∪ C̄. We aim to adapt pre-trained source model fs
on Dt to obtain adapted model ft so that it can correctly
classify target domain images into C known classes and
an Open Set category of samples containing C̄ unknown
classes. The Open Set target domain images are detected
by comparing their maximum logit scores predicted by ft
against a threshold, while Closed Set images are classified
into C known classes.

In Sec. 3.1, we describe our proposed adversarial style
augmentation for self-supervised training of the vision trans-
former to obtain contextualized target embeddings. Sec. 3.2
presents our proposed CRMLS for refining the confidence
of the source model on the target domain with Open Set
examples, while Sec. 3.3 describes utilizing CRMLS scores to
obtain Open Set aware class prototypes in the contextualized
target domain embedding and final adaptation of the source
model.

3.1. Self-Supervised ViT Training via Automatic
Adversarial Style Augmentation

Let F : X → Z denote the ViT feature extractor that
maps the target images X ∈ RH×W×3 to its contextualized
embedding space Z ∈ Rd. We adopt DINO [34] for self-
supervised training of F on the target domain images Dt

as it is a powerful nearest neighbor classifier, and thus
better clusters semantically similar images in its embedding
space. DINO uses an identical architecture of teacher-student
networks, where the teacher network is slowly updated as
a moving average by the student network during training.
The soft-maxed logits predicted by the teacher network
on randomly augmented global crops of the image views
are matched by the student network on another set of
augmented image views with global and local image crops.
However, we replace the DINO default augmentations with
our automatic adversarial style augmentation (AdvStyle) for
learning contextualized embedding of the target images.

Automatic adversarial style augmentation (AdvStyle).
Using the data augmentation policies from [8], let O represent
the set of color transformations operations O : X → X .



Figure 2: Self-training vision transformer via proposed
adversarial style augmentations. The. style augmentation
module fstyle is trained to learn magnitudes m̂ for adversarial
augmentations by maximizing LDINO while transformer
encoder F is updated to minimize LDINO on the target
domain.

We define O as the set of six color transformations, including
{GAMMA, HUE, SATURATION, SHARPNESS, BRIGHTNESS, CONTRAST}.
Each color transformation in O is applied to a given tissue
image parametrized by its magnitude m̂ ∈ [0, 1], which
determines the strength of the color transformation. We
utilize a style augmentation module consisting of a shallow
multilayer perception (MLP) fstyle built on top of the frozen
ViT teacher network that sequentially applies differentiable
image transformation operations T (x, m̂) to input image x
using their predicted magnitudes m̂ as follows:

x̂ = T (x, m̂) = O6(O5...(O1(x, m̂1), ..., m̂5, m̂6) (1)

where Oj(x, m̂j) applies jth color transform with learnable
magnitude m̂j on a given target domain image x to generate
augmented image x̂.

As shown in Fig. 2, we self-train ViT encoder F on
Dt using the same self-supervised DINO loss LDINO (Eq.
2) as [34] but with our AdvStyle instead of their default
augmentations. fstyle is trained in an adversarial manner
w.r.t. ViT encoder to generate hard style-based augmentation
policies that make distinguishing augmented image pairs in
the feature space difficult. In this adversarial setup, fstyle is
trained to maximize LDINO (Eq. 2), while the ViT model
is trained to minimize LDINO. Note that we only learn to
adversarially augment one of the two global image crops
while randomly augmenting the global and local crops using
the default color jittering as shown in Fig. 2. LDINO is defined

as follows:

LDINO(x) =
2∑

i=1

( 2∑
j=1
j ̸=i

H(Gt(x
i
g), Gs(x

j
g)) +

4∑
k=1

H(Gt(x
i
g), Gs(x

k
l ))

)
(2)

where,

x1
g = Cropg(aug(x)), x2

g = T (x, fstyle(Ft(x)),

xk
l = Cropl(aug(x))

Here, Gt and Gs denote the teacher, and student networks,
each composed of a feature extractor F and a projection
head g : Z → U applied on F ’s output Z, U ∈ Rd′

. Cropg(.)
and Cropl(.) denote random global and local crops, while
aug(.) denotes random color jittering transformation applied
to the target domain’s images with a probability of 0.5.
H(p, q) = −

∑
p log q denotes the cross-entropy loss.

The parameters of the student network θGs
and that

of adversarial augmentation module θfstyle are updated to
optimize the following mini-max objective:

min
θGs

max
θfstyle

Ex∼Dt

[
LDINO(x)

]
(3)

The teacher network’s parameters θGt are updated by
that of the student network θGs with momentum ν = 0.996
after every gradient step as follows:

θGt
= ν · θGt

+ (1− ν) · θGt
(4)

3.2. Cluster Relative Maximum Logit Score

We utilize the contextualized embedding space of self-
supervised trained ViT (F) to correct the confidence of the
source model fs on the target domain of tissue mages. As
the representation of the target domain’s images in the F’s
embedding space is semantically smooth (images belonging
to the same tissue category are mapped to nearby points in
embedding space and have similar confidence), we rectify
the source model’s confidence on the target domain’s images
by assigning similar confidence scores to the images that
are neighbors in the F’s embedding space. To achieve this,
we first group the contextualized embeddings of the target
domain images obtained by F into a large number of groups
using a simple K-Means clustering, followed by assigning
the same cluster-wise mean logit vector (given by fs) of size
C (number of known classes) to all the images belonging
to the same cluster. The cluster relative confidence of the
source model for a target domain’s image is then given by the
maximum logit value of its corresponding cluster-wise mean
logit vector. Note that we use the unnormalized maximum
raw logit output of fs to measure its confidence in a target
domain image instead of the maximum softmax probability
as the former has been shown more effective in detecting
Open Set examples [9]. In addition, we re-calibrate the batch
normalization [35] statistics of the source model fs with that
of the target domain if fs is a standard CNN. Re-calibrating



batch normalization statistics of fs can effectively reduce
the feature distribution shifts encountered in CNNs [6].

Clustering of the target domain’s contextualized embed-
dings. As shown in Fig. 3, we use K-Means clustering to
group the contextualized embeddings of the target domain
images Dt obtained from F into K disjoint clusters repre-
sented by {D1,D2, . . . ,DK}, where K is chosen arbitrarily
large, e.g., 16 (see ablation in Fig. 8). Each cluster member
is then assigned the same confidence score, namely cluster
relative maximum logit score (CRMLS).

Computing CRMLS. The CRMLS scores of all target
domain’s images belonging to the cluster Di are computed
as:

ΦCRMLS(Di)← maxEx∼Di
{fs(x)} (5)

where max is taken over C known classes, and E is
the expectation operation. CRMLS helps to correct fs’s
confidence by assigning the expected confidence score to
the target domain images belonging to the same cluster
in the transformer’s contextualized embedding space. The
target domain images in a cluster with homogeneous and
confident predictions by fs receive high scores, while images
of heterogeneous or unconfident clusters receive low scores.

3.3. Source-Free Adaptation via Class Prototypes

To obtain the pseudo-labels for self-training the source
model fs on the target domain images, we first compute
the class prototypes P = [p1, p2, . . . pC ] of C known classes
in the transformer’s contextualized embedding space using
CRMLS scores. Let Xj = {∀x|x ∈ Dt∧argmax fs(x) = j}
denote all target domain images that are classified by fs as
class j. Also, ∀x ∈ Xj , let ΦCRMLS(x) denote its confidence
score and Scluster(x) = |Di∋x∈Di | denote the size of the
cluster containing x. We compute the prototype of class j
as:

pj =

∑
x∈Xj ŵ(x) · F(x)∑

x∈Xj ŵ(x)
(6)

where,

ŵ(x) = w(x)− min
x∈Dt

w(x), w(x) =
ΦCRMLS(x)

Scluster(x)

Due to instability caused by K-Means clustering initial-
ization, we run Nmc Monte-Carlo simulations of K-Means
clustering (see ablation in Fig. 8) to compute ΦCRCLS(x)
and weights w(x) of the target domain images x ∈ Dt to
get better estimates. ŵ(x) ensures the weights are positive
and dividing ΦCRCLS(x) by the corresponding cluster size
Scluster(x) ensures the prototypes are not biased towards large
clusters.

Let Pnorm = [p̂1, p̂2, . . . p̂C ] denote unit norm class
prototypes such that p̂j = pj/∥pj∥. We compute the un-
normalized pseudo-logits ȳ for the target image x as follows:

ȳ(x) = PT
norm

F(x)
∥F(x)∥2

/τ (7)

where τ is a temperature hyperparamter. The source model fs
is adapted on the target domain images Dt using the pseudo-
logits of Eq. 7 to obtain f∗

t by minimizing the following
mean squared error (MSE) loss:

f∗
t = argmin

f
Ex∼Dt

∥f(x)− ȳ(x)∥22 (8)

We opt for MSE loss instead of the KL-divergence loss as the
former allows better Open Set detection based on Maximum
Logit Score (see ablation in Table 3).

4. Experiments and Results

4.1. Datasets

We evaluate Proto SF-OSDA on CRC tissue phenotyping
using Hematoxylin and Eosin (H&E) stained tissue sections
extracted from WSIs of colorectal biopsies. In particular, we
utilize three publicly available CRC tissue characterization
datasets digitized at a magnification of 20×: Kather-16
[36], Kather-19 [1], and CRCTP [2]. The Kather-16 dataset
comprises 5,000 patches (150×150 pixels, 0.495 µm/pixel)
representing eight tissue classes, with a balanced distribution
of 625 patches per class. Kather-19 consists of 100,000 tissue
patches (224×224 pixels, 0.5 µm/pixel) divided almost evenly
among nine classes. CRCTP contains 196,000 image patches
(150×150, 0.495 µm/pixel) categorized into seven tissue
phenotypes. For the experiments, we apply a random stratified
split to divide all datasets into training (70%), validation
(15%), and test (15%) sets. Due to discrepancies in class
definitions, following consultation with expert pathologists,
we follow the same harmonization approach in [37], resulting
in a set of 7 common classes: tumor epithelium (TUM),
stroma (STR), lymphocytes (LYM), normal colon mucosa
(NORM), complex stroma (c-STR), debris (DEB), and back-
ground (BACK). To make correspondence between datasets,
following [37], we merge stroma and smooth muscle (MUS)
classes as stroma (STR); and debris and mucus (MUC) as
debris (DEB).

Closed and Open Set splits. We adopt the experimen-
tal setup outlined in [8] to define Closed and Open Set
splits for each dataset. The three splits depicted in Fig. 4
follow the same principles described in [8], with minor
modifications. Specifically, Split 1 emulates a scenario where
a practitioner labels only clinically relevant tissue regions
(TUM, STR, LYM, and NORM) used for the critical task
of, e.g., quantifying tumor-stroma ratio [38], [39], leaving
uninformative regions (c-STR, DEB, ADI, BACK) unlabeled.
Notably, in contrast to [8], c-STR is considered an Open
Set category because it is not present in Kather-19 and
CRCTP datasets [37]. Split 2 and Split 3 complement the
analysis by focusing on the classification of tumoral regions
(TUM and STR) while excluding healthy tissues (LYM,
MUC) and uninformative but abundant samples (c-STR, DEB,
ADI, BACK). Additionally, Split 3 includes lymphocyte
images (LYM) in the Closed Set of Split 2 to introduce
more challenging Closed Set classification scenarios. Table



Figure 3: Transformer guided class prototypes. Given self-supervised ViT F and the source model fs, we first obtain the
target images’ representations in F’s contextualized embedding space which are weakly labeled by fs and grouped into K
clusters using K-Means clustering. Using CRMLS scores (Sec. 3.2), we then refine the confidence of weak pseudo labels
and compute weighted class prototypes of known classes in F’s embedding space.

TABLE 1: Summary of datasets repartitions. For all the datasets used in our experiments, we report the class ratio and
number of image patches in train, validation, and test sets of every Closed and Open Set split – Splits 1, 2, and 3.
∗ The validation subset of Open Set is not used in our experiments.

Kather-16 Kather-19 CRCTP

Train Validation Test Train Validation Test Train Validation Test

Ratio 70% 15% 15% Ratio 70% 15% 15% Ratio 70% 15% 15%

Split 1 Closed Set 50.0% 1,756 372 372 58.6% 41,039 8,790 8,790 92.9% 127,400 27,300 27,300
Open Set 50.0% 1,756 372∗ 372 41.4% 28,971 6,205∗ 6,205 7.1% 9,800 2,100∗ 2,100

Split 2 Closed Set 25.0% 878 186 186 38.3% 26,813 5,743 5,743 71.4% 98,000 21,000 21,000
Open Set 75.0% 2,634 558∗ 558 61.7% 43,197 9,252∗ 9,252 28.6% 39,200 8,400∗ 8,400

Split 3 Closed Set 37.5% 1,317 279 279 49.9% 34,904 7,476 7,476 82.1% 112,700 24,150 24,150
Open Set 62.5% 2,195 465∗ 465 50.1% 35,106 7,519∗ 7,519 17.9% 24,500 5,250∗ 5,250

Figure 4: Summary of dataset partitions used for Closed
(green) and Open (red) Set defined on the three CRC datasets
for tissue-type classification.

1 reports each dataset repartition and size, along with the
corresponding Closed and Open Set class ratios. The Open
Set class ratio ranges from 7.1% to 75%, allowing us to
cover various SF-OSDA scenarios.

4.2. Evaluation Protocol

We evaluate all baselines and our proposed
Proto SF-OSDA following the same protocol. Firstly,
we train the source model fs on the training Closed Set and
validate it on the validation Closed Set of the source domain
for selecting the best-performing source model. Next, we
adapt fs → ft on the target domain’s training subset,

including Closed and Open Sets. Finally, we evaluate the
performance of ft on the test subset of the target domain.
We use class average Closed Set accuracy (ACC) to assess
domain adaptation on the Closed Set and area under the
ROC curve (AUC) to access Open Set detection. We perform
six adaptation experiments, including pairwise adaptation
among Kather-16, Kather-19, and CRCTP datasets on every
split. We report results averaged over ten random seeds of
source model training.

4.3. Baselines

We compare our method against several seminal and state-
of-the-art (SOTA) methods for Open Set detection (OSR),
source-free test-time domain adaptation (TTA), and SF-
OSDA. Regarding OSR baselines, we compare our method
against CE+ [9] (maximizing the Closed Set accuracy of
the source model) and MC-Dropout [18]. In addition, we
adopt SOTA OSR baselines, including T3PO [8] and CSI
[11] as representative of augmentation-based approaches.
The former uses test-time image transformation prediction,
while the latter leverages contrastive learning to contrast the
sample with distributionally-shifted augmentations of itself.
For TTA baselines, we opt for parameter-free techniques,
including test-time batch adaptation techniques, BN [6], and
test-time augmentation method, namely OptTTA [7]. Finally,



TABLE 2: Performance comparison against state-of-the-art methods on Closed Set domain adaptation (ACC↑ in %) and
Open Set detection (AUC↑ in %) for pairwise model adaptation on Kather-16, Kather-19, and CRCTP datasets. Results are
averaged over 10 seeds. [‡] p < 0.001, [†] 0.001 ≤ p < 0.1, [n] p ≥ 0.1; paired t-test with respect to top results.

Open Set Detection Methods TTA Methods SF-OSDA Methods

Sp
lit

M
et

ri
c

CE+ MC-Dropout T3PO CSI BN OptTTA SHOT U-SFAN Proto
SF-OSDA

Kather-19 → Kather-16 / Kather-16 → Kather-19

1 ACC 75.3/88.6 76.4/88.2 89.2/92.9 79.3/89.2 89.0/86.3 82.9/79.7 88.5/89.6 89.1/87.5 94.3‡/98.0‡
AUC 85.4/78.0 80.5/81.1 88.4/80.7 66.4/74.1 86.3/69.8 71.4/61.5 80.5/51.4 85.3/61.1 95.7‡/99.3‡

2 ACC 97.9/75.7 98.2/77.0 98.8/89.1 95.2/92.1 98.0/88.0 96.4/79.1 97.6/90.1 97.7/88.1 99.3†/98.7‡
AUC 86.1/66.7 86.0/67.7 85.6/78.8 72.2/61.9 88.3/71.9 78.3/68.9 83.8/65.8 87.1/65.4 96.0‡/92.2‡

3 ACC 84.5/73.4 84.9/81.4 88.9/91.0 70.1/94.0 88.3/87.1 85.8/85.0 85.7/86.4 88.0/84.9 93.6‡/99.0†
AUC 83.0/65.1 82.2/64.5 85.6/78.6 66.1/55.8 87.6/80.7 76.1/80.2 73.9/64.3 85.0/65.7 95.2‡/98.8‡

CRCTP → Kather-16 / Kather-16 → CRCTP

1 ACC 71.0/67.3 72.1/68.4 72.0/76.5 66.4/61.9 83.3/74.1 79.3/74.3 87.8/76.0 84.4/74.1 95.2‡/80.2‡
AUC 69.6/67.9 64.9/70.6 82.8/60.8 80.9/65.0 76.5/61.7 72.8/60.6 78.7/61.7 76.2/61.6 94.4‡/80.4‡

2 ACC 97.1/85.2 96.8/84.2 81.4/92.8 95.2/84.3 98.1/94.2 95.1/89.3 97.5/95.0 98.0/94.4 99.2†/95.8‡
AUC 76.9/70.2 75.0/69.0 72.6/70.7 72.2/61.4 75.6/78.3 61.2/75.2 72.8/76.0 75.2/77.9 92.3‡/89.8‡

3 ACC 89.0/66.9 86.3/70.0 83.7/81.9 70.1/59.2 94.5/81.2 91.6/80.2 95.3/82.7 95.0/82.0 95.9†/84.3†
AUC 73.1/69.4 66.4/68.4 82.1/70.3 66.1/64.3 72.6/72.0 73.0/69.8 71.9/71.8 72.5/72.1 89.2†/87.6‡

CRCTP → Kather-19 / Kather-19 → CRCTP

1 ACC 73.9/52.5 75.4/52.5 75.6/53.1 72.2/60.7 82.1/73.0 68.4/62.9 84.6/74.7 89.1/73.7 96.8‡/80.5‡
AUC 72.0/63.9 76.7/63.6 85.9/61.8 72.5/64.4 75.7/61.2 60.0/64.9 66.4/56.7 56.9/52.6 98.3‡/78.4‡

2 ACC 95.2/88.6 95.8/88.5 94.9/87.5 93.9/93.1 92.1/93.6 85.9/92.8 92.2/94.1 90.6/94.4 99.4‡/95.8‡
AUC 73.6/70.6 73.4/72.0 74.0/68.2 71.3/77.1 77.2/82.3 67.0/76.8 68.6/78.3 58.9/71.4 95.1‡/90.2‡

3 ACC 94.4/57.7 94.3/57.2 94.9/59.7 94.9/62.1 94.3/78.2 88.1/66.5 93.9/80.9 92.2/82.9 99.1‡/85.1‡
AUC 73.5/79.2 75.9/74.3 81.9/77.9 85.3/78.4 78.0/74.6 71.4/68.5 68.7/69.5 61.1/62.8 97.9‡/84.3‡

we compare with SOTA SF-OSDA baselines, including
SHOT [4], and U-SFAN [28]. For CE+, MC-Dropout, and
T3PO, we use the released codes by [8], which are slightly
adapted to our setting, while for other methods, we use
their implementation with recommended parameters for a
fair comparison.

4.4. Implementation Details

We adopt the ViT/B-16 encoder as F starting from a self-
supervised DINO [34] initialization and MobileNet-V2 [41]
for the source-trained model fs. We train the source model
fs for 100 epochs on Kather-16, 20 epochs on Kather-19, and
CRCTP, respectively, for all splits using the training strategy
mentioned in CE+ [9]. For self-training the vision transformer
on the target domain, we use AdamW [42] optimizer with a
learning rate of 2.5e-4 for 40, 5, and 10 epochs on Kather-16,
Kather-19, and CRCTP datasets, respectively. We compute
the class prototypes using our proposed CRMLS with K =
16 clusters, Nmc = 32 Monte-Carlo simulations (see ablation
in Fig. 8), and temperature τ = 0.07. Finally, for the model
adaptation step, we self-train fs on the target domain with
the obtained log pseudo-labels for five epochs on Kather-16
and two epochs otherwise, using Adam optimizer [43] with
a learning rate of 1e-3. The experiments were carried out
using PyTorch 1.13 on an NVIDIA GeForce GTX 1080 Ti
GPU with 12GB of memory.

4.5. Comparisons with State-of-the-Art Methods

Table 2 compares Proto SF-OSDA against SOTA meth-
ods for Closed Set domain adaptation scenario via ACC
metric and Open Set recognition capability through AUC
metric on three splits for adapting the source model from
Kather-19 to Kather-16 and CRCTP to Kather-16, and vice-
versa. Proto SF-OSDA consistently achieves the highest
AUC and ACC scores for all three CRC tissue datasets across
both adaptation scenarios. In particular, our Proto SF-OSDA
notably achieves significant performance gain on Open Set
recognition (+18.1% AUC in Split 3) and Closed Set domain
adaptation scenario (+8.4% ACC in Split 1) for the Kather-16
→ Kather-19 model adaptation.

Several conclusions can be drawn based on the experi-
mental comparison to other methods. First, one can observe
that Open Set detection methods lag behind Proto SF-OSDA
when exposed to covariate shifts due to variations in tissue’s
visual appearances. Second, TTA methods do not perform
well under semantic shifts as these methods assume a closed-
world setup. Third, similar poor performance trends are
observed for recent SF-OSDA methods, including U-SFAN
and SHOT. Both SHOT and U-SFAN detect Open Set
samples by analyzing the source model’s features which
may not be very informative for Open Set detection to
handle severe chromatic shifts of tissue patches. Even worse,
these methods require much more target domain data for the
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Figure 5: The t-SNE visualization [40] comparison of self-supervised trained transformer encoder F of feature embeddings
on target domain images (Kather-19, Split 1), which are color-coded to distinguish different tissue types: (a) Ground Truth;
(b) BatchNorm re-calibrated source model fs trained on the Kather-16; and (c) Proto SF-OSDA’s feature embedding. The
weighted average class prototypes are obtained in the transformer’s embedding space. Labels’ confidence ∝ Color Density.

model adaptation. We argue that the superior performance
of Proto SF-OSDA is a direct effect induced by knowledge
distillation through a separate self-supervised trained vision
transformer in the distributionally shifted unlabeled target
domain. The quantitative results are supported by the t-SNE
[40] visualization results (Fig. 5) of self-supervised trained
ViT encoder F of feature embeddings on target domain
images (Kather-19, Split 1). Our transformer-guided class
prototypes successfully refine the weak pseudo-labels (given
by fs) of the target domain images in the ViT encoder’s
feature space with reliable confidence in the presence of
Open Set samples and covariate shift caused by changes in
tissue color appearance.

Tissue image segmentation. To demonstrate the capability of
Proto SF-OSDA for segmentation on large-resolution tissue-
level images, we adapted the patch-level classifier for the
Kather-19→Kather-16 model adaptation. In Fig. 6, we show
our method’s pixel-level segmentation results on a large
tissue image (5000×5000 pixels) alongside corresponding
segmentation maps generated by competing methods, i.e.,
CE+ and BN. For each method, we present the segmentation
maps computed using the predicted logit score for tumor
(TUM) and MLS score for Open Set and Closed Set tissue
classes. In the absence of ground truth information for the
presented image, our method is seen to better segregate
Closed set tissue classes (TUM, STR, LYM, MUC) from
Open Set classes (c-STR, DEB, ADI, and BACK) (Fig.
6, bottom). In addition, Proto SF-OSDA produces a less
noisy segmentation map, yielding better delineation of tumor
regions than other methods (Fig. 6, top).

4.6. Ablation Study

Style-based data augmentation. We evaluated the effect
of our proposed style-based augmentation (AdvStyle) (Sec.
3.1) for self-supervised training of ViT against the standard

Figure 6: Tissue image segmentation results for the Kather-
19→Kather-16 model adaptation performed by CE+, BN, and
Proto SF-OSDA on unseen tissue image: (top) predicted logit
score for the tumor (TUM) class; (bottom) predicted MLS
score, where green and red regions correspond to Closed
set classes (TUM, STR, LYM, MUC), and Open Set classes
(c-STR, DEB, ADI and BACK), respectively.

augmentation policies by comparing the quality of final
pseudo-labels. Fig. 7(a) shows that our AdvStyle policies
perform much better against augmentation policies used in
DINO [34], i.e., random color-jittering, and T3PO [8] on
every Closed/Open Set split on the Kather-16→Kather-19
adaptation.

Weighted average class prototypes, sensitivity to K-
Means initialization/clusters. In Fig. 7(b), we show the
effectiveness of our CRMLS scores for computing weighted
average class prototypes of Eq. 6 in the contextualized
embedding space of ViT by comparing it against uniform
scoring (US), and MLS [9]. We observe that CRMLS
produces superior-quality pseudo-labels. Moreover, since
Proto SF-OSDA is based on K-Means clustering, which
is highly sensitive to initialization and K, we perform a
sensitivity test on the number of Monte-Carlo runs Nmc of
K-Means and the number of clusters K in Fig. 8. We observe
that Proto SF-OSDA is insensitive to these parameters after
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Figure 7: Ablation studies on the Kather-16→Kather-19
adaptation. (a) Style-based augmentation types used for
self-training of ViT on the target domain: Random Color-
Jittering, T3PO’s [8], and our AdvStyle; (b) Scores for
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(US), maximum logit score (MLS), and CRMLS.
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Figure 8: Ablations on the number of clusters K for K-
means clustering and the number of Monte-Carlo runs Nmc
for Kather-16 → Kather-19 adaptation.

a certain threshold, e.g., K = 12, Nmc = 4.

Distillation loss for source model adaptation. In this abla-
tion study, we investigate different distillation loss functions
for adapting the source model fs on the training set of the
target domain using the corresponding prototypical pseudo-
logits of Eq. 8. In Table 3, we report the performance of the
model ft∗ on the test set of the target domain adapted using
traditional cross-entropy loss (CE), SHOT [4]’s InfoMax
with CE, l1 and the suggested l2 loss for self-distillation. All
distillation losses give similar ACC; however, only l1 and l2
provide high AUC scores. This is attributed to the fact that
l1 and l2 losses also penalize the magnitude of the logits
given by the target-adapted model, thus better preserving the
MLS-based confidence ranking of the target domain images.

5. Practicality of Proto SF-OSDA

This section discusses the practicality of Proto SF-OSDA
for clinical feasibility regarding source model architecture
sensitivity, amount of target data, and runtime. As shown
in Fig. 1 (a), SF-OSDA methods require two inputs: a pre-

TABLE 3: Ablation on types of distillation loss for adapting
source model fs to target domain (Kather-16 → Kather-19)
using pseudo-logits of Eq. 8. We compare the performance
in terms of ACC and AUC metrics of the target training
pseudo-labels with that of the adapted model ft trained with
cross-entropy (CE), SHOT, l1, and l2 on the target test set.
Red denotes severe degradation while cyan denotes minor
change.

Sp
lit

M
et

ri
c target

pseudo-
labels

Distillation loss

CE SHOT l1 l2

1 ACC 98.1 97.3(-0.8) 96.8(-1.3) 97.4(-0.7) 98.0(-0.1)
AUC 99.2 80.1(-19.1) 81.2(-18) 98.8(-0.4) 99.3(+0.1)

2 ACC 98.7 98.7(-0.0) 98.5(-0.2) 98.6(-0.1) 98.7(-0.0)
AUC 92.7 68.2(-25.5) 68.6(-24.1) 87.8(-4.9) 92.2(-0.5)

3 ACC 99.4 98.4(-1.0) 98.1(-1.3) 98.4(-1.0) 99.0(-0.4)
AUC 99.0 86.2(-12.8) 85.3(-13.7) 98.4(-0.6) 98.8(-0.2)

trained source model fs and unlabeled data from the target
domain. We argue the source model architecture should be
unknown a priori; therefore, SF-OSDA methods must be
insensitive to model architecture. The target data’s quantity
is variable and may affect the SF-OSDA performance and
computational cost. So, knowing the minimum amount of
target data the model requires to be competitive with the
baselines regarding runtime and performance is crucial. In
the following, we evaluate Proto SF-OSDA under these two
aspects. All experiments are conducted for Kather-16 →
Kather-19 adaptation.

Source model architecture sensitivity. We assess our
method using different source model architectures, including
MobileNet-V2, ViT-Ti/16 [44], and ResNet18 [45] following
the same training and adaptation procedure for each split. In
Fig. 9, we compare Proto SF-OSDA’s results against CE+,
BN, CSI, and SHOT methods. We empirically show that our
approach significantly surpasses all the baselines regarding
ACC and AUC metrics for all three model architectures.
Moreover, Proto SF-OSDA’s performance seems invariant
to the model architecture, an essential requirement for
practicality.

Comparing performance, runtime, and dataset size. Fig.
10 shows the runtime of Proto SF-OSDA for adapting the
source model on various target dataset sizes, along with
their ACC and AUC scores. Our method achieves superior
performance by using only 3.5k (5%) unlabeled target
domain images, outperforming other SF-OSDA baselines
that utilize all 70k (100%) target domain images. This shows
the practical significance of Proto SF-OSDA in low data
regimes, reducing adaptation computational costs. Note that
T3PO learns an auxiliary task of augmentation prediction
during source training to detect Open Set categories, while
BN updates batch-normalization statistics of the source
model with target domain images. However, these methods
underperform under severe domain shifts.
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Figure 10: Comparing performance with runtime and
dataset size. We plot Proto SF-OSDA’s performance in
terms of ACC/AUC metrics on Kather-16 → Kather-19
(Split 1) adaptation against its runtime and varying amounts
of target data along with Open Set detection, and TTA, SF-
OSDA methods that utilizes full target dataset (70k images).

6. Conclusion

We presented a novel source-free Open Set domain
adaptation method, Proto SF-OSDA, which enhances model
robustness to simultaneous semantic and covariate shifts
and disregards clinically irrelevant image regions from histo-
logical slides. Our key contribution is distilling knowledge
from a self-supervised vision transformer trained using our
proposed adversarial style augmentations in the target domain.
Our method significantly surpasses several SOTA baselines
on three colorectal tissue datasets. We conducted several
ablation experiments to highlight the importance of individual
components of Proto SF-OSDA. In particular, our method
performs well even in the low target data regime and with
different source model architectures, highlighting its clinical
relevance and practicality. As our method is generic, it can
be applied to other medical imaging modalities for Open Set
domain adaptation in the absence of source data.
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